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STRUCTURED ABSTRACT
BACKGROUND

Alzheimer’s disease (AD) is the most common cause of dementia worldwide, with apolipoprotein

¢4 (APOE#**) being the strongest genetic risk factor. Current clinical diagnostic imaging focuses
on amyloid and tau; however, new methods are needed for earlier detection.

METHODS

PET imaging of '®F-FDG and ¢4Cu-PTSM was used to assess metabolism-perfusion profiles in
both sexes of aging C57BL/6J, and APOE®%3, APOE®** and APOE®*,

RESULTS

Across all strains, 8 months is a key transition stage. Females exhibited the greatest number of
regional changes for both tracers, which correlate with GO-term enrichments for glucose
metabolism, perfusion and immunity. Our neurovascular uncoupling analysis revealed APOE®##*
exhibited significant Type-1 uncoupling at 8 and 12 months, while APOE®**** demonstrated
significant Type-2 uncoupling by 8 months.

DISCUSSION

This work highlights APOE#** status determines key differences in progression to neurovascular
uncoupling. Our method detects changes in neurovascular coupling, and may serve as an early
diagnostic biomarker.
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BACKGROUND

The incidence of Alzheimer’s disease (AD) and related dementias (RD) continues to rise
globally [1]. Despite an increase in funding for research, and advancements in imaging
technologies, which have largely focused on amyloid (AB) and neurofibrillary tau tangles (NFT)
[2], it is still unclear what leads to neurodegeneration in the aging brain. Moreover, clinical
diagnosis remains challenging, with few reliable biomarkers beyond AB and NFT, thus greater
attention is needed in the development of a broader range of blood- and imaging-based readouts.

For imaging, the most commonly used positron emission tomography (PET) tracers detect
amyloid (i.e. '8F-florbetapir, '8F-flutemetamol) or tau (i.e. '®F-flortaucipir). As more is learned about
early risk factors for AD, the timing of these pathologies, and how they relate to cognition, changes
in these tracers may come much too late to allow significant intervention [3]. Clinical studies have
demonstrated a reduction in glucose brain metabolism and cerebral blood flow disturbances in
at-risk patient populations even before detectable levels of amyloid accumulation [4-6]. This has
led to the proposal of '8F-fluorodeoxyglucose ('8F-FDG), a substrate for glucose uptake, to be
added to the typical ATN diagnostic framework [2]. Clinical studies have demonstrated a reduction
in ®8F-FDG signal in multiple brain regions of AD patients, correlating with faster cognitive decline
and brain atrophy [7]. Furthermore, patients with mild cognitive impairment (MCI) that also exhibit
diminished '8F-FDG are more likely to progress to AD [8] . Currently there has been much debate
regarding whether changes in '8F-FDG signal can be related to specific cell types [9]. Initially it
was thought that these changes were driven primarily by neurons [10-13]; however, recent studies
has shifted attention to glial cells, as they may contribute to the overall net '®F-FDG uptake [9].
Despite these advances, more work is necessary to fully appreciate cell-specific contributions that
underlie '8F-FDG PET.

Under physiological stress, the brain may take different steps to cope, mitigate damage,
or preserve homeostasis in response to an energy deficit [13]. This includes compensatory
hyperemia, followed by a strong angiogenic response to counteract low oxygen and nutrients,
thus leading to an increase in vascular density [14]. Arteriogenesis can also occur, driven by
hemodynamic factors such as stretch and shear stress [15]. Disordered vascular remodeling and
arteriovenous malformation can lead to blood vessel rupture and organ hemorrhage, and issues
with brain perfusion have been identified in AD and other neurodegenerative disorders [16, 17].
Recent neuropathological studies have indicated that the majority of AD cases are comprised of
mixed pathologies [18], with small vessel dysfunction being the most common [19].

Several genetic factors have been identified to confer AD risk; however, the €4 allele on
the apolipoprotein E (APOE) gene locus is the strongest for late-onset AD (LOAD). A single copy
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of the APOE*# allele increases risk by 3-4 folds, while two copies augment the risk to 13 fold [20].
As study populations become more diverse, recent work has suggested that these odds ratios
are limited to those of European descent. One of the many roles of APOE is regulating
cerebrovascular integrity [21], with lack of APOE expression leading to blood-brain barrier (BBB)
disruption [22, 23]. APOE** has been linked to decreased vascular density [24, 25], and is
correlated with decreased cognitive performance. APOE has also been implicated in cerebral
glucose metabolism [26], with €4 identified as independent risk factors for T2D [27, 28] and
cardiovascular disease [29, 30].

In this study, we sought to understand brain metabolism and perfusion changes at young
and middle age time points in mice carrying combinations of humanized APOE® and APOE**
alleles. We employed translational '8F-FDG for glucose uptake and 8*Cu-PTSM for perfusion, and
combined these into a novel measure of neurovascular coupling. We determined significant age,
sex- and allele-specific differences across multiple regions in the brain. While imaging in the clinic
is often cost-prohibitive and limited in rural settings, we believe that the ability to detect changes

in neurovascular uncoupling could serve as an early diagnostic biomarker in at risk populations.

METHODS AND MATERIALS
Mouse Strains

The B6J.APOES3 Kl (hAPOE?#, available as B6.Cg-Apoegem?APOEIAdu ] - JAX#029018, the
Jackson Laboratory (JAX)) and B6J.APOE4 Kl (hAPOE#, available as B6(SJL)-
Apoeim!-1(APOE*)Adf ) - JAX#027894, the Jackson Laboratory) mice strains created at the Jackson
Laboratory carries a humanized APOE knock-in allele, in which a portion of the mouse Apoe gene
(exons 2, 3, a majority of exon 4, and some 3' UTR sequence) was replaced corresponding
sequences of the human APOE isoform genes (€3 and €4). To generate hAPOE® #4, these two
strains were intercrossed. Additional information on these mice are available from the Jackson
Laboratory strain datasheets (hAPOE®, https:/www.jax.org/strain/029018; hAPOE#,
https://www.jax.org/strain/027894)

Animal housing conditions

All experiments were approved by the Institutional Animal Care and Use Committee at
Indiana University (IU) and at The Jackson Laboratory (JAX). Mice were bred in the mouse facility
and maintained in a 12/12-hour light/dark cycle and room temperatures were maintained at 18-
24°C (65-75°F) with 40-60% humidity. All mice were housed in positive, individually ventilated
cages (PIV). Standard autoclaved 6% fat diet, (Purina Lab Diet 5K52) was available to the mice
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ad lib, as was water with acidity regulated from pH 2.5-3.0. All breeder and experimental mice
were housed in the same mouse room and were aged together. Animals generated at JAX were
aged and then shipped to IU for imaging within the week. All subjects were randomized and
counterbalanced for testing order across multiples of instrumentation and time of day for each
test day, with a simplified testing ID number (e.g., #1-100), with all technicians blinded to genotype
(e.g., coded as A, B, C, etc.). The blind was maintained throughout testing and until after the data
were analyzed with no subjects or data excluded based on any mathematical outliers.

Magnetic Resonance Imaging (MRI)

To provide high contrast grey matter images, at least two days before PET imaging, mice
were induced with 5% isoflurane (balance medical oxygen), placed on the head coil, and
anesthesia maintained with 1-3% isoflurane for scan duration. High-resolution T2-weighted (T2W)
MRI images were acquired using a 3T Siemens Prisma clinical MRI scanner outfitted with a
dedicated 4 channel mouse head coil and bed system (RapidMR, Columbus OH). Images were
acquired using a SPACES3D sequence [31] using the following acquisition parameters: TeA:
5.5min; TR: 2080ms; TE: 162ms; ETL: 57; FS: On; Ave: 2; Excitation Flip Angle: 150; Norm Filter:
On; Restore Magnetization: On; Slice Thickness 0.2mm: Matrix: 171x192; FOV: 35x35mm,
yielding 0.18 x 0.18 x 0.2mm resolution images. After the imaging period, mice were returned to

their warmed home cages and allowed to recover.

Radiopharmaceuticals and Study Population

Regional brain glycolytic metabolism was monitored using 2-['8F]-fluoro-2-deoxy-D-
glucose ('8F-FDG) and was synthesized, purified, and prepared according to established methods
[32], where clinical unit doses ranging from 185 to 370 MBq (5 to 10 mCi) were purchased from
PETNet Indiana (PETNET Solutions Inc). To evaluate region brain perfusion, Copper(ll)
pyruvaldehyde bis(N4-methylthiosemicarbazone) labeled with ®Cu (%*Cu-PTSM) was
synthesized, purified, and unit doses (i.e., 370 to 740 MBq (10 to 25 mCi)) dispensed by the PET
Radiochemistry Core Facility at Washington University according to methods described
previously [33, 34].

Positron Emission Tomography (PET) and Computed Tomography (CT) Imaging

To evaluate changes in cerebral glycolysis ('F-FDG) and cerebral perfusion (¢*Cu-PTSM)
mice were placed in a restrainer and consciously injected into the peritoneal or tail vein,

respectively, with 3.7-11.1 MBq (0.1-0.3 mCi) of purified, sterile radiotracer, where the final
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volume did not exceed 10% of the animal’s body weight. Each animal was returned to its warmed
home cage and allowed 30 min (®F-FDG) or 5 min (6*Cu-PTSM) to allow for uptake and cellular
trapping [35, 36]. Animals were fasted overnight only for imaging with ®F-FDG. Post-uptake, mice
were induced with 5% isoflurane gas, placed on the scanner imaging bed, and anesthesia
maintained at 1-3% isoflurane (balance medical oxygen) during acquisition. In all cases,
calibrated PET acquisition was performed in list mode for 15 ("®F-FDG) or 30 (*Cu-PTSM) min
on an IndyPET3 scanner [37], where random prompts did not exceed 10% of the total prompt
rate. Post-acquisition, the images were reconstructed into a single-static image with a minimum
field of view of 60 mm using filtered-back-projection (FBP) and were corrected for decay, random
coincidence events, and dead-time loss [38]. For some cohorts, both anatomical structure and
function PET/CT imaging were performed with a Molecubes B-X-CUBE system (Molecubes NV,
Gent Belgium), where calibrated list-mode PET images were reconstructed into a single-static
image using ordered subset expectation maximization (OSEM) with 30 iterations and 3 subsets
[39]. To provide anatomical reference and attenuation maps necessary to obtain fully corrected
quantitative PET images, helical CT images were acquired with tube voltage of 50 kV, 100 mA,
100 um slice thickness, 75 ms exposure, and 100 um resolution. For 3-CUBE studies, images
were corrected for radionuclide decay, tissue attenuation, detector dead-time loss, and photon

scatter according to the manufacturer's methods [39].

Image Processing and Analysis

All PET, CT and MRI images were co-registered using a ridged-body mutual information-
based normalized entropy algorithm [40] with 9 degrees of freedom, and mapped to stereotactic
mouse brain coordinates [41] using Analyze 12 (AnalyzeDirect, Stilwell KS) and MIM Encore
Software 7.3.2 (Beachwood OH). Imaging Study data was collected and managed using RedCap
electronic data capture tools hosted at Indiana University. Post-registration, 56 regions bilateral
regions were extracted via brain atlas and left/right averaged to yield 27 unique volumes of interest
that map to key cognitive and motor centers. To permit dose, scanner and brain uptake
normalization, Standardized Uptake Value Ratios (SUVR) relative to the cerebellum were
computed for PET for each subject, genotype, and age as follows:

R(s,9.a) (1)
C(s,9,a)

where, s, g, a, R, and C are the subject, genotype, age, region/volume of interest, cerebellum

SUVR(s,R,g,a) =

region/volume of interest. The SUVR values were then converted to z-score as follows:
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SUVR(S; R;g; a) _XR(R:Q; a) (2)
or(R,9,a)
where, s, g, a, R, Xz, and a3 are the subject, genotype, age, mean of the reference population in

zscore(s,R,g,a) =

SUVR, standard deviation of the reference population, based on the specified analytical strategies
(effects of aging, humanized genes, and AD-risk alleles). Data are then projected onto Cartesian
space, where the x-axis represents the z-score change in perfusion, derived from the 84Cu-PTSM
data, and the y-axis is the z-score change in glucose uptake, via '8F-FDG, as a surrogate readout
for glycolytic metabolism [12, 42, 43].

Statistical Analysis

Statistical analyses were performed within strain across age series. Student’s t-test was
employed on data sets differing by a single variable (e.g., tracer, age, sex, genotype, and brain
region), and significance level was considered at p < 0.05. To determine uncoupling, Student’s t-
test was computed between ¢4Cu-PTSM and '8F-FDG for a single variable (e.g., age, sex,
genotype, and brain region). To provide anatomical reference, significant brain regions for $4Cu-
PTSM, '8F-FDG, and uncoupling were projected onto stereotactic mouse brain coordinates [41],
and overlaid with anatomical TIW MRI derived from the Allen Common Coordinate Framework
[44]. To show directionality of change for 8*Cu-PTSM and '8F-FDG, p-values were assigned the

sign of the z-scores from which they were derived, while p-values for uncoupled were unchanged.

Transcriptomic Analysis

RNA-Seq data (counts in transcript per kilobase million (TPM)) from cortex brain samples
from four and 12 months old mice expressing hAPOE?¥%3 and hAPOE#*##4[45] were obtained from

the AD Knowledge Portal (https:/www.synapse.org/#!Synapse:syn26561824. We also obtained

RNA-Seq data (counts in transcript per million) from whole left hemisphere brain samples from
mice expressing human hAPOE*#** [46] from the AD Knowledge Portal
https://www.synapse.org/#!Synapse:syn17095983).

To start, we performed differential expression (DE) analysis using DESEq in R between
hAPOE*##* and B6 mice at 8 months. We calculated average Z-scores from imaging data across
all 27 brain regions for ®F-FDG and %Cu-PTSM. This was then followed by computing Pearson
correlations between these average z-scores and DE for hAPOE®*##* and B6 mice. Next, we
performed Gene Ontology (GO) term enrichment analysis on the genes positively correlated with
18F-FDG and 8*Cu-PTSM. GO enrichment was performed using the function enrichGO from the
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clusterProfiler package [47]. The significance threshold level for all enrichment analyses was set
to p < 0.05 using Benjamini-Hochberg corrected p-values.

We then repeated these analysis steps for other group comparisons. To assess
longitudinal changes with age in hAPOE*#**mice, we performed DE comparing 12 months relative
to 8 months, 12 months relative to 4 months and 8 months relative to 4 months for both sexes.
This was followed by calculation of average z-scores from imaging data for longitudinal changes
in '8F-FDG and %*Cu-PTSM measures in hAPOE®*#** mice for both sexes (male and female). We
then performed Pearson correlations between the combined DE from aging and the z-scores from
the imaging data, followed by GO enrichment analysis.

For our last set of comparisons, we looked at DE in hAPOE®*#** mice relative to hAPOE®%3
mice at 4 and 12 months for both sexes (male and female). This was followed by computation of
correlation with imaging data z-score and GO enrichment analysis.

Neuropathology

Two staining protocols were performed on brain hemispheres at 8-months. Tissue was
sectioned on a cryotome at 50um. First, staining to visualize activated microglia was performed
as previously described [48] using Ibal primary antibody (Wako, 1:500) with Vectastain Rabbit
Elite ABC-HRT Kit (Vector Labs, PK-6101). Second, staining was performed to visualize cerebral
endothelial lining using CD31 primary antibody (R&D Systems, 1:1000) with Vectastain Rabbit
Elite ABC-HRT Kit (Vector Labs, PK-6101). Tissue was permeabilized in 5 ml of working buffer
(TBS) for 1 hour on a shaker. Enzymatic antigen retrieval was performed on tissue incubated in
proteinase K solution for 15 minutes at 37°C. Tissue was then washed in 5 ml of tap water for 10
minutes on the shaker, and then blocked at room temperature (RT) in 5 ml of 4% rabbit serum for
1 hour. This was followed by overnight incubation of a 1:1000 dilution of rabbit anti-CD31. The
next day, tissue was washed in working buffer 3 times for 5 minutes on the shaker, and then
endogenous peroxidases were quenched with 0.3% hydrogen peroxide in working buffer for 30
minutes. Tissue was then washed in working buffer 3 times for 5 minutes on the shaker. Next,
tissue was incubated with Vectastain Rabbit Elite ABC-HRP Kit for 1 hour on the shaker. Tissue
was then washed with working buffer twice for 5 minutes on the shaker, and then incubated at RT
in ABC reagent for 30 minutes on shaker. Tissue was washed again in working buffer 3 times for
5 minutes on the shaker, and then incubated in in DAB solution for 30 seconds, stopping the
reaction stopped with tap water. Counterstain of Hemotoxylin was applied and then floating
sections were mounted onto slides and allowed to dry. Slides were then placed in staining dishes
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and run through the following series on a one-minute interval: 80% EtOH, 90% EtOH, 100% EtOH,
xylene. Slides were then coverslipped with Permount and let dry overnight.

Availability of Data and Materials

All  the datasets are available via the AD  Knowledge  Portal
(https://adknowledgeportal.synapse.org). The AD Knowledge Portal is a platform for accessing

data, analyses, and tools generated by the Accelerating Medicines Partnership (AMP-AD) Target
Discovery Program and other National Institute on Aging (NIA)-supported programs to enable
open-science practices and accelerate translational learning. The data, analyses, and tools are
shared early in the research cycle without a publication embargo on a secondary use. Data is
available for general research use according to the following requirements for data access and

data attribution (https://adknowledgeportal.synapse.org/DataAccess/Instructions).

RESULTS
C57BL/6J Show Significant Sex- and Aging-Relevant Changes In Brain Metabolism and
Perfusion.

We first performed imaging on C57BL/6J (B6) mice in aged cross-sectional cohorts, as
this is the genetic context in which the humanized APOE allelic series was introduced by MODEL-
AD. For these analyses, we averaged the signal between left and right hemispheres, computed
the standardized uptake value ratio (SUVR) based upon signal in cerebellum and assessed 27
major brain regions (Eqn. 1). Animals were fasted overnight and first imaged with '®F-FDG.
Overall, both female and male B6 animals exhibited significant increases in 8F-FDG signal
between 4 and 8 months in a similar set of regions (Fig. 1A-B): Dorsolateral Orbital cortex (DLO),
Frontal Association cortex (FrA), Lateral Orbital cortex (LO), Medial Orbital cortex (MO), Prelimbic
cortex (PrL), Primary motor cortex (M1), Secondary motor cortex (M2), and Ventral Orbital cortex
(VO). Female B6 mice also exhibited significant increases between 4 and 8 months in Cingulate
cortex (Cg), Corpus Callosum (CC), and Fornix (FN). Male B6 also exhibited significant increases
between 4 and 8 months in Primary Somatosensory cortex (S1), and a significant decrease in the
Dorso-Lateral-Intermedial-Ventral Entorhinal cortex (DLIVEnt). In comparisons performed
between 8 and 12 months, female and male B6 mice demonstrated significant differences in '8F-
FDG signal in independent regions. Females showed a decrease in Caudate Putamen (CPu), Cg,
CC, DLO, FN, LO, MO and Thalamus (TH). Males exhibited an increase in DLIVEnt, but
decreases in all regions of the Parietal cortices (PtPR and PtA), M1, Retrosplenial Dysgranular
cortex (RSC), M2 and Primary and Secondary Visual cortex (V1V2). Finally, only female B6
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FIGURE 1: '8F-FDG and %*Cu-PTSM in C57BL6/J across aging. (A) Representative MRI, 18F-FDG PET signal, fused PET signal and MRI, and
AUTORAD at three bregma targets (Anterior +0.38, Medial -1.94 and posterior -3.80) for female C57BL6/J (B6) mice. (B) Computed standardized
uptake value ratio (SUVR) relative to cerebellum is plotted in brain regions in male and female B6 mice that demonstrated a significant difference
in '8F-FDG in one of the three age comparisons. Filled bars represent 4 months, lattice-patterned bars represent 8 months and checkered bars
represent 12 months. Significant comparisons between 4 and 8-months are designated with ®. Significant comparisons between 8 and 12-months
are designated with *. Significant comparisons between 4 and 12 months are designated with a #. Number of symbols represents significance
level, one is p < 0.05, two is p < 0.01, three is p < 0.001 and four is p < 0.0001. (C) Representative MRI, 8Cu-PTSM signal, fused PET signal and
MRI, and AUTORAD at previously defined bregma targets in female B6 mice. (D) Computed standardized uptake value ratio (SUVR) relative to
cerebellum is plotted in brain regions in male and female B6 mice that demonstrated a significant difference in Cu-PTSM in one of the three age
comparisons. Bar patterns, symbols and significance values are the same as B.

displayed significant changes when comparing young with middle-aged animals (4 vs 12 months).

In this comparison, a significant decrease was demonstrated in DLIVEnt, while there was a

significant increase in S1.
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Imaging with 4Cu-PTSM occurred in the same animals after a recovery period to allow
tracer decay and animal recovery from fasting. For $Cu-PTSM, female B6 exhibited significant
changes in many more brain regions than male B6 mice (Fig. 1C-D). Female mice demonstrated
significant differences in perfusion between 4 and 8 months in DLIVEnt, PtPR, PtA, Perirhinal
cortex (PRH), RSC and V1V2. Two regions continued to show significant changes between 8 and
12 months, DLIVEnt and PtPR. Ultimately, the greatest differences in the most regions occurred
in comparisons between 4 and 12 months in Agranular Insular cortex (Al), CPu, DLIVEnt,
Dysgranular Insular cortex (DI), Ectorhinal cortex (ECT), Hippocampus (HIPP), PtPR, PtA, PRH,
RSC, Secondary Somatosensory cortex (S2), Temporal Association cortex (TeA) and V1V2. In
male B6, regional changes were limited to an increase between 4 and 8 months in DLO, and

increases between 8 and 12 months in Cg and HIPP.

Metabolism and Perfusion Changes are Predominate in Female, Rather Than Male hAPOE?®/3
mice.

APOE#®¥*3has been designated as the most common isoform combination in the human
population and is typically used as the control or ‘WT’ genotype in studies assessing the role of
APOE in AD risk. In line with this, we assessed male and female mice that were homozygous for
hAPOE#?¥%3, Qverall, sex was a significant driver of age-related changes, as female hAPOE?#%%3
carriers demonstrated more regions changed with ®F-FDG and PTSM PET in comparison to male
mice (Fig. 2). In comparisons between 4 and 8 months for ®F-FDG, females exhibited an increase
in FDG signal in the RSC and TH (Fig. 2A-B). In comparisons between 8 and 12 months, there
was a significant reduction in FDG signal in the Auditory cortex (AuDMV) and Cg. A larger set of
regions exhibited significant changes in ®F-FDG between 4 and 12 months; Al, AuDMV, CPu,
Cg, DI, and S2 were decreased with age, while PtA and V1V2 were increased. In male hAPOE#%%3
mice, CC, M1 and RSC increased '8F-FDG signal at 8 months relative to 4 months (Fig. 2C-D).
There were no significant changes in '8F-FDG that occurred from 8 to 12 months, however, RSC
and V1V2 did demonstrate significant increases in comparisons of 4 and 12 months.

For 84Cu-PTSM, female hAPOE®¥*3 mice demonstrated significant decreases in perfusion
from 4 to 8 months in Al, CPu, Cg, CC, DLO and DI. In comparisons performed between 8 and
12 months, significant increases in $Cu-PTSM were observed in FrA and S1. Finally, in
comparisons between 4 and 12 months, ECT and PRH signals were decreased, while FrA and
PtPR signals were increased. Male hAPOE®¥*3 carriers only exhibited significant changes in

PTSM in three regions, LO, MO and VO, and only in comparisons between 4 and 12 months.
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Female hAPOE#**** Mice Exhibit Significant Decreases in Metabolism and Perfusion in Almost

Every Brain Region with Age.
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FIGURE 2: "8F-FDG and 5*Cu-PTSM in humanized APOE®* across aging. (A) Representative MRI, '®F-FDG PET signal, fused PET signal and
CT, and AUTORAD at three bregma targets (Anterior +0.38, Medial -1.94 and posterior -3.80) for female humanized APOE®**3 (hAPOE?**%) mice.
(B) Computed standardized uptake value ratio (SUVR) relative to cerebellum is plotted in brain regions in male and female hAPOE®** mice that
demonstrated a significant difference in '®F-FDG in one of the three age comparisons. Filled bars represent 4 months, lattice-patterned bars
represent 8 months and checkered bars represent 12 months. Significant comparisons between 4 and 8-months are designated with ®. Significant
comparisons between 8 and 12-months are designated with *. Significant comparisons between 4 and 12 months are designated with a #.
Number of symbols represents significance level, one is p < 0.05, two is p < 0.01, three is p < 0.001 and four is p < 0.0001. (C) Representative CT,
84Cu-PTSM signal, fused PET signal and MRI, and Autorad at previously defined bregma targets in female hAPOE?**° mice. (D) Computed
standardized uptake value ratio (SUVR) relative to cerebellum is plotted in brain regions in male and female hAPOE?#° mice that demonstrated a
sianificant difference in ®*Cu-PTSM in one of the three age comparisons. Bar patterns, symbols and sianificance values are the same as B.
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APOE*##* is predicted to exert effects in a multitude of ways that could compromise brain

health, especially in aging. Regardless of sex, mice carrying hAPOE®4 exhibited significant
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FIGURE 3: "8F-FDG and % Cu-PTSM in humanized APOE**** across aging. (A) Representative MRI, '8F-FDG PET signal, fused PET signal and
MRI, and Autorad at three bregma targets (Anterior +0.38, Medial -1.94 and posterior -3.80) for female humanized APOE*##* (hnAPOE****) mice. (B)
Computed standardized uptake value ratio (SUVR) relative to cerebellum is plotted in brain regions in male and female hAPOE**#* mice that
demonstrated a significant difference in '8F-FDG in one of the three age comparisons. Filled bars represent 4 months, lattice-patterned bars
represent 8 months and checkered bars represent 12 months. Significant comparisons between 4 and 8-months are designated with ®. Significant
comparisons between 8 and 12-months are designated with *. Significant comparisons between 4 and 12 months are designated with a #. Number
of symbols represents significance level, one is p < 0.05, two is p < 0.01, three is p < 0.001 and four is p < 0.0001. (C) Representative MRI, %Cu-
PTSM signal, fused PET signal and MRI, and AUTORAD at previously defined bregma targets in female hAPOE?*##* mice. (D) Computed
standardized uptake value ratio (SUVR) relative to cerebellum is plotted in brain regions in male and female hAPOE®** mice that demonstrated a
significant difference in ®Cu-PTSM in one of the three age comparisons. Bar patterns, symbols and significance values are the same as B.

changes in '®F-FDG signal across the majority of brain regions tested, particularly in older ages
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(i.e. 12 months). In both B6 and hAPOE?#3%3, brain regions showed significant increases in '8F-
FDG signal between 4 and 8 months (Fig. 1-2). In contrast, both female and male hAPOE®##*
mice demonstrated significant decreases in most brain regions during this same time period (Fig.
3A-B). In female hAPOE###, significant decreases in '®F-FDG were present in AuDMV, DLIVEnt,
ECT, PtPR, PtA, PRH, RSC, S2, TeA and V1V2 between 4 and 8 months. In male hAPOE?##
these decreases occurred in Al, PtPR, PtA, RSC and V1V2, while the FrA exhibited a significant
increase. In comparison between 8 and 12 months, females demonstrated increases (or
approximate return to younger 4 month levels) in Al, AuDMV, DLIVEnt, DI, ECT, PRH, S2 and
TeA. For male hAPOE*##4 carriers, this increase in FDG signal often surpassed levels previously
seen at 4 months; Al, AuDMV, DLO, DLIVEnt, DI, ECT, FrA, HIPP, LO, PtPR, PRH, S1, S2, TeA
and V1V2 all demonstrated significant increases in '8F-FDG signal at 12 months relative to 8
months. Lastly, in comparisons between 4 and 12 months, females showed significant decreases
in '8F-FDG signal in Cg, CC, PtPR, PtA, RSC and V1V2. In contrast, males showed significant
changes in ®F-FDG uptake between 4 and 12 months; Al, AuDMV, DLO, DLIVEnt, DI, ECT, FrA,
PRH, S2 and TeA were all increased, while Cg and RSC were decreased.

Imaging with ®4Cu-PTSM revealed significant increased signal in female hAPOE®**
carriers between 4 months and 8 months, and this elevation often persisted into 12 months. This
occurred in Cg, CC, FrA, MO, PtPR, PtA, PrL, M1, S1, RSC, M2, and VO. Many of the same
regions were also significant for comparisons between 4 and 12 months, Cg, CC, FrA, MO, PtPR,
PtA, PrL, M1, S1, RSC, M2, and VO. Additional regions in which significant increases in 64Cu-
PTSM signal were determined were the AuDMV, DLIVEnt, LO and V1V2. In contrast, male
hAPOE#*##* carriers demonstrated significant increases in 8Cu-PTSM only in comparisons
between 8 and 12 months; these regions were AuDMV, ECT, PRH, TeA and V1V2.

Correlation of Transcriptional Profiling with PET Tracer Outcomes Can Identify Critical Disease
Processes

To elucidate the relationship between glycolytic metabolism and tissue perfusion with
gene expression profiles, we ultilized two transcriptional profiling datasets. The first dataset
consisted of hemi-coronal brains from 4, 8 and 12 month hAPOE*#** and B6 animals that had
been imaged in this study. The second data set was generated from dissected cortex and
hippocampus from 4 and 12 month hAPOE#**#* and hAPOE®%#3 animals. As the sample handling,
library prep and sequencing were all performed at JAX for both datasets, we were interested in

determining if there were differences in detection of transcripts (transcripts per kilobase million,
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FIGURE 4: Correlation of differential gene expression with average whole brain '"*F-FDG and %*Cu-PTSM signal. (A) Mouse brain where
rust designates brain hemisphere (HEMI), blue designates dissected cortex and purple designates dissected hippocampus (HIPP)
collected for two transcriptional profiling projects including aged hAPOE mice. (B) Graphs that demonstrate the correlation between
detected transcript expression from sequenced HEMI brains, cortex (dark red or dark blue) and HIPP (light red or light blue) in 12-month
hAPOE##*females (top middle panel) and males (bottom middle panel). Correlation matrix (right) is also provided to demonstrate similarly
across ages and regions in transcript expression data from the two sequencing projects. (C) Correlation matrix demonstrating the
relationship between brain regions using differential expression of hAPOE*##*between 12 and 4 months of age. (D) Comparing B6 and
hAPOE## averaged '®F-FDG PET signal revealed an enrichment of differentially expressed (DE) transcripts that were positively
correlated with Gene Ontology (GO) terms relevant to cellular metabolism. ETC=Electron Transport Chain. (E) Comparing B6 and
hAPOE**#* averaged %*Cu-PTSM PET signal revealed DE enrichment that was negatively correlated with GO terms relevant to smooth
muscle function, protein processing and export. (F) Comparing longitudinal age-related hAPOE?*#* averaged '®F-FDG PET signal
identified an enrichment of differentially expressed (DE) transcripts that were positively correlated with GO terms relevant to neuronal
function, lipid handling and targeted degradation. (G) Comparing longitudinal age-related hAPOE**#* averaged %Cu-PTSM PET signal
identified an enrichment of differentially expressed (DE) transcripts that were correlated with GO terms relevant to cellular structure,
migration and energy production. Full GO pathway name: Positive Regulation of Cell-Matrix Adhesion. (H) Comparing hAPOE®*3 and
hAPOE**#* averaged '"®F-FDG PET signal determined an enrichment of DE transcripts that were correlated with GO terms relevant to
signaling between cells in response to stimuli. (I) Comparing hAPOE®#* and hAPOE?*# averaged %Cu-PTSM PET signal determined an
enrichment of DE transcripts that were correlated with GO terms relevant to cellular movement, the blood brain barrier and immune-

TPMs) in hAPOE*##* dependent on whether samples were hemi brain or individual brain regions
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(Fig. 4A). Overall, the detection of transcripts was similar in both female and male hAPOE®##*
mice regardless of tissue origin or age point, with a correlation coefficient of R = 0.97 comparing
hemi brains to cortex or hippocampus (Fig. 4B). To further understand the overlap between these
two datasets, we also performed correlations on the differentially expressed sets (DE; log2 fold
change) produced by comparing 12 to 4 month hAPOE?### within each tissue (Fig. 4C). For these
comparisons, the strongest correlations were between tissue type for each sex, rather than hemi-
brains. For example, DE from cortices between females and males, and DE from hemi brains
between females and males demonstrated the highest correlation, and there was no correlation
between DE from hemi brains and cortex. Given this, we performed correlations between imaging
and DE only within each of these datasets, rather than across. This meant that DE between B6
and hAPOE#*?# could not be compared to each other.

In order to compare gene expression and ®F-FDG or 84Cu-PTSM imaging, we averaged
signal change between selected groups from all 27 brain regions, and then correlated this to DE.
For example, comparisons performed between 8 month hAPOE®*** and B6 revealed 587
transcripts that were significantly positively correlated (r>0.80, p<0.05) with ®F-FDG signal
change, and 810 transcripts that were significantly negatively correlated (r<-0.80, p<0.05). When
we performed Gene ontology (GO) term analysis, there was a significant enrichment of glycolytic
and ox-phos pathways associated with cellular respiration (Fig. 4D). Similarly, analysis performed
with $4Cu-PTSM signal change showed 346 transcripts that were significantly positively correlated
(r>0.80, p<0.05) and 246 transcripts that were negatively correlated with perfusion measures (r<-
0.80, p<0.05). GO term analysis showed there was a significant enrichment of protein export and
processing, sarcomere and myosin filaments in negatively correlated transcripts (Fig. 4E).

Next, we were interested in longitudinal DE in hAPOE®*¥** mice. For this analysis, we
performed comparisons in 12 months relative to 8 months, 12 months relative to 4 months and 8
months relative to 4 months for both sexes. Then, we calculated average z-scores from imaging
data across all 27 brain regions for longitudinal changes in '®F-FDG and #Cu-PTSM measures in
the same mice. This was followed by computing Pearson correlations between average z-scores
for "®F-FDG and 54Cu-PTSM and longitudinal DE in hAPOE#*#**mice. We then performed GO term
analysis which showed enrichment in pathways specific to neuronal function, lipid handling and
targeted degradation for '®F-FDG (Fig. 4F), and enrichment in pathways specific to cellular
structure, migration and energy production for ¢#Cu-PTSM (Fig. 4G).

Finally, we wanted to explore differences between hAPOE?®¥%3 and hAPOE*#** mice. Due
to dataset limitations, this comparison could only be performed cross-sectionally between 4 and
12 months. Data analysis was performed the same as above. GO term analysis highlighted
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pathways specific to signaling between cells in response to stimuli for 'F-FDG (Fig. 4H), and
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pathways relevant to cellular movement, blood brain barrier integrity and immune-regulated cell
death for 84Cu-PTSM (Fig. 4l).

Combining 8F-FDG and %Cu-PTSM PET Outcomes Into Early Disease Biomarkers of
Neurovascular Uncoupling

To more completely understand the regional changes in perfusion and glycolytic
metabolism, which make up neurovascular coupling, we performed bi-directional z-score
analysis. This analysis (i.e. uncoupling analysis) was based on Eqn. 2, where z-scores for '8F-
FDG and 84Cu-PTSM are projected onto Cartesian space with z-score changes in perfusion from
the reference population plotted on the x-axis, and z-score changes in glycolysis from the
reference population plotted on the y-axis, respectively. This approach establishes four primary
quadrants (Fig. 5A), with two of these showing coupled increases (Quadrant 1) or decreases
(Quadrant 3) in perfusion and metabolism. These regions represent the normal physiological
responses described as “coupled responses” for the neurovascular unit [13, 49, 50]. By contrast,
the remaining two quadrants show uncoupled changes in perfusion and metabolism, with
Quadrant 4, exhibiting decreases in metabolism, with increased hyperemia, and was referred to
as Type 1 Uncoupling. Similarly, Quadrant 2 presents with an increase in metabolism, while
perfusion is decreased relative to the reference population, and is referred to as Type 2
Uncoupling (Fig. 5A). As the underlying data are plotted as z-scores, the changes along each
axis represents the number of standard deviation changes away from the reference population,
with a statistical probability of these distributions being different, such that +1 = %68, 2 = 95%,
and +3 = 99% (Fig. 5B).

To maximize the likelihood of observing a change in z-score across each genotype, we
performed longitudinal uncoupling analysis on 12 month mice, where each cohort referenced 4
month mice, which are sexually mature and without disease. As a baseline, we explored how
mouse APOE in B6 mice affects perfusion and metabolism with age. Consistent with our
overarching hypothesis, B6 mice at 12 months showed alterations in perfusion and metabolism
which were sexually dimorphic (Fig. 5C), with male mice showing no statistically significant
changes in %4Cu-PTSM or ®F-FDG, while the following regions: M2, PtA, PrL, PtPR, RSC, and
V1V2 were uncoupled. In contrast, female B6 mice showed a much larger number of regions (i.e.
Al, CPu, DLIVEnt, DI, ECT, HIP, PtPR, PtA, PRH, S1, RSC, TeA, TH, V1V2) (14/27) that exhibited
significant changes in both tissue perfusion and Type 2 uncoupling (decreased perfusion,
increased glucose uptake) (Fig. 5C).
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To understand the impact of hAPOE#®*%3on neurovascular coupling, both male and female
mice were subjected to uncoupling analysis at 12 months. Unlike the B6 cohort, the addition of
hAPOE#®¥ resulted in minimal changes in perfusion or metabolism changes for both sexes (Fig.
5D). The number and degree of significantly uncoupled regions was greater for males than
females at this age. Interestingly, male mice showed significant uncoupling in: CC, HIP, LO, MO,
PtPR, PtA, PrL, RSC, VO, and V1V2, while female mice showed significant uncoupling in the Al,
AuDMV, CPu, and Cg cortices.

To explore the disease-associated isoform of APOE, which is known to increase the
likelihood of both vascular and metabolic dysfunction with age, mice bearing hAPOE®#*4 at 12
months were analyzed for neurovascular uncoupling. Similar to non-disease isoform of APOE,
male mice showed significant changes primarily in regional metabolism at this age, while female
mice showed a significant increase in tissue perfusion (Fig. 5D). This sexual dimorphism in
physiological changes in perfusion and metabolism resulted in a very large number of brain
regions in both male (i.e. AuDMV, Cg, CC, DLO, DLIVEnt, DI, ECT, FrA, PtA, PRH, M1, RSC,
S2, TeA, and V1V2) and female (i.e. AuDMV, Cg, CC, DLIVEnt, FrA, HIP, LO, MO, PtPR, PtA,
PrL, M1, S1, RSC, M2, S2, TeA, TH, VO, and V1V2) mice that showed uncoupling at p < 0.05
levels (Fig. 5D). Importantly, at this age, male mice primarily showed a Type 2 uncoupled
response in 15/28 brain regions, while females showed a Type 1 (increased perfusion, decreased
glucose uptake) in 20/28 brain regions, further supporting what is known about APOE biology and
sex dependent changes. These data are consistent with clinical findings [51], which showed
similar regional uncoupling, and co-localization with TAU deposits measured via '8F-THK5317
PET, and corresponded to AD stage and severity [51].

Given the changes observed with APOE isoforms at 12 months, we then sought to
determine if this approach could uncover neurovascular dysregulation at an earlier age. To assess
the degree of metabolic and vascular dysfunction, we performed a regional analysis of
neurovascular coupling [13, 49, 50] in both sexes at 8 months, which appeared to be a key
transition age for AD progression based upon Figs. 1-3. Consistent with our hypothesis, B6 at 8
months showed an elevation of glucose uptake without a significant alteration in brain perfusion
for most brain regions. Along with these changes, several key brain regions showed Type 2
uncoupling, which included: Cg, M1, M2, PtA, PrL, PtPR, and RSC. By contrast, male B6 mice at
8 months did not show significant numbers of regions that were uncoupled, and instead showed
regional coupling which concurrently increased/decreased in metabolism and blood flow (Fig.
6A).
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FIGURE 6: Assessment of
Neurovascular Coupling at 8-
months. (A) Analysis of
neurovascular coupling of 8-month
B6 in comparison with 4-month B6.
Individual points represent the
averaged z-scores of one of 27
brain regions, with red designating
female and blue designating male.
Image panels denote brain regions
in the coronal, ventral and sagittal
planes that exhibit significant
differences in with each tracer, or
the combined z-scores for
uncoupling.  Warmer  colored
regions indicated an increase,
while cooler colored regions
indicate a decrease. (B) Analysis
of neurovascular coupling of 12-
month hAPOE®%# in comparison
with  4-month hAPOE®**3. (C)
Analysis of neurovascular
coupling of 12-month hAPOE?*#
in comparison with 4-month
hAPOE## (D) Analysis of
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month hAPOE®*** in comparison
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Despite showing minimal changes at 12 months, we also examined neurovascular
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coordination in hAPOE®3in both sexes at the same 8 month time point. As with B6, the majority
of the brain regions in both female and male mice showed a coupled phenotype, with the glucose
uptake and perfusion showing coordinated increases/decreases. The few exceptions to this were
CC, TH, MO, and VO in female mice which showed a Type 2 uncoupling of the perfusion and
metabolism (Fig. 6B), which are white matter structures and are associated with synaptic
integration and routing of sensory inputs.

Unlike the common isoform of APOE, the addition of hAPOE*** in 8 month mice
demonstrated significant regional Type 1 uncoupling (i.e. metabolism decreasing and perfusion
increasing) (Fig. 6C), with female mice showing both a larger number (i.e. 23/27 compared to
11/27) and greater distribution of uncoupled regions (i.e. AuDMV, CC, Cg, DLIVEnt, DI, ECT, FrA,
HIP, LO, M1, M2,MO, PtPR, PtA, PRH, PrL, RSC, S1, S2, TeA, TH, VO, and V1V2) in circuits
relevant to LOAD. By contrast, male mice at this age primarily showed a coupled phenotype with
only 11/27 regions uncoupled (i.e. CC, Cg, DLO, FrA, HIP, MO, PtPR, PtA, RSC, VO, and V1V2).

Given the importance of allelic copy number and frequencies in the population, we were
also able to conduct uncoupling analysis on hAPOE®** mice. We created these mice by
intercrossing our hAPOE®%3 and hAPOE®##4, At 8 months, much like the homozygous allelic
counterpart, hAPOE®***4 showed a sexual dimorphism in the number and distribution of regions
that showed uncoupling. However, specific to female hAPOE®**# mice, the majority of key brain
regions were involved in memory, learning, integration, and motor function (i.e. CC, Fornix, FrA,
HIP, MO, PtA, PrL, M1, S1, RSC, M2, S2, TH, and V1V2) and exhibited a Type 2 uncoupled
response (Fig. 6D). This elevated glycolytic state combined with a reduction in perfusion, coupled
with transcriptomic (Fig. 4) and immunopathological (Fig. 7) changes in microglial number and
vascular density suggest that these brain regions may be uniquely more susceptible to cellular
dysfunction.

Neuropathology

One process outside of neural activity that has been suggested to contribute to differences
in '8F-FDG signal, especially to increases, is neuroinflammation. A key predicted contributor to
differences in ®Cu-PTSM signal is brain vascular density and integrity. As such, we sought to
identify if there were significant differences across the different mouse strains imaged in this study
by staining for microglia and vascular platelet endothelial cell adhesion molecule 1 (PECAM1)
expression via IBA1 and CD31, respectively (Fig. 7). We focused on the 8-month time point as
we were able to stain tissue from all genotypes included in our uncoupling analysis. In comparison

to all other genotypes, hAPOE*** mice exhibited a greater density of microglial staining paired
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B6.APOES/E

FIGURE 7: Neuropathology visualizing microglia and blood vessels. Panels (A-H) show representative images of IBA1, a marker of microglia,
across 8-month female B6, hAPOE®%°, hAPOE****, and hAPOE®** mice. Panels (I-P) show representative images of CD31, a marker of vessels,
across 8-month female B6, hAPOE®#, hAPOE*#*, and hAPOE?** mice. White squares indicate a zoomed in region in the panel to the right.
White arrows indicate density of cell of interest.

with reductions in PECAM1 binding, with the greatest density changes occurring in hippocampal
and cortical regions. This is consistent with previous reports for IBA1 [52, 53] and CD31 [54, 55].

DISCUSSION

Our study was focused on using clinically relevant, translational measures to identify
changes in glucose metabolism and cerebral perfusion in mice carrying humanized APOE
variants across earlier stages of aging (8 and 12 months). This study did not include amyloid and
tau as these models often have severe and accelerated neuropathology, limiting our ability to
detect transitionary changes. We demonstrated regional differences in '8F-FDG or %*Cu-PTSM
that were APOE isoform-, age- and sex dependent. We also combined '8F-FDG or $*Cu-PTSM
PET measures (Fig. 5-6) with transcriptional profiling (Fig. 4), finding significant correlations
between average signal of each tracer with differential gene expression and ontology. This study
highlights the value of going beyond individual tracer analysis and standard general linear
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modeling (GLM) statistics, combining '8F-FDG and ®Cu-PTSM measures to assess
neurovascular uncoupling across all 27 brain regions relative to age or a comparison group.
Overall, we predict that this representation of imaging data will improve detection of early brain
dysfunction and contribute to our ability to identify and expand the window in which preventive
medicines can be effective.

At the start of this work, we were careful to include B6 mice for all studies, as this is the
genetic background strain for the APOE allelic series. Numerous studies have highlighted the
importance of genetic background for disease relevant phenotypes [56-58]. Until recently, much
of the work examining hAPOE®#*4 mice performed all comparisons to WT B6, which contain
murine Apoe. Based on our work [57, 58], and the work of others [59], we determined that there
are also significant differences between B6 and hAPOE®%3 mice. Some studies have suggested
that mouse Apoe is more similar to hAPOE®*##* than hAPOE?®¥3. In support of this, we found more
brain regions that demonstrated significant differences in '8F-FDG and ¢Cu-PTSM signal with
age in B6 versus hAPOE#®*%3 though the degree of uncoupled brain region metrics was relatively
similar (Fig. 1-2, 5A-B, 6A-B). Our data suggest that mouse Apoe is functionally lies between
hAPOE? and hAPOE®*## as it relates to neurovascular coupling.

Considering this, we then compared hAPOE®¥*3 and hAPOE®#** mice across aging. While
we also noted a sex effect in B6, this was even more apparent in hAPOE®¥#3| and especially in
hAPOE*##*mice. Overall, female animals demonstrated the greatest number of regional changes
in F-FDG and ¢4Cu-PTSM, as well as more regions that displayed neurovascular uncoupling
(Fig. 5B-C, 6B-C). In particular, female hAPOE*#*4 animals exhibited severe decreases in '8F-
FDG in brain regions such as the Cg, CC and RS, which are critical in the orchestration of
widespread communication. The potential compensatory effect of blood flow through Type 1
uncoupling was highlighted with significant elevations in 8Cu-PTSM at 8 months, and this
elevation was persistent through 12 months. However, the level of ‘maximum’ perfusion is also
likely impacted by decreased vascular density, observed with reduced CD31 staining (Fig. 7).

Based on our previous work [45], we included hAPOE®*** mice in our assessment of
neurovascular coupling at 8 months. Clinical studies often collapse APOE®*** and APQOE###4
carriers together, and in the case of mouse studies, breeding restrictions on previous APOE allelic
series made it challenging to generate hAPOE®*** mice. However, the MODEL-AD APOE allelic
series does not have the same breeding restrictions, allowing generation of hAPOE?3## mice. Our
data suggest that the underlying APOE®** -dependent processes that increase risk for AD are not

simply additive with allele copy, further supporting our previous study [45]. Here, we demonstrated
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that hAPOE®** females exhibit Type 2 uncoupling in multiple brain regions, a more severe and
advanced disease phenotype than the Type 1 uncoupling observed in hAPOE*#¥4 mice at 8 and
12 months. Furthermore, while '8F-FDG uptake appeared to be more heavily impacted with age
in most strains, 84Cu-PTSM was the predominant measure that changed in hAPOE#®3#4. Despite
this, hAPOE®*4 appeared to have similar levels of CD31 staining to B6 and hAPOE®**3 mice (Fig.
7). This more severe uncoupling at a key transition age may point to differences in overall
compensatory networks and cells involved [16, 60]. For instance, if ones genetic make-up is
hAPOE®¥%3 or hAPOE®*¥** from birth, this may result in immunological adaptation throughout
development, as has been observed with the complement system [61]. By contrast, mice, which
carry hAPOE®*¥* may develop a negative allelic interaction, which potentiate the immune
response [62]. Importantly, our previous work identified DE that encode for hormone and insulin
signaling in mice that carry hAPOE?3#* [45], and are consistent with the Type 2 uncoupling seen
in the current work.

To our knowledge, our study was the first to correlate PET tracer and gene expression
changes. While this analysis had to be performed on a brain-wide scale due to averaging of z-
scores across all 27 brain regions, there were still numerous DE that showed significant positive
and negative correlations. We were also able to perform GO term analysis on DE, which
highlighted a number of pathways directly relevant to cerebral metabolism and perfusion. For
example, significant correlations with 8F-FDG across groups highlighted metabolic and neuronal
pathways, and are consistent with previous work, which demonstrated metabolic reprogramming
of cellular metabolism with age and genotype [9, 63, 64]. In addition, significant correlations with
64Cu-PTSM netted pathways relevant to ‘tight junction assembly’ and ‘cell migration’. For
comparisons across age in hAPOE®##* ‘ADP metabolic processes appeared as a significant GO
term. While on its face '®F-FDG may appear to be a more direct correlate, ADP represents a
critical metabolic intermediate [10, 11], and purinergic signaling molecule [65-68], stored inside of
blood platelets. Moreover, ADP is directly phosphorylated to synthesize ATP via glycolysis and
oxidative phosphorylation in the cell [10, 11], or can be converted directly to adenosine via CD39
and CD73 [69], resulting in blood vessel dilation and increases in tissue perfusion [70].

The overall focus of our work was to understand differences in cerebral metabolism and
perfusion across aging and APOE allelic combinations using translational measurements. While
we did include traditional analyses in this study, we were not able to directly detect mechanisms
underlying these differences using standard GLM statistical modeling approaches. However, the
transcriptomic (Fig. 4), uncoupling (Figs. 5-6), immunopathology (Fig. 7) findings presented here
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in combination with the supporting literature enables us to speculate the underlying mechanisms
driving Type 1 and Type 2 neurovascular uncoupling, and predict how this may be coordinated to
stage of disease. For instance, Type 1 neurovascular uncoupling is thought to be driven by a
cytokine (i.e. TNFa, IL1B, IL6 and/or IL12) [71-74] down-regulation of insulin receptors [75, 76],
which in turn results in an apparent reduction in neuronal glucose uptake via GLUT3 [64, 77, 78],
ensuing a metabolic deficit (Fig. 8). This deficit is partially offset by astrocytic uptake of glucose
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FIGURE 8: Predicted mechanisms underlying Type 1 and Type 2 Uncoupling in Alzheimer’s disease risk. (A) Graphic depicting Neurovascular
Coupling analysis for APOE allelic series. The predicted underlying cell types, molecules and receptor response relevant to Type 1 and Type 2
uncoupling are depicted.

via GLUT1 [77, 78], which is converted to lactate and shuttled to neurons (i.e. lactate shuttle) [78,

79] via MCT2 export on astrocytes and subsequent uptake via MCT1 and 4 [77, 78].
Commensurate with these changes, we hypothesize compensatory vasodilation of the vascular
smooth muscles, which results in an apparent increase in tissue perfusion, or reactive hyperemia
(Figs. 4-7). Furthermore, we hypothesize that sustained elevations in cytokine release (i.e. TNFa,
IL1B, IL6, and/or IL12) [71-74] results in Type 2 Neurovascular Uncoupling, leading to a cessation
of GLUT3 transport on neurons, and a cytokine driven upregulation of GLUT1 receptors on
astrocytes (Fig. 8) and resulting astrogliosis [80]. This net increase in transport capacity, we
hypothesize, results in greater astrocytic glucose uptake to support neuronal metabolism via the
lactate shuttle via MCT2 and MCT1 and 4 transport [77, 78]. Additionally, we hypothesize that
sustained cytokine release will result in astroglial damage of the vascular unit, resulting an inability
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of the vasculature to increase perfusion further and blood brain barrier dysfunction [81-83].
Overall, this results in a mismatch between supply and demand (Figs. 4-7).

As with all research, there are limitations, which should be considered when developing
new analytical approaches. The current study employs a variant on the z-score analysis for a
single factor that extends this in two dimensions, and then projects this onto a Cartesian
coordinate system for ease of visualization and categorization. Because of this, all uncoupling
plots represent relative changes to a reference population (i.e. age or genotype), and therefore it
is critical that this reference group be matched for tracer, sex, and the factor of interest before
plotting (see Figs. 5-6). In addition, although this approach has been applied in this context to
PET data, it should be noted that because the z-score transformations remove units and scale,
this approach could be applied in any multi-modal context (PET, CT, or MRI) to assess
dysregulation of perfusion and metabolism.

Finally, future work will explore the underlying mechanisms, which are hypothesized
above, to determine how and which cell types, transporters, and metabolites play a role in these
measures. In addition, because of the universality of this approach, future work would benefit from
aligning mouse to human studies as a means to identify which brain regions are most susceptible
to dysregulation and may progress to a more advanced disease stage.
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