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Abstract1

Most functional genomic studies are conducted in steady-state conditions, therefore providing a description2

of molecular processes at a particular moment of cell differentiation or organismal development.3

Longitudinal studies can offer a deeper understanding of the kinetics underlying epigenetic events and4

their contribution to defining cell-type-specific transcriptional programs. Here we develop chronODE, a5

mathematical framework based on ordinary differential equations that uniformly models the kinetics of6

temporal changes in gene expression and chromatin features. chronODE employs biologically interpretable7

parameters that capture tissue-specific kinetics of genes and regulatory elements. We further integrate8

this framework with a neural-network architecture that can link and predict changes across different data9

modalities by solving multivariate time-series regressions. Next, we apply this framework to investigate10

region-specific kinetics of epigenome rewiring in the developing mouse brain, and we demonstrate that11

changes in chromatin accessibility within regulatory elements can accurately predict changes in the12

expression of putative target genes over the same time period. Finally, by integrating single-cell ATAC-13

seq data generated during the same time course, we show that regulatory elements characterized by fast14

activation kinetics in bulk measurements are active in early-appearing cell types, such as radial glial and15

other neural progenitors, whereas elements characterized by slow activation kinetics are specific to more16

differentiated cell types that emerge at later stages of brain development.17
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Introduction18

Epigenetic mechanisms regulate gene expression and ensure that the information encoded in the genome19

is correctly translated into cell-type-specific features and functions1. Changes in gene expression naturally20

modulate cell fate during development and differentiation, and activation or repression of genes at21

inappropriate times can disrupt normal cellular activity and cause disease2–5. Therefore, establishing the22

kinetics of gene expression regulation is important for understanding both physiological and pathological23

processes, and can offer insights on how to artificially switch on or off specific genes for therapeutic24

purposes6–9.25

Most studies so far have investigated the kinetics of RNA production and degradation (i.e., gene26

expression)10–13, but little is known about the kinetics underlying chromatin changes at regulatory elements27

and their impact on the expression of target genes. In particular, measurements of chromatin accessibility28

are considered a proxy for the number of proteins that bind the DNA in a given region of the genome, and29

among these proteins are transcription factors (TFs) which control the expression of target genes14. As30

a result, both bulk and single-cell multi-omics experiments have been employed to accurately predict the31

expression of genes based on the degree of chromatin accessibility at associated regulatory elements15–17.32

Nevertheless, these predictions are typically constrained to specific steady-state conditions, and cannot be33

extrapolated to past or future time points in the cell cycle. Deciphering the kinetic parameters of chromatin34

accessibility changes could potentially allow gene expression to be predicted over a continuous period35

of time. However, because the timing and rate of chromatin changes are highly context-dependent and36

vary strongly between genes, computational methods that can precisely model these kinetic parameters at37

single-gene resolution are needed.38

Ordinary differential equations (ODEs) provide an intuitive way to study the kinetics of transcriptional and39

epigenetic events, since they model the rate of change of a dependent variable (i.e., RNA molecules or40

chromatin accessibility) with respect to an independent variable (i.e., time). In recent years, several studies41

have applied ODE frameworks to infer the trajectory (i.e., velocity) of cells in future time points, based42

on the collective directions and rates of transcriptional and epigenetic changes of genes18–21. These43

methods typically leverage a one-time, single-cell snapshot taken during a dynamic process to capture44

cells at different stages, and construct a latent time which describes the temporal progression of cells45

without being constrained by actual time-series measurements. This latent time is then used to estimate the46

kinetic parameters and switch times for the activation of individual genes, based on their level of chromatin47

accessibility or ratio between spliced and unspliced mRNA. Finally, the velocities of all genes in a given cell48

are combined to predict the trajectory of the cell over time. While this is a valid strategy to overcome the49

lack of technologies that can monitor the same single cell over time, it poses some limitations for accurately50

estimating kinetic parameters at the resolution of individual genes. First, these methods employ theoretical51

ODEs that are not directly formulated from real data, hence their biological interpretation of the temporal52

kinetics may be limited. Second, kinetic parameters are estimated from a latent time, and therefore lack53
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validation from time-resolved measurements.54

In comparison to velocity methods applied to one-time snapshot measurements, modeling real time-series55

genomic data is a more suitable way to formulate kinetic equations that can accurately describe dynamics56

of gene expression and chromatin accessibility over time. Here, we develop chronODE, a framework57

based on ODEs to precisely quantify the rate of change in functional genomic signals over time. Using58

this modeling approach we can formulate ODEs in ways in which their kinetic parameters have a clear59

biological meaning with respect to time. By integrating bulk and single-cell chromatin accessibility data60

generated at eight time points during mouse brain development22,23, we identify candidate cis-regulatory61

elements (cCREs) with diverging time-series patterns that recapitulate their activity in specific cell types.62

Finally, we apply this modeling framework to RNA-seq data generated during the same time course24 and63

demonstrate that the rate of change in chromatin accessibility at cCREs can accurately predict the rate of64

expression changes at target genes over time.65

Results66

Rewiring of the accessible genome during brain development shows region-specific timing67

We analyzed time-series maps of chromatin accessibility generated for three regions of the mouse brain68

at eight developmental time points (forebrain, midbrain and hindbrain; from day E10.5 to the first postnatal69

day; Supplementary Table 1)22. We designed a protocol for data normalization and batch correction that70

allowed us to integrate DNase-seq and ATAC-seq data from the same region in one single time course71

(Supplementary Figure 1). Starting from the ENCODE registry of mouse cCREs (n = 926,843)25, we72

identified 405,554 cCREs with signatures of active chromatin in at least one region and time point. On73

average across the three regions, 24% of active cCREs showed dynamic changes in chromatin accessibility74

over time, with the largest number observed in the forebrain (n = 148,908; 37%; Figure 1a).75

Roughly similar proportions of cCREs showed increasing and decreasing profiles of chromatin accessibility76

(53% and 47% on average across the three regions, respectively). Most decreasing patterns were77

constrained to an early developmental window (E12.5-13.5) and were largely conserved across the three78

regions, suggesting that these changes may involve a general coordinated transition from pluripotency to79

more specialized cell types (Figure 1b-c). In contrast, increasing patterns were more varied. Increases80

could happen either early or late in development (mostly between E12.5-E13.5 or postnatally, respectively;81

Figure 1b). This timing also varied strongly between regions for the same cCRE. For instance, nearly 49%82

of early-increasing cCREs in the forebrain were classified as late-increasing in at least one of the other83

two regions (Figure 1c and Supplementary Table 2). Albeit qualitative, this first classification indicates84

that not all cCREs undergo chromatin changes at the same time and rate. Additionally, the activation and85

inactivation kinetics of the same cCRE may vary among different regions, and we hypothesized that these86

variations could be associated with the cellular context specific to each brain region.87
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Figure 1. Dynamic candidate cis-regulatory elements (cCREs) during brain development show region-specific
timing. a: Barplot showing the proportion (y axis) of active cCREs that show dynamic changes of chromatin acces-

sibility during the time course. We show the proportion for each region (forebrain, midbrain, hindbrain) as well as the

average across the three regions (x axis). b: Chromatin accessibility profiles of dynamic cCREs (rows) across the

eight time points (columns) can be grouped into three main clusters: decreasing, early increasing, and late increas-

ing. The clusters are color-coded and the numbers of cCREs in each cluster are indicated. The upper colored legend

indicates the time points. For time-points E11.5, E14.5 and PN we display the signal obtained from both ATAC-seq

and DNase-seq maps. Signals corresponding to DNase-seq maps are indicated by a triangle. The profiles consist of

row-normalized z-scores. PN: first post-natal day. c: Alluvial plot showing the proportion of dynamic cCREs (y axis)

that show concordant and discordant patterns across the three regions (x axis). In this case we considered a subset

of 25,703 cCREs that are dynamic in all three regions.
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chronODE infers time-series trajectories and highlights cell type-specific kinetics of88

chromatin accessibility89

To investigate the potential context-specific activation rates of cCREs with a more quantitative approach,90

we have developed chronODE, a time-series framework based on ordinary differential equations (ODEs).91

In this framework, we define the degree of chromatin accessibility at a given cCRE as a time-dependent92

variable y. We assume that y will reach saturation (steady-state) at a given point in time, although some93

cCREs may not reach this saturation point during the window of time monitored in the current study.94

Practically, this means that the maximum degree of chromatin accessibility at a given cCRE approaches a95

limit, which in single-cell experiments is proportional to the number of nucleosomes that overlap the cCRE,96

and in the case of bulk experiments, it is also proportional to the total number of sequenced cells.97

In this context, the rate of change in chromatin accessibility at a given time point t can be defined by a98

non-linear function f , that is99

dy

dt
= f(y) (1)

Under this scenario, the function describing how y varies over time can be theoretically approximated by a100

logistic curve, which has been previously employed to model growth and decay population dynamics26,27,101

and we propose the following first-order differential equation addressing an initial value problem:102

dy

dt
= ky(1−

y

b
), where

y(t0) = y0

(2)

When considering a logistic increasing or decreasing curve (Figure 2a-b), k represents the rate of change103

in chromatin accessibility and b represents the horizontal asymptote of y. However, this formula can also104

mathematically accommodate time-series profiles that match only portions of the logistic curve, such as105

log-like or exponential patterns (Figure 2c-f). Thanks to the flexibility of this framework we could fit this106

ODE to model the time-series profiles of >99% of our dynamic cCREs.107

This modeling approach offers a number of advantages. First, it employs real time-series data to infer the108

kinetic parameters, differently from previous methods that rely on a latent time to fit the ODE solution18–21.109

Second, it offers greater intuitiveness compared to fitting a high-order polynomial function, as the kinetics110

are defined by only two parameters, which are biologically interpretable. Third, it can be expanded to111

model, under similar assumptions, time-series changes in gene expression or other chromatin features112

such as histone modifications.113

We numerically solved equation (2) to fit the kinetic parameters k and b for every dynamic cCRE across114

the three brain regions and reconstruct the most likely time-series trajectory (Supplementary Figure115

2a). We then classified the trajectory of each cCRE as either logistic, log-like or exponential patterns116

(Supplementary Figure 2b-c). Most increasing cCREs followed either log-like or logistic patterns, whereas117
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Figure 2: Main signal trajectories modeled by           ODE.chron

a-f: Examples of chromatin accessibility trajectories following the logistic curve (a-b), and the log-like (c-d) and exponential (e-f) portions of it. For each

example we display the cCRE ENCODE identifier with the corresponding    and b parameters. For each example we display the cCRE ENCODE identifier with

the corresponding k and b parameters. g-h: Barplots showing for each brain region (x axis) the proportion of cCREs (y axis) characterized by logistic, log-like and 

exponential patterns. Increasing cCREs: upper panel; decreasing cCREs: lower panel.
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only a minor fraction showed slow, exponential increases (Figure 2g and Supplementary Figure 3a).118

Instead, most decreasing cCREs exhibited exponential or logistic patterns, and almost never displayed119

slow, log-like curves (Figure 2h and Supplementary Figure 3a).120

Consistent with our initial observations, we found that early-increasing cCREs showed higher |k| values121

compared to late-increasing cCREs (Figure 1b and Supplementary Figure 3b). Comparing, for a given122

cCRE, the magnitude of |k| across the three regions reveals more granular changes in the kinetics of123

chromatin accessibility than our initial exploratory analyses had suggested. For instance, even when124

considering cCREs that were systematically early- or late-increasing in all three regions we could identify125

some with a much faster activation rate in one specific region (Figure 3a). This was particularly evident in126

the case of decreasing cCREs, for which our initial clustering analysis did not highlight strong variations in127

the timing of chromatin closing (Figures 3b and 1b).128

These regional kinetic differences align with the hypothesis that the rate of activation and inactivation of129

regulatory elements may strongly depend on the cellular composition of each brain region. Following this130

assumption, ubiquitously active cCREs may exhibit very different kinetics from cell-type specific cCREs,131

whose activation rates may be influenced by the changing regional abundance of the specific cell type over132

time. To explore this possibility, we analyzed single-cell (sc) ATAC-seq data generated in the forebrain133

during the same time course as the bulk regional data (i.e., from E11.5 through the first PN day)23.134

Previous analyses of these data highlighted the temporally regulated appearance of differentiated cell135

types, in particular mature excitatory neurons (eEX2, between E12.5 and E13.5), mature inhibitory neurons136

(eIN4, between E12.5 and E13.5, and eIN3 after E14.5), and astrocytes (eAC, after E16.5)23. Consistent137

with these previous observations, our forebrain-increasing cCREs showed the largest overlap with peaks138

specific to eEX2, eAC and eIN4, and the least overlap with peaks specific to neuronal progenitors (radial139

glia, RG1-2) and erythromyeloid progenitors (EMP) (Figure 3c). The latter were instead particularly140

abundant among our set of forebrain-decreasing cCREs, consistent with EMP and RG1-2 progressively141

disappearing during the time course23 (Figure 3c).142

We expected that increasing cCREs specific to late-emerging cell types would show different types of143

trajectories compared to ubiquitous cCREs, the majority of which are active in early-emerging cell types144

such as radial glial and other neuronal progenitors (Supplementary Table 3). Indeed, we found that the145

proportions of early (log-like), intermediate (logistic) and late (exponential) trajectories were inversely146

correlated across the different sets of cCREs, consistent with the order of temporal appearance of the147

corresponding cell types (Figure 3d). Compared to ubiquitous cCREs, which showed the largest proportion148

of early trajectories, those cCREs specific to eEX2 and eIN4 (appearing between E12.5 and E13.5)149

displayed higher proportions of intermediate trajectories. Finally, cCREs specific to the late-emerging eIN3150

and eAC populations (appearing after E14.5 and E16.5, respectively) reported the largest proportions of151

late patterns. Altogether, these results suggest that trajectories of chromatin accessibility inferred from bulk152

experiments can recapitulate the emergence of cell types during development, wherein cCREs specific153

to earlier cell types exhibit early patterns, while cCREs specific to later cell types are characterized by154
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intermediate and late patterns.155

Genes linked to multi-pattern cCREs are more dynamic during brain development and are156

enriched in brain-specific functions157

Having established a framework for modeling changes in chromatin accessibility at regulatory elements,158

we next sought to investigate how these changes can impact the expression of target genes over time.159

To achieve this goal, we compiled a catalog of cCRE-gene pairs, by linking each cCRE to its nearest160

protein-coding gene based on linear distance28,29. Employing this proximity-based method, putative target161

genes were linked to multiple cCREs, consistent with prior findings29. Notably, a considerable fraction (on162

average 27%) of these genes exhibited not only quantitative but also qualitative multi-assignment, i.e. they163

were linked to cCREs displaying all three major time-series patterns (decreasing, early-increasing, or late-164

increasing; multi-pattern regulated genes; Figure 4a). 46% of the genes were associated with just one type165

of cCREs (mono-pattern regulated genes).166

We found that the variety of regulatory patterns associated with a gene correlates with several gene167

features. Consistently across the three brain regions, multi-pattern genes were paired with more distal168

cCREs and displayed more significant changes in expression over time compared to mono-pattern genes169

(Figure 4b-c). In line with these results, which suggest a more prominent role of multi-pattern genes170

during brain development, we found them to be enriched in neural and brain-specific functions, including171

neurogenesis, trans-synaptic signaling, and sensory system development (Figure 4d). Multi-pattern genes172

also showed enrichment of motifs corresponding to homeobox and forkhead TFs, which have been173

reported to orchestrate key processes during brain development, such as regional specification, neuronal174

differentiation and axonal guidance and connectivity30–36 (Figure 4e). In contrast, mono-pattern genes175

were enriched in housekeeping functions such as gene expression and compound biosynthesis, and176

displayed modest motif enrichment also for other TF families (e.g., ETS and bHLH; Figure 4d-e).177

Altogether, these results suggest that the precise expression of genes essential for brain development may178

be governed by a more complex regulatory network. This regulatory control appears to involve cCREs with179

diverse time-series trajectories, highlighting a sophisticated orchestration of essential genetic processes.180

In contrast, less critical genes or those associated with non-brain specific functions may rely on a simpler181

regulome, potentially reflecting a differential degree of control based on the biological significance and182

impact of these genes.183

Predicting time-series gene expression patterns from changes in associated cCRE activity184

Besides revealing a potential correlation among the diversity of regulatory patterns linked to a gene, its185

TF regulatory network and its functional role during brain development, these results also suggest that186

accurately predicting changes in a gene’s expression levels during development based on changes in187

chromatin accessibility within its cCREs may require either a single- or multi-cCRE schema model.188

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.571513doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.13.571513
http://creativecommons.org/licenses/by-nc-nd/4.0/


3,560

2,296

1,591
1,555

1,098
1,003 947

0

1,000

2,000

3,000

4,000

4,564

4,136

1,758
1,586

965 919 850

0

1,000

2,000

3,000

4,000

5,0005,471

5,043

2,982

1,176
1,018

588 413

0

2,000

4,000

6,000

DNA replication−dependent chromatin assembly
organelle fission

anterior/posterior pattern specification
negative regulation of RNA metabolic process

nucleosome assembly
regulation of transcription by RNA polymerase II

embryonic skeletal system morphogenesis
positive regulation of RNA biosynthetic process

regulation of RNA biosynthetic process
gene expression

organic cyclic compound biosynthetic process
cellular nitrogen compound biosynthetic process

heterocycle biosynthetic process
aromatic compound biosynthetic process

nucleic acid metabolic process

0 5 10 15 20

Mono−p. genes

cell−cell signaling
locomotion

urogenital system development
regulation of nitrogen compound metabolic process

homophilic cell adhesion via plasma membrane 
chemotaxis

sensory system development
negative regulation of RNA biosynthetic process

regulation of response to stimulus
cell surface receptor signaling pathway

positive regulation of RNA biosynthetic process
trans−synaptic signaling

regulation of cell communication
regulation of signaling

neurogenesis

0 10 20 30 40

−log10(p−value)

Poly−p. genes

0.0

0.2

0.4

0.6

Pr
op

or
tio

n 
of

 d
yn

am
ic

 g
en

es
E

T
S

b
H

L
H

hom
eob

o
x

fo
rkhead

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

Gene sets

E
T

S
b

H
L

H
hom

eob
o
x

fo
rkhead

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

P
ro

p
o

rti
on

 o
f T

F 
m

ot
ifs

a

0.00

0.25

0.50

0.75

Mono−p.Bi−p. Poly−p.

Pr
op

or
tio

n 
of

 d
is

ta
l c

C
R

Es

Early increases
Late increases
Decreases

Forebrain Midbrain Hindbrain

Mon
o-p

.
Bi-p

.

Poly
-p.

Mon
o-p

.
Bi-p

.

Poly
-p.

In
te

rs
ec

tio
n 

si
ze

Forebrain Hindbrain

e

Gene sets

b

c

d

Poly-pattern genes

Bi-pattern genes

Mono-pattern genes

Figure 4: Genes linked to multi-pattern cCREs are more dynamic during brain development and are enriched in brain-specific functions.

a: Upset plots showing, for each brain region, the number of genes (y axis) that are associated with decreasing, early increasing and late increasing cCREs. Mono-, bi- and poly- pattern

genes are associated with one, two, and three types of cCREs, respectively (light yellow / green / blue). b: Barplot showing the proportion of dynamic genes (y axis) across sets of mono-

, bi-, and poly-pattern genes (x axis). Dynamic genes are defined as those showing significant changes in gene expression over time (maSigPro FDR < 0.01). We report mean proportion 

and standard deviation across the three regions. c: Barplot showing the proportion of distal cCREs (y axis) across sets of mono-, bi-, and poly-pattern genes (x axis). Distal cCREs are 

defined as those located > ±2 Kb from an annotated transcription start site. We report mean proportion and standard deviation across the three regions. d: Barplot showing Gene
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Here, in order to assess whether changes in gene expression can be predicted by chromatin changes at189

the corresponding cCREs (e.g., chromatin accessibility), we considered the simple single-cCRE scenario.190

Thus, given a cCRE-gene pair that are linked only to each other, we employed the ODE-inferred time-191

series derivatives of chromatin accessibility of the cCRE as input to predict the time-series derivatives192

of expression of the gene. Specifically, we solve a multivariate time-series regression where the change193

over time t in the expression of gene gn depends on changes over time t in all the chromatin features ci194

associated with the gene (note that here we employ only the chromatin accessibility feature and one cCRE195

per gene, thus i = 0) following this equation:196

dgn,0...t

dt
= f(

dc0,0...t

dt
,
dc1,0...t

dt
, ...,

dci,0...t

dt
), (3)

where f is a non-linear mapping function that can be solved by a neural network (NN) or random forest197

(RF). The former is particularly suitable to capture the non-linearity of the relationship between chromatin198

features and gene expression over time. Indeed, this architecture allows us to capture additional intricate199

patterns and relationships in the data compared to more classical predictive models such as the RF. The200

network encodes each chromatin derivative value, at every time point, into a high dimensional vector, and201

applies the Leaky-ReLU function. Then, the NN regresses each gene expression derivative, at each time202

point, as the output (Figure 5a). As mentioned before, we applied our modeling approach to genes that203

are associated with only one cCRE. However, this framework can be extended to cases where a gene is204

associated with multiple cCREs or where multiple chromatin features are considered, hence our model205

input is referred to as a tensor of chromatin c features at each time point t.206

Our training process strongly depends on the correlation direction between the time-series vectors of gene207

expression and chromatin derivatives. While the majority (66%) of cCRE-gene pairs showed positive208

correlation, a distinct subset displayed negative correlation (Supplementary Figure 4a), consistent with209

previous studies37–39. Notably, this latter set of cCREs showed enrichment in motifs recognized by210

repressor TFs, such as ZBTB7A/B40–44, suggesting a potential prototype for repressor-gene interactions.211

We thus divided the dataset into two subsets of positively and negatively correlated pairs (Figure 5b), and212

trained the network separately on each of the two subsets in a ratio of 80:20 for training and test sets.213

Our predicted changes in gene expression showed overall positive correlation with the true changes in gene214

expression, as well as moderate-to-low mean absolute error (MAE; Figure 5c). Overall, the NN achieved215

higher performance than the RF model. Specifically, we reported a correlation of 0.71 ± 0.29 between the216

true and predicted values in the positively correlated pairs (average MAE 0.29 ± 0.69), and a correlation217

of 0.57 ± 0.29 in the negatively correlated pairs (average MAE = 0.16 ± 0.44). The RF model applied on218

the same task showed a correlation of 0.62 ± 0.43 with MAE of 0.53 ± 0.94 within the positively correlated219

pairs, and a correlation of 0.45 ± 0.50 with a MAE of 0.52 ± 2.54 for the negatively correlated pairs (Figure220

5c). Overall, 99% and 100% of positively and negatively correlated cCRE-gene pairs, respectively, showed221

a positive correlation between true and NN-predicted gene expression derivatives, in contrast to the 89%222
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Figure 5: Modeling approach to predict changes in gene expression over time from changes in cCRE chromatin signals.

a: Schematic representation of the neural network architecture. Each cCRE derivative, at each time point, is projected into a vector of 30x1 dimension followed by 

operating the Leaky ReLu function on each of its elements. Then, the gene expression derivative, at each time point, is predicted. b: Dataset construction for the two
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and 83%, respectively, reported by the RF models (Supplementary Figure 4b). Representative examples223

of true and predicted changes in gene expression over time are shown in Figure 5d. Overall, these results224

demonstrate that chromatin accessibility changes within regulatory elements can be employed to accurately225

predict changes in the expression of putative target genes over time.226

Discussion227

Time-series functional genomics assays offer a unique opportunity to investigate the transcriptional and228

chromatin kinetics of multiple genes and regulatory elements simultaneously. However, integrative analysis229

of these data requires a flexible framework that can uniformly model different types of signals without230

generating disparate parameter sets, thereby enabling direct comparison and biological interpretation of231

the inferred kinetics.232

Here, we analyzed maps of chromatin accessibility generated during mouse brain development and233

identified cCREs with different types of accessibility kinetics among brain regions. Furthermore, we found234

that these kinetic patterns strongly differ between cCREs active in progenitors vs. more differentiated235

cell types. To analyze these patterns we adapted a well-known first-order differential equation–previously236

employed in other biological fields such as the study of bacterial population growth and decay–to model the237

kinetics of chromatin and gene expression changes over time. The ODE naturally accommodates some238

general principles of the kinetics governing these changes: first, that impulses of chromatin remodeling239

signals or transcriptional bursts manifest with rapid initial changes; second, that these changes eventually240

attain saturation over time due to biochemical constraints, such as the structure of histone complexes or241

the activation of feedback loop mechanisms. Previous methods have proposed log-like and exponential242

curves to model increases and decreases, respectively, of multi-omics signals21. However, this follows the243

assumption that such changes begin in the early phases of the (latent) time course, and reach saturation244

by the end of the time course. Our framework instead relaxes these assumptions by incorporating a logistic245

curve, allowing more flexibility to capture diverse patterns of gene expression and chromatin signals.246

To demonstrate the utility of this framework, we applied it to study the kinetics of chromatin accessibility247

during an eight-day time course of mouse development across three brain regions. We found that the248

majority of regulatory elements undergoing chromatin changes reached full accessibility or inaccessibility249

by the first post-natal day. Still, a fraction of these elements did not reach full accessibility by the end of the250

time course, especially those active in late-emerging cell types such as astrocytes and mature inhibitory251

neurons. Overall, this suggests that the kinetics of chromatin accessibility inferred in bulk recapitulate the252

emergence of cell type-specific patterns detected by single-cell experiments.253

Our framework also allows us to investigate epigenome-transcriptome interactions without being254

constrained by predefined assumptions about their temporal dynamics. Specifically, we found that most255

of the cCRE-gene derivative pairs show a positive correlation, indicating that activator TFs may potentially256

bind to these cCREs. Conversely, cCREs showing negative correlation with their target genes may be257
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recognized by repressor TFs. Based on this, we propose to independently model transcriptional and258

epigenetic changes using the same ODE and then to employ a neural network-based architecture to259

investigate their non-linear relationship over time. We specifically trained separate models for positively and260

negatively correlated cCRE-gene pairs that can capture activator-gene and repressor-gene interactions,261

respectively. This strategy is characterized by greater flexibility and allows us to model the kinetics of262

thousands of genes, compared to previous velocity methods which rely on a simplified view of gene263

regulation and can accurately fit only a restricted subset among thousands of genes21. While we have264

applied this architecture to model the basic scenario of a gene regulated by a single cCRE, we anticipate265

that our approach to consider the time-series chromatin accessibility signal as a tensor can be scaled to266

more complex scenarios where multiple cCREs or chromatin features are employed to model changes in267

gene expression.268

Although in the present study we have focused on modeling gene expression and chromatin accessibility269

data from bulk sequencing experiments, this framework is suitable to analyze other data modalities, and270

could also potentially accommodate time-resolved single cell measurements. We anticipate that applying271

chronODE to time-series data from various biological systems will help us to understand how alterations272

in transcriptional and epigenetic processes affect molecular pathways. These insights can be particularly273

valuable to identify potential drug targets and to understand their impact on cellular functionality across274

different tissues and cell types. As kinetic approaches begin to unveil molecular mechanisms underlying275

drug resistance in cancer45–47, we anticipate that, in the long term, these kinetic maps of transcriptional276

and epigenetic processes will play a pivotal role in designing tailored therapeutic strategies.277
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Methods286

Mouse brain developmental time-course287

We analyzed maps of chromatin accessibility (DNase-seq and ATAC-seq) and gene expression (polyA+288

RNA-seq) generated by the ENCODE consortium during eight time-points in three mouse fetal brain289

regions (forebrain, midbrain, and hindbrain)22,24. DNase maps were available for postconception (PCD)290

days E10.5, E11.5, E14.5, and the first postnatal day (PN). ATAC-seq maps were available for PCDs291

E11.5, E12.5, E13.5, E14.5, E15.5, E16.5, and PN. RNA-seq data were available for all eight time292

points (PCD 10.5-PN) (Supplementary Table 1; https://www.encodeproject.org/matrix/type=293

Experiment&status=released&related_series.@type=OrganismDevelopmentSeries&294

replicates.library.biosample.organism.scientific_name=Mus+musculus&assay_295

title=ATAC-seq&life_stage_age=embryonic+10.5+days&life_stage_age=embryonic+296

11.5+days&life_stage_age=embryonic+12.5+days&life_stage_age=embryonic+13.5+297

days&life_stage_age=embryonic+14.5+days&life_stage_age=embryonic+15.5+days&298

life_stage_age=embryonic+16.5+days&life_stage_age=postnatal+0+days&biosample_299

ontology.term_name=forebrain&biosample_ontology.term_name=hindbrain&300

biosample_ontology.term_name=midbrain&assay_title=DNase-seq&assay_title=301

polyA+plus+RNA-seq). We built time-course matrices of signals for these two data modalities as we302

describe in the following sections.303

DNase- and ATAC-seq data processing304

We downloaded the catalog of ENCODE25 candidate cis-regulatory elements (cCREs) for the mouse305

genome from https://www.encodeproject.org/annotations/ENCSR412JPD/, which comprises306

926,843 cCREs. We employed this catalog to construct a matrix of chromatin accessibility signals for each307

cCRE across the eight timepoints and the three brain regions. Given that ATAC-seq data were available308

from PCD E11.5 onward, in order to maximize the number of time points shared between the chromatin309

accessibility and gene expression maps, we integrated DNase-seq and ATAC-seq data in a single time310

course. Below we detail the steps of our DNase- and ATAC-seq data integration protocol.311

Step 1: Identifying active cCREs during the time-course312

For each of the three regions, we downloaded bigBed files of ATAC-seq pseudoreplicated narrow peaks313

available for each time point. We employed the BEDTools48 (version 2.30.0) function intersectBed314

and identified 282,907 cCREs with ATAC-seq peaks in at least one time point. In the case of DNase-315

seq, pseudoreplicated peaks were unavailable. We therefore identified for each time point the peaks316

shared across all replicates using the BEDTools function multiIntersectBed. 316,549 cCREs reported317

DNase-seq peaks in at least one time point. We defined our set of 405,554 “active” cCREs as those that318
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reported a DNase-seq and/or ATAC-seq peak. The list of bigBed files employed in this step is available in319

Supplementary Tables 4-5.320

Step 2: Building a time-course matrix of chromatin accessibility for active cCREs321

We downloaded ATAC-seq bigWig files (fold change over control; two replicates per time point and region;322

Supplementary Table 4) and computed the average signal in the cCRE window at each time point and323

replicate using the bigWigAverageOverBed tool. This yielded a 405,554 × 7 matrix for each replicate324

and region. We followed the same procedure for the DNase-seq signal (read-depth normalized signal;325

Supplementary Table 5), and obtained a 405,554 × 4 matrix for each replicate and region.326

Step 3: Performing joint normalization and batch correction327

We first performed joint quantile normalization on the ATAC- and DNase-seq signal matrices across328

replicates and time points using the R package preprocessCore49. We then applied batch correction on329

the quantile-normalized matrices to remove unwanted effects due to experimental differences between the330

two assays. The input matrix consists of DNase-seq (PCD 10.5, 11.5, 14.5, PN; 2 replicates) and ATAC-331

seq (PCD 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, PN; 2 replicates) signals. Shared time points 11.5, 14.5332

and PN were employed to calibrate the differences between the two assays. Specifically, we first added333

a pseudocount of 1 to the signal matrix and performed a centered log-ratio transformation of the matrix334

with the R package mixOmics50 (function logratio.transfo). After having the log-ratio normalized335

joint matrix of DNase and ATAC-Seq data, we conducted the batch effect correction with the R package336

Limma51 (function removeBatchEffect), specifying the replicate and assay features as batch levels and337

the time course as design (Supplementary Figure 1).338

RNA-seq data processing339

For each of the three brain regions, we downloaded from the ENCODE portal gene expression matrices340

of Transcript Per Million (TPM) values for the eight time points and the two biological replicates (mouse341

genome assembly version mm10, Gencode annotation version M21; Supplementary Table 6). We then342

normalized the data using center-log-ratio normalization and the limma function removeBatchEffect,343

specifying the replicate feature as batch level and the time course as design.344

Identifying dynamic cCREs and genes345

To detect significant changes in cCRE chromatin accessibility over time, we used the R package346

maSigPro52 with DNase- and ATAC-seq replicates handled internally. We conducted this analysis347

independently for each brain region. We employed the function make.design.matrix() to construct348

two different design matrices for linear (degree = 1) and quadratic (degree = 2) regression models.349

We then applied function p.vector() on each design matrix with the following parameters: Q = 0.05,350
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MT.adjust = "BH", min.obs = 5. For each region, we defined dynamic cCREs as those reporting a351

maSigPro FDR value < 0.01 in at least one of the two designs. We followed the same procedure to identify352

genes with significant expression changes over time, but first added a pseudocount of 10−16 to each gene353

expression value to avoid zero values.354

Identifying regulatory patterns of cCRE chromatin accessibility355

We employed the R function kmeans() to group dynamic cCREs into clusters. Elbow plots indicated that,356

across the three regions, the most meaningful number of k -means clusters is 3, and that the three clusters357

correspond to downregulated (decreasing openness), early upregulated (openness increases early then358

stays high), and late upregulated (openness increases at the very end of gestation) cCREs (Figure 1b).359

The chronODE mathematical framework360

We designed an ODE-based pipeline to capture trends in sparse time-series data. We employ equation (4)361

to describe the rate of change of chromatin accessibility or gene expression over time. The analytical362

solution of the ODE can be found in Supplementary Note 1. The pipeline, which we used to model363

chromatin accessibility of cCREs and RNA expression levels of genes, has two stages: linear interpolation364

and ODE fitting (Supplementary Figure 2a). The pipeline’s input takes the form of a two-dimensional matrix,365

with numeric time points as columns and elements (e.g. genes or cCREs) as rows. In our case, we used366

our eight time points in post-conception days. We chose to represent the postnatal time point as 21 PCD,367

since the standard length of a mouse pregnancy is typically in the range 19-21 days.368

Since eight time points are insufficient to fit an ODE, the first step is data interpolation. We first used369

the function linspace (from the Python NumPy package) to generate a larger number of evenly spaced370

time points over the interval of the original time points. We chose to generate 105 time points. We then371

normalized the values in each row of the matrix to a range between zero and one, and created a new372

matrix with interpolated values for each of the new simulated time points using the Python Scipy package53
373

(function interp1d).374

Once we had a matrix of linearly interpolated values, we fitted an ordinary differential equation of the form375

dx

dt
= kx(1−

x

b
) (4)

to each row. Given initial guesses for the k and b parameters (we chose 0.9 and 1.5, respectively), we376

then optimized the choice of k and b by fitting the equation (4) using the Scipy functions curve fit377

(maximum calling number equal to 5000) and odeint, with the latter using LSODA, an adaptive steps378

algorithm54. If the function cannot find optimized parameters in the predefined parameter space before379

hitting the maximum number of calls, it returns NAs. We then used the fitted parameters to model the380

values at the interpolated time points, and added a pseudocount of 10−16 to the first time point to avoid381

downstream divide-by-zero errors.382
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We fitted the ODE parameters using six sets of input: either a positive or negative initial guess for k, and383

three versions of the linearly interpolated data: the unshifted version, and versions raised or lowered by the384

maximum magnitude of the original normalized data. The fitted values were then shifted back by the same385

amount. Of these six fittings, we selected the set of parameters that yield fitted values with the lowest mean386

squared error compared to the linearly interpolated values. If all six fittings fail, the pipeline returns NAs for387

that row.388

The pipeline outputs three matrices, with rows corresponding to the same cCRE/gene as the input matrix.389

The first two tables contain the fitted values and derivatives respectively, with a column for each of the390

interpolated time points. The third matrix contains the fitted parameters k and b, along with T = 1/k, MSE,391

and information about the vertical shift used to model each row.392

With the output from the ODE pipeline, we first dropped the elements containing the NA (those whose393

trend cannot be captured by the ODE pipeline; Supplementary Figure 2a). We then did quality control by394

dropping the elements whose mean square error was among the highest 20%. With this filtered list, we395

clustered the cCREs based on their dynamic trend. We used a Convex-Concave approach to classify the396

dynamic trend. We identified the trend based on the fitted trajectory by connecting the fitted values’ first and397

last time points (Supplementary Figure 2b). After getting this decision line using the linspace function398

in the Numpy package (which has the same number of time points as the fitted trajectory), we calculated399

the difference between the fitted trajectory and the decision line. This difference is an array consisting of400

the difference at 105 time points. If the 105 difference values are all positive, we assign the cCRE with a401

“log-like” trend; if all the 105 difference values are negative, the cCRE is assigned to an “exponential” trend.402

If the signs of the 105 differences are a mixture of positive and negative, then the corresponding cCRE is403

believed to have the “logistic” trend.404

Identifying cCREs with region-specific kinetics405

We employed the k parameter from the ODE pipeline output to identify cCREs with different kinetics406

across the three regions. As explained in the Results section “chronODE infers time-series trajectories407

and highlights cell type-specific kinetics of chromatin accessibility”, |k| summarizes the rate of change of408

a given cCRE or gene over time (Supplementary Figure 3a). We applied a normalization method and409

computed, for each cCRE, the ratio between |k| in a particular region and the average |k| across the three410

regions. We then performed k -means clustering separately on increasing and decreasing cCREs and411

identified in each case three main clusters, which correspond to cCREs reaching their highest relative rate412

of change in the forebrain, midbrain, and hindbrain (Figure 3a-b). For this analysis we considered only413

cCREs characterized by the same pattern (decreasing, early increasing and late increasing) across the414

three regions, and for visualization purposes we merged early and late increasing cCREs in one heatmap.415
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Cell-type specific cCREs intersection analysis416

We obtained sets of cell-type specific cCREs identified by single-cell (sc) ATAC-seq experiments performed417

in the mouse forebrain during the same time course as the bulk ATAC-seq experiments (PCD E11.5418

through PN; specifically, Supplementary Table 4 from Preissl et al.23). A description of the main cell types419

corresponding to each cCRE cell-type specific set can be found in Supplementary Table 3. We assigned420

each of our forebrain dynamic cCREs to a specific cell-type specific set by employing the BEDTools function421

intersectBed.422

Linking cCREs to putative target genes423

We designated a target gene for each cCRE based on linear distance. We used the BEDTtools closest424

utility for this calculation. This methodology routinely assigns many cCREs to a single target gene. A cCRE,425

however, can only be assigned multiple targets if two or more genes are tied for “closest”, usually because426

they all overlap the cCRE. BEDTools closest assigns a distance of 0 to all overlaps. Having linked genes427

to dynamic cCREs, each of which had already been assigned a regulatory pattern (see above), we used428

the UpSet R package to visualize how many genes are linked to every possible combination of cCRE429

regulatory patterns (Figure 4a). We then divided the genes by the number of cCRE patterns that target430

them.431

Properties of mono- vs. multi-pattern genes432

To examine the properties of genes targeted by different numbers of patterns, we performed Gene Ontology433

(GO) analysis and transcription-factor (TF) motif enrichment analysis on the genes linked to one, two, and434

three regulatory patterns from each brain region. For the GO analysis, we used the GOStats R library55.435

As universe gene set for the GO enrichment analysis we used the set of protein-coding genes from the436

Gencode M21 mouse annotation and a false-discovery rate cutoff of FDR < 0.01 to identify significantly437

enriched GO terms related to biological processes. We also used the Homer motif discovery tool56 to find438

TF motifs that were significantly enriched in each group of genes. We used the findMotifs.pl script and439

HOMER’s built-in mouse promoter set to identify TF motifs that are significantly enriched in the promoter440

region of each set of genes.441

Motif analysis of correlation groups442

In order to decipher the difference between the set of cCREs with positive versus negative correlations,443

we conducted TF motif analysis. We downloaded the reference fasta file from ENCODE and used the444

BEDTools getfasta command to generate the fasta files of the two sets of cCREs. We then used445

STREME57 to discover ungapped motifs that are relatively enriched in each of the two sets of cCREs446

using the other set as control sequences. In this process we chose the patience to be 10, so the software447
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would stop searching for motifs when ten consecutive non significant motifs have been found. Then we448

compared the motifs we discovered against the database HOCOMOCO (version 11).449

Predicting changes in gene expression from changes in chromatin accessibility450

Neural Network Model451

In order to predict the gene expression derivatives over time we used the chromatin accessibility derivatives452

as inputs for a non-linear neural network with the following architecture: Num features = 1, Degree453

= 30, Linear(num features, degree, bias=True), LeakyReLU(0.4,inplace=True), and454

Linear(degree, 1). Specifically, each of the chromatin derivatives, at each time point, serves as an455

input for the network (Figure 5a). The input is defined as a 3D tensor where the first position stands for456

the number of samples, the second position is the number of cCRE-related-features (which in this paper457

is 1), and the third position is a 105 dimensional vector of the different epigenetic signals over time. The458

output is also a vector of a 3D tensor, where the first position points to the same number of samples as the459

inputs, each corresponding to one gene-related derivative across the 105 time points. We used PyTorch58
460

to train the network and set the batch size to 4 along with a mean absolute error as the loss function and461

a learning rate of 0.001 using the Adam optimizer. Finally, the network was trained with 3000 epochs. We462

combined the three regions for the purposes of this model, but split the gene-cCRE pairs into two groups463

depending on whether the chromatin accessibility derivatives were positively or negatively correlated with464

the gene expression derivatives. We trained and tested the neural network separately on these two groups465

in a ratio 80:20.466

Random Forest Model467

We also used a random-forest-based regression model to predict gene expression derivatives based on468

chromatin openness derivatives. To ensure easily comparable results, we used the same 105-timepoint469

input and output matrix formats for the random forest model as for the neural network described above,470

and used the same correlation-based split. Thus, the 80:20 train and test sets were identical to the ones471

employed by the Neural Network. We used the scikit-learn59 function RandomForestRegressor with472

100 trees and a default depth of 2.473

Quantification and statistical analysis474

All statistical analyses were performed using the R or Python languages, as specified in the Methods and/or475

figure legends. Unless otherwise specified, plots were made with the R package ggplot260 or the Python476

package matplotlib61. All box plots depict the first and third quartiles as the lower and upper bounds of the477

box, with a band inside the box showing the median value and whiskers representing 1.5x the interquartile478

range.479
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