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Understanding the neural basis of speech perception requires that we study the human
brain both at the scale of the fundamental computational unit of neurons and in their
organization across the depth of cortex. Here we used high-density Neuropixels

arrays' > torecord from 685 neurons across cortical layers at nine sites in a high-level
auditory region that is critical for speech, the superior temporal gyrus**, while
participants listened to spoken sentences. Single neurons encoded a wide range of
speech sound cues, including features of consonants and vowels, relative vocal pitch,
onsets, amplitude envelope and sequence statistics. Neurons at each cross-laminar
recording exhibited dominant tuning to a primary speech feature while also containing
asubstantial proportion of neurons that encoded other features contributing to
heterogeneous selectivity. Spatially, neurons at similar cortical depths tended to
encode similar speech features. Activity across all cortical layers was predictive of
high-frequency field potentials (electrocorticography), providing aneuronal origin
for macroelectrode recordings from the cortical surface. Together, these results
establish single-neuron tuning across the cortical laminae as an important dimension
of speech encoding in human superior temporal gyrus.

Speech perceptionis the process of transforming an acoustic signal
into linguistic structures, such as syllables, words and sentences. The
superior temporal gyrus (STG) isacritical areain the humanbrain for
speech perception and comprehension® 8. Recent work with direct cor-
tical surface field potential recordings (electrocorticography (ECoG))
has provided a window into how different sites across the surface of
thegyrusare tuned to specific speech sounds, such as the features of
consonants and vowels®, vocal pitch in prosody’® and syllabic cuesin
the speech envelope™. While this work has described speech encoding
across the STG, amajor limitationis that ECoG signals at each electrode
reflect the combined activity of thousands of neurons. By contrast,
established methods for recording single neurons using microelec-
trodes sample from only a small number of units. Therefore, neither
isabletoresolve the neuronal organization across the cortical depth.

To address the neuronal processing of speech in the human brain,
we used high-density multielectrode Neuropixels probes'to record
cellularactivity from hundreds of individual neurons across the cortical
layers in STG while participants listened to naturally spoken sentences.
This approach allowed us to address (1) what acoustic and phonetic
speech features are encoded by single neurons; (2) the functional
organization of neurons across cortical layers of STG*™; and (3) how
single-neuronactivity relates to population activity recorded from the
cortical surface using ECoOG™". Understanding speech processing at
the cellular level has the power to provide fundamental insights into
the cortical representation of speech.

A Neuropixels probe? was placed in the mid-posterior STG at nine
locationsin eight participants (seven left hemisphere, one right hemi-
sphere) undergoing awake language mapping during neurosurgical
procedures (Fig. 1a,b). The probe was inserted temporarily into tis-
sue that was subsequently removed as part of temporal lobe epilepsy
surgery or tumour resection”. The probe had 384 recording channels
spanning 7.66 mm and was slowly inserted perpendicularly into the
crown of the cortical gyrus to achieve a vertical orientation through
the cortex (Fig.1c). The perpendicular penetration allowed dense sam-
pling of activity from neurons spanning the pial surface to the white
matter boundary (Fig. 1c,d; Extended Data Fig. 1shows the histology
from other participants).

Dense sampling of single-neuron spiking in STG

Eight participants were awake and listened to 200 naturally spoken sen-
tences (produced by 103 unique male and female speakers), which span
the natural variability in the acoustic, phonetic and prosodic aspects
of English®®, For visualization and model evaluation, 10 sentences were
repeated 10 times, whereas the remaining 100 sentences were played
once each (total experiment duration was 8.3 min) (‘Speech stimuliand
procedures’). After performing automated spike sorting and manual
curation’, we obtained 685 putative single units across all nine sites
(n=117, 69, 95,37,82,101, 62, 44, 78 in each insertion). Of these units,
420 (61%) showed significant responses to the speech stimuli (Fig. 1e)
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Fig.1|Large-scale humansingle-neuronrecordingacross the corticaldepth
using Neuropixels probes. a, Close-up photograph of the Neuropixels probe
inserted into the human cortex. b, Recordinglocations for nine penetrations
(right STGsites (RH) plotted onthe left hemisphere). ¢, Magnetic resonance
imaging shows the approximate location of the Neuropixels probe spanning
the full cortical depthin p1 (MTG, middle temporal gyrus).d, Histology from
resectedtissueat theinsertionsite in pl provides approximate laminar
boundaries within STG. e, Number of speech-responsive and non-responsive
units. f, Single-trial spike rasters for example neurons showing how neurons
respond differently to different sentences. Each neuron shows multiple trials

(speech responsive is defined using the parameter-free ZETA test*
compared with silent periods).

When we aligned activity to speech onset for each of the 100
repeated trials, we observed a striking diversity of response pat-
terns (Fig. 1f and Supplementary Video 1). For example, some neurons
responded primarily at the start of sentences with either increased
(p4-2-u53) or decreased (p6-ul2) firing. Other units had highly specific
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of10 different sentences (separated by dashed lines). Spike waveforms (mean
and100 randomly selected single spikes) are shown to the right. Red lines
indicate sentence onset and offset. g, Three types of spike waveform (upper
panel; FS, fast spiking; RS, regular spiking) with distribution across the cortical
depthinninesites (lower panel). h, Thresholded PSTH (50 ms window) for three
sentences (averaged across repetitions) from117 neuronsin pl (sorted by depth)
shows patterns of evoked activity across the depth. The upper panels show
acoustic spectrograms of each sentence with word and phoneme annotations.
freq., frequency; FR, firing rate.

increases in firing at different moments in each sentence (p1-u52,
p4-2u79).

The large number of neurons we recorded enabled us to sample
different putative cell types (for example, excitatory cells versus
inhibitory interneurons) across the depth of the cortex. We clustered
spike waveforms from the nine sites using k-means and found three
distinct shapes: regular-spiking neurons, fast-spiking neurons*** and



other neurons with broad positive peaks? (Fig.1g). Across the cortical
depth, regular-spiking and positive-spiking neurons were the most
prevalent, spanning all putative layers. Speech-evoked responses
and speech feature encoding were largely similar across putative cell
types (Supplementary Fig. 1). We did not find a relationship between
response type (for example, enhanced versus suppressed firing) and
putative cell types (Fig. 1g), and neurons with speech-evoked responses
were represented by all waveform shapes (Fig. 1f and Supplementary
Fig.1). Fast-spiking neurons were not as common as regular-spiking
and positive-spiking neurons, and they were found mostly in mid-deep
layers.

The diversity of responses (Fig. 1f) and putative cell types (Fig. 1g)
across the cortical depth suggests that, within arecording site per-
pendicular to the cortical surface, different cells are associated with
distinct types of speech-evoked activity. We observed that within a
site, neurons exhibited a wide variety of response patterns when pre-
sented with different spoken sentences and that these patterns varied
as afunction of cortical depth (Fig. 1h; Supplementary Fig. 2 shows a
comparison betweensignal and noise correlations). Although we were
unable to define the precise boundaries between layers (Methods),
this large-scale picture of neuronal speech responses provides a highly
detailed view of the response diversity for speech and suggests that
STG neurons, even at a single location in the cortex, encode many dif-
ferent speech properties.

Single-neuron responses to speech

Electrical stimulation mapping and neurophysiology data suggest
that the STG is specialized for high-order, complex auditory speech
processing®?, To examine response selectivity to speech input, we
first visualized single-trial activity for a wide variety of neurons across
many different sentences and participants (Fig. 2). The purpose of
this visualization was to provide a qualitative description of the raw
data (single-neuron spikes). These example neurons demonstrate that
activity was highly consistent across repeated presentations of the
same sentence (Fig. 2a,b) and highly specific to particular speech cues
(Fig. 2c-mand Supplementary Video 2).

Ineachrecording, we found many neurons that responded to specific
speech sounds (Fig. 2c-j). For example, we observed neurons that
showed increased firing in response to nasal sounds, such as /m/ and
/n/ (Fig. 2c,d). Some neurons responded specifically to approximant
sounds, such as/l/,/w/ and /r/ (Fig. 2e). Others were tuned to frica-
tive sounds, such as/s/, /z/, /f/ and /v/ (Fig. 2f,g). Some were tuned to
high/front vowels, such as /i/ and /i/ (Fig. 2h), and others were tuned
to low/back vowels, such as /a/, /a/ and /o/ (Fig. 2i). Finally, some neu-
rons responded to plosive sounds, such as /b/, /d/, /g/, /p/, /t/ and /k/
(Fig.2j).Ineach of these cases, responses were not specific toindividual
phonemes, but rather were selective to groups of speech sounds that
share acoustic-phonetic features (the coloured phoneme labels shown
inFig.2a). Thissuggests that tuning to speech sounds reflects auditory
sensitivity to specific articulatory gestures during speaking (that is,
voicing, plosive, nasal and so on)?**° rather than individual phoneme
consonants and vowels.

Inaddition, we also observed neurons with clear and highly specific
responses to non-phonetic acoustic cues. For example, we found neu-
rons that responded exclusively at the onset of sentences, regardless
of the specific speech sounds (Fig. 2k,1)*". Others showed suppression
with a characteristic period of no firing (Fig. 2m).

Encoding variability within a cortical column

ECoG studies have revealed a spatial organization of speech feature
representations across the surface of STG*. Yet, it remains unknown
whether different neurons across a vertical column of cortex have
homogeneous tuning (as seenin primary sensory cortices) or encode

different speech properties. Furthermore, if neurons within a site are
heterogeneous, it is unknown whether different representations cluster
at particular depths, potentially reflecting the laminar structure of
the cortex.

To quantify the tuning properties across all neurons, we used tempo-
ral receptive field (TRF) encoding models and variance partitioning®
(see ‘Encoding models’). TRF models predict neural activity from a
combination of stimulus features at a set of lags, providing neuronal
tuning curves that account for correlations among the stimulus fea-
tures. We examined a broad set of speech features that we hypoth-
esized could be encoded in STG: (1) acoustic-phonetic features’;
(2) onsets from silence®; (3) intensity features including amplitude
envelope andits derivatives (for example, the maximum rate of posi-
tive change in the envelope (peakRate)"); (4) speaker-normalized
(relative) vocal pitch and its derivatives'®; (5) lexical stress (correlated
withintensity and pitch but coded here as a discrete label at the level
of syllables)®*; and (6) phoneme and word sequence probability>**.
Together, these features (Fig. 3a; Extended Data Fig. 3 and Supplemen-
tary Table 1show the full feature set) allowed us to test the extent to
whichindividual neurons and cortical sites encode different types of
speech information.

STG neurons showed clear evoked responses to specific speech
features. For example, some neurons responded to particular acous-
tic-phonetic features (such as vowels or voiced consonants (nasals))
(Fig. 3b; Extended Data Fig. 4 shows phoneme TRF weights for example
acoustic-phonetic neurons), whereas others responded to acoustic
cues, such as onsets from silence or peakRate events (Fig. 3b). Other
neurons were responsive to high relative pitch, lexical stress or pho-
neme surprisal (Fig. 3b), illustrating that neurons in STG could be tuned
to alarge range of features included in this analysis.

To quantify encoding, we fit TRF encoding models with all 44 features
(Extended Data Fig. 3 and Supplementary Table 1) for each neuron.
We found many clear examples of neurons that were tuned to specific
speech content, including particular groups of consonants or vowels,
onsets fromsilence, low or high pitch, stress and sequence probabilities
(Fig.3c) (only feature class names are shown for visualization; each row
correspondsto anindividual feature within that class). Although some
neurons exhibited significant weights for multiple classes of features
(Methods discusses statistical quantification details), the overall pat-
tern of encoding was sparse within each neuron.

All features together in these models explained variance up to
r=0.55(mean =0.182 + 0.109; range = 0.0039-0.551). To understand
how specific features contributed to this total explained variance,
we characterized each neuron and each recording site according to
the unique variance (R?) (ref. 36) for each of the six major classes of
speech features (Fig. 3a) (acoustic-phonetic features were collapsed
into vowels, voiced consonants and unvoiced consonants; only neu-
rons with full model rvalue of greater than 95% shuffled permutation
distribution are included) (‘Model comparisons’). We used unique R?
because it provides a robust and relatively conservative estimate of
variance attributable to each group of features, which is critical for
speech where many features are correlated with one another.

Each cortical site had one ‘dominant’ feature (determined by the
largestslicein each main pie plotin Fig. 3d) that explained asignificant
proportion (25-62%) of the unique variance. Four sites were dominated
by neurons encoding pitch (pl, p4-2, p6, p7; orange outline), whereas
four were dominated by neurons encoding subgroups of acoustic—
phonetic features (p2, p3, p5, p8; purple outline), and one site was
dominated by neurons encoding onsets from silence (p4-1; light blue
outline). These results demonstrate that different sites across the STG
contain neuronal populations that are predominantly tuned to a par-
ticular speech feature across the vertical dimension, consistent with
tuning observed at the cortical surface with ECoG* (Extended Data
Fig.5). This finding was further corroborated by acoustic spectro-
gram decoding, which showed high-accuracy reconstructions and
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“Have you got enough blankets?” “It had gone like clockwork.” “He moistened his lips uneasily.” “It was nobody’s fault.”
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Fig.2|Single-trial rasters for example neurons show diversity of response different spiking properties (for example, primarily bursting (p4-2-u79) versus

typesand tuning. a, Four example sentences with word- and phoneme-level sparse firing (p3-ul8)). e, Neuron responding primarily to approximant sounds
transcriptions time aligned to the audio waveform. Phoneme/feature colours (forexample,/1/,/r/,/w/).f,g, Two examples of neurons that are selectively
correspond to example unitsinc-m, which were labelled by hand for visualization ~ responsive to fricatives (forexample, /s/,/z/,/f/).h, Neuron selectively
purposes. b, Acoustic spectrogram of speech stimuli. Rasters for each neuron responsive to high/front vowels (for example, /i/, /1/).i, Neuron primarily

and sentence. Rows correspond to the number of repeats for that neuron responsive to low/back vowels (for example, /a/, /a/, /5/).§, Neuron primarily
andsentence. Coloured lines are the smoothed (50 ms window) PSTHs across responsive to plosives (forexample, /b/,/d/,/g/,/p/,/t/,/k/). k-m,Neurons
trials. c,d, Two examples of neurons responding primarily to nasal sounds responsive to sentence onsets. Some units show increased firing at onset (k,1I),
(forexample,/m/,/n/). Note that even similarly tuned neurons can have very whereas others show delayed firing (m). a.u., arbitrary unit.

complementary information across recording sites (Extended Data  neurons, whereas acoustic-phonetic feature encoding was signifi-
Fig. 6 and Supplementary Text). cantly strongerinmid-deep layers (Fig. 3d) (two-sample Kolmogorov-

At the same time, we observed heterogeneity in encoding atevery  Smirnovtest P< 0.05inthree of four sites). The patternsacross depth
site. The dominant feature did not account for all explainable vari-  attheothersites wereless clear; however, these sites were more domi-
ance, and the remaining variance was split among the other classes  nated by a single feature class (either acoustic-phonetic features or
of features (acoustic-phonetic, onset, intensity, relative pitch, stress  onsets). Thus, insomesites, the tendency for neurons tuned to features

and sequence probability). of the same class to colocalize appears to be one of the organizing
We asked whether the heterogeneity in speech encoding patterns  principles across cortical depthin STG.
observed at each site could be explained by the encoding of different Overall, these results demonstrate that STG is organized accord-

speech information in neurons at different cortical depths. For the ingto sites with adominant feature and that tuning within a site has
four sites with strong relative pitch tuning (pl, p4-2, p6, p7), wefound  adegree of heterogeneity that makes them not entirely modular®,
that relative pitch encoding was significantly stronger for superficial ~ This variation in speech feature tuning potentially facilitates local
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responseto all feature instances. ¢, TRF weights from the full encoding model
for aset of example neurons, demonstrating encoding of specific speech
properties. Only feature class labels are shown (Extended Data Fig. 3 and

computations that integrate over the distinct aspects of speech that
occur simultaneously®. Although each site exhibits dominant encod-
ing of a particular feature, all sites contain a mixed population of neu-
rons that encode different spectrotemporal information in contrast
to largely homogeneous frequency tuning in cortical columns of the
primary auditory cortex*° 4,
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Supplementary Table 1show allindividual feature labels). d, Unique variance
foreach class of speech feature on all significant neuronsin each cortical site.
Bar graphs show abreakdown of unique R*for each neuron, whichis derived
fromacomparisonbetween variance explained by the fullmodel and variance
explained by areduced model with agiven feature class removed. Large pie
charts show the proportion of explained variance attributed to each feature
classacross neurons. Smallscatterplots (on the right) show the dominant
feature foreach neuronsorted by depth (thexaxes are arbitrary for visualization).
Coloured boxes around participant numbersindicate the dominant feature
class for thessite.

Speechresponses across cortical depth

The heterogeneity we observed both within and across cortical sites
demonstrates tuning to a highly diverse set of speech featuresin STG.
To quantify the different types of responses that give rise to this tuning
across the speech-selective neuronal population (n = 287; neurons with
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Fig.4 |Neuronal activity is clustered by response type and cortical depth.
a, Evokedresponses for three example sentences for neurons with significant
TRFs (Fig. 3) sorted by hierarchical clustering (Extended DataFig.7).b, An
example PSTH fromonessite for one sentence (averaged over repetitions) shows
variableresponse typesat different depths. ¢, Example STRFs from onesite

significant TRF encoding models), we examined neuronal activity using
several complementary approaches. First, we compared the activity
of each neuron with all other neurons (aggregated across recording
sites) by computing the pairwise Pearson cross-correlations of the
sentence-specific peristimulus time histograms (PSTHs) (Fig. 4a).
Thirty percent of neuron pairs were significantly correlated (mean
r=0.28 £ 0.067, maximum r = 0.96, n=287; P< 0.05, Bonferroni
corrected).

We grouped neurons according to these correlations using hier-
archical clustering and examined sentence-specific responses for
all neurons and all clusters. This revealed several clusters in which
most neurons were strongly correlated with one another (cluster 8
(100% of neuron pairs with significant correlations), cluster 7 (80%),
cluster 5(79.6%), cluster 1(67.5%); all P < 0.05, Bonferroni corrected)
(Extended Data Fig. 7). For clusters with highly correlated neurons,
responses to individual sentences showed specific response dynam-
ics, including onsets from silence (cluster 8) or broad sustained
responses (cluster 5). Others showed increased firing rates through-
out the sentences that were characterized by bursts of transient
activity (cluster 7). These response types illustrate shared dynam-
ics within subpopulations of neurons recorded from many different
locations and depths along the STG, with sentence-specificresponses
embedded in these dynamics (Extended Data Fig. 8 and Supplemen-
tary Text have population state-space dynamics and speech feature
decoding).
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show different tuning across depth and similar tuning for nearby neurons (left
versus right). Numbers refer to neuron depth (micrometres).d, Correlation
of STRF weights for neurons binned into six groups by depth (bin 1is most
superficial) averaged across all sites.

Itis clear from single sentence-evoked activity that these response
types and encoding patterns are organized as a function of depth
(Figs. 1h and 4b). We directly examined columnar heterogeneity and
the organization of neuronal representations across the cortical depth.
We first asked whether correlationsin average evoked responses were
stronger for neurons that were anatomically closer to each other in
depth. Wefound thatin three of nine sites, there was a negative relation-
ship between the peak cross-correlation (Supplementary Fig. 2) and
the distance between neuron pairs (10 distance bins; p1: r=-0.098,
P=0.00095,n=48;p3:r=-0.32,P=1.5x107,n=23; p7:r=-0.25,
P=9.1x107,n=40).

Next, to quantify this relationship for both spiking activity and neu-
ral acoustic representations, we correlated the weights of individual
neuron spectrotemporal receptive field (STRF) models®. In an exam-
plesite, we observed that neurons at different depths exhibited very
different tuning properties, with some neurons showing broadband
spectral content (superficial), broad temporal responses (middle) and
high spectral and temporal modulation (mid-deep) (Fig. 4c, left red).
Tounderstand whether neurons at similar depths were tuned similarly
(that is, broader spatial organization across the cortical depth), we
compared STRFs for different neurons that were at similar depths
(Fig. 4c, rightblue). Qualitatively, neurons at the same depth were very
similar, whereas those farther away showed different tuning. We quanti-
fied thisacross all neurons by grouping each siteinto six depth binsand
correlating the STRF weights. Averaged across all sites, we observed



that neurons in the same bin were more similar compared with those
inother bins (Fig. 4d; Extended Data Fig. 9 shows eachindividual site).
Wealso found that neuronsin mid-deep layers (approximately 3-4 mm)
consistently had the shortest peak STRF latencies (less than 100 ms;
analysis of variance F(4,190) = 3.8, P= 0.0058). Similar tuning for neu-
rons at similar depths demonstrates a functional organization across
cortical layers that complements the organization seen across the
surface of STG, whereas differences in peak latencies could suggest
that different layers receive distinct inputs**4,

Tuning of STG neurons to complex speech features

Spectrotemporal representations in STG at the level of ECoG are
known to be complex and broad; however, it is unclear to what extent
the same is true for individual neurons. Whereas the primary audi-
tory cortex is associated with narrow-band frequency tuning®, we
observed tuning profiles that were qualitatively far more complexin
the STG (Fig. 5aand ‘Encoding model features’). For example, we found
neurons with multipeak tuning at short lags (p1-u52), broad tuning
to low- to mid-frequencies at short lags (p1-u66), increased firing to
high-frequency content and decreased firing to low-frequency con-
tent at mid-latency lags (p8-ul2), tuning to low-frequency harmonic
structure at short to mid-lags (p4-2-u79) and broad spectral tuning with
harmonicstructure at mid-longlags (p5-u83). These spectrotemporal
encoding patterns corresponded to acoustic-phonetic features, with
individual neurons showing strong weights for groups of phonemes
thatshare features (for example, high vowels, fricatives, plosives, nasals
andsoon) (Extended DataFig. 4). These examplesillustrate the range
of spectrotemporal tuning of individual STG neurons, some of which
were observed within a single site.

When we characterized all units with significant STRF models (per-
mutation test versus shuffled distribution; n =217, r= 0.039-0.45,
mean =0.17 + 0.082) according to four key metrics of spectrotempo-
ral tuning, we found (1) wide bandwidth (mean =4.03 + 1.57 octaves;
Kolmogorov-Smirnov test versus uniform distribution: D=0.92,
P=1.45x107) (Fig. 5b); (2) latencies characteristic of high-order audi-
tory cortex (mean =133 + 99.9 ms; Kolmogorov-Smirnov test: D= 0.95,
P=3.09 x1077) (Fig. 5¢); (3) multiple spectral peaks (mean=7.72 + 2.14;
Kolmogorov-Smirnov test: D=1.0, P=5.86 x 10™) (Fig. 5d); and
(4) low-frequency tuning (median =326.5+1,989 Hz; KS test: D= 0.68,
P=2.92x10"%") (Fig. 5¢). A bias towards lower frequencies may reflect
the specialized nature of STG for human speech, where the majority of
acoustic energy is in the voicing range (less than 500 Hz).

In addition to characteristic spectrotemporal patterns, speech
sounds can also be described according to dynamic spectral and
temporal modulation profiles, which are strongly correlated with
speech intelligibility*®*’. We computed the modulation transfer func-
tion (two-dimensional fast Fourier transform of the STRF*’) and found
that whereas some units showed primarily higher temporal modulation
rates (approximately 2-4 Hz; for example, p1-u66) (Fig. 5f), others
showed primarily higher spectral modulation rates (approximately
1-2 cycles per octave; for example, p8-ul2 and p4-2-u79). Some neu-
rons showed both high temporal and spectral modulation rates (for
example, p5-u83). Across all neurons with significant STRF models,
the rate of temporal modulation tuning was generally less than 4 Hz
(mean =1.64 +1.37;Kolmogorov-Smirnov test: D = 0.82,P=1.01x107%),
with peaks atapproximately 0.5 Hzand approximately 2.5 Hz (Fig. 5g).
Spectral modulation tuning was generally less than 0.5 cycles per octave
(mean =0.15 + 0.14; Kolmogorov-Smirnov test: D = 0.6, P= 2.05 x 10™%)
(Fig.5h). These temporal and spectral modulation rates are important
for speech intelligibility, and this diversity of modulation tuning is
similar to what is observed at the neural population level with ECoG*%.

Although these results demonstrate robust encoding of spectrotem-
poral information across the population of neurons, STG neural pop-
ulations are also characterized by non-linear representations®. To
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Fig.5|Encodingmodelsreveal broad and diverse patterns of
spectrotemporal tuning in STG neurons. a, STRFs for example neurons show
distinct patterns of spectrotemporal tuning. b, Across all significant STRFs
(permutation test versus shuffled distribution), tuning was broad, with mean
bandwidth of approximately four octaves. ¢, STG neurons showed early-to-mid
peaklatency responses (approximately 150 ms). d, Most neurons had tuning to
multiple spectral peaks. e, Frequency tuning was focused in the range of human
voicing (less than 500 Hz). f, Modulation transfer functions for the same
example neurons show diverse tuning for spectral and temporal modulations
inspeech.g, Across all neurons with significant STRFs, temporal modulations
were focused at approximately 0.5 Hzand approximately 2.5 Hz. h, Spectral
modulations were generally less than 0.5 cycles per octave. i, Comparison
betweenlinear STRF and DNN. j, Example dSTRFs for three neuronsillustrate
threetypesofnonlinearities: gain change, temporal hold and shape change.
Rows are different time steps. k, Distribution of nonlinearities across the
population of neurons with significant dSTRFs of each type (n =189; box plots
show the maximum and minimum values (whiskers), median (centre line) and
the25th to 75th percentiles (box limits)). I, Average (plus or minuss.e.m.)
Z-scored nonlinearities for dSTRFs categorized using unsupervised hierarchical
clustering (Supplementary Fig.3) (cluster1n =110, cluster 2 n =79) showing
high weight forone or two types of nonlinearities across the population.m, The
two clusters have different distributions across cortical depth, with cluster1
(gainchange (g.c.)/temporal hold (t.h.)) being deeper than cluster 2 (shape
change (s.c.)). oct., octave; spec. mod., spectral modulation; temp. mod.,
temporal modulation.

understand these nonlinearities in single neurons, we modelled the
encoding functions with a deep neural network (DNN) (‘DNN model
training’)**°. Compared with the linear STRF, the DNN explained more
variance ina majority of units, suggesting that many STG neurons have
non-linear tuning (Fig. 5i).
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Using the DNN, we extracted the dynamic spectrotemporal receptive
field (dSTRF), which is the equivalent piecewise linear transforma-
tion, allowing us to interpret and visualize the model of a single neu-
ronat agiveninstant as an STRF (‘dSTRF calculation and nonlinearity
estimation’). Unlike an STRF, however, the dSTRF is context depend-
ent, so its tuning changes for different time windows as the stimulus
changes. Previous characterization of human ECoGin auditory cortex
with this approach hasidentified three specific types of nonlinearities
thatimprove model fits: (1) gain change (how much spectrotemporal
tuning changes in magnitude in response to different input); (2) tem-
poral hold (how much a model maintains the shape of its tuning while
shifting it over lags in successive time steps); and (3) shape change
(how much the shape of the spectrotemporal tuning changes after
removing the effect of temporal hold)*. We found example neurons
that were well explained by each of these nonlinearities (Fig. 5j). Across
the population of neurons, each nonlinearity was characterized by
awide distribution, consistent with the heterogeneity we observed
among these neurons (Fig. 5k).

Finally, tounderstand how these nonlinearities manifest across neu-
rons, we performed unsupervised hierarchical clustering (minimum
variance, Euclidean distance) on the three nonlinearities and identified
two primary clusters of neurons (Supplementary Fig. 3). We found
that one cluster primarily exhibited gain change and temporal hold,
whereas the other primarily exhibited shape change (Fig. 51). This also
revealed that most neurons demonstrated high values for only one or
two of the nonlinearities but not all three. In addition, neurons with high
gain change and high temporal hold weights tended to be located in
deeper cortical layers compared with neurons with high shape change
weights (Fig.5m) (¢-test, £(188) = —3.88, P=0.00014, n = 189; controlled
for recording site). This suggests that the heterogeneity we observe
across cortical layers (Figs.3d and 4d) is at least partially a consequence
of distinct non-linear computations relevant for speech encoding.

ECoG activity reflects mixed neuronal contributions

High-frequency activity from direct neurophysiological recordings
using surface ECoG has been critical to understanding human brain
function across a variety of domains®, yet it is unclear to what extent
signalsrecorded at the surface using ECOG macroelectrodes primarily
reflect superficial neurons® or whether there are also contributions
from other neurons in deeper layers'.

We had the rare opportunity to record high-density surface ECoG
(Fig. 6a) during inpatient epilepsy monitoring before intraoperative
Neuropixels recording in some cases (Fig. 6b and ‘ECoG recording’).
This allowed us to examine the relationship between neuronal signals
across the cortical depth and population activity recorded from mac-
roelectrode ECoG contacts on the pial surface. First, we compared the
ECoG high-gamma responses to the same sentences with single-unit
activity (SUA) averaged across all 117 units from p1 (PSTH calculated
withal0 mswindow for comparison with high gamma) (Extended Data
Fig.10 shows an additional participant). We found a strong correlation,
with both the overall shape of the response and individual peaks within
the stimulus corresponding between the two signals (statistical details
arein Fig. 6¢). By contrast, thelocal field potential (LFP) signal from the
ECoG arrays was less strongly correlated to SUA (Fig. 6d) (the statistical
comparison between high gamma and LFP is quantified below), sug-
gesting aspecific relationship between high-frequency ECoG activity
and neuronal spiking.

To address the relationship between surface ECoG signals and neu-
rons at specific depths, we correlated activity between ECoG and SUA
foreachindividual neuronand forboth the high-gamma and LFP signals
atthesurface. First, we found that SUA was consistently more correlated
with high gamma than with LFP* (Fig. 6€). Second, we found significant
correlations with high gamma throughout the depth (Fig. 6e) (mean
r=0.496 + 0.102, range = 0.329-0.757; n = 82). We binned neurons into
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six equally spaced depth ranges and found that although there was a
significant correlation to ECoG high gammain all bins, deeper bins had
stronger correlations (F(5,111) = 3.37, P= 0.0072) (Fig. 6f). This result
contrasts with previous reports showing the strongest correlations
between surface high gamma and superficial neuronal activity; how-
ever, these studies used only microelectrodes to record both signals®.

We also examined the correlation between depth-wise neuronal
activity and ECoG high-gamma responses at electrodes throughout
STG. Although it is unlikely that neurons at one site contribute meas-
urable signals to ECoG electrodes several millimetres or centimetres
away*, lateral connections and shared tuning properties may be related
to organization seen at other sites. We observed strong correlations
to most STG ECoG electrodes (r> 0.5), with the pattern across depth
dependingonthe type of response. For example, the site directly over
the Neuropixels probe exhibited heterogeneous tuning at the neuronal
level (Figs. 3 and 4) and sustained average ECoG activity (Fig. 6g, red
electrode), leading to the strongest correlations in mid-deep bins.
By contrast, electrodes surrounding the Neuropixels recording site
showed clear onsetresponses and correspondingly higher correlations
to more superficial units (Fig. 6g).

Finally, we asked how the tuning of macroelectrode ECoG activity
is related to the underlying neuronal population. We fit the same full
speech feature encoding model (Fig. 3) on all STG ECoG electrodes
and found organization for different speech features along the
posterior-anterior axis of the gyrus (Fig. 6a). Consistent with previous
work?®, azone in posterior STG was dominated by electrodes tuned to
onsets from silence, whereas mid-anterior STG was characterized by
acoustic-phonetic and prosodic features.

The site where we placed the Neuropixels probe showed a com-
plex receptive field, with the strongest weights for onsets, acoustic-
phonetic (low/mid vowels), envelope (acoustic edges), relative pitch
(particularly low to mid pitch and rising pitch) and stress features
(Fig. 6h, left panel). We compared this tuning profile with an average
of modelsacross neurons, weighted by the rvalue of the model (Fig. 6h,
right panel). We observed a clear correspondence to the ECoG tuning,
withstrong weights on several key features, including onsets, envelope
and stress (correlation between ECoG and Neuropixels models
Spearmanp = 0.166, P=1.44 x 10™?). These results further support the
claim that activity recorded at the pial surface with macroelectrodes
reflects acomplex mixture of the underlying neuronal population.

Discussion

Here, we used large-scale single-neuron recordings enabled by the
Neuropixels array to demonstrate the cellular encoding of speech
processing inthe human STG. Across the depth of cortex, the neuronal
populationis tuned toadominant speech feature, consistent with the
high-frequency broadband signal recorded at the surface with ECoG.
Atthe sametime, arelatively large proportion of neurons throughout
the vertical cortical columnalso encode alarge variety of other speech
features, revealing a distinct, previously unappreciated dimension for
speech encoding.

Our observations in STG contrast with ‘columnar’ recordings in the
primary auditory cortex, where neurons across the cortical layers
exhibit tuning to the same narrow-band frequency*®*'. STG neurons
instead encode a wide variety of complex spectrotemporal, phonetic
and prosodic features®, and they tend to exhibit correlated tuning at
locally adjacent depths. The dense sampling across depth provided
by Neuropixels probes enables investigation of these fundamental
organizational questions®,

Our results contributeto an emerging model of the three-dimensional
functional organization of the human STG. Specifically, mid-deep
cortical layers, which are most strongly correlated with the surface
ECoG response', show the fastest responses for a given site, possibly
reflecting direct thalamicinputs®. Across cortical layers, local clusters
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of neurons are tuned to specific classes of speech information (for
example, acoustic-phonetic or prosodic), possibly reflecting lateral
inputs from other sites**>¢"®!, The unique functional organization of
associative auditory areas such as STG, where a dominant feature is
encoded alongside other speech features, could have an important
role for local computations and integration of complex signals, such
as those in spoken language.

The application of Neuropixels has the potential to be transformative
for the next generation of human neuroscience. The present demon-
stration of large-scale neuronal recordings will greatly accelerate our
understanding of the unique computations and representations of
the human cortex.
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(Pearsonr, two-sided test). e, Correlation between SUA PSTH activity and ECoG
high gamma/LFP for each neuronin pl. Opencircles and shaded regions
indicate non-significance.f, Correlationsind (n =117) binned into six depth
ranges show contributions fromall depths, particularly the deepest bins (box
plots show the maximum and minimum values (whiskers), median (centre line)
and the 25th to 75th percentiles (box limits)). g, Average evoked responses
across sentences for ECoG electrodes across STG (top and middle traces; the
redtraceisthesite of the Neuropixels probe). Bottom subplots show binned
depth correlations asinf. h, TRF encoding model weights for ECoG (left) and
average SUA (weighted by model r; right) show similar patterns. HG, high gamma.
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Methods

Participants

Participants (three female, five male; ages 33, 28, 24, 42, 53, 67,22
and 34 years) underwent clinical surgery for resection of epilepsy
focus or brain tumour (Supplementary Table 2). Before surgery, par-
ticipants were consented for temporary intraoperative placement
of Neuropixels probes during the procedure. In all cases, the tissue
where Neuropixels probes were inserted was resected according to
thesurgical plan. The cortical locations were evaluated with electrical
stimulation mapping and determined to not be critical for language.
Inone case, a positive stimulation mapping site was resected because
of severe seizures.

Participant consent

All protocols were reviewed and approved by the University of Califor-
nia, San Francisco Institutional Review Board. Patients gave informed
consent before surgery for temporary intraoperative placement of
Neuropixels probes during the procedure.

Neuropixels hardware and probe placement

Neuropixels 1.0 NHP-short probes with10 mm long shanks and metal
dovetail caps (IMEC) were used for all recordings. Two 27 gauge subder-
mal needle electrodes (Ambu) were soldered separately to the probe
flex interconnect to serve as ground and reference using lead-free
solder and two strands of twisted 36 AWG copper wire. Details of the
hardware configuration have been previously reported inref. 2.

Electrode placement was determined after clinical mapping and the
resection zone had been defined. In each case, probes were inserted
intotissue that had been targeted for resection and was subsequently
removed during the same surgery.

We used methods described in our previous work? to position and
advancethe probeintotissue.Inbrief, once asite had beenidentified,
the probe was positioned perpendicularly to the cortical surface and
advanced slowly with a micropositioner until we reached a depth of
approximately 7 mm. This distance was chosen to allow us to cover the
fulldepth of the cortex with the ‘long column’electrode montage on the
Neuropixels probe. We attempted to leave approximately 600-700 pm
ofactiverecording channels outside of the brain so that we could iden-
tify the cortical surface on the recordings, which we used to estimate
thedepthofthe recorded units. Cortical pulsations related to cardiac
andrespiratory cycles were dampened using surgical patties or aped-
estal attached to the micropositioner. Post hoc motion correction was
applied using Kilosort 2.5 (ref. 19), and stability of units was verified
manually during the sorting process.

Recordings were typically limited to10-15 min. All participants were
awake during recording.

Preprocessing and spike sorting

Automated spike sorting was performed on the high-pass filtered
data (cutoff 300 Hz, sampling rate 30 kHz) with Kilosort 2.5 using
standard parameters®. The output of Kilosort was then manually
curated by at least two researchers using Phy. Clusters with abnor-
mal spike waveforms, excessive interspike-interval violations or
multiple waveform shapes that could not be split into separate clus-
ters were rejected. The remaining clusters were labelled as putative
single units and were included in subsequent analyses. Spike wave-
forms were subsequently clustered into putative cell types (Fig. 1g),
which were well separated into three clusters (Supplementary Fig. 4).
PSTHs for data visualization and encoding models were calculated
using a 50 ms sliding window, except where noted. Although we
planned to use the LFP signal to identify layer boundaries using cur-
rent source density analysis™, technical issues precluded obtaining
clear LFP signals; therefore, we focus here on single-neuron spiking
activity.

Speech stimuli and procedures

One hundred and ten unique sentences from the TIMIT corpus™ were
played to participants during surgery. Ten of these sentences were
repeated 10 times each, providing 200 total trials. Sentences had a
mean duration of 1.72 s (s.d. = 0.394 s) and were produced by 103 unique
male and female speakers. In two participants (p2 and p3), the full set
of stimuliwas repeated once, providing 400 trials (and therefore, allow-
ing up to 20 repeats of certain sentences) (Fig. 2).

ECoGrecording

Beforethe resectionsurgery, asubset of participants received inpatient
careinthe University of California, San Francisco Epilepsy Monitoring
Unit, where activity was recorded using high-density (4 mm pitch)
subdural ECoG electrode arrays. Four participants listened to the same
sentence stimuli used in the intraoperative Neuropixels experiments
while ECoG was recorded. The location of the intraoperative Neuro-
pixels insertion was carefully matched to the corresponding sites of
the ECoG electrodes using surface vessel and sulcal landmarks. ECoG
recordings were referenced online to a subgaleal reference electrode
and were not re-referenced for analysis.

Following previously published methods, we extracted ECoG activ-
ity in the high-gamma (70-150 Hz) frequency range using Morlet
Wavelets. We also examined broadband activity from the LFP signal,
applying minimal filtering (notch filters at 60 Hz and harmonics up
to 500 Hz).

Tissue resection and immunohistochemical staining

The cortical tissue surrounding the Neuropixels insertion site was
surgically removed. When possible, the tissue was resected en blocin
asingle piece for histological analysis (Extended Data Fig. 1). In some
cases, the STG was too narrow or had arteries that needed to be pre-
served, precluding en bloc excision.

Encoding model features

To quantify single-neuron speech encoding, we used multiple com-
plementary descriptions of the sentence stimuli, which allowed us to
examine spectrotemporal-, phonemic-, acoustic-phonetic-, prosodic-
and sequence-level features.

To examine spectrotemporal features, each sentence was decom-
posed into 80 frequency bands, which were logarithmically spaced
using the mel scale to match the perceptual characteristics of the
peripheral auditory system.

To examine encoding of acoustic-phonetic-, prosodic- and
sequence-level features, we annotated each sentence using a com-
bination of hand-labelled and automatically transcribed features. In
total, we annotated each speech stimulus with 44 features, which were
organized into six major categories: (1) sentence onsets*; (2) acoustic-
phonetic features’; (3) relative pitch'®; (4) amplitude envelope';
(5) stress®; and (6) speech sequence statistics***. Extended Data Fig. 3
shows example annotated sentences, and Supplementary Table1shows
descriptions of each feature.

Sentence onsets were coded as binary variables at the first sample
of each sentence. Acoustic-phonetic features reflect the manner and
place of articulation of each speech sound, and they were coded as
binary variables for manner of articulation (plosive, approximant,
fricative and nasal); place of articulation for consonants (labial, velar,
coronal, glottaland dental); and vowel features (high, mid, low, front,
back, unrounded and rounded).

For relative vocal pitch, we focused on speaker-normalized pitch,
which has been shown to be encoded in STG using ECoG™. In prelimi-
nary analyses, we also considered absolute pitch (in hertz); however,
we found that the vast majority of neurons were better explained by
relative pitch. When we tested a model fit on just relative pitch or just
absolute pitch, relative pitch better explained neuronal responses
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(paired samples t-test t= 6.5, P=1x107) (Extended Data Fig. 2).
To reduce redundancy in the models, we therefore excluded abso-
lute pitch. To compute pitch, we used the ‘crepe’ Python module®?
(v.0.0.12). Theresulting pitch values were normalized within speakers
between zero and one, representing the minimum and maximum of that
speaker’s own pitch range. These normalized relative pitch contours
were quantized into 10 equally-sized bins. Inaddition, we also included
derivative measures of pitch (increasing/decreasing and maximum/
minimum within each sentence), which describe how the pitch con-
tour changes. The relative pitch feature is continuous over time, with
asamplerate of 100 Hz.

The amplitude envelope of speech was characterized using five
features: (1) the continuous speech envelope defined as the rectified
Hilbert transform of the speech waveform with a low-pass 10 Hz
Butterworthfilter; (2) binary impulses at the peaksin the envelope; (3) a
single impulse at the maximum peak of the envelope for each sentence;
(4) peaks in the positive derivative of the envelope (peakRate"); and
(5) the maximum derivative point for each sentence.

Although relative pitch and amplitude are characteristic acoustic
properties of stress in speech (in addition to duration, which was
coded implicitly in the acoustic-phonetic features), we also marked
the moments of primary and secondary syllabic stress** according to
manual annotations from the TIMIT corpus'® using binary impulses.

Finally, we included two types of speech statistics. At the phoneme
level, we coded surprisal and entropy of each speech sound as afunction
of the previous speech sounds in the word®. Impulses were placed at
phoneme onset, matching the temporal coding of phonetic features.
These metrics were computed based on word frequency counts from
the English Lexicon Project®. At the word level, we included Unigram
surprisal (word frequency), trigram surprisal (likelihood of a word
given the two previous words) and surprisal from a larger contextual
window (computed from GPT2, alarge language model that accounts
for long-distance dependencies in language®). These word-level sta-
tistical features were coded with impulses at word onset. To account
for the effect of word-level statistics being defined only at word onsets,
we also coded binary impulses at word onsets.

Encoding models
For all types of stimulus description, we modelled single-neuron
responses using a ridge regression TRF*® with L2 regularization. Neural
responses were characterized using the PSTH with a50 ms smoothing
kernel.

Linear receptive field models were fit using the following framework:

;
X(O=x0+Y Y BEASf,t-1),

f =0

wherexisthe PSTH of each neuron, (7, f)is the regression weights for
each feature fat each time lag Tand S is the stimulus representation
for feature fat time ¢ - 7. We used a time window that ranged from
300 ms before to 100 ms after.

Each model was fit using ridge regression:

B =argmin||y-XBI;2 + AlIBII%,

where 8 € R, Xis the set of stimulus features, Bis the set of regression
weightslearnedinthe equationabove andAis the L2 penalty termused
to minimize the values of each . A was evaluated over a range from
1x10%to1x 10° withlogarithmic spacing and was chosen to maximize
model performance on held-out data while also yielding temporal
smoothness similar to the underlying data.

All stimulus features were normalized by first transforming their
range between zero and one and then to control for the relative spar-
sity of different features, by dividing their amplitude by their mean
over time:

bounded = L‘n(s)
max(s) — min(s)
normalized = __bounded
~ mean(bounded)

Models were fit by concatenating sentences, allowing 200 ms of
silence between trials. The TRF model was trained on 80% of the data
and evaluated on20% of the data using a Pearson correlation between
the predicted and true PSTHs for each unit. We repeated this procedure
50 times on different random shuffles of the data.

To evaluate statistical significance, we compared the true model fit
with anullmodel fit on temporally permuted data. For the null model,
we shuffled the within-sentence neural data and speech features by a
random lag between —500 and 500 ms. This retained the covariance
structure between the features in the model and matched general
distributional properties of the data to form a fair and conservative
comparison with the true model fits. We repeated this 50 times, with
random shuffles of the trials. Each null model was also fit using ridge
regression as above.

Aneuronwasconsidered to have significant encodingif the average
performance of the true model over 50 repetitions exceeded at least 47
oftherepetitions (P < 0.05) of the temporally shuffled random models.

Model comparisons

To quantify the unique contribution of each class of feature in the ‘full’
model (sentence onsets, acoustic-phonetic features, relative pitch,
amplitude envelope, stress and sequence statistics), we compared the
model with all 44 predictors to areduced model where the predictors
ofagiven class of features were removed. For example,

runique(onset) = ronset+acoustic—phonetic+pitch+intensity+stress+sequences

- racousticfphonetiﬁpitch+intensity+stress+sequences

runique(acoustic—phonetic)

= ronset+acoustic—phonetic+pitch+intensity+stress+sequences

_ronset+pitch+intensity+stress+sequences

and similarly for the other groups of features.

We report units as having significant unique R when both the unit
had significantly better model fits than the temporally shuffled data
and the unique R* over repetitions was significantly higher than the
shuffled data at P< 0.05 using arank sum test.

DNN model training

The DNN model was afive-layer convolutional neural network with 512
kernels of sizes5,5,7,9 and 11; dilations of one, one, one, two and four;
rectified linear unit (ReLU) activations; and alinear projection layer to
predictallneuronresponses (PSTH with an 80 ms window) simultane-
ously. Only the projection layer had a bias term. This model, therefore,
had a receptive field of 71lags or 355 ms. The objective function dur-
ing training was the mean squared error between predicted and true
responses averaged across units, and we used the Adam optimizer with
weight decay of 0.003, aninitial learning rate of 0.0001 and an expo-
nential learning rate decay of 0.996. As a more fair comparison with
the DNN, we trained linear models using the same data and gradient
descent optimization (Fig. 5i).

Both DNN and linear models were trained with a jackknifing proce-
dure, where 10 models were trained by leaving out 10% of the training
data for each. When evaluating the models, the predictions of all 10
modelsonthetest stimuli were averaged to produce asingle response
for each neuron.



dSTRF calculation and nonlinearity estimation
Foraconvolutional neural network with ReLU activations and nointer-
mediate bias terms, the dSTRF can be computed as the gradient of
the output with respect to the input vector**°%, We used automatic
differentiation in PyTorch® to compute this gradient for each of the
jackknifed models on the test stimuli. To ensure robustness of the
dSTRFs, the 10 dSTRFs were averaged and further filtered based on
sign consistency, whereby all 10 models were required to agree on
the sign of a given lag-frequency bin in the dSTRF for a given input;
otherwise, the averaged bin was set to zero.

To estimate gain change for each neuron, the Frobenius norm of
the dSTRF was calculated at each time point, and the gain change was
defined as the norm’s s.d. over the duration of the stimulus, provid-
ing an estimate of how much the magnitude of the dSTRF changes
over time.

The temporal hold nonlinearity of a dSTRF describes the larg-
est duration in time that a spectrotemporal pattern persists in the
dSTRF through shifts in lag over successive time steps. Estimating
the temporal hold of a given dSTRF requires multiple steps. For the
lag-frequency dSTRF at time ¢ (ASTRF (7, f)) for each lag n, up to the
maximum lag size of the dSTRF, we computed its correlation with
the future dSTRF (dSTRF,, (7, f)) and its correlation with the shift-
corrected dSTRF (dSTRF,, (7t — n,f)).Foreachn, aone-tailed Wilcoxon
signed-rank test was used to determine if there was a significant
positive change between the latter and the former correlations across
all time t. The temporal hold was defined as the largest lag n yielding
asignificant test statistic.

The shape change nonlinearity describes the heterogeneity of the
spectrotemporal tuning functions used by the DNN model beyond gain
change and temporal hold. First, the dSTRF for agiven neuron was shift
corrected by lag aligning the dSTRF over time to the average dSTRF
over the stimulus. To do this, we used aniterative approach. Onasingle
iteration, for each time ¢, we found the best shift nt, which maximized
the correlation between the shifted dSTRF (dSTRF (7 - nt, f)) and the
average dSTRF. At the end of the iteration, the new average dSTRF
was computed after shifting each dSTRF, by its best shift. Iterations
continued until either the best shifts converged or amaximum of100
iterations were performed. Then, with these shift-corrected dSTRFs, we
computed the complexity of the dSTRFs over time. This complexity was
estimated using the sum of the singular values of the dSTRFs, normal-
ized by their maximum. Because singular values specify the variance
of each corresponding vector, dSTRFs whose sorted singular values
decay more slowly and therefore, have a higher sum after normaliza-
tion encompass a broader set of spectrotemporal tuning functions.

Before performing clustering, nonlinearities were Z-scored, and
outliers were compressed toward the mean through the transforma-
tion tanh(x/2.5) x 2.5 to give them comparable magnitudes. The code
for estimating dSTRFs and nonlinearities can be found on GitHub*.,

Population state space and dynamics

We applied principal component analysis to the single-neuron activity
of all participants who listened to the full 10 repetitions of 10 sentences
(8 subjects, 623 neurons). We fit principal components on the PSTH
of the concatenated repeated sentences. We visually determined the
‘elbow’ by plotting the ranked explained variance across all compo-
nents. We averaged the PSTH across repetitions of the same sentence
and projected this onto the principal component manifold for each
different sentence. Similarity between each principal component was
quantified by computing the Pearson correlation between the principal
component time course of a given sentence average.

Stimulus spectrogram reconstruction
We fit TRF ridge regression models on the 290 principal components
that explained 90% of the variance in the PSTH. The model output was

the 80 mel frequency bands of the speech spectrogram over time. We
used an alpha regularization parameter of 500 using the ‘Receptive-
Field’ functionimplemented in mne-pythonv.0.22.0. Time delays of
-300 to 100 ms were used, with a sample frequency of 100 Hz. We fit
the model on responses to nine distinct sentences and evaluated on
one held-out sentence. Performance was quantified using Pearson cor-
relation between the predicted time course and the true time course
foreach frequency and then averaged across the 80 frequency bands®.

To compute the reconstruction accuracy on a site-by-site basis, we
fit the TRF models on all neurons from a given site separately using a
leave-one-sentence-out cross-validation scheme. We compared this
with the performance of a TRF model fit on all 623 neurons.

To compare the similarity between the stimulus reconstructions
obtained from each site, we concatenated responses to all sentences
together and correlated the spectrotemporal time course predictions.
Ceiling was computed as the reconstruction accuracy of the ground
truth when concatenating all sentences together and fitting a model
onall 623 units. Chance was computed by shuffling the sentence order
and comparing the ground truth concatenated sentences with the
predicted (shuffled) concatenated sentences.

Speech feature decoding

We fit the same TRF model on the same 290 principal components
to predict the time course of 33 speech properties (excluding pitch
derivatives, sequence statistics and stress) from population activity.
We smoothed the feature time course using a 50 ms Gaussian kernel,
which matches the kernel size of the PSTH. We used time delays from
-300t0100 msand aregularization A parameter of 1 x 10%, We shuffled
the order of all sentences, fit the model on 80% of trials and evaluated
accuracy on the held-out 20%. Performance was quantified using
Pearson correlation between the true feature time course and the
predicted feature time course.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data for which patients have consented to public release will be made
available at the Data Archive for the BRAIN Initiative (DABI; https://
dabi.loni.usc.edu).

Code availability

The analysis and data visualization code will be made available on
GitHub (https://github.com/ChangLabUcsf/LeonardGwilliams2023)
upon publication.
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insertionsite, but this was very difficult to do with standard anatomic pathology
sampling. Therefore, we have provided images from approximately the same

area.

Extended DataFig.1|Histology from three additional recordingsites. Each
Nisslstainis from fixed tissue that was sectioned to cover the region immediately
surrounding the Neuropixelsinsertionsite. Attempts were made to localize the
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Extended DataFig.2|Relative versus absolute pitchencoding. The
reconstructionaccuracy of each neuron (y-axis, Pearson r-value; meantrange
ofviolin plots) is plotted for amodel that uses just relative pitch to predict
neural activityin each neuron (left), or just absolute pitch (right). As expected,
the two predictions are highly correlated (Pearsonr=0.89; p =5"¢), given that
relative and absolute pitch are highly correlated in the stimulus. Despite the
high correlation, relative pitch explains neural activity significantly better than
absolute pitch (paired samples two-sided t-test, t =6.5; p=17%n=322). Thisis
inline with ECoG studies, which show that STG encodesrelative pitchtoa
greater extent than absolute pitch (e.g., %), whereas primary auditory cortexis
more dominated by absolute pitch®. The combined precedence of relative
pitchencodinginSTG, and the dominance of relative pitch over absolute pitch
inourtargeted analyses, motivates our choice to focus on relative pitchin
thiswork.
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Extended DataFig. 3 | Stimulus annotation examples. Full feature annotation for two sentences. X-axis corresponds to time relative to sentence onset. Y-axis
corresponds to each of the 44 features in the encoding model. Colour of the y-axis labels indicates the feature class.
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phoneme

Extended DataFig.4|Phoneme TRF encoding weights for example neurons
inFig.5.For theexample neuronsinFig.5, we fita TRF encoding model with 39
phonemes asfeatures. We found that different spectro-temporaland modulation
patterns corresponded to different groups of phonemes. For example, we
observed neurons that were tuned to specific vowels like /i/, /e1/, /1/, /2¢/, and
/e/ (p1-u52), which are mid-high vowels characterized by relatively low F1and
high F2 formants (Fig. 5a). In contrast, other units were tuned to adifferent set
ofvowelsincluding/a/,/a/, /o/,and /ai/ (p1-u66), which are mid-low vowels with

p4-2-u79

relatively high F1and low F2 formants (Fig. 5a). Other neurons were tuned to
different groups of consonantslike /s/, /f/,and /6/ (p8-u12), which are fricatives
characterized by high frequency content (Fig. 5a). Others were tuned to
consonantslike/m/and/n/ (p4-2-u79), which are nasal sounds. Finally, some
neurons were tuned to consonants like /t/ and /k/ (p5-u83), which are plosive
sounds characterized by high temporal modulations. These examples (see also
Fig.2)illustrate that single STG neurons encode acoustic-phonetic features,
rather thanindividual phonemes®”.



Extended DataFig. 5|Site-specific tuning across the surface of STG. Pie plots
arereproduced from Fig.3d, plotted on the approximate location of each
recording site from Fig. 1b. Locations have been shifted slightly to maximize
visibility of each pie plot.
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Extended DataFig. 6 | Stimulus reconstruction from populationactivity.
a:Stimulus spectrograms for two sentences (top), reconstructed using alinear
modelwith 290 principal components (bottom), derived from 623 neurons
(p6was excluded due to havingless data). Correlations between original and
reconstructed spectrograms are relatively high (r - 0.7). b: Stimulus
reconstructionaccuracy (Pearsonr-value) foreach of the ten repeated sentences
(individual dots). Accuracy is highest when using neurons from all sites (dark
bar), and lower but still relatively strong for eachindividual site separately.
Smallblack dashed line in the violin plots represents the mean performance

fromeach populationacross sentences. c: Pairwise similarity (Pearson r-value)
of stimulus reconstructions across individual sites. Sites recorded from the
same participant (p4) are the most similar. d: Similarity (Pearson r-value) of
predictions across sites, ascompared to ceiling and chance performance when
usingall 623 neurons fromall sites. Dots are the other recording sites correlated
withthesiteindicated onthe x-axis. Inall cases, mean similarity is between
chance and ceiling, indicating that all sites reconstruct some, but not all, similar
spectrotemporal information.
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Extended DataFig.7|Hierarchical clustering of neuronal response thataressignificantly (p < 0.05, two-sided test, Bonferronicorrected) correlated
correlations. a: Pairwise peak cross-correlation among neurons from nine with other neuronsinthe cluster. ¢: Within-cluster (red) and across-cluster
recording sites shows groups of highly correlated response dynamics. Matrix (black; meants.e.m.; n=11clusters, 287 neurons) correlations.

sorted by hierarchical clustering (top). b: Proportion of neuronsin each cluster
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Extended DataFig. 8 |Populationstate-space dynamics and speech feature
decoding. a. Principal componentanalysis (PCA) performed on 623 single
neurons (data from one participant was excluded due to fewer sentences). 90%
ofthetotal variance was explained with290 PCs (46.5% of the full dimensionality
ofthe data). Additionally, anelbow in variance was found at approximately 20
PCs, demonstrating the relatively low dimensionality of the population data.
b. Population state-space visualizations for three example sentences. The first

three PCsare plotted with the time course of each sentence (averaged over 10
repetitions). Colour from dark to light reflects time relative to sentence onset.
Allsentences show highly similar trajectories (PC1Pearson r-value across 10
sentences mean=0.78 + 0.17; PC2 mean=0.88 + 0.08; PC3 mean=0.65 + 0.24).
c.Speechfeature decoding performed onacoustic-phonetic, intensity, and
relative pitch features. All features are significantly decodable above chance
(small dots are shuffled models, large dots are the true model for each feature).
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Extended DataFig. 9 |Encoding modelsimilarity by depth for eachindividual
site. Correlation of STRF weights for neurons binned into six groups by depth.
Insomesites, we did not sample neuronsinevery depth bin (white).
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Extended DataFig.10|Correlationbetweensurface ECoGand SUA inp4-2.
Correlationbetween SUAPSTH activity and ECOG HG/LFP for each neuronin
p4-2(n=82).Opencircles/shaded regions indicate non-significance. Bottom:
Correlations binned into six depth ranges show strong contributions from all
depths, particularly the mid-deep bins (boxplots show the maximum and
minimum values [whisker], median [centreline] and the 25th to 75th percentiles
[box limits]).
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Population characteristics Ages 33, 28, 24, 42, 53, 67, 23, 22, and 34 years
7 patients with epilepsy, 1 with brain tumor. All were patients undergoing neurosurgical procedures.
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prior to surgery.
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