

1 **TITLE**

2 **Modulation of cell differentiation and growth dynamics underlie the shift from**
3 **bud protection to light capture in cauline leaves.**

4 Le Gloanec C., Gómez-Felipe A., Alimchandani V., Branchini E., Routier-
5 Kierzkowska A-L., Kierzkowski D.*

6 Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques,
7 Université de Montréal, 4101 Sherbrooke St E, Montréal, QC, H1X 2B2 Canada

8 *Correspondence: daniel.kierzkowski@umontreal.ca

9

10 **RUNNING TITLE**

11 Development of the cauline leaf.

12

13 **ONE SENTENCE SUMMARY**

14 The dual function of the cauline leaf in protection and light capture is achieved during
15 development through a delay of cell differentiation, growth redistribution, and
16 transient growth decrease.

17 **ABSTRACT**

18 Plant organs have evolved into diverse shapes for specialized functions despite
19 emerging as simple protrusions at the shoot apex. Cauline leaves serve both as
20 photosynthetic organs and protective structures for emerging floral buds. However,
21 the growth patterns underlying this dual function remain unknown. Here, we
22 investigate the developmental dynamics shaping cauline leaves underlying their
23 functional diversification from other laminar organs. We show that cauline leaves
24 display a significant delay in overall elongation compared to rosette leaves. Using
25 live imaging, we reveal that their functional divergence hinges on early modulation of
26 the timing of cell differentiation and cellular growth rates. In contrast to rosette leaves
27 and sepals, cell differentiation is delayed in cauline leaves, fostering extended
28 proliferation, prolonged morphogenetic activity, and growth redistribution within the
29 organ. Notably, cauline leaf growth is transiently suppressed during the early stages,
30 keeping the leaf small and unfolded during the initiation of the first flowers. Our
31 findings highlight the unique developmental timing of cauline leaves, underlying their
32 shift from an early protective role to a later photosynthetic function.

33 INTRODUCTION

34 Plant lateral organs, such as leaves and flowers, exhibit an incredible diversity of
35 shapes that evolved to ensure their specialized functions and to adapt to their
36 environment. For instance, leaves of different species range from simple to
37 compound with marginal protrusions of varying sizes and shapes (Fukushima and
38 Hasebe, 2014; Vlad et al., 2014). Leaf diversity may also be observed within
39 individual plants as leaf morphology changes during overall plant development – a
40 process called heteroblasty (Nikovics et al., 2006; Yu et al., 2015; Maugarny-Calès
41 and Laufs, 2018; Tang et al., 2023). Furthermore, other flat organs, such as sepals
42 and petals, differ greatly from leaves in their forms and sizes despite deriving from a
43 leaf-like ancestral structure (Bowman et al., 1991; Honma and Goto, 2001; Pelaz et
44 al., 2001).

45 Regardless of their diversity at maturity, all aerial organs are initiated as simple
46 protrusions at the shoot apical meristem (Hervieux et al., 2016; Echevin et al., 2019;
47 Silveira et al., 2022; Burian et al., 2022). All of them are also suggested to follow a
48 common developmental program after initiation (Burko and Ori, 2013; Runions et al.,
49 2017; Challa et al., 2021; Whitewoods et al., 2020). For instance, studies on leaf
50 diversification revealed common growth behaviors at the global and local scales in
51 both simple and compound leaves (Ori et al., 2007; Kierzkowski et al., 2019). Early
52 quantitative alterations of this shared developmental mechanism are believed to
53 account for the strong differences in final leaf shapes (Kierzkowski et al., 2019;
54 Whitewoods et al., 2020; Wang et al., 2022). How this common program is fine-
55 tuned to achieve specific shapes at maturity is still unclear, but involves precise
56 molecular tuning of patterning, growth, and differentiation (Sablowski, 2015;
57 Kierzkowski et al., 2019; Hamant and Saunders, 2020; Whitewoods et al., 2020;
58 Tang et al., 2023).

59 Current evidence suggests that the balance between proliferative growth and
60 differentiation is essential in determining the geometry of laminar organs. For
61 instance, the rate of margin differentiation plays a significant role in shaping leaf
62 forms, with delayed differentiation enabling extended patterning and greater leaf
63 complexity (Donnelly et al., 1999; Shani et al., 2010; Bar and Ori, 2014; Vuolo et al.,
64 2018; Kierzkowski et al., 2019). Local auxin maxima at the margin, facilitated by the
65 PIN-FORMED1 (PIN1) auxin transporter, lead to the formation of protrusions such as

66 serrations or leaflets. However, only undifferentiated cells at the leaf margin are
67 competent to generate auxin maxima and respond to auxin by locally increasing and
68 reorienting growth (Ori et al., 2007; Barkoulas et al., 2008; Bilsborough et al., 2011;
69 Kasprzewska et al., 2015; Ben-Gera et al., 2016; Kierzkowski et al., 2019).

70 Auxin distribution at the margin has also been suggested to act globally by
71 coordinating cellular growth orientations (i.e., growth anisotropy). In leaves, a distal
72 auxin maximum correlates with global growth orientations converging towards the
73 leaf tip, likely underlying organ shape tapering toward the tip (Jaeger et al., 2008;
74 Kuchen et al., 2012). Conversely, petals exhibit a broader pattern of auxin
75 distribution at the margin, which likely leads to the diverging growth anisotropy
76 underlying its distally broadening shape (Green et al., 2010; Lampugnani et al.,
77 2013; Sauret-Güeto et al., 2013). Thus, auxin plays a critical role in guiding organ
78 formation, although the extent to which it operates locally or globally is still a matter
79 of debate (Bilsborough et al., 2011; Kuchen et al., 2012; Kierzkowski et al., 2019;
80 Whitewoods et al., 2020).

81 Understanding how plant organs acquire their shapes is essential in the context of
82 their specific functions. For instance, rosette leaves are large organs optimized for
83 photosynthesis, while sepals are small, protecting the internal floral organs during
84 their development (Roeder et al., 2010; Rodriguez et al., 2014; Bielczynski et al.,
85 2017). Cauline leaves are the last few leaves initiated during the meristem transition
86 from the vegetative to the reproductive phase. On one hand, they are efficient
87 photosynthetic organs, contributing to the plant's overall energy production (Su et al.,
88 2011). However, they also serve as protective structures for emerging floral buds
89 during early bolting stages (Pabón-Mora et al., 2013; Ding et al., 2023). This
90 suggests that the development of these leaves might exhibit characteristics of both
91 rosette leaves and laminar organs of the flower such as sepals (Hempel and
92 Feldman, 1994; Yang and Jiao, 2016). Indeed, when floral identity genes are
93 ectopically expressed in *Arabidopsis*, cauline leaves convert into petal-like organs,
94 while rosette leaf development is unaffected (Krizek and Meyerowitz, 1996; Pelaz et
95 al., 2001). Despite these intriguing features, our understanding of the developmental
96 dynamics of cauline leaves remains unknown.

97 Here, we characterize the developmental mechanisms contributing to the formation
98 of cauline leaves underlying their functional diversification from rosette leaves and
99 sepals in the model species *Arabidopsis thaliana*. We show that cauline leaves
100 display a strong delay in overall elongation compared to rosette leaves. Through
101 quantitative live imaging, we demonstrate that cauline leaf functional divergence
102 mainly relies on the early modulation of two key components: (1) the rate and
103 distribution of cellular growth, and (2) the timing of cell differentiation. In contrast to
104 rosette leaves and sepals, cell differentiation is strongly delayed in the cauline leaf,
105 allowing extended cell proliferation in the leaf blade, prolonged morphogenetic
106 activity at the margin, and growth redistribution within the developing organ.
107 Importantly, cauline leaf growth is transiently suppressed at very early
108 developmental stages, allowing the leaf to stay small and unfolded during the
109 initiation of the first flowers. Overall, our results demonstrate the unique
110 developmental trajectory of the cauline leaf that underlies the transition from its early
111 protective role to the late photosynthetic function.\

112 **RESULTS**

113 **Elongation and unfolding of the cauline leaves are delayed compared to** 114 **rosette leaves.**

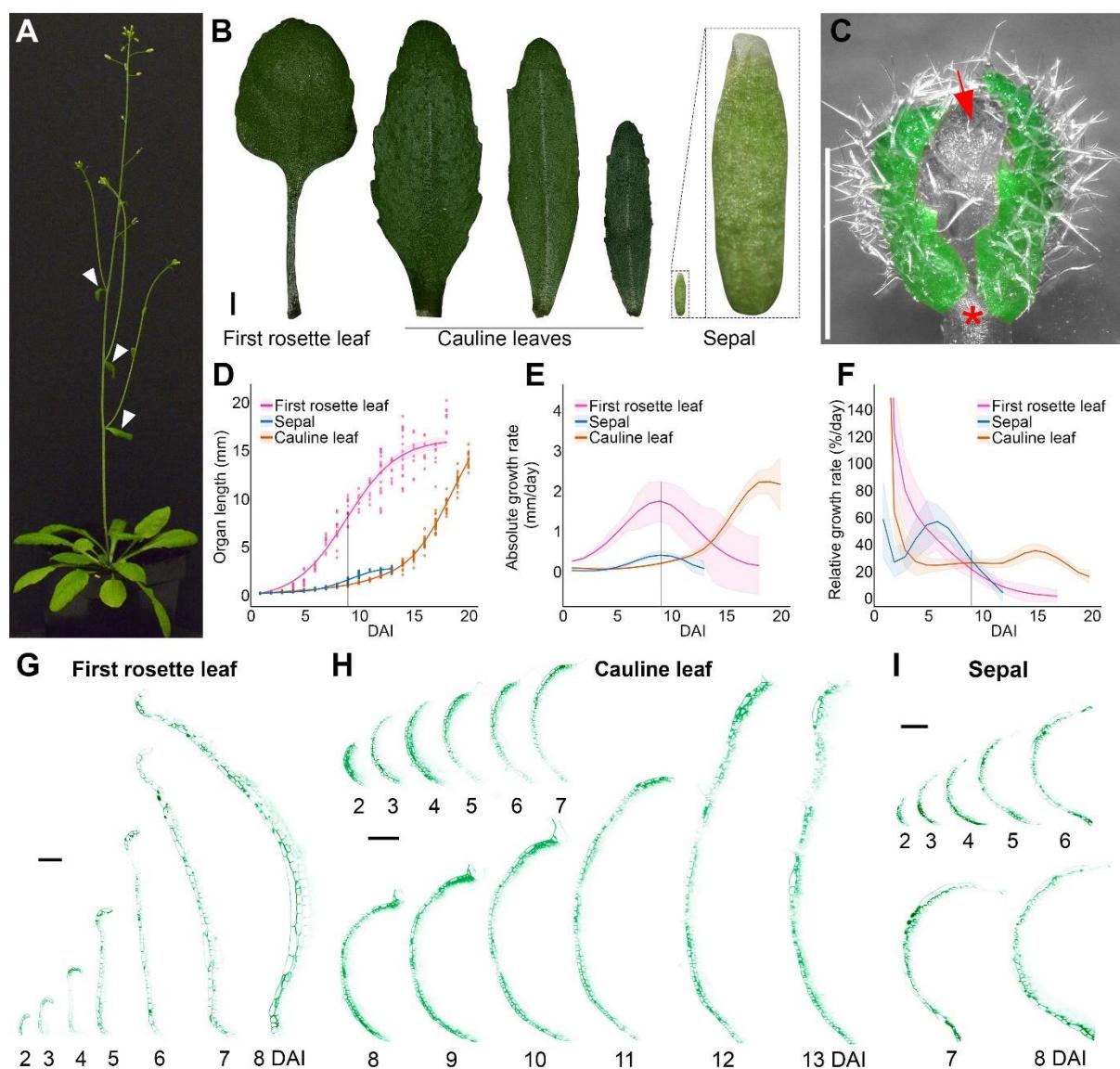
115 Cauline leaves exhibit both vegetative and floral features, as they are initiated from
116 the reproductive meristem (Hempel and Feldman, 1994; Pastore et al. 2011). In
117 contrast to rosette leaves, which have petioles for optimizing light capture, cauline
118 leaves lack petioles but efficiently perform photosynthesis as they are located on the
119 stem, so have direct access to light without being in the shade of other leaves (Fig.
120 1A-B) (Ding et al., 2023). Furthermore, in their early stages, cauline leaves serve as
121 a protective covering for the inflorescence meristem. This role is analogous to the
122 way sepals shield developing internal organs of flowers (Fig. 1C) (Pabón-Mora et al.,
123 2013; Ding et al., 2023). The presence of abaxial trichomes on cauline leaves
124 reinforces their protective function (Fig. 1C) (Karabourniotis et al., 2020; Berhin et
125 al., 2021).

126 We supposed that the dual role of cauline leaves could be reflected in their growth
127 dynamics. Therefore, we characterized the overall elongation of cauline leaves

128 throughout their development and compared them with first rosette leaves and
129 sepals. We derived two different measures of organ growth. The *absolute* elongation
130 rate (in mm/day) simply reflects the increment of organ length over time (Fig. 1E),
131 like earnings on interest in a saving accounts. The *relative* elongation rate (in %/day)
132 shows how fast the organ elongates in proportion to its previous length (Fig. 1F),
133 analog to the interest rate set by a bank. While the absolute elongation rate is more
134 intuitive than the relative rate, the second measures growth independently from
135 organ size and reflects better cell wall expansion.

136 The length of first rosette leaves evolved over time following a characteristic sigmoid
137 shape (Fig. 1D), consistent with previous studies on leaf elongation (Cookson and
138 Granier, 2006; Massonnet et al., 2010; Baerenfaller et al., 2015). The speed at which
139 the first leaf elongated peaked at 9 days after initiation (Abs. rate = 1.8 mm/day \pm 0.5
140 SE at 9 DAI) (fig 1E). This peak corresponded to the middle of the S shape, when
141 the first leaf reached about half its final size and experienced a linear growth phase
142 (fig 1D). Splitting our leaf measurements into petiole and blade length (Fig. S1)
143 showed that they followed slightly different sigmoid functions, with the peak of
144 absolute elongation occurring faster in the blade (at 8 DAI) than in the petiole (at 11
145 DAI), which grew slower but for a longer time (Fig. S1A). By contrast with the
146 measurements of absolute elongation, the relative elongation rate was maximal at
147 the very first days after leaf initiation and decreased rapidly afterwards, reaching
148 around 20%/day at 9DAI (Fig. 1F and Fig. S1C). This fast decrease confirmed
149 previous studies on rosette leaves (Kierzkowski et al., 2019; Le Gloanec et al., 2022;
150 Harline and Roeder, 2023).

151 Growth dynamics in sepals showed similarities with the first rosette leaves, with
152 maximal values of relative elongation rate in the days just after initiation, followed by
153 a fast decrease (Fig. 1F). Sepals experienced their peak of absolute elongation at 9
154 DAI, like the first leaves, although with a much lower rate (0.42 day/mm \pm 0.09 SE)
155 (Fig. 1E), which explains the smaller length of sepals at maturity (2.6 mm \pm 0.2 SE).
156 Ultimately, the low peak of absolute elongation in sepals is due to the slower relative
157 elongation before 9 DAI, preventing the sepal from cumulating length early on
158 (Fig.1D).

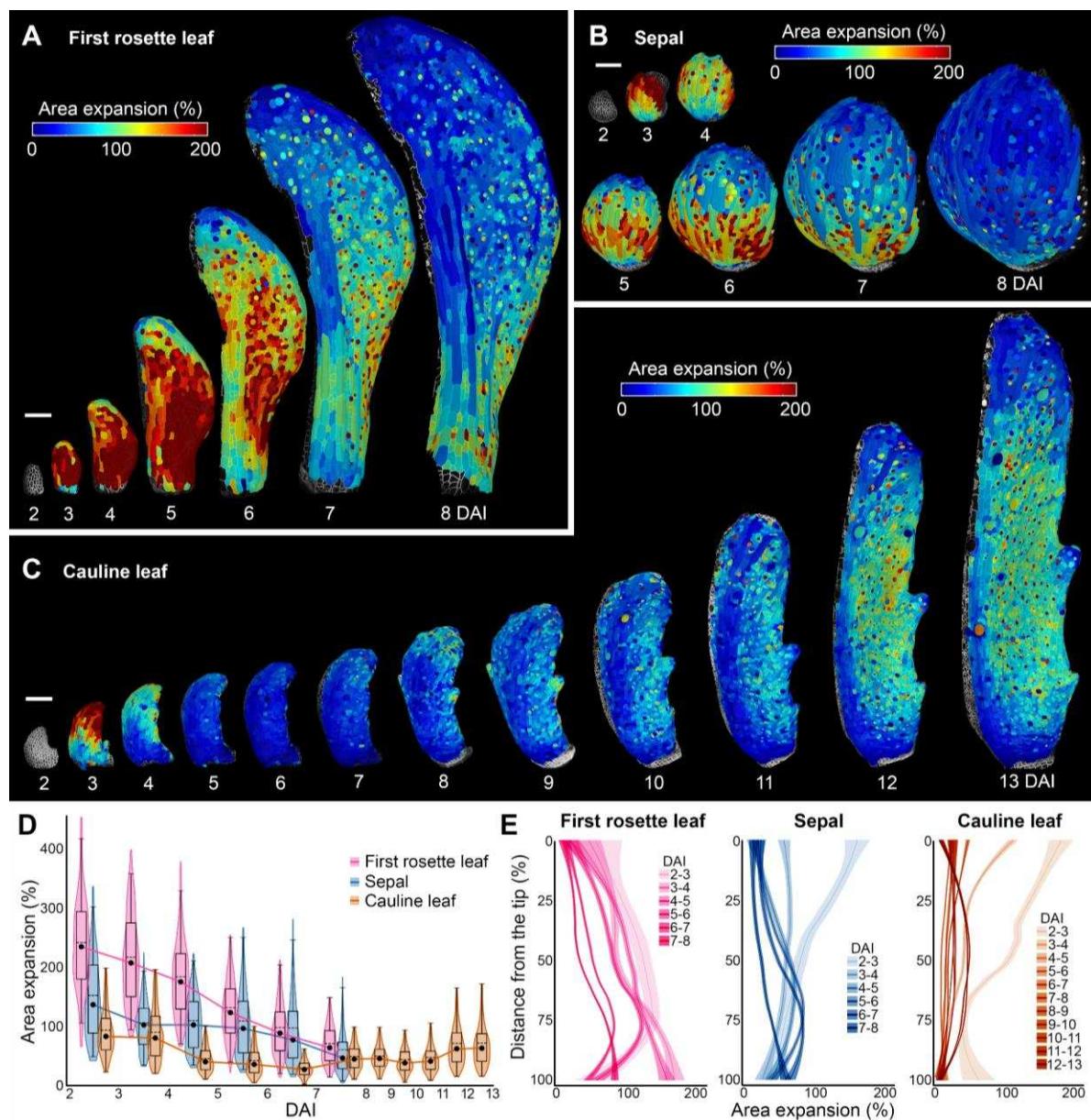

159 Curiously, cauline leaves displayed a very different growth trajectory. Cauline leaves
160 maintained a smaller size than sepals until 13 DAI (Fig.1D), due to a very low
161 absolute elongation rate (Fig.1E). This was caused by a sharp decrease in relative

162 elongation just after initiation and maintenance of a low relative growth rate (around
163 25%/day) between 4DAI and 12 DAI (Fig.1F). The first leaves and sepals reached
164 their final size around 13 DAI, at which point they ceased growing both in absolute
165 and relative terms. By contrast, around 13 DAI, the cauline leaf increased its growth
166 rates, reaching a peak in relative elongation rate at 15 DAI (35 %/day \pm 5 SE),
167 followed by a peak in absolute elongation at 19 DAI. This delayed secondary growth
168 acceleration compensated for early slow growth, allowing cauline leaves to reach the
169 size of first rosette leaves by 21 DAI (Fig. 1D).

170 This transition in growth dynamics may reflect the dual function of the cauline leaf,
171 starting with an early protective role followed by acquisition of photosynthetic
172 competency. If this is true, the geometry of the cauline leaves at early developmental
173 stages should resemble that observed in sepals. To test this hypothesis, we
174 monitored the early primordia development using time-lapse imaging starting from 2
175 days after initiation, when all of them have comparable shape and size (refer to the
176 'Materials and methods' section for details) (Fig. 1G-I). While the sepal remained
177 curved over the floral bud (Fig. 1I), the first rosette leaf began unfolding around 5
178 DAI (Fig. 1G), at the same time as its absolute elongation rate started to increase
179 (Fig. 1E). The cauline leaf remained curled towards the floral bud until 12-13 DAI
180 (Fig. 1H), which also coincides with the onset of its faster absolute elongation (Fig.
181 1E). At their early stages of development, both the first rosette leaf and the cauline
182 leaf could protect their respective meristems. Both organs change their curvature
183 and potentially capture light once entering their fast phase of absolute elongation.
184 The delayed peak of absolute elongation rate for the cauline leaf could help maintain
185 its protective role for an extended period.

186

187


Figure 1. Elongation and unfolding of cauline leaves are delayed compared to rosette leaves. (A) 4-week-old *Arabidopsis thaliana* plant. Cauline leaves are indicated by white arrowheads. (B) First rosette leaf (left), cauline leaves (middle), and sepal (right) at maturity. Inset: close-up view of the sepal. (C) Cauline leaves (colored in green) cover the inflorescence meristem and developing floral buds (red arrow). Star indicates the removed cauline leaf to uncover the initiating flowers. Note the high density of trichomes on the abaxial surface. (D) Organ length plotted against time from initiation to maturity. Points represent independent samples ($n=4-21$ individual measurements). (E) Organ absolute elongation rate. (F) Organ relative elongation rate, showing a clear resurgence of growth in the cauline leaf at later stages. (D-F) The grey line indicates the time of peak absolute growth rate for the first rosette leaf and the sepal, at 9 DAI. (G-I) Digital, longitudinal sections located in the medial part of the developing first rosette leaf (G), cauline leaf (H), and sepal (I). DAI indicates days after primordium initiation. Scale bars: 1 mm in B-C and 100 μ m in G-I. See also Fig. S1.

203 **Cauline leaves display two successive waves of growth at the cellular scale.**

204 We have shown that, similarly to the sepals, in the few days after initiation cauline
205 leaves display slower relative elongation rates than rosette leaves. Subsequently,
206 the relative elongation of cauline leaves accelerates (Fig. 1F), allowing them to catch
207 up in size with rosette leaves (Fig. 1D). To further understand this divergence at the
208 cellular scale, we used our confocal time-lapse imaging pipeline to compute cell area
209 expansion and cell elongation (in relative terms) along the proximodistal and
210 mediolateral organ axes for each cell in the abaxial epidermis using the
211 MorphoGraphX software (Strauss et al., 2022).

212 Just after initiation (2-3 DAI), relative cellular growth in all organs was fast, with the
213 highest growth rates registered in the first rosette leaf (Fig. 2A-D; Fig. S2). In the
214 cauline leaf and sepal, cells located at the organ tip grew the fastest, while at this
215 stage, cellular growth rates were more homogeneous in the first rosette leaf (Fig. 2).
216 From 3 to 7 DAI, we have observed a progressive decrease in growth rates in all
217 organs. However, this decrease was the most dramatic in the cauline leaf (Fig. 2A-
218 E). During this phase, a clear basipetal (from tip to base) gradient of growth was
219 established both in the first rosette leaf and sepal (Fig. 2A-B and D-E; Fig. S2A, C,
220 D, and F), while in the cauline leaf, cellular growth was very low and homogenous all
221 over the organ (Fig. 2C and D-E; Fig. S2B and E). After 7 DAI, the growth rate
222 further decreased in the first rosette leaf and sepal (Fig. 2A-B and D-E). By contrast,
223 the cauline leaf accelerated its growth from around 7-8 DAI, and this increase
224 continued at least until 13 DAI (Fig. 2C-D). Interestingly, cells located at the tip of this
225 leaf were the first to increase their growth rate, especially along the longitudinal axis
226 of the organ (Fig. 2C-E; Fig. S2B and E). A typical basipetal growth gradient started
227 to be visible in the cauline leaf only from around 11 DAI when cells at the leaf tip
228 ceased expanding (Fig. 2C-E; Fig. S2B and E). Overall, these results show that
229 cellular growth rates at early developmental stages of the cauline leaf are much
230 slower than in the rosette leaves. As a result of this early decrease in growth, the
231 cauline leaf transiently maintains a size in the range observed for sepals.
232 Remarkably, while rosette leaves and sepals progressively slow down growth over
233 their development, the cauline leaf increases its growth at later stages. Thus, two
234 successive waves of growth in the cauline leaf seems to enable its dual function.

235

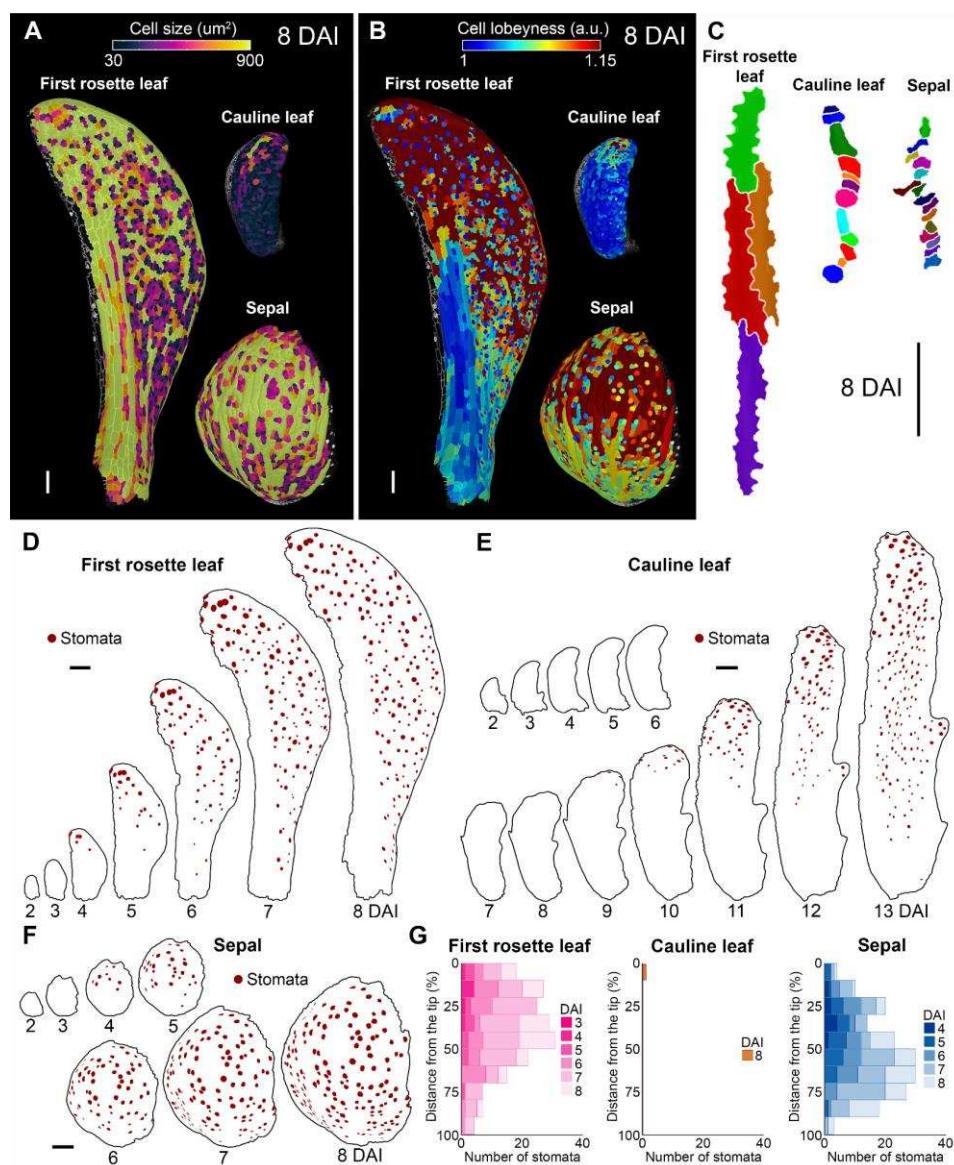
236
237 **Figure 2. Cauline leaf displays two successive waves of growth.** (A-C) Heat maps of
238 area expansion for the *Arabidopsis thaliana* first rosette leaf (A), sepal (B), and cauline leaf
239 (C). (D) Quantifications of area expansion for observed laminar organs. Violin plots and
240 boxplots represent 90% of the values; mean is indicated by a dashed line, median by a black
241 dot connected by a full line (n=810-5827 cells, three independent time-lapse series). (E)
242 Quantifications of area expansion along the proximodistal axis of the first rosette leaf (left),
243 sepal (middle), and cauline leaf (right). Ribbon plots display the normalized distance; the
244 mean is represented by a line, standard deviation by the shaded area (n=58-2626 cells,
245 based on time-lapse series shown in A to C). DAI indicates days after primordium initiation.
246 Scale bars: 100 μ m. See also Fig. S2.

247

248 **Cauline leaf maintains cell divisions during early and late growth phases.**

249 During aerial organ morphogenesis, cells located in fast-growing tissues usually
250 divide more frequently compared to slow-growing areas (Andriankaja et al., 2012;
251 Fox et al., 2018; Zhang et al., 2020; Le Gloanec et al., 2022; Harline and Roeder,
252 2023). Consistently, the basipetal growth decrease in both the first rosette leaf and
253 sepal strongly correlated with the decrease of cell divisions from the organ tip to the
254 base (Fig. 2A, C; Fig. 3A, C). In both organs, cell proliferation activity was first very
255 intensive but quickly decreased at later stages (8 DAI), consistent with a progressive
256 slow down of growth (Fig. 2A, C and D; Fig. 3A, C and D, F). By contrast, the cauline
257 leaf retained its cell proliferative activity until at least 13 DAI, correlating with its
258 prolonged growth phase (Fig. 2B and D; Fig. 3B and E). Surprisingly, cell divisions
259 were also maintained in the cauline leaf during the transition through its phase of
260 slow growth between 4 and 7 DAI (Fig. 2B and D; Fig. 3B and E). Cell divisions and
261 differentiation are intricately linked, and a delay in differentiation often leads to
262 prolonged proliferative activity (Vuolo et al., 2018; Werner et al., 2021; Wu et al.,
263 2021; Gómez-Felipe et al., 2023). This trait of the maintenance of cell division may
264 suggest that cells in the cauline leaf differentiate later than those in sepals and
265 rosette leaves.

266


267
268 **Figure 3. Cauline leaf maintains cell divisions during early and late growth phases.** (A-
269 C) Heat maps of cell divisions for the *Arabidopsis thaliana* first rosette leaf (A), cauline leaf
270 (B), and sepal (C). (D-F) Quantifications of cell divisions in first rosette leaf (A), cauline leaf
271 (B), and sepal (C). Barplots represent the relative proportion of cell divisions, normalized by
272 the total number of cells (n=812-5828 cells, three independent time-lapse series). DAI
273 indicates days after primordium initiation. Scale bars: 100 µm.

274
275
276
277
278
279
280
281
282

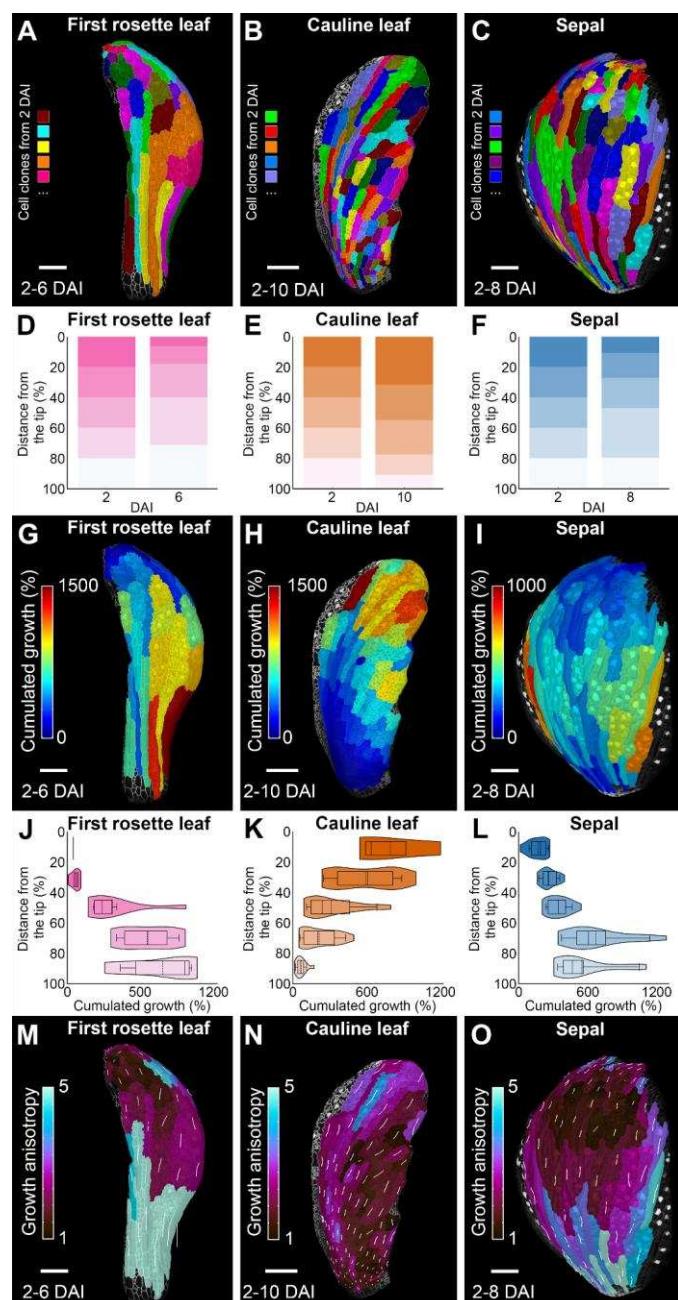
283 **Cell differentiation is delayed in the cauline leaf.**

284 To verify if cell differentiation is indeed delayed in the cauline leaf, we measured
285 morphological markers of epidermal cell differentiation status such as cell size,
286 stomata distribution, and pavement cell lobeyness (Andriankaja et al., 2012;
287 Rodriguez et al., 2014; Sapala et al., 2018; Le Gloanec et al., 2022). At 8 DAI, the
288 epidermis of first rosette leaves and sepals at 8 DAI consisted of big cells, which
289 often developed extensive lobeyness in the leaf blade and margin or distal region of
290 the sepal (Fig. 4A-C; Fig. S3). At this stage, stomata were already present all over
291 the blade of the first rosette leaf and the entire abaxial epidermis of the sepal (Fig.
292 4D, F-G). By contrast, the cauline leaf epidermis, including the leaf margin, was
293 mostly composed of small isodiametric cells. Only a few cells located at the tip of the
294 first rosette leaf started to increase their size and became lobey (Fig. 4A-C; Fig. S3).
295 Occasionally, some individual stomata could be found in the distal region (Fig. 4E
296 and G), indicating that, at this stage, the cauline leaf is mostly undifferentiated and
297 non-photosynthetic. Stomata spread basipetally through the epidermis only at later
298 stages (from 10 to 13 DAI), suggesting a delay in the establishment of
299 photosynthetic activity in this organ (Fig. 4E). Thus, organ differentiation progresses
300 much faster in both the first rosette leaf and sepal while it is markedly delayed in the
301 cauline leaf.

302

304 **Figure 4. Cell differentiation is delayed in the cauline leaf.** (A) Heat maps of cell size in
305 the first rosette leaf (left), cauline leaf (top), and sepal (bottom) at 8 DAI. (B) Heat maps of
306 cell lobeness in the first rosette leaf (left), cauline leaf (top), and sepal (bottom) at 8 DAI.
307 (C) Geometries of representative cells located at the distal margin of the first rosette leaf
308 (left), cauline leaf (middle), and sepal (right) at 8 DAI. (D-F) Stomata distribution in the first
309 rosette leaf (D), cauline leaf (E), and sepal (F). Stomata marked in brown. (G) Quantification
310 of stomatal distribution as a function of the distance from the tip of the organ for the first
311 rosette leaf (left), cauline leaf (middle), and sepal (right). Bar plots represent the number of
312 stomata. (n=1-189 stomata, based on the time-lapse series shown D to F). DAI indicates
313 days after primordium initiation. Scale bars: 100 μm . See also Fig. S3.

314
315


316 **Growth is redistributed in the cauline leaf.**

317 During early development, cauline leaves display a strong delay in cell differentiation
318 compared to the sepals and rosette leaves of the same size (Fig. 4 and Fig. S3). As
319 cell differentiation first occurs in distal portions of these organs, this may lead to an
320 increased contribution of the cells localized at the tip of the early primordium to the
321 final surface of the cauline leaf. Such redistribution of growth, caused by the delay of
322 organ differentiation, has been shown to underlie the development of leaf complexity
323 in Brassicaceae (Kierzkowski et al., 2019).

324 To evaluate this possibility, we computed clonal lineages that developed from cells in
325 early primordia (2 DAI) until all organs reached comparable sizes of around 700 μm
326 (Fig. 5A-C; Fig. S4). Already at this early developmental period, the first rosette leaf
327 displayed smaller clones at the tip, with the marginal cells often stemming from a
328 single cell. In contrast, the basal area grew very fast, producing elongated sectors
329 contributing to over 35% of the organ length at the comparable size of around 700
330 μm (Fig. 5D, G, and J; Fig. S4B, E, and H). Conversely, cells located at the distal
331 region of the early primordium of the cauline leaf grew the fastest and increased their
332 size substantially compared to those at the base (Fig. 5E, H, and K; S4A and D). The
333 contribution of the distal 20% of the primordium surface at 2 DAI increased to around
334 35% of the total organ surface at 10 DAI (Fig. 5E; Fig. S4G). In this respect, the
335 sepal resembled the first rosette leaf, showcasing a greater contribution from basal
336 cells and smaller clones at the tip (Fig. 5F, I, and L; Fig. S4C, F, and I).

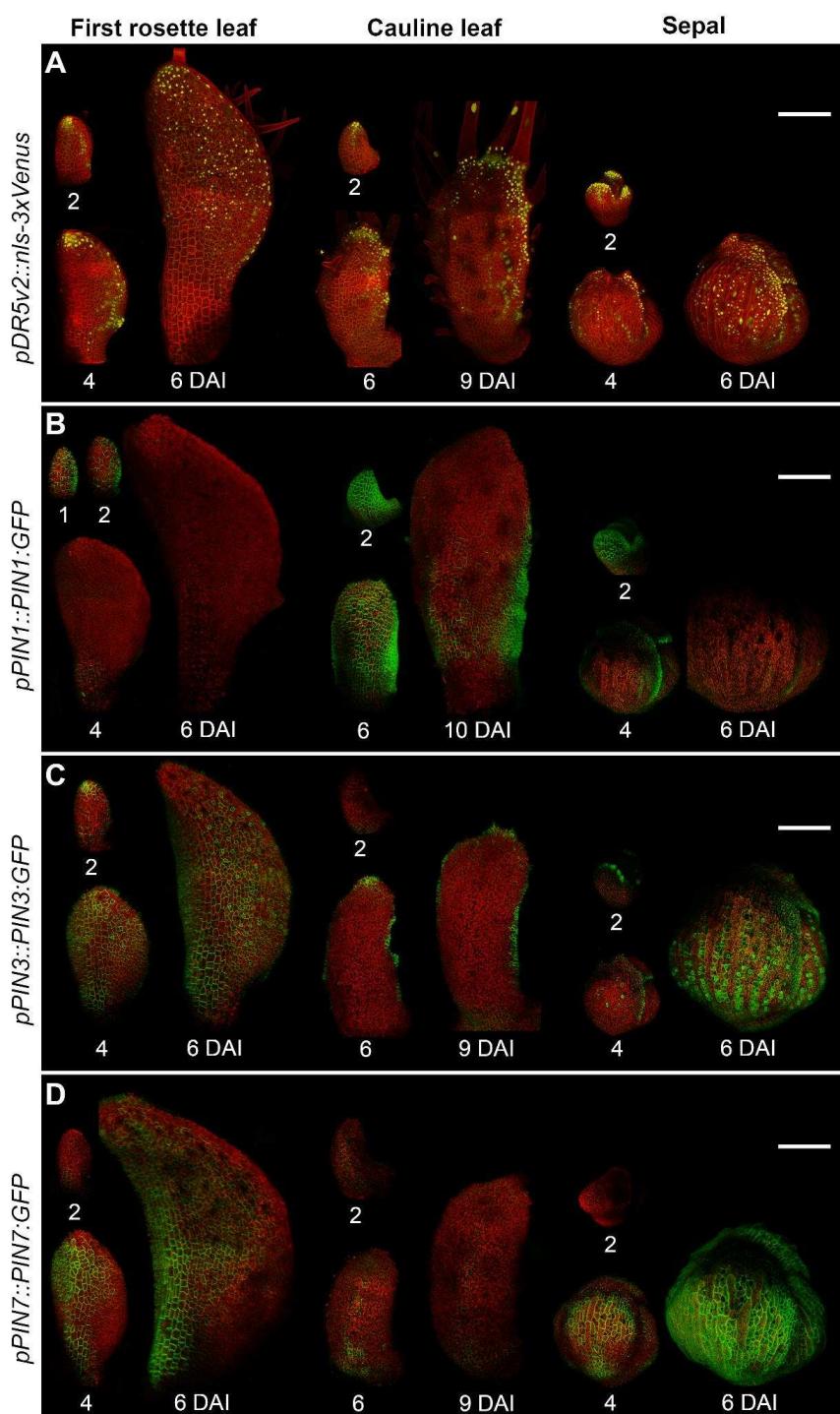
337 Interestingly, the growth anisotropy of the clones in the upper half of the first rosette
338 leaf tended to converge toward its tip (Fig. 5N). On the other hand, sectors in the
339 cauline leaf tended to diverge from the main axis of the organ, pointing toward the
340 distal edges of the leaf (Fig. 5N). To a lesser extent, we also observed divergent
341 growth polarities in the sepal, but these sectors were smaller than those in the
342 cauline leaf as they differentiated and ceased their growth early (Fig. 5M). This
343 divergent growth anisotropy of clones in the cauline leaf may result from the
344 maintained morphogenetic activity of its non-differentiated margin, which could act to
345 reorient growth, as previously observed in the petal (Lampugnani et al., 2013;
346 Sauret-Güeto et al., 2013).

347

348

349 **Figure 5. Growth is redistributed distally in the cauline leaf.** (A-C) Cell lineage tracing
 350 from 2 DAI to the indicated time point (n DAI) in the first rosette leaf (A), cauline leaf (B), and
 351 sepal (C) of comparable size. (D-E) Quantification of the contribution of the clones to the
 352 length of the organ at n DAI in the first rosette leaf (D), cauline leaf (E), and sepal (F) of
 353 comparable size. (G-I) Heat maps of cumulative area expansion (from 2 to n DAI) in the first
 354 rosette leaf (G), cauline leaf (H), and sepal (I). (J-L) Quantification of the cumulative area
 355 expansion (from 2 to n DAI) in the first rosette leaf (J), cauline leaf (K), and sepal (L). (M-O)
 356 Heat maps of growth anisotropy in the first rosette leaf (M), cauline leaf (N), and sepal (O)
 357 between 2 and n DAI (comparable size). Stacked histogram represents the relative
 358 contribution of equal segments at 2 DAI to the organ length at n DAI. Violin plots and
 359 boxplots represent 90% of the values; mean is indicated by a dashed line, median by a line
 360 (n=3-7 clones, based on the sample shown in G to I). DAI indicates days after primordium
 361 initiation. Scale bars: 100 μ m. See also Fig. S3.

362 **Auxin patterning mirrors the differential development of the cauline leaf.**


363 Auxin is a key regulator of cell growth and differentiation (Benková et al., 2003; Ding
364 and Friml, 2010; Di Mambro et al., 2017; Kierzkowski et al., 2019). For instance,
365 auxin maxima at the margin of the leaf and petal are known to locally coordinate
366 cellular growth rates and anisotropy (Barkoulas et al., 2008; Sauret-Güeto et al.,
367 2013; Fox et al., 2018; Kierzkowski et al., 2019; Zhang et al., 2020). To investigate if
368 auxin patterning could underlie the differential growth observed in cauline leaves, we
369 first monitored auxin responsiveness during organ development using the *DR5v2*
370 reporter (Liao et al., 2015). At early stages (~2 DAI), *DR5v2* signal was detected
371 mainly at the tip of the first rosette leaf, and this localization was largely maintained
372 at 4 DAI (Fig. 6A). At later stages (~6 DAI), the *DR5v2* signal started to expand
373 basally throughout the leaf epidermis of the first rosette leaf (Fig. 6A). Interestingly,
374 after the initial tip localization at 2 DAI, *DR5v2* signal extended along the distal edges
375 of the cauline leaf but did not spread throughout the leaf blade at later stages (Fig.
376 6B). In contrast to both types of leaves, *DR5v2* domain was broader in the distal
377 margin of the sepal from its initiation (Fig. 6C). Like in the cauline leaf, auxin
378 responsiveness was strong in the sepal margin but also spread through the sepal
379 epidermis as in the first rosette leaf (Fig. 6C). A broad marginal distribution of the
380 *DR5v2* signal along the margins correlated with divergent growth anisotropy of the
381 clones in both sepals and cauline leaves (Fig. 5). This suggests that auxin
382 accumulation in this domain could locally reorient the growth away from the organ tip
383 as previously observed in petals (Lampugnani et al., 2013; Sauret-Güeto et al.,
384 2013). However, this effect was weaker in sepal as its tip quickly differentiated and
385 stopped growing (Fig. 2B; Fig. 4A-C, and F-G).

386 Auxin distribution throughout the tissue is mainly regulated by auxin efflux carriers
387 from the *PINFORMED (PIN)* family. Therefore, we next monitored the distribution
388 patterns of the *GFP* fusion lines of *PIN1*, *PIN3*, and *PIN7*, which are known to be
389 involved in leaf development (Barkoulas et al., 2008; Guenot et al., 2012; Abley et
390 al., 2016; Mansfield et al., 2018). At early stages (1-2 DAI), *PIN1* was present
391 throughout the epidermis of all three organs (Fig. 6B). This *PIN1* expression was
392 quickly eliminated from the epidermis of the first rosette leaf at around 4 DAI and
393 was restricted to the organ margin in the sepal (Fig. 6B). Interestingly, *PIN1* signal
394 persisted throughout abaxial epidermis of the cauline leaf until at least 6 DAI, and

395 later was still present in the proximal and lateral regions of the leaf coinciding with
396 the initiation of the marginal serrations (Fig. 6B).

397 *PIN3* was expressed at the tip of the first rosette leaf and sepal from 2 DAI, while it
398 was absent at this stage in the cauline leaf (Fig. 6C). The *PIN3* expression domain
399 quickly (from 4 DAI) expanded basally through the epidermis of the first rosette leaf,
400 while it was restricted to the margin of the cauline leaf (Fig. 6C). The sepal displayed
401 an intermediate *PIN3* expression pattern: first being restricted to the organ margin at
402 4 DAI, then later expanding throughout the abaxial epidermis at 6 DAI (Fig. 6C).
403 Finally, *PIN7* expression was absent at 2 DAI in all organs, and then quickly
404 expanded through the epidermis of the first rosette leaf and sepal while it was only
405 briefly detected in the medial and proximal regions of the cauline leaf at around 6
406 DAI (Fig. 6D). Altogether, we found striking differences in auxin patterning that could
407 underlie the differential growth and differentiation patterns between these three
408 laminar organs.

409

410

411 **Figure 6. Auxin patterning mirrors the differential development of the cauline leaf.** (A)
412 Expression patterns of *pDR5v2::nls-3xVenus* in the first rosette leaf (left), cauline leaf
413 (middle), and sepal (right). (B) Expression patterns of *pPIN1::PIN1-GFP* in the first rosette
414 leaf (left), cauline leaf (middle), and sepal (right). (C) Expression patterns of *pPIN3::PIN3-GFP*
415 in the first rosette leaf (left), cauline leaf (middle), and sepal (right). (D) Expression
416 patterns of *pPIN7::PIN7-GFP* in the first rosette leaf (left), cauline leaf (middle), and sepal
417 (right). Autofluorescence and TDT in red; Venus in yellow; GFP in green. DAI indicates days
418 after primordium initiation. Scale bars: 100 μ m.
419

420 **DISCUSSION**

421 In this study, we performed a detailed cell-level analysis of development in the
422 caulin leaf and uncovered what sets it apart from other aerial organs, such as
423 rosette leaves and sepals. We revealed that two main factors drive its functional
424 distinction: (1) the timing of cell differentiation and (2) the speed and distribution of
425 cellular growth. More specifically, caulin leaves experience a strong delay in cell
426 maturation (Fig. 3; Fig. 7). Consequently, they display an extended period of
427 proliferative activity and a global redistribution in growth towards the more distal
428 parts of the organ (Fig. 2; Fig. 4; Fig. 5; Fig. 7). Remarkably, caulin leaves undergo
429 a transient phase of slow expansion followed by a resumption of rapid growth (Fig. 1;
430 Fig. 2).

431 Tuning cell differentiation is known to be critical for shaping plant organs (Efroni et
432 al., 2010; Rodriguez et al., 2014; Alvarez et al., 2016). For example, delaying the
433 transition from cell proliferation to cell maturation by class I Knotted-like Homeobox
434 (*KNOX1*) genes has been shown to be a key component allowing the development of
435 complex leaf shape (Hay and Tsiantis, 2006; Barth et al., 2009; Nakayama et al.,
436 2014; Kierzkowski et al., 2019; Wang et al., 2022). Interestingly, the expression of
437 *KNOX1* genes leads to a redistribution of growth within the organ, resulting in an
438 increased contribution of distal organ regions to the final organ shapes (Kierzkowski
439 et al., 2019). A similar mechanism has been observed in floral organs such as
440 petals, where a broad distal region develops only when cell differentiation is
441 suppressed by the action of *JAGGED* (*JAG*), which downregulates cell cycle
442 inhibitors (Schiessl et al., 2012). Consistently, the delay of cell differentiation in
443 caulin leaf also correlates with a greater contribution of its distal region to the organ
444 surface (Fig. 5), suggesting that delaying the basipetal progression of cell
445 differentiation may be a general mechanism for how plant organs change their
446 proportions.

447 Interestingly, the transition from juvenile to adult phases in *Arabidopsis* leaves
448 controlled by SQUAMOSA-promoter binding protein-like (*SPL*) genes has also been
449 found to influence leaf morphology by delaying maturation while promoting growth
450 and cell divisions in an age-dependent manner (Schwarz et al., 2008; Xu et al.,
451 2016; He et al., 2018; Tang et al., 2023). *SPL10* has been shown to target genes

452 involved in the cell cycle regulation, such as *CYCLIN D3;3* and *A2;3* (*CYCD3;3* and
453 *CYCA2;3*) (Tang et al., 2023). As the cauline leaf marks the extremity of the
454 heteroblastic series, the regulation of *SPLs* may underlie the strong delay in cell
455 maturation observed in this organ. Indeed, repression of *SPL10* genes results in
456 noticeable morphological changes in the cauline leaf, converting its shape towards
457 the rosette leaf, including the development of a broader leaf blade (Shikata et al.,
458 2009; Huijser and Schmid, 2011).

459 Auxin is known to accelerate cell differentiation and growth in *Arabidopsis* rosette
460 leaves (Challa et al., 2019; Kierzkowski et al., 2019; Zhang et al., 2020). Here, we
461 found that faster progression of the overall cell differentiation correlates with an early
462 basipetal spread of auxin sensing through the abaxial epidermis of both sepal and
463 first rosette leaf (Fig. 6). This early spread was associated with the elimination of the
464 *PIN1* auxin efflux carrier from the abaxial epidermis that was quickly replaced by the
465 basally progressing expression of *PIN3* and *PIN7* transporters (Fig. 6). By contrast,
466 we observed a prolonged expression of *PIN1*, and the corresponding restriction of
467 auxin sensing to the margin of the cauline leaf (Fig. 6). This data is consistent with
468 recent results from the gynoecium where changes in *PIN*-mediated polar auxin
469 transport were tightly correlated with the onset of cell differentiation in the style
470 (Gómez-Felipe et al., 2023). Thus, modulation of active polar auxin transport may be
471 broadly involved in controlling the basipetal progression of cell differentiation through
472 lateral organs in plants.

473 Our findings indicate that marginal cells in rosette leaves undergo early
474 differentiation, while in the cauline leaf, cells remain smaller and mainly
475 undifferentiated (Fig. 4). *PIN3* expression expanded during the early stages of the
476 cauline leaf development and coincided with broad redistribution of *DR5v2* signal
477 through the distal margin (Fig. 6). Such *PIN3*-mediated auxin redistribution at the
478 margin has been suggested to coordinate growth orientations in the petal, leading to
479 the creation of the divergent growth polarity in its distal end (Lampugnani et al.,
480 2013; Sauret-Güeto et al., 2013). A similar mechanism seems to operate during the
481 early development of the cauline leaf, where growth in the distal blade is oriented
482 toward its margin (Fig. 5). However, such reorientation of growth in the cauline leaf
483 and petal may occur only because of their general delay in cell differentiation in the

484 epidermis. In sepals, despite broad distribution of *PIN3*, higher accumulation of
485 DR5v2 signal, and smaller cells at the margins, the early onset of basipetal gradient
486 of differentiation in the epidermis quickly reduces the ability to reorient growth toward
487 the margin.

488 Interestingly, both petal and cauline leaves are bent toward the inside of the flower
489 for a prolonged period and do not quickly unfold like rosette leaves (Fig. 1) (Smyth et
490 al., 1990; Pabón-Mora et al., 2013). The delay of differentiation combined with the
491 distally localized growth in the early cauline leaf may help to prevent its early
492 unfolding. While the mechanism underlying this change in curvature remains
493 unclear, current evidence suggests that it likely involves differential growth between
494 both organ surfaces (Zhao et al., 2020; Jiao et al., 2021; Yadav et al., 2023). Such
495 growth asymmetry might be controlled by the differential gene expression during the
496 establishment of organ polarity. For instance, *ARF3* or *ETTIN* marks the abaxial side
497 of the incipient leaf primordia and was shown to regulate the elongation of the valve
498 tissue in the gynoecium (Andres-Robin et al., 2018; Burian et al., 2022).

499 In contrast to rosette leaves, which exhibit a sigmoid growth curve influenced by leaf
500 age (Cookson and Granier, 2006; Baerenfaller et al., 2015), cauline leaves display a
501 distinct pattern: an initial rapid decline in growth rates, followed by a surprising
502 growth resumption (Fig. 1; Fig. 2). Although genetically induced delay of cell
503 differentiation is known to cause decrease in growth rates (Kierzkowski et al., 2019;
504 Wang et al., 2022), the temporary slow down in cell expansion followed by an
505 acceleration of growth has never been documented during normal development of
506 *Arabidopsis* leaves. However, such growth dynamics is characteristic for some floral
507 organs, such as petals and filaments of the stamen (Smyth et al., 1990; Sauret-
508 Güeto et al., 2013; Silveira et al., 2022). The genetic factors driving late-stage
509 acceleration in growth remain unclear but phytohormones such as auxin, jasmonate,
510 and gibberellins are believed to be key players, especially in the growth resumption
511 of the stamen (Nagpal et al., 2005; Reeves et al., 2012; Cecchetti et al., 2013;
512 Huang et al., 2020; He et al., 2023). Given the genetic proximity between cauline
513 leaves and floral organs (Krizek and Meyerowitz, 1996; Pelaz et al., 2001), it would
514 be interesting to investigate whether similar mechanisms govern cauline leaf
515 development to help fulfill its dual function.

516 Finally, growth cessation also occurs during bud dormancy when the shoot apex
517 inhibits axillary bud development - a phenomenon known as apical dominance
518 (Junttila and Hänninen, 2012; Bredmose and Costes, 2017). Cauline leaves are
519 initiated before the onset of the dormancy of the axillary buds, thus molecular signals
520 controlling apical dominance and bud dormancy may also be involved in the
521 transient partial inhibition of growth and subsequent growth resumption in these
522 leaves (Rinne et al., 2011; Cooke et al., 2012; Liu et al., 2016; Salem et al., 2018;
523 Hao et al., 2019; Martignago et al., 2020).

524 Our quantitative study brought new insights into the crucial role of temporal
525 dynamics in orchestrating proper morphogenesis and functional maturation in
526 laminar organs in plants. It provides a solid framework to investigate the molecular
527 mechanisms underlying the development of the cauline leaf, enabling its transition
528 from protection to photosynthesis. Such an approach could offer a deeper
529 understanding of how these organs, originating from a common ancestor, have
530 evolved to fulfill distinct functional roles.

531

532

533

534

535

536

537

538 **Figure 7. Quantitative modulation of growth and differentiation underlies cauline leaf**
539 **development.** Schematic representation of *A. thaliana* first rosette leaf, cauline leaf, and
540 sepal shapes. Growth rates are depicted through blue-red gradients and differentiation rates
541 by black-grey gradients, while the white color indicates the temporal distribution of auxin at
542 specific developmental time points. All organs initiate as finger-shaped, fast-growing
543 primordia that are curled toward meristems. In the first rosette leaf, growth and differentiation
544 gradients are rapidly established, accompanied by auxin redistribution throughout the
545 epidermis, and the leaf unfolds quickly. Growth and differentiation gradients in the sepal also
546 rapidly progress; auxin is redistributed throughout the leaf margin and the epidermis, and the
547 organ remains curled toward the flower. In contrast, the cauline leaf undergoes a transient
548 slow-growing phase when cells remain undifferentiated, and auxin is retained at its distal
549 margin. During this slow-growing phase, the cauline leaf stays curled toward the
550 inflorescence. At late stages, growth rates increase again, gradients of growth and
551 differentiation start to progress, and the leaf unfolds. DAI indicates days after primordium
552 initiation.

553

554

555

556

557

558 **MATERIAL AND METHODS**

559 **Plant material and growth conditions**

560 The following *Arabidopsis thaliana* transgenic lines were used in this study:
561 *pUBQ10::myr-YFP* (Willis et al., 2016), *pUBQ10::PM-TDT* (Melnyk et al., 2015),
562 *pDR5v2::nls-3xVenus* (Liao et al., 2015), *pPIN1::PIN1-GFP* (Heisler et al., 2005),
563 *pPIN3::PIN3-GFP* (Žádníkova et al., 2010), and *pPIN7::PIN7-GFP* (Belteton et al.,
564 2018). All lines are in the Col-0 background except for the DR5 reporter line, which is
565 in the Columbia/Utrecht background. *pDR5v2::nls-3xVenus* was crossed with
566 *pUBQ10::PM-TDT* and observed in the 5th generation. Seeds were stratified in the
567 dark for two days at 4°C to synchronize germination. Plants were grown on soil in a
568 growth chamber under long-day conditions (16h/8h light/dark period, 95 $\mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$)
569 at 22 \pm 1°C with 60-70% relative humidity.

570

571 **Quantification and statistical analysis**

572 Python scripts were used to generate plots in Figures 1D, 2D, F, H, 3, and 5, and
573 Supplemental Figures 2 and 3, while R scripts were used for Figures 2E, G, I, and 4.
574 Violin plots represented value distributions, encompassing 90% of the data. Ribbon
575 plots indicated the mean with shaded areas representing standard deviations.
576 Stacked histograms assessed the relative contribution of equal segments at 2 DAI
577 during specific time points. Barplots represented the relative proportions of each
578 value per time point using bars.

579

580 **Organ-scale time-lapse imaging and length measurements**

581 Plants cultivated under the above-described conditions were standardized by
582 selecting individuals of comparable sizes. Individual first rosette leaves were excised
583 starting from 2-day-old plants every 24 h. Cauline leaves were dissected starting
584 from 10-day-old plants every 24 h. Three successive cauline leaves from the same
585 plant were imaged. Abaxial sepals of the first flowers were imaged every 24 h
586 starting from 20-days-old-plant. All images were acquired using a Keyence digital
587 microscope model VHX-970F. The lengths of all organs were measured using Fiji
588 following the abaxial surface from the base to the tip of the organ (Rasband et al.,
589 1997-2018).

590

591

592 **Analysis of organ-scale growth**

593 Time-lapse measurements of organ length from the developing leaves, cauline
594 leaves, and sepals were fitted to an analytical function $L(t)$. A sigmoid function
595 $L(t) = \frac{a}{1+e^{(-c(t-b))}} + d$, where t is the time in days, was fitted to the rosette leaf, its
596 blade and petiole (Fig. 1D; Fig. S1) using *optimize.curve_fit* from SciPy. Splines
597 were used to fit the length of the cauline leaf and sepal using *interpolate.BSpline* and
598 *interpolate.splerep* with smoothing condition $s = 0.1$ from SciPy. Absolute growth
599 rate (AGR), defined as the first derivative over time of the fitted function $L(t)$, was
600 calculated using the *gradient* function in NumPy (Fig. 1E). Relative growth rate

601 (RGR) in %/day was defined as $R(t) = 100 e^{(r(t)-1)}$, where $r(t) = \frac{\ln\left(\frac{L(t)}{L(t-\Delta t)}\right)}{\Delta t}$, and was
602 calculated from the fitted $L(t)$ function (Fig. 1F).

603

604 **Confocal time-lapse imaging**

605 For cauline leaf, cotyledons and older leaf primordia were removed using fine
606 tweezers or an injection needle from two-week-old plants to expose the initiating
607 cauline leaf primordium. The dissected plants were placed horizontally in Ø60 mm
608 Petri dishes filled with ½ Murashige and Skoog (MS) medium, supplemented with
609 1.5% agar, 1% sucrose, and 0.1% Plant Protective Mixture (Plant Cell Technology).
610 Plants were immersed in water containing 0.1% PPM for imaging. For each replicate,
611 at least half of the abaxial leaf surface was imaged at 24 h intervals for up to 10
612 days. Between imaging, water was removed, and samples were cultured in vitro
613 under standard long-day conditions in a growth chamber. The images shown in
614 Figures 2A, 3A, and 4D and Supplemental Figures S2A, D, and S3A, D are derived
615 from two independent overlapping series (2-7 DAI and 8-13 DAI). Time-lapse
616 imaging of juvenile leaves and sepals was previously described (Hervieux et al.,
617 2016; Le Gloanec et al., 2022).

618 All confocal imaging was performed with an LSM800 upright confocal microscope
619 using a long-distance water-dipping objective (AP 40X/1.0; Zeiss). Excitation was
620 performed using a diode laser with 488 nm for YFP, GFP, Venus, and 561 nm for
621 TDT and autofluorescence. Images were collected at 500-550 nm for YFP, GFP, and
622 Venus, 560-650 nm for TDT, and 600-700 nm for autofluorescence. Confocal stacks

623 were acquired at 512x512 resolution and 16-bit image depth, with 0.5-2 μm distance
624 in Z-dimension. Imaging was performed with the same confocal settings for each
625 fluorescence marker line. For samples larger than the field of view, multiple
626 overlapping stacks were obtained and later stitched together using MorphoGraphX
627 (Barbier de Reuille et al., 2015; Strauss et al., 2022).

628

629 **Confocal Image analysis**

630 Cellular growth and expression quantifications were conducted using
631 MorphoGraphX. Stacks were processed as described previously (Le Gloanec et al.,
632 2022). After digitally removing the trichomes when necessary, the organ surface was
633 detected with the 'Edge detect' tool with a threshold of 6000-13000, followed by the
634 'Edge detect angle' (3000-6500). An initial 5 μm cube size mesh was then created
635 and subdivided three times before projecting the membrane signal (2-5 μm).

636 Cell segmentation and parent attribution were performed manually. Verification of
637 cell parenting was done using 'Check correspondence'. Lineages over multiple days
638 were calculated as described previously and manually corrected when required
639 (Kierzkowski et al., 2019). Stomata were identified manually based on their
640 morphology and developmental trajectory (Le Gloanec et al., 2022).

641 Metrics such as area expansion, cell proliferation, growth anisotropy, lobeyness, and
642 cell size were computed as described before (Barbier de Reuille et al., 2015; Sapala
643 et al., 2018). Growth rates along proximodistal and mediolateral axes were
644 determined using a custom Bezier grid, manually adjusted to follow the organ
645 geometry at each time point closely. Proximodistal and mediolateral distances from
646 the organ base were calculated using the 'Cell distance' plugin, employing the
647 'Euclidean' parameter.

648 All figures were assembled using Adobe Photoshop or Adobe Illustrator software.

649

650 **ACKNOWLEDGMENTS**

651 We thank Bingham Wang and Jerome Burkiewicz for their assistance with data
652 analysis and Charlotte Kirchhelle, Etienne Léveillé-Bourret, Vishwadeep Mane,
653 Jason Reed, and Sylvia R. Silveira for suggestions and critical reading of the
654 manuscript.

655

656 **AUTHOR CONTRIBUTIONS**

657 C.L., A.-L.R.-K., and D.K. conceived the project and its components. C.L. and A.G.-
658 F. designed and performed the experiments. C.L., A.G.-F., and V.A. analyzed the
659 data. C.L., E.B., and D.K. drafted the manuscript. A.G.-F., V.A., and A.-L.R.-K.
660 revised the manuscript. A.-L.R.-K. and D.K. supervised and funded the project.

661

662 **FUNDING**

663 This work was supported by Discovery grants (RGPIN-2018-05762 and RGPIN-
664 2018-04897) from the Natural Sciences and Engineering Research Council of
665 Canada to Daniel Kierzkowski and Anne-Lise Routier-Kierzkowska respectively, as
666 well as Fonds de Recherche du Québec Nature et Technologies Team Grant (2021-
667 PR-282285) to Daniel Kierzkowski and Anne-Lise Routier-Kierzkowska.

668

669 **DATA AVAILABILITY**

670 The data used to extract growth and all scripts used to analyze data are available to
671 download from the Open Science Framework repository (link to be provided).

672

673 **AUTHOR NOTES**

674 The author responsible for distribution of materials integral to the findings presented
675 in this article in accordance with the policy described in the Instructions for Authors
676 (<https://academic.oup.com/plcell/pages/General-Instructions>) is Daniel Kierzkowski
677 (daniel.kierzkowski@umontreal.ca).

678 *Conflict of interest statement.* None declared.

679 **REFERENCES**

680 **Abley, K., Sauret-Güeto, S., Marée, A.F.M., and Coen, E.** (2016). Formation of
681 polarity convergences underlying shoot outgrowths. *Elife* **5**: e18165.
682 <https://doi.org/10.7554/eLife.18165>

683 **Alvarez, J.P., Furumizu, C., Efroni, I., Eshed, Y., and Bowman, J.L.** (2016). Active
684 suppression of a leaf meristem orchestrates determinate leaf growth. *Elife* **5**:
685 e15023. <https://doi.org/10.7554/eLife.15023>

686 **Andres-Robin, A., Reymond, M.C., Dupire, A., Battu, V., Dubrulle, N., Mouille,
687 G., Lefebvre, V., Pelloux, J., Boudaoud, A., Traas, J., Scutt, C.P., and Monéger,**

688 **F.** (2018). Evidence for the regulation of gynoecium morphogenesis by ETTIN via
689 cell wall dynamics. *Plant Physiol.* **178**: 1222–1232.
690 <https://doi.org/10.1104/pp.18.00745>

691 **Andriankaja, M., Dhondt, S., DeBodt, S., Vanhaeren, H., Coppens, F., DeMilde,**
692 **L., Mühlenbock, P., Skirycz, A., Gonzalez, N., Beemster, G.T.S., and Inzé, D.**
693 (2012). Exit from proliferation during leaf development in *Arabidopsis thaliana*: a not-
694 so-gradual process. *Dev. Cell* **22**: 64–78.
695 <https://doi.org/10.1016/j.devcel.2011.11.011>

696 **Baerenfaller, K., Massonnet, C., Hennig, L., Russenberger, D., Sulpice, R.,**
697 **Walsh, S., Stitt, M., Granier, C., and Gruissem, W.** (2015). A long photoperiod
698 relaxes energy management in *Arabidopsis* leaf six. *Curr. Plant Biol.* **2**: 34–45.
699 <https://doi.org/10.1016/j.cpb.2015.07.001>

700 **Bar, M. and Ori, N.** (2014). Leaf development and morphogenesis. *Development*
701 **141**: 4219–4230. <https://doi.org/10.1242/dev.106195>

702 **Barbier de Reuille, P. et al.** (2015). MorphoGraphX: A platform for quantifying
703 morphogenesis in 4D. *Elife* **4**: 05864. <https://doi.org/10.7554/eLife.05864>

704 **Barkoulas, M., Hay, A., Kougioumoutzi, E., and Tsiantis, M.** (2008). A
705 developmental framework for dissected leaf formation in the *Arabidopsis* relative
706 *Cardamine hirsuta*. *Nat. Genet.* **40**: 1136–1141. <https://doi.org/10.1038/ng.189>

707 **Barth, S., Geier, T., Eimert, K., Watillon, B., Sangwan, R.S., and Gleissberg, S.**
708 (2009). KNOX overexpression in transgenic *Kohleria* (Gesneriaceae) prolongs the
709 activity of proximal leaf blastozones and drastically alters segment fate. *Planta* **230**:
710 1081–1091. <https://doi.org/10.1007/s00425-009-0997-0>

711 **Belteton, S.A., Sawchuk, M.G., Donohoe, B.S., Scarpella, E., and Szymanski,**
712 **D.B.** (2018). Reassessing the roles of PIN proteins and anticlinal microtubules during
713 pavement cell morphogenesis. *Plant Physiol.* **176**: 432–449.
714 <https://doi.org/10.1104/pp.17.01554>

715 **Ben-Gera, H., Dafna, A., Alvarez, J.P., Bar, M., Mauerer, M., and Ori, N.** (2016).
716 Auxin-mediated lamina growth in tomato leaves is restricted by two parallel

717 mechanisms. *Plant J.* **86**: 443–457. <https://doi.org/10.1111/tpj.13188>

718 **Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D.,**
719 **Jürgens, G., and Friml, J.** (2003). Local, efflux-dependent auxin gradients as a
720 common module for plant organ formation. *Cell* **115**: 591–602.

721 [https://doi.org/10.1016/S0092-8674\(03\)00924-3](https://doi.org/10.1016/S0092-8674(03)00924-3)

722 **Berhin, A., Nawrath, C., and Hachez, C.** (2021). Subtle interplay between trichome
723 development and cuticle formation in plants. *New Phytol.* **233**: 2036–2046.

724 <https://doi.org/10.1111/nph.17827>

725 **Bielczynski, L.W., Łącki, M.K., Hoefnagels, I., Gambin, A., and Croce, R.** (2017).
726 Leaf and plant age affects photosynthetic performance and photoprotective capacity.
727 *Plant Physiol.* **175**: 1634–1648. <https://doi.org/10.1104/PP.17.00904>

728 **Bilsborough, G.D., Runions, A., Barkoulas, M., Jenkins, H.W., Hasson, A.,**
729 **Galinha, C., Laufs, P., Hay, A., Prusinkiewicz, P., and Tsiantis, M.** (2011). Model
730 for the regulation of *Arabidopsis thaliana* leaf margin development. *Proc. Natl. Acad.*
731 *Sci. U. S. A.* **108**: 3424–3429. <https://doi.org/10.1073/pnas.1015162108>

732 **Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M.** (1991). Genetic interactions
733 among floral homeotic genes of *Arabidopsis*. *Development* **112**: 1–20.

734 <https://doi.org/10.1242/dev.112.1.1>

735 **Bredmose, N. and Costes, E.** (2017). Axillary bud growth. In *Reference Module in*
736 *Life Sciences* (Elsevier). <https://doi.org/10.1016/B978-0-12-809633-8.05056-1>

737 **Burian, A., Paszkiewicz, G., Nguyen, K.T., Meda, S., Raczyńska-Szajgin, M., and**
738 **Timmermans, M.C.P.** (2022). Specification of leaf dorsiventrality via a prepatterned
739 binary readout of a uniform auxin input. *Nat. Plants* **8**: 269–280.

740 <https://doi.org/10.1038/s41477-022-01111-3>

741 **Burko, Y. and Ori, N.** (2013). The tomato leaf as a model system for organogenesis.
742 In *Methods in Molecular Biology* (Humana Press Inc.), pp. 1–19.

743 https://doi.org/10.1007/978-1-62703-221-6_1

744 **Cecchetti, V., Altamura, M.M., Brunetti, P., Petrocelli, V., Falasca, G., Ljung, K.,**

745 **Costantino, P., and Cardarelli, M.** (2013). Auxin controls *Arabidopsis* anther
746 dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis.
747 *Plant J.* **74**: 411–422. <https://doi.org/10.1111/tpj.12130>

748 **Challa, K.R., Rath, M., and Nath, U.** (2019). The CIN-TCP transcription factors
749 promote commitment to differentiation in *Arabidopsis* leaf pavement cells via both
750 auxin-dependent and independent pathways. *PLOS Genet.* **15**: e1007988.
751 <https://doi.org/10.1371/journal.pgen.1007988>

752 **Challa, K.R., Rath, M., Sharma, A.N., Bajpai, A.K., Davuluri, S., Acharya, K.K.,**
753 **and Nath, U.** (2021). Active suppression of leaflet emergence as a mechanism of
754 simple leaf development. *Nat. Plants* **7**: 1264–1275. <https://doi.org/10.1038/s41477-021-00965-3>

755

756 **Cooke, J.E.K., Eriksson, M.E., and Junttila, O.** (2012). The dynamic nature of bud
757 dormancy in trees: environmental control and molecular mechanisms. *Plant. Cell*
758 *Environ.* **35**: 1707–1728. <https://doi.org/10.1111/j.1365-3040.2012.02552.x>

759

760 **Cookson, S.J. and Granier, C.** (2006). A dynamic analysis of the shade-induced
761 plasticity in *Arabidopsis thaliana* rosette leaf development reveals new components
762 of the shade-adaptative response. *Ann. Bot.* **97**: 443–452.
763 <https://doi.org/10.1093/aob/mcj047>

764

765 **Ding, M., Zhu, Y., and Kinoshita, T.** (2023). Stomatal properties of *Arabidopsis*
766 caulin and rice flag leaves and their contributions to seed production and grain
767 yield. *J. Exp. Bot.* **74**: 1957–1973. <https://doi.org/10.1093/jxb/erac492>

768

769 **Ding, Z. and Friml, J.** (2010). Auxin regulates distal stem cell differentiation in
770 *Arabidopsis* roots. *Proc. Natl. Acad. Sci. U. S. A.* **107**: 12046–12051.
771 <https://doi.org/10.1073/pnas.1000672107>

772

773 **Donnelly, P.M., Bonetta, D., Tsukaya, H., Dengler, R.E., and Dengler, N.G.**
774 (1999). Cell cycling and cell enlargement in developing leaves of *Arabidopsis*. *Dev.*
775 *Biol.* **215**: 407–419. <https://doi.org/10.1006/dbio.1999.9443>

776

777 **Echevin, E., Le Gloanec, C., Skowrońska, N., Routier-Kierzkowska, A.-L.,**
778 **Burian, A., and Kierzkowski, D.** (2019). Growth and biomechanics of shoot organs.

774 J. Exp. Bot. **70**: 3573–3585. <https://doi.org/10.1093/jxb/erz205>

775 **Efroni, I., Eshed, Y., and Lifschitz, E.** (2010). Morphogenesis of simple and
776 compound leaves: a critical review. Plant Cell **22**: 1019–1032.
777 <https://doi.org/10.1105/tpc.109.073601>

778 **Fox, S. et al.** (2018). Spatiotemporal coordination of cell division and growth during
779 organ morphogenesis. PLoS Biol. **16**: e2005952.
780 <https://doi.org/10.1371/journal.pbio.2005952>

781 **Fukushima, K. and Hasebe, M.** (2014). Adaxial–abaxial polarity: the developmental
782 basis of leaf shape diversity. genesis **52**: 1–18. <https://doi.org/10.1002/dvg.22728>

783 **Le Gloanec, C., Collet, L., Silveira, S.R., Wang, B., Routier-Kierzkowska, A.L.,**
784 **and Kierzkowski, D.** (2022). Cell type-specific dynamics underlie cellular growth
785 variability in plants. Development **149**: dev200783.
786 <https://doi.org/10.1242/dev.200783>

787 **Gómez-Felipe, A., Marconi, M., Branchini, E., Wang, B., Bertrand-Rakusova, H.,**
788 **Stan, T., Burkiewicz, J., Folter, S. de, Routier-Kierzkowska, A.-L., Wabnik, K.,**
789 **and Kierzkowski, D.** (2023). Competing differentiation gradients coordinate fruit
790 morphogenesis. bioRxiv. <https://doi.org/10.1101/2023.01.19.524793>

791 **Green, A.A., Kennaway, J.R., Hanna, A.I., Bangham, J.A., and Coen, E.** (2010).
792 Genetic Control of Organ Shape and Tissue Polarity. PLoS Biol. **8**: e1000537.
793 <https://doi.org/10.1371/journal.pbio.1000537>

794 **Guenot, B., Bayer, E., Kierzkowski, D., Smith, R.S., Mandel, T., Zádníková, P.,**
795 **Benková, E., and Kuhlemeier, C.** (2012). PIN1-independent leaf initiation in
796 Arabidopsis. Plant Physiol. **159**: 1501–1510. <https://doi.org/10.1104/pp.112.200402>

797 **Hamant, O. and Saunders, T.E.** (2020). Shaping organs: shared structural
798 principles across kingdoms. Annu. Rev. Cell Dev. Biol. **36**: 385–410.
799 <https://doi.org/10.1146/annurev-cellbio-012820-103850>

800 **Hao, X., Tang, H., Wang, B., Wang, L., Cao, H., Wang, Y., Zeng, J., Fang, S.,**
801 **Chu, J., Yang, Y., and Wang, X.** (2019). Gene characterization and expression

802 analysis reveal the importance of auxin signaling in bud dormancy regulation in tea
803 plant. *J. Plant Growth Regul.* **38**: 225–240. <https://doi.org/10.1007/s00344-018-9834-7>

805 **Harline, K. and Roeder, A.H.K.** (2023). An optimized pipeline for live imaging whole
806 Arabidopsis leaves at cellular resolution. *Plant Methods* **19**: 1–14.
807 <https://doi.org/10.1186/s13007-023-00987-2>

808 **Hay, A. and Tsiantis, M.** (2006). The genetic basis for differences in leaf form
809 between *Arabidopsis thaliana* and its wild relative *Cardamine hirsuta*. *Nat. Genet.* **38**:
810 942–947. <https://doi.org/10.1038/ng1835>

811 **He, J., Xu, M., Willmann, M.R., McCormick, K., Hu, T., Yang, L., Starker, C.G.,
812 Voytas, D.F., Meyers, B.C., and Poethig, R.S.** (2018). Threshold-dependent
813 repression of SPL gene expression by miR156/miR157 controls vegetative phase
814 change in *Arabidopsis thaliana*. *PLOS Genet.* **14**: e1007337.
815 <https://doi.org/10.1371/journal.pgen.1007337>

816 **He, Y., He, X., Wang, X., Hao, M., Gao, J., Wang, Y., Yang, Z.N., and Meng, X.**
817 (2023). An EPFL peptide signaling pathway promotes stamen elongation via
818 enhancing filament cell proliferation to ensure successful self-pollination in
819 *Arabidopsis thaliana*. *New Phytol.* **238**: 1045–1058.
820 <https://doi.org/10.1111/nph.18806>

821 **Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J.A., and
822 Meyerowitz, E.M.** (2005). Patterns of auxin transport and gene expression during
823 primordium development revealed by live imaging of the *Arabidopsis* inflorescence
824 meristem. *Curr. Biol.* **15**: 1899–1911. <https://doi.org/10.1016/j.cub.2005.09.052>

825 **Hempel, F.D. and Feldman, L.J.** (1994). Bi-directional inflorescence development in
826 *Arabidopsis thaliana*: Acropetal initiation of flowers and basipetal initiation of
827 paraclades. *Planta* **192**: 276–286. <https://doi.org/10.1007/BF01089045>

828 **Hervieux, N., Dumond, M., Sapala, A., Routier-Kierzkowska, A.-L., Kierzkowski,
829 D., Roeder, A.H.K., Smith, R.S., Boudaoud, A., and Hamant, O.** (2016). A
830 mechanical feedback restricts sepal growth and shape in *Arabidopsis*. *Curr. Biol.* **26**:

831 1019–1028. <https://doi.org/10.1016/j.cub.2016.03.004>

832 **Honma, T. and Goto, K.** (2001). Complexes of MADS-box proteins are sufficient to
833 convert leaves into floral organs. *Nature* **409**: 525–529.

834 <https://doi.org/10.1038/35054083>

835 **Huang, H., Gong, Y., Liu, B., Wu, D., Zhang, M., Xie, D., and Song, S.** (2020). The
836 della proteins interact with MYB21 and MYB24 to regulate filament elongation in
837 *Arabidopsis*. *BMC Plant Biol.* **20**: 1–9. <https://doi.org/10.1186/s12870-020-2274-0>

838 **Huijser, P. and Schmid, M.** (2011). The control of developmental phase transitions
839 in plants. *Development* **138**: 4117–4129. <https://doi.org/10.1242/dev.063511>

840 **Jaeger, J., Irons, D., and Monk, N.** (2008). Regulative feedback in pattern
841 formation: towards a general relativistic theory of positional information.
842 *Development* **135**: 3175–3183. <https://doi.org/10.1242/dev.018697>

843 **Jiao, Y., Du, F., and Traas, J.** (2021). The mechanical feedback theory of leaf
844 lamina formation. *Trends Plant Sci.* **26**: 107–110.
845 <https://doi.org/10.1016/j.tplants.2020.11.005>

846 **Junntila, O. and Hänninen, H.** (2012). The minimum temperature for budburst in
847 *Betula* depends on the state of dormancy. *Tree Physiol.* **32**: 337–345.
848 <https://doi.org/10.1093/treephys/tps010>

849 **Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D., and Bresta, P.** (2020).
850 Protective and defensive roles of non-glandular trichomes against multiple stresses:
851 structure–function coordination. *J. For. Res.* **31**: 1–12.
852 <https://doi.org/10.1007/s11676-019-01034-4>

853 **Kasprzewska, A., Carter, R., Swarup, R., Bennett, M., Monk, N., Hobbs, J.K.,**
854 **and Fleming, A.** (2015). Auxin influx importers modulate serration along the leaf
855 margin. *Plant J.* **83**: 705–718. <https://doi.org/10.1111/tpj.12921>

856 **Kierzkowski, D. et al.** (2019). A growth-based framework for leaf shape
857 development and diversity. *Cell* **177**: 1405–1418.
858 <https://doi.org/10.1016/j.cell.2019.05.011>

859 **Krizek, B.A. and Meyerowitz, E.M.** (1996). The *Arabidopsis* homeotic genes
860 APETALA3 and PISTILLATA are sufficient to provide the B class organ identity
861 function. *Development* **122**: 11–22. <https://doi.org/10.1242/dev.122.1.11>

862 **Kuchen, E.E., Fox, S., de Reuille, P.B., Kennaway, R., Bensmihen, S., Avondo, J., Calder, G.M., Southam, P., Robinson, S., Bangham, A., and Coen, E.** (2012).
863 Generation of leaf shape through early patterns of growth and tissue polarity.
864 *Science* **335**: 1092–1096. <https://doi.org/10.1126/science.1214678>

866 **Lampugnani, E.R., Kilinc, A., and Smyth, D.R.** (2013). Auxin controls petal
867 initiation in *Arabidopsis*. *Development* **140**: 185–194.
868 <https://doi.org/10.1242/dev.084582>

869 **Liao, C.Y., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T., and Weijers, D.**
870 (2015). Reporters for sensitive and quantitative measurement of auxin response.
871 *Nat. Methods* **12**: 207–210. <https://doi.org/10.1038/nmeth.3279>

872 **Liu, T., Longhurst, A.D., Talavera-Rauh, F., Hokin, S.A., and Barton, M.K.**
873 (2016). The *arabidopsis* transcription factor ABIG1 relays ABA signaled growth
874 inhibition and drought induced senescence. *Elife* **5**: e13768.
875 <https://doi.org/10.7554/elife.13768>

876 **Di Mambro, R. et al.** (2017). Auxin minimum triggers the developmental switch from
877 cell division to cell differentiation in the *Arabidopsis* root. *Proc. Natl. Acad. Sci. U. S.*
878 *A.* **114**: E7641–E7649. <https://doi.org/10.1073/pnas.1705833114>

879 **Mansfield, C., Newman, J.L., Olsson, T.S.G., Hartley, M., Chan, J., and Coen, E.**
880 (2018). Ectopic BASL reveals tissue cell polarity throughout leaf development in
881 *Arabidopsis thaliana*. *Curr. Biol.* **28**: 2638–2646.
882 <https://doi.org/10.1016/j.cub.2018.06.019>

883 **Martignago, D., Siemiatkowska, B., Lombardi, A., and Conti, L.** (2020). Abscisic
884 acid and flowering regulation: many targets, different places. *Int. J. Mol. Sci.* **21**:
885 9700. <https://doi.org/10.3390/ijms21249700>

886 **Massonnet, C. et al.** (2010). Probing the reproducibility of leaf growth and molecular
887 phenotypes: a comparison of three *Arabidopsis* accessions cultivated in ten

888 laboratories. *Plant Physiol.* **152**: 2142–2157. <https://doi.org/10.1104/pp.109.148338>

889 **Maugarny-Calès, A. and Laufs, P.** (2018). Getting leaves into shape: A molecular,
890 cellular, environmental and evolutionary view. *Development* **145**: dev161646.
891 <https://doi.org/10.1242/dev.161646>

892 **Melnyk, C.W., Schuster, C., Leyser, O., and Meyerowitz, E.M.** (2015). A
893 developmental framework for graft formation and vascular reconnection in
894 *Arabidopsis thaliana*. *Curr. Biol.* **25**: 1306–1318.
895 <https://doi.org/10.1016/j.cub.2015.03.032>

896 **Nagpal, P., Ellis, C.M., Weber, H., Ploense, S.E., Barkawi, L.S., Guilfoyle, T.J.,**
897 **Hagen, G., Alonso, J.M., Cohen, J.D., Farmer, E.E., Ecker, J.R., and Reed, J.W.**
898 (2005). Auxin response factors ARF6 and ARF8 promote jasmonic acid production
899 and flower maturation. *Development* **132**: 4107–4118.
900 <https://doi.org/10.1242/dev.01955>

901 **Nakayama, H., Nakayama, N., Seiki, S., Kojima, M., Sakakibara, H., Sinha, N.,**
902 **and Kimura, S.** (2014). Regulation of the KNOX-GA gene module induces
903 heterophyllic alteration in North American lake cress. *Plant Cell* **26**: 4733–4748.
904 <https://doi.org/10.1105/tpc.114.130229>

905 **Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M., and Laufs,**
906 **P.** (2006). The balance between the MIR164A and CUC2 genes controls leaf margin
907 serration in *Arabidopsis*. *Plant Cell* **18**: 2929–2945.
908 <https://doi.org/10.1105/tpc.106.045617>

909 **Ori, N. et al.** (2007). Regulation of LANCEOLATE by miR319 is required for
910 compound-leaf development in tomato. *Nat. Genet.* **39**: 787–791.
911 <https://doi.org/10.1038/ng2036>

912 **Pabón-Mora, N., Sharma, B., Holappa, L.D., Kramer, E.M., and Litt, A.** (2013).
913 The *Aquilegia* FRUITFULL-like genes play key roles in leaf morphogenesis and
914 inflorescence development. *Plant J.* **74**: 197–212. <https://doi.org/10.1111/tpj.12113>

915 **Pastore, J.J., Limpuangthip, A., Yamaguchi, N., Wu, M.F., Sang, Y., Han, S.K.,**
916 **Malaspina, L., Chavdaroff, N., Yamaguchi, A., and Wagner, D.** (2011). LATE

917 MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1.
918 Development **138**: 3189–3198. <https://doi.org/10.1242/dev.063073>

919 **Pelaz, S., Tapia-López, R., Alvarez-Buylla, E.R., and Yanofsky, M.F.** (2001).
920 Conversion of leaves into petals in *Arabidopsis*. Curr. Biol. **11**: 182–184.
921 [https://doi.org/10.1016/S0960-9822\(01\)00024-0](https://doi.org/10.1016/S0960-9822(01)00024-0)

922 **Reeves, P.H. et al.** (2012). A regulatory network for coordinated flower maturation.
923 PLOS Genet. **8**: e1002506. <https://doi.org/10.1371/journal.pgen.1002506>

924 **Rinne, P.L.H., Welling, A., Vahala, J., Ripel, L., Ruonala, R., Kangasjärvi, J., and**
925 **van der Schoot, C.** (2011). Chilling of dormant buds hyperinduces FLOWERING
926 LOCUS T and recruits GA-inducible 1,3-β-glucanases to reopen signal conduits and
927 release dormancy in *Populus*. Plant Cell **23**: 130–146.
928 <https://doi.org/10.1105/tpc.110.081307>

929 **Rodriguez, R.E., Debernardi, J.M., and Palatnik, J.F.** (2014). Morphogenesis of
930 simple leaves: regulation of leaf size and shape. Wiley Interdiscip. Rev. Dev. Biol. **3**:
931 41–57. <https://doi.org/10.1002/wdev.115>

932 **Roeder, A.H.K., Chickarmane, V., Cunha, A., Obara, B., Manjunath, B.S., and**
933 **Meyerowitz, E.M.** (2010). Variability in the control of cell division underlies sepal
934 epidermal patterning in *Arabidopsis thaliana*. PLoS Biol. **8**: e1000367.
935 <https://doi.org/10.1371/journal.pbio.1000367>

936 **Runions, A., Tsiantis, M., and Prusinkiewicz, P.** (2017). A common developmental
937 program can produce diverse leaf shapes. New Phytol. **216**: 401–418.
938 <https://doi.org/10.1111/nph.14449>

939 **Sablowski, R.** (2015). Control of patterning, growth, and differentiation by floral
940 organ identity genes. J. Exp. Bot. **66**: 1065–1073. <https://doi.org/10.1093/jxb/eru514>

941 **Salem, M.A., Li, Y., Bajdzienko, K., Fisahn, J., Watanabe, M., Hoefgen, R.,**
942 **Schöttler, M.A., and Giavalisco, P.** (2018). RAPTOR controls developmental
943 growth transitions by altering the hormonal and metabolic balance. Plant Physiol.
944 **177**: 565–593. <https://doi.org/10.1104/pp.17.01711>

945 **Sapala, A. et al.** (2018). Why plants make puzzle cells, and how their shape
946 emerges. *Elife* **7**: e32794. <https://doi.org/10.7554/eLife.32794>

947 **Sauret-Güeto, S., Schiessl, K., Bangham, A., Sablowski, R., and Coen, E.**
948 (2013). JAGGED controls arabidopsis petal growth and shape by interacting with a
949 divergent polarity field. *PLoS Biol.* **11**: e1001550.
950 <https://doi.org/10.1371/journal.pbio.1001550>

951 **Schiessl, K., Kausika, S., Southam, P., Bush, M., and Sablowski, R.** (2012).
952 JAGGED controls growth anisotropy and coordination between cell size and cell
953 cycle during plant organogenesis. *Curr. Biol.* **22**: 1739–1746.
954 <https://doi.org/10.1016/j.cub.2012.07.020>

955 **Schwarz, S., Grande, A. V., Bujdoso, N., Saedler, H., and Huijser, P.** (2008). The
956 microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in
957 Arabidopsis. *Plant Mol. Biol.* **67**: 183–195. <https://doi.org/10.1007/s11103-008-9310-z>

959 **Shani, E., Ben-Gera, H., Shleizer-Burko, S., Burko, Y., Weiss, D., and Ori, N.**
960 (2010). Cytokinin regulates compound leaf development in tomato. *Plant Cell* **22**:
961 3206–3217. <https://doi.org/10.1105/tpc.110.078253>

962 **Shikata, M., Koyama, T., Mitsuda, N., and Ohme-Takagi, M.** (2009). Arabidopsis
963 SBP-Box genes SPL10, SPL11 and SPL2 control morphological change in
964 association with shoot maturation in the reproductive phase. *Plant Cell Physiol.* **50**:
965 2133–2145. <https://doi.org/10.1093/pcp/pcp148>

966 **Silveira, S.R., Le Gloanec, C., Gómez-Felipe, A., Routier-Kierzkowska, A.-L.L.,**
967 **and Kierzkowski, D.** (2022). Live-imaging provides an atlas of cellular growth
968 dynamics in the stamen. *Plant Physiol.* **188**: 769–781.
969 <https://doi.org/10.1093/plphys/kiab363>

970 **Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M.** (1990). Early flower
971 development in Arabidopsis. *Plant Cell* **2**: 755–767.
972 <https://doi.org/10.1105/tpc.2.8.755>

973 **Strauss, S. et al.** (2022). Using positional information to provide context for

974 biological image analysis with MorphoGraphX 2.0. *Elife* **11**: e72601.
975 <https://doi.org/10.7554/eLife.72601>

976 **Su, H., Abernathy, S.D., White, R.H., and Finlayson, S.A.** (2011). Photosynthetic
977 photon flux density and phytochrome B interact to regulate branching in *Arabidopsis*.
978 *Plant. Cell Environ.* **34**: 1986–1998. <https://doi.org/10.1111/j.1365-3040.2011.02393.x>

980 **Tang, H.-B., Wang, J., Wang, L., Shang, G.-D., Xu, Z.-G., Mai, Y.-X., Liu, Y.-T.,**
981 **Zhang, T.-Q., and Wang, J.-W.** (2023). Anisotropic cell growth at the leaf base
982 promotes age-related changes in leaf shape in *Arabidopsis thaliana*. *Plant Cell* **35**:
983 1386–1407. <https://doi.org/10.1093/plcell/koad031>

984 **Vlad, D. et al.** (2014). Leaf shape evolution through duplication, regulatory
985 diversification and loss of a homeobox gene. *Science* **343**: 780–783.
986 <https://doi.org/10.1126/science.1248384>

987 **Vuolo, F. et al.** (2018). LMI1 homeodomain protein regulates organ proportions by
988 spatial modulation of endoreduplication. *Genes Dev.* **32**: 1361–1366.
989 <https://doi.org/10.1101/gad.318212.118>

990 **Wang, Y., Strauss, S., Liu, S., Pieper, B., Lymbouridou, R., Runions, A., and**
991 **Tsiantis Correspondence, M.** (2022). The cellular basis for synergy between RCO
992 and KNOX1 homeobox genes in leaf shape diversity. *Curr. Biol.* **32**: 3773-3784.e5.
993 <https://doi.org/10.1016/j.cub.2022.08.020>

994 **Werner, S., Bartrina, I., Novák, O., Strnad, M., Werner, T., and Schmülling, T.**
995 (2021). The cytokinin status of the epidermis regulates aspects of vegetative and
996 reproductive development in *Arabidopsis thaliana*. *Front. Plant Sci.* **12**: 613488.
997 <https://doi.org/10.3389/fpls.2021.613488>

998 **Whitewoods, C.D., Gonçalves, B., Cheng, J., Cui, M., Kennaway, R., Lee, K.,**
999 **Bushell, C., Yu, M., Piao, C., and Coen, E.** (2020). Evolution of carnivorous traps
1000 from planar leaves through simple shifts in gene expression. *Science* **367**: 91–96.
1001 <https://doi.org/10.1126/science.aay5433>

1002 **Willis, L., Refahi, Y., Wightman, R., Landrein, B., Teles, J., Huang, K.C.,**

1003 **Meyerowitz, E.M., and Jönsson, H.** (2016). Cell size and growth regulation in the
1004 *Arabidopsis thaliana* apical stem cell niche. *Proc. Natl. Acad. Sci. U. S. A.* **113**:
1005 E8238–E8246. <https://doi.org/10.1073/pnas.1616768113>

1006 **Wu, W., Du, K., Kang, X., and Wei, H.** (2021). The diverse roles of cytokinins in
1007 regulating leaf development. *Hortic. Res.* **8**: 118. <https://doi.org/10.1038/s41438-021-00558-3>

1009 **Xu, M., Hu, T., Zhao, J., Park, M.Y., Earley, K.W., Wu, G., Yang, L., and Poethig, R.S.** (2016). Developmental functions of miR156-regulated SQUAMOSA
1010 PROMOTER BINDING PROTEIN-LIKE (SPL) genes in *Arabidopsis thaliana*. *PLOS*
1011 *Genet.* **12**: e1006263. <https://doi.org/10.1371/journal.pgen.1006263>

1013 **Yadav, A.S., Hong, L., Klees, P.M., Kiss, A., He, X., Barrios, I.M., Heeney, M., Galang, A.M.D., Smith, R.S., Boudaoud, A., and Roeder, A.H.K.** (2023). Growth
1014 directions and stiffness across cell layers determine whether tissues stay smooth or
1015 buckle. *bioRxiv*. <https://doi.org/10.1101/2023.07.22.549953>

1017 **Yang, M. and Jiao, Y.** (2016). Regulation of axillary meristem initiation by
1018 transcription factors and plant hormones. *Front. Plant Sci.* **7**.
1019 <https://doi.org/10.3389/fpls.2016.00183>

1020 **Yu, S., Lian, H., and Wang, J.W.** (2015). Plant developmental transitions: the role of
1021 microRNAs and sugars. *Curr. Opin. Plant Biol.* **27**: 1–7.
1022 <https://doi.org/10.1016/j.pbi.2015.05.009>

1023 **Žádníkova, P. et al.** (2010). Role of PIN-mediated auxin efflux in apical hook
1024 development of *Arabidopsis thaliana*. *Development* **137**: 607–617.
1025 <https://doi.org/10.1242/dev.041277>

1026 **Zhang, Z., Runions, A., Mentink, R.A., Kierzkowski, D., Karady, M., Hashemi, B., Huijser, P., Strauss, S., Gan, X., Ljung, K., and Tsiantis, M.** (2020). A WOX/auxin
1027 biosynthesis module controls growth to shape leaf form. *Curr. Biol.* **30**: 4857–4868.e6. <https://doi.org/10.1016/j.cub.2020.09.037>

1030 **Zhao, F. et al.** (2020). Microtubule-mediated wall anisotropy contributes to leaf blade
1031 flattening. *Curr. Biol.* **30**: 3972–3985.e6. <https://doi.org/10.1016/j.cub.2020.07.076>

1032

Parsed Citations

Abley, K., Sauret-Güeto, S., Marée, A.F.M., and Coen, E. (2016). Formation of polarity convergences underlying shoot outgrowths. *Elife* 5: e18165. <https://doi.org/10.7554/eLife.18165>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Alvarez, J.P., Furumizu, C., Efroni, I., Eshed, Y., and Bowman, J.L. (2016). Active suppression of a leaf meristem orchestrates determinate leaf growth. *Elife* 5: e15023. <https://doi.org/10.7554/eLife.15023>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Andres-Robin, A., Reymond, M.C., Dupire, A., Battu, V., Dubrulle, N., Mouille, G., Lefebvre, V., Pelloux, J., Boudaoud, A., Traas, J., Scutt, C.P., and Monéger, F. (2018). Evidence for the regulation of gynoecium morphogenesis by ETTIN via cell wall dynamics. *Plant Physiol.* 178: 1222–1232. <https://doi.org/10.1104/pp.18.00745>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Andriankaja, M., Dhondt, S., DeBodt, S., Vanhaeren, H., Coppens, F., DeMilde, L., Mühlenbock, P., Skirycz, A., Gonzalez, N., Beemster, G.T.S., and Inzé, D. (2012). Exit from proliferation during leaf development in *Arabidopsis thaliana*: a not-so-gradual process. *Dev. Cell* 22: 64–78. <https://doi.org/10.1016/j.devcel.2011.11.011>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Baerenfaller, K., Massonnet, C., Hennig, L., Russenberger, D., Sulpice, R., Walsh, S., Stitt, M., Granier, C., and Gruissem, W. (2015). A long photoperiod relaxes energy management in *Arabidopsis* leaf six. *Curr. Plant Biol.* 2: 34–45. <https://doi.org/10.1016/j.cpb.2015.07.001>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bar, M. and Ori, N. (2014). Leaf development and morphogenesis. *Development* 141: 4219–4230. <https://doi.org/10.1242/dev.106195>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barbier de Reuille, P. et al. (2015). MorphoGraphX: A platform for quantifying morphogenesis in 4D. *Elife* 4: 05864. <https://doi.org/10.7554/eLife.05864>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barkoulas, M., Hay, A., Kougioumoutzi, E., and Tsiantis, M. (2008). A developmental framework for dissected leaf formation in the *Arabidopsis* relative *Cardamine hirsuta*. *Nat. Genet.* 40: 1136–1141. <https://doi.org/10.1038/ng.189>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barth, S., Geier, T., Eimert, K., Watillon, B., Sangwan, R.S., and Gleissberg, S. (2009). KNOX overexpression in transgenic *Kohleria* (Gesneriaceae) prolongs the activity of proximal leaf blastozones and drastically alters segment fate. *Planta* 230: 1081–1091. <https://doi.org/10.1007/s00425-009-0997-0>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Belteton, S.A., Sawchuk, M.G., Donohoe, B.S., Scarpella, E., and Szymanski, D.B. (2018). Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis. *Plant Physiol.* 176: 432–449. <https://doi.org/10.1104/pp.17.01554>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ben-Gera, H., Dafna, A., Alvarez, J.P., Bar, M., Mauerer, M., and Ori, N. (2016). Auxin-mediated lamina growth in tomato leaves is restricted by two parallel mechanisms. *Plant J.* 86: 443–457. <https://doi.org/10.1111/tpj.13188>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. *Cell* 115: 591–602. [https://doi.org/10.1016/S0092-8674\(03\)00924-3](https://doi.org/10.1016/S0092-8674(03)00924-3)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Berbin, A., Nawrath, C., and Hachez, C. (2021). Subtle interplay between trichome development and cuticle formation in plants. *New Phytol.* 233: 2036–2046. <https://doi.org/10.1111/nph.17827>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bielczynski, L.W., Łącki, M.K., Hoefnagels, I., Gambin, A., and Croce, R. (2017). Leaf and plant age affects photosynthetic performance and photoprotective capacity. *Plant Physiol.* 175: 1634–1648. <https://doi.org/10.1104/PP.17.00904>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bilsborough, G.D., Runions, A., Barkoulas, M., Jenkins, H.W., Hasson, A., Galinha, C., Laufs, P., Hay, A., Prusinkiewicz, P., and Tsiantis, M. (2011). Model for the regulation of *Arabidopsis thaliana* leaf margin development. *Proc. Natl. Acad. Sci. U. S. A.* 108: 3424–3429. <https://doi.org/10.1073/pnas.1015162108>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. (1991). Genetic interactions among floral homeotic genes of *Arabidopsis*. *Development* 112: 1–20. <https://doi.org/10.1242/dev.112.1.1>
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bredmose, N. and Costes, E. (2017). Axillary bud growth. In Reference Module in Life Sciences (Elsevier).

<https://doi.org/10.1016/B978-0-12-809633-8.05056-1>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Burian, A., Paszkiewicz, G., Nguyen, K.T., Meda, S., Raczyńska-Szajgin, M., and Timmermans, M.C.P. (2022). Specification of leaf dorsiventrality via a prepatterned binary readout of a uniform auxin input. *Nat. Plants* 8: 269–280. <https://doi.org/10.1038/s41477-022-01111-3>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Burko, Y. and Ori, N. (2013). The tomato leaf as a model system for organogenesis. In Methods in Molecular Biology (Humana Press Inc.), pp. 1–19. https://doi.org/10.1007/978-1-62703-221-6_1

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cecchetti, V., Altamura, M.M., Brunetti, P., Petrocelli, V., Falasca, G., Ljung, K., Costantino, P., and Cardarelli, M. (2013). Auxin controls *Arabidopsis* anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. *Plant J.* 74: 411–422. <https://doi.org/10.1111/tpj.12130>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Challa, K.R., Rath, M., and Nath, U. (2019). The CIN-TCP transcription factors promote commitment to differentiation in *Arabidopsis* leaf pavement cells via both auxin-dependent and independent pathways. *PLOS Genet.* 15: e1007988. <https://doi.org/10.1371/journal.pgen.1007988>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Challa, K.R., Rath, M., Sharma, A.N., Bajpai, A.K., Davuluri, S., Acharya, K.K., and Nath, U. (2021). Active suppression of leaflet emergence as a mechanism of simple leaf development. *Nat. Plants* 7: 1264–1275. <https://doi.org/10.1038/s41477-021-00965-3>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cooke, J.E.K., Eriksson, M.E., and Junntila, O. (2012). The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. *Plant. Cell Environ.* 35: 1707–1728. <https://doi.org/10.1111/j.1365-3040.2012.02552.x>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cookson, S.J. and Granier, C. (2006). A dynamic analysis of the shade-induced plasticity in *Arabidopsis thaliana* rosette leaf development reveals new components of the shade-adaptative response. *Ann. Bot.* 97: 443–452. <https://doi.org/10.1093/aob/mcj047>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ding, M., Zhu, Y., and Kinoshita, T. (2023). Stomatal properties of *Arabidopsis* cauline and rice flag leaves and their contributions to seed production and grain yield. *J. Exp. Bot.* 74: 1957–1973. <https://doi.org/10.1093/jxb/erac492>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ding, Z. and Friml, J. (2010). Auxin regulates distal stem cell differentiation in *Arabidopsis* roots. *Proc. Natl. Acad. Sci. U. S. A.* 107: 12046–12051. <https://doi.org/10.1073/pnas.1000672107>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Donnelly, P.M., Bonetta, D., Tsukaya, H., Dengler, R.E., and Dengler, N.G. (1999). Cell cycling and cell enlargement in developing leaves of *Arabidopsis*. *Dev. Biol.* 215: 407–419. <https://doi.org/10.1006/dbio.1999.9443>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Echevin, E., Le Gloanec, C., Skowrońska, N., Routier-Kierzkowska, A.-L., Burian, A., and Kierzkowski, D. (2019). Growth and biomechanics of shoot organs. *J. Exp. Bot.* 70: 3573–3585. <https://doi.org/10.1093/jxb/erz205>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Efroni, I., Eshed, Y., and Lifschitz, E. (2010). Morphogenesis of simple and compound leaves: a critical review. *Plant Cell* 22: 1019–1032. <https://doi.org/10.1105/tpc.109.073601>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fox, S. et al. (2018). Spatiotemporal coordination of cell division and growth during organ morphogenesis. *PLoS Biol.* 16: e2005952. <https://doi.org/10.1371/journal.pbio.2005952>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fukushima, K. and Hasebe, M. (2014). Adaxial–abaxial polarity: the developmental basis of leaf shape diversity. *genesis* 52: 1–18. <https://doi.org/10.1002/dvg.22728>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Le Gloanec, C., Collet, L., Silveira, S.R., Wang, B., Routier-Kierzkowska, A.L., and Kierzkowski, D. (2022). Cell type-specific dynamics underlie cellular growth variability in plants. *Development* 149: dev200783. <https://doi.org/10.1242/dev.200783>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gómez-Felipe, A., Marconi, M., Branchini, E., Wang, B., Bertrand-Rakusova, H., Stan, T., Burkiewicz, J., Folter, S. de, Routier-Kierzkowska, A.-L., Wabnik, K., and Kierzkowski, D. (2023). Competing differentiation gradients coordinate fruit morphogenesis.

bioRxiv. <https://doi.org/10.1101/2023.01.19.524793>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Green, A.A., Kennaway, J.R., Hanna, A.I., Bangham, J.A., and Coen, E. (2010). Genetic Control of Organ Shape and Tissue Polarity. *PLoS Biol.* 8: e1000537. <https://doi.org/10.1371/journal.pbio.1000537>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guenot, B., Bayer, E., Kierzkowski, D., Smith, R.S., Mandel, T., Zádníková, P., Benková, E., and Kuhlemeier, C. (2012). PIN1-independent leaf initiation in *Arabidopsis*. *Plant Physiol.* 159: 1501–1510. <https://doi.org/10.1104/pp.112.200402>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hamant, O. and Saunders, T.E. (2020). Shaping organs: shared structural principles across kingdoms. *Annu. Rev. Cell Dev. Biol.* 36: 385–410. <https://doi.org/10.1146/annurev-cellbio-012820-103850>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hao, X., Tang, H., Wang, B., Wang, L., Cao, H., Wang, Y., Zeng, J., Fang, S., Chu, J., Yang, Y., and Wang, X. (2019). Gene characterization and expression analysis reveal the importance of auxin signaling in bud dormancy regulation in tea plant. *J. Plant Growth Regul.* 38: 225–240. <https://doi.org/10.1007/s00344-018-9834-7>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Harline, K. and Roeder, A.H.K. (2023). An optimized pipeline for live imaging whole *Arabidopsis* leaves at cellular resolution. *Plant Methods* 19: 1–14. <https://doi.org/10.1186/s13007-023-00987-2>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hay, A. and Tsiantis, M. (2006). The genetic basis for differences in leaf form between *Arabidopsis thaliana* and its wild relative *Cardamine hirsuta*. *Nat. Genet.* 38: 942–947. <https://doi.org/10.1038/ng1835>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

He, J., Xu, M., Willmann, M.R., McCormick, K., Hu, T., Yang, L., Starker, C.G., Voytas, D.F., Meyers, B.C., and Poethig, R.S. (2018). Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in *Arabidopsis thaliana*. *PLOS Genet.* 14: e1007337. <https://doi.org/10.1371/journal.pgen.1007337>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

He, Y., He, X., Wang, X., Hao, M., Gao, J., Wang, Y., Yang, Z.N., and Meng, X. (2023). An EPFL peptide signaling pathway promotes stamen elongation via enhancing filament cell proliferation to ensure successful self-pollination in *Arabidopsis thaliana*. *New Phytol.* 238: 1045–1058. <https://doi.org/10.1111/nph.18806>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J.A., and Meyerowitz, E.M. (2005). Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the *Arabidopsis* inflorescence meristem. *Curr. Biol.* 15: 1899–1911. <https://doi.org/10.1016/j.cub.2005.09.052>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hempel, F.D. and Feldman, L.J. (1994). Bi-directional inflorescence development in *Arabidopsis thaliana*: Acropetal initiation of flowers and basipetal initiation of paraclades. *Planta* 192: 276–286. <https://doi.org/10.1007/BF01089045>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hervieux, N., Dumond, M., Sapala, A., Routier-Kierzkowska, A.-L., Kierzkowski, D., Roeder, A.H.K., Smith, R.S., Boudaoud, A., and Hamant, O. (2016). A mechanical feedback restricts sepal growth and shape in *Arabidopsis*. *Curr. Biol.* 26: 1019–1028. <https://doi.org/10.1016/j.cub.2016.03.004>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Honma, T. and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. *Nature* 409: 525–529. <https://doi.org/10.1038/35054083>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Huang, H., Gong, Y., Liu, B., Wu, D., Zhang, M., Xie, D., and Song, S. (2020). The della proteins interact with MYB21 and MYB24 to regulate filament elongation in *Arabidopsis*. *BMC Plant Biol.* 20: 1–9. <https://doi.org/10.1186/s12870-020-2274-0>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Huijser, P. and Schmid, M. (2011). The control of developmental phase transitions in plants. *Development* 138: 4117–4129. <https://doi.org/10.1242/dev.063511>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jaeger, J., Irons, D., and Monk, N. (2008). Regulative feedback in pattern formation: towards a general relativistic theory of positional information. *Development* 135: 3175–3183. <https://doi.org/10.1242/dev.018697>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jiao, Y., Du, F., and Traas, J. (2021). The mechanical feedback theory of leaf lamina formation. *Trends Plant Sci.* 26: 107–110. <https://doi.org/10.1016/j.tplants.2020.11.005>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Junttila, O. and Hänninen, H. (2012). The minimum temperature for budburst in *Betula* depends on the state of dormancy. *Tree Physiol.* 32: 337–345. <https://doi.org/10.1093/treephys/tps010>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D., and Bresta, P. (2020). Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination. *J. For. Res.* 31: 1–12. <https://doi.org/10.1007/s11676-019-01034-4>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kasprzewska, A., Carter, R., Swarup, R., Bennett, M., Monk, N., Hobbs, J.K., and Fleming, A. (2015). Auxin influx importers modulate serration along the leaf margin. *Plant J.* 83: 705–718. <https://doi.org/10.1111/tpj.12921>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kierzkowski, D. et al. (2019). A growth-based framework for leaf shape development and diversity. *Cell* 177: 1405–1418. <https://doi.org/10.1016/j.cell.2019.05.011>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krizek, B.A. and Meyerowitz, E.M. (1996). The *Arabidopsis* homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. *Development* 122: 11–22. <https://doi.org/10.1242/dev.122.1.11>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kuchen, E.E., Fox, S., de Reuille, P.B., Kennaway, R., Bensmihen, S., Avondo, J., Calder, G.M., Southam, P., Robinson, S., Bangham, A., and Coen, E. (2012). Generation of leaf shape through early patterns of growth and tissue polarity. *Science* 335: 1092–1096. <https://doi.org/10.1126/science.1214678>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lampugnani, E.R., Kilinc, A., and Smyth, D.R. (2013). Auxin controls petal initiation in *Arabidopsis*. *Development* 140: 185–194. <https://doi.org/10.1242/dev.084582>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liao, C.Y., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T., and Weijers, D. (2015). Reporters for sensitive and quantitative measurement of auxin response. *Nat. Methods* 12: 207–210. <https://doi.org/10.1038/nmeth.3279>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu, T., Longhurst, A.D., Talavera-Rauh, F., Hokin, S.A., and Barton, M.K. (2016). The *Arabidopsis* transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. *Elife* 5: e13768. <https://doi.org/10.7554/elife.13768>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Di Mambro, R. et al. (2017). Auxin minimum triggers the developmental switch from cell division to cell differentiation in the *Arabidopsis* root. *Proc. Natl. Acad. Sci. U. S. A.* 114: E7641–E7649. <https://doi.org/10.1073/pnas.1705833114>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mansfield, C., Newman, J.L., Olsson, T.S.G., Hartley, M., Chan, J., and Coen, E. (2018). Ectopic BASL reveals tissue cell polarity throughout leaf development in *Arabidopsis thaliana*. *Curr. Biol.* 28: 2638–2646. <https://doi.org/10.1016/j.cub.2018.06.019>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Martignago, D., Siemiatkowska, B., Lombardi, A., and Conti, L. (2020). Abscisic acid and flowering regulation: many targets, different places. *Int. J. Mol. Sci.* 21: 9700. <https://doi.org/10.3390/ijms21249700>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Massonnet, C. et al. (2010). Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three *Arabidopsis* accessions cultivated in ten laboratories. *Plant Physiol.* 152: 2142–2157. <https://doi.org/10.1104/pp.109.148338>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Maugarny-Calès, A. and Laufs, P. (2018). Getting leaves into shape: A molecular, cellular, environmental and evolutionary view. *Development* 145: dev161646. <https://doi.org/10.1242/dev.161646>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Melnyk, C.W., Schuster, C., Leyser, O., and Meyerowitz, E.M. (2015). A developmental framework for graft formation and vascular reconnection in *Arabidopsis thaliana*. *Curr. Biol.* 25: 1306–1318. <https://doi.org/10.1016/j.cub.2015.03.032>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nagpal, P., Ellis, C.M., Weber, H., Ploense, S.E., Barkawi, L.S., Guilfoyle, T.J., Hagen, G., Alonso, J.M., Cohen, J.D., Farmer, E.E., Ecker, J.R., and Reed, J.W. (2005). Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. *Development* 132: 4107–4118. <https://doi.org/10.1242/dev.01955>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nakayama, H., Nakayama, N., Seiki, S., Kojima, M., Sakakibara, H., Sinha, N., and Kimura, S. (2014). Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. *Plant Cell* 26: 4733–4748.

<https://doi.org/10.1105/tpc.114.130229>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M., and Laufs, P. (2006). The balance between the MIR164A and CUC2 genes controls leaf margin serration in *Arabidopsis*. *Plant Cell* 18: 2929–2945. <https://doi.org/10.1105/tpc.106.045617>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ori, N. et al. (2007). Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. *Nat. Genet.* 39: 787–791. <https://doi.org/10.1038/ng2036>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pabón-Mora, N., Sharma, B., Holappa, L.D., Kramer, E.M., and Litt, A. (2013). The *Aquilegia* FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development. *Plant J.* 74: 197–212. <https://doi.org/10.1111/tpj.12113>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pastore, J.J., Limpuangthip, A., Yamaguchi, N., Wu, M.F., Sang, Y., Han, S.K., Malaspina, L., Chavdaroff, N., Yamaguchi, A., and Wagner, D. (2011). LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1. *Development* 138: 3189–3198. <https://doi.org/10.1242/dev.063073>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pelaz, S., Tapia-López, R., Alvarez-Buylla, E.R., and Yanofsky, M.F. (2001). Conversion of leaves into petals in *Arabidopsis*. *Curr. Biol.* 11: 182–184. [https://doi.org/10.1016/S0960-9822\(01\)00024-0](https://doi.org/10.1016/S0960-9822(01)00024-0)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Reeves, P.H. et al. (2012). A regulatory network for coordinated flower maturation. *PLOS Genet.* 8: e1002506. <https://doi.org/10.1371/journal.pgen.1002506>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rinne, P.L.H., Welling, A., Vahala, J., Ripel, L., Ruonala, R., Kangasjärvi, J., and van der Schoot, C. (2011). Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-β-glucanases to reopen signal conduits and release dormancy in *Populus*. *Plant Cell* 23: 130–146. <https://doi.org/10.1105/tpc.110.081307>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rodriguez, R.E., Debernardi, J.M., and Palatnik, J.F. (2014). Morphogenesis of simple leaves: regulation of leaf size and shape. *Wiley Interdiscip. Rev. Dev. Biol.* 3: 41–57. <https://doi.org/10.1002/wdev.115>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Roeder, A.H.K., Chickarmane, V., Cunha, A., Obara, B., Manjunath, B.S., and Meyerowitz, E.M. (2010). Variability in the control of cell division underlies sepal epidermal patterning in *Arabidopsis thaliana*. *PLoS Biol.* 8: e1000367. <https://doi.org/10.1371/journal.pbio.1000367>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Runions, A., Tsiantis, M., and Prusinkiewicz, P. (2017). A common developmental program can produce diverse leaf shapes. *New Phytol.* 216: 401–418. <https://doi.org/10.1111/nph.14449>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sablowski, R. (2015). Control of patterning, growth, and differentiation by floral organ identity genes. *J. Exp. Bot.* 66: 1065–1073. <https://doi.org/10.1093/jxb/eru514>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Salem, M.A., Li, Y., Bajdzienko, K., Fisahn, J., Watanabe, M., Hoefgen, R., Schöttler, M.A., and Giavalisco, P. (2018). RAPTOR controls developmental growth transitions by altering the hormonal and metabolic balance. *Plant Physiol.* 177: 565–593. <https://doi.org/10.1104/pp.17.01711>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sapala, A. et al. (2018). Why plants make puzzle cells, and how their shape emerges. *eLife* 7: e32794. <https://doi.org/10.7554/eLife.32794>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sauret-Güeto, S., Schiessl, K., Bangham, A., Sablowski, R., and Coen, E. (2013). JAGGED controls *arabidopsis* petal growth and shape by interacting with a divergent polarity field. *PLoS Biol.* 11: e1001550. <https://doi.org/10.1371/journal.pbio.1001550>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schiessl, K., Kausika, S., Southam, P., Bush, M., and Sablowski, R. (2012). JAGGED controls growth anisotropy and coordination between cell size and cell cycle during plant organogenesis. *Curr. Biol.* 22: 1739–1746. <https://doi.org/10.1016/j.cub.2012.07.020>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., and Huijser, P. (2008). The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in *Arabidopsis*. *Plant Mol. Biol.* 67: 183–195. <https://doi.org/10.1007/s11103-008-9310-z>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shani, E., Ben-Gera, H., Shleizer-Burko, S., Burko, Y., Weiss, D., and Ori, N. (2010). Cytokinin regulates compound leaf development in tomato. *Plant Cell* 22: 3206–3217. <https://doi.org/10.1105/tpc.110.078253>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shikata, M., Koyama, T., Mitsuda, N., and Ohme-Takagi, M. (2009). Arabidopsis SBP-Box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. *Plant Cell Physiol.* 50: 2133–2145. <https://doi.org/10.1093/pcp/pcp148>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Silveira, S.R., Le Gloanec, C., Gómez-Felipe, A., Routier-Kierzkowska, A.-L.L., and Kierzkowski, D. (2022). Live-imaging provides an atlas of cellular growth dynamics in the stamen. *Plant Physiol.* 188: 769–781. <https://doi.org/10.1093/plphys/kiab363>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M. (1990). Early flower development in Arabidopsis. *Plant Cell* 2: 755–767. <https://doi.org/10.1105/tpc.2.8.755>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Strauss, S. et al. (2022). Using positional information to provide context for biological image analysis with MorphoGraphX 2.0. *Elife* 11: e72601. <https://doi.org/10.7554/elife.72601>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Su, H., Abernathy, S.D., White, R.H., and Finlayson, S.A (2011). Photosynthetic photon flux density and phytochrome B interact to regulate branching in Arabidopsis. *Plant. Cell Environ.* 34: 1986–1998. <https://doi.org/10.1111/j.1365-3040.2011.02393.x>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tang, H.-B., Wang, J., Wang, L., Shang, G.-D., Xu, Z.-G., Mai, Y.-X., Liu, Y.-T., Zhang, T.-Q., and Wang, J.-W. (2023). Anisotropic cell growth at the leaf base promotes age-related changes in leaf shape in *Arabidopsis thaliana*. *Plant Cell* 35: 1386–1407. <https://doi.org/10.1093/plcell/koad031>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vlad, D. et al. (2014). Leaf shape evolution through duplication, regulatory diversification and loss of a homeobox gene. *Science* 343: 780–783. <https://doi.org/10.1126/science.1248384>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vuolo, F. et al. (2018). LMI1 homeodomain protein regulates organ proportions by spatial modulation of endoreduplication. *Genes Dev.* 32: 1361–1366. <https://doi.org/10.1101/gad.318212.118>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang, Y., Strauss, S., Liu, S., Pieper, B., Lymouridou, R., Runions, A., and Tsiantis Correspondence, M. (2022). The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity. *Curr. Biol.* 32: 3773–3784.e5. <https://doi.org/10.1016/j.cub.2022.08.020>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Werner, S., Bartrina, I., Novák, O., Strnad, M., Werner, T., and Schmülling, T. (2021). The cytokinin status of the epidermis regulates aspects of vegetative and reproductive development in *Arabidopsis thaliana*. *Front. Plant Sci.* 12: 613488. <https://doi.org/10.3389/fpls.2021.613488>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Whitewoods, C.D., Gonçalves, B., Cheng, J., Cui, M., Kennaway, R., Lee, K., Bushell, C., Yu, M., Piao, C., and Coen, E. (2020). Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. *Science* 367: 91–96. <https://doi.org/10.1126/science.aa5433>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Willis, L., Refahi, Y., Wightman, R., Landrein, B., Teles, J., Huang, K.C., Meyerowitz, E.M., and Jönsson, H. (2016). Cell size and growth regulation in the *Arabidopsis thaliana* apical stem cell niche. *Proc. Natl. Acad. Sci. U. S. A.* 113: E8238–E8246. <https://doi.org/10.1073/pnas.1616768113>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu, W., Du, K., Kang, X., and Wei, H. (2021). The diverse roles of cytokinins in regulating leaf development. *Hortic. Res.* 8: 118. <https://doi.org/10.1038/s41438-021-00558-3>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu, M., Hu, T., Zhao, J., Park, M.Y., Earley, K.W., Wu, G., Yang, L., and Poethig, R.S. (2016). Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in *Arabidopsis thaliana*. *PLOS Genet.* 12: e1006263. <https://doi.org/10.1371/journal.pgen.1006263>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yadav, A.S., Hong, L., Klees, P.M., Kiss, A., He, X., Barrios, I.M., Heeney, M., Galang, A.M.D., Smith, R.S., Boudaoud, A., and Roeder, A.H.K. (2023). Growth directions and stiffness across cell layers determine whether tissues stay smooth or buckle. *bioRxiv*. <https://doi.org/10.1101/2023.07.22.549953>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yang, M. and Jiao, Y. (2016). Regulation of axillary meristem initiation by transcription factors and plant hormones. *Front. Plant Sci.* 7. <https://doi.org/10.3389/fpls.2016.00183>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yu, S., Lian, H., and Wang, J.W. (2015). Plant developmental transitions: the role of microRNAs and sugars. *Curr. Opin. Plant Biol.* 27: 1–7. <https://doi.org/10.1016/j.pbi.2015.05.009>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Žádníkova, P. et al. (2010). Role of PIN-mediated auxin efflux in apical hook development of *Arabidopsis thaliana*. *Development* 137: 607–617. <https://doi.org/10.1242/dev.041277>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, Z., Runions, A., Mentink, R.A., Kierzkowski, D., Karady, M., Hashemi, B., Huijser, P., Strauss, S., Gan, X., Ljung, K., and Tsiantis, M. (2020). A WOX/auxin biosynthesis module controls growth to shape leaf form. *Curr. Biol.* 30: 4857–4868.e6. <https://doi.org/10.1016/j.cub.2020.09.037>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao, F. et al. (2020). Microtubule-mediated wall anisotropy contributes to leaf blade flattening. *Curr. Biol.* 30: 3972–3985.e6. <https://doi.org/10.1016/j.cub.2020.07.076>

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)