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Abstract

Most functional genomic studies are conducted in steady-state conditions, therefore providing a description
of molecular processes at a particular moment of cell differentiation or organismal development.
Longitudinal studies can offer a deeper understanding of the kinetics underlying epigenetic events and
their contribution to defining cell-type-specific transcriptional programs. Here we develop chronODE, a
mathematical framework based on ordinary differential equations that uniformly models the kinetics of
temporal changes in gene expression and chromatin features. chronODE employs biologically interpretable
parameters that capture tissue-specific kinetics of genes and regulatory elements. We further integrate
this framework with a neural-network architecture that can link and predict changes across different data
modalities by solving multivariate time-series regressions. Next, we apply this framework to investigate
region-specific kinetics of epigenome rewiring in the developing mouse brain, and we demonstrate that
changes in chromatin accessibility within regulatory elements can accurately predict changes in the
expression of putative target genes over the same time period. Finally, by integrating single-cell ATAC-
seq data generated during the same time course, we show that regulatory elements characterized by fast
activation kinetics in bulk measurements are active in early-appearing cell types, such as radial glial and
other neural progenitors, whereas elements characterized by slow activation kinetics are specific to more

differentiated cell types that emerge at later stages of brain development.
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Introduction

Epigenetic mechanisms regulate gene expression and ensure that the information encoded in the genome
is correctly translated into cell-type-specific features and functions'. Changes in gene expression naturally
modulate cell fate during development and differentiation, and activation or repression of genes at
inappropriate times can disrupt normal cellular activity and cause disease?>. Therefore, establishing the
kinetics of gene expression regulation is important for understanding both physiological and pathological
processes, and can offer insights on how to artificially switch on or off specific genes for therapeutic

purposes®°.

Most studies so far have investigated the kinetics of RNA production and degradation (i.e., gene
expression) 1913 put little is known about the kinetics underlying chromatin changes at regulatory elements
and their impact on the expression of target genes. In particular, measurements of chromatin accessibility
are considered a proxy for the number of proteins that bind the DNA in a given region of the genome, and
among these proteins are transcription factors (TFs) which control the expression of target genes™. As
a result, both bulk and single-cell multi-omics experiments have been employed to accurately predict the
expression of genes based on the degree of chromatin accessibility at associated regulatory elements 1517,
Nevertheless, these predictions are typically constrained to specific steady-state conditions, and cannot be
extrapolated to past or future time points in the cell cycle. Deciphering the kinetic parameters of chromatin
accessibility changes could potentially allow gene expression to be predicted over a continuous period
of time. However, because the timing and rate of chromatin changes are highly context-dependent and
vary strongly between genes, computational methods that can precisely model these kinetic parameters at

single-gene resolution are needed.

Ordinary differential equations (ODEs) provide an intuitive way to study the kinetics of transcriptional and
epigenetic events, since they model the rate of change of a dependent variable (i.e., RNA molecules or
chromatin accessibility) with respect to an independent variable (i.e., time). In recent years, several studies
have applied ODE frameworks to infer the trajectory (i.e., velocity) of cells in future time points, based
on the collective directions and rates of transcriptional and epigenetic changes of genes'®2'. These
methods typically leverage a one-time, single-cell snapshot taken during a dynamic process to capture
cells at different stages, and construct a latent time which describes the temporal progression of cells
without being constrained by actual time-series measurements. This latent time is then used to estimate the
kinetic parameters and switch times for the activation of individual genes, based on their level of chromatin
accessibility or ratio between spliced and unspliced mRNA. Finally, the velocities of all genes in a given cell
are combined to predict the trajectory of the cell over time. While this is a valid strategy to overcome the
lack of technologies that can monitor the same single cell over time, it poses some limitations for accurately
estimating kinetic parameters at the resolution of individual genes. First, these methods employ theoretical
ODEs that are not directly formulated from real data, hence their biological interpretation of the temporal

kinetics may be limited. Second, kinetic parameters are estimated from a latent time, and therefore lack
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validation from time-resolved measurements.

In comparison to velocity methods applied to one-time snapshot measurements, modeling real time-series
genomic data is a more suitable way to formulate kinetic equations that can accurately describe dynamics
of gene expression and chromatin accessibility over time. Here, we develop chronODE, a framework
based on ODEs to precisely quantify the rate of change in functional genomic signals over time. Using
this modeling approach we can formulate ODEs in ways in which their kinetic parameters have a clear
biological meaning with respect to time. By integrating bulk and single-cell chromatin accessibility data
generated at eight time points during mouse brain development?223, we identify candidate cis-regulatory
elements (cCREs) with diverging time-series patterns that recapitulate their activity in specific cell types.
Finally, we apply this modeling framework to RNA-seq data generated during the same time course?* and
demonstrate that the rate of change in chromatin accessibility at cCREs can accurately predict the rate of

expression changes at target genes over time.

Results

Rewiring of the accessible genome during brain development shows region-specific timing

We analyzed time-series maps of chromatin accessibility generated for three regions of the mouse brain
at eight developmental time points (forebrain, midbrain and hindbrain; from day E10.5 to the first postnatal
day; Supplementary Table 1)22. We designed a protocol for data normalization and batch correction that
allowed us to integrate DNase-seq and ATAC-seq data from the same region in one single time course
(Supplementary Figure 1). Starting from the ENCODE registry of mouse cCREs (n = 926,843)%5, we
identified 405,554 cCREs with signatures of active chromatin in at least one region and time point. On
average across the three regions, 24% of active cCCREs showed dynamic changes in chromatin accessibility

over time, with the largest number observed in the forebrain (n = 148,908; 37%; Figure 1a).

Roughly similar proportions of cCREs showed increasing and decreasing profiles of chromatin accessibility
(53% and 47% on average across the three regions, respectively). Most decreasing patterns were
constrained to an early developmental window (E12.5-13.5) and were largely conserved across the three
regions, suggesting that these changes may involve a general coordinated transition from pluripotency to
more specialized cell types (Figure 1b-c). In contrast, increasing patterns were more varied. Increases
could happen either early or late in development (mostly between E12.5-E13.5 or postnatally, respectively;
Figure 1b). This timing also varied strongly between regions for the same cCRE. For instance, nearly 49%
of early-increasing cCREs in the forebrain were classified as late-increasing in at least one of the other
two regions (Figure 1c and Supplementary Table 2). Albeit qualitative, this first classification indicates
that not all cCREs undergo chromatin changes at the same time and rate. Additionally, the activation and
inactivation kinetics of the same cCRE may vary among different regions, and we hypothesized that these

variations could be associated with the cellular context specific to each brain region.
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Figure 1. Dynamic candidate cis-regulatory elements (cCREs) during brain development show region-specific
timing. a: Barplot showing the proportion (y axis) of active cCREs that show dynamic changes of chromatin acces-
sibility during the time course. We show the proportion for each region (forebrain, midbrain, hindbrain) as well as the
average across the three regions (x axis). b: Chromatin accessibility profiles of dynamic cCREs (rows) across the
eight time points (columns) can be grouped into three main clusters: decreasing, early increasing, and late increas-
ing. The clusters are color-coded and the numbers of cCREs in each cluster are indicated. The upper colored legend
indicates the time points. For time-points E11.5, E14.5 and PN we display the signal obtained from both ATAC-seq
and DNase-seq maps. Signals corresponding to DNase-seq maps are indicated by a triangle. The profiles consist of
row-normalized z-scores. PN: first post-natal day. ¢: Alluvial plot showing the proportion of dynamic cCREs (y axis)
that show concordant and discordant patterns across the three regions (x axis). In this case we considered a subset
of 25,703 cCREs that are dynamic in all three regions.
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chronODE infers time-series trajectories and highlights cell type-specific kinetics of

chromatin accessibility

To investigate the potential context-specific activation rates of cCREs with a more quantitative approach,
we have developed chronODE, a time-series framework based on ordinary differential equations (ODEs).
In this framework, we define the degree of chromatin accessibility at a given cCRE as a time-dependent
variable y. We assume that y will reach saturation (steady-state) at a given point in time, although some
cCREs may not reach this saturation point during the window of time monitored in the current study.
Practically, this means that the maximum degree of chromatin accessibility at a given cCRE approaches a
limit, which in single-cell experiments is proportional to the number of nucleosomes that overlap the cCRE,

and in the case of bulk experiments, it is also proportional to the total number of sequenced cells.

In this context, the rate of change in chromatin accessibility at a given time point ¢ can be defined by a

non-linear function f, that is

dy
E_f(y) (1)

Under this scenario, the function describing how y varies over time can be theoretically approximated by a

logistic curve, which has been previously employed to model growth and decay population dynamics?627,

and we propose the following first-order differential equation addressing an initial value problem:

ky(1— g), where

b 2)

dy _
dt

y(to) = yo
When considering a logistic increasing or decreasing curve (Figure 2a-b), k represents the rate of change
in chromatin accessibility and b represents the horizontal asymptote of y. However, this formula can also
mathematically accommodate time-series profiles that match only portions of the logistic curve, such as
log-like or exponential patterns (Figure 2c-f). Thanks to the flexibility of this framework we could fit this

ODE to model the time-series profiles of >99% of our dynamic cCREs.

This modeling approach offers a number of advantages. First, it employs real time-series data to infer the
kinetic parameters, differently from previous methods that rely on a latent time to fit the ODE solution 821,
Second, it offers greater intuitiveness compared to fitting a high-order polynomial function, as the kinetics
are defined by only two parameters, which are biologically interpretable. Third, it can be expanded to
model, under similar assumptions, time-series changes in gene expression or other chromatin features

such as histone modifications.

We numerically solved equation (2) to fit the kinetic parameters k& and b for every dynamic cCRE across
the three brain regions and reconstruct the most likely time-series trajectory (Supplementary Figure
2a). We then classified the trajectory of each cCRE as either logistic, log-like or exponential patterns

(Supplementary Figure 2b-c). Most increasing cCREs followed either log-like or logistic patterns, whereas
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Figure 2: Main signal trajectories modeled by chronODE.

a-f: Examples of chromatin accessibility trajectories following the logistic curve (a-b), and the log-like (c-d) and exponential (e-f) portions of it. For each
example we display the cCRE ENCODE identifier with the corresponding k and b parameters. For each example we display the cCRE ENCODE identifier with
the corresponding k and b parameters. g-h: Barplots showing for each brain region (x axis) the proportion of cCREs (y axis) characterized by logistic, log-like and
exponential patterns. Increasing cCRESs: upper panel; decreasing cCREs: lower panel.
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only a minor fraction showed slow, exponential increases (Figure 2g and Supplementary Figure 3a).
Instead, most decreasing cCREs exhibited exponential or logistic patterns, and almost never displayed

slow, log-like curves (Figure 2h and Supplementary Figure 3a).

Consistent with our initial observations, we found that early-increasing cCREs showed higher |k| values
compared to late-increasing cCREs (Figure 1b and Supplementary Figure 3b). Comparing, for a given
cCRE, the magnitude of |k| across the three regions reveals more granular changes in the kinetics of
chromatin accessibility than our initial exploratory analyses had suggested. For instance, even when
considering cCREs that were systematically early- or late-increasing in all three regions we could identify
some with a much faster activation rate in one specific region (Figure 3a). This was particularly evident in
the case of decreasing cCREs, for which our initial clustering analysis did not highlight strong variations in

the timing of chromatin closing (Figures 3b and 1b).

These regional kinetic differences align with the hypothesis that the rate of activation and inactivation of
regulatory elements may strongly depend on the cellular composition of each brain region. Following this
assumption, ubiquitously active cCREs may exhibit very different kinetics from cell-type specific cCREs,
whose activation rates may be influenced by the changing regional abundance of the specific cell type over
time. To explore this possibility, we analyzed single-cell (sc) ATAC-seq data generated in the forebrain
during the same time course as the bulk regional data (i.e., from E11.5 through the first PN day)?22.
Previous analyses of these data highlighted the temporally regulated appearance of differentiated cell
types, in particular mature excitatory neurons (eEX2, between E12.5 and E13.5), mature inhibitory neurons
(eIN4, between E12.5 and E13.5, and eIN3 after E14.5), and astrocytes (eAC, after E16.5)23. Consistent
with these previous observations, our forebrain-increasing cCREs showed the largest overlap with peaks
specific to eEX2, eAC and elN4, and the least overlap with peaks specific to neuronal progenitors (radial
glia, RG1-2) and erythromyeloid progenitors (EMP) (Figure 3c). The latter were instead particularly
abundant among our set of forebrain-decreasing cCREs, consistent with EMP and RG1-2 progressively

disappearing during the time course?? (Figure 3c).

We expected that increasing cCREs specific to late-emerging cell types would show different types of
trajectories compared to ubiquitous cCREs, the majority of which are active in early-emerging cell types
such as radial glial and other neuronal progenitors (Supplementary Table 3). Indeed, we found that the
proportions of early (log-like), intermediate (logistic) and late (exponential) trajectories were inversely
correlated across the different sets of cCREs, consistent with the order of temporal appearance of the
corresponding cell types (Figure 3d). Compared to ubiquitous cCREs, which showed the largest proportion
of early trajectories, those cCREs specific to eEX2 and elN4 (appearing between E12.5 and E13.5)
displayed higher proportions of intermediate trajectories. Finally, cCREs specific to the late-emerging eIN3
and eAC populations (appearing after E14.5 and E16.5, respectively) reported the largest proportions of
late patterns. Altogether, these results suggest that trajectories of chromatin accessibility inferred from bulk
experiments can recapitulate the emergence of cell types during development, wherein cCREs specific

to earlier cell types exhibit early patterns, while cCREs specific to later cell types are characterized by
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Figure 3: chron ODE provides biologically interpretable kinetic parameters.

a-b: Heatmaps showing for increasing and decreasing cCREs (rows) changes in the kinetic parameter kacross the three brain regions (columns). To facilitate the
comparison, we display a normalized value of k(i.e., |kl divided by the average |kl across the three regions) and consider a subset of cCREs that are characterized

by the same pattern (decreasing, late increasing, early increasing) in all three regions. Zoom-in lineplots show examples of cCREs characterized by faster kinetics

in a particular region;for each example we report the cCRE ID and the corresponding value of |kl in each region. c: Barplot showing the proportion (%) of forebrain
increasing and decreasing cCREs (y axis) that overlap cell-type specific peaks identified by scATAC-seq experiments (Preissl et al., 2018; see Supplementary Table
3). Horizontal dashed lines indicate 5% and 10% percentages. d: Barplot showing the proportion (%) of forebrain increasing cCREs (y axis) characterized by log-like
(green), logistic (purple) and exponential (orange) trajectories across different cell-type specific sets (x axis). Only sets showing a proportion >5% in panel c are
displayed. We merged ubiquitous-3, -4, and -6 sets into one set.


https://doi.org/10.1101/2023.12.13.571513
http://creativecommons.org/licenses/by-nc-nd/4.0/

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.13.571513; this version posted December 14, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

intermediate and late patterns.

Genes linked to multi-pattern cCREs are more dynamic during brain development and are

enriched in brain-specific functions

Having established a framework for modeling changes in chromatin accessibility at regulatory elements,
we next sought to investigate how these changes can impact the expression of target genes over time.
To achieve this goal, we compiled a catalog of cCRE-gene pairs, by linking each cCRE to its nearest
protein-coding gene based on linear distance?82°. Employing this proximity-based method, putative target
genes were linked to multiple cCREs, consistent with prior findings2?. Notably, a considerable fraction (on
average 27%) of these genes exhibited not only quantitative but also qualitative multi-assignment, i.e. they
were linked to cCREs displaying all three major time-series patterns (decreasing, early-increasing, or late-
increasing; multi-pattern regulated genes; Figure 4a). 46% of the genes were associated with just one type

of cCREs (mono-pattern regulated genes).

We found that the variety of regulatory patterns associated with a gene correlates with several gene
features. Consistently across the three brain regions, multi-pattern genes were paired with more distal
cCREs and displayed more significant changes in expression over time compared to mono-pattern genes
(Figure 4b-c). In line with these results, which suggest a more prominent role of multi-pattern genes
during brain development, we found them to be enriched in neural and brain-specific functions, including
neurogenesis, trans-synaptic signaling, and sensory system development (Figure 4d). Multi-pattern genes
also showed enrichment of motifs corresponding to homeobox and forkhead TFs, which have been
reported to orchestrate key processes during brain development, such as regional specification, neuronal
differentiation and axonal guidance and connectivity30-36 (Figure 4e). In contrast, mono-pattern genes
were enriched in housekeeping functions such as gene expression and compound biosynthesis, and

displayed modest motif enrichment also for other TF families (e.g., ETS and bHLH; Figure 4d-e).

Altogether, these results suggest that the precise expression of genes essential for brain development may
be governed by a more complex regulatory network. This regulatory control appears to involve cCREs with
diverse time-series trajectories, highlighting a sophisticated orchestration of essential genetic processes.
In contrast, less critical genes or those associated with non-brain specific functions may rely on a simpler
regulome, potentially reflecting a differential degree of control based on the biological significance and

impact of these genes.

Predicting time-series gene expression patterns from changes in associated cCRE activity

Besides revealing a potential correlation among the diversity of regulatory patterns linked to a gene, its
TF regulatory network and its functional role during brain development, these results also suggest that
accurately predicting changes in a gene’s expression levels during development based on changes in

chromatin accessibility within its cCREs may require either a single- or multi-cCRE schema model.
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Here, in order to assess whether changes in gene expression can be predicted by chromatin changes at
the corresponding cCREs (e.g., chromatin accessibility), we considered the simple single-cCRE scenario.
Thus, given a cCRE-gene pair that are linked only to each other, we employed the ODE-inferred time-
series derivatives of chromatin accessibility of the cCRE as input to predict the time-series derivatives
of expression of the gene. Specifically, we solve a multivariate time-series regression where the change
over time ¢ in the expression of gene g,, depends on changes over time ¢ in all the chromatin features ¢;
associated with the gene (note that here we employ only the chromatin accessibility feature and one cCRE

per gene, thus ¢ = 0) following this equation:

deoo...t+ deio...t dci ...t
d 7 dt 77 dt

d.gn,O...t
dt

where f is a non-linear mapping function that can be solved by a neural network (NN) or random forest
(RF). The former is particularly suitable to capture the non-linearity of the relationship between chromatin
features and gene expression over time. Indeed, this architecture allows us to capture additional intricate
patterns and relationships in the data compared to more classical predictive models such as the RF. The
network encodes each chromatin derivative value, at every time point, into a high dimensional vector, and
applies the Leaky-ReLU function. Then, the NN regresses each gene expression derivative, at each time
point, as the output (Figure 5a). As mentioned before, we applied our modeling approach to genes that
are associated with only one cCRE. However, this framework can be extended to cases where a gene is
associated with multiple cCREs or where multiple chromatin features are considered, hence our model

input is referred to as a tensor of chromatin ¢ features at each time point t.

Our training process strongly depends on the correlation direction between the time-series vectors of gene
expression and chromatin derivatives. While the majority (66%) of cCRE-gene pairs showed positive
correlation, a distinct subset displayed negative correlation (Supplementary Figure 4a), consistent with
previous studies®’39. Notably, this latter set of cCREs showed enrichment in motifs recognized by
repressor TFs, such as ZBTB7A/B40-44, suggesting a potential prototype for repressor-gene interactions.
We thus divided the dataset into two subsets of positively and negatively correlated pairs (Figure 5b), and

trained the network separately on each of the two subsets in a ratio of 80:20 for training and test sets.

Our predicted changes in gene expression showed overall positive correlation with the true changes in gene
expression, as well as moderate-to-low mean absolute error (MAE; Figure 5¢). Overall, the NN achieved
higher performance than the RF model. Specifically, we reported a correlation of 0.71 + 0.29 between the
true and predicted values in the positively correlated pairs (average MAE 0.29 + 0.69), and a correlation
of 0.57 £ 0.29 in the negatively correlated pairs (average MAE = 0.16 + 0.44). The RF model applied on
the same task showed a correlation of 0.62 + 0.43 with MAE of 0.53 + 0.94 within the positively correlated
pairs, and a correlation of 0.45 + 0.50 with a MAE of 0.52 + 2.54 for the negatively correlated pairs (Figure
5c). Overall, 99% and 100% of positively and negatively correlated cCRE-gene pairs, respectively, showed

a positive correlation between true and NN-predicted gene expression derivatives, in contrast to the 89%
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Figure 5: Modeling approach to predict changes in gene expression over time from changes in cCRE chromatin signals.

a: Schematic representation of the neural network architecture. Each cCRE derivative, at each time point, is projected into a vector of 30x1 dimension followed by
operating the Leaky ReLu function on each of its elements. Then, the gene expression derivative, at each time point, is predicted. b: Dataset construction for the two
models. Each dataset consists of either negatively or positively cCRE-gene derivative pairs that are employed to train the Random Forest (RF) and Neural Network
(NN) models. ¢: Performance evaluation of the models using Pearson’s r correlation coefficient (left panel) and Mean Absolute Error (MAE; right panel). Mean and
standard deviation values were computed across all pairs in the test of each model. The NN model reported higher Pearson’s correlation and lower MAE compared
to the RF. Standard deviations are larger in the RF compared to the NN model. d: Representative examples of predicted time-series gene expression derivatives by
the NN (blue) and RF (green) models. True gene expression derivatives are shown in red.
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and 83%, respectively, reported by the RF models (Supplementary Figure 4b). Representative examples
of true and predicted changes in gene expression over time are shown in Figure 5d. Overall, these results
demonstrate that chromatin accessibility changes within regulatory elements can be employed to accurately

predict changes in the expression of putative target genes over time.

Discussion

Time-series functional genomics assays offer a unique opportunity to investigate the transcriptional and
chromatin kinetics of multiple genes and regulatory elements simultaneously. However, integrative analysis
of these data requires a flexible framework that can uniformly model different types of signals without
generating disparate parameter sets, thereby enabling direct comparison and biological interpretation of

the inferred kinetics.

Here, we analyzed maps of chromatin accessibility generated during mouse brain development and
identified cCREs with different types of accessibility kinetics among brain regions. Furthermore, we found
that these kinetic patterns strongly differ between cCREs active in progenitors vs. more differentiated
cell types. To analyze these patterns we adapted a well-known first-order differential equation—previously
employed in other biological fields such as the study of bacterial population growth and decay—to model the
kinetics of chromatin and gene expression changes over time. The ODE naturally accommodates some
general principles of the kinetics governing these changes: first, that impulses of chromatin remodeling
signals or transcriptional bursts manifest with rapid initial changes; second, that these changes eventually
attain saturation over time due to biochemical constraints, such as the structure of histone complexes or
the activation of feedback loop mechanisms. Previous methods have proposed log-like and exponential
curves to model increases and decreases, respectively, of multi-omics signals2'. However, this follows the
assumption that such changes begin in the early phases of the (latent) time course, and reach saturation
by the end of the time course. Our framework instead relaxes these assumptions by incorporating a logistic

curve, allowing more flexibility to capture diverse patterns of gene expression and chromatin signals.

To demonstrate the utility of this framework, we applied it to study the kinetics of chromatin accessibility
during an eight-day time course of mouse development across three brain regions. We found that the
majority of regulatory elements undergoing chromatin changes reached full accessibility or inaccessibility
by the first post-natal day. Still, a fraction of these elements did not reach full accessibility by the end of the
time course, especially those active in late-emerging cell types such as astrocytes and mature inhibitory
neurons. Overall, this suggests that the kinetics of chromatin accessibility inferred in bulk recapitulate the

emergence of cell type-specific patterns detected by single-cell experiments.

Our framework also allows us to investigate epigenome-transcriptome interactions without being
constrained by predefined assumptions about their temporal dynamics. Specifically, we found that most
of the cCRE-gene derivative pairs show a positive correlation, indicating that activator TFs may potentially

bind to these cCREs. Conversely, cCREs showing negative correlation with their target genes may be
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recognized by repressor TFs. Based on this, we propose to independently model transcriptional and
epigenetic changes using the same ODE and then to employ a neural network-based architecture to
investigate their non-linear relationship over time. We specifically trained separate models for positively and
negatively correlated cCCRE-gene pairs that can capture activator-gene and repressor-gene interactions,
respectively. This strategy is characterized by greater flexibility and allows us to model the kinetics of
thousands of genes, compared to previous velocity methods which rely on a simplified view of gene
regulation and can accurately fit only a restricted subset among thousands of genes?'. While we have
applied this architecture to model the basic scenario of a gene regulated by a single cCRE, we anticipate
that our approach to consider the time-series chromatin accessibility signal as a tensor can be scaled to
more complex scenarios where multiple cCCREs or chromatin features are employed to model changes in

gene expression.

Although in the present study we have focused on modeling gene expression and chromatin accessibility
data from bulk sequencing experiments, this framework is suitable to analyze other data modalities, and
could also potentially accommodate time-resolved single cell measurements. We anticipate that applying
chronODE to time-series data from various biological systems will help us to understand how alterations
in transcriptional and epigenetic processes affect molecular pathways. These insights can be particularly
valuable to identify potential drug targets and to understand their impact on cellular functionality across
different tissues and cell types. As kinetic approaches begin to unveil molecular mechanisms underlying
drug resistance in cancer*~47, we anticipate that, in the long term, these kinetic maps of transcriptional

and epigenetic processes will play a pivotal role in designing tailored therapeutic strategies.
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Methods

Mouse brain developmental time-course

We analyzed maps of chromatin accessibility (DNase-seq and ATAC-seq) and gene expression (polyA+
RNA-seq) generated by the ENCODE consortium during eight time-points in three mouse fetal brain
regions (forebrain, midbrain, and hindbrain)??>2*. DNase maps were available for postconception (PCD)
days E10.5, E11.5, E14.5, and the first postnatal day (PN). ATAC-seq maps were available for PCDs
E11.5, E12.5, E13.5, E14.5, E15.5, E16.5, and PN. RNA-seq data were available for all eight time
points (PCD 10.5-PN) (Supplementary Table 1; https://www.encodeproject.org/matrix/type=
Experiment&status=released&related_series.@type=0OrganismDevelopmentSeriesé&
replicates.library.biosample.organism.scientific_name=Mus+musculus&assay__
title=ATAC-seg&life_stage_age=embryonic+10.5+daysé&life_stage_age=embryonic+
11.5+daysé&life_stage_age=embryonic+12.5+days&life_stage_age=embryonic+13.5+
daysé&life_stage_age=embryonic+14.5+days&life_stage_age=embryonic+15.5+daysé&
life_stage_age=embryonic+l6.5+days&life_stage_age=postnatal+0+days&biosample_
ontology.term_name=forebrain&biosample_ontology.term_name=hindbrainé
biosample_ontology.term_name=midbrain&assay_title=DNase-seqg&assay_title=
polyA+plus+RNA-seq). We built time-course matrices of signals for these two data modalities as we

describe in the following sections.

DNase- and ATAC-seq data processing

We downloaded the catalog of ENCODE?® candidate cis-regulatory elements (cCRESs) for the mouse
genome from https://www.encodeproject.org/annotations/ENCSR412JPD/, which comprises
926,843 cCREs. We employed this catalog to construct a matrix of chromatin accessibility signals for each
cCRE across the eight timepoints and the three brain regions. Given that ATAC-seq data were available
from PCD E11.5 onward, in order to maximize the number of time points shared between the chromatin
accessibility and gene expression maps, we integrated DNase-seq and ATAC-seq data in a single time

course. Below we detail the steps of our DNase- and ATAC-seq data integration protocol.

Step 1: Identifying active cCREs during the time-course

For each of the three regions, we downloaded bigBed files of ATAC-seq pseudoreplicated narrow peaks
available for each time point. We employed the BEDTools*® (version 2.30.0) function intersectBed
and identified 282,907 cCREs with ATAC-seq peaks in at least one time point. In the case of DNase-
seq, pseudoreplicated peaks were unavailable. We therefore identified for each time point the peaks
shared across all replicates using the BEDTools function multiIntersectBed. 316,549 cCREs reported

DNase-seq peaks in at least one time point. We defined our set of 405,554 “active” cCREs as those that
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reported a DNase-seq and/or ATAC-seq peak. The list of bigBed files employed in this step is available in
Supplementary Tables 4-5.

Step 2: Building a time-course matrix of chromatin accessibility for active cCREs

We downloaded ATAC-seq bigWig files (fold change over control; two replicates per time point and region;
Supplementary Table 4) and computed the average signal in the cCRE window at each time point and
replicate using the bigWigAverageOverBed tool. This yielded a 405,554 x 7 matrix for each replicate
and region. We followed the same procedure for the DNase-seq signal (read-depth normalized signal;

Supplementary Table 5), and obtained a 405,554 x 4 matrix for each replicate and region.

Step 3: Performing joint normalization and batch correction

We first performed joint quantile normalization on the ATAC- and DNase-seq signal matrices across
replicates and time points using the R package preprocessCore*®. We then applied batch correction on
the quantile-normalized matrices to remove unwanted effects due to experimental differences between the
two assays. The input matrix consists of DNase-seq (PCD 10.5, 11.5, 14.5, PN; 2 replicates) and ATAC-
seq (PCD 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, PN; 2 replicates) signals. Shared time points 11.5, 14.5
and PN were employed to calibrate the differences between the two assays. Specifically, we first added
a pseudocount of 1 to the signal matrix and performed a centered log-ratio transformation of the matrix
with the R package mixOmics®® (function logratio.transfo). After having the log-ratio normalized
joint matrix of DNase and ATAC-Seq data, we conducted the batch effect correction with the R package
Limma®! (function removeBatchEf fect), specifying the replicate and assay features as batch levels and

the time course as design (Supplementary Figure 1).

RNA-seq data processing

For each of the three brain regions, we downloaded from the ENCODE portal gene expression matrices
of Transcript Per Million (TPM) values for the eight time points and the two biological replicates (mouse
genome assembly version mm10, Gencode annotation version M21; Supplementary Table 6). We then
normalized the data using center-log-ratio normalization and the limma function removeBatchEffect,

specifying the replicate feature as batch level and the time course as design.

Identifying dynamic cCREs and genes

To detect significant changes in cCRE chromatin accessibility over time, we used the R package
maSigPro%? with DNase- and ATAC-seq replicates handled internally. We conducted this analysis
independently for each brain region. We employed the function make.design.matrix () to construct
two different design matrices for linear (degree = 1) and quadratic (degree = 2) regression models.

We then applied function p.vector () on each design matrix with the following parameters: 0 = 0.05,
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MT.adjust = "BH",min.obs = 5. For each region, we defined dynamic cCREs as those reporting a
maSigPro FDR value < 0.01 in at least one of the two designs. We followed the same procedure to identify
genes with significant expression changes over time, but first added a pseudocount of 10716 to each gene

expression value to avoid zero values.

Identifying regulatory patterns of cCRE chromatin accessibility

We employed the R function kmeans () to group dynamic cCREs into clusters. Elbow plots indicated that,
across the three regions, the most meaningful number of k-means clusters is 3, and that the three clusters
correspond to downregulated (decreasing openness), early upregulated (openness increases early then

stays high), and late upregulated (openness increases at the very end of gestation) cCREs (Figure 1b).

The chronODE mathematical framework

We designed an ODE-based pipeline to capture trends in sparse time-series data. We employ equation (4)
to describe the rate of change of chromatin accessibility or gene expression over time. The analytical
solution of the ODE can be found in Supplementary Note 1. The pipeline, which we used to model
chromatin accessibility of cCCREs and RNA expression levels of genes, has two stages: linear interpolation
and ODE fitting (Supplementary Figure 2a). The pipeline’s input takes the form of a two-dimensional matrix,
with numeric time points as columns and elements (e.g. genes or cCREs) as rows. In our case, we used
our eight time points in post-conception days. We chose to represent the postnatal time point as 21 PCD,

since the standard length of a mouse pregnancy is typically in the range 19-21 days.

Since eight time points are insufficient to fit an ODE, the first step is data interpolation. We first used
the function 1inspace (from the Python NumPy package) to generate a larger number of evenly spaced
time points over the interval of the original time points. We chose to generate 105 time points. We then
normalized the values in each row of the matrix to a range between zero and one, and created a new
matrix with interpolated values for each of the new simulated time points using the Python Scipy package®®

(function interpld).
Once we had a matrix of linearly interpolated values, we fitted an ordinary differential equation of the form

dx T

to each row. Given initial guesses for the k£ and b parameters (we chose 0.9 and 1.5, respectively), we
then optimized the choice of k£ and b by fitting the equation (4) using the Scipy functions curve_fit
(maximum calling number equal to 5000) and odeint, with the latter using LSODA, an adaptive steps
algorithm®#. If the function cannot find optimized parameters in the predefined parameter space before
hitting the maximum number of calls, it returns NAs. We then used the fitted parameters to model the
values at the interpolated time points, and added a pseudocount of 10716 to the first time point to avoid

downstream divide-by-zero errors.
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We fitted the ODE parameters using six sets of input: either a positive or negative initial guess for &, and
three versions of the linearly interpolated data: the unshifted version, and versions raised or lowered by the
maximum magnitude of the original normalized data. The fitted values were then shifted back by the same
amount. Of these six fittings, we selected the set of parameters that yield fitted values with the lowest mean
squared error compared to the linearly interpolated values. If all six fittings fail, the pipeline returns NAs for

that row.

The pipeline outputs three matrices, with rows corresponding to the same cCRE/gene as the input matrix.
The first two tables contain the fitted values and derivatives respectively, with a column for each of the
interpolated time points. The third matrix contains the fitted parameters & and b, along with 7" = 1/k, MSE,

and information about the vertical shift used to model each row.

With the output from the ODE pipeline, we first dropped the elements containing the NA (those whose
trend cannot be captured by the ODE pipeline; Supplementary Figure 2a). We then did quality control by
dropping the elements whose mean square error was among the highest 20%. With this filtered list, we
clustered the cCREs based on their dynamic trend. We used a Convex-Concave approach to classify the
dynamic trend. We identified the trend based on the fitted trajectory by connecting the fitted values’ first and
last time points (Supplementary Figure 2b). After getting this decision line using the 1inspace function
in the Numpy package (which has the same number of time points as the fitted trajectory), we calculated
the difference between the fitted trajectory and the decision line. This difference is an array consisting of
the difference at 105 time points. If the 105 difference values are all positive, we assign the cCRE with a
“log-like” trend; if all the 105 difference values are negative, the cCRE is assigned to an “exponential” trend.
If the signs of the 105 differences are a mixture of positive and negative, then the corresponding cCRE is

believed to have the “logistic” trend.

Identifying cCREs with region-specific kinetics

We employed the k& parameter from the ODE pipeline output to identify cCREs with different kinetics
across the three regions. As explained in the Results section “chronODE infers time-series trajectories

and highlights cell type-specific kinetics of chromatin accessibility”,

k| summarizes the rate of change of
a given cCRE or gene over time (Supplementary Figure 3a). We applied a normalization method and
computed, for each cCRE, the ratio between |k| in a particular region and the average |k| across the three
regions. We then performed k-means clustering separately on increasing and decreasing cCREs and
identified in each case three main clusters, which correspond to cCREs reaching their highest relative rate
of change in the forebrain, midbrain, and hindbrain (Figure 3a-b). For this analysis we considered only
cCREs characterized by the same pattern (decreasing, early increasing and late increasing) across the

three regions, and for visualization purposes we merged early and late increasing cCREs in one heatmap.
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Cell-type specific cCCREs intersection analysis

We obtained sets of cell-type specific cCCREs identified by single-cell (sc) ATAC-seq experiments performed
in the mouse forebrain during the same time course as the bulk ATAC-seq experiments (PCD E11.5
through PN; specifically, Supplementary Table 4 from Preiss| et al.?3). A description of the main cell types
corresponding to each cCRE cell-type specific set can be found in Supplementary Table 3. We assigned
each of our forebrain dynamic cCREs to a specific cell-type specific set by employing the BEDTools function

intersectBed.

Linking cCREs to putative target genes

We designated a target gene for each cCRE based on linear distance. We used the BEDTtools closest
utility for this calculation. This methodology routinely assigns many cCREs to a single target gene. A cCRE,
however, can only be assigned multiple targets if two or more genes are tied for “closest”, usually because
they all overlap the cCRE. BEDTools closest assigns a distance of 0 to all overlaps. Having linked genes
to dynamic cCREs, each of which had already been assigned a regulatory pattern (see above), we used
the UpSet R package to visualize how many genes are linked to every possible combination of cCCRE
regulatory patterns (Figure 4a). We then divided the genes by the number of cCRE patterns that target

them.

Properties of mono- vs. multi-pattern genes

To examine the properties of genes targeted by different numbers of patterns, we performed Gene Ontology
(GO) analysis and transcription-factor (TF) motif enrichment analysis on the genes linked to one, two, and
three regulatory patterns from each brain region. For the GO analysis, we used the GOStats R library>°.
As universe gene set for the GO enrichment analysis we used the set of protein-coding genes from the
Gencode M21 mouse annotation and a false-discovery rate cutoff of FDR < 0.01 to identify significantly
enriched GO terms related to biological processes. We also used the Homer motif discovery tool°® to find
TF motifs that were significantly enriched in each group of genes. We used the findMotifs.pl scriptand
HOMER'’s built-in mouse promoter set to identify TF motifs that are significantly enriched in the promoter

region of each set of genes.

Motif analysis of correlation groups

In order to decipher the difference between the set of cCCREs with positive versus negative correlations,
we conducted TF motif analysis. We downloaded the reference fasta file from ENCODE and used the
BEDTools getfasta command to generate the fasta files of the two sets of cCREs. We then used
STREME?®’ to discover ungapped motifs that are relatively enriched in each of the two sets of cCREs

using the other set as control sequences. In this process we chose the patience to be 10, so the software
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would stop searching for motifs when ten consecutive non significant motifs have been found. Then we

compared the motifs we discovered against the database HOCOMOCO (version 11).

Predicting changes in gene expression from changes in chromatin accessibility
Neural Network Model

In order to predict the gene expression derivatives over time we used the chromatin accessibility derivatives
as inputs for a non-linear neural network with the following architecture: Num_features = 1, Degree
= 30, Linear (num_features, degree, bias=True), LeakyReLU(0.4,inplace=True), and
Linear (degree, 1). Specifically, each of the chromatin derivatives, at each time point, serves as an
input for the network (Figure 5a). The input is defined as a 3D tensor where the first position stands for
the number of samples, the second position is the number of cCCRE-related-features (which in this paper
is 1), and the third position is a 105 dimensional vector of the different epigenetic signals over time. The
output is also a vector of a 3D tensor, where the first position points to the same number of samples as the
inputs, each corresponding to one gene-related derivative across the 105 time points. We used PyTorch®®
to train the network and set the batch size to 4 along with a mean absolute error as the loss function and
a learning rate of 0.001 using the Adam optimizer. Finally, the network was trained with 3000 epochs. We
combined the three regions for the purposes of this model, but split the gene-cCRE pairs into two groups
depending on whether the chromatin accessibility derivatives were positively or negatively correlated with
the gene expression derivatives. We trained and tested the neural network separately on these two groups
in a ratio 80:20.

Random Forest Model

We also used a random-forest-based regression model to predict gene expression derivatives based on
chromatin openness derivatives. To ensure easily comparable results, we used the same 105-timepoint
input and output matrix formats for the random forest model as for the neural network described above,
and used the same correlation-based split. Thus, the 80:20 train and test sets were identical to the ones
employed by the Neural Network. We used the scikit-learn®® function RandomForestRegressor with

100 trees and a default depth of 2.

Quantification and statistical analysis

All statistical analyses were performed using the R or Python languages, as specified in the Methods and/or
figure legends. Unless otherwise specified, plots were made with the R package ggplot28° or the Python
package matplotlib®!. All box plots depict the first and third quartiles as the lower and upper bounds of the
box, with a band inside the box showing the median value and whiskers representing 1.5x the interquartile

range.
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