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Large-scale single-neuron speech sound 
encoding across the depth of human cortex

Matthew K. Leonard1,2,6, Laura Gwilliams1,2,6, Kristin K. Sellers1,2, Jason E. Chung1,2, Duo Xu1,2, 

Gavin Mischler3,4, Nima Mesgarani3,4, Marleen Welkenhuysen5, Barundeb Dutta5 & 

Edward F. Chang1,2 ✉

Understanding the neural basis of speech perception requires that we study the human 

brain both at the scale of the fundamental computational unit of neurons and in their 

organization across the depth of cortex. Here we used high-density Neuropixels 

arrays1–3 to record from 685)neurons across cortical layers at nine sites in a high-level 

auditory region that is critical for speech, the superior temporal gyrus4,5, while 

participants listened to spoken sentences. Single neurons encoded a wide range of 

speech sound cues, including features of consonants and vowels, relative vocal pitch, 

onsets, amplitude envelope and sequence statistics. Neurons at each cross-laminar 

recording exhibited dominant tuning to a primary speech feature while also containing 

a substantial proportion of neurons that encoded other features contributing to 

heterogeneous selectivity. Spatially, neurons at similar cortical depths tended to 

encode similar speech features. Activity across all cortical layers was predictive of 

high-frequency feld potentials (electrocorticography), providing a neuronal origin 

for macroelectrode recordings from the cortical surface. Together, these results 

establish single-neuron tuning across the cortical laminae as an important dimension 

of speech encoding in human superior temporal gyrus.

Speech perception is the process of transforming an acoustic signal 

into linguistic structures, such as syllables, words and sentences. The 

superior temporal gyrus (STG) is a critical area in the human brain for 

speech perception and comprehension6–8. Recent work with direct cor-

tical surface field potential recordings (electrocorticography (ECoG)) 

has provided a window into how different sites across the surface of 

the gyrus are tuned to specific speech sounds, such as the features of 

consonants and vowels9, vocal pitch in prosody10 and syllabic cues in 

the speech envelope11. While this work has described speech encoding 

across the STG, a major limitation is that ECoG signals at each electrode 

reflect the combined activity of thousands of neurons. By contrast, 

established methods for recording single neurons using microelec-

trodes sample from only a small number of units. Therefore, neither 

is able to resolve the neuronal organization across the cortical depth.

To address the neuronal processing of speech in the human brain, 

we used high-density multielectrode Neuropixels probes1–3 to record 

cellular activity from hundreds of individual neurons across the cortical 

layers in STG while participants listened to naturally spoken sentences. 

This approach allowed us to address (1) what acoustic and phonetic 

speech features are encoded by single neurons; (2) the functional 

organization of neurons across cortical layers of STG12–14; and (3) how 

single-neuron activity relates to population activity recorded from the 

cortical surface using ECoG15,16. Understanding speech processing at 

the cellular level has the power to provide fundamental insights into 

the cortical representation of speech.

A Neuropixels probe2 was placed in the mid-posterior STG at nine 

locations in eight participants (seven left hemisphere, one right hemi-

sphere) undergoing awake language mapping during neurosurgical 

procedures (Fig. 1a,b). The probe was inserted temporarily into tis-

sue that was subsequently removed as part of temporal lobe epilepsy 

surgery or tumour resection17. The probe had 384 recording channels 

spanning 7.66)mm and was slowly inserted perpendicularly into the 

crown of the cortical gyrus to achieve a vertical orientation through 

the cortex (Fig. 1c). The perpendicular penetration allowed dense sam-

pling of activity from neurons spanning the pial surface to the white 

matter boundary (Fig. 1c,d; Extended Data Fig. 1 shows the histology 

from other participants).

Dense sampling of single-neuron spiking in STG

Eight participants were awake and listened to 200 naturally spoken sen-

tences (produced by 103 unique male and female speakers), which span 

the natural variability in the acoustic, phonetic and prosodic aspects 

of English18. For visualization and model evaluation, 10 sentences were 

repeated 10 times, whereas the remaining 100 sentences were played 

once each (total experiment duration was 8.3)min) (8Speech stimuli and 

procedures9). After performing automated spike sorting and manual 

curation19, we obtained 685 putative single units across all nine sites 

(n)=)117, 69, 95, 37, 82, 101, 62, 44, 78 in each insertion). Of these units, 

420 (61%) showed significant responses to the speech stimuli (Fig. 1e) 
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(speech responsive is defined using the parameter-free ZETA test20 

compared with silent periods).

When we aligned activity to speech onset for each of the 100 

repeated trials, we observed a striking diversity of response pat-

terns (Fig. 1f and Supplementary Video 1). For example, some neurons 

responded primarily at the start of sentences with either increased 

(p4-2-u53) or decreased (p6-u12) firing. Other units had highly specific 

increases in firing at different moments in each sentence (p1-u52, 

p4-2u79).

The large number of neurons we recorded enabled us to sample 

different putative cell types (for example, excitatory cells versus 

inhibitory interneurons) across the depth of the cortex. We clustered 

spike waveforms from the nine sites using k-means and found three 

distinct shapes: regular-spiking neurons, fast-spiking neurons21,22 and 
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Fig. 1 | Large-scale human single-neuron recording across the cortical depth 

using Neuropixels probes. a, Close-up photograph of the Neuropixels probe 

inserted into the human cortex. b, Recording locations for nine penetrations 

(right STG sites (RH) plotted on the left hemisphere). c, Magnetic resonance 

imaging shows the approximate location of the Neuropixels probe spanning 

the full cortical depth in p1 (MTG, middle temporal gyrus). d, Histology from 

resected tissue at the insertion site in p1 provides approximate laminar 

boundaries within STG. e, Number of speech-responsive and non-responsive 

units. f, Single-trial spike rasters for example neurons showing how neurons 

respond differently to different sentences. Each neuron shows multiple trials 

of 10 different sentences (separated by dashed lines). Spike waveforms (mean 

and 100 randomly selected single spikes) are shown to the right. Red lines 

indicate sentence onset and offset. g, Three types of spike waveform (upper 

panel; FS, fast spiking; RS, regular spiking) with distribution across the cortical 

depth in nine sites (lower panel). h, Thresholded PSTH (50)ms window) for three 

sentences (averaged across repetitions) from 117 neurons in p1 (sorted by depth) 

shows patterns of evoked activity across the depth. The upper panels show 

acoustic spectrograms of each sentence with word and phoneme annotations. 

freq., frequency; FR, firing rate.
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other neurons with broad positive peaks23 (Fig. 1g). Across the cortical 

depth, regular-spiking and positive-spiking neurons were the most 

prevalent, spanning all putative layers. Speech-evoked responses 

and speech feature encoding were largely similar across putative cell 

types (Supplementary Fig. 1). We did not find a relationship between 

response type (for example, enhanced versus suppressed firing) and 

putative cell types (Fig. 1g), and neurons with speech-evoked responses 

were represented by all waveform shapes (Fig. 1f and Supplementary 

Fig. 1). Fast-spiking neurons were not as common as regular-spiking 

and positive-spiking neurons, and they were found mostly in mid–deep  

layers.

The diversity of responses (Fig. 1f) and putative cell types (Fig. 1g) 

across the cortical depth suggests that, within a recording site per-

pendicular to the cortical surface, different cells are associated with 

distinct types of speech-evoked activity. We observed that within a 

site, neurons exhibited a wide variety of response patterns when pre-

sented with different spoken sentences and that these patterns varied 

as a function of cortical depth (Fig. 1h; Supplementary Fig. 2 shows a 

comparison between signal and noise correlations). Although we were 

unable to define the precise boundaries between layers (Methods), 

this large-scale picture of neuronal speech responses provides a highly 

detailed view of the response diversity for speech and suggests that 

STG neurons, even at a single location in the cortex, encode many dif-

ferent speech properties.

Single-neuron responses to speech

Electrical stimulation mapping and neurophysiology data suggest 

that the STG is specialized for high-order, complex auditory speech 

processing24–27. To examine response selectivity to speech input, we 

first visualized single-trial activity for a wide variety of neurons across 

many different sentences and participants (Fig. 2). The purpose of 

this visualization was to provide a qualitative description of the raw 

data (single-neuron spikes). These example neurons demonstrate that 

activity was highly consistent across repeated presentations of the 

same sentence (Fig. 2a,b) and highly specific to particular speech cues 

(Fig. 2c–m and Supplementary Video 2)28.

In each recording, we found many neurons that responded to specific 

speech sounds (Fig. 2c–j). For example, we observed neurons that 

showed increased firing in response to nasal sounds, such as /m/ and 

/n/ (Fig. 2c,d). Some neurons responded specifically to approximant 

sounds, such as /l/, /w/ and /r/ (Fig. 2e). Others were tuned to frica-

tive sounds, such as /s/, /z/, /f/ and /v/ (Fig. 2f,g). Some were tuned to 

high/front vowels, such as /i/ and /j/ (Fig. 2h), and others were tuned 

to low/back vowels, such as /S/, /�/ and /V/ (Fig. 2i). Finally, some neu-

rons responded to plosive sounds, such as /b/, /d/, /g/, /p/, /t/ and /k/ 

(Fig. 2j). In each of these cases, responses were not specific to individual 

phonemes, but rather were selective to groups of speech sounds that 

share acoustic–phonetic features (the coloured phoneme labels shown 

in Fig. 2a). This suggests that tuning to speech sounds reflects auditory 

sensitivity to specific articulatory gestures during speaking (that is, 

voicing, plosive, nasal and so on)29,30 rather than individual phoneme 

consonants and vowels.

In addition, we also observed neurons with clear and highly specific 

responses to non-phonetic acoustic cues. For example, we found neu-

rons that responded exclusively at the onset of sentences, regardless 

of the specific speech sounds (Fig. 2k,l)31. Others showed suppression 

with a characteristic period of no firing (Fig. 2m).

Encoding variability within a cortical column

ECoG studies have revealed a spatial organization of speech feature 

representations across the surface of STG4. Yet, it remains unknown 

whether different neurons across a vertical column of cortex have 

homogeneous tuning (as seen in primary sensory cortices) or encode 

different speech properties. Furthermore, if neurons within a site are 

heterogeneous, it is unknown whether different representations cluster 

at particular depths, potentially reflecting the laminar structure of 

the cortex.

To quantify the tuning properties across all neurons, we used tempo-

ral receptive field (TRF) encoding models and variance partitioning32 

(see 8Encoding models9). TRF models predict neural activity from a 

combination of stimulus features at a set of lags, providing neuronal 

tuning curves that account for correlations among the stimulus fea-

tures. We examined a broad set of speech features that we hypoth-

esized could be encoded in STG: (1) acoustic–phonetic features9; 

(2) onsets from silence31; (3) intensity features including amplitude 

envelope and its derivatives (for example, the maximum rate of posi-

tive change in the envelope (peakRate)11); (4) speaker-normalized 

(relative) vocal pitch and its derivatives10; (5) lexical stress (correlated 

with intensity and pitch but coded here as a discrete label at the level 

of syllables)33; and (6) phoneme and word sequence probability34,35. 

Together, these features (Fig. 3a; Extended Data Fig. 3 and Supplemen-

tary Table 1 show the full feature set) allowed us to test the extent to 

which individual neurons and cortical sites encode different types of 

speech information.

STG neurons showed clear evoked responses to specific speech 

features. For example, some neurons responded to particular acous-

tic–phonetic features (such as vowels or voiced consonants (nasals)) 

(Fig. 3b; Extended Data Fig. 4 shows phoneme TRF weights for example 

acoustic–phonetic neurons), whereas others responded to acoustic 

cues, such as onsets from silence or peakRate events (Fig. 3b). Other 

neurons were responsive to high relative pitch, lexical stress or pho-

neme surprisal (Fig. 3b), illustrating that neurons in STG could be tuned 

to a large range of features included in this analysis.

To quantify encoding, we fit TRF encoding models with all 44 features 

(Extended Data Fig. 3 and Supplementary Table 1) for each neuron. 

We found many clear examples of neurons that were tuned to specific 

speech content, including particular groups of consonants or vowels, 

onsets from silence, low or high pitch, stress and sequence probabilities 

(Fig. 3c) (only feature class names are shown for visualization; each row 

corresponds to an individual feature within that class). Although some 

neurons exhibited significant weights for multiple classes of features 

(Methods discusses statistical quantification details), the overall pat-

tern of encoding was sparse within each neuron.

All features together in these models explained variance up to 

r)=)0.55 (mean)=)0.182)±)0.109; range)=)0.0039–0.551). To understand 

how specific features contributed to this total explained variance, 

we characterized each neuron and each recording site according to 

the unique variance (R2) (ref. 36) for each of the six major classes of 

speech features (Fig. 3a) (acoustic–phonetic features were collapsed 

into vowels, voiced consonants and unvoiced consonants; only neu-

rons with full model r value of greater than 95% shuffled permutation 

distribution are included) (8Model comparisons9). We used unique R2 

because it provides a robust and relatively conservative estimate of 

variance attributable to each group of features, which is critical for 

speech where many features are correlated with one another.

Each cortical site had one 8dominant9 feature (determined by the 

largest slice in each main pie plot in Fig. 3d) that explained a significant 

proportion (25–62%) of the unique variance. Four sites were dominated 

by neurons encoding pitch (p1, p4-2, p6, p7; orange outline), whereas 

four were dominated by neurons encoding subgroups of acoustic–

phonetic features (p2, p3, p5, p8; purple outline), and one site was 

dominated by neurons encoding onsets from silence (p4-1; light blue 

outline). These results demonstrate that different sites across the STG 

contain neuronal populations that are predominantly tuned to a par-

ticular speech feature across the vertical dimension, consistent with 

tuning observed at the cortical surface with ECoG36 (Extended Data 

Fig. 5). This finding was further corroborated by acoustic spectro-

gram decoding, which showed high-accuracy reconstructions and 
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complementary information across recording sites (Extended Data 

Fig. 6 and Supplementary Text).

At the same time, we observed heterogeneity in encoding at every 

site. The dominant feature did not account for all explainable vari-

ance, and the remaining variance was split among the other classes 

of features (acoustic–phonetic, onset, intensity, relative pitch, stress 

and sequence probability).

We asked whether the heterogeneity in speech encoding patterns 

observed at each site could be explained by the encoding of different 

speech information in neurons at different cortical depths. For the 

four sites with strong relative pitch tuning (p1, p4-2, p6, p7), we found 

that relative pitch encoding was significantly stronger for superficial 

neurons, whereas acoustic–phonetic feature encoding was signifi-

cantly stronger in mid-deep layers (Fig. 3d) (two-sample Kolmogorov– 

Smirnov test P)<)0.05 in three of four sites). The patterns across depth 

at the other sites were less clear; however, these sites were more domi-

nated by a single feature class (either acoustic–phonetic features or 

onsets). Thus, in some sites, the tendency for neurons tuned to features 

of the same class to colocalize appears to be one of the organizing 

principles across cortical depth in STG.

Overall, these results demonstrate that STG is organized accord-

ing to sites with a dominant feature and that tuning within a site has 

a degree of heterogeneity that makes them not entirely modular37,38. 

This variation in speech feature tuning potentially facilitates local 
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transcriptions time aligned to the audio waveform. Phoneme/feature colours 

correspond to example units in c–m, which were labelled by hand for visualization 
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and sentence. Coloured lines are the smoothed (50)ms window) PSTHs across 

trials. c,d, Two examples of neurons responding primarily to nasal sounds  

(for example, /m/, /n/). Note that even similarly tuned neurons can have very 

different spiking properties (for example, primarily bursting (p4-2-u79) versus 

sparse firing (p3-u18)). e, Neuron responding primarily to approximant sounds 

(for example, /l/, /r/, /w/). f,g, Two examples of neurons that are selectively 

responsive to fricatives (for example, /s/, /z/, /f/). h, Neuron selectively 

responsive to high/front vowels (for example, /i/, /j/). i, Neuron primarily 
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responsive to sentence onsets. Some units show increased firing at onset (k,l), 

whereas others show delayed firing (m). a.u., arbitrary unit.
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computations that integrate over the distinct aspects of speech that 

occur simultaneously39. Although each site exhibits dominant encod-

ing of a particular feature, all sites contain a mixed population of neu-

rons that encode different spectrotemporal information in contrast 

to largely homogeneous frequency tuning in cortical columns of the 

primary auditory cortex40–42.

Speech responses across cortical depth

The heterogeneity we observed both within and across cortical sites 

demonstrates tuning to a highly diverse set of speech features in STG. 

To quantify the different types of responses that give rise to this tuning 

across the speech-selective neuronal population (n)=)287; neurons with 
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significant TRF encoding models), we examined neuronal activity using 

several complementary approaches. First, we compared the activity 

of each neuron with all other neurons (aggregated across recording 

sites) by computing the pairwise Pearson cross-correlations of the 

sentence-specific peristimulus time histograms (PSTHs) (Fig. 4a). 

Thirty percent of neuron pairs were significantly correlated (mean 

r)=)0.28)±)0.067, maximum r)=)0.96, n)=)287; P)<)0.05, Bonferroni  

corrected).

We grouped neurons according to these correlations using hier-

archical clustering and examined sentence-specific responses for 

all neurons and all clusters. This revealed several clusters in which 

most neurons were strongly correlated with one another (cluster 8 

(100% of neuron pairs with significant correlations), cluster 7 (80%), 

cluster 5 (79.6%), cluster 1 (67.5%); all P)<)0.05, Bonferroni corrected) 

(Extended Data Fig. 7). For clusters with highly correlated neurons, 

responses to individual sentences showed specific response dynam-

ics, including onsets from silence (cluster 8) or broad sustained 

responses (cluster 5). Others showed increased firing rates through-

out the sentences that were characterized by bursts of transient 

activity (cluster 7). These response types illustrate shared dynam-

ics within subpopulations of neurons recorded from many different 

locations and depths along the STG, with sentence-specific responses 

embedded in these dynamics (Extended Data Fig. 8 and Supplemen-

tary Text have population state-space dynamics and speech feature  

decoding).

It is clear from single sentence-evoked activity that these response 

types and encoding patterns are organized as a function of depth 

(Figs. 1h and 4b). We directly examined columnar heterogeneity and 

the organization of neuronal representations across the cortical depth. 

We first asked whether correlations in average evoked responses were 

stronger for neurons that were anatomically closer to each other in 

depth. We found that in three of nine sites, there was a negative relation-

ship between the peak cross-correlation (Supplementary Fig. 2) and 

the distance between neuron pairs (10 distance bins; p1: r)=)20.098, 

P)=)0.00095, n)=)48; p3: r)=)20.32, P)=)1.5)×)1027, n)=)23; p7: r)=)20.25, 

P)=)9.1)×)1025, n)=)40).

Next, to quantify this relationship for both spiking activity and neu-

ral acoustic representations, we correlated the weights of individual 

neuron spectrotemporal receptive field (STRF) models32. In an exam-

ple site, we observed that neurons at different depths exhibited very 

different tuning properties, with some neurons showing broadband 

spectral content (superficial), broad temporal responses (middle) and 

high spectral and temporal modulation (mid-deep) (Fig. 4c, left red). 

To understand whether neurons at similar depths were tuned similarly 

(that is, broader spatial organization across the cortical depth), we 

compared STRFs for different neurons that were at similar depths 

(Fig. 4c, right blue). Qualitatively, neurons at the same depth were very 

similar, whereas those farther away showed different tuning. We quanti-

fied this across all neurons by grouping each site into six depth bins and 

correlating the STRF weights. Averaged across all sites, we observed 
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that neurons in the same bin were more similar compared with those 

in other bins (Fig. 4d; Extended Data Fig. 9 shows each individual site). 

We also found that neurons in mid-deep layers (approximately 3–4)mm) 

consistently had the shortest peak STRF latencies (less than 100)ms; 

analysis of variance F(4,190))=)3.8, P)=)0.0058). Similar tuning for neu-

rons at similar depths demonstrates a functional organization across 

cortical layers that complements the organization seen across the 

surface of STG, whereas differences in peak latencies could suggest 

that different layers receive distinct inputs43,44.

Tuning of STG neurons to complex speech features

Spectrotemporal representations in STG at the level of ECoG are 

known to be complex and broad; however, it is unclear to what extent 

the same is true for individual neurons. Whereas the primary audi-

tory cortex is associated with narrow-band frequency tuning45, we 

observed tuning profiles that were qualitatively far more complex in 

the STG (Fig. 5a and 8Encoding model features9). For example, we found 

neurons with multipeak tuning at short lags (p1-u52), broad tuning 

to low- to mid-frequencies at short lags (p1-u66), increased firing to 

high-frequency content and decreased firing to low-frequency con-

tent at mid-latency lags (p8-u12), tuning to low-frequency harmonic 

structure at short to mid-lags (p4-2-u79) and broad spectral tuning with 

harmonic structure at mid-long lags (p5-u83). These spectrotemporal 

encoding patterns corresponded to acoustic–phonetic features, with 

individual neurons showing strong weights for groups of phonemes 

that share features (for example, high vowels, fricatives, plosives, nasals 

and so on) (Extended Data Fig. 4). These examples illustrate the range 

of spectrotemporal tuning of individual STG neurons, some of which 

were observed within a single site.

When we characterized all units with significant STRF models (per-

mutation test versus shuffled distribution; n)=)217, r)=)0.039–0.45, 

mean)=)0.17)±)0.082) according to four key metrics of spectrotempo-

ral tuning, we found (1) wide bandwidth (mean)=)4.03)±)1.57)octaves; 

Kolmogorov–Smirnov test versus uniform distribution: D)=)0.92, 

P)=)1.45)×)10238) (Fig. 5b); (2) latencies characteristic of high-order audi-

tory cortex (mean)=)133)±)99.9)ms; Kolmogorov–Smirnov test: D)=)0.95, 

P)=)3.09)×)10217) (Fig. 5c); (3) multiple spectral peaks (mean)=)7.72)±)2.14; 

Kolmogorov–Smirnov test: D)=)1.0, P)=)5.86)×)10212) (Fig. 5d); and  

(4) low-frequency tuning (median)=)326.5)±)1,989)Hz; KS test: D)=)0.68, 

P)=)2.92)×)10221) (Fig. 5e). A bias towards lower frequencies may reflect 

the specialized nature of STG for human speech, where the majority of 

acoustic energy is in the voicing range (less than 500)Hz).

In addition to characteristic spectrotemporal patterns, speech 

sounds can also be described according to dynamic spectral and 

temporal modulation profiles, which are strongly correlated with 

speech intelligibility46,47. We computed the modulation transfer func-

tion (two-dimensional fast Fourier transform of the STRF47) and found 

that whereas some units showed primarily higher temporal modulation 

rates (approximately 2–4)Hz; for example, p1-u66) (Fig. 5f), others 

showed primarily higher spectral modulation rates (approximately 

1–2)cycles per octave; for example, p8-u12 and p4-2-u79). Some neu-

rons showed both high temporal and spectral modulation rates (for 

example, p5-u83). Across all neurons with significant STRF models, 

the rate of temporal modulation tuning was generally less than 4)Hz 

(mean)=)1.64)±)1.37; Kolmogorov–Smirnov test: D)=)0.82, P)=)1.01)×)10230), 

with peaks at approximately 0.5)Hz and approximately 2.5)Hz (Fig. 5g). 

Spectral modulation tuning was generally less than 0.5)cycles per octave 

(mean)=)0.15)±)0.14; Kolmogorov–Smirnov test: D)=)0.6, P)=)2.05)×)10207) 

(Fig. 5h). These temporal and spectral modulation rates are important 

for speech intelligibility, and this diversity of modulation tuning is 

similar to what is observed at the neural population level with ECoG48.

Although these results demonstrate robust encoding of spectrotem-

poral information across the population of neurons, STG neural pop-

ulations are also characterized by non-linear representations49. To 

understand these nonlinearities in single neurons, we modelled the 

encoding functions with a deep neural network (DNN) (8DNN model 

training9)49,50. Compared with the linear STRF, the DNN explained more 

variance in a majority of units, suggesting that many STG neurons have 

non-linear tuning (Fig. 5i).
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Using the DNN, we extracted the dynamic spectrotemporal receptive 

field (dSTRF), which is the equivalent piecewise linear transforma-

tion, allowing us to interpret and visualize the model of a single neu-

ron at a given instant as an STRF (8dSTRF calculation and nonlinearity 

estimation9). Unlike an STRF, however, the dSTRF is context depend-

ent, so its tuning changes for different time windows as the stimulus 

changes. Previous characterization of human ECoG in auditory cortex 

with this approach has identified three specific types of nonlinearities 

that improve model fits: (1) gain change (how much spectrotemporal 

tuning changes in magnitude in response to different input); (2) tem-

poral hold (how much a model maintains the shape of its tuning while 

shifting it over lags in successive time steps); and (3) shape change 

(how much the shape of the spectrotemporal tuning changes after 

removing the effect of temporal hold)49. We found example neurons 

that were well explained by each of these nonlinearities (Fig. 5j). Across 

the population of neurons, each nonlinearity was characterized by 

a wide distribution, consistent with the heterogeneity we observed 

among these neurons (Fig. 5k).

Finally, to understand how these nonlinearities manifest across neu-

rons, we performed unsupervised hierarchical clustering (minimum 

variance, Euclidean distance) on the three nonlinearities and identified 

two primary clusters of neurons (Supplementary Fig. 3). We found 

that one cluster primarily exhibited gain change and temporal hold, 

whereas the other primarily exhibited shape change (Fig. 5l). This also 

revealed that most neurons demonstrated high values for only one or 

two of the nonlinearities but not all three. In addition, neurons with high 

gain change and high temporal hold weights tended to be located in 

deeper cortical layers compared with neurons with high shape change 

weights (Fig. 5m) (t-test, t(188))=)23.88, P)=)0.00014, n)=)189; controlled 

for recording site). This suggests that the heterogeneity we observe 

across cortical layers (Figs. 3d and 4d) is at least partially a consequence 

of distinct non-linear computations relevant for speech encoding.

ECoG activity reflects mixed neuronal contributions

High-frequency activity from direct neurophysiological recordings 

using surface ECoG has been critical to understanding human brain 

function across a variety of domains51, yet it is unclear to what extent 

signals recorded at the surface using ECoG macroelectrodes primarily 

reflect superficial neurons15 or whether there are also contributions 

from other neurons in deeper layers16.

We had the rare opportunity to record high-density surface ECoG 

(Fig. 6a) during inpatient epilepsy monitoring before intraoperative 

Neuropixels recording in some cases (Fig. 6b and 8ECoG recording9). 

This allowed us to examine the relationship between neuronal signals 

across the cortical depth and population activity recorded from mac-

roelectrode ECoG contacts on the pial surface. First, we compared the 

ECoG high-gamma responses to the same sentences with single-unit 

activity (SUA) averaged across all 117 units from p1 (PSTH calculated 

with a 10)ms window for comparison with high gamma) (Extended Data 

Fig. 10 shows an additional participant). We found a strong correlation, 

with both the overall shape of the response and individual peaks within 

the stimulus corresponding between the two signals (statistical details 

are in Fig. 6c). By contrast, the local field potential (LFP) signal from the 

ECoG arrays was less strongly correlated to SUA (Fig. 6d) (the statistical 

comparison between high gamma and LFP is quantified below), sug-

gesting a specific relationship between high-frequency ECoG activity 

and neuronal spiking.

To address the relationship between surface ECoG signals and neu-

rons at specific depths, we correlated activity between ECoG and SUA 

for each individual neuron and for both the high-gamma and LFP signals 

at the surface. First, we found that SUA was consistently more correlated 

with high gamma than with LFP52 (Fig. 6e). Second, we found significant 

correlations with high gamma throughout the depth (Fig. 6e) (mean 

r)=)0.496)±)0.102, range)=)0.329–0.757; n)=)82). We binned neurons into 

six equally spaced depth ranges and found that although there was a 

significant correlation to ECoG high gamma in all bins, deeper bins had 

stronger correlations (F(5,111))=)3.37, P)=)0.0072) (Fig. 6f). This result 

contrasts with previous reports showing the strongest correlations 

between surface high gamma and superficial neuronal activity; how-

ever, these studies used only microelectrodes to record both signals15.

We also examined the correlation between depth-wise neuronal 

activity and ECoG high-gamma responses at electrodes throughout 

STG. Although it is unlikely that neurons at one site contribute meas-

urable signals to ECoG electrodes several millimetres or centimetres 

away53, lateral connections and shared tuning properties may be related 

to organization seen at other sites. We observed strong correlations 

to most STG ECoG electrodes (r)>)0.5), with the pattern across depth 

depending on the type of response. For example, the site directly over 

the Neuropixels probe exhibited heterogeneous tuning at the neuronal 

level (Figs. 3 and 4) and sustained average ECoG activity (Fig. 6g, red 

electrode), leading to the strongest correlations in mid-deep bins. 

By contrast, electrodes surrounding the Neuropixels recording site 

showed clear onset responses and correspondingly higher correlations 

to more superficial units (Fig. 6g).

Finally, we asked how the tuning of macroelectrode ECoG activity 

is related to the underlying neuronal population. We fit the same full 

speech feature encoding model (Fig. 3) on all STG ECoG electrodes 

and found organization for different speech features along the  

posterior–anterior axis of the gyrus (Fig. 6a). Consistent with previous 

work36, a zone in posterior STG was dominated by electrodes tuned to 

onsets from silence, whereas mid-anterior STG was characterized by 

acoustic–phonetic and prosodic features.

The site where we placed the Neuropixels probe showed a com-

plex receptive field, with the strongest weights for onsets, acoustic– 

phonetic (low/mid vowels), envelope (acoustic edges), relative pitch 

(particularly low to mid pitch and rising pitch) and stress features 

(Fig. 6h, left panel). We compared this tuning profile with an average 

of models across neurons, weighted by the r value of the model (Fig. 6h, 

right panel). We observed a clear correspondence to the ECoG tuning, 

with strong weights on several key features, including onsets, envelope  

and stress (correlation between ECoG and Neuropixels models  

Spearman ρ)=)0.166, P)=)1.44)×)10212). These results further support the 

claim that activity recorded at the pial surface with macroelectrodes 

reflects a complex mixture of the underlying neuronal population.

Discussion

Here, we used large-scale single-neuron recordings enabled by the 

Neuropixels array to demonstrate the cellular encoding of speech 

processing in the human STG. Across the depth of cortex, the neuronal 

population is tuned to a dominant speech feature, consistent with the 

high-frequency broadband signal recorded at the surface with ECoG. 

At the same time, a relatively large proportion of neurons throughout 

the vertical cortical column also encode a large variety of other speech 

features, revealing a distinct, previously unappreciated dimension for 

speech encoding.

Our observations in STG contrast with 8columnar9 recordings in the 

primary auditory cortex, where neurons across the cortical layers 

exhibit tuning to the same narrow-band frequency40,41. STG neurons 

instead encode a wide variety of complex spectrotemporal, phonetic 

and prosodic features5, and they tend to exhibit correlated tuning at 

locally adjacent depths. The dense sampling across depth provided 

by Neuropixels probes enables investigation of these fundamental 

organizational questions38.

Our results contribute to an emerging model of the three-dimensional 

functional organization of the human STG. Specifically, mid-deep 

cortical layers, which are most strongly correlated with the surface 

ECoG response16, show the fastest responses for a given site, possibly 

reflecting direct thalamic inputs54,55. Across cortical layers, local clusters 
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of neurons are tuned to specific classes of speech information (for 

example, acoustic–phonetic or prosodic), possibly reflecting lateral 

inputs from other sites42,56–61. The unique functional organization of 

associative auditory areas such as STG, where a dominant feature is 

encoded alongside other speech features, could have an important 

role for local computations and integration of complex signals, such 

as those in spoken language.

The application of Neuropixels has the potential to be transformative 

for the next generation of human neuroscience. The present demon-

stration of large-scale neuronal recordings will greatly accelerate our 

understanding of the unique computations and representations of 

the human cortex.
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Methods

Participants

Participants (three female, five male; ages 33, 28, 24, 42, 53, 67, 22 

and 34)years) underwent clinical surgery for resection of epilepsy 

focus or brain tumour (Supplementary Table 2). Before surgery, par-

ticipants were consented for temporary intraoperative placement 

of Neuropixels probes during the procedure. In all cases, the tissue 

where Neuropixels probes were inserted was resected according to 

the surgical plan. The cortical locations were evaluated with electrical 

stimulation mapping and determined to not be critical for language. 

In one case, a positive stimulation mapping site was resected because 

of severe seizures.

Participant consent

All protocols were reviewed and approved by the University of Califor-

nia, San Francisco Institutional Review Board. Patients gave informed 

consent before surgery for temporary intraoperative placement of 

Neuropixels probes during the procedure.

Neuropixels hardware and probe placement

Neuropixels 1.0)NHP-short probes with 10)mm)long shanks and metal 

dovetail caps (IMEC) were used for all recordings. Two 27)gauge subder-

mal needle electrodes (Ambu) were soldered separately to the probe 

flex interconnect to serve as ground and reference using lead-free 

solder and two strands of twisted 36AWG copper wire. Details of the 

hardware configuration have been previously reported in ref. 2.

Electrode placement was determined after clinical mapping and the 

resection zone had been defined. In each case, probes were inserted 

into tissue that had been targeted for resection and was subsequently 

removed during the same surgery.

We used methods described in our previous work2 to position and 

advance the probe into tissue. In brief, once a site had been identified, 

the probe was positioned perpendicularly to the cortical surface and 

advanced slowly with a micropositioner until we reached a depth of 

approximately 7)mm. This distance was chosen to allow us to cover the 

full depth of the cortex with the 8long column9 electrode montage on the 

Neuropixels probe. We attempted to leave approximately 600–700)μm 

of active recording channels outside of the brain so that we could iden-

tify the cortical surface on the recordings, which we used to estimate 

the depth of the recorded units. Cortical pulsations related to cardiac 

and respiratory cycles were dampened using surgical patties or a ped-

estal attached to the micropositioner. Post hoc motion correction was 

applied using Kilosort 2.5 (ref. 19), and stability of units was verified 

manually during the sorting process.

Recordings were typically limited to 10–15)min. All participants were 

awake during recording.

Preprocessing and spike sorting

Automated spike sorting was performed on the high-pass filtered 

data (cutoff 300)Hz, sampling rate 30)kHz) with Kilosort 2.5 using 

standard parameters19. The output of Kilosort was then manually 

curated by at least two researchers using Phy. Clusters with abnor-

mal spike waveforms, excessive interspike-interval violations or 

multiple waveform shapes that could not be split into separate clus-

ters were rejected. The remaining clusters were labelled as putative 

single units and were included in subsequent analyses. Spike wave-

forms were subsequently clustered into putative cell types (Fig. 1g), 

which were well separated into three clusters (Supplementary Fig. 4). 

PSTHs for data visualization and encoding models were calculated 

using a 50)ms sliding window, except where noted. Although we 

planned to use the LFP signal to identify layer boundaries using cur-

rent source density analysis14, technical issues precluded obtaining 

clear LFP signals; therefore, we focus here on single-neuron spiking  

activity.

Speech stimuli and procedures

One hundred and ten unique sentences from the TIMIT corpus18 were 

played to participants during surgery. Ten of these sentences were 

repeated 10 times each, providing 200 total trials. Sentences had a 

mean duration of 1.72)s (s.d.)=)0.394)s) and were produced by 103 unique 

male and female speakers. In two participants (p2 and p3), the full set 

of stimuli was repeated once, providing 400 trials (and therefore, allow-

ing up to 20 repeats of certain sentences) (Fig. 2).

ECoG recording

Before the resection surgery, a subset of participants received inpatient 

care in the University of California, San Francisco Epilepsy Monitoring 

Unit, where activity was recorded using high-density (4)mm pitch) 

subdural ECoG electrode arrays. Four participants listened to the same 

sentence stimuli used in the intraoperative Neuropixels experiments 

while ECoG was recorded. The location of the intraoperative Neuro-

pixels insertion was carefully matched to the corresponding sites of 

the ECoG electrodes using surface vessel and sulcal landmarks. ECoG 

recordings were referenced online to a subgaleal reference electrode 

and were not re-referenced for analysis.

Following previously published methods, we extracted ECoG activ-

ity in the high-gamma (70–150)Hz) frequency range using Morlet 

Wavelets. We also examined broadband activity from the LFP signal, 

applying minimal filtering (notch filters at 60)Hz and harmonics up  

to 500)Hz).

Tissue resection and immunohistochemical staining

The cortical tissue surrounding the Neuropixels insertion site was 

surgically removed. When possible, the tissue was resected en bloc in 

a single piece for histological analysis (Extended Data Fig. 1). In some 

cases, the STG was too narrow or had arteries that needed to be pre-

served, precluding en bloc excision.

Encoding model features

To quantify single-neuron speech encoding, we used multiple com-

plementary descriptions of the sentence stimuli, which allowed us to 

examine spectrotemporal-, phonemic-, acoustic–phonetic-, prosodic- 

and sequence-level features.

To examine spectrotemporal features, each sentence was decom-

posed into 80 frequency bands, which were logarithmically spaced 

using the mel scale to match the perceptual characteristics of the 

peripheral auditory system.

To examine encoding of acoustic–phonetic-, prosodic- and 

sequence-level features, we annotated each sentence using a com-

bination of hand-labelled and automatically transcribed features. In 

total, we annotated each speech stimulus with 44 features, which were 

organized into six major categories: (1) sentence onsets31; (2) acoustic– 

phonetic features9; (3) relative pitch10; (4) amplitude envelope11;  

(5) stress33; and (6) speech sequence statistics34,35. Extended Data Fig. 3 

shows example annotated sentences, and Supplementary Table 1 shows 

descriptions of each feature.

Sentence onsets were coded as binary variables at the first sample 

of each sentence. Acoustic–phonetic features reflect the manner and 

place of articulation of each speech sound, and they were coded as 

binary variables for manner of articulation (plosive, approximant, 

fricative and nasal); place of articulation for consonants (labial, velar, 

coronal, glottal and dental); and vowel features (high, mid, low, front, 

back, unrounded and rounded).

For relative vocal pitch, we focused on speaker-normalized pitch, 

which has been shown to be encoded in STG using ECoG10. In prelimi-

nary analyses, we also considered absolute pitch (in hertz); however,  

we found that the vast majority of neurons were better explained by 

relative pitch. When we tested a model fit on just relative pitch or just 

absolute pitch, relative pitch better explained neuronal responses 
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(paired samples t-test t)=)6.5, P)=)1)×)10210) (Extended Data Fig. 2).  

To reduce redundancy in the models, we therefore excluded abso-

lute pitch. To compute pitch, we used the 8crepe9 Python module62 

(v.0.0.12). The resulting pitch values were normalized within speakers 

between zero and one, representing the minimum and maximum of that  

speaker9s own pitch range. These normalized relative pitch contours 

were quantized into 10 equally-sized bins. In addition, we also included 

derivative measures of pitch (increasing/decreasing and maximum/

minimum within each sentence), which describe how the pitch con-

tour changes. The relative pitch feature is continuous over time, with 

a sample rate of 100)Hz.

The amplitude envelope of speech was characterized using five 

features: (1) the continuous speech envelope defined as the rectified  

Hilbert transform of the speech waveform with a low-pass 10)Hz  

Butterworth filter; (2) binary impulses at the peaks in the envelope; (3) a 

single impulse at the maximum peak of the envelope for each sentence; 

(4) peaks in the positive derivative of the envelope (peakRate11); and 

(5) the maximum derivative point for each sentence.

Although relative pitch and amplitude are characteristic acoustic 

properties of stress in speech (in addition to duration, which was 

coded implicitly in the acoustic–phonetic features), we also marked 

the moments of primary and secondary syllabic stress33 according to 

manual annotations from the TIMIT corpus18 using binary impulses.

Finally, we included two types of speech statistics. At the phoneme 

level, we coded surprisal and entropy of each speech sound as a function 

of the previous speech sounds in the word63. Impulses were placed at 

phoneme onset, matching the temporal coding of phonetic features. 

These metrics were computed based on word frequency counts from 

the English Lexicon Project64. At the word level, we included Unigram 

surprisal (word frequency), trigram surprisal (likelihood of a word 

given the two previous words) and surprisal from a larger contextual 

window (computed from GPT2, a large language model that accounts 

for long-distance dependencies in language65). These word-level sta-

tistical features were coded with impulses at word onset. To account 

for the effect of word-level statistics being defined only at word onsets, 

we also coded binary impulses at word onsets.

Encoding models

For all types of stimulus description, we modelled single-neuron 

responses using a ridge regression TRF36 with L2 regularization. Neural 

responses were characterized using the PSTH with a 50)ms smoothing 

kernel.

Linear receptive field models were fit using the following framework:

 ∑ ∑x t x β τ f S f t τ( ) = + ( , ) ( , − ),
f τ

T

0
=0

where x is the PSTH of each neuron, β τ f( , ) is the regression weights for 

each feature f at each time lag τ and S is the stimulus representation 

for feature f at time t)2)τ. We used a time window that ranged from  

300 ms before to 100 ms after.

Each model was fit using ridge regression:

̂ ∣∣ ∣∣ ∣∣ ∣∣β y XB λ B= argmin − + ,
2
2

2
2

where β)∈)R, X is the set of stimulus features, B is the set of regression 

weights learned in the equation above and λ is the L2 penalty term used 

to minimize the values of each β. λ was evaluated over a range from 

1)×)103 to 1)×)109 with logarithmic spacing and was chosen to maximize 

model performance on held-out data while also yielding temporal 

smoothness similar to the underlying data.

All stimulus features were normalized by first transforming their 

range between zero and one and then to control for the relative spar-

sity of different features, by dividing their amplitude by their mean 

over time:

s s

s s
bounded =

−min( )

max( ) −min( )

normalized =
bounded

mean(bounded)
.

Models were fit by concatenating sentences, allowing 200)ms of 

silence between trials. The TRF model was trained on 80% of the data 

and evaluated on 20% of the data using a Pearson correlation between 

the predicted and true PSTHs for each unit. We repeated this procedure 

50 times on different random shuffles of the data.

To evaluate statistical significance, we compared the true model fit 

with a null model fit on temporally permuted data. For the null model, 

we shuffled the within-sentence neural data and speech features by a 

random lag between 2500 and 500)ms. This retained the covariance 

structure between the features in the model and matched general 

distributional properties of the data to form a fair and conservative 

comparison with the true model fits. We repeated this 50 times, with 

random shuffles of the trials. Each null model was also fit using ridge 

regression as above.

A neuron was considered to have significant encoding if the average 

performance of the true model over 50 repetitions exceeded at least 47 

of the repetitions (P)<)0.05) of the temporally shuffled random models.

Model comparisons

To quantify the unique contribution of each class of feature in the 8full9 

model (sentence onsets, acoustic–phonetic features, relative pitch, 

amplitude envelope, stress and sequence statistics), we compared the 

model with all 44 predictors to a reduced model where the predictors 

of a given class of features were removed. For example,

r r

r

=

−

unique(onset) onset+acoustic−phonetic+pitch+intensity+stress+sequences

acoustic−phonetic+pitch+intensity+stress+sequences

r

r

r

=

−

unique(acoustic−phonetic)

onset+acoustic−phonetic+pitch+intensity+stress+sequences

onset+pitch+intensity+stress+sequences

and similarly for the other groups of features.

We report units as having significant unique R2 when both the unit 

had significantly better model fits than the temporally shuffled data 

and the unique R2 over repetitions was significantly higher than the 

shuffled data at P)<)0.05 using a rank sum test.

DNN model training

The DNN model was a five-layer convolutional neural network with 512 

kernels of sizes 5, 5, 7, 9 and 11; dilations of one, one, one, two and four; 

rectified linear unit (ReLU) activations; and a linear projection layer to 

predict all neuron responses (PSTH with an 80)ms window) simultane-

ously. Only the projection layer had a bias term. This model, therefore, 

had a receptive field of 71)lags or 355)ms. The objective function dur-

ing training was the mean squared error between predicted and true 

responses averaged across units, and we used the Adam optimizer with 

weight decay of 0.003, an initial learning rate of 0.0001 and an expo-

nential learning rate decay of 0.996. As a more fair comparison with 

the DNN, we trained linear models using the same data and gradient 

descent optimization (Fig. 5i).

Both DNN and linear models were trained with a jackknifing proce-

dure, where 10 models were trained by leaving out 10% of the training 

data for each. When evaluating the models, the predictions of all 10 

models on the test stimuli were averaged to produce a single response 

for each neuron.



dSTRF calculation and nonlinearity estimation

For a convolutional neural network with ReLU activations and no inter-

mediate bias terms, the dSTRF can be computed as the gradient of 

the output with respect to the input vector49,50,66. We used automatic 

differentiation in PyTorch67 to compute this gradient for each of the 

jackknifed models on the test stimuli. To ensure robustness of the 

dSTRFs, the 10 dSTRFs were averaged and further filtered based on 

sign consistency, whereby all 10 models were required to agree on 

the sign of a given lag-frequency bin in the dSTRF for a given input; 

otherwise, the averaged bin was set to zero.

To estimate gain change for each neuron, the Frobenius norm of 

the dSTRF was calculated at each time point, and the gain change was 

defined as the norm9s s.d. over the duration of the stimulus, provid-

ing an estimate of how much the magnitude of the dSTRF changes 

over time.

The temporal hold nonlinearity of a dSTRF describes the larg-

est duration in time that a spectrotemporal pattern persists in the 

dSTRF through shifts in lag over successive time steps. Estimating 

the temporal hold of a given dSTRF requires multiple steps. For the 

lag-frequency dSTRF at time t (dSTRFt(τ,)f )) for each lag n, up to the 

maximum lag size of the dSTRF, we computed its correlation with  

the future dSTRF (dSTRFt+n(τ,)f )) and its correlation with the shift- 

corrected dSTRF (dSTRFt+n(τ)2)n,)f )). For each n, a one-tailed Wilcoxon 

signed-rank test was used to determine if there was a significant  

positive change between the latter and the former correlations across 

all time t. The temporal hold was defined as the largest lag n yielding  

a significant test statistic.

The shape change nonlinearity describes the heterogeneity of the 

spectrotemporal tuning functions used by the DNN model beyond gain 

change and temporal hold. First, the dSTRF for a given neuron was shift 

corrected by lag aligning the dSTRF over time to the average dSTRF 

over the stimulus. To do this, we used an iterative approach. On a single 

iteration, for each time t, we found the best shift nt, which maximized 

the correlation between the shifted dSTRF (dSTRFt(τ)2)nt,)f )) and the 

average dSTRF. At the end of the iteration, the new average dSTRF 

was computed after shifting each dSTRFt by its best shift. Iterations 

continued until either the best shifts converged or a maximum of 100 

iterations were performed. Then, with these shift-corrected dSTRFs, we 

computed the complexity of the dSTRFs over time. This complexity was 

estimated using the sum of the singular values of the dSTRFs, normal-

ized by their maximum. Because singular values specify the variance 

of each corresponding vector, dSTRFs whose sorted singular values 

decay more slowly and therefore, have a higher sum after normaliza-

tion encompass a broader set of spectrotemporal tuning functions.

Before performing clustering, nonlinearities were Z-scored, and 

outliers were compressed toward the mean through the transforma-

tion tanh(x/2.5))×)2.5 to give them comparable magnitudes. The code 

for estimating dSTRFs and nonlinearities can be found on GitHub49.

Population state space and dynamics

We applied principal component analysis to the single-neuron activity 

of all participants who listened to the full 10 repetitions of 10 sentences 

(8 subjects, 623 neurons). We fit principal components on the PSTH 

of the concatenated repeated sentences. We visually determined the 

8elbow9 by plotting the ranked explained variance across all compo-

nents. We averaged the PSTH across repetitions of the same sentence 

and projected this onto the principal component manifold for each 

different sentence. Similarity between each principal component was 

quantified by computing the Pearson correlation between the principal 

component time course of a given sentence average.

Stimulus spectrogram reconstruction

We fit TRF ridge regression models on the 290 principal components 

that explained 90% of the variance in the PSTH. The model output was 

the 80)mel frequency bands of the speech spectrogram over time. We 

used an alpha regularization parameter of 500 using the 8Receptive-

Field9 function implemented in mne-python v.0.22.0. Time delays of 

2300 to 100)ms were used, with a sample frequency of 100)Hz. We fit 

the model on responses to nine distinct sentences and evaluated on 

one held-out sentence. Performance was quantified using Pearson cor-

relation between the predicted time course and the true time course 

for each frequency and then averaged across the 80 frequency bands68.

To compute the reconstruction accuracy on a site-by-site basis, we 

fit the TRF models on all neurons from a given site separately using a 

leave-one-sentence-out cross-validation scheme. We compared this 

with the performance of a TRF model fit on all 623 neurons.

To compare the similarity between the stimulus reconstructions 

obtained from each site, we concatenated responses to all sentences 

together and correlated the spectrotemporal time course predictions. 

Ceiling was computed as the reconstruction accuracy of the ground 

truth when concatenating all sentences together and fitting a model 

on all 623 units. Chance was computed by shuffling the sentence order 

and comparing the ground truth concatenated sentences with the 

predicted (shuffled) concatenated sentences.

Speech feature decoding

We fit the same TRF model on the same 290 principal components 

to predict the time course of 33 speech properties (excluding pitch 

derivatives, sequence statistics and stress) from population activity. 

We smoothed the feature time course using a 50)ms Gaussian kernel, 

which matches the kernel size of the PSTH. We used time delays from 

2300 to 100)ms and a regularization λ parameter of 1)×)108. We shuffled 

the order of all sentences, fit the model on 80% of trials and evaluated  

accuracy on the held-out 20%. Performance was quantified using  

Pearson correlation between the true feature time course and the  

predicted feature time course.

Reporting summary

Further information on research design is available in the Nature  

Portfolio Reporting Summary linked to this article.

Data availability

Data for which patients have consented to public release will be made 

available at the Data Archive for the BRAIN Initiative (DABI; https://

dabi.loni.usc.edu).

Code availability

The analysis and data visualization code will be made available on 

GitHub (https://github.com/ChangLabUcsf/LeonardGwilliams2023) 

upon publication.
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Extended Data Fig. 1 | Histology from three additional recording sites. Each 

Nissl stain is from fixed tissue that was sectioned to cover the region immediately 

surrounding the Neuropixels insertion site. Attempts were made to localize the 

insertion site, but this was very difficult to do with standard anatomic pathology 

sampling. Therefore, we have provided images from approximately the same 

area.



Article

Extended Data Fig. 2 | Relative versus absolute pitch encoding. The 

reconstruction accuracy of each neuron (y-axis, Pearson r-value; mean±range 

of violin plots) is plotted for a model that uses just relative pitch to predict 

neural activity in each neuron (left), or just absolute pitch (right). As expected, 

the two predictions are highly correlated (Pearson r)=)0.89; p)=)52116), given that 

relative and absolute pitch are highly correlated in the stimulus. Despite the 

high correlation, relative pitch explains neural activity significantly better than 

absolute pitch (paired samples two-sided t-test, t)=)6.5; p)=)1210; n)=)322). This is 

in line with ECoG studies, which show that STG encodes relative pitch to a 

greater extent than absolute pitch (e.g., 10), whereas primary auditory cortex is 

more dominated by absolute pitch36. The combined precedence of relative 

pitch encoding in STG, and the dominance of relative pitch over absolute pitch 

in our targeted analyses, motivates our choice to focus on relative pitch in 

this work.



Extended Data Fig. 3 | Stimulus annotation examples. Full feature annotation for two sentences. X-axis corresponds to time relative to sentence onset. Y-axis 

corresponds to each of the 44 features in the encoding model. Colour of the y-axis labels indicates the feature class.
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Extended Data Fig. 4 | Phoneme TRF encoding weights for example neurons 

in Fig. 5. For the example neurons in Fig. 5, we fit a TRF encoding model with 39 

phonemes as features. We found that different spectro-temporal and modulation 

patterns corresponded to different groups of phonemes. For example, we 

observed neurons that were tuned to specific vowels like /i/, /ej/, /j/, /æ/, and 

/ɛ/ (p1-u52), which are mid-high vowels characterized by relatively low F1 and 

high F2 formants (Fig. 5a). In contrast, other units were tuned to a different set 

of vowels including /�/, /S/, /V/, and /aj/ (p1-u66), which are mid-low vowels with 

relatively high F1 and low F2 formants (Fig. 5a). Other neurons were tuned to 

different groups of consonants like /s/, /f/, and /»/ (p8-u12), which are fricatives 

characterized by high frequency content (Fig. 5a). Others were tuned to 

consonants like /m/ and /n/ (p4-2-u79), which are nasal sounds. Finally, some 

neurons were tuned to consonants like /t/ and /k/ (p5-u83), which are plosive 

sounds characterized by high temporal modulations. These examples (see also 

Fig. 2) illustrate that single STG neurons encode acoustic-phonetic features, 

rather than individual phonemes69,70.



Extended Data Fig. 5 | Site-specific tuning across the surface of STG. Pie plots 

are reproduced from Fig. 3d, plotted on the approximate location of each 

recording site from Fig. 1b. Locations have been shifted slightly to maximize 

visibility of each pie plot.
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Extended Data Fig. 6 | Stimulus reconstruction from population activity.  

a: Stimulus spectrograms for two sentences (top), reconstructed using a linear 

model with 290 principal components (bottom), derived from 623 neurons  

(p6 was excluded due to having less data). Correlations between original and 

reconstructed spectrograms are relatively high (r)~)0.7). b: Stimulus 

reconstruction accuracy (Pearson r-value) for each of the ten repeated sentences 

(individual dots). Accuracy is highest when using neurons from all sites (dark 

bar), and lower but still relatively strong for each individual site separately. 

Small black dashed line in the violin plots represents the mean performance 

from each population across sentences. c: Pairwise similarity (Pearson r-value) 

of stimulus reconstructions across individual sites. Sites recorded from the 

same participant (p4) are the most similar. d: Similarity (Pearson r-value) of 

predictions across sites, as compared to ceiling and chance performance when 

using all 623 neurons from all sites. Dots are the other recording sites correlated 

with the site indicated on the x-axis. In all cases, mean similarity is between 

chance and ceiling, indicating that all sites reconstruct some, but not all, similar 

spectrotemporal information.



Extended Data Fig. 7 | Hierarchical clustering of neuronal response 

correlations. a: Pairwise peak cross-correlation among neurons from nine 

recording sites shows groups of highly correlated response dynamics. Matrix 

sorted by hierarchical clustering (top). b: Proportion of neurons in each cluster 

that are significantly (p)<)0.05, two-sided test, Bonferroni corrected) correlated 

with other neurons in the cluster. c: Within-cluster (red) and across-cluster 

(black; mean±s.e.m.; n)=)11 clusters, 287 neurons) correlations.
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Extended Data Fig. 8 | Population state-space dynamics and speech feature 

decoding. a. Principal component analysis (PCA) performed on 623 single 

neurons (data from one participant was excluded due to fewer sentences). 90% 

of the total variance was explained with 290 PCs (46.5% of the full dimensionality 

of the data). Additionally, an elbow in variance was found at approximately 20 

PCs, demonstrating the relatively low dimensionality of the population data.  

b. Population state-space visualizations for three example sentences. The first 

three PCs are plotted with the time course of each sentence (averaged over 10 

repetitions). Colour from dark to light reflects time relative to sentence onset. 

All sentences show highly similar trajectories (PC1 Pearson r-value across 10 

sentences mean=0.78)±)0.17; PC2 mean=0.88)±)0.08; PC3 mean=0.65)±)0.24).  

c. Speech feature decoding performed on acoustic-phonetic, intensity, and 

relative pitch features. All features are significantly decodable above chance 

(small dots are shuffled models, large dots are the true model for each feature).



Extended Data Fig. 9 | Encoding model similarity by depth for each individual 

site. Correlation of STRF weights for neurons binned into six groups by depth. 

In some sites, we did not sample neurons in every depth bin (white).
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Extended Data Fig. 10 | Correlation between surface ECoG and SUA in p4-2. 

Correlation between SUA PSTH activity and ECoG HG/LFP for each neuron in 

p4-2 (n)=)82). Open circles/shaded regions indicate non-significance. Bottom: 

Correlations binned into six depth ranges show strong contributions from all 

depths, particularly the mid-deep bins (boxplots show the maximum and 

minimum values [whisker], median [centre line] and the 25th to 75th percentiles 

[box limits]).






