

1 **Phylogenomics resolves key relationships in *Rumex* and uncovers a dynamic history of**
2 **independently evolving sex chromosomes**

3

4 Mark S. Hibbins¹, Joanna L. Rifkin^{1,2,3}, Baharul I. Choudhury¹, Olena Voznesenka¹, Bianca
5 Sacchi¹, Meng Yuan¹, Yunchen Gong¹, Spencer C. H. Barrett¹, Stephen I. Wright¹

6

7 ¹Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, CA
8 M5S 3B2

9 ²Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI,
10 USA 48109

11 ³HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, USA
12 35806

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 **Abstract**

33 Sex chromosomes have evolved independently many times across eukaryotes. Despite a
34 considerable body of literature on the evolution of sex chromosomes, the causes and consequences
35 of variation in the formation, degeneration, and turnover of sex chromosomes remain poorly
36 understood. Comparative approaches in groups with sexual system variation can be valuable for
37 understanding these questions. Plants are well-suited to such comparative studies, with many
38 lineages containing relatively recent origins of dioecy and sex chromosomes as well as
39 hermaphroditic close relatives. *Rumex* is a diverse genus of flowering plants harboring significant
40 sexual system variation, including hermaphroditic and dioecious clades with XY sex
41 chromosomes. Previous disagreement in the phylogenetic relationships among key species have
42 rendered the history of sex chromosome evolution uncertain. Resolving this history is important
43 to the development of *Rumex* as a system for the comparative study of sex chromosome evolution.
44 Here, we leverage new transcriptome assemblies from 11 species representing the major clades in
45 the genus, along with a whole-genome assembly generated for a pivotal hermaphroditic species,
46 to further resolve the phylogeny and history of sex chromosome evolution in *Rumex*. Using
47 phylogenomic approaches, we find evidence for two independent origins of sex chromosomes and
48 introgression from unsampled taxa in the genus. Comparative genomics reveals massive
49 chromosomal rearrangements in a dioecious species, with evidence for a complex origin of the sex
50 chromosomes through multiple chromosomal fusions. However, we see no evidence of elevated
51 rates of fusion on the sex chromosome in comparison with autosomes, providing no support for an
52 adaptive hypothesis for the sex chromosome expansion. Overall, our results highlight the dynamic
53 nature of sex chromosome systems in *Rumex* and illustrate the utility of the genus as a model for
54 the comparative study of sex chromosome evolution.

55

56

57

58

59

60

61

62

63

64

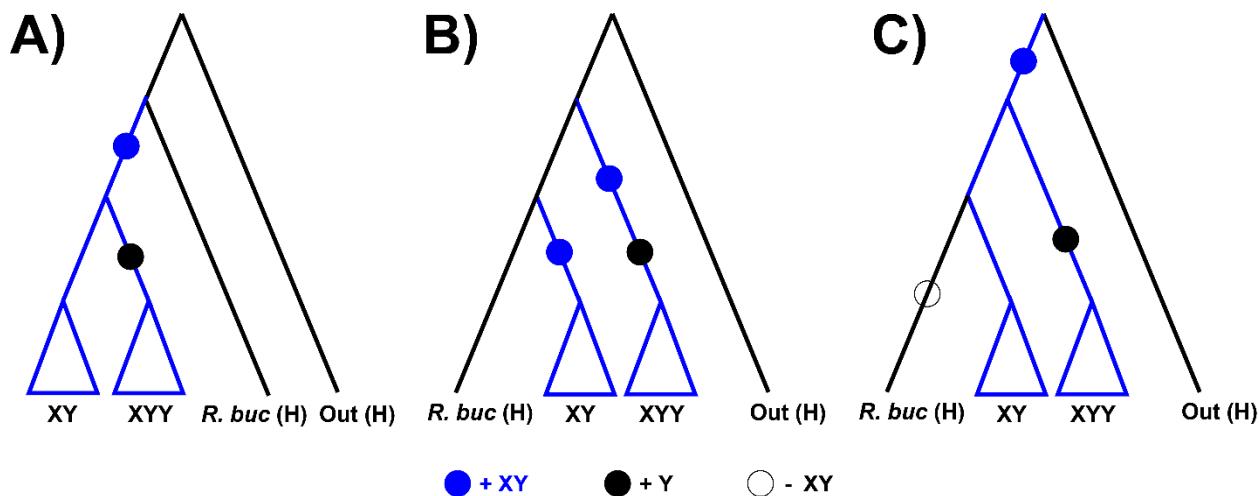
65

66 Introduction

67 Despite the near-universality of sexual reproduction in eukaryotes, the mechanisms that
68 determine an organism's sex vary greatly (Bull 1983, Bachtrog et al. 2014). In organisms with
69 separate male and female individuals, sex is often genetically determined by the inheritance of sex
70 chromosomes. Classic models propose that sex chromosomes arise from a pair of ancestral
71 autosomes as a resolution to sexually antagonistic selection (Charlesworth & Charlesworth 1980,
72 Rice 1987); suppressed recombination linking antagonistic alleles to the sex in which they are
73 beneficial results in differentiation of the sex chromosomes and often degeneration of the Y or W
74 chromosome over time (Charlesworth 1991, Charlesworth & Charlesworth 2000, Bachtrog 2013).
75 However, these models in isolation are unable to explain why there is so much variation in the age,
76 degree of degeneration, and rate of turnover of sex chromosomes across eukaryotes. Some
77 groups—such as mammals (Graves & Watson 1991, Hughes & Page 2015) and birds (Fridolfsson
78 et al. 1998, Handley et al. 2004)—have mostly ancient, highly conserved, and highly differentiated
79 sex chromosomes. Others, such as amphibians, fishes, and flowering plants, have much younger
80 sex chromosomes and exhibit rapid sex chromosome turnover, with polymorphisms among closely
81 related species or even within species (Ming et al. 2011, Jeffries et al. 2018, Taher et al. 2021).

82 Recent work has begun to address the factors that might promote or inhibit the formation
83 of new sex chromosomes over time. For example, autosomal pairs that contain large regions of
84 suppressed recombination, or harbor sexually antagonistic variation, may be “primed” for
85 becoming sex chromosomes (Bergero et al. 2019, Rifkin et al. 2021, Guo et al. 2022). Additionally,
86 sex chromosomes in earlier stages of differentiation may be more prone to turning over, as the
87 fitness cost of reverting to an autosomal state may not be as high (Bull and Charnov 1977, Pokorná
88 & Kratochvíl 2009, Vicoso 2019, Lenormand et al. 2020, Lenormand & Roze 2022). Testing these
89 ideas empirically requires comparative approaches, in which the ancestral autosomal homologs of
90 sex chromosomes can be identified in closely related species. The first step in such approaches is
91 resolving the history of sex chromosome evolution within the target group, including the number
92 of independent origins and their relative timescales, in the context of a robust phylogeny. It also
93 necessitates the study of relatively young sex chromosomes in which intact autosomal homologs
94 can be identified. This requirement makes it challenging to apply this approach to lineages with
95 ancient sex chromosome systems like those in mammals.

96 The distinct genetic architecture of sex chromosomes may favor the evolution of large-
97 scale chromosomal rearrangements, contributing significantly to the evolution of karyotypic
98 differences among species (White 1940, Charlesworth et al. 1987, Connallon et al. 2018). Certain
99 kinds of rearrangements, such as inversions and sex chromosome-autosome fusions, are thought
100 to enable rapid linkage of sexually antagonistic variation to the sex-determining region by
101 extending the region of recombination suppression (Charlesworth & Charlesworth 1980, Rice
102 1987, Charlesworth et al. 2005). While the importance of structural rearrangements for the
103 formation of new evolutionary strata (Lahn and Page 1999, Handley et al. 2004, Bergero et al.
104 2007) and neo-sex chromosomes (Kitano et al. 2009, Pala et al. 2012, Castillo et al. 2014,
105 Bracewell et al. 2017) is increasingly well understood, their contributions to macroevolutionary
106 patterns of sex chromosome variation remain understudied. Such comparative approaches can, for


107 example, test whether sex chromosome fusions occur at a higher rate than autosomal fusions, as is
108 expected if fusions with sex chromosomes are favoured as recombination modifiers due to sexually
109 antagonistic selection (Charlesworth & Charlesworth 1980, Anderson et al. 2020). Comparative
110 genomic approaches in a phylogenetic context can be valuable for understanding such processes
111 of karyotype evolution.

112 Flowering plants (angiosperms) are well-suited for investigations of sex chromosome
113 evolution and turnover. While most species are hermaphroditic, multiple families have recently
114 evolved dioecy with chromosomal sex determination (Charlesworth 2013, Tree of Sex Consortium
115 2014). One such group is the docks and sorrels (*Rumex*), a globally distributed genus with
116 approximately 200 described species (Grant et al. 2022). *Rumex* harbors significant sexual system
117 diversity, ranging from hermaphrodites with either perfect or unisexual flowers (monoecy) flowers
118 to dioecy (Löve and Kapoor 1967, Navajas-Pérez et al. 2005). There is also considerable variation
119 in the genetic systems, including species with XY and XYY sex chromosomes and within-species
120 sex chromosome polymorphism (e.g. *R. hastatulus* — Smith 1964, Ming et al. 2011, Hough et al.
121 2014, Beaudry et al. 2020, Rifkin et al. 2021, Beaudry et al. 2022). Populations of *R. hastatulus*
122 from eastern N. America, in addition to multiple other species in the genus, have evolved an XYY
123 sex chromosome system from an ancestral XY configuration, which occurs in populations from
124 western N. America. This can arise via an X-autosome fusion, as is known to have occurred in *R.*
125 *hastatulus* (Smith 1964, Grabowska-Joachimiak et al. 2015, Kasjaniuk et al. 2019), or via a Y-
126 chromosome fission. Hermaphroditism is the ancestral state in *Rumex*, making it an excellent
127 system for studying the evolution of sex chromosomes from their ancestral autosomal homologs.
128 Previous work on *R. hastatulus* uncovered widespread recombination suppression on all
129 chromosomes, including in the autosomal homolog of the neo-X chromosome found in eastern
130 populations (Rifkin et al. 2021, Rifkin et al. 2022), as well as a role for sex chromosome
131 differences in shaping barriers to contemporary hybridization (Beaudry et al. 2022). However, sex
132 chromosome evolution across the rest of the genus remains poorly understood.

133 Previous studies constructed phylogenies of *Rumex* using nuclear and chloroplast markers
134 (Navajas-Pérez et al. 2005, Grant et al. 2022, Koenemann et al. 2023). These studies agree that
135 there are two primary clades with sex chromosomes, an XY clade and an XYY clade, but they
136 disagree on the placement of *R. bucephalophorus*, a hermaphroditic/ gynomonoecious (plants with
137 both hermaphroditic and female flowers) species (see Talavera et al. 2011) that lacks sex
138 chromosomes, relative to these clades (Figure 1). The ITS and chloroplast trees of Navajas-Pérez
139 et al. (2005) place the XY and XYY clades as sister, with *R. bucephalophorus* more distantly
140 related (Figure 1A), whereas the other two chloroplast studies place *R. bucephalophorus* as sister
141 to the XY clade, and more distantly related to the XYY clade (Figure 1B, C). Significantly, these
142 two phylogenetic hypotheses have different implications for the sequence of events in the
143 evolution of sex chromosomes in the genus. The former suggests the possibility of a single origin
144 of XY sex chromosomes (Figure 1A), whereas the latter requires two independent changes: either
145 two origins of XY sex chromosomes (Figure 1B)—which also has support from preliminary
146 transcriptome-based identification of sex-linked genes (Crowson et al. 2017)—or a single origin
147 followed by a loss of sex chromosomes in *R. bucephalophorus* (Figure 1C). Phylogenies
148 constructed from small numbers of genetic markers can be vulnerable to both technical errors and

149 biological sources of uncertainty such as incomplete lineage sorting and introgression (Maddison
150 1997, Degnan and Rosenberg 2009). Resolving the history of sex chromosome evolution in *Rumex*
151 therefore requires the analysis of genome-scale datasets with modern coalescent approaches.

152 Here, we present new transcriptome assemblies for 10 *Rumex* species representing the
153 major clades in the genus. We also generate a new high-quality long-read genome assembly for *R.*
154 *bucephalophorus* and compare genome structure and gene order with assemblies of several
155 additional species in the genus (Sacchi, Humphries et al. 2023). Applying phylogenomic analyses,
156 we find support for two independent origins of sex chromosomes in the genus, consistent with the
157 scenario in Figure 1B. We also find evidence for introgression from unsampled lineages. Lastly,
158 using synteny-based approaches, we find evidence for extensive chromosomal rearrangement in
159 *R. hastatulus* compared to its hermaphroditic relatives. Together, our results highlight the potential
160 of systems like *Rumex* for studying the evolutionary causes and consequences of sex chromosome
161 variation.

163 *Figure 1*: Hypotheses for the evolution and origins of sex chromosomes in *Rumex*. Blue dots indicate the
164 gain of XY sex chromosomes; black dots indicate the gain of an additional Y chromosome; empty dots
165 indicate the loss of XY sex chromosomes. A) the XY and XYY clades are sister, consistent with the
166 phylogeny of Navajas-Pérez et al. (2005) and implying a single origin of the sex chromosomes. B) The XY
167 clade is sister to *R. bucephalophorus* and more distantly related to the XYY clade, consistent with the
168 phylogenies of Grant et al. (2022) and Koenemann et al. (2023). This scenario proposes two independent
169 sex chromosome origins, one in each clade. C) Same phylogeny as scenario B, but now proposing a single
170 sex chromosome origin in the ancestor of the XY clade, XYY clade, and *R. bucephalophorus*, followed by
171 a loss of sex chromosomes in *R. bucephalophorus*.

172 Materials and Methods

173 Genomic and transcriptomic data

174 We conducted RNA-Seq on leaf, bud, and pollen tissue, and assembled the transcriptomes
175 of ten *Rumex* species. In addition to RNA-Seq, we sequenced and assembled the genome of *R.*
176 *bucephalophorus* using HiFi PacBio sequencing and Dovetail Omni-C sequencing. To
177 complement our new datasets, we obtained recently published genome assemblies of *R. hastatulus*

178 (Sacchi, Humphries et al. 2023) and Tartary buckwheat, *Fagopyrum tataricum* (Zhang et al. 2017),
179 for a total of 12 species. See the Supplementary Materials and Methods for more detailed
180 sequencing and assembly methods.

181 *Testing for Whole-Genome Duplications*

182 We used the distribution of D_S values between paralogs within each of the 12 species to
183 evaluate the presence of whole genome duplications. We first estimated gene trees from each
184 orthogroup codon alignment (see Supplementary section *Orthogroup Identification and*
185 *Alignment*) using IQ-TREE (Minh et al. 2020a) with the default settings. These gene trees and
186 their corresponding alignments were given to the *codeml* method implemented in PAML (Yang
187 2007) to estimate values of D_N and D_S between each pair of sequences. A custom python script
188 was used to extract D_S estimates between pairs of sequences belonging to the same species. We
189 then used the R package *mclust* (Scrucca et al. 2016) to evaluate the presence of multiple
190 distributions of $\log(D_S)$ values within each species using the Bayesian Information Criterion (BIC).
191 We evaluated the fit of models including 1-9 components, each with equal variance or varying
192 variance. The best-fitting model was selected using the minimum BIC value.

193 *Phylogenetic Inference*

194 After allowing missing data and single-species duplicates to increase ortholog sampling,
195 we obtained a dataset of 5,263 single-copy genes across 12 species. We used IQ-TREE to estimate
196 a maximum-likelihood phylogeny from a concatenated alignment of all orthologs. To account for
197 the potential effects of incomplete lineage sorting, we also used ASTRAL-III to estimate a
198 summary phylogeny from gene trees estimated for each ortholog. We then time-calibrated our IQ-
199 TREE phylogeny based on fossil evidence and previously estimated node ages (Koenemann et al.
200 2023). More detailed methods can be found in the Supplementary Materials and Methods.

201 *Introgression analysis*

202 We tested for introgression among both ancestral and extant lineages using two
203 approaches: the gene tree-based test statistic Δ (Huson et al. 2005, Vanderpool et al. 2020), and a
204 pseudolikelihood approach to estimating phylogenetic networks implemented in the software
205 *PhyloNet* (Than et al. 2008, Yu & Nakhleh 2015). Δ tests for an asymmetry in discordant gene tree
206 counts for a rooted triplet, a classic signature of introgression (Green et al. 2010, Durand et al.
207 2011). Phylogenetic network estimation is a likelihood-based approach that constructs a network
208 structure containing horizontal branches that denote introgression events. When significant tests
209 involved overlapping sets of taxa, we collapsed them into more ancestral events based on
210 parsimony. More detailed methods can be found in the Supplementary Materials and Methods.

211 *Resolving the history of sex chromosome evolution*

212 We conducted two analyses to distinguish between two independent origins of sex
213 chromosomes vs. a single origin followed by a loss in *R. bucephalophorus*. First, we BLAST
214 searched a previously generated list of sex-linked genes in *R. rothschildianus* (Crowson et al.
215 2017) against the genome of XYY *R. hastatus* to identify shared homologous genes / regions.
216 Second, we estimated gene trees for orthologous genes found in *R. bucephalophorus* and the X

217 and Y chromosomes of *R. hastatulus*, with excess affinity of *R. bucephalophorus* genes to either
218 the X or Y suggesting a potential loss of sex chromosomes. More detailed methods can be found
219 in the Supplementary Materials and Methods.

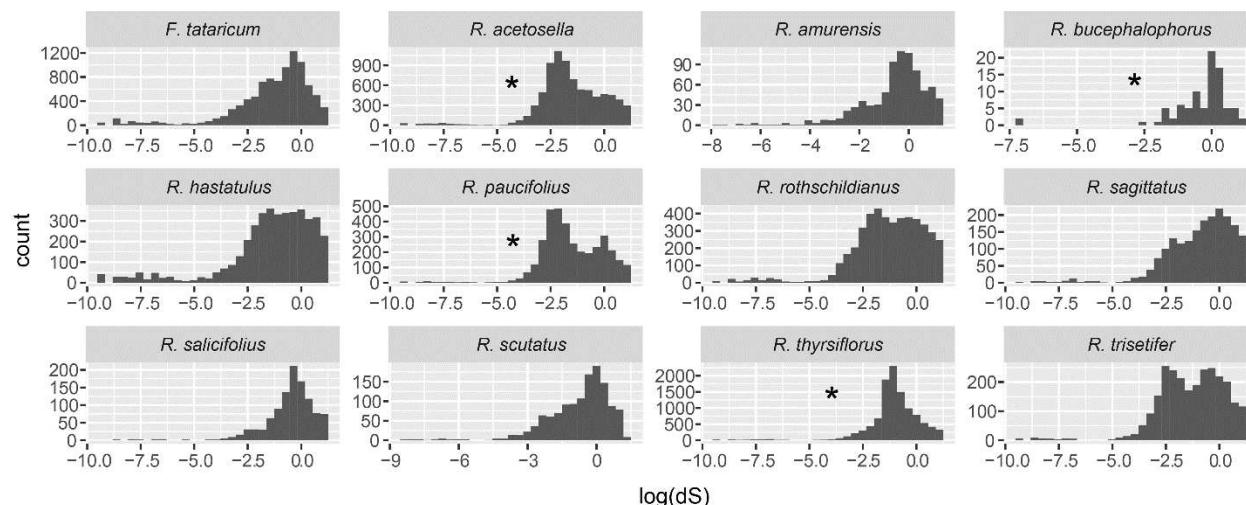
220 *Synteny and chromosome-of-origin analyses*

221 Orthology and synteny between protein coding genes in *R. bucephalophorus*, *R.*
222 *salicifolius*, the XY cytotype of *R. hastatulus* (with a chimeric sex chromosome assembly) and
223 both haplotypes of the *R. hastatulus* XYY cytotype (with phased sex chromosome assemblies)
224 were inferred using GENESPACEv1.1.8 (Lovell et al. 2022). GENESPACE uses MCScanX
225 (Wang et al. 2012) to infer synteny gene blocks and implements ORTHOFINDERv2.5.4 (Emms
226 and Kelly 2019) and DIAMONDv2.1.4.158 (Buchfink et al. 2021) to find orthogroups within
227 synteny blocks. Analyses were run and riparian plots visualized in Rv4.1.0. We used the non-
228 default parameter ‘onewayBlast = TRUE’, which is appropriate for species within the same genus,
229 all other parameters were set to default. *Rumex. bucephalophorus* Scaffolds 9 & 10 were excluded
230 from the GENESPACE run as they are very likely to represent separately assembled heterozygous
231 copies of other chromosomes based on the expected chromosome number of 8, and strong
232 similarity of these scaffolds with fragments from other main scaffolds. Scaffolds with fewer than
233 500 genes were excluded from the plots in all cases.

234 **Results**

235 *Sequencing and Assembly*

236 We assembled transcriptomes from RNA-Seq data for 10 species that are representative of
237 the major clades of *Rumex* (Supplementary Data 2). Our assemblies were broadly high-quality,
238 with BUSCO-completeness scores ranging from 89% to 95%. The number of main transcripts
239 varied from 23,000 in *R. bucephalophorus* to 56,000 in *R. thrysiflorus* and was positively
240 correlated with genome size estimates from flow cytometry (Supplementary Data 2). 81% of
241 BUSCO genes were duplicated in *R. thrysiflorus*; this value ranged from 5% to 16% in other
242 species, potentially suggesting a large-scale gene duplication or whole-genome duplication event
243 (see Discussion).

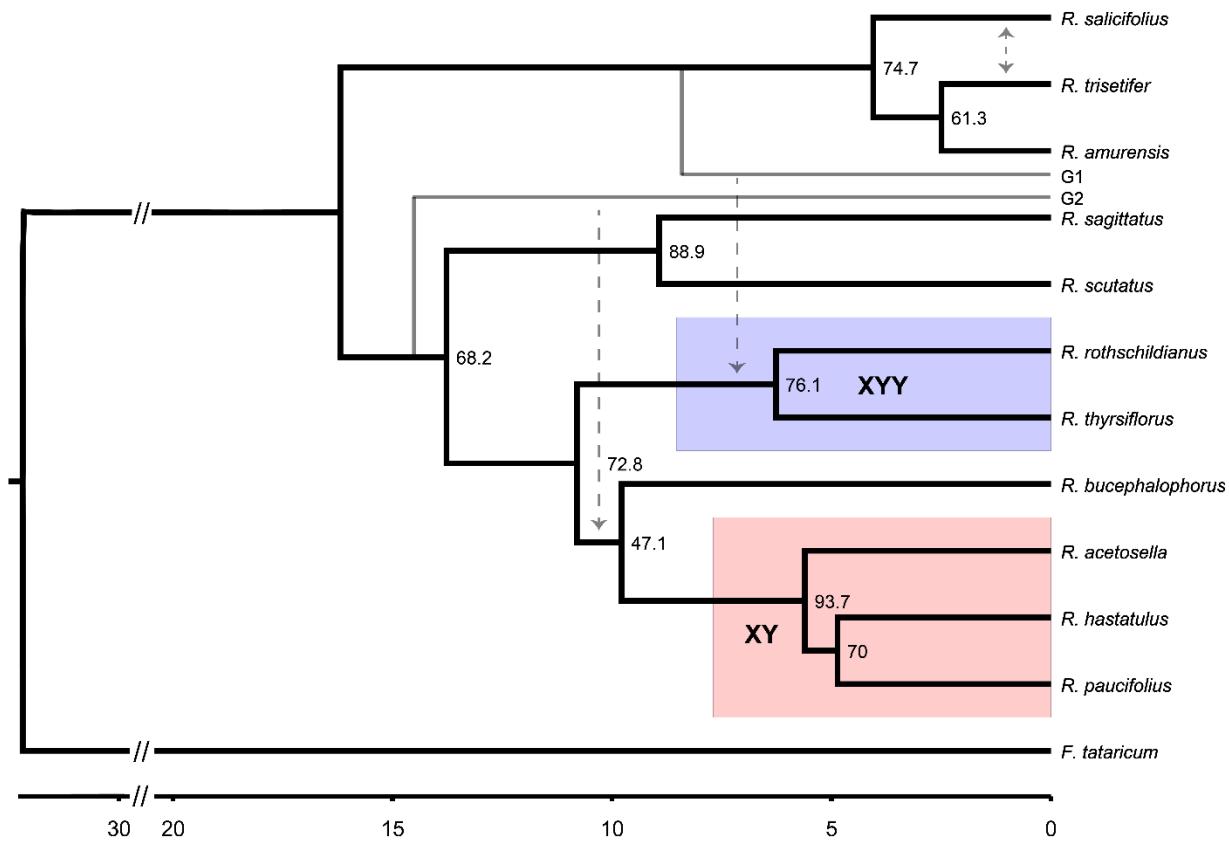

244 We additionally generated a high-quality chromosome-scale assembly of *R.*
245 *bucephalophorus* using high-coverage HiFi PAC Bio sequencing and Dovetail Omni-C
246 sequencing (Supplementary Figure 1, Supplementary Table 2). After removing erroneously
247 separately assembled chromosome haplotypes (see Supplementary Materials and Methods), the
248 assembly size is 2.062 GB (compared to flow cytometry estimates of 1.96 GB), with 88% of the
249 genome found in the main 8 scaffolds, consistent with karyotypic evidence for eight autosomes in
250 the species (Navajas-Pérez et al. 2005).

251 *Mixed evidence for recent whole-genome duplications*

252 Previous work has identified an ancient whole-genome duplication (WGD) shared by
253 buckwheat and *Rumex* (Zhang et al. 2017, Fawcett et al. 2023). In addition, *R. acetosella*, *R.*
254 *scutatus* and *R. paucifolius* are known to have natural polyploid populations (Löve 1940, Löve
255 1942, Smith 1968). To further assess the presence of recent polyploidy events in our dataset, we

256 calculated dS values between gene paralogs for each species. In the absence of whole-genome
257 duplications, dS values should be exponentially distributed (normally distributed in log-space)
258 following a birth-death model for gene gain and loss (Lynch & Conery 2000, Blanc & Wolfe
259 2004). WGDs introduce numerous gene duplications at the same point in time, which should result
260 in additional peaks in the distribution of dS values between paralogs.

261 We found mixed evidence for recent whole-genome duplications among our study species.
262 (Figure 2, Supplementary Figure 4). There is equivocal statistical support (based on minimum BIC
263 value) for one or two distributions of dS values in *R. acetosella*, *R. paucifolius*, and *R. thrysiflorus*,
264 and support for multiple distributions in *R. bucephalophorus* (Supplementary Figure 4). *R.*
265 *acetosella* and *R. paucifolius*, two known polyploid species, share a peak of log(dS) values at
266 approximately -2.5 (Figure 2), corresponding to a dS value of ~0.08. BIC values for *R.*
267 *bucephalophorus* support up to eight distributions of dS values (Supplementary Figure 4); given
268 the low number of paralogs sampled for this species, and the lack of observed polyploids in
269 previous studies, this is likely technical error. Finally, we observe a large peak of dS values in *R.*
270 *thrysiflorus* at approximately -1, corresponding to a dS value of ~0.35. No known polyploids have
271 been observed in this species. Overall, while we identify mixed evidence for recent whole genome
272 duplication events, our approach to identification of single-copy orthologues while allowing for
273 species-specific duplications should enable a robust phylogeny even in the presence of some
274 autopolyploid lineages (however, an allopolyploid lineage could lead to inference challenges; see
275 Discussion).



276
277 *Figure 2: Distribution of log(dS) values between gene paralogs for each of our 12 studied Rumex species.*
278 Species with support for multiple distributions of values are marked with an asterisk.

279
280 *Whole-transcriptome phylogeny supports R. bucephalophorus as sister to the XY clade*

281 We used our 12-species transcriptomic/genomic dataset to infer a phylogeny of *Rumex*
282 using both concatenated maximum-likelihood (IQ-TREE) and gene-tree summary (ASTRAL-III)
283 approaches. Our maximum-likelihood tree was estimated with strong statistical support, with all

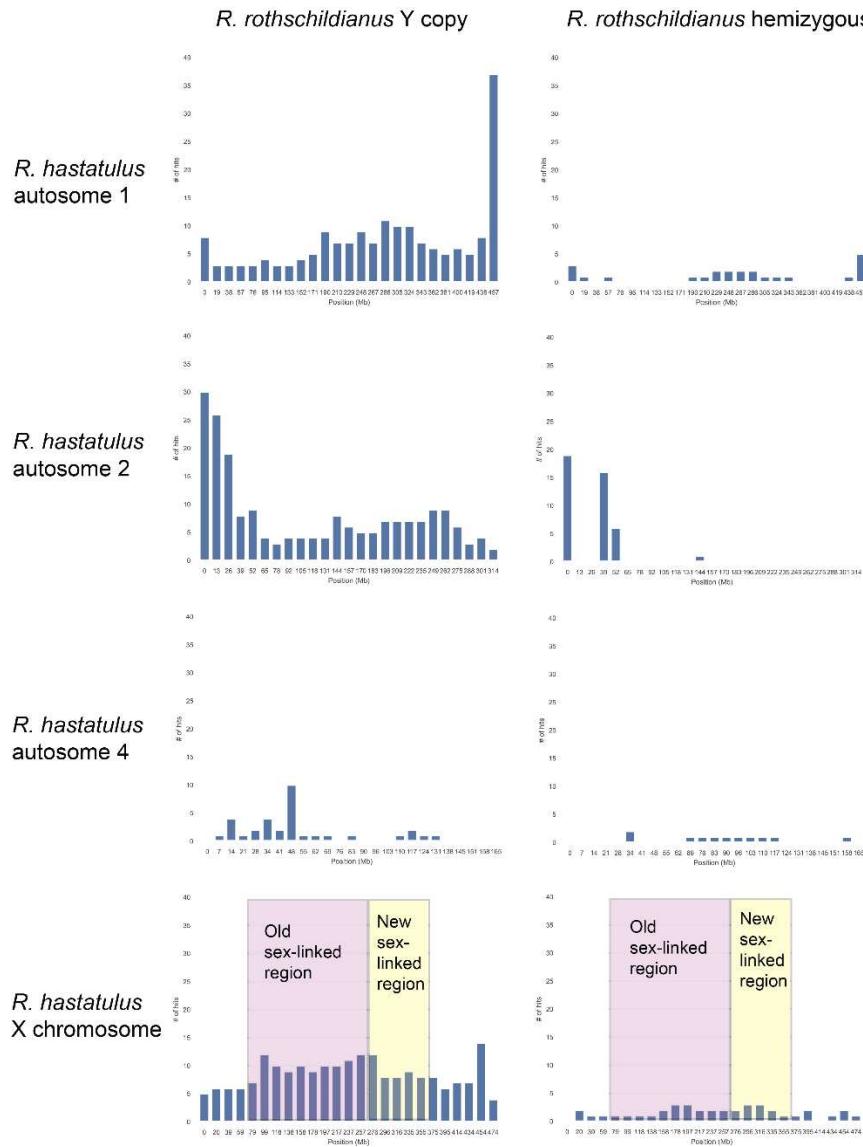
284 nodes having 100% support in both SH-aLRT and ultrafast bootstrap measures (Figure 3). The
285 topology is in general agreement with previous studies, supporting two monophyletic clades with
286 sex chromosomes and two earlier-diverging hermaphroditic clades. We place *R. bucephalophorus*
287 as sister to the XY clade, to the exclusion of the more distant XYY clade, in agreement with the
288 chloroplast phylogenies of Grant et al. (2022) and Koenemann et al. (2023), but in contrast to the
289 phylogeny of Navajas-Pérez et al. (2005). We also infer a sister relationship between *R. hastatulus*
290 and *R. paucifolius*; this inference agrees with Koenemann et al. (2023), but contrasts with Navajas-
291 Pérez et al. (2005) and Grant et al. (2022), who place *R. hastatulus* as sister to *R. acetosella*. Our
292 divergence time estimates generally agree with those of Koenemann et al. (2023), though we infer
293 an older node age for the XY clade (5.6 MYA vs. 2.61 MYA), and a more recent node age for the
294 root (16 MYA vs. 22.13 MYA).

296 *Figure 3*: Whole-transcriptome maximum-likelihood phylogeny of 11 *Rumex* species, with branch length
297 units in millions of years (x-axis scale). Branch length distance to the root is truncated for visual clarity.
298 The XY and XYY clades are highlighted in red and blue, respectively. Nodes are labelled with gene
299 concordance factors. Grey dashed arrows indicate inferred introgression events. Unsampled lineages
300 involved in introgression events are denoted with the grey branches labelled “G1” and “G2”.

301 Gene tree discordance varied among clades but was not prevalent enough to generate
302 substantial phylogenetic uncertainty. Highlighting this, our ASTRAL-III phylogeny returned the
303 same topology as maximum-likelihood (Supplementary Figure 5). As a gene-tree summary
304 approach, ASTRAL-III is more robust to high rates of incomplete lineage sorting that can mislead
305 standard ML approaches (Mirarab et al. 2014). Gene concordance factors (gCFs), a measure of the

306 proportion of gene trees in the dataset consistent with each branch, varied from 47.1% to 93.7%
307 (Figure 3, Supplementary Table 3). The lowest gCF was at the node where *R. bucephalophorus*
308 splits from the ancestor of the XY clade, at 47.1%. This finding helps explain the uncertainty in
309 its placement in previous studies. In contrast, most branches in the phylogeny exhibit modest levels
310 of discordance, being supported by between 60% and 94% of gene trees (Figure 3).

311 *Signatures of ghost introgression in the Rumex phylogeny*


312 We investigated signatures of introgression among our sampled species using a test
313 statistic, Δ , based on gene tree counts, in addition to inferring phylogenetic networks with
314 *PhyloNet*. Our Δ tests returned a multitude of highly significant results, often implying
315 introgression between lineages that were not contemporaneous (according to the phylogeny of
316 Figure 3) (Supplementary Data 3). On further examination of our results, we observed that many
317 species, when included in one of the sister species positions in a test, often implied the other two
318 species in the test as introgressing with each other, regardless of their identity. For instance, in the
319 triplet $[(A, X), Y]$, where A is a particular species and X and Y could be any two species with the
320 specified relationship, introgression would always be implied between X and Y. This indicates
321 that X is more distantly related to A than expected based on phylogenetic relationships, a classic
322 signature of ghost introgression from an earlier-diverging donor lineage (Supplementary Figure 6)
323 (Ottenburghs 2020, Tricou et al. 2022a, Tricou et al. 2022b). Such ghost introgression events might
324 be expected in our study because we have sampled only 11 of the 200 described species in the
325 genus. These unexpectedly distant species include *R. thyrsiflorus*, *R. rothschildianus*, *R.*
326 *acetosella*, *R. hastatulus*, *R. paucifolius*, and *R. bucephalophorus*.

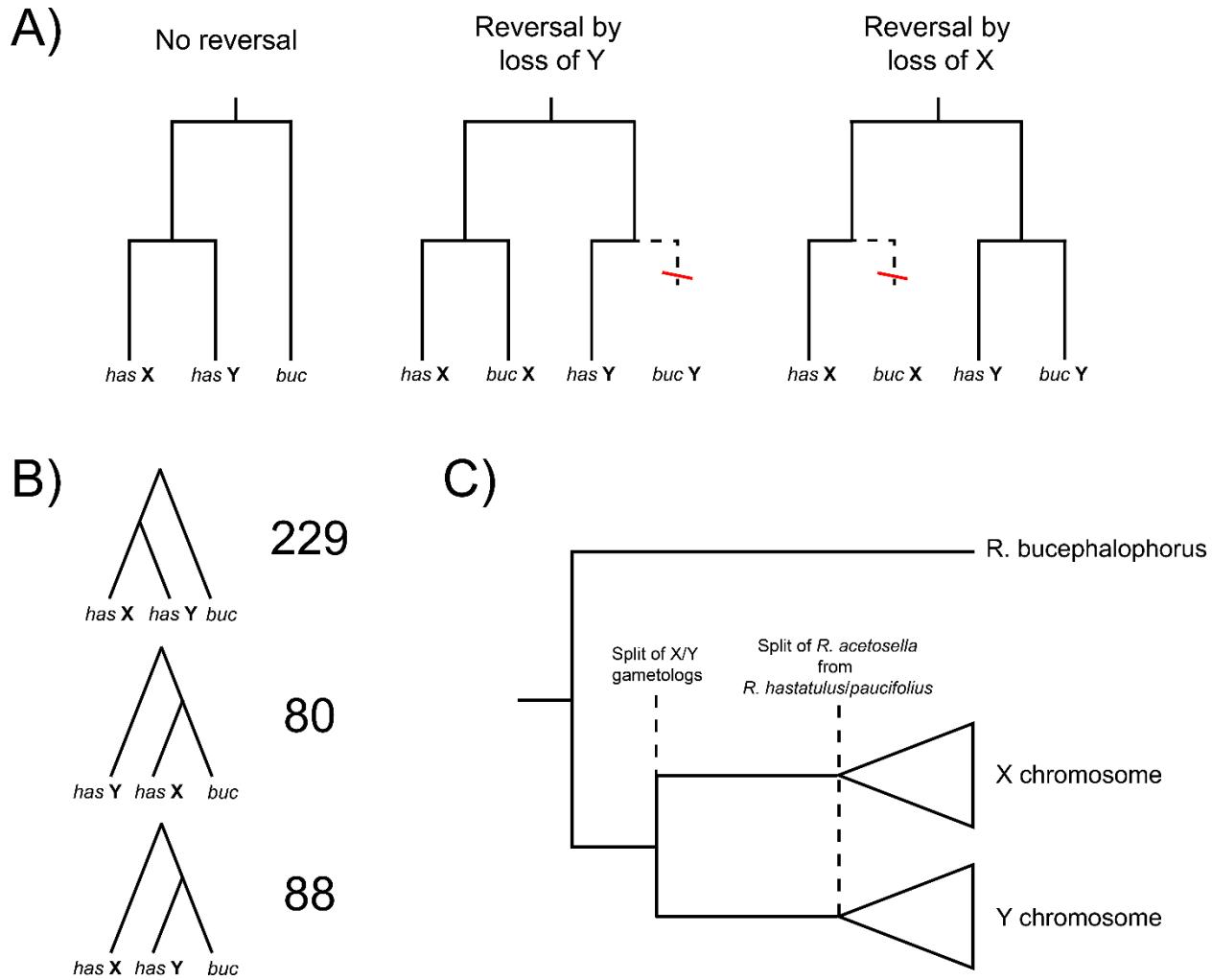
327 Our best-fitting phylogenetic network supports the existence of two ghost introgression
328 events but disagrees with our inferred species tree topology in several places (Supplementary
329 Figure 7). As our phylogeny has strong statistical and genealogical support, we chose to reconcile
330 the phylogeny with our best-fitting phylogenetic network and set of significant Δ statistics to
331 propose two ghost introgression events (Figure 3). The first event was into the common ancestor
332 of the clade containing *R. bucephalophorus* and the XY species. The donor lineage for this event
333 is likely an early-diverging member of the clade containing the two sex chromosome subclades
334 (branch “G2” in Figure 3), possibly *Rumex induratus* or a close relative based on the phylogeny
335 of Grant et al. (2022). The other event involved the ancestor of *R. thyrsiflorus* and *R.*
336 *rothschildianus*, with the donor likely a member of the early-diverging hermaphroditic clade
337 containing *R. salicifolius* and its relatives (branch “G1” in Figure 3). Finally, we see additional
338 evidence of introgression between *R. salicifolius* and *R. trisetifer* (Figure 3), two closely related
339 hermaphroditic species.

340 *Independent evolution of XY sex chromosomes*

341 Our updated phylogeny of *Rumex* rules out a simple single-origin scenario (Figure 1A) for
342 the evolution of sex chromosomes. We conducted additional analyses to distinguish between the
343 two remaining possibilities: two independent origins of sex chromosomes (Figure 1B) vs. a single
344 origin followed by loss of sex chromosomes in *R. bucephalophorus* (Figure 1C). First, we
345 evaluated the chromosome of origin of sex-linked genes in the two major sex chromosome clades

346 by mapping previous transcriptome-identified sex-linked genes from *R. rothschildianus* (XYY
347 clade) to our genome assembly of *R. hastatus* (XY clade). In the simplest scenario, where a fully-
348 formed sex chromosome evolves once and is inherited by both groups, we would expect sex-linked
349 genes in *R. rothschildianus* to map primarily to the X chromosome of *R. hastatus*. Alternatively,
350 if sex chromosomes originated or evolved independently in the two groups, sex-linked genes in *R.*
351 *rothschildianus* should map to some combination of autosomes and/or the X chromosome. We
352 found that sex-linked genes in *R. rothschildianus* mapped to all chromosomes of *R. hastatus*,
353 with most mapping to autosomes 1 and 2, followed by the X chromosome, and a small number of
354 hits on autosome 4 (Figure 4, left column).

355
356 *Figure 4: Distribution of BLAST hits of sex-linked genes in Rumex rothschildianus against the genome of*
357 *R. hastatus, divided into 25 equally spaced windows. In each plot, the x-axis is the position on the*
358 *chromosome in megabases (Mb) at the start of the window, and the y-axis is the number of BLAST hits*
359 *found within that window. Left column is X-linked genes in R. rothschildianus where a Y copy is still*
360 *present; right column is hemizygous X-linked genes. Each row shows results for a chromosome in R.*

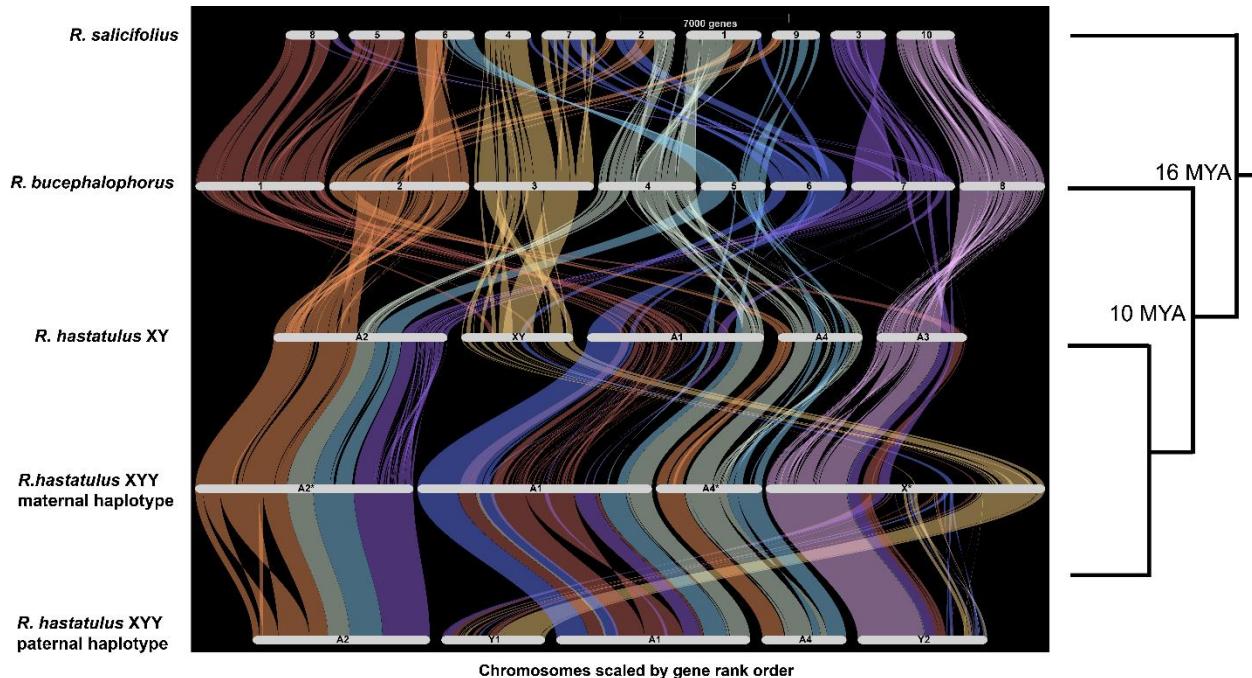

361 *hastatus*. In the *R. hastatus* X chromosome, the approximate location of the old sex-linked region
362 shared by both cytotypes is highlighted in magenta, and the new sex-linked region in the XYY cytotype is
363 highlighted in yellow. Remaining regions of the X chromosome represent pseudoautosomal regions in *R.*
364 *hastatus*.

365 We observed a significant number of hits on the *R. hastatus* X chromosome, raising the
366 possibility that the two sex chromosome clades share a “core” sex-determining region with a single
367 origin, with chromosomal rearrangements within the two clades resulting in independent origins
368 for other regions of the X. To evaluate this hypothesis further, we separately examined
369 chromosome-of-origin for hemizygous genes and genes with a Y copy present in *R.*
370 *rothschildianus*. Hemizygous genes are generally expected to be older and would therefore more
371 likely be found in an older shared sex-determining region, whereas genes with a Y copy are
372 expected to be younger and therefore more common in younger, independently evolving regions
373 of the sex chromosomes. In this case, most genes mapped to a region containing the first 50 MB
374 of autosome 2, with smaller numbers of genes distributed across the remaining chromosomes
375 (Figure 4, right column).

376 We found a slight elevation in the number of genes mapped to the sex-linked regions of
377 the *R. hastatus* X (Figure 4, bottom row). Otherwise, the distribution of genes mapped to *R.*
378 *hastatus* broadly corresponds to the overall density and number of genes along each chromosome
379 (Rifkin et al. 2022, Sacchi, Humphries et al. 2023). One explanation for this pattern is that
380 extensive chromosomal rearrangements in *R. hastatus* (see results section *Elevated rates of*
381 *chromosomal rearrangement in R. hastatus*, Figure 6) have largely randomized the locations of
382 genes with respect to their ancestral homologs, resulting in BLAST hits resembling a random draw
383 of genes from the chromosome. Overall, these results are most consistent with the independent
384 evolution of the sex chromosomes, though we cannot rule out the single origin of a smaller sex-
385 determining region shared by the two groups.

386 *No ancestral sex chromosome system in R. bucephalophorus*

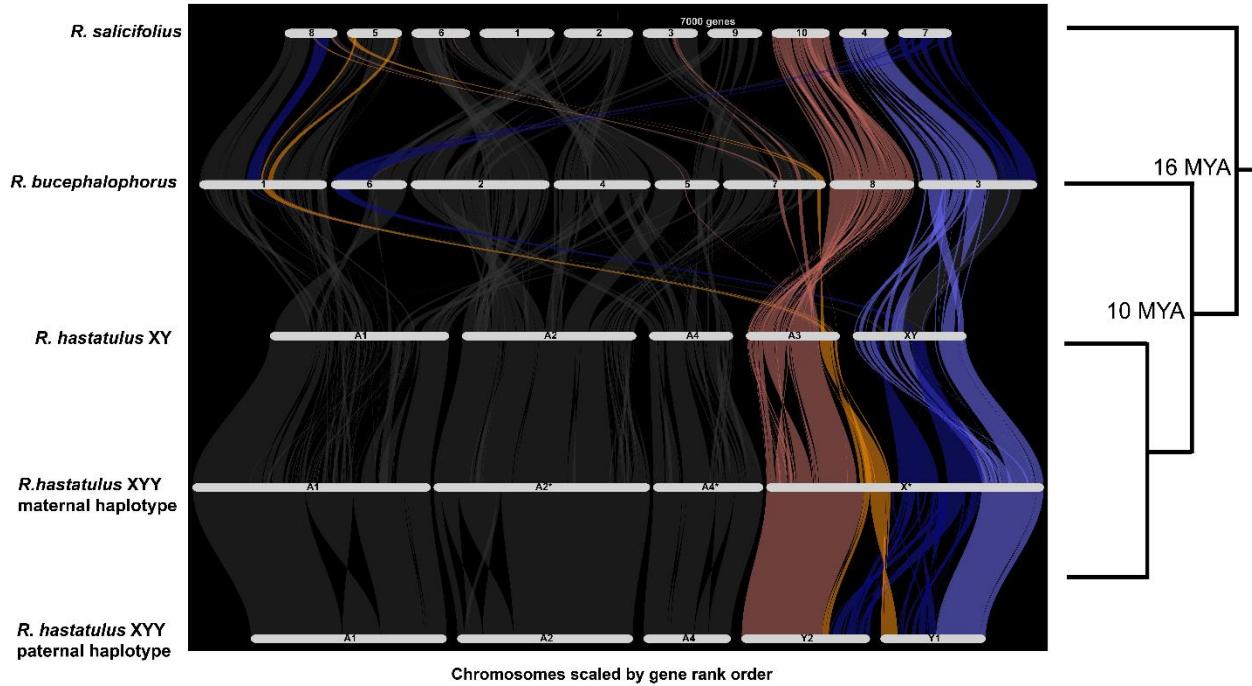
387 To further resolve the history of sex chromosome evolution, we next examined the
388 relationship of *R. bucephalophorus* genes to orthologous X/Y gametologs present in *R. hastatus*.
389 Evolutionary loss of sex chromosomes is generally expected to proceed via an inactivating
390 mutation on one of the sex chromosomes that restores sex-specific functions (e.g. Vicoso &
391 Bachtrog 2013) and in this case allows for the production of hermaphroditic individuals. The
392 mutated sex chromosome then becomes an autosome, while the other is lost from the population.
393 Therefore, if *R. bucephalophorus* lost an XY system that is shared by the two extant XY clades,
394 formerly sex-linked genes should coalesce primarily with either the X chromosome (in the case of
395 loss of the Y) or Y chromosome (in case of loss of the X) of *R. hastatus* (Figure 5A).
396 Alternatively, if the sex chromosomes arose independently in the XY and XYY clades, and *R.*
397 *bucephalophorus* has simply retained the ancestral hermaphroditic state, then XY gametologs in
398 *R. hastatus* should coalesce with each other before their ortholog in *R. bucephalophorus* (Figure
399 5A), consistent with the phylogeny. This sets up a symmetric expectation, where a loss of sex
400 chromosomes in *R. bucephalophorus* should lead to most trees having one of the two possible
401 discordant histories (Figure 5A).


403 *Figure 5: Relationship of Rumex hastatulus X/Y gametologs to R. bucephalophorus.* A) Three scenarios
404 for the evolution of sex chromosomes in *R. bucephalophorus*. For each scenario, the expected majority
405 gene tree is traced by the solid black line. B) Counts of the three possible tree topologies in coding sequences
406 shared by *R. bucephalophorus* and the X and Y chromosomes of *R. hastatulus*. C) Demographic history
407 explaining our observed gene tree counts in panel B. Recombination suppression between the X and Y
408 arises relatively quickly in the ancestor of the X/Y clade after its split from *R. bucephalophorus*. Subsequent
409 speciation within the XY clade happens later on.

410 Out of 397 single-copy genes present in the old sex-linked region of the *R. hastatulus* X
411 and Y chromosomes and *R. bucephalophorus*, 229 (57.7%) support the species phylogeny, 80
412 (20.1%) support the loss of Y scenario, and 88 (22.2%) support the loss of X scenario (Figure 5B).
413 This suggests a historical absence of sex chromosomes in *R. bucephalophorus*; therefore, our
414 results support two independent gains of sex chromosomes. Interestingly, the proportion of
415 discordant topologies (42.3%) is much larger than the genome-wide average, where 94% of gene
416 trees support monophyly of the XY clade (Figure 3). One possible explanation for this pattern is
417 that the sex chromosomes evolved relatively quickly in the common ancestor of the XY clade after
418 its split from *R. bucephalophorus* (Figure 5C). The short amount of time separating this split from
419 the divergence of X/Y gametologs would result in higher rates of incomplete lineage sorting

420 (Figure 5C), producing the two discordant histories with equal frequency. Consistent with this
421 explanation, Crowson et al. (2017) estimated the timing of initial recombination suppression in the
422 *R. hastatus* X chromosome at 9-16 million years ago, much older than our age estimate for the
423 XY clade of 5.6 MYA (Figure 3). The more recent end of this estimate at 9MYA falls after the
424 split of *R. bucephalophorus* at approximately 10 MYA (Figure 3), suggesting these events could
425 plausibly have occurred in relatively short succession.

426 *Elevated rates of chromosomal rearrangement in R. hastatus*


427 To futher investigate the origin and evolution of sex chromosomes in *R. hastatus*, we
428 sought to identify the ancestral autosomal homologs of the sex chromosomes in the XY clade and
429 investigate the history of rearrangements among these chromosomes. We conducted synteny
430 analysis on genome assemblies of *R. salicifolius* (Sacchi, Humphries et al. 2023), both cytotypes
431 of *R. hastatus* (Sacchi, Humphries et al. 2023), and our de novo assembly of *R. bucephalophorus*
432 using the software GENESPACE (Lovell et al. 2022) (Figure 6), suggesting a relatively simple
433 history of chromosomal fusion. Although there are some karyotypic differences (*R. salicifolius* has
434 10 chromosome pairs and *R. bucephalophorus* has 8), the genomes of the two hermaphroditic
435 species are largely collinear; most chromosomes in *R. salicifolius* are syntentic with one or two
436 chromosomal segments (likely representing chromosome arms) in *R. bucephalophorus* (Figure 6).
437 In contrast, despite being more closely related to *R. bucephalophorus*, the genome of *R. hastatus*
438 is highly rearranged. In addition to a further reduction in chromosome number (with four
439 autosomes plus the sex chromosome pair), each chromosome of *R. hastatus* is syntentic with 3-6
440 chromosomal segments of *R. bucephalophorus* (Figure 6). These results suggest an elevated rate
441 of chromosomal rearrangement across the genome of *R. hastatus*, or possibly the XY clade at
442 large (though additional genome sequencing of *R. acetosella/paucifolius* would be needed to
443 confirm this possibility). *Rumex acetosella* and *R. paucifolius* both have reduced chromosome
444 number ($n=7$) relative to *R. bucephalophorus* ($n=8$) (Navajas-Pérez et al. 2005), so it is likely that
445 at least some of this rearrangement is ancestral to the XY clade.

446

447 *Figure 6: GENESPACE* riparian plots showing synteny between *Rumex salicifolius*, *R. bucephalophorus*,
448 and the two cytotypes of *R. hastatus*. Syntenic blocks are ordered and colored according to chromosome
449 of origin in *R. bucephalophorus*. Branch lengths on righthand tree are not to scale. Note that chromosome
450 size is scaled by gene rank order, rather than by physical size.

451 The sex chromosomes of *R. hastatus* have complex chromosomal origins, with key
452 regions sharing syntenic blocks with different chromosomes in hermaphroditic relatives (Figure
453 7). The old sex-linked region shared by both cytotypes (dark blue in Fig. 7) is orthologous
454 primarily with chromosome 3 of *R. bucephalophorus*, with smaller syntenic blocks on
455 chromosomes 1 and 6; the PAR for this region (light blue, Fig. 7) is also orthologous to
456 chromosome 3. The neo-sex-linked region (yellow, Fig. 7) contains syntenic blocks from
457 chromosomes 1 and 7 of *R. bucephalophorus*, while the neo-PAR (light red, Fig. 7) is orthologous
458 with chromosome 8. These three syntenic blocks are all present on autosome 3 of XY *R. hastatus*,
459 suggesting their fusion predates the sex chromosome-autosome fusion that formed the XYY
460 cytotype. A relatively small central region of chromosome 1 in *R. bucephalophorus* has
461 independently contributed syntenic blocks to both the old and neo-X chromosomes of *R.*
462 *hastatus*, identifying this as an interesting region for future study. Finally, a reciprocal
463 translocation of the two Y chromosomes in the XYY cytotype has resulted in both old and neo-X
464 syntenic blocks existing in both chromosomes (Figure 7, Sacchi, Humphries et al. 2023).

465
466 *Figure 7: GENESPACE* riparian plots showing synteny between *Rumex salicifolius*, *R. bucephalophorus*,
467 and the sex chromosomes of *R. hastatus*. Syntenic blocks are ordered and colored according to regions
468 of the neo-X chromosome of *R. hastatus*: neo-PAR in light red, neo-sex-linked region in yellow, old sex-
469 linked region in dark blue, and old PAR in light blue. Branch lengths on righthand tree are not to scale.
470 Note that chromosome size is scaled by gene rank order, rather than physical size.

471

472 Discussion

473 Phylogenetic inference must often compromise between taxon sampling and sampling of
474 genetic loci due to computational and sampling constraints. Previous studies estimating
475 phylogenies of *Rumex* focused on sampling a wide range of taxa, at the cost of using a relatively
476 small number (1-3) of genetic markers (Navajas-Pérez et al. 2005, Grant et al. 2022, Koenemann
477 et al. 2023). Whereas increased taxon sampling can improve statistical confidence in inferred
478 relationships, it will not help if particular nodes are incorrectly resolved due to biological sources
479 of gene tree discordance such as incomplete lineage sorting (Degnan & Rosenberg 2009). Here,
480 we used genome-scale sampling of loci with a smaller set of taxa to resolve key relationships
481 within *Rumex*, with important implications for the history of sex chromosome evolution in the
482 genus. We found that the node where *R. bucephalophorus* branches off is supported by fewer than
483 half of our estimated gene trees (Figure 3), highlighting the need to sample many loci to accurately
484 resolve relationships.

485 Our greater sampling of loci also allowed us to test for introgression, which cannot be done
486 with a small set of genetic markers. Introgression involving unsampled taxa ("ghost" introgression)
487 is increasingly recognized as an issue for phylogenetic inference (Ottenburghs 2020, Tricou et al.
488 2022a, Tricou et al. 2022b), but it is still challenging to estimate from genomic data as it is easily

489 confused with introgression among sampled taxa. Inference requires careful examination of the
490 three-species introgression results and patterns in genomic data, as we have done here. As
491 highlighted by our results and recent simulation work (Tricou et al. 2022a, Tricou et al. 2022b),
492 authors should explicitly consider ghost introgression as a parsimonious hypotheses when studying
493 introgression. We should note, however, that such parsimony-based inferences might eliminate
494 true instances of introgression among sampled taxa, including our study; full-likelihood methods
495 with more explicit model selection criteria like the PhyloNet method we applied in our study can
496 further aid in distinguishing among scenarios. Although we do not know the identity of the donor
497 lineages, the timing of our proposed events likely predates the evolution of sex chromosomes in
498 both clades (Figure 3). Additionally, the one instance of more recent introgression we observe is
499 between two closely related hermaphroditic species. While preliminary, our results are consistent
500 with the idea that sex chromosome and sexual system differences among *Rumex* species form
501 significant barriers to more recent introgression.

502 We applied mixture model analyses to the distribution of *dS* values in each of our study
503 species to identify whole-genome duplications. This kind of analysis has important limitations; it
504 has a tendency to over-estimate the number of WGD events and has poor power when the number
505 of retained gene duplicates is low (Tiley et al. 2018). These limitations are compounded when
506 using transcriptomic data, as pseudogenized duplicate gene copies that are no longer expressed
507 cannot be detected. Nonetheless, we found mixed evidence for two distributions of *dS* values in
508 two species known to have both polyploid and diploid varieties, *R. acetosella* and *R. paucifolius*
509 (Supplementary Data 2, Figure 2, Supplementary Figure 4). These species share a peak of *dS*
510 values at approximately 0.08, corresponding to approximately 5 million years of divergence
511 (following calculations in Crowson et al. 2017). The age and shared peak imply the WGD may
512 have occurred in an ancestral population of the XY clade, and the polyploid cytotype could have
513 subsequently been lost in *R. hastatus*. The polyploid variety could also have re-evolved diploidy,
514 which would explain the extensive genomic rearrangement we observed in *R. hastatus*.
515 However, it is unlikely that the signal of such an event would be completely erased after only 5
516 million years (Li et al. 2021).

517 The large peak we observed in *R. thrysiflorus* is more difficult to explain, as it is much
518 older (*dS* ~0.35) and not shared by other species, and polyploidy has not been observed in the
519 species. While old, the peak is too young to be explained by differential retention of the ancient
520 WGD shared with buckwheat, which occurred ~70 MYA (Fawcett et al. 2023). One potential
521 explanation is a large burst of gene duplication without polyploidy; a large genome size and high
522 percentage of duplicated BUSCO genes in our transcriptome assembly support this idea
523 (Supplementary Data 2). It is also possible that we have identified previously unknown polyploidy
524 in the species; however, polyploidy should not be tolerated under the X-autosome balance
525 mechanism of sex determination expected to be used by members of the XYY clade such as *R.*
526 *thrysiflorus* and its relatives (Mable 2004). In general, because we sample single gene copies and
527 limit gene duplications to a single species, our phylogenomic analyses should be robust to the
528 effects of autoploidy across the genus, regardless of the precise history of events. However,
529 allopolyploidy would complicate our analysis, as there would be substantial disagreement in

530 genealogical relationships in the genome of the allopolyploid lineage. Ultimately, whole-genome
531 sequences will be required to fully resolve the history of WGD in the genus.

532 We found that previously identified sex-linked genes in *R. rothschildianus* are homologous
533 to all autosomes and the X chromosome (both old X and neo-X) of *R. hastatus*, with a small
534 number of hits on autosome 4 (Figure 4). While this result adds some evidence of shared sex-
535 linked genes between these species (in contrast with the previous transcriptome-based results of
536 Crowson et al. 2017), the large number of sex-linked genes from *R. hastatus* autosomes provide
537 clear support for significantly independent evolution of sex chromosomes in the two major clades.
538 Because of the additional independent evolution of an XYY system (likely from an XY ancestor)
539 in the clade with *R. rothschildianus*, we expected a priori some differences in patterns of sex
540 linkage. The number of genes orthologous to each chromosome, as well as their concentration at
541 the ends of the chromosomes, is broadly consistent with overall patterns of gene density in *R.*
542 *hastatus* (Rifkin et al. 2022, Sacchi, Humphries et al. 2023). This suggests a largely random
543 distribution of genes, which could arise from the high rate of chromosome rearrangement we
544 observed (Figure 6). Nonetheless, there are some interesting deviations; many genes mapped to
545 the last 10 MB of autosome 1 and the first 50 MB of autosome 2. Both regions could simply be
546 preserved syntenic blocks with ancestrally high gene content, but it is interesting that hemizygous
547 *R. rothschildianus* genes appear to be particularly enriched at the beginning of autosome 2. We
548 also found a slight elevation of genes mapping to the sex-linked regions of the X chromosome
549 (Figure 4), despite this region having relatively low gene density overall. This result could be
550 explained by recruitment of genes with ancestrally sex-biased functions to the X chromosome, or
551 potentially by a shared sex-determining locus between the two major clades. Ultimately,
552 chromosome-scale genome assemblies of *R. rothschildianus* and close relatives of *R. hastatus*
553 will be needed to further resolve the complex history of karyotypic evolution in the genus.
554

555 Although our combined results support the largely independent origins of the sex
556 chromosomes in the two major dioecious clades, this does not fully rule out a single origin of
557 dioecy. It is possible that the two major sex chromosome clades originally shared a sex-
558 determining region that arose in their common ancestor. Alternatively, introgression between the
559 XYY clade and the XY clade following its split with *R. bucephalophorus* could have led to a
560 shared genetic basis of SD. In either case, subsequent rearrangements and a divergent history of
561 recombination suppression would drive highly divergent sex-linkage of many genes in the two
562 groups, including an ancient X-autosome fusion that gave rise to the XYY karyotype. While we
563 find no evidence for loss of sex chromosomes in *R. bucephalophorus*, incomplete lineage sorting
564 of the sex-determining locus could have led to its inheritance in the two major sex chromosome
565 clades, but not *R. bucephalophorus*, following a single origin in their common ancestor (Avise &
566 Robinson 2008, Mendes & Hahn 2016). Our introgression analyses do not provide clear support
567 for introgression among these clades, but as previously mentioned, our results made it challenging
568 to distinguish between ancient introgression among unsampled hermaphroditic lineages and more
569 contemporary bouts of introgression among sampled taxa. Identification of the causal sex-
570 determining genes across the genus would enable a direct examination of these possibilities
571 further. However, the evidence for divergent mechanisms across species means that the two clades

572 are unlikely to have a single genetic basis currently, even if there was original sharing of the
573 mechanism of sex determination.

574 Classic theory predicts an elevated rate of fusions involving sex chromosomes and
575 autosomes, which helps physically link sexually antagonistic variation on other chromosomes to
576 the sex-determining region (Charlesworth & Charlesworth 1980, Rice 1987, Charlesworth et al.
577 2005). Chromosomal rearrangements including fusions are frequent in *Rumex*, as evidenced by
578 successive reductions in chromosome number from the ancestral x=10 karyotype (Navajas-Pérez
579 et al. 2005), high rates of intraspecific rearrangement in XYY species *R. acetosa* (Parker & Wilby
580 1989), and our synteny analyses (Figures 5 and 6). Although we can confirm the existence of an
581 X-autosome fusion forming a neo-X chromosome in *R. hastatulus* (Figure 7), the rate of
582 rearrangements involving sex chromosomes does not appear to be elevated relative to autosomes
583 in this species. Autosome 1 and the neo-X chromosome are both syntenic to six chromosomal
584 regions of *R. bucephalophorus*, for example. Given that rates of rearrangement are generally
585 elevated in *R. hastatulus*, we do not need to invoke an adaptive explanation related to sexually
586 antagonistic selection for the number of fusions observed on the sex chromosomes. On the other
587 hand, it may be that the “baseline” rate of rearrangement (either due to adaptation (Guerrero &
588 Kirkpatrick 2014) or a higher rate of mutation) is sufficient to capture SA variation on the sex
589 chromosomes, without driving an elevated rate. Depending on the sequence of events, this elevated
590 rate of rearrangement may have even promoted the formation of sex chromosomes in the first place
591 by allowing SA variation to be captured shortly after the origins of a sex-determining locus.
592 Genome sequencing of close relatives of *R. hastatulus* will be necessary to determine if this
593 elevated rate of rearrangement is a feature specific to *R. hastatulus* or is common to dioecious
594 species in general.

595 Our study focused primarily on the sex chromosomes, but even among species without
596 them, *Rumex* contains a variety of sexual systems. Among our studied species without
597 differentiated sex chromosomes, *R. bucephalophorus* has been observed in our samples and
598 described in other studies as gynomonoecious (female and bisexual flowers in the same individual)
599 (Talavera et al. 2011), *R. sagittatus* has been described as dioecious / monoecious but without
600 heteromorphic sex chromosomes (male and female flowers in the same individual, Navajas-Pérez
601 et al. 2005) (though our samples were hermaphroditic), and *R. scutatus* has been described as
602 polygamous (male, female, and bisexual flowers in the same individual, Navajas-Pérez et al.
603 2005). Hermaphroditic individuals have also been described for *R. bucephalophorus* and *R.*
604 *scutatus*. This variation is important because the evolutionary transition from hermaphroditism to
605 dioecy is expected to proceed through these “intermediate” sexual systems (Barrett 2002). The
606 most important of these pathways is thought to be through gynodioecy (female and bisexual
607 flowers in different individuals), via the successive fixation of male-inactivating and female-
608 inactivating mutations producing separate male and female individuals (Charlesworth &
609 Charlesworth 1978, Spigler & Ashman 2012). Gynodioecy is not observed among our study
610 species, although it has been described in members of the clade that includes *R. sagittatus* and *R.*
611 *scutatus* (Navajas-Pérez et al. 2005). Alternatively, dioecy could arise from gynomonoecy via
612 disruptive selection for increased investment into male reproduction in bisexual flowers (Barrett
613 2002). Unfortunately, given the wide variation of sexual systems in our study species and our

614 lower taxon sampling, we have insufficient information in our study to reconstruct the ancestral
615 sexual system to the two sex chromosome clades. Regardless, it is clear that significant ancestral
616 variation in sexual systems would have existed to facilitate transitions from hermaphroditism to
617 dioecy across the genus.

618 Our work opens many directions for future research. First, classic models of sex
619 chromosome evolution predict the progressive suppression of recombination along the length of
620 the chromosome, forming evolutionary strata. Our genome assembly of *R. bucephalophorus*, in
621 addition to recently generated assemblies of *R. hastatulus* (Sacchi, Humphries et al. 2023) and
622 hermaphroditic relatives, will allow for investigations into the evolution of recombination
623 suppression along the sex chromosomes of *R. hastatulus*. Second, our finding of independent
624 origins of sex chromosomes raises interesting questions about the XYY clade. Overlap in the
625 ancestral autosomal homologs contributing to these two sex chromosome systems, including the
626 formation of the neo-X and extra Y chromosome in the XYY clade, could hint at ancestral sexually
627 antagonistic variation promoting the formation of sex chromosomes in the genus. Answering these
628 questions will require genome assemblies from representatives of the XYY clade. Finally, our
629 transcriptome assemblies and estimated phylogeny have great potential to address questions
630 related to the evolution of gene expression. Phylogenetic frameworks will allow future studies to
631 understand the role that sex-biased gene expression and dosage compensation play in driving or
632 being driven by the evolution of sex chromosomes. Increased taxon sampling from this species-
633 rich genus within a phylogenomic framework will increase the power to address all these
634 questions. Overall, our study opens the door to *Rumex* as an exciting system for the comparative
635 study of sex chromosome evolution.

636 **Data Availability**

637 Genome and transcriptome assemblies will be available at COGE
638 (<https://genomevolution.org/coge>) at xxxx and GenBank at xxxx. Raw sequencing reads for RNA-
639 Seq are available at the SRA under BioProject PRJNA698922, and for genome sequencing under
640 XYZ. Customs scripts and supplementary data files are available on GitHub at
641 <https://github.com/mhibbins/RumexComparative>.

642 **Acknowledgements**

643 We thank Bill Cole, Thomas Gludovacz, Emily Glasgow, Madeline Jarvis-Cross, and
644 Deanna Kim for help with plant growth and maintenance, and Matthew Hahn for comments on the
645 manuscript. This research was supported by NSERC Discovery Grants awarded to SCHB and
646 SIW, and an EEB Postdoctoral Fellowship awarded to MSH by the EEB Department at the
647 University of Toronto.

648

649 **References**

650 Adhikari, K. N., Campbell, C. G. (1998). In vitro germination and viability of buckwheat
651 (*Fagopyrum esculentum* Moench) pollen. *Euphytica*, 102, 87-92.
652 doi:10.1023/A:1018393425407

653 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
654 alignment search tool. *Journal of Molecular Biology*, 215(3), 403-410.
655 doi:10.1016/S0022-2836(05)80360-2

656 Anderson, N. W., Hjelmen, C.E., Blackmon, H. (2020). The probability of fusions joining sex
657 chromosomes and autosomes. *Biology Letters*, 16(11), 20200648.
658 doi:10.1098/rsbl.2020.0648

659 Avise, J. C., Robinson, T. J. (2008). Hemiplasy: a new term in the lexicon of phylogenetics.
660 *Systematic Biology*, 57(3): 503-507. doi:10.1080/10635150802164587

661 Bachtrog, D. (2013). Y-chromosome evolution: emerging insights into processes of Y-
662 chromosome degeneration. *Nature Reviews Genetics*, 14(2), 113-124.
663 doi:10.1038/nrg3366

664 Bachtrog, D., Mank, J. E., Peichel, C. L., Kirkpatrick, M., Otto, S. P., Ashman, T. L., . . .
665 Consortium, T. S. (2014). Sex determination: why so many ways of doing it? *PLoS
666 Biology*, 12(7). doi:10.1371/journal.pbio.1001899

667 Barrett, S.C.H. (2002). The evolution of plant sexual diversity. *Nature Reviews Genetics*, 3, 274-
668 284. doi:10.1038/nrg776

669 Barron, E., Lassaletta, L., & Alcalde-Olivares, C. (2006). Changes in the Early Miocene
670 palynoflora and vegetation in the east of the Rubielos de Mora Basin (SE Iberian Ranges,
671 Spain). *Neues Jahrbuch Fur Geologie Und Palaontologie-Abhandlungen*, 242(2-3), 171-
672 204. doi:0.1127/njgpa/242/2006/171

673 Beaudry, F.E.G., Barrett., S.C.H., & Wright, S.I. (2020). Ancestral and neo-sex chromosomes
674 contribute to population divergence in a dioecious plant. *Evolution*, 74(2): 256-269.
675 doi:10.1111/evo.13892

676 Beaudry, F. E. G., Rifkin, J. L., Peake, A. L., Kim, D., Jarvis-Cross, M., Barrett, S. C. H., &
677 Wright, S. I. (2022). Effects of the neo-X chromosome on genomic signatures of
678 hybridization in *Rumex hastatulus*. *Molecular Ecology*, 31(13), 3708-3721.
679 doi:10.1111/mec.16496

680 Bergero, R., Forrest, A., Kamau, E., & Charlesworth, D. (2007). Evolutionary strata on the X
681 chromosomes of the dioecious plant *Silene latifolia*: evidence from new sex-linked genes.
682 *Genetics*, 175(4), 1945-1954. doi:10.1534/genetics.106.070110

683 Bergero, R., Gardner, J., Bader, B., Yong, L., & Charlesworth, D. (2019). Exaggerated
684 heterochiasmy in a fish with sex-linked male coloration polymorphisms. *Proceedings of
685 the National Academy of Sciences of the United States of America*, 116(14), 6924-6931.
686 doi:10.1073/pnas.1818486116

687 Blanc, G., & Wolfe, K. H. (2004). Widespread paleopolyploidy in model plant species inferred
688 from age distributions of duplicate genes. *Plant Cell*, 16(7), 1667-1678.
689 doi:10.1105/tpc.021345

690 Bracewell, R. R., Bentz, B. J., Sullivan, B. T., & Good, J. M. (2017). Rapid neo-sex chromosome
691 evolution and incipient speciation in a major forest pest. *Nature Communications*, 8(1),
692 1593. doi:10.1038/s41467-017-01761-4

693 Buchfink, B., Reuter, K., & Drost, H. G. (2021). Sensitive protein alignments at tree-of-life scale
694 using DIAMOND. *Nature Methods* 18: 366-368. doi: 10.1038/s41592-021-01101-x

695 Bull, J. J. (1983). *Evolution of sex determining mechanisms*. Menlo Park, CA: Benjamin
696 Cummings.

697 Bull, J. J., & Charnov, E. L. (1977). Changes in the heterogametic mechanism of sex
698 determination. *Heredity*, 39(1), 1-14. doi:10.1038/hdy.1977.38

699 Castillo, E. R. D., Taffarel, A., & Marti, D. A. (2014). The early evolutionary history of neo-sex
700 chromosomes in Neotropical grasshoppers, *Boliviacris noroestensis* (Orthoptera:
701 Acrididae: Melanoplinae). *European Journal of Entomology*, 111(3), 321-327. doi:DOI
702 10.14411/eje.2014.047

703 Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in
704 phylogenetic analysis. *Molecular Biology and Evolution*, 17(4), 540-552.
705 doi:10.1093/oxfordjournals.molbev.a026334

706 Charlesworth, B. (1991). The evolution of sex chromosomes. *Science*, 251(4997), 1030-1033.
707 doi:10.1126/science.1998119

708 Charlesworth, B., & Charlesworth, D. (1978). A model for the evolution of dioecy and
709 gynodioecy. *The American Naturalist*, 112(988), 975-997. doi:10.1086/283342

710 Charlesworth, B., & Charlesworth, D. (2000). The degeneration of Y chromosomes.
711 *Philosophical Transactions of the Royal Society of London B: Biological Sciences*,
712 355(1403), 1563-1572. doi:10.1098/rstb.2000.0717

713 Charlesworth, B., Coyne, J. A., & Barton, N. H. (1987). The relative rates of evolution of sex-
714 chromosomes and autosomes. *American Naturalist*, 130(1), 113-146. doi:10.1086/284701

715 Charlesworth, D. (2013). Plant sex chromosome evolution. *Journal of Experimental Botany*,
716 64(2), 405-420. doi:10.1093/jxb/ers322

717 Charlesworth, D., & Charlesworth, B. (1980). Sex differences in fitness and selection for centric
718 fusions between sex-chromosomes and autosomes. *Genetics Research*, 35(2), 205-214.
719 doi:10.1017/s0016672300014051

720 Charlesworth, D., Charlesworth, B., & Marais, G. (2005). Steps in the evolution of
721 heteromorphic sex chromosomes. *Heredity*, 95(2), 118-128. doi:10.1038/sj.hdy.6800697

722 Cheng, H., Jarvis, E. D., Fedrigo, O., Koepfli, K. P., Urban, L., Gemmell, N. J., Li, H. (2022).
723 Haplotype-resolved assembly of diploid genomes without parental data. *Nature
724 Biotechnology* 40, 1332-1335. doi: 10.1038/s41587-022-01261-x

725 Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., . . . de Hoon, M. J.
726 (2009). Biopython: freely available Python tools for computational molecular biology
727 and bioinformatics. *Bioinformatics*, 25(11), 1422-1423.
728 doi:10.1093/bioinformatics/btp163

729 Connallon, T., Olito, C., Dutoit, L., Papoli, H., Ruzicka, F., & Yong, L. (2018). Local adaptation
730 and the evolution of inversions on sex chromosomes and autosomes. *Philosophical*

731 *Transactions of the Royal Society of London B: Biological Sciences*, 373(1757).
732 doi:10.1098/rstb.2017.0423

733 Crowson, D., Barrett, S. C. H., & Wright, S. I. (2017). Purifying and positive selection influence
734 patterns of gene loss and gene expression in the evolution of a plant sex chromosome
735 system. *Molecular Biology and Evolution*, 34(5), 1140-1154.
736 doi:10.1093/molbev/msx064

737 Degnan, J. H., & Rosenberg, N. A. (2006). Discordance of species trees with their most likely
738 gene trees. *PLoS Genetics*, 2(5), e68. doi:10.1371/journal.pgen.0020068

739 Degnan, J. H., & Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and
740 the multispecies coalescent. *Trends in Ecology and Evolution*, 24(6), 332-340.
741 doi:10.1016/j.tree.2009.01.009

742 Durand, E. Y., Patterson, N., Reich, D., & Slatkin, M. (2011). Testing for ancient admixture
743 between closely related populations. *Molecular Biology and Evolution*, 28(8), 2239-2252.
744 doi:10.1093/molbev/msr048

745 Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
746 throughput. *Nucleic Acids Research*, 32(5), 1792-1797. doi:10.1093/nar/gkh340

747 El Taher, A., Ronco, F., Matschiner, M., Salzburger, W., & Bohne, A. (2021). Dynamics of sex
748 chromosome evolution in a rapid radiation of cichlid fishes. *Science Advances*, 7(36),
749 eabe8215. doi:10.1126/sciadv.abe8215

750 Emms, D. M., & Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for
751 comparative genomics. *Genome Biology*, 20(1), 238. doi:10.1186/s13059-019-1832-y

752 Fawcett, J. A., Takeshima, R., Kikuchi, S., Yazaki, E., Katsume-Tanaka, T., Dong, Y., . . . Yasui,
753 Y. (2023). Genome sequencing reveals the genetic architecture of heterostyly and
754 domestication history of common buckwheat. *Nature Plants*, 9, 1236-1251. doi:
755 10.1038/s41477-023-01474-1

756 Fridolfsson, A. K., Cheng, H., Copeland, N. G., Jenkins, N. A., Liu, H. C., Raudsepp, T., . . .
757 Ellegren, H. (1998). Evolution of the avian sex chromosomes from an ancestral pair of
758 autosomes. *Proceedings of the National Academy of Sciences of the United States of
759 America*, 95(14), 8147-8152. doi:10.1073/pnas.95.14.8147

760 Gilbert, D. (2013). Gene-omes built from mRNA seq not genome DNA. 7th annual Arthropod
761 Genomics Symposium. Notre Dame. doi:10.7490/f1000research.1112594.1

762 Grabowska-Joachimiak, A., Kula, A., Ksiazczyk, T., Chojnicka, J., Sliwinska, E., & Joachimiak,
763 A. J. (2015). Chromosome landmarks and autosome-sex chromosome translocations in
764 *Rumex hastatulus*, a plant with XX/XY₁Y₂ sex chromosome system. *Chromosome
765 Research*, 23(2), 187-197. doi:10.1007/s10577-014-9446-4

766 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., . . . Regev, A.
767 (2011). Trinity: reconstructing a full-length transcriptome without a genome from RNA-
768 Seq data. *Nature Biotechnology* 23(7): 644-652.

769 Grant, K. D., Koenemann, D., Mansaray, J., Ahmed, A., Khamar, H., El Oualidi, J., & Burke, J.

770 M. (2022). A new phylogeny of *Rumex* (Polygonaceae) adds evolutionary context to the
771 diversity of reproductive systems present in the genus. *PhytoKeys*, 204, 57-72.
772 doi:10.3897/phytokeys.204.85256

773 Graves, J. A., & Watson, J. M. (1991). Mammalian sex chromosomes: evolution of organization
774 and function. *Chromosoma*, 101(2), 63-68. doi:10.1007/BF00357055

775 Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., . . . Paabo, S.
776 (2010). A draft sequence of the Neandertal genome. *Science*, 328(5979), 710-722.
777 doi:10.1126/science.1188021

778 Guerrero, R. F., & Kirkpatrick, M. (2014). Local adaptation and the evolution of chromosome
779 fusions. *Evolution* 68(10), 2747-2756. doi:10.1111/evo.12481

780 Guo, L., Bloom, J. S., Dols-Serrate, D., Boocock, J., Ben-David, E., Schubert, O. T., . . .
781 Kruglyak, L. (2022). Island-specific evolution of a sex-primed autosome in a sexual
782 planarian. *Nature*, 606(7913), 329-334. doi:10.1038/s41586-022-04757-3

783 Handley, L. J., Ceplitis, H., & Ellegren, H. (2004). Evolutionary strata on the chicken Z
784 chromosome: implications for sex chromosome evolution. *Genetics*, 167(1), 367-376.
785 doi:10.1534/genetics.167.1.367

786 Hough, J., Hollister, J.D., Wang, W., Barrett, S.C.H., Wright, S.I. (2014). Genetic degeneration
787 of old and young Y chromosomes in the flowering plant *Rumex hastatulus*. *Proceedings
788 of the National Academy of Sciences of the United States of America* 111(21): 7713-7718.
789 doi:10.1073/pnas.1319227111

790 Huang, Y. J., Zhu, H., Su, T., Spicer, R. A., Hu, J. J., Jia, L. B., & Zhou, Z. K. (2022). Rise of
791 herbaceous diversity at the southeastern margin of the Tibetan Plateau: first insight from
792 fossils. *Journal of Systematics and Evolution*, 60(5), 1109-1123. doi:10.1111/jse.12755

793 Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: Reconstruction, analysis, and visualization
794 of phylogenomic Data. *Molecular Biology and Evolution*, 33(6), 1635-1638.
795 doi:10.1093/molbev/msw046

796 Hughes, J. F., & Page, D. C. (2015). The biology and evolution of mammalian Y chromosomes.
797 *Annual Review of Genetics*, 49, 507-527. doi:10.1146/annurev-genet-112414-055311

798 Huson, D. H., Klopper, T., Lockhart, P. J., & Steel, M. A. (2005). Reconstruction of reticulate
799 networks from gene trees. *Research in Computational Molecular Biology, Proceedings*,
800 3500, 233-249. Retrieved from <Go to ISI>://WOS:000229741100018

801 Jeffries, D. L., Lavanchy, G., Sermier, R., Sredl, M. J., Miura, I., Borzee, A., . . . Perrin, N.
802 (2018). A rapid rate of sex-chromosome turnover and non-random transitions in true
803 frogs. *Nature Communications*, 9(1), 4088. doi:10.1038/s41467-018-06517-2

804 Kasjaniuk, M., Grabowska-Joachimiak, A., & Joachimiak, A. J. (2019). Testing the translocation
805 hypothesis and Haldane's rule in *Rumex hastatulus*. *Protoplasma*, 256(1), 237-247.
806 doi:10.1007/s00709-018-1295-0

807 Kitano, J., Ross, J. A., Mori, S., Kume, M., Jones, F. C., Chan, Y. F., . . . Peichel, C. L. (2009).
808 A role for a neo-sex chromosome in stickleback speciation. *Nature*, 461(7267), 1079-

809 1083. doi:10.1038/nature08441

810 Koenemann, D. M., Kistler, L., & Burke, J. M. (2023). A plastome phylogeny of *Rumex*
811 (Polygonaceae) illuminates the divergent evolutionary histories of docks and sorrels.
812 *Molecular Phylogenetics and Evolution*, 182, 107755. doi:10.1016/j.ympev.2023.107755

813 Lahn, B. T., & Page, D. C. (1999). Four evolutionary strata on the human X chromosome.
814 *Science*, 286(5441), 964-967. doi:10.1126/science.286.5441.964

815 Lenormand, T., Fyon, F., Sun, E., & Roze, D. (2020). Sex chromosome degeneration by
816 regulatory evolution. *Current Biology*, 30, 3001-3006. doi:10.1016/j.cub.2020.05.052

817 Lenormand, T., Roze, D. (2022). Y recombination arrest and degeneration in the absence of
818 sexual dimorphism. *Science*, 375(6581), 663-666. doi: 10.1126/science.abj1813

819 Li, H., Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
820 transform. *Bioinformatics* 25(14), 1754-1760. doi: 10.1093/bioinformatics/btp324

821 Li, Z., McKibben, M. T. W., Finch, G. S., Blischak, P. D., Sutherland, B. L., Barker, M. S.
822 (2021). Patterns and processes of diploidization in land plants. *Annual Review of Plant
823 Biology*, 72, 387-410. doi:10.1146/annurev-arplant-050718-100344

824 Love, A. (1940). Polyploidy in *Rumex acetosella* L. *Nature*, 145, 351-351.
825 doi:10.1038/145351a0

826 Love, A. (1942). Cytogenetic studies in *Rumex* III. Some notes on the Scandinavian species of
827 the genus. doi: 10.1111/j.1601-5223.1942.tb03281.x

828 Love, A., & Kapoor, B. M. (1967). A chromosome atlas of the collective genus *Rumex*.
829 *Cytologia*, 32(3-4), 328-342. Retrieved from <Go to ISI>://WOS:A1967C534400004

830 Lovell, J. T., Sreedasyam, A., Schranz, M. E., Wilson, M., Carlson, J. W., Harkess, A., Emms,
831 D., Goodstein, D. M, Schmutz, J. (2022). GENESPACE tracks regions of interest and
832 gene copy number variation across multiple genomes. *eLife* 11:e78526.
833 doi:10.7554/eLife.78526

834 Lynch, M., & Conery, J. S. (2000). The evolutionary fate and consequences of duplicate genes.
835 *Science*, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151

836 Mable, B. K. (2004). 'Why polyploidy is rarer in animals than in plants': myths and mechanisms.
837 *Biological Journal of the Linnean Society*, 82(4), 453-466. doi:10.1111/j.1095-
838 8312.2004.00332.x

839 Maddison, W. P. (1997). Gene trees in species trees. *Systematic Biology*, 46(3), 523-536. doi:
840 10.2307/2413694

841 Mendes, F. K., & Hahn, M. W. (2016). Gene tree discordance causes apparent substitution rate
842 variation. *Systematic Biology*, 65(4), 711-721. doi: 10.1093/sysbio/syw018

843 Mendes, F. K., & Hahn, M. W. (2018). Why concatenation fails near the anomaly zone.
844 *Systematic Biology*, 67(1), 158-169. doi:10.1093/sysbio/syx063

845 Ming, R., Bendahmane, A., & Renner, S. S. (2011). Sex chromosomes in land plants. *Annual*

846 *Review of Plant Biology*, 62, 485-514. doi:10.1146/annurev-arplant-042110-103914

847 Minh, B. Q., Hahn, M. W., & Lanfear, R. (2020). New methods to calculate concordance factors
848 for phylogenomic datasets. *Molecular Biology and Evolution*, 37(9), 2727-2733.
849 doi:10.1093/molbev/msaa106

850 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler,
851 A., & Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for
852 phylogenetic inference in the genomic era. *Molecular Biology and Evolution*, 37(5),
853 1530-1534. doi:10.1093/molbev/msaa015

854 Mirarab, S., Reaz, R., Bayzid, M. S., Zimmermann, T., Swenson, M. S., & Warnow, T. (2014).
855 ASTRAL: genome-scale coalescent-based species tree estimation. *Bioinformatics*,
856 30(17), i541-548. doi:10.1093/bioinformatics/btu462

857 Mo, Y. K., Lanfear, R., Hahn, M. W., & Minh, B. Q. (2023). Updated site concordance factors
858 minimize effects of homoplasy and taxon sampling. *Bioinformatics*, 39(1).
859 doi:10.1093/bioinformatics/btac741

860 Muller, J. (1981). Fossil pollen records of extant angiosperms. *Botanical Review*, 47(1), 1-142.
861 doi:10.1007/Bf02860537

862 Navajas-Perez, R., de la Herran, R., Lopez Gonzalez, G., Jamilena, M., Lozano, R., Ruiz Rejon,
863 C., . . . Garrido-Ramos, M. A. (2005). The evolution of reproductive systems and sex-
864 determining mechanisms within *Rumex* (polygonaceae) inferred from nuclear and
865 chloroplastidial sequence data. *Molecular Biology and Evolution*, 22(9), 1929-1939.
866 doi:10.1093/molbev/msi186

867 Ottenburghs, J. (2020). Ghost introgression: spooky gene flow in the distant past. *BioEssays*,
868 42(6), e2000012. doi:10.1002/bies.202000012

869 Pala, I., Naurin, S., Stervander, M., Hasselquist, D., Bensch, S., & Hansson, B. (2012). Evidence
870 of a neo-sex chromosome in birds. *Heredity*, 108(3), 264-272. doi:10.1038/hdy.2011.70

871 Parker, J. S., Wilby, A. S. (1989). Extreme chromosomal heterogeneity in a small-island
872 population of *Rumex acetosa*. *Heredity*, 62, 133-140. doi:10.1038/hdy.1989.18

873 Pertea, G., & Pertea, M. (2020). GFF Utilities: GffRead and GffCompare. *F1000Res*, 9.
874 doi:10.12688/f1000research.23297.2

875 Pokorna, M., & Kratochvil, L. (2009). Phylogeny of sex-determining mechanisms in squamate
876 reptiles: are sex chromosomes an evolutionary trap? *Zoological Journal of the Linnean
877 Society*, 156(1), 168-183. doi:10.1111/j.1096-3642.2008.00481.x

878 Rice, W. R. (1987). The accumulation of sexually antagonistic genes as a selective agent
879 promoting the evolution of reduced recombination between primitive sex chromosomes.
880 *Evolution*, 41(4), 911-914. doi:10.1111/j.1558-5646.1987.tb05864.x

881 Rifkin, J. L., Beaudry, F. E. G., Humphries, Z., Choudhury, B. I., Barrett, S. C. H., & Wright, S.
882 I. (2021). Widespread recombination suppression facilitates plant sex chromosome
883 evolution. *Molecular Biology and Evolution*, 38(3), 1018-1030.
884 doi:10.1093/molbev/msaa271

885 Rifkin, J. L., Hnatovska, S., Yuan, M., Sacchi, B. M., Choudhury, B. I., Gong, Y., . . . Wright, S.
886 I. (2022). Recombination landscape dimorphism and sex chromosome evolution in the
887 dioecious plant *Rumex hastatulus*. *Philosophical Transactions of the Royal Society of*
888 *London B: Biological Sciences*, 377(1850), 20210226. doi:10.1098/rstb.2021.0226

889 Sacchi, B., Humphries, Z., Kružlicová, J., Bodláková, M., Pyne, C., Choudhury, B., . . . Wright,
890 S. I. (2023). Phased assembly of neo-sex chromosomes reveals extensive Y degeneration
891 and rapid genome evolution in *Rumex hastatulus*. *BioRxiv*.
892 doi:10.1101/2023.09.26.559509

893 Sanderson, M. J. (2002). Estimating absolute rates of molecular evolution and divergence times:
894 a penalized likelihood approach. *Molecular Biology and Evolution*, 19(1), 101-109.
895 doi:10.1093/oxfordjournals.molbev.a003974

896 Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016). mclust 5: clustering, classification
897 and density estimation using gaussian finite mixture models. *R Journal*, 8(1), 289-317.
898 Retrieved from <https://www.ncbi.nlm.nih.gov/pubmed/27818791>

899 Smith, B. W. (1964). The evolving karyotype of *Rumex hastatulus*. *Evolution*, 18(1), 93-104.
900 doi:10.2307/2406423

901 Smith, B. W. (1968). Cytogeography and cytotaxonomic relationships of *Rumex paucifolius*.
902 *American Journal of Botany*, 55(6), 673-683.

903 Smith, M. L., & Hahn, M. W. (2021). New approaches for inferring phylogenies in the presence
904 of paralogs. *Trends in Genetics*, 37(2), 174-187. doi:10.1016/j.tig.2020.08.012

905 Spigler, R. B., & Ashman, T. L. (2012). Gynodioecy to dioecy: are we there yet? *Annals of*
906 *Botany*, 109(3), 531-543. doi:10.1093/aob/mcr170

907 Talavera, M., Balao, F., Casimiro-Soriguer, R., Ortiz, M. A., Terrab, A., Arista, M., . . . Talavera,
908 S. (2011). Molecular phylogeny and systematics of the highly polymorphic *Rumex*
909 *bucephalophorus* complex (Polygonaceae). *Molecular Phylogenetics and Evolution*,
910 61(3), 659-670.

911 Than, C., Ruths, D., & Nakhleh, L. (2008). PhyloNet: a software package for analyzing and
912 reconstructing reticulate evolutionary relationships. *BMC Bioinformatics*, 9, 322.
913 doi:10.1186/1471-2105-9-322

914 Tree of Sex Consortium. (2014). Tree of Sex: a database of sexual systems. *Scientific Data*, 1,
915 140015. doi:10.1038/sdata.2014.15

916 Tricou, T., Tannier, E., & de Vienne, D. M. (2022a). Ghost lineages can invalidate or even
917 reverse findings regarding gene flow. *PLoS Biology*, 20(9).
918 doi:10.1371/journal.pbio.3001776

919 Tricou, T., Tannier, E., & de Vienne, D. M. (2022b). Ghost lineages highly influence the
920 interpretation of introgression tests. *Systematic Biology*, 71(5), 1147-1158.
921 doi:10.1093/sysbio/syac011

922 USDA Agricultural Research Service (2015). Germplasm Resources Information Network
923 (GRIN). USDA Agricultural Research Service. doi:10.15482/USDA.ADC/1212393.

924 Vanderpool, D., Minh, B. Q., Lanfear, R., Hughes, D., Murali, S., Harris, R. A., . . . Hahn, M. W.
925 (2020). Primate phylogenomics uncovers multiple rapid radiations and ancient
926 interspecific introgression. *PLoS Biology*, 18(12), e3000954.
927 doi:10.1371/journal.pbio.3000954

928 Vicoso, B. (2019). Molecular and evolutionary dynamics of animal sex-chromosome turnover.
929 *Nature Ecology and Evolution*, 3(12), 1632-1641. doi:10.1038/s41559-019-1050-8

930 Vicoso, B., & Bachtrog, D. (2013). Reversal of an ancient sex chromosome to an autosome in
931 *Drosophila*. *Nature*, 499(7458), 332-335. doi:10.1038/nature12235

932 Wang, Y., Tang, H., Debarry, J. D., Tan., X., Li, J., Wang, X., . . . Paterson, A. H. (2012).
933 MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and
934 collinearity. *Nucleic Acids Research* 40(7), e49. doi:10.1093/nar/gkr1293

935 Wernersson, R., & Pedersen, A. G. (2003). RevTrans: Multiple alignment of coding DNA from
936 aligned amino acid sequences. *Nucleic Acids Research*, 31(13), 3537-3539.
937 doi:10.1093/nar/gkg609

938 White, M. J. D. (1940). The origin and evolution of multiple sex-chromosome mechanisms.
939 *Journal of Genetics*, 40(1/2), 303-336. doi:10.1007/Bf02982496

940 Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. *Molecular Biology*
941 and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088

942 Yu, Y., & Nakhleh, L. (2015). A maximum pseudo-likelihood approach for phylogenetic
943 networks. *BMC Genomics*, 16 Suppl 10(Suppl 10), S10. doi:10.1186/1471-2164-16-S10-
944 S10

945 Zhang, C., Rabiee, M., Sayyari, E., & Mirarab, S. (2018). ASTRAL-III: polynomial time species
946 tree reconstruction from partially resolved gene trees. *BMC Bioinformatics*, 19(Suppl 6),
947 153. doi:10.1186/s12859-018-2129-y

948 Zhang, L., Li, X., Ma, B., Gao, Q., Du, H., Han, Y., . . . Qiao, Z. (2017). The tartary buckwheat
949 genome provides insights into rutin biosynthesis and abiotic stress tolerance. *Molecular*
950 *Plant*, 10(9), 1224-1237. doi:10.1016/j.molp.2017.08.013

951 Zhou, C., McCarthy, S. A., Durbin, R. (2023). YaHS: yet another Hi-C scaffolding tool.
952 *Bioinformatics*, 39(1), btac808. doi:10.1093/bioinformatics/btac808

953

1 **Phylogenomics resolves key relationships in *Rumex* and uncovers a dynamic history of**
2 **independently evolving sex chromosomes**

3

4 Mark S. Hibbins¹, Joanna L. Rifkin^{1,2}, Baharul I. Choudhury¹, Olena Voznesenka¹, Bianca
5 Sacchi¹, Meng Yuan¹, Yunchen Gong¹, Spencer C. H. Barrett¹, Stephen I. Wright¹

6

7 ¹Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, CA
8 M5S 3B2

9 ²Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI,
10 USA 48109

11

12 **Supplementary Materials and Methods**

13 *Sample Collection and Sequencing*

14 For RNASeq, samples for live tissue were sourced from the USDA GRIN network (USDA
15 Agricultural Research Service), the Southwest China Wildlife Germplasm Genobank
16 (<http://www.genobank.org/>), and the collections from Spencer Barrett's lab, totaling 10 species
17 (see Supplementary Table 1). Plants were grown under glasshouse conditions between 2018 and
18 2020. Because many *Rumex* species are perennials, we collected leaf, bud, and pollen tissue
19 opportunistically based on availability. Leaf and bud tissue were collected directly into LN2 using
20 sterilized forceps. Pollen was collected using keif boxes (WACKY WILLYS, Inc. BC, Canada)
21 and either frozen in LN2 or germinated prior to sequencing using the medium developed in
22 Adhikari & Campbell (1998).

23 For the genome assembly of *R. bucephalophorus*, we collected open-pollinated seeds from
24 a population at Poleg, Netanya, Israel in March 2019. We placed the seeds on moist filter paper in
25 a petri dish at 4 °C for at least 24 hours, then left the petri dish at room temperature. After
26 germination, we planted seedlings in 6-cell seedling plug trays with soil mix (1:3 ratio of Promix
27 soil and sand, 300mL nutricote fertilizer per 60 lbs), in a glasshouse at the University of Toronto.
28 After 20 days, we transplanted individuals to 6-inch plastic pots which were watered every other
29 day and fertilized with all-purpose plant food (Miracle-Gro) every 2 weeks. We selected healthy
30 individuals for leaf tissue and plants were subjected to 24 hours in the dark prior to collection. We
31 sampled young leaves which were flash froze in liquid nitrogen and stored at -80 °C before being
32 sent to Cantata Bio (Scotts Valley, CA, US) for DNA extraction, library preparation and PacBio
33 sequencing.

34 *Assembly and Annotation*

35 We made use of our recently generated whole-genome phased assembly of an *R. hastatulus*
36 XYY male, and the assembly of the hermaphroditic species *R. salicifolius* (Sacchi, Humphries et

37 al. 2023). In addition to RNA-Seq, we generated a new long-read de novo genome assembly for
38 the hermaphroditic species *Rumex bucephalophorus* using a combination of high-coverage HiFi
39 PAC Bio sequencing and Dovetail Omni-C sequencing. Finally, we generated transcriptome
40 assemblies from RNASeq data for the other 9 species. To estimate genome size for coverage in *R.*
41 *bucephalophorus* and 5 other species in our dataset, we performed flow cytometry conducted by
42 Plant Cytometry Services, <https://www.plantcytometry.nl/>. Briefly, nuclei were stained with DAPI
43 and DNA content per nucleus was quantified relative to *Vinca minor* as absolute DNA ratio with
44 *Vinca minor* multiplied with DNA content of *Vinca minor* (1,51 pg/2C or 1477 Mbp/2C).

45 For the assembly of *R. bucephalophorus*, we grew field-collected seed in the University of
46 Toronto glasshouse. 17.42 g of leaf tissue was used to extract high-molecular weight DNA by
47 Dovetail Genomics (Cantata Bio, LLC, Scotts Valley, CA, USA). PAC Bio CCS reads (Pacific
48 Biosciences Menlo Park, CA, USA) were sequenced by Dovetail for a total of ~50 GB
49 (approximately 26X coverage, based on a genome size estimate of 1.96 GB from flow cytometry
50 (Supplementary Data 1). We used hifiasm-0.19.5 (Cheng et al. 2022) using the -primary assembly
51 option to generate the contig-level assembly. Following this, paired-end OmniC reads were then
52 mapped and filtered to the assembly using bwa v0.7.15 (Li and Durbin 2009) following the Arima
53 mapping pipeline (https://github.com/ArimaGenomics/mapping_pipeline), and resulting filtered
54 (MapQ>10) bam files had duplicates marked using Picard v2.7.1. We scaffolded the assembly
55 using YaHS under default parameters (Zhou et al. 2023) to generate the final scaffolded assembly.
56 Scaffolds 9 and 10 of our assembly, upon visual inspection of synteny with *R. salicifolius* and
57 examination of synteny of the genome to itself (Supplementary Figures 1 and 2), are likely
58 separately assembled heterozygous copies of other autosomes; these scaffolds were removed for
59 downstream analyses, along with additional smaller scaffolds.

60 For the transcriptome assemblies, we used Trinity v2.11.0 (Grabherr et al. 2011) with each
61 of the 10 species to create a transcriptome assembly for the sequencing libraries (representing a
62 single tissue/individual combination). These assemblies were combined for each species and then
63 reduced to representative species-wide transcriptomes using the traa2cds.pl script from
64 EvidentialGene (Gilbert 2013) and retaining the primary transcript for each gene model.

65 *Orthogroup Identification and Alignment*

66 From our final EviGene transcriptome assemblies, we used a custom shell script to filter
67 out partial coding sequences (CDS) and CDSs belonging to classes other than the “main” class.
68 For *R. hastatus*, we used *gffread* (Pertea and Pertea 2020) to extract CDS from a previously
69 published genome annotation (Rifkin et al. 2022). For use as an outgroup, we acquired previously
70 published annotated coding sequences from the genome assembly of Tartary buckwheat,
71 *Fagopyrum tataricum* (Zhang et al. 2017). This final set of CDSs for each species was used for
72 downstream comparative analyses. To identify orthologous coding regions, we first used
73 OrthoFinder v2.5.4 (Emms & Kelly 2019) with the default parameters to assign our assembled
74 CDSs from each species into orthogroups. The sequences for each orthogroup were then translated
75 to amino acids using BioPython (python v3.6.8) (Cock et al. 2009), and amino acid alignment was
76 performed for each using MUSCLE v3.8.1551 (Edgar 2004). We used these amino acid alignments
77 to guide codon alignment for each orthogroup using RevTrans 2.0 (Wernersson & Pedersen 2003),

78 and quality filtering of the final codon alignments was conducted using Gblocks v0.91b
79 (Castresana 2000) with the -b5 setting allowing for gap positions.

80 *Phylogenetic inference*

81 Our OrthoFinder analysis identified very few (less than 100) single-copy orthologs across
82 all 12 species in our dataset. Therefore, we employed two sampling schemes to increase the
83 number of loci available for downstream phylogenetic inference. First, we allowed for some
84 missing data, including orthogroups in which a copy was present in at least 9 of the 12 species.
85 Second, we included orthogroups where gene duplication events were limited to a single species,
86 as differential loss of duplicates cannot affect phylogenetic inference in such cases (Smith & Hahn
87 2021). In such orthogroups, we randomly sampled a single gene copy from the species containing
88 duplicates for downstream inferences. This sampling scheme resulted in a dataset of 5,263 single-
89 copy genes.

90 For maximum-likelihood inference, we generated a concatenated alignment of all 5,263
91 loci. This alignment was subsequently filtered using Gblocks for codon sequences, with the -b5
92 setting allowing for gap positions. The final filtered alignment contained 6.5 Mb of coding
93 sequence. This alignment was given to IQ-TREE v2.1.2 to infer a phylogeny using ModelFinder,
94 SH-aLRT, and ultrafast bootstrap with 1000 replicates. ModelFinder uses maximum-likelihood
95 inference to estimate the best-fitting model of sequence evolution for the data, while SH-aLRT
96 and ultrafast bootstrap are alternative methods for assessing branch support.

97 Biological sources of gene tree discordance – incomplete lineage sorting and introgression
98 – can mislead maximum-likelihood approaches to phylogenetic inference (Degnan and Rosenberg
99 2006, Mendes and Hahn 2018). To quantify the degree of gene tree discordance in our dataset, and
100 its potential effects on our inferred phylogeny, we used the gene trees inferred in the previous
101 section for our set of single-copy orthogroups. We calculated both gene (gCF) and site
102 concordance factors (sCF) on our maximum-likelihood tree using functions available in IQ-TREE
103 (Minh et al. 2020b, Mo et al. 2023). These measure the proportion of gene trees and parsimony-
104 informative sites, respectively, that support a particular branch in the inferred species tree. We also
105 inferred a phylogeny using ASTRAL-III (Zhang et al. 2018), a summary approach that is robust
106 to the effects of incomplete lineage sorting.

107 We time-calibrated our maximum-likelihood phylogeny using a penalized likelihood
108 approach implemented in the *chronos* function of the R package *ape* (Sanderson 2002). The split
109 of the XYY clade and the *R. bucephalophorus*/XY clade was constrained to 10.8 MYA, and the
110 split of the ancestor of those two clades from the clade containing *R. sagittatus* and *R. scutatus*
111 was constrained to 13.77 MYA, based on date estimates from a recent study (Koenemann et al.
112 2023). We constrained the root of the *Rumex* clade to a maximum age of 23 MYA following
113 Koenemann et al. 2023, based on fossil evidence (Muller 1981, Barrón et al., 2006, Huang et al.
114 2022). We fit correlated, discrete, and relaxed clock models, and the model producing the lowest
115 PHIIC score was chosen as the best-fitting.

116 *Introgression analysis*

117 Post-speciation introgression is expected to cause an asymmetry in discordant gene tree
118 frequencies, forming the basis for many common tests, such as the D -statistic (Green et al. 2010,
119 Durand et al. 2011). To investigate the prevalence of introgression both before and after the origins
120 of sex chromosomes, we used the Δ test, which tests for an asymmetry in gene tree counts directly,
121 and allows ancestral branches of the phylogeny to be tested (Huson et al. 2005, Vanderpool et al.
122 2020). Given a rooted triplet where the species phylogeny is $[(A,B),C]$, the two discordant
123 topologies are $[(B,C),A]$ and $[(A,C),B]$. A, B, and C can be monophyletic clades (when testing
124 ancestral branches) or individual species (when testing introgression among contemporary
125 species). The Δ test is then simply the following:

126

$$\Delta = \frac{n(BC) - n(AC)}{n(BC) + n(AC)}$$

127 or, the difference in count between the two discordant topologies, divided by their sum. The
128 statistic is normalized between -1 and 1, with the sign indicating the branches involved in
129 introgression.

130 In applying the test to *Rumex*, we made use of our set of gene trees inferred from single-
131 copy orthogroups. We tested all possible rooted triplets in the phylogeny, using *F. tataricum* to
132 root each gene tree. In cases where a set of significant tests between multiple species pairs could
133 be explained by introgression between their common ancestral populations, we favored the
134 ancestral event on the basis of parsimony. We evaluated significance with bootstrapping: for each
135 test, we randomly sampled 1000 datasets of 5,263 gene trees each from our original dataset with
136 replacement. Δ was recalculated for each bootstrapped dataset to generate a sampling distribution,
137 and significance was assessed by calculating the degree to which the distribution overlapped 0 (the
138 null hypothesis). For a mean of the sampling distribution > 0 , this would be the proportion of Δ
139 values in the distribution < 0 , and vice-versa. Tests with a very small number of discordant gene
140 trees (less than 5% of the total) were discarded.

141 In addition to the Δ statistic, we estimated phylogenetic networks using the software
142 *PhyloNet* v3.8.2 (Than et al. 2008). A phylogenetic network is a tree structure that includes
143 horizontal reticulation edges connecting lineages, which are used to represent introgression events.
144 Computational limitations prevented us from using the full-likelihood inference, so we applied the
145 topology-based pseudolikelihood method *InferNetwork_MPL* (Yu & Nakhleh 2015) to our dataset
146 of 5,263 gene tree topologies, using the default parameter settings and allowing a maximum of 6
147 reticulations.

148 *Resolving the history of sex chromosome evolution*

149 To assess X chromosome homology between the XY and XYY clades, we
150 leveraged a previously generated list of sex-linked genes in *R. rothschildianus* using SNP
151 segregation patterns from transcriptome data (Crowson et al. 2017), as well as our genome
152 assembly for XYY *R. hastatus* (Sacchi, Humphries et al. 2023). We used BLASTn (Altschul et
153 al. 1990) against the maternal (X-bearing) haplotype and used the top scoring BLAST hit to
154 identify the location of both X-hemizygous genes (genes with the Y either silenced or deleted) and

155 those with a Y gametolog from *R. rothschildianus*. We plotted the density of BLAST hits against
156 the genome of *R. hastatus* in 25 evenly spaced windows along each chromosome.

157 We investigated the plausibility of loss of XY sex chromosomes in *R. bucephalophorus* by
158 examining the relationship of *R. bucephalophorus* to *R. hastatus* X/Y gametologs. First, we used
159 custom Python scripts to extract X and Y-linked coding sequences from our phased and annotated
160 XYY *R. hastatus* genome assembly, all coding sequences from our genome assemblies of *R.*
161 *bucephalophorus* and *R. salicifolius*, and transcriptome assemblies of *R. trisetifer* and *R.*
162 *amurensis*. We ran OrthoFinder on these six datasets to identify orthogroups, and extracted usable
163 single-copy orthogroups where duplications were limited to one sample. Gene trees were rooted
164 on one of *R. salicifolius*, *R. trisetifer*, or *R. amurensis*, depending on presence/absence of data; in
165 trees where multiple of these species were present, one was chosen at random to root the tree.
166 These orthogroups were subsequently aligned with MUSCLE and gene trees were estimated using
167 IQ-TREE. We then used the *ete3* package (Huerta-Cepas et al. 2016) implemented in Python to
168 tally the three possible gene tree topologies: no loss (X and Y gametologs sister), loss of Y (*R.*
169 *bucephalophorus* sister to X), and loss of X (*R. bucephalophorus* sister to Y).

170

171

172

173

174

175

176

177

178

179

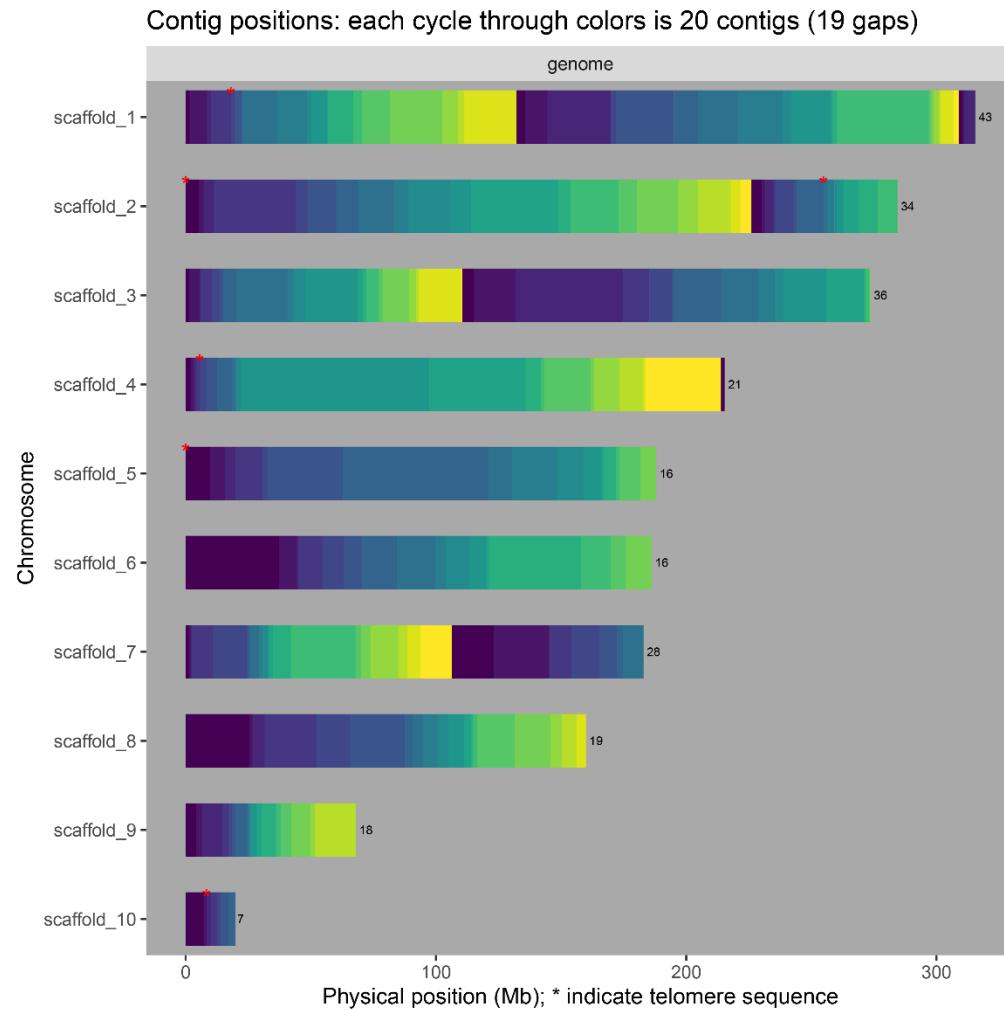
180

181

182

183

184


185

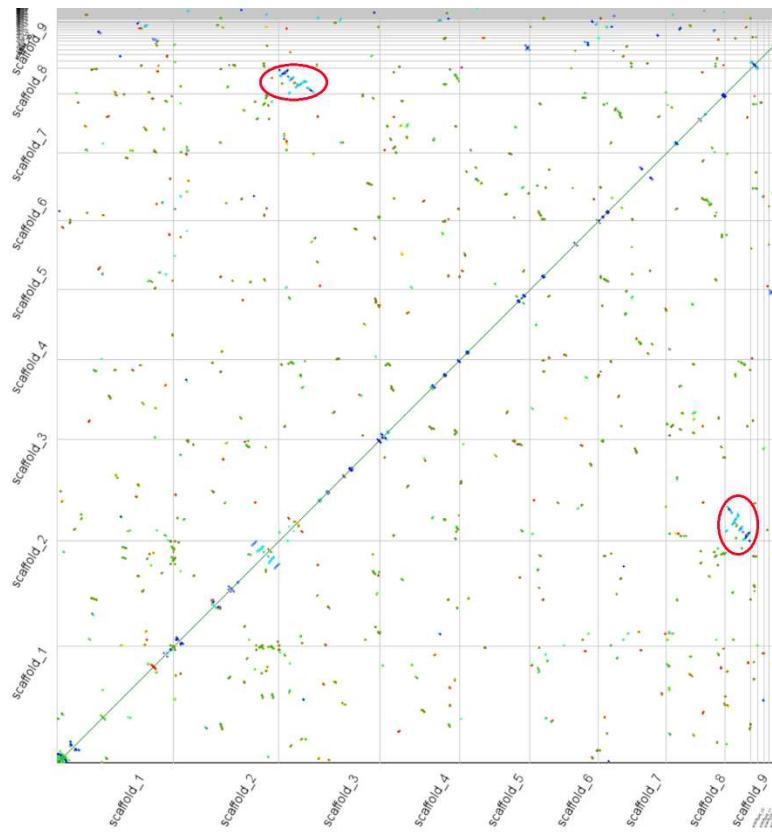
186

187

188

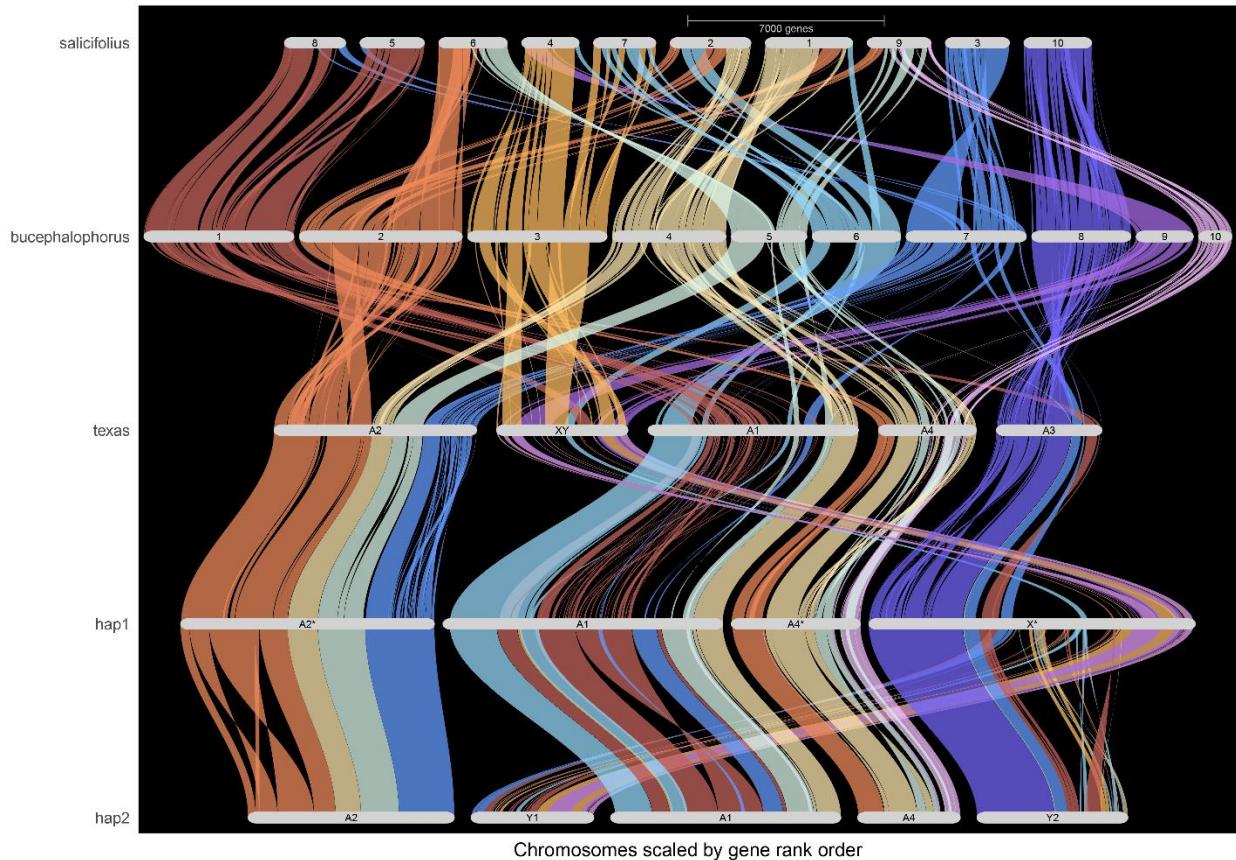
Supplementary Figures

189


190 *Supplementary Figure 1*: Genome assembly summary for *R. bucephalophorus*, with scaffolds
191 order by physical size. Each color cycle (from dark blue to yellow) represents 20 contigs.
192 Scaffolds 9 and 10 likely represent misassembled heterozygous copies of other chromosomes
193 (see Supplementary Figures 2 and 3); karyotyping indicates *R. bucephalophorus* has 8
194 chromosomes (Navajas-Pérez et al. 2005).

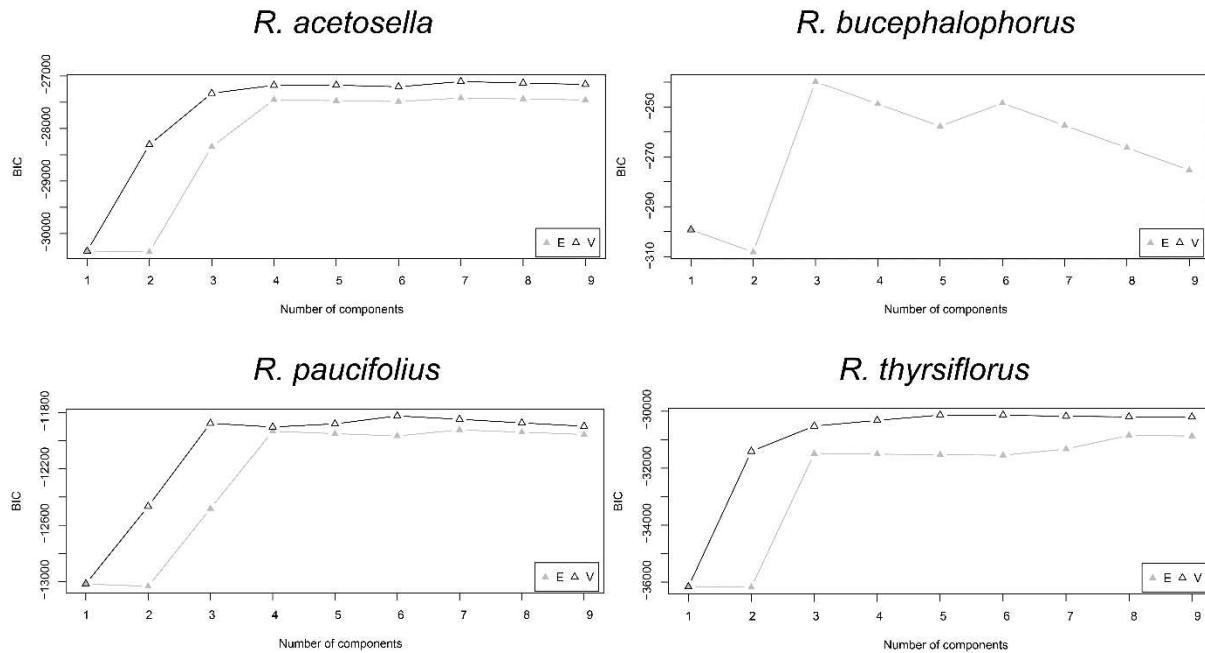
195

196


197

198

199

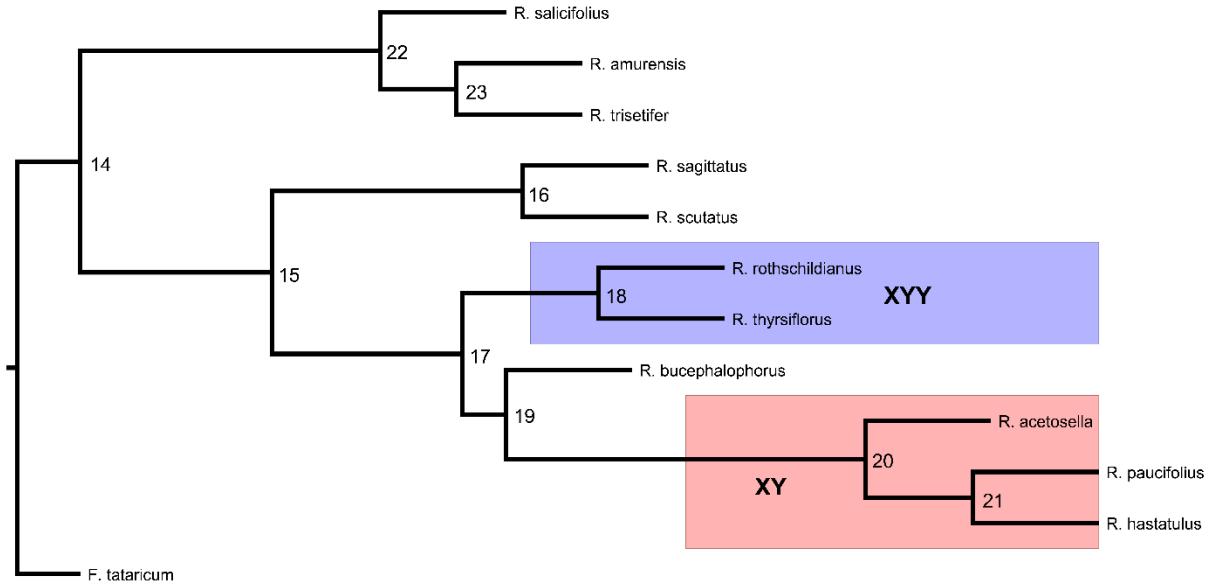

200 *Supplementary Figure 2: Synteny dotplot of our assembly of *R. bucephalophorus* against itself.*
201 Scaffold 9 shows high similarity to scaffold 3 (red circles), indicating a separately assembled
202 heterozygous copy of scaffold 3.

203

204 *Supplementary Figure 3: GENESPACE* synteny plot of *R. salicifolius*, *R. bucephalophorus*, and
205 the two cytotypes of *R. hastatus*, including the extra assembled scaffolds 9 and 10 of *R.*
206 *bucephalophorus*. These scaffolds are syntentic to regions of *R. salicifolius* that overlap with
207 other chromosomes, again indicating extra assembled copies of these chromosomes.

208

209


210 *Supplementary Figure 4: BIC values by number of components fit to the distribution of log(dS)*
211 values, estimated by *mclust*. For clarity, results only shown for species where support for 2
212 components was found (*R. acetosella/bucephalophorus/paucifolius/thrysiflorus*). In each plot,
213 the “E” and “V” lines denote BIC scores for equal-variance and unequal-variance models for
214 each # of components.

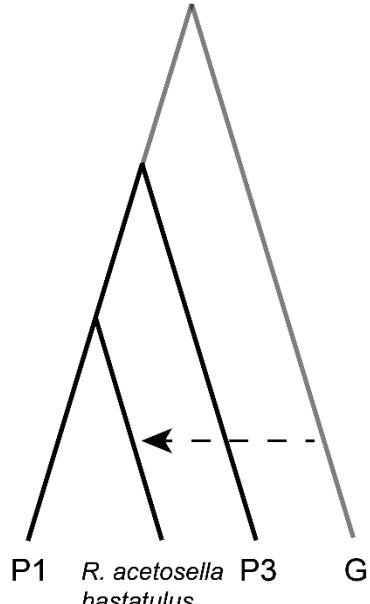
215

216

217

218

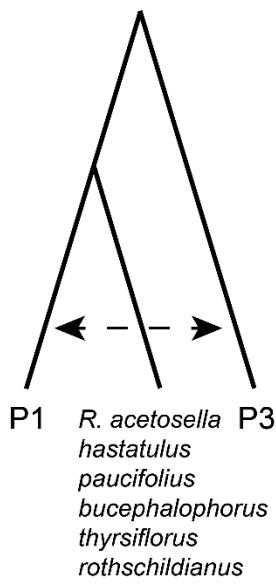
219


0.9

220 *Supplementary Figure 5: ASTRAL-III species tree topology for Rumex inferred from 5,263 gene*
221 *orthologs. Nodes are labelled with their traversal order (for interpreting Supplementary Tables 1*
222 *and 2).*

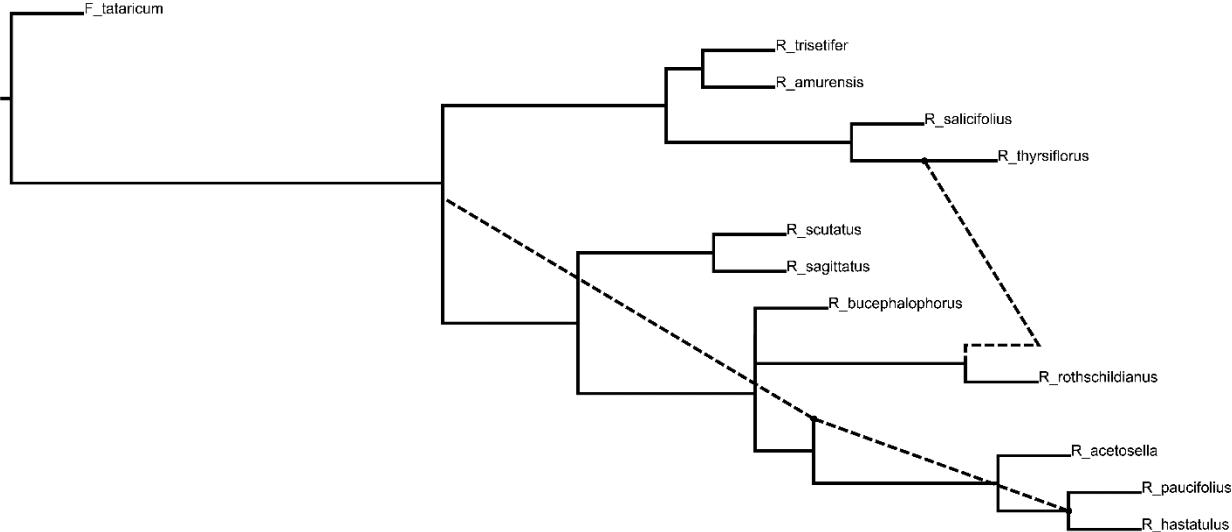
223

224


Ghost introgression event:

225

R. acetosella
hastatus
paucifolius
bucephalophorus
thrysiflorus
rothschildianus


Introgression event inferred
by test statistics:

226

Supplementary Figure 6: Inferring ghost introgression from test statistics based on gene tree topologies. In a scenario where a diverged unsampled population introgresses into one of the indicated species (lefthand side), introgression test statistics will imply introgression between the other two species used in the test (i.e. P1 and P3; righthand side). This happens because the presence of diverged alleles in the recipient species makes it appear less closely related to P1 than expected based on phylogenetic relationships. Importantly, this pattern occurs regardless of the identity of P1 and P3, distinguishing it from instances of true introgression between any particular combination of P1 and P3. We observe this pattern for the species indicated in the figure (see Supplementary Table X).

235

236

237 *Supplementary Figure 7*: Best-fitting phylogenetic network for *Rumex* inferred by PhyloNet's
 238 pseudolikelihood method. Proposed reticulations are indicated by the dashed lines.

239 **Supplementary Tables**

Species	Accession	Origin	Sequenced
<i>R. salicifolius</i>	RUSA-SOS-NV030-421-10	USDA network	GRIN
<i>R. salicifolius</i>	RUSA-SOS-NM930N-92-SANDOVAL-12	USDA network	GRIN
<i>R. trisetifer</i>	TangXS0121	China Genobank	Southwest 3EB, 3L
<i>R. amurensis</i>	Lilan22p	China Genobank	Southwest 3EB, 3L
<i>R. sagittatus</i>	Tsitsikamma National Park	Spencer	
<i>R. scutatus</i>	Valais / Fafleralp / Switzerland	Spencer	3EB, 3L
<i>R. rothschildianus</i> *	Tel Aviv botanical garden	Spencer	
<i>R. thyrsiflorus</i> *	98HT-3 Mongolmort Sum, Tov Aimag	USDA network	GRIN 3EB, 3L
<i>R. thyrsiflorus</i> *	98HT-310 Sinkermandel Sum, Henti Aimag.	USDA network	GRIN 4EB, 4L
<i>R. bucephalophorus</i>			
<i>R. acetosella</i> *			
<i>R. hastatus</i> *			
<i>R. paucifolius</i> *	CBL, Wyoming	Joanna	1EB, 1L
<i>R. paucifolius</i> *	CMC, Wyoming	Joanna	2EB, 2L

240 *Supplementary Table 1*: Sampling origins of sequenced accessions. Under the “sequenced”
241 column, “P” indicates pollen, “EB” indicates early buds, and “L” indicates leaves. Numbers
242 correspond to individuals sampled for each tissue. Dioecious species are indicated with an
243 asterisk.

Contig L50	45
Contig N50	13660000
Scaffold L50	3
Scaffold N50	215375990

244 *Supplementary Table 2*: Genome assembly summary statistics for *R. bucephalophorus*.

ID	gCF	gDF1	gDF2	gN
14	100	0	0	5261
15	68.18	4.19	3.25	5255
16	88.86	2.09	4.09	4695
17	72.82	0.55	2.28	6005
18	76.09	19.72	1.12	5620
19	47.08	21.9	17.02	1680
20	93.69	0.88	1.33	1584
21	69.97	15.07	12.99	1878
22	74.66	0.72	1.2	5011
23	61.34	26.25	1.57	4446

245 *Supplementary Table 3*: Gene concordance factors for each node in the *Rumex* phylogeny (nodes
246 labelled in Supplementary Figure 5). gDF1 and gDF2 indicate the frequencies for the most
247 common and second most common discordant gene tree topologies, respectively. gN indicates
248 the number of gene trees used to calculate each value.

249

ID	sCF	sDF1	sDF2	sN
15	47.02	27.13	25.85	118404.5
16	62.98	18.02	19.01	114758.3
17	56.46	17.42	26.12	103928.7
18	60	31.12	8.88	110316.9
19	45.19	28.43	26.37	27991.59
20	83.65	8.76	7.59	28369.21
21	53.73	14.32	31.95	16367.81
22	84.4	8.35	7.25	112043
23	56.58	37.1	6.32	46551.48

250 *Supplementary Table 4*: Site concordance factors for each node in the *Rumex* phylogeny (nodes
251 labelled in Supplementary Figure 5). sDF1 and sDF2 indicate the frequencies for the most
252 common and second most common discordant site patterns, respectively. sN indicates the mean
253 number of informative sites used to calculate each value.

254

255 **Descriptions of Supplementary Data Files**

256 *Supplementary Data 1*: Flow cytometry results for *R. acetosella*, *R. paucifolius*, *R.*
257 *bucephalophorus*, *R. thrysiflorus*, *R. sagittatus*, *R. salicifolius*, and several unsequenced species.

258 *Supplementary Data 2*: Transcriptome assembly summary statistics for our ten sequenced study
259 species.

260 *Supplementary Data 3*: Δ statistic results applied to *Rumex* transcriptomic data. The P1, P2, and
261 P3 columns indicate the two sister species and the unpaired species in the test, respectively. All
262 tests used tartary buckwheat (*F. tataricum*) as outgroup. A positive test implies introgression
263 between P1 and P3, while a negative test implies introgression between P2 and P3; however, the
264 interpretation of many of these tests is complicated by our proposed ghost introgression events
265 (Figure 2, Supplementary Figures 4 and 5, section “*Signatures of ghost introgression in the*
266 *Rumex* *phylogeny*” in the main text).

267