

1 **Title.** Engram Reactivation Mimics Cellular Signatures of Fear

2

3 **Authors.** †Rebecca L. Suthard^{1,3}, †Ryan A. Senne^{1,2,3}, Michelle D. Buzharsky³, Anh H. Diep³, Angela Y.
4 Pyo³, Steve Ramirez^{*2,3}

5

6 *†These authors equally contributed to this manuscript.*

7

8 **Affiliations.**

9 ¹Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA

10 ²Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA

11 ³Department of Psychological and Brain Sciences, The Center for Systems Neuroscience,

12 Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, 02215, USA

13 *Lead Contact/Corresponding Author; Dr. Steve Ramirez (dvsteve@bu.edu)

14

15 **Summary.**

16 Engrams, or the physical substrate of memory in the brain, recruit heterogeneous cell-types. Targeted
17 reactivation of neurons processing discrete memories drives the behavioral expression of memory,
18 though the underlying landscape of recruited cells and their real-time responses remain elusive. To
19 understand how artificial stimulation of fear affects intra-hippocampal neuronal and astrocytic dynamics
20 as well as their behavioral consequences, we expressed channelrhodopsin-2 in an activity-dependent
21 manner in dentate gyrus neurons while performing fiber photometry of both cell types in ventral CA1
22 across learning and memory. Neurons and astrocytes were shock-responsive, while astrocytic calcium
23 events were uniquely modulated by fear conditioning. Notably, optogenetic stimulation of a hippocampus-
24 mediated engram recapitulated coordinated calcium signatures time-locked to freezing that were also
25 observed during natural fear memory recall, suggesting that engram activation alters activity across
26 different cell types within hippocampal circuits during the behavioral expression of fear. Together, our
27 data reveals cell-type specific hippocampal dynamics during freezing behavior and points to neuronal-
28 astrocytic coupling as a shared mechanism enabling the natural and artificial recall of a memory.

29

30 **Highlights.**

31 • Ventral hippocampal neurons and astrocytes are active during foot shock
32 • Calcium activity is time-locked to freezing during fear conditioning and recall
33 • Optogenetic reactivation of fear recapitulates cellular signatures seen during recall
34 • Reactivation of a fear memory allows prediction of freezing behavior

35

36

37 **Keywords.** Hippocampus, engram, astrocyte, fiber photometry, optogenetics, fear, memory.

38 **Introduction.**

39 The hippocampus (HPC) is a region within the medial temporal lobe that is indispensable for
40 episodic memory ¹. In recent years, there has been an increasing focus on the ventral HPC's vital role in
41 emotional processing and memory. Studies have confirmed differential roles along the dorsal and ventral
42 axis, where the dorsal hippocampus (dHPC) is necessary for spatial and temporal encoding, while lesions
43 to the ventral hippocampus (vHPC) cause emotional dysregulation and impaired stress responses ²⁻⁴.
44 More specifically, the ventral CA1 (vCA1) subregion contains a subset of basolateral amygdala-projecting
45 neurons necessary for contextual fear conditioning (CFC) and are responsive to the aversive conditioning
46 ³. This body of work suggests a critical role for vCA1 in aversive conditioning and the subsequent
47 emotional responses.

48 The hippocampus's subregions and cell types have a complex and heterogeneous structure-
49 function relationship. The dentate gyrus (DG), CA3, and CA1 subregions of the hippocampus make up
50 the "trisynaptic loop," which has shown to be a critical circuit for HPC mnemonic processes. Moreover, the
51 dHPC, specifically the DG, contains defined sets of cells that undergo plasticity-related changes during
52 learning which, when activated, are sufficient to drive the behavioral expression of memory ⁵⁻⁹. These
53 studies rely on inducible genetic tools, such as the Tet-tag system¹⁰, to effectively 'tag' or label neuronal
54 ensembles or *engrams* active during an initial experience which can later be reactivated via chemo- or
55 optogenetics. This field of work has enhanced our understanding of HPC computations and allows for a
56 time-locked strategy for assessing a causal role between circuitry and behavior. However, most studies to
57 date have focused almost exclusively on neuronal contributions to memory engrams, while the role of
58 non-neuronal cell types within this hippocampal circuitry have remained relatively understudied. Thus, it is
59 unknown whether these cells modulate intrahippocampal population dynamics in a pattern akin to natural
60 memory recall.

61 Astrocytes are a predominant glial cell type that have been shown to play a pivotal role in the
62 tripartite synapse, coupling with pre- and postsynaptic neurons to bidirectionally modulate synaptic
63 communication ¹¹⁻¹⁵. These cells perform vital functions including maintaining the blood-brain barrier,
64 supporting metabolic needs of surrounding neurons, releasing gliotransmitters and expressing
65 neurotransmitter receptors to appropriately respond to and modulate their neuronal neighbors ¹⁶⁻¹⁸.
66 Recently, there has been a shift to studying astrocytes at the systems-level through the use of
67 optogenetics, chemogenetics and optical imaging techniques ¹⁹⁻²³. For instance, manipulation of
68 astrocytes in hippocampal and amygdalar sub-regions has been shown to impair or enhance both recent
69 and remote memory formation and retrieval ²⁴⁻²⁷. Moreover, recent engram studies have demonstrated
70 the importance of non-neuronal cell types, microglia, and oligodendrocytes, in experience- and activity-
71 dependent processes ²⁸⁻³⁰. Broadly, this burgeoning field suggests that glial cells are playing a role in
72 modulating local and long-range projections within the brain to regulate behavior. Still, despite these
73 recent advances little is known about how astrocytes may be playing a role in emotional processing within
74 vCA1 during fear memory expression.

75 To that end, we combined activity-dependent tagging strategies with dual-color fiber photometry
76 to study neuronal-astrocytic interplay of activity across fear encoding, natural recall, and artificial
77 reactivation of a tagged engram. We injected a glial fibrillary acidic protein (GFAP)-driven GCaMP6f virus
78 paired with a neuronal human synapsin (hSyn)-driven jRGECO1a in ventral hippocampal CA1 (vCA1) to
79 measure neuronal and astrocytic dynamics, while concurrently tagging and reactivating cells active during
80 contextual fear conditioning (CFC) in the dorsal dentate gyrus (dDG) using Tet-tag viral constructs. We
81 find that optogenetic reactivation of a fear memory is sufficient to induce cellular signatures that are akin
82 to those seen during natural recall. These findings further enhance our understanding of the complex
83 interplay of the cellular machinery of the brain and suggest that neurons and astrocytes are important
84 members of the same processes.

85

86 **Results.**

87 *In vivo calcium recordings of neurons and astrocytes in the ventral hippocampus during natural and*
88 *artificial memory reactivation.*

89 We first monitored neuron and astrocyte calcium dynamics in hippocampal vHPC using dual-color
90 fiber photometry in freely moving mice across habituation, CFC, natural recall and optogenetic ('artificial')
91 reactivation of a tagged fear memory. Wild type mice were injected in vCA1 unilaterally with AAV5-
92 GfaABC1D-GCaMP6f and AAV9-hSyn-jRGECO1a to express genetically-encoded calcium indicators
93 (GECIs) in astrocytes and neurons, respectively. Additionally, these mice were bilaterally injected with the
94 Tet-tag viral cocktail of AAV9-c-fos-tTA and AAV9-TRE-ChR2-eYFP or eYFP control in the dorsal DG to
95 allow for temporal control over 'tagging' and reactivating a neuronal ensemble with this simultaneous
96 recording of calcium dynamics (Figure 1A). jRGECO1a and GCaMP6f successfully and effectively
97 expressed in vHPC neurons and astrocytes, respectively (Figure 1B). Across all days of behavior, we
98 used fiber photometry to record freely moving neuronal and astrocytic calcium activity in the vHPC (Figure
99 1C). Mice were placed into three groups: Shock-ChR2 (mice that received foot shock and expressed
100 active channelrhodopsin (ChR2) in tagged fear engram cells), Shock-eYFP (mice that received foot shock
101 and expressed control eYFP in tagged fear engram cells) and Neutral-ChR2 (mice that did not receive
102 foot shock and express active ChR2 in tagged neutral engram cells). On Day 1, all mice remained on
103 doxycycline (Dox) diet while they freely explored neutral Context B (Cxt B) and received blue-light
104 stimulation for habituation. After this session, mice had Dox diet replaced with standard chow for 48 hours
105 prior to the engram labeling. On Day 3, mice in the Shock-ChR2 and Shock-eYFP groups underwent CFC
106 in Context A (Cxt A). Here, they received 4, 0.75mA foot shocks while off Dox. Mice in the Neutral-ChR2
107 group were placed in Cxt A for the same duration of time in the absence of aversive stimuli. After this
108 session, all mice were returned to the Dox diet to close the 'tagging window'. On Day 4, all mice were
109 placed back in Cxt A for contextual ('natural') recall. On Day 5, all mice were placed in the previously
110 habituated Cxt B where they received blue-light stimulation during the 120-240 seconds and 360-480
111 second time periods. 90 minutes after the first light-ON epoch of optogenetic stimulation, mice were

112 transcardially perfused to capture peak cFos protein levels and allow us to examine the 'reactivation rate'
113 of tagged vs. reactivated neurons in dDG (Figure 1C).

114 Next, we performed histology to visualize the tagged dDG engram cells (green), reactivated cFos
115 cells (red), DAPI (blue) and overlaps (yellow) for Shock-ChR2 (Figure 1D; top), Shock-eYFP (Figure 1D;
116 middle) and Neutral-ChR2 (Figure 1D; bottom). There were no statistically significant differences in the
117 active cFos+ cells (%cFos+/DAPI+) across any group (Figure 1E). The percentage of tagged cells
118 (%eYFP+/DAPI+) was significantly different across groups. *Post-hoc* multiple comparisons demonstrated
119 significantly greater eYFP+ 'tagged' engram cells in the Shock-eYFP group compared to both the Shock-
120 ChR2 and Neutral-ChR2 groups (Figure 1F). Additionally, there was a significant increase in eYFP+
121 tagged cells in the Shock-ChR2 compared to the Neutral-ChR2 group (Figure 1F). Finally, to assess the
122 similarity of the initially 'tagged' engram cells and those reactivated during optogenetic stimulation, we
123 quantified the number of overlaps for each group cFos+eYFP+/DAPI+ compared to chance
124 (eYFP+/DAPI+) x (cFos+/DAPI+). We observed that the overlaps/chance in the Shock-ChR2 and Neutral-
125 ChR2 groups were significantly greater than the chance theoretical mean of 1.0 (Figure 1G). This result
126 indicates that optogenetic stimulation of 'active' ChR2 protein in our tagged cells, both fearful and neutral
127 in nature, increased the number of reactivated cells from the initially labeled experience, whereas our
128 eYFP group was not activated.

129

130 Neurons and astrocytes respond robustly to foot shock and freezing epochs during contextual fear
131 conditioning.

132 To test the hypothesis that astrocytes and neurons play an active role in the acquisition of
133 contextual fear, we used *in vivo* fiber photometry to record the activity of both cell types across all
134 experimental days of our behavioral task (Figure 1A; bottom). During CFC, mice in the Shock-ChR2 and
135 Shock-eYFP groups had significantly increased freezing levels compared to Neutral-ChR2 mice that did
136 not receive foot shock (Figure 2A-B). These mice acquired fear across the session, with an increase in
137 the Shock-ChR2 and Shock-eYFP groups, but not in the Neutral-ChR2 (Figure 2A-B). Calcium timeseries
138 for astrocytes (Figure 2C) and neurons (Figure 2D) in the Shock-ChR2 and Shock-eYFP groups indicated
139 increased activity at the times of 0.75mA foot shock (120, 180, 240, 300 seconds), but not in the Neutral-
140 ChR2 group that did not receive foot shock. To further understand this assessment, whole session peri-
141 event analysis for astrocytes (Figure 2E) and neurons (Figure 2J) demonstrated a significant increase in
142 activity at the onset of each foot shock, indicated by the dashed vertical lines. During the foot shocks, we
143 observed a significant increase in the z-scored %dF/F for both astrocytes (Figure 2F) and neurons (Figure
144 2K) in the Shock-ChR2 and -eYFP groups, but not in the Neutral-ChR2 group, as expected. Further,
145 calcium event characteristics were calculated for neurons and astrocytes in all groups. Astrocytes that
146 underwent shock displayed an increase in peak height (%dF/F) and area under the curve (AUC), as well
147 as a decrease in full-width half-maximum (FWHM) compared to those that did not receive shock (Figure

148 2G-I). On the other hand, neuronal calcium characteristics were not significantly different across any
149 groups (Figure 2L-N).

150 Next, we hypothesized that astrocytes and neurons would be time-locked to the onset and offset
151 of behavioral freezing bouts, in line with previous work from basolateral amygdala astrocytes during fear
152 learning ³¹. Peri-event analysis of foot shock showed that neurons and astrocytes are both time-locked to
153 0.75mA foot shock, with neurons displaying a smaller amplitude event that begins shortly before
154 astrocytic calcium (Figure 2O; top and middle), compared to those that did not receive an aversive
155 stimulus (Figure 2O; bottom). For freezing onset, both neurons and astrocytes displayed a significant
156 decrease in activity immediately before the start of the freezing bout, rebounding around 1-2 seconds
157 post-event (Figure 2P; top and middle) that we did not observe in Neutral-ChR2 mice (Figure 2P; bottom).
158 Interestingly, both astrocytes and neurons displayed a significant decrease in activity at the offset of
159 freezing bouts in the Shock-ChR2 and -eYFP groups with little delay between the two cell types (Figure
160 2Q; top and middle). As neurons and astrocytes showed coordinated activity at freezing bouts, we
161 hypothesized that as freezing percentage increased, there would be an increase in correlation between
162 cell types (max cross-correlation). To understand this, we performed cross-correlation between the
163 neuron and astrocyte calcium timeseries for the entire CFC session (Figure 2R). We observed that the
164 maximum cross-correlation value was not significantly different across the three groups (Figure 2S).
165 Further, we performed a simple linear regression to see if an increase in maximum neuron-astrocyte
166 cross-correlation can predict an increase in an animal's freezing level. For CFC, we did not observe a
167 significant relationship between cross-correlation and average percent freezing (Figure 2T).
168

169 *Neuronal and astrocytic calcium are responsive to freezing epochs during contextual recall*

170 To understand vHPC neuron-astrocyte calcium dynamics during natural recall, mice were placed
171 back in CxtA in the absence of any aversive stimuli the next day. During recall, mice in the Shock-ChR2
172 and Shock-eYFP groups expressed high levels of fear, as shown by increased freezing across the
173 session (Figure 3A-B) compared to Neutral-ChR2 mice that did not experience foot shock the day before.
174 Whole session individual calcium timeseries (Figure 3C-D) and average traces (Figure 3E-F) for
175 astrocytes and neurons showed qualitatively similar activity in shock groups during recall. Similar to CFC,
176 there was a significant dip and rapid increase in the z-scored %dF/F for both astrocytes and neurons at
177 the onset of freezing bouts for Shock-ChR2 and Shock-eYFP groups (Figure 3G; top and middle) that
178 was not observed in the Neutral-ChR2 calcium (Figure 3G; bottom). Further, we observed a similar rapid
179 decrease in calcium activity across cell types at the offsets of freezing bouts (Figure 3H; top and middle),
180 that again was not observed in the Neutral-ChR2 mice (Figure 3H; bottom). Calcium event characteristics
181 were calculated for both neurons and astrocytes across all groups during recall. Similar to CFC,
182 astrocytes in the Shock-ChR2 group displayed significantly increased peak height and AUC compared to
183 the Neutral-ChR2 group (Figure 3I). The Shock-eYFP group had a trend towards the same significant
184 increase in peak height and AUC, with no difference between Shock-ChR2 and Shock-eYFP (Figure 3I).

185 Again, neuronal calcium events did not differ significantly in any metric across groups during this session
186 (Figure 3L-N). We further investigated the relationship between neuron-astrocyte cross-correlation and
187 freezing during recall, as consolidation of the memory may contribute to a stronger relationship between
188 these factors. We observed that the maximum cross-correlation value was significantly higher in the
189 groups that received foot shock previously compared to Neutral-ChR2 (Figure 3O). Finally, a simple linear
190 regression revealed a significant positive relationship between the maximum cross-correlation and
191 freezing with an increase in neuron-astrocyte correlation predictive of an increase in the animal's freezing
192 behavior. With this information, we can conclude that increased maximum cross-correlation is positively
193 associated with freezing levels (Figure 3P).

194

195 *Neuron-astrocyte calcium responds to freezing epochs during optogenetic reactivation of fear.*

196 To optogenetically reactivate a fear memory, mice were placed in previously neutral Cxt B for 600
197 seconds while receiving blue light stimulation during the 120-240 and 360-480 second time intervals. In
198 our experiment, optogenetic reactivation drove the highest level of freezing in the Shock-ChR2 group, as
199 expected (Figure 4A-B), though in an atypical manner from previously reported light-induced studies but
200 nonetheless consistent with an overall increase in freezing behavior during stimulation ³²⁻³⁴. Interestingly,
201 while we observe increases in freezing with the onset of blue light at the 120 and 360 second timepoints,
202 the already extant freezing levels we believe reflect contextual generalization, which provides us with an
203 opportunity to study global increases in freezing and its effects on intra-hippocampal dynamics. The
204 Shock-eYFP group displays a moderate level of fear that is likely due to fear generalization (Figure 4A-B).
205 As anticipated, Neutral-ChR2 mice display the lowest level of freezing, hovering around 20% on average
206 across the session (Figure 4A-B). Qualitatively, there were no significant differences in individual nor in
207 whole session calcium timeseries across groups for both astrocytes (Figure 4C, B) and neurons (Figure
208 4D-I). There were no changes in calcium event metrics across all the groups in both cell types (Figure 4F-
209 H, J-L). Additionally, there was no significant difference in maximum cross-correlation across all the
210 groups during the optogenetic reactivation session (Figure 4M). However, a simple linear regression
211 revealed a significant relationship between maximum cross-correlation and average freezing during this
212 session (Figure 4N). However, the R^2 value for cross-correlation ($R^2 = 0.2114$) was lower during this
213 session compared to recall ($R^2 = 0.3071$)(Figure 3P).

214 Interestingly, we observed coordinated calcium signatures in the Shock-ChR2 group time-locked
215 to freezing onset and offset resembling those during natural recall in both Shock-ChR2 and Shock-eYFP
216 mice (Figure 3G-H). Most notably, this time-locking to freezing epochs was not present in the Shock-
217 eYFP and Neutral-ChR2 group during optogenetic reactivation (Figure 4O-P). Both the Shock-eYFP and
218 Neutral-ChR2 exhibited some level of freezing behavior, likely due to generalization of fear, but artificial
219 reactivation of a fear memory re-engaged astrocytes and neurons calcium activity in a stereotyped
220 manner characteristic of natural recall. Optogenetic stimulation onset and offset did not appear to

221 significantly change calcium activity in either cell type, although blue light onset may have led to a
222 decrease in calcium in both cell types specific to fear memory activation (Figure 3Q-R).

223

224 *Predictive reliability of freezing is present only in the Shock-ChR2 group.*

225 As astrocytes and neurons changed their dynamics in response to freezing onset and offset
226 during optogenetic and natural memory recall, we next if freezing could be reliably predicted from the fiber
227 photometry traces (Figure 3G-H, Figure 4O-P). To this end, we fit a binomial generalized linear model
228 (GLM) with a logit link to the freezing as a function of the astrocytic and neuronal photometry signals.
229 During model selection, (see STAR Methods), we found that a model that used both neuronal and
230 astrocytic signals was best able to predict freezing. Both coefficients were found to be statistically
231 significant. We then fit this model to each animal during recall (Figure 5A-B). We found that the
232 coefficients for the Shock-ChR2 group corresponding to the astrocytic photometry signal were not
233 significantly different from the Shock-eYFP group but were significantly different from the Neutral-ChR2
234 group during natural recall (Figure 5B). Interestingly we found no significant differences between the
235 Shock-eYFP group's coefficients and the other groups, and we saw no significant differences in the
236 coefficient values that correspond to the neuronal signal (Figure 5B). To assess the predictive validity of
237 our model we used receiver operating characteristic (ROC) curves and the area under the curve (AUC)
238 metric (Figure 5 C-D, G-H). We found that during natural recall that the Shock-ChR2 group was not
239 significantly better at predicting freezing than the Shock-eYFP group but was significantly better at
240 predicting freezing than the Neutral-ChR2 group (Figure 5D). Again, we found that the Shock-eYFP group
241 was not significantly from either group. We next wanted to see how these results would change during
242 artificial reactivation, especially as we saw a decoupling of the peri-event responses to freezing onset and
243 offset between the Shock-eYFP groups during artificial reactivation (Figure 4O-P). Furthermore, we found
244 that the astrocyte signal corresponding beta coefficients were significantly different in the Shock-ChR2
245 group compared to both other groups (Figure 5F). We again observed no statistical differences in the
246 neuronal signal coefficients (Figure 5F), and then found that in the AUC metrics the Shock-ChR2 group
247 had significantly better predictive power than both the Shock-eYFP and Neutral-ChR2 groups (Figure
248 5H). Overall, this analysis suggests that our optogenetic stimulation paradigm preserves freezing-specific
249 information within the photometry signals of vCA1 neurons and astrocytes.

250

251 *Mice display low freezing and no differences in calcium dynamics across all groups during habituation*

252 On Day 1, mice were placed in a neutral Cxt B for a habituation session while receiving blue light
253 stimulation during the 120-240 and 360-480 second time intervals. As expected, mice exhibited low levels
254 of freezing because no cells were tagged with ChR2 (Supplemental Figure 1A-B). Calcium timeseries and
255 whole session peri-event analysis for astrocytes (Supplemental Figure 1C-E) and neurons (Figure 3D, I)
256 showed qualitatively similar activity in all groups during habituation. Calcium event characteristics were
257 calculated for all groups for both neurons and astrocytes. In both cell types, there were no significant

258 differences in any event metrics: peak height, area under the curve, and full-width half-maximum
259 (Supplemental Figure 1F-M, J-L). Further, we calculated neuron-astrocyte cross-correlation, observing, as
260 expected, non-significant differences across the three groups (Supplemental Figure 1M). We fit a simple
261 linear regression to test if differences in cross-correlation can predict the animal's average freezing level.
262 During the habituation session, we did not observe a significant relationship between cross-correlation
263 and freezing (Supplemental Figure 1N). Next, we performed peri-event analysis to examine astrocytic and
264 neuronal calcium dynamics at the timepoints of freezing initiation and termination, and the onset and
265 offset of blue-light stimulation. We do not observe the same stereotyped decreases and increases in
266 calcium time-locked to freezing bouts observed during natural or artificial fear memory recall
267 (Supplemental Figure O-P). This confirms that the calcium signatures we observe during recall for both
268 shock groups and artificial fear memory recall in the Shock-ChR2 group are unique to fear memory
269 engagement. Blue-light stimulation onset and offset during habituation did not reliably time-lock to calcium
270 in any group, with significant events likely related to spurious, noisy activity that we commonly observe
271 during 'neutral' contexts (Supplemental Figure Q-R) ³¹.

272

273 **Discussion.**

274

275 The role of neuron-astrocyte dynamics during natural and artificial fear memory

276 In this study, we asked how artificial reactivation of fear ensembles affects intrahippocampal
277 neuronal and astrocytic calcium activity and how this interfaces with fear behavioral states. Our data
278 demonstrates the emergence of coordinated calcium signatures time-locked to onset and offset of
279 freezing during CFC that become more distinctive during natural recall in the Shock-ChR2 and -eYFP
280 groups. This is consistent with previous findings from our lab showing that astrocytes in the basolateral
281 amygdala are time-locked to freezing epochs during CFC and recall. Optogenetic reactivation of a dDG
282 fear engram recapitulates these dynamics during freezing bouts, whereas stimulation of neutral-tagged
283 neurons (Neutral-ChR2) and control Shock-eYFP mice do not, suggesting that this manipulation mimics
284 the natural expression of fear.

285

286 Optogenetic stimulation of a fear engram elicits atypical behavioral response

287 Based on previous work and the work of others, when mice with tagged Shock-ChR2+ cells
288 undergo optogenetic stimulation of these fear-related neuronal ensembles -- they display light-induced
289 freezing behavior. For this reason, we expected that our mice in the Shock-ChR2 group would display
290 high levels of freezing during the light ON epochs and decrease during light OFF epochs. This 'see-saw'
291 effect is not typically observed in Shock-eYFP and Neutral-ChR2 groups where they display lower levels
292 of freezing overall. This is because the eYFP+ cells are not blue-light sensitive, and thus should not be
293 'reactivated' or brought back online to drive fear, and the Neutral-ChR2 group has a non-shock-related
294 experience labeled. Our behavioral findings during optogenetic reactivation showed an increase in

295 freezing with the onset of blue-light stimulation that was modest in the Shock-ChR2 group. In line with our
296 observations, previous engram research has shown a range of variability in light-induced freezing
297 behaviors driven by differences in stimulation frequency and brain region³⁵. For instance, recent work
298 has shown a very modest increase between light-ON and OFF epochs (e.g. ~ 5% changes in freezing)
299 with optogenetic stimulation of the prefrontal cortex (PFC), which is consistent with our findings³². This is
300 further supported by other work showing large variability in freezing, with the distributions between shock
301 and no shock largely overlapping and few mice driving this significant difference during the light-ON
302 periods³³. Further, when collapsed across the entire optogenetic session (light-ON and light-OFF epochs
303 together for each group), this study observed no significant differences across shock and no shock mice.
304 Both of these works nonetheless successfully dissociated light-induced changes in behavior from light-
305 induced changes in cellular dynamics. Importantly, our optogenetic stimulation, although similarly modest
306 in behavioral effects, indeed recapitulates coordinated calcium signatures resembling natural recall that
307 are time-locked to freezing behavior, only in the Shock-ChR2 group. This may suggest that during fear
308 states, and specifically during bouts of freezing, fear engram reactivation alters downstream neuronal and
309 astrocytic calcium dynamics and this alteration mimics natural fear states.

310

311 *Correlation between neuronal and astrocytic calcium can predict fear states.*

312 Due to the robust coordinated responses between neurons and astrocytes at the onset and offset
313 of freezing epochs, we next tested if the two cell types become more correlated with an increase in
314 average fear. Our analysis showed no significant differences in maximum cross-correlations between
315 groups during CFC. This is likely due to the emergence of the fear state across the session and may
316 require consolidation of the memory³². In line with this hypothesis, in natural recall there was increased
317 correlation between neurons and astrocytes in the shocked groups compared to the no-shock group. A
318 simple linear regression analysis revealed that cross-correlations had a linear relationship to average
319 freezing in the session. During the artificial recall session, although the Shock-ChR2 group exhibited
320 increased freezing levels and stereotyped calcium signatures time-locked to freezing characteristic of
321 natural fear, however, there were no significant differences in maximum cross-correlations. Moreover, we
322 observed more variability in cross-correlations between animals in both shock groups compared to
323 natural recall. We speculate that optogenetic stimulation of an engram multiple synapses upstream² alters
324 natural dynamics and leads to decreased coordination between cell types across the session compared
325 to recall. Despite the induction of elevated fear levels and stereotyped calcium time-locking to freezing
326 epochs during optogenetic reactivation, this artificial perturbation is likely to produce more variability, both
327 behaviorally and cellularly.

328

329 *Statistical Modelling Enhances Interpretability of Engram Research*

330 The ability to manipulate engrams via inhibition or activation has been technologically feasible for
331 the past two decades^{5,36}, but the majority of research relies on using behavioral metrics (e.g. freezing)

332 and or measurements of IEG expression as the primary readouts. However, as real-time recording and
333 concurrent optogenetic perturbations are becoming more prevalent, a higher level of cellular and behavior
334 resolution is warranted to measure phenotypes in an unbiased manner. One caveat with using a single
335 behavioral dimension to assay memory is that it makes a *prima facie* assumption that subjects are
336 independent and identically distributed. However, several studies have shown that metrics including
337 freezing are not always universally expressed and show considerable variability. For instance, the often-
338 observed “bi-directional freezing” often observed during optogenetic stimulation is not always present³²⁻
339³⁴. In this study, we propose that as real-time recording approaches become more prevalent in engram
340 research, statistical modeling will become indispensable. We used a classic statistical model, the
341 Generalized Linear Model, which has been seminal in many other fields of neuroscience³⁷. We found that
342 using our two photometry signals from astrocytes and neurons reliably predicted freezing behavior in
343 mice, even though we observed non-traditional freezing curves. Accordingly, we speculate that engram
344 stimulation preserves encoded “fear” states within the activity of vCA1 neurons and astrocytes. This
345 suggests that while engram stimulation is undoubtedly an artificial approach, we nonetheless observe
346 physiological responses expected under natural fear memory recall. We believe that this result paired
347 with our observation of significant peri-events in the Shock-ChR2 group only during optogenetic
348 stimulation advances the idea that our stimulation is recapitulating fear-related neuronal responses. It is
349 worth underscoring that our model selection procedure suggests that neuronal signals are playing an
350 important predictive role in our model, despite the absence of significant group level differences in the
351 corresponding beta coefficients. We believe there are a few reasonable explanations that could resolve
352 this conflict. For example, like other red calcium indicators, jRGECO1a has lower signal-to-noise ratio
353 than its GCaMP6f counterpart, and so it is feasible that some animals will have much more reliable
354 predictive capabilities in this channel than others. An additional caveat is that we fit a separate model to
355 each of the animals and assume each mouse is independent. Thus, future research could augment our
356 approach in at least two manners: one could use a generalized linear-mixed effects model which would
357 supply a maximum a posteriori estimate of the posterior distribution of the beta-coefficients; or, one could
358 use a fully Bayesian approach and partial-pool all of the data to take into account the inherent variability
359 of different mice. Regardless, we believe that even simple statistical models, such as the ones used here,
360 will enhance the interpretation of future engram studies.

361

362 *Advancing the study of natural and artificially-driven memories*

363 Our study demonstrates that optogenetic reactivation of a fear engram induces neuronal-
364 astrocytic dynamics that resemble the cellular responses observed during natural fear memory recall.
365 Interestingly, recent work has characterized the relationship between phase-specific optogenetic
366 stimulation of the DG and theta oscillations in the dorsal CA1 of the hippocampus using local-field
367 potentials. Here, they find that stimulation during the trough of theta is more effective at driving freezing
368 behavior compared to the peak of theta. The variability in freezing behavior in our data could be

369 potentially explained by imprecise stimulation patterns that do not yet take phase-specific relationships
370 between engram activation and ongoing rhythms in the brain into account ³⁴. This study also did not
371 observe significant light-induced freezing during light-ON epochs at 20Hz in the dDG, but did observe this
372 during trough stimulation, further supporting the notion that the brain contains optimal rhythmic windows
373 during which optogenetic stimulation of an engram may be most effective at driving behavior. This work
374 builds on others that have recorded from within or downstream of DG engram stimulation. For example,
375 calcium recordings of *F*-RAM and *N*-RAM ensembles expressing GCaMP after CFC revealed that they
376 were differentially reactivated during recall in the DG, with the *N*-RAM ensemble uniquely engaging for
377 memory discrimination³⁸. Further, single-unit electrophysiological activity in the BLA of mice while
378 simultaneously activating DG positive engram cells had both excitatory and inhibitory effects on individual
379 cells⁷. Finally, 20 Hz stimulation of a sparse population of DG granule cells was shown to excite and
380 inhibit an equal number of neurons downstream in CA3, which provides a putative mechanism for how
381 both excitation and inhibition work together to effectively express a memory³⁹. Together with this previous
382 work, our study supports the idea that optogenetic reactivation is sufficient to induce behavioral and
383 cellular fear states similar to those observed during natural recall.

384

385 **Author Contributions.**

386 Conceptualization, R.L.S, R.A.S, S.R.; Methodology, R.L.S, R.A.S, S.R.; Formal Analysis, R.L.S, R.A.S,
387 M.D.B; Investigation, R.L.S, R.A.S, M.D.B, A.D., A.Y.P.; Visualization, R.L.S, R.A.S; Writing – Original
388 Draft, R.L.S, R.A.S, M.D.B, S.R.; Writing – Review & Editing, R.L.S, R.A.S, M.D.B, S.R.; Funding
389 Acquisition, S.R.; Resources, S.R. Supervision, S.R.

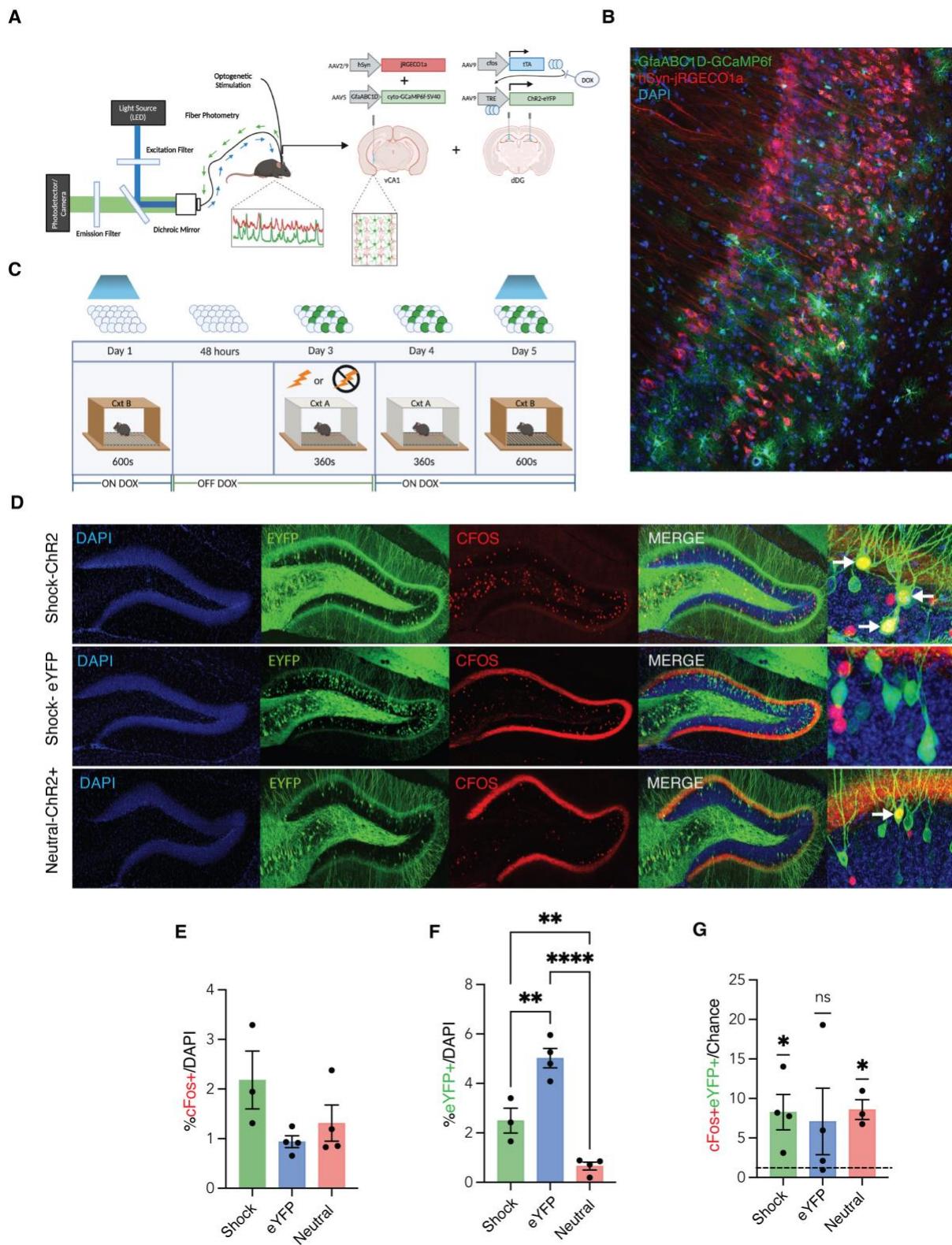
390

391 **Acknowledgements.**

392 We thank members of the Ramirez laboratory for their helpful comments and suggestions on the
393 manuscript. This material is based upon work supported by the Air Force Office of Scientific Research
394 (AFOSR) under award number FA9550-21-1-0310, the Ludwig Family Foundation, an NIH Early
395 Independence Award DP5 OD023106-01, NIH Transformative Award, Brain and Behavior Research
396 Foundation Young Investigator Grant, McKnight Foundation Memory and Cognitive Disorders Award,
397 Pew Scholars Program in the Biomedical Sciences, the Chan-Zuckerberg Initiative, and the Center for
398 Systems Neuroscience and Neurophotonics Center at Boston University. Behavioral schematics were
399 created using BioRender.com

400

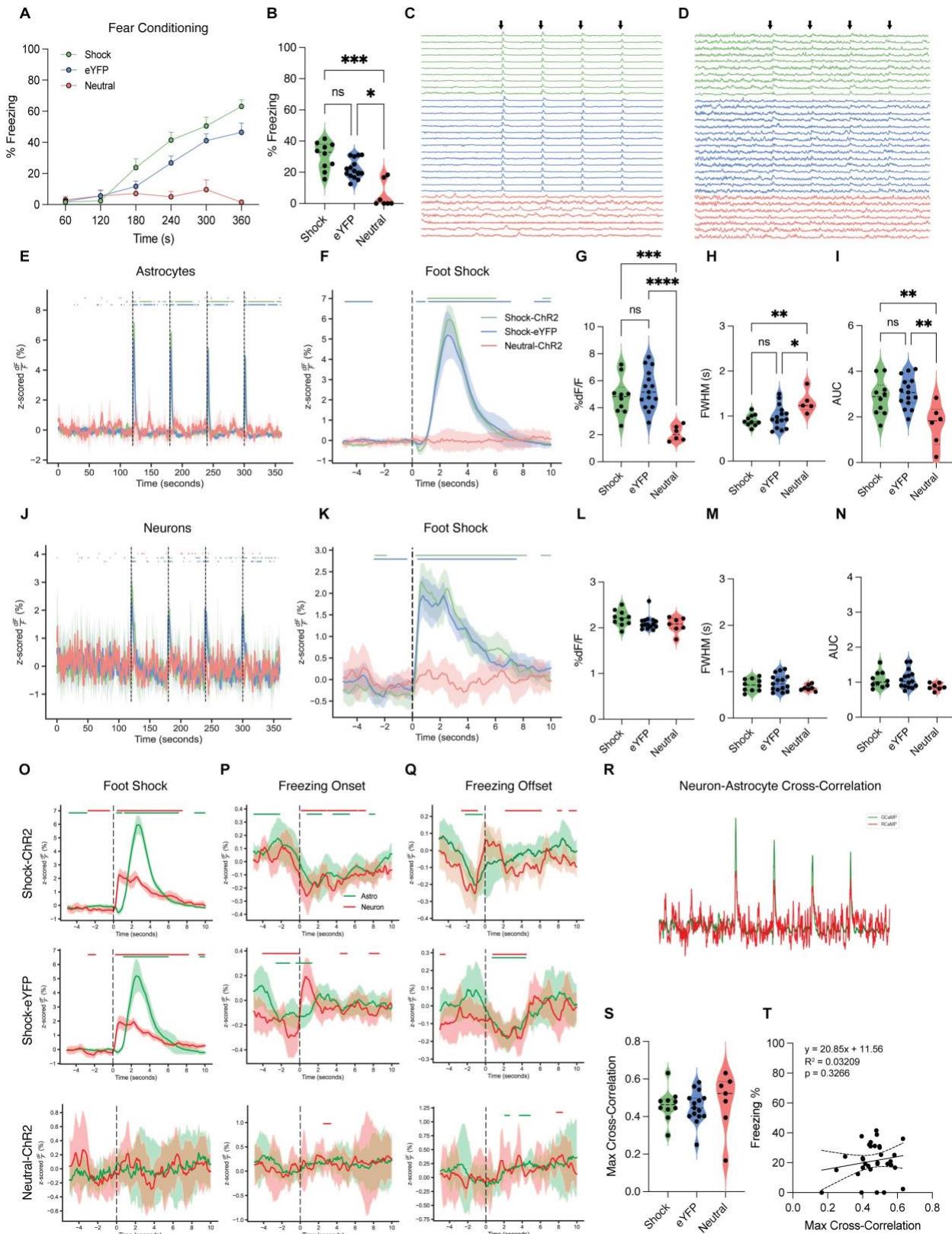
401 **Declaration of Interests.**

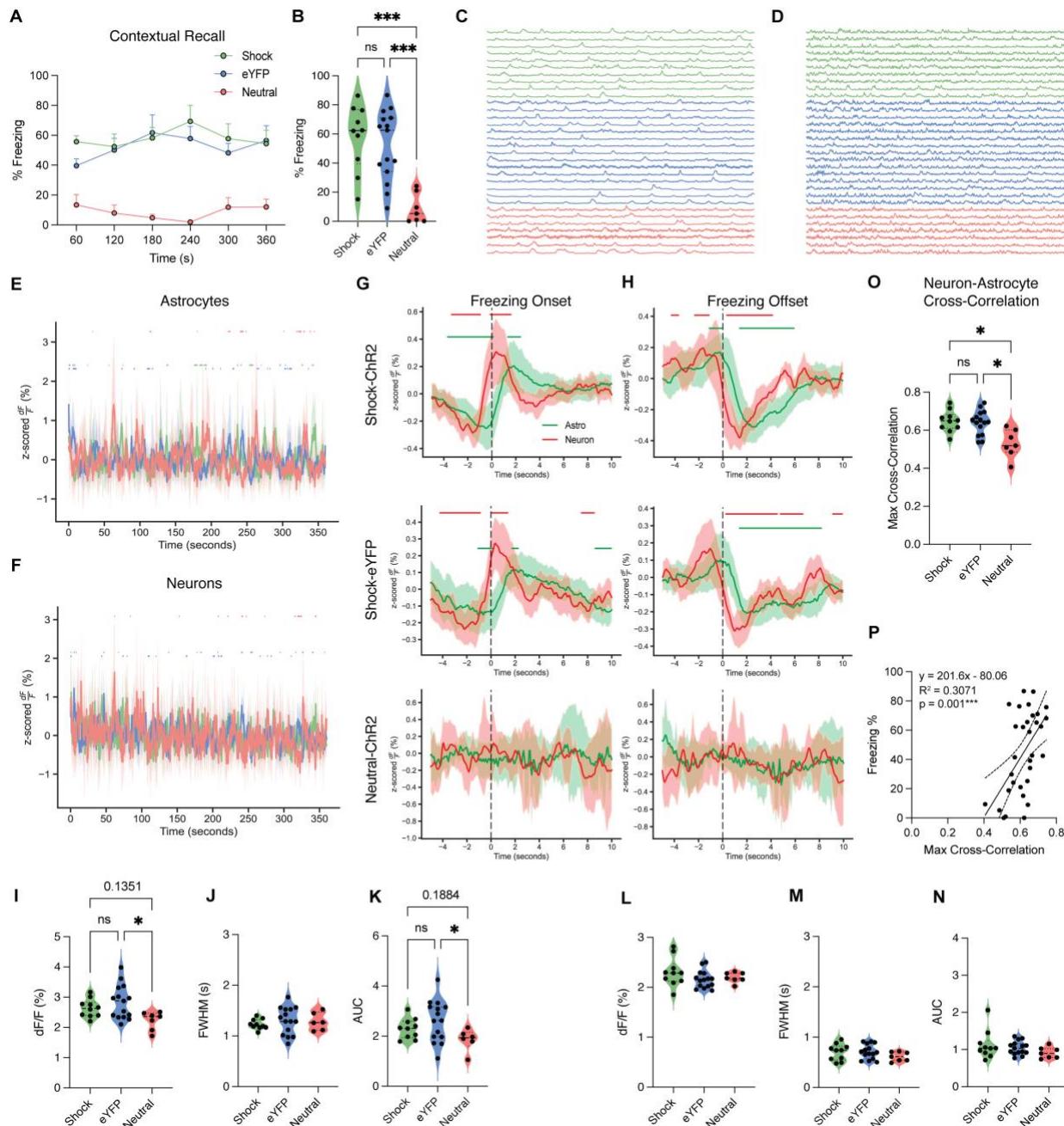

402 The authors declare no competing interests.

403

404

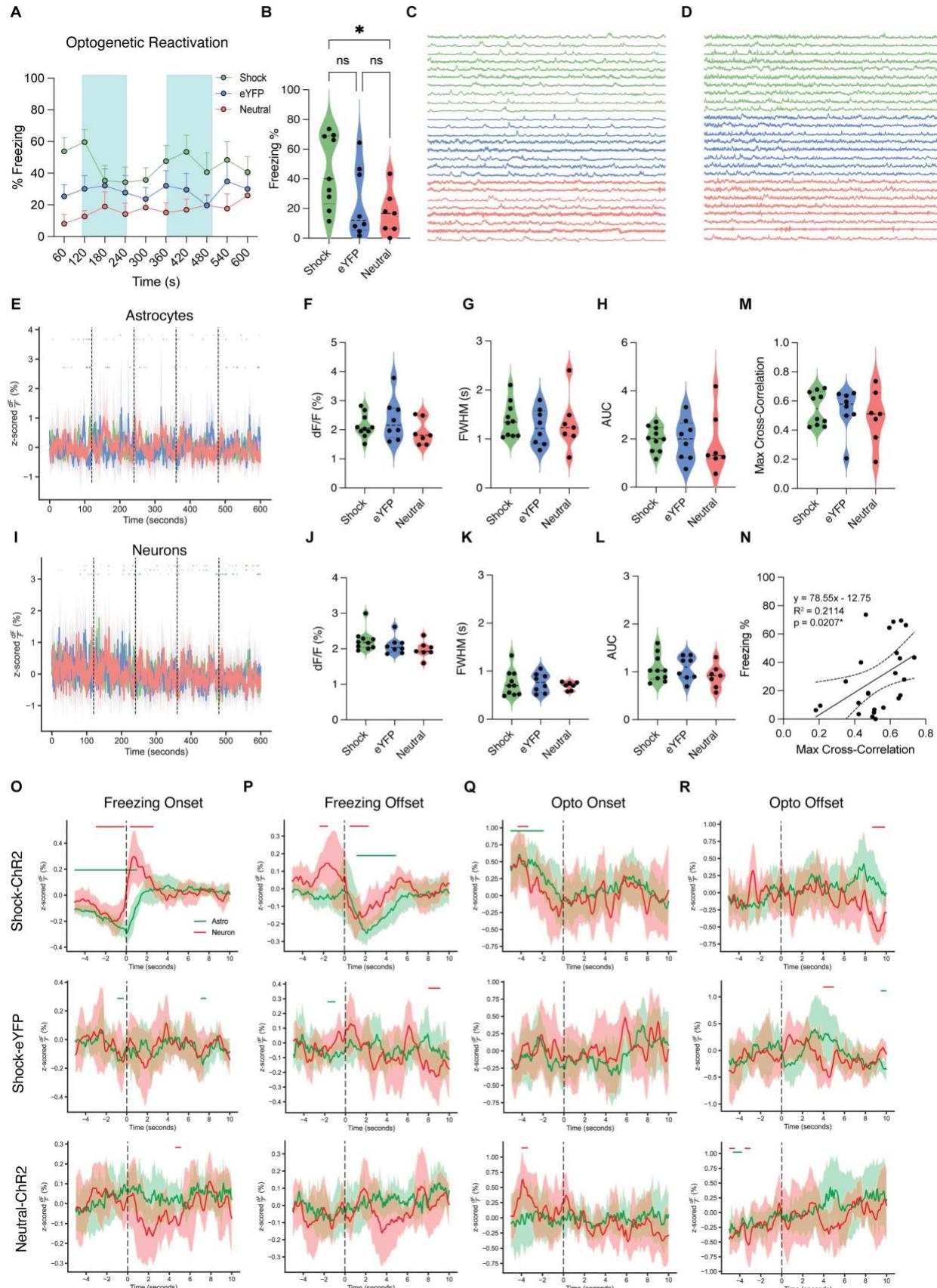
405


406 **Main Figure Titles & Legends**

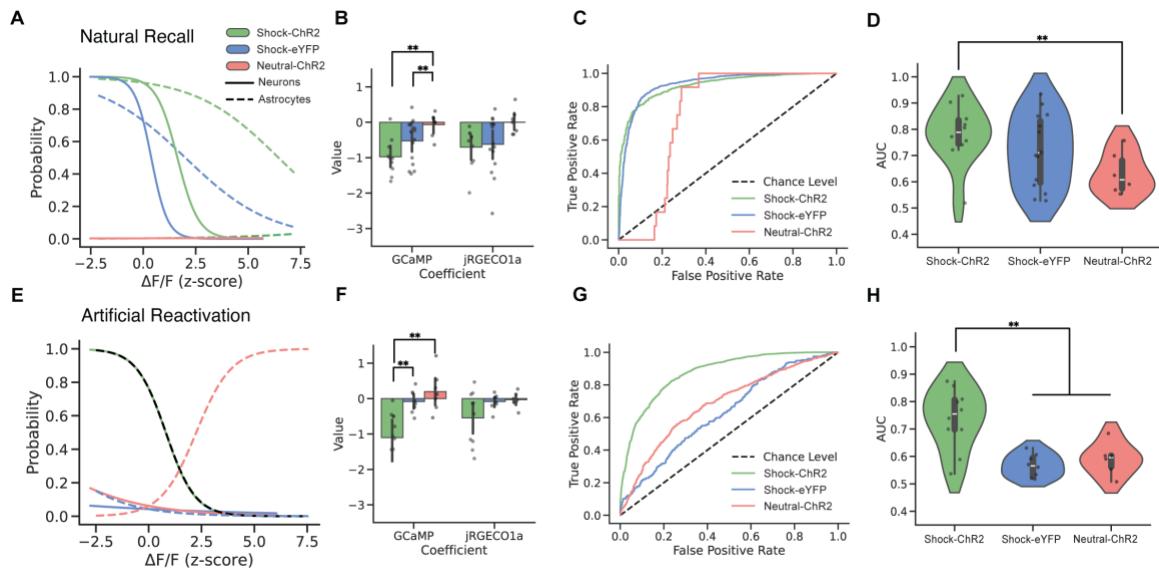

407

408

409 **Figure 1. In vivo calcium recordings of neurons and astrocytes in the ventral hippocampus during**
410 **natural and artificial memory reactivation.** (A) Neuron-astrocyte fiber photometry recordings
411 hippocampal ventral CA1 (vCA1) coupled with optogenetic stimulation of a dorsal dentate gyrus (dDG)-
412 mediated neuronal ensemble. Mice were injected in vCA1 with AAV5-GfaABC1D-cyto-GCaMP6f-SV40
413 and AAV9-hSyn-jRGECO1a-WPRE.SV40, and received a unilateral optical fiber implant to enable Ca²⁺
414 recordings. dDG was infused with AAV9-c-fos-tTa and AAV9-TRE-ChR2-eYFP or control vector, and
415 implanted with bilateral optical fibers. (B) Representative confocal microscopy image of the vCA1
416 pyramidal cell layer expression of hSyn-jRGECO1a (red; neurons), GfaABC1D-GCaMP6f (green;
417 astrocytes) and DAPI (blue; nuclei). (C) Schematic representation of the viral tagging strategy used
418 during behavioral testing: On Day 1, mice were placed in Context B (Cxt B) for 600 seconds of
419 habituation in the presence of blue light optogenetic stimulation while on DOX diet. DOX diet was
420 removed for 48 hours immediately after this session to open the ‘tagging’ window. On Day 3, mice were
421 split into three groups: Shock-ChR2, Shock-eYFP and Neutral-ChR2, where they underwent a neutral
422 (no-shock) or contextual fear conditioning (4-shock; 0.75mA, 2 second duration foot shocks) experience
423 for 360 seconds in Context A (Cxt A). Mice were placed immediately back on DOX diet to close the
424 ‘tagging’ window. On Day 4, all mice were placed back in Cxt A for a 360 second natural recall session.
425 Day 5 mice underwent a 600 second session in Cxt B where they received optogenetic blue light
426 stimulation (450nm laser diode, 20Hz, 10ms pulse, 15mW) to ‘reactivate’ the tagged ensemble. 90
427 minutes after the start of optogenetic stimulation, mice were transcardially perfused to capture peak
428 endogenous cFos protein resulting from stimulation. (D) Representative 20x confocal images of dDG
429 histology visualizing DAPI+ cells (blue), eYFP+ cells (green; active during FC), cFos+ cells (red; active
430 during optogenetic stimulation) and overlaps (yellow; active during both sessions) between these three
431 channels for each group: shock-ChR2 (top), shock-eYFP (middle) and neutral-ChR2 (bottom). Zoomed
432 representative 20x images of these overlaps (yellow) are shown in the far-right of each row with arrows
433 highlighting these. (E) %cFos+/DAPI+ cells were not different across groups; One-way ANOVA. (F)
434 %eYFP+/DAPI+ cells was significantly increased in Shock-ChR2 and Shock-eYFP groups; One-way
435 ANOVA and Holm-Sidak’s multiple comparisons. (G) %cFos+eYFP+/chance (overlap) cells were
436 significantly greater than chance in Shock-ChR2 and Neutral-ChR2 groups; One-sample t-tests of each
437 group against chance (1.0). Error bars indicate SEM. p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, ns
438 = not significant. Per group: n=3-4 mice x 8 dDG regions of interest (ROI) each were quantified for
439 statistical analysis of cell counts.



442 **Figure 2: Neurons and astrocytes respond robustly to foot shock and freezing epochs during**
443 **contextual fear conditioning.** (A-B) Mice in Shock-ChR2 (green) and Shock-eYFP (blue) groups
444 acquired fear during contextual fear conditioning (CFC) as shown by increased freezing percentage
445 across the session (A) and on average (B) compared to Neutral-ChR2 (coral) mice that did not receive
446 foot shock. (C-D) Calcium timeseries for astrocytes (C) and neurons (D) in the Shock-ChR2 and Shock-
447 eYFP groups indicated increased activity at the times of 0.75mA foot shock (black arrows; 120, 180, 240,
448 300 seconds), but not the Neutral-ChR2 group. Each row represents a single subject across time
449 (seconds). (E, J) Whole session peri-event analysis for astrocytic (E) and neuronal (J) calcium activity
450 during CFC show an increase in activity (z-scored %dF/F) at the onset of each foot shock (dashed lines)
451 in the Shock-ChR2 and Shock-eYFP groups. (F, K) Foot shock peri-event analysis for astrocytes (F) and
452 neurons (K), with the onset of shock occurring at the dashed line (time = 0). Shock-ChR2 (green) and
453 shock-eYFP (blue) show a significant increase in calcium activity (z-scored %dF/F), but neutral-ChR2
454 (coral) mice do not. (G-I, L-N) Calcium event metrics (z-scored) for astrocytes (G-I) and neurons (L-N);
455 (G,L) peak height (%dF/F), (H,M) full-width half maximum (s), and (I,N) area under the curve (AUC).
456 Astrocytes in Shock-ChR2 and Shock-eYFP groups show increased peak height and AUC, and
457 decreased FWHM compared to Neutral-ChR2. Neurons show no significant differences in any metric
458 during CFC across groups. (O-Q) Peri-event analysis for neurons (red) and astrocytes (green) during foot
459 shock (O), freezing onset (P) and freezing offset (Q) for Shock-ChR2 (top), Shock-eYFP (middle) and
460 Neutral-ChR2 (bottom). Shock-ChR2 and Shock-eYFP mice show a significant response across cell types
461 to foot shock, freezing onset and offset, compared to Neutral-ChR2 mice. (R) Representative neuron-
462 astrocyte cross-correlation, with neurons (red) and astrocytes (green) shifted to maximally align with one
463 another. (S) Maximum cross-correlation value (0.0-1.0) was not significantly different across groups
464 during CFC. (T) Simple linear regression for average freezing percentage (%) and maximum cross-
465 correlation value for all mice collapsed across groups during CFC did not show a significant relationship.
466 For all violin plots, One-way ANOVA or Kruskal-Wallis tests were performed on normal and
467 nonparametric data, respectively. For post-hoc multiple comparisons tests, Holm-Sidak's (normal) or
468 Dunn's (nonparametric) multiple comparisons were performed with $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$,
469 **** $p \leq 0.0001$, ns = not significant. For event metrics and freezing behavior, shock n=10, eYFP n=15,
470 neutral n=6-7; only one mouse in the neutral group was excluded as an outlier for astrocytic FWHM. For
471 foot shock peri-event analysis, shock n=10, eYFP n=15, neutral n=7. For freezing onset and offset peri-
472 events, shock n=10, eYFP n=15, neutral n=3; four neutral mice were excluded due to their entire lack of
473 freezing during CFC.



474
475
476
477
478
479
480
481
482

483 **Figure 3: Neuronal and astrocytic calcium are responsive to freezing epochs during contextual**
484 **recall in shock, but not neutral groups.** (A-B) Mice in Shock-ChR2 (green) and Shock-eYFP (blue)
485 groups expressed high levels of contextual fear recall, as shown by increased freezing percentage across
486 the session (A) and on average (B) compared to Neutral-ChR2 (coral) mice that did not receive foot shock
487 the day before. (C-D) Calcium timeseries for astrocytes (C) and neurons (D) in the Shock-ChR2 and
488 Shock-eYFP groups indicated similar qualitative activity in both cell types compared to Neutral-ChR2.
489 Each row represents a single subject across time (seconds). (E-F) Whole session peri-event analysis for
490 astrocytic (E) and neuronal (F) calcium activity during recall showed similar activity (z-scored %dF/F)
491 across all groups. (G-H) Peri-event analysis for neurons (red) and astrocytes (green) during freezing
492 onset (G) and freezing offset (H) for Shock-ChR2 (top), Shock-eYFP (middle) and Neutral-ChR2 (bottom).
493 Shock-ChR2 and Shock-eYFP mice showed a significant response across cell types to freezing onset
494 and offset, compared to Neutral-ChR2 mice. (I-N) Calcium event metrics (z-scored) for astrocytes (I-K)
495 and neurons (L-N); (I, L) peak height (%dF/F), (J, M) full-width half maximum (s), and (K, N) area under
496 the curve (AUC). Astrocytes in Shock-ChR2 and Shock-eYFP groups showed significant or a trend
497 towards an increase in peak height and AUC compared to Neutral-ChR2. Neurons showed no significant
498 differences in any metric during recall across groups. (O) Neuron-astrocyte cross-correlation; maximum
499 cross-correlation value (0.0-1.0) was significantly increased in both shock groups compared to neutral-
500 ChR2 during recall. (T) Simple linear regression for average freezing percentage (%) and maximum
501 cross-correlation value for all mice collapsed across groups during recall showed a significant
502 relationship. For all violin plots, One-way ANOVA or Kruskal-Wallis tests were performed on normal and
503 nonparametric data, respectively. For post-hoc multiple comparisons tests, Holm-Sidak's (normal) or
504 Dunn's (nonparametric) multiple comparisons were performed with $p \leq 0.05$, $^{**}p \leq 0.01$, $^{***}p \leq 0.001$,
505 $^{****}p \leq 0.0001$, ns = not significant. $p \leq 0.05$, $^{**}p \leq 0.01$, $^{***}p \leq 0.001$, $^{****}p \leq 0.0001$, ns = not significant.
506 For event metrics and freezing behavior, shock n=10, eYFP n=15, neutral n=6-7; only one mouse in the
507 neutral group was excluded as an outlier for astrocytic FWHM. For freezing onset and offset peri-events,
508 shock n=10, eYFP n=15, neutral n=5; two neutral mice were excluded due to their entire lack of freezing
509 during recall.

511 **Figure 4: Neuron-astrocyte calcium responds to freezing epochs during optogenetic reactivation**
512 **of fear.** (A-B) Mice in Shock-ChR2 (green) expressed higher levels of freezing across the session (A) and
513 on average (B) during optogenetic reactivation of a fear memory compared to Shock-eYFP (blue) and
514 Neutral-ChR2 (coral) groups expressing moderate and low levels of fear, respectively. Blue shading
515 indicates the light ON epochs (120-240s; 360-480s) during the 600 second session. (C-D) Calcium
516 timeseries for astrocytes (C) and neurons (D) indicated similar qualitative activity in both cell types across
517 all groups during optogenetic reactivation. Each row represents a single subject across time (seconds).
518 (E, I) Whole session peri-event analysis for astrocytic (E) and neuronal (I) calcium activity during recall
519 showed similar activity (z-scored %dF/F) across all groups. (F-H, J-L) Calcium event metrics (z-scored)
520 for astrocytes (F-H) and neurons (J-L); (F, J) peak height (%dF/F), (G, K) full-width half maximum
521 (seconds), and (H, L) area under the curve (AUC). Neurons and astrocytes showed no significant
522 differences in any metric across groups. (O-R) Peri-event analysis for neurons (red) and astrocytes
523 (green) during freezing onset (O), freezing offset (P), optogenetic stimulation onset (Q) and offset (R) for
524 Shock-ChR2 (top), Shock-eYFP (middle) and Neutral-ChR2 (bottom). Shock-ChR2 mice showed a
525 significant response across cell types to freezing onset and offset that is not present in other groups. (M)
526 Neuron-astrocyte cross-correlation; maximum cross-correlation value (0.0-1.0) was not significantly
527 different across any groups during the session. (N) Simple linear regression for average freezing
528 percentage (%) and maximum cross-correlation value for all mice collapsed across groups during
529 optogenetic reactivation showed a significant relationship. For all violin plots, One-way ANOVA or
530 Kruskal-Wallis tests were performed on normal and nonparametric data, respectively. For post-hoc
531 multiple comparisons tests, Holm-Sidak's (normal) or Dunn's (nonparametric) multiple comparisons were
532 performed with $p \leq 0.05$, $**p \leq 0.01$, $***p \leq 0.001$, $****p \leq 0.0001$, ns = not significant. For event metrics
533 and freezing behavior, shock-ChR2 n=10, shock-eYFP n=9, neutral-ChR2 n=7; one shock-ChR2 mouse
534 was excluded as an outlier. For peri-events, shock-ChR2 n=10, shock-eYFP n=8, neutral-ChR2 n=7.
535
536

537

538 **Figure 5. Optogenetic reactivation of a hippocampal engram preserves cellular signals of fear.** (A)

539 Best-fitting model for each group during natural recall. Lines reflect partial effects where the other signal
540 is held at the mean value to show how the probability of freezing changes as a function of signal value.
541 (B) Values of beta coefficients for astrocyte and neuronal photometry signals in the regression models
542 during natural recall. (C) Receiver operating characteristic (ROC) plot for the best fitting model for each
543 group. (D) Area under the curve (AUC) values for each model across groups (E) Best-fitting model for
544 each group during artificial reactivation. Lines reflect the partial effects where the other signal is fixed to
545 the mean. (F) Beta coefficients for each signal across groups during artificial reactivation. (G) ROC plot
546 for the best fitting model for each group. (H) AUC values for each model across groups.

547

548

549

550

551

552

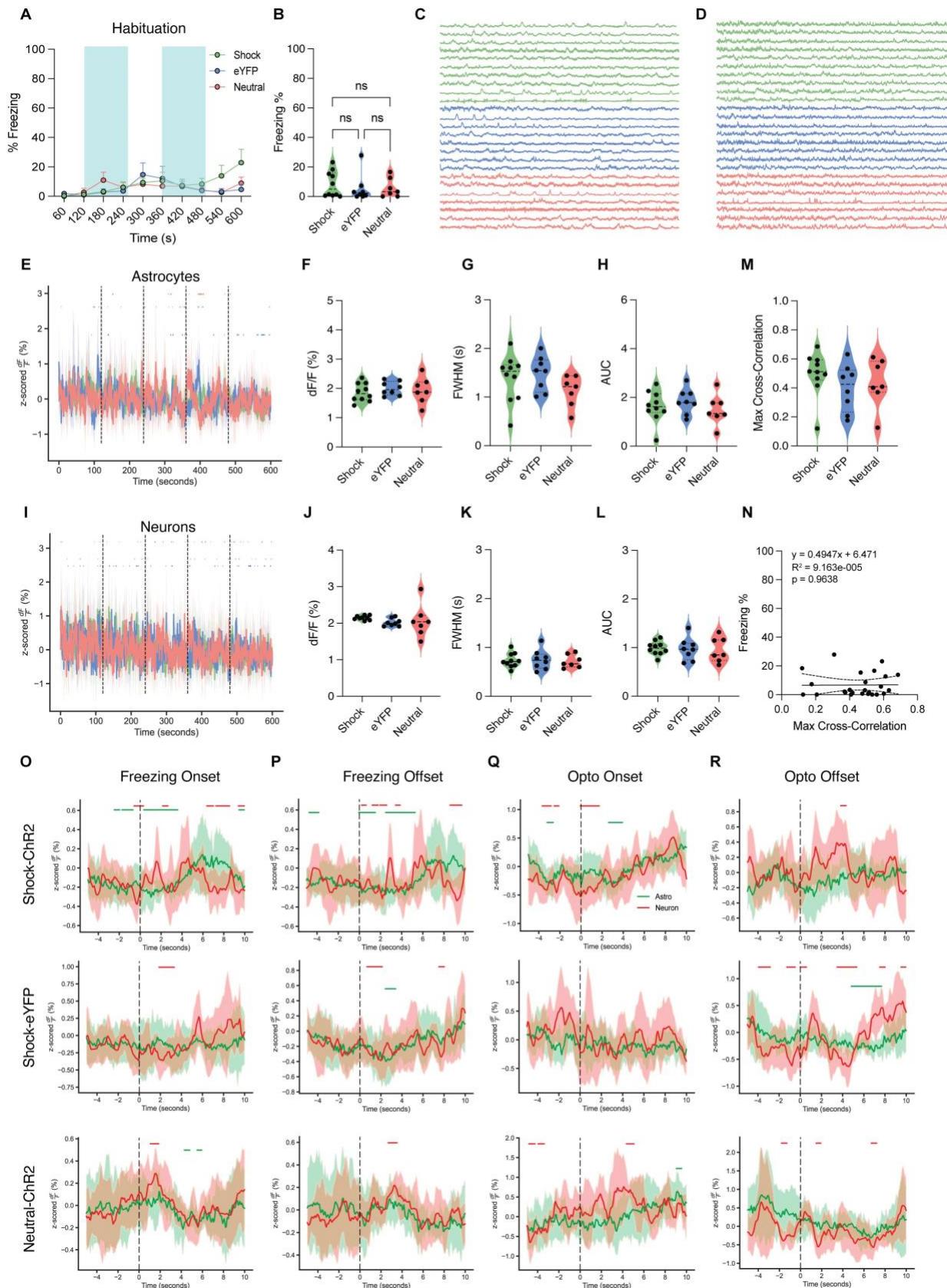
553

554

555

556

557


558

559

560

561

562

565 **Supplemental Figure 1 (related to Figure 4): Mice display low freezing and no differences in**
566 **calcium dynamics across all groups during habituation.** (A-B) Mice in all groups, Shock-ChR2
567 (green), Shock-eYFP (blue) and Neutral-ChR2 (coral) expressed low levels of fear, as evidenced by
568 freezing percentage across the session (A) and on average (B). Blue shading indicates the light ON
569 epochs (120-240s; 360-480s) during the 600 second session. (C-D) Calcium timeseries for astrocytes (C)
570 and neurons (D) indicated similar qualitative activity in both cell types across all groups during
571 habituation. Each row represents a single subject across time (seconds). (E, I) Whole session peri-event
572 analysis for astrocytic (E) and neuronal (I) calcium activity during habituation showed similar activity (z-
573 scored %dF/F) across all groups. (F-H, J-L) Calcium event metrics (z-scored) for astrocytes (F-H) and
574 neurons (J-L); (F, J) peak height (%dF/F), (G, K) full-width half maximum (s), and (H, L) area under the
575 curve (AUC). Neurons and astrocytes showed no significant differences in any metric during the session
576 across groups. (O-R) Peri-event analysis for neurons (red) and astrocytes (green) during freezing onset
577 (O), freezing offset (P), optogenetic stimulation onset (Q) and offset (R) for Shock-ChR2 (top), Shock-
578 eYFP (middle) and Neutral-ChR2 (bottom). All groups showed significant periods of time for either cell
579 type, but no evident pattern of activation occurred during each event. (M) Neuron-astrocyte cross
580 correlation; maximum cross-correlation value (0.0-1.0) was not significantly different across any groups
581 during the session. (N) Simple linear regression for average freezing percentage (%) and maximum
582 cross-correlation value for all mice collapsed across groups during habituation showed no significant
583 relationship. For all violin plots, One-way ANOVA or Kruskal-Wallis tests were performed on normal and
584 nonparametric data, respectively. For post-hoc multiple comparisons tests, Holm-Sidak's (normal) or
585 Dunn's (nonparametric) multiple comparisons were performed with $p \leq 0.05$, $^{**}p \leq 0.01$, $^{***}p \leq 0.001$,
586 $^{****}p \leq 0.0001$, ns = not significant. For event metrics and freezing behavior, shock-ChR2 n=10, shock-
587 eYFP n=8, neutral-ChR2 n=7; one shock-ChR2 mouse was excluded as an outlier for neuron peak
588 height. For peri-events, shock-ChR2 n=10, shock-eYFP n=8, neutral-ChR2 n=5; two neutral-ChR2 mice
589 were removed due to a lack of freezing epochs.

590
591
592
593
594
595
596
597
598
599
600
601

602 **STAR METHODS**

603 **Resource Availability**

604 Further information and requests for resources and reagents should be directed to and will be fulfilled by
605 the lead contact, Steve Ramirez (dvsteve@bu.edu).

606

607 **Materials Availability**

608 This study did not generate new unique reagents.

609

610 **Data and Code Availability**

611 All data reported in this paper will be shared by the lead contact upon request. All original code has been
612 deposited at <https://github.com/rsenne/RamiPho> and is publicly available as of the date of publication.

613

614 **Experimental model and subject details**

615

616 **Mice**

617 Wild type, male C57BL/6J mice (P29-35; weight 17-19g; Charles River Laboratories strain #027) were
618 housed in groups of 3-5 mice per cage. The animal facilities (vivarium and behavioral testing rooms) were
619 maintained on a 12:12 hour light cycle (0700-1900). Mice received food and water *ad libitum* before and
620 after surgery. All mice were placed on a 40mg/kg doxycycline (Dox; Bio-Serv) diet 48 hours prior to
621 surgery to inhibit any 'tagging' that could occur with the infusion of the Tet-tag viral cocktail. Following
622 surgery, mice were group-housed with littermates and allowed to recover for 4 weeks before
623 experimentation for expression of genetically-encoded calcium indicators (GECIs). All subjects were
624 treated in accord with protocol 201800579 approved by the Institutional Animal Care and Use Committee
625 (IACUC) at Boston University. As a limitation of this study, only male mice were utilized, and future work
626 will investigate if these findings generalize to females as well.

627

628 **Stereotaxic Surgery**

629 For all surgeries, mice were initially anesthetized with 3.0-3.5% isoflurane inhalation during induction and
630 maintained at 1-2% isoflurane inhalation through stereotaxic (David Kopf Instruments) nose cone delivery
631 (oxygen 1L/min). Ophthalmic ointment was applied to the eyes to provide adequate lubrication and
632 prevent corneal desiccation. The hair on the scalp above the surgical site was removed using Nair hair
633 removal cream and subsequently cleaned with alternating applications of betadine solution and 70%
634 ethanol. 2.0% lidocaine hydrochloride (HCl) was injected subcutaneously as local analgesia prior to
635 midsagittal incision of the scalp skin to expose the skull. 0.1mg/kg (5mg/kg) subcutaneous (SQ) dose of
636 meloxicam was administered at the beginning of surgery. All animals received craniotomies with a 0.5-
637 0.6 mm drill-bit for ventral CA1 (vCA1) and dorsal dentate gyrus (dDG) injections and implants.

638

639 A 10 μ L airtight syringe (Hamilton Company) with an attached 33-gauge beveled needle was slowly
640 lowered to the coordinates of hippocampal ventral CA1 (vCA1): -3.16 anteroposterior (AP), -3.10
641 mediolateral (ML) and -4.50 dorsoventral (DV) for fiber photometry recordings. All coordinates are given
642 relative to bregma (mm). A volume of undiluted 250nL:500nL AAV5-GfaABC1D-cyto-GCaMP6f-SV40
643 (AddGene #52925)⁴⁰ and AAV9-hSyn-NES-jRGECO1a-WPRE.SV40 (AddGene #100854)⁴¹ was injected
644 using a microinfusion pump for the vCA1 coordinate at 50nL/min (UMP3; World Precision Instruments).
645 After the injection was complete, the needle remained at the target site for 7-10 minutes post-injection
646 before removal. Following viral injection, a unilateral optic fiber (200 μ m core diameter; 1.25mm ferrule
647 diameter, NA=0.37, length = 4.5mm; Neurophotometrics) was implanted at -4.60DV, slightly below the
648 site of viral injection.
649
650 To enable engram tagging and manipulation via optogenetics, bilateral dorsal dentate gyrus (dDG) was
651 infused with 1:1 undiluted AAV9-c-fos-tTA-BGHPa and AAV-TRE-ChR2-eYFP/AAV9-TRE-eYFP (UMass
652 Vector Core, custom) to label neuronal ensembles with channelrhodopsin (ChR2), a blue-light sensitive
653 protein. A volume of 250nL of the viral cocktail was infused at 100nL/min into bilateral dDG at -2.20 AP,
654 \pm 1.30 ML and -2.0DV. Mice received bilateral optic fiber implants 0.2mm above the site of infusion (1.80
655 DV)(Doric Lenses). The implant was secured to the skull with a layer of adhesive cement (C&M
656 Metabond) followed by multiple layers of dental cement (Stoelting). Following surgery, mice were injected
657 with a 0.1mg/kg intraperitoneal (IP) dose of buprenorphine. They were placed in a recovery cage with a
658 heating pad until fully recovered from anesthesia. Histological assessment verified viral targeting and data
659 from off-target injections were not included in analyses.
660

661 **Tet-Tag System**

662 The Tet-tag system is an inducible, activity-dependent labeling strategy that relies on the neuronal
663 expression of the immediate-early gene, *cfos*. This system is composed of a viral cocktail of c-fos-tTA and
664 TRE-ChR2-eYFP or eYFP control fluorophore. This genetic strategy has been used to label ('tag') a
665 neuronal ensemble, typically referred to as a memory *engram*, that contains information that is vital to the
666 encoding and recall of a recent experience. This system couples the *cfos* promoter to the tetracycline
667 transactivator (tTA). In its protein form, tTA directly binds to the tetracycline response element (TRE) in a
668 doxycycline (Dox)-dependent manner and drives expression of a protein of interest (i.e. channelrhodopsin
669 (ChR2) and/or fluorophore). This allows for the temporal regulation of a 'tagging' window when removed
670 from an animal's diet 48 hours prior to a salient experience (i.e. contextual fear conditioning or home cage
671 exposure). Returning the mice to Dox diet immediately after the experience of interest 'closes' the tagging
672 window, and they remain untouched for 24 hours to prevent off-target labeling. Most importantly, the
673 expression of ChR2 allows for optogenetic reactivation of the experience tagged during encoding.
674 Specifically, optogenetic stimulation of ChR2+ negative engram cells with blue light in a 'neutral' context
675 manifests as a freezing response, typically referred to as *light-induced freezing*.

676

677 **Fiber Photometry Data Collection**

678 A 470-nm LED (Neurophotometrics; FP3002) delivered an excitation wavelength of light to astrocytes
679 expressing GCaMP6f via a single fiber optic implant. The emitted 530-nm signal from the indicator was
680 collected via this same fiber and patch cord (Doric Lenses), spectrally-separated using a dichroic mirror,
681 passed through a series of filters, and was focused on a scientific camera. Isosbestic signals were
682 simultaneously captured by alternating excitation with 415-nm LED to dissociate motion, tissue
683 autofluorescence, and photobleaching from true changes in fluorescence. For these dual-color
684 experiments, we acquired data simultaneously from two channels by adding a 560-nm LED to excite
685 jRGECO1a. All wavelengths were interleaved and collected simultaneously using Bonsai interfacing with
686 the Neurophotometrics system ⁴². The sampling rate for the calcium signals was 10 Hz per channel.

687

688 **Behavioral Testing**

689 On Day 1, mice were habituated for 600s to a neutral context (Cxt B) while undergoing optogenetic
690 stimulation to control for encoding of a novel environment and light-stimulation alone (Coulbourn
691 Instruments). Because they are still consuming a Dox diet, there should be no experience or engram
692 'tagged' during this time. After this session, the Dox-containing diet was replaced with standard mouse
693 chow (*ad libitum*) 48 hours prior to behavioral tagging to open a time window of activity-dependent
694 labeling. On Day 3, mice were placed into the shock context (Cxt A) where they underwent CFC for 360s.
695 Foot shocks (0.75mA, 2s duration) were administered at the 120s, 180s, 240s and 300s time points and
696 animals were immediately placed back on Dox diet for 24 hours, closing the tagging window. This labeled
697 sufficiently active cells with ChR2-eYFP or eYFP alone. On Day 4, mice were placed back in Cxt A where
698 they received foot shocks on the previous day for 360s of 'natural recall'. On the following Day 5, ChR2-
699 eYFP+ or eYFP+ cells were optogenetically stimulated (450nm laser diode, 20Hz, 10ms pulse, 15mW
700 output) in Cxt B with alternating 2-minute light-ON and light-OFF epochs [off/on/off/on/off] for a total of
701 600s (Doric Lenses). 90 minutes after the start of the last behavioral session, we performed perfusions to
702 measure endogenous c-Fos at its peak, providing a proxy of recent neural activity resulting from
703 optogenetic reactivation of dDG. Brains were sliced on a vibratome at 50 um thickness,
704 immunohistochemistry, and confocal microscopy (Zeiss LSM800, Germany) were performed to
705 quantitatively analyze the total number of 'tagged' cells in dDG, number of overlaps between endogenous
706 c-Fos+ and 'tagged' ChR2/eYFP+ cells and expression profile of GCaMP6f and jRGECO1a. Time series
707 data were analyzed in vCA1 from neurons and astrocytes across all experimental days.

708

709 All of these sessions took place in mouse conditioning chambers (Coulbourn Instruments) with metal-
710 panel side walls, plexiglass front and rear walls and a stainless-steel grid floor composed of 16 grid bars
711 (18.5 x 18 x 21.5cm). The grid floor was connected to a precision animal shocker to deliver 2 second
712 duration, 0.75mA foot shocks. Context A was composed of this standard fear conditioning chamber with

713 white light and no odorants. Context B was in a separate room, with a textured black floor to cover the
714 shock grid, striped laminated walls, an orange odor, and red light in the front of the room. No auditory
715 changes were made across contexts. A web camera was mounted in front of the chamber to record
716 animal behavior that was triggered by the onset of calcium recording in Bonsai/Neurophotometrics. The
717 behavioral session was triggered by a computer running FreezeFrame4 software (Actimetrics). The
718 chambers were cleaned with 70% ethanol solution prior to each animal placement.

719

720 **Immunohistochemistry**

721 On the final day of behavior, mice were overdosed with 3% isoflurane and perfused transcardially with
722 cold (4°C) 1 X Phosphate-buffered saline (PBS; Gibco) followed by 4% Paraformaldehyde (PFA; pH =
723 7.4; Sigma-Aldrich) in PBS. Brains were extracted and kept in PFA at 4°C for 24-48 hours. Brains were
724 sectioned into 50µm thick coronal sections with a vibratome and collected in cold PBS or 0.01% sodium
725 azide in PBS for long-term storage. Sections were washed three times for 10-15 minutes with PBS or
726 PBST to remove 0.01% sodium azide used for storage. Vibratome sections were incubated for 2 hours in
727 PBS combined with 0.2% Triton (PBST; Teknova) and 5% bovine serum albumin (BSA; Sigma-Aldrich)
728 on a shaker at room temperature for blocking. Sections were incubated in the primary antibodies (1:1000
729 rabbit polyclonal anti-cFos [SySy; #226 008]; 1:1000 chicken polyclonal anti-GFP [Invitrogen; #A10262];
730 1:1000 guinea pig anti-RFP [SySy; #390 004] diluted in PBS/1% BSA/Triton X-100 solution at 4°C for 24-
731 48 hours depending on the stain of interest. The slices were washed three times for 10-15 minutes each
732 in 1xPBS or 0.2% PBST. The secondary antibodies were diluted in secondary antibody solution (PBS/1%
733 BSA/Triton X-100) and incubated for 2 hours at room temperature. The following secondary antibodies
734 were used: 1:200 Alexa goat anti-rabbit 555 [Invitrogen; #A-21428]; 1:200 Alexa goat anti-chicken 488
735 [Invitrogen; #A-11039]; 1:500 Alexa goat anti-guinea pig 555 [Invitrogen; #A-11073]. The sections were
736 then washed three times with 1xPBS or PBST for 10-15 minutes each and mounted using Vectashield
737 HardSet Mounting Medium with DAPI (Vector Laboratories Inc.). Once dry, slides were sealed with clear
738 nail polish on each edge and stored in a slide box in the fridge (4°C). Mounted slices were imaged using a
739 confocal microscope (Zeiss LSM800, Germany). Brains from all mice used in fiber photometry
740 experiments were analyzed to check adequate fiber location and proper and selective viral expression.
741 Animals that did not meet the criteria for proper fiber location and virus expression were discarded.

742

743 **Image Acquisition**

744 All coronal brain slices were imaged through a Zeiss LSM 800 epifluorescence microscope with a 20x/0.8
745 numerical aperture objective using Zen2.3 software. Brains from all mice used in fiber photometry
746 experiments were analyzed to check adequate fiber location and proper and selective viral expression.
747 Animals that did not meet the criteria for proper fiber location and virus expression were discarded.

748 Images of the dDG were captured in a 2 x 4 tile (1280 x 640 um) z-stack. DAPI, cFos and green
749 fluorescent protein (GFP) were imaged as separate channels for target verification, ensemble size

750 quantification and overlaps of 'reactivation.' 3-4 slices (6-8 dDG ROIs) were imaged for each animal for
751 averaging.

752 **Quantification and Statistical Analysis**

753 All details of statistical analysis (statistical test used, n value, comparisons, test statistics, p-values, post-
754 hoc multiple comparisons, outliers removed, and results of normality and variance measures) can be
755 found in the Supplemental Statistical Table. Brief notes of statistical tests are included in the main and
756 supplemental figure legends (statistical test, n value, outliers or mice removed).

757 **Cell Counting Analysis:** dDG images were processed prior to quantification in FIJI (ImageJ). Images
758 were processed using a custom macro to split channels, adjust brightness/contrast and z-project
759 (maximum intensity). Regions of interest were selected using the Polygon tool so that only cells within the
760 dDG granule cell layer were quantified. cFos, GFP and DAPI channels were separately quantified in
761 Ilastik ⁴³, a supervised machine-learning analysis tool. This method uses a pixel and object classification
762 pipeline facilitated by a human annotator and allows for automated batch processing once the algorithm
763 has been properly trained. Overlaps between cFos and GFP were quantified manually in FIJI (ImageJ)
764 using the Cell Counter plug-in due to the small number of cells.

765 Once cells were counted, the amount of cFos+, GFP+ and cFos+GFP+ (overlap) cells in each slice were
766 normalized to the total number of DAPI+ cells (cFos+/DAPI+, GFP+/DAPI+ and overlap/DAPI). The
767 chance of an overlap was defined as (cFos+/DAPI+) x (GFP+/DAPI+), which was calculated for each
768 slice. Overlap/chance was then calculated by dividing overlap/DAPI by chance for each individual slice.
769 Overlap/chance was averaged across all slices for each mouse to generate a single average value that
770 was used in statistical analysis.

771 **Fiber Photometry Analysis:** All fiber photometry analysis was performed using an in-house pipeline
772 available at <https://github.com/rsenne/RamiPho>. Extracted photometry signals first underwent baseline
773 correction using the adaptive iteratively reweighted Penalized Least Squares (airPLS) algorithm. For this
774 algorithm we set $\lambda = 10.7$ and $p = 0.05$ with a maximum of 100 iterations. Following baseline correction,
775 we used a Kalman Filter to smooth each trace ⁴⁴. The Kalman Filter (or Gaussian Linear Dynamical
776 System) is a model of the form:

777

$$x_t = Ax_{t-1} + q_t$$

$$y_t = Hx_t + r_t$$

780

781 Where A is the state transition matrix, H is the observation model matrix, q_t is the process noise which is
782 zero-mean Gaussian distributed with Q_t covariance, $Q_t: q_t \sim N(0, Q_t)$, and r_t is the observation noise
783 which is zero-mean Gaussian noise with covariance $R_t: r_t \sim N(0, R_t)$. To use the Kalman Filter we
784 decided to use a p-order Autoregressive ($AR(p)$) process as a process model. We found that almost all

785 photometry traces were well described by an $AR(3)$ model by plotting the partial autocorrelation functions
786 and determining how many lags were outside of the theoretical 95% rejection region. To this end, we
787 modeled every photometry trace as an $AR(3)$ process of the form:

$$788 \quad x_t = \alpha_0 + \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \alpha_3 x_{t-3} + \epsilon$$

789 Where x_t is the current time step, x_{t-k} is the k-th previous timestep, $\alpha_0 - \alpha_3$ are constant coefficients
790 and ϵ is a Gaussian distributed error term. Thus, for our state transition matrix and observation model
791 matrix we used:

$$792 \quad A = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

793

$$794 \quad H = [1 \quad 0 \quad 0]$$

795

796 For the model we set the initial covariance as the identity matrix $I(3)$ and the initial state as the zero
797 vector $(0, 0, 0)$. We used the expectation-maximization algorithm to find the initial process noise and
798 observation noise covariance matrices. We then used the Kalman (Rauch–Tung–Striebel) Smoother and
799 then used the smoothed estimate of the hidden continuous state as our photometry trace. After
800 smoothing, we then calculated $\frac{\Delta F}{F}$ as $\frac{x_t - \text{median}(x)}{\text{median}(x)}$ and also a z-scored version as $\frac{x_t - \text{median}(x)}{\text{stdev}(x)}$. Following this
801 calculator, we then fit an ordinary least squares regression model to correct for motion and artifact noise
802 in the recording according to the following model:

$$803 \quad y_t = \beta_0 + \beta_1 x_t + \epsilon$$

804 Where y_t is the calcium indicator x_t is the isobestic channel the \beta are constant coefficients and
805 epsilon is Gaussian distributed noise. After fitting this model, we used the residuals as our motion
806 corrected trace.

807

808 For event detection we used the `find_peaks()` function in Scipy. Two researchers manually choose
809 parameters across all traces until they were both in agreement. Importantly, all parameters were chosen
810 before any statistical or exploratory analysis was performed and were not altered at a later time point.

811

812 For event-triggered average significance, we used a tCI confidence interval method previously proposed
813 ⁴⁵. For our event triggered averages we aggregated all within-animal signals so that we could assume that
814 our samples were independent and identically distributed. Thus, for this method we assumed each time
815 point was distributed according to a student-t's distribution. We then marked any period of time greater
816 than 0.8 seconds (this decision was arbitrary and could be chosen to be longer for more conservative
817 estimation, but this is longer than the proposed time threshold in the original paper) that did not include
818 the baseline of 0 (traces were median-shifted to zero) was marked at a significant peri-event.

819

820 To assess how neural and astrocytic traces could be used to predict freezing we used a Binomial GLM
821 with the canonical logit link function. For model selection, all data was pooled together on the Shock-
822 ChR2 animals, and we performed 10-fold cross validation and used the Maximum Likelihood Ratio test to
823 assess the following models 1) just a constant, 2) a constant and the astrocyte signal, 3) a constant and
824 the neuronal signal, 4) and a constant, the astrocyte signal, and the neural signal. The MLRT results
825 suggested that the full model was superior to all of the nested models. Our cross-validation approach also
826 found that the full model was the most generalizable. After this model selection routine, we fit the chosen
827 model to each animal's data separately.

828

829 **Behavioral Analysis:** To perform unbiased behavioral evaluation, the pose estimation algorithm,
830 DeepLabCut, was used for animal kinematics (position, acceleration, velocity)⁴⁶. This open-source
831 toolbox allows for training of a deep neural network using a small number of behavioral videos. This
832 method was confirmed for accuracy by a blinded researcher that manually scored a subset of videos.
833 Additionally, Any-Maze (Stoelting Co.) was used for supervised automated analysis of freezing bout
834 initiation and termination. This behavioral data was time locked to our fiber photometry time series data
835 for analysis.

836

837 To extract acceleration and velocity information from DeepLabCut, we again used the Kalman Filter as
838 described above. We first calculated the center of mass of the pose estimates for the mice to estimate the
839 x and y coordinates. After this we then formulated a Kalman Filtering model using the following matrices:

840

$$841 A = \begin{bmatrix} 1 & 0 & \Delta t & 0 & 0.5\Delta t^2 & 0 \\ 0 & 1 & 0 & \Delta t & 0 & 0.5\Delta t^2 \\ 0 & 0 & 1 & 0 & \Delta t & 0 \\ 0 & 0 & 0 & 1 & 0 & \Delta t \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

842

$$843 H = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

844

$$845 Q = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \Delta t^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & \Delta t^2 & 0 \end{bmatrix}$$

846

$$847 R = \begin{bmatrix} Var(x) & 0 \\ 0 & Var(y) \end{bmatrix}$$

848

849 For the initial state mean we used: ($x_1, y_1, 0, 0, 0, 0$) and for the initial covariance we used the identity
850 matrix: $I(6)$. Using this method, we were able to extract smooth estimates of the (x, y) position, velocity,
851 and acceleration.

852

853 **Statistical Methods:** Statistical analyses were performed using Python and GraphPad Prism v10. For
854 behavioral measures and event metrics, violin plots show the data distribution with dashed lines indicating
855 the upper and lower quartiles and the solid line indicating the median. All data were checked for normality
856 using Shapiro-Wilks and Kolmogorov-Smirnov tests, equality of variance (standard deviation) using
857 Brown-Forsythe test and outliers using the ROUT method. This method was recommended by GraphPad
858 Prism, which uses identification from nonlinear regression. We chose a ROUT coefficient Q value of 10%
859 (False Discovery Rate), making the threshold for outliers less-strict and allowing for an increase in power
860 for outlier detection. Mice that were excluded for other reasons, such as a lack of freezing epochs, were
861 noted in the figure legends where applicable in peri-event analysis.

862

863 To analyze differences between groups for behavioral measures, event metrics and cross-correlation
864 measures, we used: One-way ANOVAs (normal) or Kruskall-Wallis test (nonparametric) with Holm-
865 Sidak's (normal) or Dunn's (nonparametric) post-hoc multiple comparisons tests, if applicable. If variances
866 were not equal, a Brown-Forsythe ANOVA (normal) was performed instead with Dunnett's T3 multiple
867 comparisons test, if applicable. To analyze differences between groups and across time within a single
868 session we used: Two-way repeated measures (RM) ANOVAs (between-subject factor: Group; within-
869 subject factor: Time). Tukey's multiple comparisons was performed as a post-hoc multiple comparisons
870 test, if applicable. For cell counts, one-sample t-tests were used to statistically compare each group's
871 mean overlap to chance/theoretical mean (1.0). For all tests, alpha was set to $p < 0.05$.

872

873 For simple linear regression, X was denoted as the maximum cross-correlation value and Y as the
874 average percent freezing for a single session. The solid line indicated the line of best fit that predicts Y
875 from X with the associated 95% CI. R^2 goodness-of-fit measure, p-value and equation are reported in
876 each plot, as well as in the supplemental Statistical Table.

877

878 **References.**

- 879 1. Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. *Nat. Rev. Neurosci.*
880 1, 41–50. 10.1038/35036213.
- 881 2. Fanselow, M.S., and Dong, H.-W. (2010). Are the dorsal and ventral hippocampus functionally
882 distinct structures? *Neuron* 65, 7–19. 10.1016/j.neuron.2009.11.031.
- 883 3. Ciocchi, S., Passecker, J., Malagon-Vina, H., Mikus, N., and Klausberger, T. (2015). *Brain*

884 computation. Selective information routing by ventral hippocampal CA1 projection neurons. *Science*
885 348, 560–563. 10.1126/science.aaa3245.

886 4. Strange, B.A., Witter, M.P., Lein, E.S., and Moser, E.I. (2014). Functional organization of the
887 hippocampal longitudinal axis. *Nat. Rev. Neurosci.* 15, 655–669. 10.1038/nrn3785.

888 5. Liu, X., Ramirez, S., Pang, P.T., Puryear, C.B., Govindarajan, A., Deisseroth, K., and Tonegawa, S.
889 (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. *Nature* 484,
890 381–385. 10.1038/nature11028.

891 6. Ramirez, S., Liu, X., Lin, P.-A., Suh, J., Pignatelli, M., Redondo, R.L., Ryan, T.J., and Tonegawa, S.
892 (2013). Creating a false memory in the hippocampus. *Science* 341, 387–391.
893 10.1126/science.1239073.

894 7. Ramirez, S., Liu, X., MacDonald, C.J., Moffa, A., Zhou, J., Redondo, R.L., and Tonegawa, S. (2015).
895 Activating positive memory engrams suppresses depression-like behaviour. *Nature* 522, 335–339.
896 10.1038/nature14514.

897 8. Denny, C.A., Kheirbek, M.A., Alba, E.L., Tanaka, K.F., Brachman, R.A., Laughman, K.B., Tomm,
898 N.K., Turi, G.F., Losonczy, A., and Hen, R. (2014). Hippocampal memory traces are differentially
899 modulated by experience, time, and adult neurogenesis. *Neuron* 83, 189–201.
900 10.1016/j.neuron.2014.05.018.

901 9. Redondo, R.L., Kim, J., Arons, A.L., Ramirez, S., Liu, X., and Tonegawa, S. (2014). Bidirectional
902 switch of the valence associated with a hippocampal contextual memory engram. *Nature* 513, 426–
903 430. 10.1038/nature13725.

904 10. Reijmers, L.G., Perkins, B.L., Matsuo, N., and Mayford, M. (2007). Localization of a Stable Neural
905 Correlate of Associative Memory. *Science* 317, 1230–1233. 10.1126/science.1143839.

906 11. Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1999). Tripartite synapses: glia, the
907 unacknowledged partner. *Trends Neurosci.* 22, 208–215. 10.1016/s0166-2236(98)01349-6.

908 12. Perea, G., Navarrete, M., and Araque, A. (2009). Tripartite synapses: astrocytes process and control
909 synaptic information. *Trends Neurosci.* 32, 421–431. 10.1016/j.tins.2009.05.001.

910 13. Araque, A., Carmignoto, G., and Haydon, P.G. (2001). Dynamic signaling between astrocytes and
911 neurons. *Annu. Rev. Physiol.* 63, 795–813. 10.1146/annurev.physiol.63.1.795.

912 14. Bezzi, P., and Volterra, A. (2001). A neuron–glia signalling network in the active brain. *Curr. Opin.*
913 *Neurobiol.* 11, 387–394. 10.1016/S0959-4388(00)00223-3.

914 15. Haydon, P.G. (2001). GLIA: listening and talking to the synapse. *Nat. Rev. Neurosci.* 2, 185–193.
915 10.1038/35058528.

916 16. Araque, A., Carmignoto, G., Haydon, P.G., Oliet, S.H.R., Robitaille, R., and Volterra, A. (2014).
917 Gliotransmitters travel in time and space. *Neuron* 81, 728–739. 10.1016/j.neuron.2014.02.007.

918 17. Covelo, A., and Araque, A. (2018). Neuronal activity determines distinct gliotransmitter release from a
919 single astrocyte. *Elife* 7. 10.7554/eLife.32237.

920 18. Porter, J.T., and McCarthy, K.D. (1996). Hippocampal astrocytes *in situ* respond to glutamate
921 released from synaptic terminals. *J. Neurosci.* 16, 5073–5081. 10.1523/JNEUROSCI.16-16-
922 05073.1996.

923 19. Corkrum, M., Covelo, A., Lines, J., Bellocchio, L., Pisansky, M., Loke, K., Quintana, R., Rothwell,
924 P.E., Lujan, R., Marsicano, G., et al. (2020). Dopamine-Evoked Synaptic Regulation in the Nucleus
925 Accumbens Requires Astrocyte Activity. *Neuron* 105, 1036–1047.e5. 10.1016/j.neuron.2019.12.026.

926 20. Lines, J., Baraibar, A.M., Fang, C., Martin, E.D., Aguilar, J., Lee, M.K., Araque, A., and Kofuji, P.
927 (2022). Astrocyte-neuronal network interplay is disrupted in Alzheimer's disease mice. *Glia* 70, 368–
928 378. 10.1002/glia.24112.

929 21. Qin, H., He, W., Yang, C., Li, J., Jian, T., Liang, S., Chen, T., Feng, H., Chen, X., Liao, X., et al.
930 (2020). Monitoring Astrocytic Ca²⁺ Activity in Freely Behaving Mice. *Front. Cell. Neurosci.* 14,
931 603095. 10.3389/fncel.2020.603095.

932 22. Tsunematsu, T., Sakata, S., Sanagi, T., Tanaka, K.F., and Matsui, K. (2021). Region-specific and
933 state-dependent astrocyte Ca²⁺ dynamics during the sleep-wake cycle in mice. *J. Neurosci.*
934 10.1523/JNEUROSCI.2912-20.2021.

935 23. Ingiosi, A.M., Hayworth, C.R., Harvey, D.O., Singletary, K.G., Rempe, M.J., Wisor, J.P., and Frank,
936 M.G. (2020). A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation. *Curr. Biol.* 30,
937 4373–4383.e7. 10.1016/j.cub.2020.08.052.

938 24. Adamsky, A., Kol, A., Kreisel, T., Doron, A., Ozeri-Engelhard, N., Melcer, T., Refaeli, R., Horn, H.,
939 Regev, L., Groysman, M., et al. (2018). Astrocytic Activation Generates De Novo Neuronal
940 Potentiation and Memory Enhancement. *Cell* 174, 59–71.e14. 10.1016/j.cell.2018.05.002.

941 25. Kol, A., Adamsky, A., Groysman, M., Kreisel, T., London, M., and Goshen, I. (2020). Astrocytes
942 contribute to remote memory formation by modulating hippocampal-cortical communication during
943 learning. *Nat. Neurosci.* 23, 1229–1239. 10.1038/s41593-020-0679-6.

944 26. Li, Y., Li, L., Wu, J., Zhu, Z., Feng, X., Qin, L., Zhu, Y., Sun, L., Liu, Y., Qiu, Z., et al. (2020).

945 Activation of astrocytes in hippocampus decreases fear memory through adenosine A1 receptors.
946 *Elife* 9. 10.7554/eLife.57155.

947 27. Martin-Fernandez, M., Jamison, S., Robin, L.M., Zhao, Z., Martin, E.D., Aguilar, J., Benneyworth,
948 M.A., Marsicano, G., and Araque, A. (2017). Synapse-specific astrocyte gating of amygdala-related
949 behavior. *Nat. Neurosci.* 20, 1540–1548. 10.1038/nn.4649.

950 28. Pan, S., Mayoral, S.R., Choi, H.S., Chan, J.R., and Kheirbek, M.A. (2020). Preservation of a remote
951 fear memory requires new myelin formation. *Nat. Neurosci.* 23, 487–499. 10.1038/s41593-019-0582-
952 1.

953 29. Wang, C., Yue, H., Hu, Z., Shen, Y., Ma, J., Li, J., Wang, X.-D., Wang, L., Sun, B., Shi, P., et al.
954 (2020). Microglia mediate forgetting via complement-dependent synaptic elimination. *Science* 367,
955 688–694. 10.1126/science.aaz2288.

956 30. Steadman, P.E., Xia, F., Ahmed, M., Mocle, A.J., Penning, A.R.A., Geraghty, A.C., Steenland, H.W.,
957 Monje, M., Josselyn, S.A., and Frankland, P.W. (2020). Disruption of Oligodendrogenesis Impairs
958 Memory Consolidation in Adult Mice. *Neuron* 105, 150–164.e6. 10.1016/j.neuron.2019.10.013.

959 31. Suthard, R.L., Senne, R.A., Buzharsky, M.D., Pyo, A.Y., Dorst, K.E., Diep, A.H., Cole, R.H., and
960 Ramirez, S. (2023). Basolateral Amygdala Astrocytes Are Engaged by the Acquisition and
961 Expression of a Contextual Fear Memory. *J. Neurosci.* 43, 4997–5013. 10.1523/JNEUROSCI.1775-
962 22.2023.

963 32. Kitamura, T., Ogawa, S.K., Roy, D.S., Okuyama, T., Morrissey, M.D., Smith, L.M., Redondo, R.L.,
964 and Tonegawa, S. (2017). Engrams and circuits crucial for systems consolidation of a memory.
965 *Science* 356, 73–78. 10.1126/science.aam6808.

966 33. Power, S.D., Stewart, E., Zielke, L.G., Byrne, E.P., Douglas, A., Ortega-de San Luis, C., Lynch, L.,
967 and Ryan, T.J. (2023). Immune activation state modulates infant engram expression across
968 development. *Sci Adv* 9, eadg9921. 10.1126/sciadv.adg9921.

969 34. Rahsepar, B., Norman, J.F., Noueihed, J., Lahner, B., Quick, M.H., Ghaemi, K., Pandya, A.,
970 Fernandez, F.R., Ramirez, S., and White, J.A. (2023). Theta-phase-specific modulation of dentate
971 gyrus memory neurons. *Elife* 12. 10.7554/eLife.82697.

972 35. Roy, D.S., Park, Y.-G., Kim, M.E., Zhang, Y., Ogawa, S.K., DiNapoli, N., Gu, X., Cho, J.H., Choi, H.,
973 Kamentsky, L., et al. (2022). Brain-wide mapping reveals that engrams for a single memory are
974 distributed across multiple brain regions. *Nat. Commun.* 13, 1799. 10.1038/s41467-022-29384-4.

975 36. Han, J.-H., Kushner, S.A., Yiu, A.P., Hsiang, H.-L.L., Buch, T., Waisman, A., Bontempi, B., Neve,
976 R.L., Frankland, P.W., and Josselyn, S.A. (2009). Selective erasure of a fear memory. *Science* 323,

977 1492–1496. 10.1126/science.1164139.

978 37. McCullagh, P., and Nelder, J.A. (1989). Generalized Linear Models, Second Edition (CRC Press).

979 38. Sun, X., Bernstein, M.J., Meng, M., Rao, S., Sørensen, A.T., Yao, L., Zhang, X., Anikeeva, P.O., and
980 Lin, Y. (2020). Functionally Distinct Neuronal Ensembles within the Memory Engram. *Cell* 181, 410–
981 423.e17. 10.1016/j.cell.2020.02.055.

982 39. Lee, J., Yun, M., Cho, E., Lee, J.W., Lee, D., and Jung, M.W. (2019). Transient effect of mossy fiber
983 stimulation on spatial firing of CA3 neurons. *Hippocampus* 29, 639–651. 10.1002/hipo.23066.

984 40. Haustein, M.D., Kracun, S., Lu, X.-H., Shih, T., Jackson-Weaver, O., Tong, X., Xu, J., Yang, X.W.,
985 O'Dell, T.J., Marvin, J.S., et al. (2014). Conditions and constraints for astrocyte calcium signaling in
986 the hippocampal mossy fiber pathway. *Neuron* 82, 413–429. 10.1016/j.neuron.2014.02.041.

987 41. Dana, H., Mohar, B., Sun, Y., Narayan, S., Gordus, A., Hasseman, J.P., Tsegaye, G., Holt, G.T., Hu,
988 A., Walpita, D., et al. (2016). Sensitive red protein calcium indicators for imaging neural activity. *Elife*
989 5. 10.7554/eLife.12727.

990 42. Lopes, G., Bonacchi, N., Frazão, J., Neto, J.P., Atallah, B.V., Soares, S., Moreira, L., Matias, S.,
991 Itskov, P.M., Correia, P.A., et al. (2015). Bonsai: an event-based framework for processing and
992 controlling data streams. *Front. Neuroinform.* 9, 7. 10.3389/fninf.2015.00007.

993 43. Berg, S., Kutra, D., Kroeger, T., Straehle, C.N., Kausler, B.X., Haubold, C., Schiegg, M., Ales, J.,
994 Beier, T., Rudy, M., et al. (2019). ilastik: interactive machine learning for (bio)image analysis. *Nat.*
995 *Methods* 16, 1226–1232. 10.1038/s41592-019-0582-9.

996 44. Kalman, R.E. (1960). A New Approach to Linear Filtering and Prediction Problems. *J. Basic Eng* 82,
997 35–45. 10.1115/1.3662552.

998 45. Jean-Richard-Dit-Bressel, P., Clifford, C.W.G., and McNally, G.P. (2020). Analyzing Event-Related
999 Transients: Confidence Intervals, Permutation Tests, and Consecutive Thresholds. *Front. Mol.*
1000 *Neurosci.* 13, 14. 10.3389/fnmol.2020.00014.

1001 46. Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., and Bethge, M. (2018).
1002 DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. *Nat.*
1003 *Neurosci.* 21, 1281–1289. 10.1038/s41593-018-0209-y.