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Abstract

Quantification of transfer RNA (tRNA) using illumina sequencing based tRNA-Seq is

complicated by their degree of redundancy and extensive modifications. As such, no tRNA-Seq

method has become well established, while various approaches have been proposed to quantify

tRNAs from sequencing reads. Here, we use realistic tRNA-Seq simulations to benchmark

tRNA-Seq quantification approaches, including two novel approaches. We demonstrate that

these novel approaches are consistently the most accurate, using data simulated to mimic five

different tRNA-Seq methods. This simulation-based benchmarking also identifies specific

shortfalls for each quantification approach and suggests that up to 13% of the variance

observed between cell lines in real tRNA-Seq data could be due to systematic differences in

quantification accuracy.
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Introduction

Transfer RNA (tRNA) are abundant, highly structured, and short (70-100 nt) non-coding RNAs

which are essential for the conversion of coding sequences into polypeptides1. They can be

categorised by their aminoacylation identity into 20 groups, each composed of several tRNAs,

known as isoacceptors, that are able to translate synonymous codons with the same amino

acid. Adding to this complexity, in higher eukaryotes, there are also isodecoders: tRNAs with the

same anticodon but different sequences. tRNAs also undergo substantial chemical modification,

containing on average 13 modifications by molecule2 with over 100 post-transcriptional

modifications identified to date1,3. Notably, a myriad of human diseases have been associated

with dysregulation of tRNA expression4–6 and mutations in tRNA modification enzymes7–10,

underscoring their central role in cellular homeostasis.

Given their complexity, quantification of tRNAs is more challenging than other RNA species.

Experimentally, tRNAs have been intractable to high-throughput illumina sequencing due to the

compact secondary and tertiary structure. In particular, the highly base-paired 5’ and 3’ termini

interfere with adaptor ligation11, although this has been addressed in recent publications using

splint adapters which take advantage of the 3’ CCA on mature tRNAs11,12. Moreover, some of

the post-transcriptional modifications present on tRNAs disrupt the Watson-Crick face and

impede reverse transcription (RT), leading to either premature termination of the RT reaction

and/or high misincorporation rates around the modified nucleotide13. To alleviate the impact of

such modification, demethylating enzymes, such as AlkB, have been utilised in several methods

including DM-tRNA-Seq14 and ARM-seq15, although the activity of these enzymes have not

been well characterised. An alternative solution is the use of a modification tolerant RT, such as

TGIRT14,16, Superscript IV12,17 or marathonRT18, which have a higher processivity though
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modified nucleotides. Regardless of the approach taken, tRNA-Seq reads inevitably possess

increased misincorporation rates and usually 3’ truncations. The processing of tRNA-Seq data is

also more complex than other forms of RNA-seq, as the evolution processes exerted upon

tRNA genes has led to the accumulation of dozens near identical sequences19. In the case of

the human genome and model mammalian species such as mouse and rat, this has generated

hundreds of actively transcribed tRNA genes20,21. This sequence redundancy complicates the

easy assignment of tRNA-Seq reads to their genomic loci and, therefore, quantification is

normally performed at the level of the mature tRNA sequences, or else anticodons.

Multiple quantification approaches for full length illumina-based tRNA-Seq have been employed,

all relying upon alignment of reads to tRNA sequences, with considerable variability in how

multi-mapped reads are handled. Bowtie222 is the most frequently used aligner for

tRNA-Seq12,15,23,24, although aligners designed for small RNA-seq such as SHRiMP25 have also

been used11. For tRNA-Seq read alignment with bowtie2, a wide variety of parameterisations

have been employed, which frequently include utilising very short and/or non-exact alignment

seeds12,23. Due to the high similarity between tRNA sequences, multi-mapped reads present a

significant problem, which has again been solved by a variety of means, including the complete

exclusion of multi-mapped reads12,14, fractional assignment to all aligned tRNAs17, and random

selection from amongst the alignments15. Recently, mimseq, an end-to-end tRNA-Seq

quantification pipeline was developed16. This pipeline uses GSNAP26 to align reads to

consensus sequences representing clusters of similar tRNAs along with a novel iterative

mapping procedure, in which mutated positions are masked. Despite this significant variability

between the quantification approaches which have been applied to tRNA-Seq, to date, no

systematic comparison of these approaches has been performed.
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Here, we used real tRNA-Seq data to generate realistic benchmark data simulations and

compare common quantification approaches. This allowed us to identify the best generic

quantification approach across different tRNA-Seq methods and to establish specific shortfalls

of each approach.
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Results

Optimising read alignment for tRNA-Seq

Read alignment software needs to be carefully parameterised for tRNA-Seq and a number of

alternative parameterisations have been proposed, predominantly using bowtie2 with a short

seed length12,14,17. To evaluate alignment parameters for bowtie2 with a short seed length, we

simulated the highest possible quality of tRNA-Seq reads: full length and including only

sequencing errors. These reads were then aligned to the reference tRNA sequences with

bowtie2, using a sensitive parameterisation, allowing a single error in the seed, as frequently

employed for tRNA-Seq to accommodate the increased misincorporation rate12,23. Two

parameters were varied: L and D, representing the seed length and how much effort to expend

trying to find a better alignment, respectively. This simulation and alignment procedure was

performed for tRNA from Homo sapiens and Mus musculus tRNAs separately. We observed

that when an error in the seed is allowed, as the seed length is decreased, there needs to be a

concomitant increase in effort expended to allow bowtie2 more opportunities to find the best

possible alignment, especially with respect to the Transcript ID (Figure 1a). Thus, previously

employed alignment parameters have been sub-optimal, even for unrealistically high quality

tRNA-Seq reads12.

Inevitably, tRNA-Seq reads will frequently be mapped to multiple tRNA sequences with equal

alignment scores, since some tRNA sequences are nearly identical and real tRNA-Seq reads

will be truncated and include misincorporations. To explore the extent of the multi-mapping issue

for tRNA-Seq, we aligned reads from ALL-tRNAseq18, DM-tRNA-seq14, mim-tRNAseq16,

QuantM-tRNA-seq12 and YAMAT-seq11 samples to the reference tRNA sequences, using
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bowtie2 (-L 10 -D 100). We then summarised the extent of multi-mapping at four levels using the

naming convention from GtRNAdb20: Gene locus ID, Transcript ID, Anticodon and Amino acid.

As expected, at the higher levels of tRNA annotation, the number of reads mapping to a single

feature increases (Figure 1b). Many pairs of tRNA sequences showed high rates of

multi-mapping at the Gene locus ID level, including pairs of tRNAs for different anticodons, but

multi-mapping is less prominent at higher levels (Figure 1c). These data demonstrate that

multi-mapping is prevalent at the level of the alignments to the tRNA sequences, but it should

be less problematic at higher levels if it is dealt with appropriately.
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Figure 1. Alignment parameterisation in the context of frequent multiple-alignment. a). Impact of bowtie2

parameterisation on the percentage of correct alignments. b) The percentage of single and multi-mapped reads at

each level of tRNA nomenclature. c). The frequency of reads multi-mapping at the Gene locus ID, Transcript ID and

Anticodon level. Frequencies were normalised by dividing by the total number of reads aligned to the two tRNAs.

Data shown is from YAMAT-Seq, BT20, replicate A.

Simulating realistic tRNA-Seq data

To address the question of how to most accurately quantify tRNAs from tRNA-Seq, we aimed to

simulate realistic tRNA-Seq data by using the frequency of misincorporations and truncations

(hereafter referred to jointly as the ‘error profile’) as observed in tRNA-Seq data. To ensure our

findings were generically applicable, error profiles were learned from five tRNA-Seq methods:

ALL-tRNAseq, DM-tRNA-seq, mim-tRNAseq, QuantM-tRNA-seq and YAMAT-seq, and two

species: Homo sapiens and Mus musculus. This was achieved by first aligning reads to a tRNA

reference transcriptome, following which, error profiles were determined from the alignments by

tallying mutation frequencies and read alignment coordinates.

Since the mutations and truncations are dependent on the tRNA modifications, the position of

the mutations and truncation events in the error profiles should match the positions of known

modifications. Furthermore, the relationship between the tRNA modifications and error profiles

should depend on whether tRNA modifications are enzymatically removed, which RT used, and

whether there was a size selection step prior to sequencing. Thus, samples from different

tRNA-Seq methods should have different error profiles. To confirm this, we used the

experimentally determined modifications listed in MODOMICS27. As expected, adenosines

modified to inosine cause misincorporation of guanine28 (Figure 2a). In contrast,

N1-methyladenosine (m1A) frequently causes misincorporation for all methods, except
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DM-tRNA-seq and ALL-tRNAseq, which employ AlkB to remove methylations. Interestingly, an

overall higher proportion of mutations was observed with mim-tRNA-Seq, likely reflecting the

optimisation of the RT step to allow more processivity over modified bases (Supplementary

Figure 1a). In keeping with the more restrictive size selection of YAMAT-Seq, and the improved

RT processivity with mim-tRNA-Seq and ALL-tRNA-Seq, the reads from these methods are less

frequently truncated than the other methods (Figure 2b; Supplementary Figure 1b). Notably,

while read truncations were frequently close to known modified nucleotides for all methods

except YAMAT-Seq, the modified nucleotides around the site of truncation varied considerably

between the tRNA-Seq methods (Figure 2c). This is likely due to the considerable differences

between the tRNA-Seq library preparation steps for these five methods. Overall, the error

profiles appear to reflect the different mutation and truncation rates that would be expected for

the five tRNA-Seq methods and should thus enable relatively realistic simulation of tRNA-Seq

reads from a broad range of tRNA-Seq protocols.

From these error profiles, we then simulated 2 datasets: Uniform: an equal number of reads

from all tRNA species, with misincorporation and truncations added at the frequencies observed

in the real tRNA-Seq data. One set of simulated reads was generated for each tRNA-Seq

sample. Realistic: a randomly varied number of reads from each tRNA sequence, drawn from a

log2-Gaussian distribution with a mean of 10 and standard deviation of 5, left-censored at zero.

Misincorporation and truncations were added at the frequencies observed in the real tRNA-Seq

data. Ten sets of simulated reads were generated for each tRNA-Seq sample.
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Figure 2. The observed error profiles reflect the expected misincorporations from modifications in

MODOMICS. a). Misincorporation frequencies for Inosine and m1A sites b). The proportion of reads which are

truncated and how often this occurs close to a known modification site. c). The proportion of truncated reads which

are truncated within 1 nucleotide of common modifications. m2,2G = N2,N2-dimethylguanosine, m2G =

N2-methylguanosine, m1Y = 1-methylpseudouridine, m5C = 5-methylcytidine, m1G = 1-methylguanosine, m1A =

1-methyladenosine, D = dihydrouridine, Y = pseudouridine.

Comparing alignment strategies

The first question we wished to address was which read alignment strategy yielded the most

accurate alignments. We therefore compared 3 strategies using the Uniform simulation data by
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employing either bowtie2 or SHRiMP alignment to tRNA sequences or alignment to consensus

tRNA sequences using GSNAP, using the mimseq pipeline16.

Bowtie2 and SHRiMP alignments were analysed at 3 levels using the naming convention from

GtRNAdb: Gene locus ID, Transcript ID and Anticodon. The mimseq pipeline aligns to

consensus tRNA sequences that approximate a single transcript ID and are associated with a

single anticodon. Therefore, we also analysed the bowtie2 and SHRiMP alignments at the

‘Mimseq isodecoder’ level to make them comparable.

With the configurations used here, bowtie2 and SHRiMP aligned the most reads, with the

median percentage of aligned reads across all Homo sapiens samples being 98.5%, 93.0% and

71.3%, for bowtie2, SHRiMP and mimseq (GSNAP), respectively (Figure 3a). However, relative

to mimseq, SHRiMP and bowtie2 had up to 3.3% and 4.0%, respectively, fewer alignments

correct at the anticodon level for Homo sapiens samples (Figure 3b; supplementary Figure 2a).

This suggests there is an expected trade-off between the proportion of aligned reads and the

accuracy of the alignments (Supplementary Figure 2b).

We next considered the consistency for the read misalignments patterns. Notably, the read

misalignments were more correlated between samples from the same tRNA-Seq method than

between the two tRNA-Seq methods for each species (Figure 3c), likely due to the differences in

error profiles between each tRNA-Seq method (Figure 1). Interestingly, some tRNAs anticodons

were difficult to align when simulating reads from specific tRNA-Seq methods. For example,

using bowtie2, reads from Homo sapiens Sup-TTA tRNAs are more correctly aligned for

YAMAT-seq than DM-tRNA-seq. In contrast, mimseq accurately aligned Sup-TTA reads

simulated from DM-tRNA-seq, but not from YAMAT-seq (Figure 3d).
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We also observed cell-line specific misalignment patterns that vary across the tRNA-Seq

methods and alignment approaches (Supplementary Figure 2c). For example, using mimseq,

reads simulated from mim-tRNAseq for Asp-ATC tRNAs were missassigned to Cys-GCA tRNAs

67%, 40% and 100% of the time for BT20, MCF7, and SKBR3, respectively. However, using

bowtie2, the misalignment rates were only 18%, 24% and 36%, respectively. The difference in

the misalignments between the cell lines and tRNA-Seq methods supports the approach taken

herein to use learn sample-specific error profiles from multiple tRNA-Seq methods to enable

simulation of a broad set of representative samples from which to identify a generically accurate

quantification approach.

Figure 3. Alignment accuracy is dependent upon the alignment strategy and tRNA-Seq method. a) Percentage

of reads aligned. b). Percentage of correct alignments. c). Spearman correlations for read misalignments rates
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between pairs of tRNA-Seq methods or pairs of samples within a single tRNA-Seq method. QuantM-tRNA-seq is not

included since these samples were only for Mus musculus. d). A comparison of correct assignments for 4 selected

Homo sapiens anticodons which are most variable across tRNA-Seq methods. QuantM-tRNA-seq is not included

since these samples were only for Mus musculus.

Handling multiple mapped reads

Once reads are aligned, the major variable is how to handle multi-mapped reads in the process

of tallying read counts per tRNA. To compare approaches, we aligned the Realistic simulated

reads to tRNA sequences with bowtie2 or SHRiMP and applied 4 approaches used previously

to count reads per tRNA, alongside two further approaches which we expected would be more

accurate that have not previously been applied, to our knowledge (Table 1). In addition, we used

the dedicated tRNA-Seq quantification tool, mimseq.

Read tallying
method

Description Read
aligner

References

Unique Discard multi-mapped reads. Count reads per tRNA sequence. bowtie2
SHRiMP

14

MAPQ >10 Discard reads with MAPQ <10. This will include all multi-mapped reads,
plus other low quality aligned reads. Count reads per tRNA sequence.

bowtie2 12

Fractional Assign equal read fractions to each tRNA sequence with an alignment.
E.g for a read with two alignments, assign 0.5 to both.

bowtie2
SHRiMP

17

Random Randomly assign the read to one of the tRNAs with an alignment. bowtie2
SHRiMP

15

Decision Assign reads at every level (e.g Gene locus ID, Transcript ID,
Anticodon) in which the read was assigned to a single feature. E.g reads
aligned to tRNA sequences for the same Transcript ID are assigned to a

Transcript ID and Anticodon, but not Gene locus ID feature.

bowtie2
SHRiMP

Salmon Use Salmon to quantify from the aligned reads. bowtie2
SHRiMP

Mimseq Use mimseq pipeline. Align reads to tRNA clusters, with masked
modified positions, followed by deconvolution of the aligned reads to the

individual tRNA sequences.

GSNAP 16
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Table 1. Read tallying approaches. SHRiMP does not report MAPQ, so the MAPQ>10 approach is not possible.

Decision and Salmon have not previously been utilised.

With the exception of Decision and mimseq, which inherently generate quantification at multiple

levels, all other approaches quantify at the level of the Gene locus ID sequences included in the

reference fasta. We further summarised quantification to transcript ID and anticodon-level

feature abundances by summation. We also summarised the quantification values to the same

‘mimseq isodecoder’ features quantified by mimseq, to make them comparable. A summary of

the 4 levels of quantification and how these are obtained for each read tallying approach is

shown (Table 2).

Quantification
feature level

Description Obtained directly Obtained by summation

Gene locus ID Unique tRNA genomic loci Unique, MAPQ > 10
Fractional, Random,

Decision, Salmon, Mimseq

Transcript ID tRNAs with the same mature
sequence

Decision Unique, MAPQ > 10
Fractional, Random

Salmon

Mimseq isodecoder Clusters of similar sequences
defined by mimseq pipeline in
data-dependent manner16

Mimseq Decision, Salmon, Unique,
MAPQ > 10, Fractional,

Random, Salmon

Anticodon tRNAs with the same anticodon Mimseq, Decision Unique, MAPQ > 10,
Fractional, Random, Salmon

Table 2. Quantification levels, using GtRNAdb nomenclature, and how quantification is achieved at each level by

each read tallying approach.

The proportion of reads used by each read tallying approach varies considerably. Salmon,

Fractional and Random use all mapped reads for each level of quantification, whereas stricter
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approaches which filter by multimapping or mapping quality use the least reads and frequently

assign fewer than 50% of the mapped reads (Figure 4a; Supplementary Figure 3a). As

intended, Decision uses increasingly more reads at higher levels of quantification. Importantly,

Decision uses approximately the same number of reads as mimseq at the mimseq isodecoder

level, but consistently more at the anticodon level, where it approaches the use of all mapped

reads. In contrast, Mimseq uses the same number of reads for both mimseq isodecoder and

anticodon level quantification. This suggests Decision is more appropriately determining which

reads to utilise for each level of quantification.

Comparing read tallying approaches

To assess the overall accuracy of the abundance estimates obtained with the varying read

tallying approaches, we calculated two metrics. The root mean squared error (RMSE) is a

common error metric which captures how closely the quantification estimates match the ground

truth29. However, in many applications of tRNA-Seq, including the comparison between

conditions or tissues, it’s sufficient to accurately capture the abundance relationship between

samples, even if there is a systematic over or under-estimation across all samples. Hence, we

complemented the evaluation using RMSE by also considering the Pearson correlation

coefficient between the quantification estimates and ground truth.

To compare the quantification approaches, we considered the mean RMSE and mean

correlation across all features at a given quantification level. At the anticodon and mimseq

isodecoder level, our novel approaches, Decision and Salmon consistently show the lowest

RMSE and highest correlation, suggesting they deal with multi-mapped reads most

appropriately. Of the previously used read-tallying approaches, Mimseq shows the highest
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accuracy. Surprisingly, Random and Fractional also perform well at the anticodon level, while

Unique and MAPQ>10 performed poorly (Figure 4b-c). On further inspection, this is because the

multi-mapped reads are predominantly mapped to multiple tRNA species from the same

anticodon (Figure 4d; Supplementary Figure 3a). Thus, requiring unique alignments at the level

of individual tRNA sequences (using Unique or MAPQ>10) leads to detrimental discarding of

multi-mapped reads which could be assigned to a single anticodon. For these reads, selecting

one alignment at random, or equally distributing the read between all of them, is a more

sensible approach and thus leads to more accurate anticodon level quantification. However, for

quantification at lower levels, Unique and MAPQ > 10 are more accurate than Random and

Fractional, suggesting discarding of multi-mapped reads is better than naive resolution for

quantification below the anticodon level (Figure 4b-c). Very similar results are observed when

SHRiMP is used in place of bowtie2 (Supplementary Figure 3b-c). Finally, for quantification at

the level of individual tRNA sequences, all methods perform equally well, with the exception of

Random, which performed the worst. Overall, Decision and Salmon are consistently the best

read tallying methods to apply.

We reasoned that the misalignment of reads should be one of the major factors reducing

quantification accuracy for all methods. In support of this, the fraction of reads correctly aligned

and the quantification evaluation metrics were correlated (Supplementary Figure 4a-b). The

exception was MAPQ>10 at anticodon level, which shows poor accuracy even when the

proportion of correctly aligned reads is high. This agrees with the previous observation that

discarding low quality reads is detrimental for anticodon-level read tallying because reads are

typically mapped across multiple tRNAs for the same anticodon, not between anticodons

(Figure 3d). Thus, excepting quantification by MAPQ>10, our results indicate that misalignment

is one of the major issues with tRNA-Seq quantification.
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Figure 4. a) Reads assigned at anticodon and mimseq isodecoder level for each read tally method. Only results from

alignment with bowtie2 or GSNAP (Mimseq) are shown. b) Mean RMSE at anticodon and mimseq isodecoder level.

*=Best approach for each tRNA-Seq method, ▼=Worst approach. c). As per (b), except Pearson correlation

coefficient. d) The percentage of reads from each simulation sample which are single or multiple aligned, separated

by whether the alignment position(s) have the correct anticodon. Multi-aligned reads with more than more anticodon

were deemed incorrect.
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Using simulations to inform interpretation of results

Summarising the RMSE and correlation metrics to the mean value over all features enables

read tallying approaches to be easily compared, but masks fine-grained differences which go

against the trend and could give false confidence when interpreting quantification of individual

features. We therefore further considered which features each approach quantifies best,

focusing on the simulations from the YAMAT-Seq data and quantification at the anticodon level.

For these simulations, Decision had the highest mean correlation and lowest mean RMSE, with

Salmon performing nearly equivalently and Mimseq also being accurate (Figure 4c). However,

we observed that the correlations for some anticodons were very sensitive to the read tallying

approach (Figure 5a-b). For example, the correlation for Ser-GGA is much lower with Mimseq

than Decision or Salmon, whilst the correlation for Pro-AGG is much higher with Mimseq than

Decision or Salmon (Figure 5b; Supplementary Figure 4c). This suggests the choice of

quantification approach may have different impacts on quantification accuracy for each

anticodon and the interpretation of results should ideally take into account the limits of each

quantification approach.

Given the observed association between read misassignment and quantification accuracy, we

hypothesised that differences in read misalignments between cell lines could erroneously induce

apparent differences in tRNA feature abundances. To test this, we compared the fold-change

between cell lines when simulating the same number of reads for each tRNA with the

fold-changes observed in the real data. The fold-changes with the simulated data should reflect

technical biases resulting from systematic differences in misassignments between cell lines due

to differences in the error profiles. Strikingly, up to 13% of the variance in fold-changes in the

real data were explained by technical biases (Figure 5c). Even using the most accurate

quantification method, Decision, up to 7% of the variance for anticodon level fold-changes in the
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real data is explained by technical biases. All quantification methods appeared to show some

propensity to identify fold-changes between conditions that were partially explained by technical

biases for at least one level of tRNA quantification. The exception to this was salmon, for which

a maximum of 2% of the variance in fold-changes were explained by technical biases. This

suggests salmon may be a more trustable quantification method for the detection of

fold-changes between experimental conditions.

Figure 5. Each quantification approach has specific shortfalls. a) Pearson correlation between ground truth and

estimated read counts for six anticodons with variable quantification accuracy between read tallying approaches. b).

c) The variance in observed fold-changes in the real tRNA-Seq data that is explained by fold-changes in the uniform

simulation data. x = The mean variance explained across the four Homo sapiens datasets.
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Discussion

Recent advances in sequencing using nanopores promise a potential revolution for RNA

sequencing, including tRNAs30. Despite this, illumina sequencing is expected to remain the

dominant approach for tRNA sequencing, at least in the short-term. The first tRNA-seq

approaches using illumina sequencing were published in 201514,15, since which, the comparison

of bioinformatic approaches for tRNA quantification from tRNA-Seq has received surprisingly

little attention. In part, this may be because tRNA-Seq methods continue to be developed and

the optimal quantification is considered to be dependent upon the method. Encouragingly,

however, we have identified two robust quantification methods that appear to be suitable for all

tRNA-Seq data.

An important aspect of our benchmarking is the simulation of realistic tRNA-Seq data, which has

not been attempted before, to our knowledge. The only previous attempt to simulate tRNA-Seq

reads that we are aware of did not capture the effect of modifications on read truncations and

mutations31. By learning error profiles of individual samples and then simulating data from these

error profiles, our simulations at least partially capture the technical variability between samples,

cell lines and tRNA-Seq methods. However, there are limitations to this approach. All truncation

and misincorporation events are measured independently, such that the error profiles will not

capture dependencies between the events, which occur with respect to correlated

misincorporations at nucleotides due to linked modifications32. In addition, the error profiles are

inherently biased by the ability to align the tRNA-Seq reads. Misincorporations and truncations

which prevent the read being aligned appropriately will not be captured in the error profiles. As

such, the simulated data may be considered to simulate the alignable portion of a tRNA-Seq

sample, with biases due to the alignment strategy used. Here, we attempted to mitigate this by

aligning reads with multiple aligners. Despite these limitations, our simulations represent the
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most realistic simulation of tRNA-Seq data to date, and enabled us to perform a rigorous

comparison of tRNA-Seq quantification approaches.

The crucial steps for accurate tRNA-Seq quantification are the alignment of reads and handling

of multi-mapped reads, with the latter being the step which varies most between the approaches

that have been applied to date. Although reads may be multi-mapped across different tRNA

species, we show here that the issue is most pressing at the Gene locus ID and Transcript ID

level, and much less so at the Anticodon level. However, dealing with multi-mapped reads

inappropriately can itself create issues at the anticodon level. The approaches used to date

resolve the multi-mapping are only suitable for quantification at particular levels, which has not

previously been appreciated. Crucially, the common approach of removing multi-mapped reads

and/or low quality reads is significantly suboptimal for the anticodon level quantification which it

has been previously employed for12,14, since it leads to the unnecessary discarding of reads

which have multi-mapped across tRNAs with the same anticodon. The bespoke quantification

approach of Mimseq is better than filtering multi-mapped reads, but our simulations indicate it

performed no better than simple random assignment of multi-mapped reads for anticodon-level

quantification.

The central observation of this benchmarking study is that two simple approaches alleviate the

issue of multi-mapped reads and perform better than existing approaches at all levels of

quantification. This is observed across all 4 of the tRNA-Seq methods, suggesting our

observation can likely be extrapolated to all tRNA-Seq methods using illumina sequencing for

full length tRNAs. The Salmon-based approach involves reporting all alignment positions and

then using salmon to probabilistically resolve the multi-mapped reads. The Decision approach

involves counting reads at each level of quantification where the read maps to tRNAs from a

single feature, e.g multiple tRNAs from the same anticodon. Given the lower propensity for
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technical biases to explain fold-changes in real data with Salmon and the reduced barrier to its

use, we suspect salmon will prove to be the most popular. For this approach, bowtie2 simply

needs to be run with the -a flag to report all reads. The alignments must then be filtered to retain

only the equal top-scoring alignments for each read, before passing the alignments to salmon

quant.

While the motivation of this study was to determine the optimal overall quantification approach,

our simulations also identified specific tRNAs that cannot be accurately quantified in particular

samples. Our simulations further allowed us to establish that a small proportion of the observed

variability between cell lines may not be biological. Thus, comparisons between samples should

be interpreted with caution, since they may be partially due to technical biases in read

miss-alignment. We propose that a simulation-based approach could be applied more widely as

a quality control step to highlight features whose quantification may be inaccurate. In particular,

where changes in tRNA abundance between cell lines are observed, it would be prudent to use

similar simulations to demonstrate that such changes are not driven by differences in tRNA

modifications driving systematic differences in misincorporations and truncations.

The decision about what level to interrogate tRNA abundance is a trade off between a desire to

obtain the most ‘fine-grained’ data possible, and the practical consideration of how accurately

tRNAs can be quantified at each level. tRNA isodecoders have been found to be functionality

distinct33,34 and differential abundance of specific Transcript IDs has been identified across

mouse tissues12 and human cell lines16. Nonetheless, tRNA abundances are more accurately

quantified at the Anticodon level and this is likely to remain the predominant approach for the

foreseeable future. As tRNA-Seq methods continue to improve the processivity of reverse

transcriptase over modified bases and yield fewer truncated reads, the potential for highly

accurate Transcript ID level quantification will open up. Sequencing tRNAs using nanopores is
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also likely to provide a significant benefit in this respect30. However, these improvements in

experimental methods need to be complemented by rigorous improvements in the data

processing to take full advantage of the potential benefits. We envisage the simulation-based

approach we have used here being reutilised as new experimental methods are developed, to

maintain a high standard of tRNA-Seq data analysis.
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Data and code availability

The data processing pipeline is available at

https://github.com/MRCToxBioinformatics/pipeline_compare_trnaseq_quant and the version

used (v0.1) is archived at zenodo, DOI: 10.5281/zenodo.10229154. The pipeline makes

extensive use of a dedicated python package we developed for the simulation of tRNA-Seq

samples, simulatetrna, which is available at

https://github.com/MRCToxBioinformatics/simulate_trna and the version used (v0.1) is archived

at zenodo: DOI: 10.5281/zenodo.10235438. The downstream data analysis and visualisation

was performed using R markdown notebooks 35, which are available at

https://github.com/MRCToxBioinformatics/trna_seq_quantification_benchmarking (v0.1.1),

archived with zenodo, DOI: 10.5281/zenodo.10372994.
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Methods

A CGAT-core 36 python pipeline was used to generate error profiles, compare errors with known

modifications, simulate tRNA-Seq samples, align reads, run mimseq, compare simulation

ground truth and observed alignments, tally tRNA counts and compare simulation ground truths

and quantification estimation, as described below. The pipeline is available from

https://github.com/MRCToxBioinformatics/pipeline_compare_trnaseq_quant and the version

used (v0.1) is archived at zenodo, DOI: 10.5281/zenodo.10229154.

Downstream data analysis and visualisation was performed on a macOS

(12.1x86_64-apple-darwin17) with R v4.1.2, using Rstudio v2023.09.0+463. The Rmarkdown

notebooks are available from

https://github.com/MRCToxBioinformatics/trna_seq_quantification_benchmarking (v0.1.1),

archived with zenodo, 10.5281/zenodo.10372994.

Software versions

All data-processing software was installed in a dedicated conda environment. A yaml file

detailing the software versions is included in the github repository for the data-processing

pipeline, https://github.com/MRCToxBioinformatics/pipeline_compare_trnaseq_quant (v0.1),

archived at zenodo, DOI: 10.5281/zenodo.10229154. Downstream data analysis and

visualisation was performed with R v4.1.2. R package dependencies and the versions used are

detailed in the github repository for the data analysis and visualisation,
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https://github.com/MRCToxBioinformatics/trna_seq_quantification_benchmarking (v0.1.1),

archived with zenodo, DOI: 10.5281/zenodo.10372994.

Data acquisition

Homo sapiens mim-tRNAseq samples were downloaded from

https://www.ebi.ac.uk/ena/browser/view/PRJNA639839. These comprised two replicates each

for iPSC, HEK293T and K562. Homo sapiens YAMAT-Seq data were downloaded from

https://www.ebi.ac.uk/ena/browser/view/PRJNA360886. These comprised 3 replicates each for

BT-20, SK-BR-3 and MCF-7. Homo sapiens DM-tRNA-Seq were downloaded from

https://www.ebi.ac.uk/ena/browser/view/PRJNA277309. These comprised 2 replicates of

HEK293T. Homo sapiens ALL-tRNASeq were downloaded from

https://www.ebi.ac.uk/ena/browser/view/PRJNA775872. These comprised 3 replicates of hESC

at day 0 and day 5 of retinoic acid differentiation. Mus musculus QuantM-tRNA-Seq data were

downloaded from https://www.ebi.ac.uk/ena/browser/view/PRJNA593498. These comprised 3

replicates each from Cortex and Cerebellum. Mature tRNA-Seq sequences, mitochondrial tRNA

sequences and tRNAscan-SE output files were obtained from v1.3.8 of the mimseq GitHub

repository (https://github.com/nedialkova-lab/mim-tRNAseq/releases/tag/v1.3.8). Copies of the

tRNA sequence files used are contained in the GitHub repository for the data processing

pipeline: https://github.com/MRCToxBioinformatics/pipeline_compare_trnaseq_quant; version

used (v0.1) archived with zenodo: DOI: 10.5281/zenodo.10229154

Measuring multi-mapping

Reads from YAMAT-Seq, DM-tRNA-Seq, ALL-tRNASeq, QuantM-tRNA-Seq and mim-tRNAseq

were aligned to the tRNA sequences with bowtie222. bowtie2 was run with the following

non-default parameters: --min-score G,1,8 --local -a -D 20 -R 3 -N 1 -L 10 -i S,1,0.5, where -a
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makes bowtie2 report all read alignments. The bam.filter_sam function from simulatetrna was

used to filter read alignment BAM files from bowtie2 and SHRiMP to remove alignments whose

alignment score was less than the highest alignment score for the read. To summarise the

multimapping for each sample, the number of reads uniquely aligning to each tRNA sequence

and multimapping between each pair of tRNA sequences was computed. The number of

multimapping reads for each tRNA sequence pair was normalised to 0-1 through dividing by the

sum of the multimapped reads and the uniquely mapped reads for each of the tRNA sequences.

This procedure was performed at all levels of tRNA sequence nomenclature, as described by

GtRNAdb20. To achieve this, the tRNA sequences to which a read was aligned (Gene locus ID

level) were summarised to the higher levels of nomenclature (e.g Anticodon level) by taking the

set of unique tRNAs when expressed at the higher level. For example, a read multimapping to

the tRNA sequences for Val-CAC-8-1 and Val-CAC-9-1 (Gene locus ID level) would be

multi-mapped to Val-CAC-8 and Val-CAC-9 at the Transcript ID level and uniquely mapped to

Val-CAC at the anticodon level. Thus, reads multimapping at lower levels could be deemed

uniquely mapping at higher levels.

Obtaining error profiles

Error profiles for each sample were obtained by aligning reads to the reference tRNA

sequences using bowtie222 and BWA-MEM37, reporting a maximum of one alignment per read.

Bowtie2 was run with the following non-default parameters: --min-score G,1,8 --local -D 100 -R

3 -N 1 -L 10 -i S,1,0.5. BWA-MEM was run with the following non-default parameters: -k 10 -T

15. The bowtie2 and BWA-MEM alignments for each sample were merged and passed to

alignmentSummary.clustalwtrnaAlignmentSummary from the simulatetrna python library to

obtain the error profiles. Error profiles represent the frequency of misincorporations at each

position in each tRNA, the frequency for each observed read start site (3’ with respect to tRNA),
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and the frequency of truncations (5’ with respect to tRNA sequence) for each observed read

start site. The error profiles do not encode dependencies between misincorporations at each

position and between misincorporations and truncations. To avoid error profiles for rare tRNA

sequences being inaccurately measured, error profiles were also summarised within tRNAs

sharing the same anticodon for the purpose of simulating tRNA-Seq reads.

Comparing error profiles to known modifications

Modification data was obtained from MODOMICS on 23 January 2023 using their API, with the

URLs

https://www.genesilico.pl/modomics/api/sequences?RNAtype=tRNA&organism=Homo+sapiens

&format=json and

https://www.genesilico.pl/modomics/api/sequences?RNAtype=tRNA&organism=Mus+musculus

&format=json. The details of MODOMICS modifications were downloaded from

https://genesilico.pl/modomics/modifications on 23 January 2023. Copies of the MODOMICS

files used are contained in the GitHub repository for the data processing pipeline:

https://github.com/MRCToxBioinformatics/pipeline_compare_trnaseq_quant; version used (v0.1)

archived with zenodo, DOI: 10.5281/zenodo.10229154.

MODOMICS defines modifications for only a minor portion of tRNAs. On the assumption that

tRNAs which share the same anticodon and have a very similar sequence to the MODOMICS

tRNA sequence will likely have the same modifications, the positions of the modifications in

MODOMICS were mapped to the positions in the reference tRNA sequences. A local alignment

was performed using pairwise2.align.localms from Biopython38 with match, mismatch, gap

opening and gap extension scores set to 1, -1, -1 and -.1, respectively, and only one alignment

reported. Only alignments with a score over 65 were retained. Using the alignments, the
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modification positions were then lifted over to the fasta sequence positions and the rates of

misincorporation and truncations at modified positions were calculated.

Simulating tRNA-Seq samples

The simulation of tRNA-Seq data was performed using simulateReads.simulate_reads from the

simulatetrna python library to generate single end fastq files. Simulated reads contained the

ground truth tRNA sequence name in their fastq sequence identifier. Three sets of simulated

data were generated.

1) No modifications: To compare aligner parameterisation options in the absence of

modification-induced truncations and misincorporations, 1 million full length reads were

simulated with a sequence error rate of 0.001. One tRNA-Seq sample was simulated from each

of the Homo sapiens and Mus musculus tRNA sequences fasta files, with the same number of

reads per tRNA.

2) Uniform: To compare alignment rates and mis-assignments with reads that approximated the

misincorporation profile of real tRNA-Seq data, an equal number of reads was simulated from

each tRNA, with a sequencing error rate of 0.01 and truncations and misincorporations added

as observed in the error profile. Anticodon-level error profiles were used to simulate truncation

and misincorporations by adding these events at a probability equal to the observed frequency.

tRNA sequence positions with total misincorporation frequencies less than 0.1 were excluded.

One tRNA-Seq sample was simulated from each of the sample-specific error profiles.

3) Realistic: To compare the tRNA-Seq quantification approaches, the same approach was

taken as for Uniform, but with a random number of reads from each tRNA. The random
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sampling for the number of reads per tRNA was performed using simulateReads.make_gt from

the simulatetrna python library. The number of reads was sampled from a left-censured,

log2-Gaussian distribution with a mean of 10 and standard deviation of 5. The exponentiated

read number was rounded to an integer and values below zero were replaced with zero. A total

of 1 million reads were simulated, with the numbers of reads per tRNA sequence down-scaled

to achieve this. Ten tRNA-Seq samples were simulated from each of the sample-specific error

profiles to enable sample-level evaluation metrics to be obtained.

Comparing read alignments strategies

Uniform simulated samples were aligned to the reference tRNA sequences with bowtie222,

SHRiMP25. bowtie2 was run with the following non-default parameters: --min-score G,1,8 --local

-a -D 20 -R 3 -N 1 -L 10 -i S,1,0.5, where -a makes bowtie2 report all read alignments. SHRiMP

was run with the following non-default parameters: --strata --report 1000 --sam-unaligned

--mode mirna, where report 1000 makes SHRiMP report up to 1000 alignments per read. The

bam.filter_sam function from simulatetrna was used to filter read alignment BAM files from

bowtie2 and SHRiMP to remove alignments whose alignment score was less than the highest

alignment score for the read. In addition, the mimseq pipeline, which uses GSNAP to align to

tRNA sequence clusters was also used. As recommended by mimseq developers

(https://github.com/nedialkova-lab/mim-tRNAseq/blob/master/README.md), mimseq was run

with the following parameterisation: --cluster-id 0.97--min-cov 0.0005 --max-mismatches 0.075

--max-multi 4 --remap --remap-mismatches 0.05. To compare the read alignments to the ground

truths, reads which were multi-mapped by bowtie2 or SHRiMP were assigned in an equal

proportion to all aligned coordinates. Ground truth vs assignments for bowtie2 and SHRiMP

were compared at Gene locus ID, Transcript ID and anticodon level, where a correct match

means that the ground truth and alignment have the same e.g anticodon. The comparison was
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also made at the mimseq isodecoder level, where the output of mimseq was used to define the

mimseq isodecoders. For multi-mapped reads, the match score for multi-mapped reads are

bounded between 0 (no alignments are correct) and 1 (all alignments are correct). Ground truth

vs assignments for mimseq alignments were compared at anticodon and mimseq isodecoder

level.

Optimising bowtie2 alignment parameters

Bowtie2 was used to align the reads from the No modifications simulation samples to the

reference tRNA sequences with the following non-default parameters --min-score G,1,8 --local

-R 3 -i S,1,0.5 with the value for -D varied from 10 to 100 in steps of 10, the value of -L varied

from 10 to 20 in steps of 2, and the value of -N varied from 0 to 1. All combinations of -D, -L and

-N were tested. Read alignments were compared to the ground truth as described above.

Evaluating accuracy of read tallying approaches

Realistic simulated samples were aligned to the reference tRNA sequences with bowtie2,

SHRiMP, using the same parameters as for the alignment of Uniform simulated samples. In

addition, the mimseq pipeline, which uses GSNAP to align to tRNA sequence clusters was also

used, with the same parameterisation as for the alignment of Uniform simulated samples. Five

approaches were used to tally reads from the read alignments at the tRNA sequences level

(Gene locus ID): Random, Fractional, Unique, MAPQ>10 and Salmon. The read tallying

approaches involved the following. Fractional - Assign reads in equal fractions to all tRNA

sequences to which they are aligned. Random - Assign reads at random to one of the tRNA
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sequences to which they are aligned. Unique - Remove all reads aligned to multiple tRNA

sequences. Assign remaining reads to their aligned tRNA sequence. MAPQ>10 - Remove all

reads with a mapping quality (MAPQ) score less than 10. MAPQ>10 read tallying was not

possible from SHRiMP alignments as SHRiMP does not report a MAPQ. Salmon - Use salmon39

quant command to estimate the read counts for each tRNA sequence from the alignments.

Read counts were then summed to the transcript ID, anticodon and mimseq isodecoder level,

where the output of mimseq was used to define the mimseq isodecoders. Decision - assign

reads at the Gene locus ID, transcript ID, anticodon and mimseq isodecoder levels. This

involved taking the set of alignments for each read and assigning the read at each level where

the read was aligned to just a single feature. Mimseq - use the mimseq pipeline16 to tally reads

for each anticodon and isodecoder, where the tRNA sequences within each isodecoder group

are defined by mimseq at runtime.

Read tallies per tRNA were compared to the ground truth using two evaluation metrics which

were calculated for each tRNA separately: the root mean square error (RMSE)29 and the

Pearson Correlation coefficient. The evaluation metrics were calculated at Gene locus ID,

Transcript ID, anticodon and mimseq isodecoder levels. To compare between quantification

approaches, evaluation metrics were further summarised across all features at each level for

each tRNA-Seq method by taking the mean value.

Estimating the contribution of systematic biases to fold-changes

The read alignment and tallying approaches outlined above were applied to the Uniform

simulated samples and real tRNA-Seq data to quantify the tRNA read counts. For each

tRNA-Seq method, fold-changes between pairs of cell-lines/tissues were then calculated at

each quantification level for both the Uniform simulated sample and real tRNA-Seq samples.
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The real tRNA-Seq sample log2-fold changes were modeled as being dependent upon the

Uniform simulated sample log2-fold changes using a least squares linear model with a zero

intercept. A separate linear model was used for each level of quantification. The fraction of

variance in the real log2-fold changes explained by the log2-fold changes for the simulated

sample was obtained from the linear model R-squared value.
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Supplementary Figures

Supplementary Figure 1. a) The complete misincorporation frequencies for all modifications. b) The frequency of

read truncations with respect to the distance from the 3’ end of the tRNA.
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Supplementary figure 2. a) Percentage of correct alignments at all levels of quantification. b) Aligned reads vs

correct alignments. Aligners with a higher percentage of aligned reads tend to have a lower percentage of correct

alignments. c) Example misincorporation events with differential frequency across cell lines in the mim-tRNAseq and

YAMATseq simulations.
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Supplementary Figure 3. a) Reads assigned at each level for each read tally method. Only results from alignment

with bowtie2 or GSNAP (Mimseq) are shown. b) The percentage of reads from each simulation sample which are

single or multiple aligned, separated by whether the alignment position(s) have the correct anticodon. Multi-aligned

reads with more than more anticodon were deemed incorrect. c) Mean RMSE for all approaches at all levels. *=Best

approach for each tRNA-Seq method, ▼=Worst approach. c) As per (c), except Pearson correlation coefficient.
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Supplementary Figure 4. a). The correlation between the fraction of reads correctly assigned for each anticodon

and the Pearson correlation between the estimated and true read counts. The blue line shows a linear regression fit.

b). As per (a) but for mimseq isodecoder level quantification. c) The correlation between ground truth and estimated

read counts for 6 anticodons with variable quantification accuracy, from YAMAT-Seq simulations. The dashed line

represents equality.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.571582doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.13.571582
http://creativecommons.org/licenses/by/4.0/

