

1 **Bosutinib stimulates macrophage survival, phagocytosis and intracellular
2 killing of bacteria**

3

4 Ronni A. G. da Silva^{1,2}, Claudia J. Stocks², Guangan Hu³, Kimberly A. Kline^{1,2,4 *},
5 Jianzhu Chen^{1,3 *}

6

7 1- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug
8 Resistance Interdisciplinary Research Group, Singapore.

9 2- Singapore Centre for Environmental Life Sciences Engineering, Nanyang
10 Technological University, Singapore.

11 3- Koch Institute for Integrative Cancer Research and Department of Biology,
12 Massachusetts Institute of Technology, Cambridge, MA, USA.

13 4- Department of Microbiology and Molecular Medicine, Faculty of Medicine,
14 University of Geneva, Switzerland.

15 * kimberly.kline@unige.ch

16 * jchen@mit.edu

17

18

19

20

21 **Abstract**

22 Host-acting compounds are emerging as potential alternatives to combat antibiotic
23 resistance. Here, we show that bosutinib, an FDA-approved chemotherapeutic for
24 treating chronic myelogenous leukemia, does not possess any antibiotic activity but
25 enhances macrophage responses to bacterial infection. *In vitro*, bosutinib stimulates
26 murine and human macrophages to kill bacteria more effectively. In a murine wound
27 infection with vancomycin-resistant *Enterococcus faecalis*, a single intraperitoneal
28 bosutinib injection or multiple topical applications on the wound reduces bacterial load
29 by approximately 10-fold, which is abolished by macrophage depletion.
30 Mechanistically, bosutinib stimulates macrophage phagocytosis of bacteria by
31 upregulating surface expression of bacterial uptake markers Dectin-1 and CD14 and
32 promoting actin remodelling. Bosutinib also stimulates bacterial killing by elevating the
33 intracellular levels of reactive oxygen species. Moreover, bosutinib drives NF- κ B
34 activation which protects infected macrophages from dying. Other Src kinase inhibitors
35 such as DMAT and Tirbanibulin also upregulate expression of bacterial uptake
36 markers in macrophages and enhance intracellular bacterial killing. Finally, co-
37 treatment with bosutinib and mitoxantrone, another chemotherapeutic in clinical use,
38 results in an additive effect on bacterial clearance *in vitro* and *in vivo*. These results
39 show that bosutinib stimulates macrophage clearance of bacterial infection through
40 multiple mechanisms and could be used to boost host innate immunity to combat drug-
41 resistant bacterial infections.

42

43 **Significance:** This study shows that bosutinib, an FDA-approved chemotherapeutic,
44 stimulates macrophage responses to antibiotic-resistant bacterial infection by
45 enhancing phagocytosis and intracellular killing of bacteria and promoting survival of
46 infected macrophages. These findings suggest that bosutinib could serve as an
47 adjuvant therapy to combat drug resistant bacterial infections and opens the possibility
48 to target Src kinases to boost innate immunity in general.

49

50 **Introduction**

51 Antimicrobial resistance greatly limits the treatment options for bacterial infections.
52 Compounds that enhance the host immune responses are emerging as alternative
53 approaches to treat antibiotic resistant infections [1]. However, since many bacteria

54 have evolved mechanisms to escape or suppress the host immune responses either
55 extracellularly or intracellularly [2, 3], any adjuvant therapy should ideally enhance
56 both bacterial uptake and intracellular killing for optimal clearance of infection.

57

58 Macrophages play a critical role in defence against bacterial infection by recognizing
59 and phagocytosing bacteria and killing them intracellularly in phagolysosomes.
60 Bacterial recognition is mediated by an array of receptors that recognize evolutionarily
61 conserved pathogen-associated molecular patterns (PAMPs). Binding of receptors to
62 PAMPs triggers a signalling cascade that facilitates the process of phagocytosis [4].
63 Specifically, engagement of phagocytic receptors triggers signalling pathways that
64 prompt a reorganization of the actin cytoskeleton and membrane lipids [5], leading to
65 membrane expansion and engulfment of bacteria. Once internalised, sequential
66 intracellular trafficking events that involve fusion and fission with endocytic vesicles
67 and the lysosome result in the formation of the anti-microbial phagolysosome [6, 7].
68 The phagolysosome deploys different mechanisms to kill and degrade bacteria,
69 including low pH, reactive oxygen species (ROS), and hydrolytic enzymes.

70

71 The Src kinase family (SFK) consists of nine non-receptor tyrosine kinases in
72 mammals: SRC, LCK, LYN, BLK, HCK, FYN, FGR, YES, and YRK [8]. These kinases
73 function in many cellular processes including cell adhesion and migration, proliferation,
74 differentiation, apoptosis and metabolism [9-12]. SFK members play a crucial role in
75 host defence and inflammation, mediating signalling from cell surface receptors in
76 hematopoietic cells and orchestrating adhesion and transmigration during leukocyte
77 recruitment [13, 14]. Modulation of SRC kinase activity has been investigated for its
78 chemotherapeutic potential [15] and bosutinib was developed to treat chronic
79 myelogenous leukemia by inhibiting SRC and ABL kinases. SRC kinase activation has
80 been shown to contribute to innate immune responses to viral infections [16] and SRC
81 kinase inhibition is known to prevent the assembly of dengue virions and ameliorate
82 sepsis outcomes in a murine model of polymicrobial sepsis [17, 18]. In macrophages,
83 SRC kinase activity contributes to adhesion, migration, and phagocytosis [19],
84 suggesting that SRC kinase activity is important for innate immune responses to
85 infections.

86

87 We have previously identified small molecule compounds that enhance the ability of
88 macrophages to clear bacterial infection, including bosutinib (BOS), which stimulates
89 macrophage intracellular killing of *E. faecalis*, *Salmonella Typhimurium*, and
90 uropathogenic *Escherichia coli* *in vitro* [1]. BOS is an orally available SRC-ABL
91 tyrosine kinase inhibitor used to treat chronic myelogenous leukaemia [20] by inhibiting
92 tumor cell proliferation [21]. In this study, we show BOS treatment reduces the
93 bacterial burden in a murine wound model of infection with a vancomycin-resistant
94 strain of *E. faecalis* (VRE) or methicillin-resistant strain of *S. aureus* (MRSA) in a
95 macrophage-dependent manner. We have also elucidated the mechanisms by which
96 BOS enhance macrophage responses to bacterial infection. We show that BOS
97 inhibition of SRC kinase activity affects SLK phosphorylation, leading to upregulation
98 of bacterial uptake surface markers and actin-remodelling and therefore enhanced
99 phagocytic activity of macrophages. BOS also stimulates macrophages to kill
100 phagocytosed bacteria by upregulating ROS production and survival of infected
101 macrophages. These findings suggest the potential for repurposing of BOS as an
102 immune boosting adjunct therapy for treating antibiotic resistant bacterial infections.

103

104

105 **Results**

106 **BOS enhances macrophage clearance of bacteria *in vitro* and *in vivo***

107 We previously showed that BOS stimulates intracellular killing of the *E. faecalis* (strain
108 OG1RF) by murine macrophage cell line RAW264.7 [22]. Here, we further tested the
109 ability of BOS to stimulate killing of vancomycin-resistant *E. faecalis* strain V583 (VRE)
110 by RAW264.7, murine bone marrow-derived macrophages (BMDM), the human
111 monocytic cell line THP-1, and human monocyte-derived macrophages (HMDM). In
112 these assays, cells were infected with VRE for 3h and non-attached VRE were
113 removed by washing. Residual extracellular bacteria were eliminated by the addition
114 of gentamicin and penicillin in the culture medium for the entire duration of the assay.
115 Simultaneous to antibiotic addition, the cultures were treated with BOS (0.52 µg/mL)
116 or without BOS and the number of intracellular VRE was quantified 15 h later. As
117 shown in **Fig. 1A**, BOS treatment resulted in a statistically significant reduction of
118 intracellular CFU by ~1-log in RAW264.7 cells and ~0.5-log in THP-1 cells, but a non-
119 significant reduction in BMDM and HMDM. Similarly, BOS treatment also stimulated

120 macrophage killing of other intracellular bacterial species, including MRSA, *P.*
121 *aeruginosa* and the multi-drug resistant *E. coli* strain 958 (**Fig. S1A**). When VRE,
122 MRSA, *P. aeruginosa* and *E. coli* EC958 were incubated with increasing
123 concentrations of BOS in the absence of host cells, the minimum inhibitory
124 concentration (MIC) was greater than 13 μ g/mL, which was 25-fold higher than the
125 0.52 μ g/mL BOS used to treat macrophages (**Table S1 and S2**), suggesting that BOS
126 does not have direct antibiotic activity. Consistently, when RAW264.7 cells or BMDM
127 were pretreated with BOS for 18 h prior to VRE infection, the levels of intracellular
128 CFU were reduced by ~1-log and ~0.5-log, respectively, compared to the untreated
129 controls (**Fig. 1B**). Together these results show that BOS does not possess antibiotic
130 activity but can stimulate macrophages to more effectively eliminate intracellular
131 bacteria.

132
133 We evaluated the effect of BOS *in vivo* using a murine wound infection model with
134 VRE and MRSA. Wounds were infected with 10^6 colony-forming units (CFU) of VRE
135 or MRSA, and were simultaneously given a single dose intraperitoneally (IP) of BOS
136 (5 mg/kg in 30 μ L) or vehicle (DMSO) at the time of infection. Twenty-four hours post
137 infection (hpi), wounds were excised and CFU of VRE and MRSA were enumerated.
138 BOS treatment resulted in a reduction of VRE and MRSA CFU by 0.6-log and 1.2-log,
139 respectively, compared to vehicle-treated wounds (**Fig. 1C**). When five doses of BOS
140 were given IP, VRE CFU were reduced by 1.2-log (**Fig. S1B**). Alternatively, when
141 infected wounds were treated topically with a daily dose of 10 μ L PBS containing 0.52
142 μ g/ml of BOS for 5 days, VRE CFU were reduced by ~1.3-log as compared to PBS
143 treatment (**Fig. 1D**). Topical treatments of infected wounds with BOS resulted in
144 wound diameters that were half the size of vehicle-treated wounds, which correlated
145 with reduced bacterial burden (**Fig. S1C**). Furthermore, mice pretreated with a single
146 IP dose of BOS (5 mg/kg) 24h prior to infection had ~0.7-log fewer VRE CFU in
147 wounds at the end of the experiment as compared to vehicle-treated animals (**Fig.**
148 **S1D**), whereas a single topical dose of BOS, even at 10x higher concentration (5.2
149 μ g/ml), did not result in a significant reduction of the bacterial burden in the wounds
150 (**Fig. S2E**). Thus, BOS stimulates bacterial clearance *in vivo*.

151

152 To verify the requirement for macrophages in BOS-stimulated bacterial clearance *in*
153 *vivo*, we depleted macrophages by using liposomes containing clodronate
154 (clophosome-A (clop-A)) [23-25]. Mice were injected IP with clop-A (200 μ L, 6 mg/mL)
155 3 days prior to wounding and infection, with additional doses of clop-A on the day of
156 wounding and infection and every 2 days afterwards. In addition, clop-A (10 μ L, 6
157 mg/mL) was applied to the wounds every 2 days (**Fig. S1F**). Empty liposomes were
158 used as vehicle control. Following VRE infection, BOS (10 μ L, 0.52 μ g/ml) was applied
159 to the wounds daily for 5 days as above (**Fig. 1D**). Five days after wounding and
160 infection, mice were sacrificed, and wounds were excised and dissociated for
161 macrophage and CFU analysis. Among CD45 $^{+}$ leukocytes, the percentages of CD11b $^{+}$
162 F480 $^{+}$ macrophages, but not Ly6G $^{+}$ neutrophils, were reduced from ~55% in vehicle
163 treated mice to ~1.5 % in clop-A treated mice, regardless of BOS treatment,
164 suggesting successful depletion of macrophages from the wounds (**Fig. S1G-I**).
165 Without depletion of macrophages, BOS treatment reduced VRE CFU by ~1.3-log
166 (**Fig. 1E**). By contrast, with macrophage depletion, BOS did not significantly reduce
167 VRE CFU in the wounds as compared to either no macrophage depletion or PBS-
168 treated macrophage-depleted wounds (**Fig. 1E**). These results show that BOS-
169 stimulated clearance of bacterial infection *in vivo* is primarily mediated by
170 macrophages.

171

172 **BOS stimulates macrophage phagocytosis of bacteria through actin- 173 remodelling**

174 To elucidate the mechanisms by which BOS stimulates macrophage clearance of
175 bacteria, we first tested if BOS stimulates macrophage phagocytosis of bacteria.
176 RAW264.7 were pre-treated with BOS for 18 h and then incubated with Syto9-stained
177 VRE for 30 min. Uptake of fluorescent bacteria by macrophages was measured after
178 quenching extracellular bacterial fluorescence by trypan blue. Fluorescence intensity
179 was two times higher in RAW264.7 cells that were pre-treated with BOS than non-
180 treated cells (**Fig. 2A**), indicating phagocytosis of more VRE. Intracellular CFU were
181 also directly measured following 3 h of infection, washing, and antibiotic inhibition of
182 the extracellular bacteria for 30 min as described above. VRE CFU were 0.5-log higher
183 in BOS-pretreated macrophages than non-treated cells (**Fig. 2B**). BOS also stimulated
184 phagocytosis of bacteria by BMDM, THP-1 and HMDM (**Fig. S2A**).

185

186 To further probe BOS-stimulated phagocytosis, we added the actin polymerization
187 inhibitor Cytochalasin D (CytD) to RAW264.7 cells 30 min prior to infection with Syto9-
188 stained VRE, and analyzed bacterial phagocytosis by microscopy and flow cytometry.
189 CytD pre-treatment significantly inhibited phagocytosis of VRE by RAW264.7 cells
190 (**Fig. 2C and S2B-C**). We also treated RAW264.7 macrophages with BOS or the
191 vehicle control for 18 h, in the absence of infection, followed by phalloidin staining and
192 confocal microscopy. BOS-treated RAW264.7 macrophages displayed spikier
193 morphologies and long projections as compared to untreated cells (**Fig. 2D**). Similarly,
194 BOS-treated HMDM cells also exhibited elongated morphology (**Fig. S2D**), in
195 agreement with our previous observation [26].

196

197 Studies have shown that BOS inhibits the phosphorylation of the SRC-CK2-SLK
198 cascade [26]. Phosphorylation of SLK (also known as Ste20-like kinase) by CK2
199 inhibits SLK activity, SLK protein level, and, ultimately, its actin-remodelling activity
200 [27]. To test whether inhibition of SLK phosphorylation is involved in BOS-induced
201 actin-remodelling, we first determined whether BOS inhibits SLK phosphorylation. We
202 precipitated SLK with an anti-SLK antibody, followed by Western blotting with anti-
203 phosphoserine/threonine antibody. The level of SLK in RAW264.7 macrophages was
204 similar in the presence or the absence of BOS and/or bacteria (**Fig. 2E**). However,
205 with BOS treatment, SLK phosphorylation was greatly decreased (**Fig. 2F**).

206

207 SLK activity is also regulated by caspase 3 [28], which is known to be stimulated by
208 BOS [29]. In BOS-treated RAW264.7 macrophages, we observed an increase in the
209 level of activated (cleaved) caspase 3, but this increase was abolished when BOS-
210 treated macrophages were infected (**Fig. S2E**). Consistently, caspase 3 activity in cell
211 lysates, measured by cleavage of the substrate DEVD-AFC (free AFC emits a yellow-
212 green fluorescence), was significantly increased following BOS treatment, and was
213 inhibited with the use of caspase-3 inhibitor Z-DEVD-FMK (FMK) (**Fig. S2F**).

214

215 We further investigated the role of SLK and caspase 3 in phagocytosis and bacterial
216 killing by macrophages using SLK and caspase 3 inhibitors SLKi and FMK,
217 respectively. RAW264.7 macrophages were treated with BOS or vehicle alone plus or
218 minus SLKi, FMK, or both for 18h, followed by addition of Syto9-stained VRE for 30min

219 and flow cytometry. BOS-stimulated macrophage phagocytosis of VRE was partially
220 inhibited by SLKi and FMK, more potently inhibited by both, and most dramatically
221 inhibited by CytD (**Fig. 2G**). To assess intracellular bacterial killing, RAW264.7
222 macrophages were incubated with VRE for 3 h and then treated with BOS alone, BOS
223 plus SLKi or plus FMK, or BOS plus both SLKi and FMK for 15 h, in the presence of
224 gentamicin and penicillin, followed by quantification of intracellular CFU. BOS-
225 stimulated phagocytosis and subsequent bacterial killing was partially inhibited by
226 SLKi and FMK and completely inhibited by both inhibitors together compared to the
227 untreated control (**Fig. 2H**). Neither inhibitor compromised macrophage viability as
228 assessed by LDH assay (**Table S3**). Together, these results show that BOS stimulates
229 macrophage phagocytosis of bacteria by SLK-mediated actin remodelling.

230

231 **BOS induces macrophage expression of genes involved in bacterial uptake**

232 To gain deeper insight into the mechanism by which BOS stimulates macrophage
233 phagocytosis and subsequent killing of bacteria, we performed total RNA sequencing
234 of DMSO control or BOS-treated RAW264.7 cells (18 h). Overall, transcription of 141
235 genes was upregulated and transcription of 135 genes was downregulated following
236 BOS treatment (**Supplementary data 1**). Among the differentially expressed genes
237 (DEGs), pathways associated with cell-matrix adhesion, cell adhesion, and cell
238 migration were upregulated (**Fig. 3A**), in agreement with our results of BOS on cell
239 morphologies (**Fig. 2D**). Moreover, transcript levels of cell surface markers involved in
240 bacterial uptake, killing, and presentation, including CD80, CD11b and TLR4, were
241 significantly upregulated (by 1.06, 0.74, and 0.48-fold, respectively), while CD36 was
242 downregulated by 2.50-fold (**Table S4**). Consistently, flow cytometry staining
243 confirmed the increase of CD11b and TLR4 and decrease of CD36 on the surface of
244 BOS-treated macrophages (**Fig. S3A**). In addition, several other markers involved in
245 bacterial uptake and killing, including CD206, CD14, and Dectin-1, were increased
246 following BOS treatment (**Fig. 3B and S3A**). Similarly, CD14 and Dectin-1 levels were
247 also upregulated on macrophages isolated from wounds of mice following a single IP
248 injection of BOS (**Fig. 3C and S3B**). The overall percentage of macrophages and
249 neutrophils in uninfected wounds was not affected by BOS treatment (**Fig. 3D**). Thus,
250 although BOS does not stimulate recruitment of macrophages to the site of infection,
251 it stimulates transcription of genes involved in bacterial uptake, further supporting a
252 role for BOS in stimulating macrophage phagocytosis of bacteria.

253

254 **BOS stimulates macrophage killing of bacteria via reactive oxygen species**

255 Reactive oxygen species (ROS) and lysosomal activity are two crucial mechanisms of
256 intracellular bacterial killing by macrophages [7]. Following BOS treatment of
257 RAW264.7 cells, the phagolysosomal proteins LAMP-1, cathepsin B (CtsB), CtsD,
258 Rab5, Rab7 were unchanged, whereas levels of rubicon, a protein involved in non-
259 canonical phagocytosis, was elevated (**Fig. S4A**) [30]. It was previously reported that
260 BOS can induce leakage of lysosomal enzymes into cytosol [29]. However, addition
261 of CtsD and B inhibitors pepstatin A (Peps) and CA-074 into BOS-treated
262 macrophages did not affect the killing of intracellular bacteria (**Fig. S4B**).

263

264 To investigate the role of ROS in BOS-stimulated bacterial killing by macrophages, we
265 first tested if BOS induces ROS in macrophages, independent of infection. RAW264.7
266 macrophages were treated with BOS for 18 h, followed by quantification of DHR123
267 fluorescence. BOS stimulated ROS production, which was reduced by N-acetyl
268 cysteine (NAC) (**Fig. 4A**). Similarly, when ROS was measured by DCFDA
269 fluorescence, BOS also stimulated ROS production although the increase did not
270 reach significance (**Fig. 4B**). However, when BOS-treated RAW264.7 macrophages
271 were infected with VRE for 3 h, ROS level was significantly elevated, reaching the
272 level induced by TBHP. Live cell imaging using CellRox to label ROS, LysoTracker to
273 label lysosomes, CellTracker to label cells, and GFP-expressing VRE, supported that
274 BOS stimulates production of ROS, which often co-localized with lysosome (**Fig. S4C**).
275 In the presence of infection and BOS treatment, we observed more ROS, which was
276 co-localized with both lysosomes and bacteria. Consistently, when ROS was
277 quenched by either NAC or TEMPO, BOS-stimulated killing of bacteria by
278 macrophages was abolished (**Fig. 4B-C**). Thus, BOS stimulates macrophage killing of
279 phagocytosed bacteria by ROS.

280

281 **BOS promotes survival of infected macrophages**

282 To investigate the effect of infection and BOS treatment on macrophages, we also
283 performed RNA sequencing of VRE-infected RAW264.7 macrophages following 15 h
284 of BOS exposure, or DMSO control. Transcription of 40 genes was upregulated and
285 transcription of 99 genes was downregulated (**Supplementary data 2**). Among the
286 DEGs, pathways associated with microtubule-based processes and cytoskeleton

287 organization were upregulated (**Fig. 5A**), consistent with BOS-induced actin
288 remodelling. Pathways associated with stress responses (response to bacterium,
289 response to oxygen-containing compound, response to organic substance, and
290 cellular response to chemical stimulus) and protein metabolism (regulation of cellular
291 protein metabolic process and regulation of protein metabolic process) were also
292 upregulated (**Fig. 5A**), suggesting that BOS may affect survival of infected
293 macrophages.

294

295 To test this hypothesis, we monitored induction of apoptosis and membrane
296 permeability as an indication of cell viability in infected macrophages in the presence
297 or absence of BOS. While BOS did not affect RAW264.7 viability in the absence of
298 infection (**Fig. 5B**), Annexin V⁺ PI⁺ cells were significantly increased following infection.
299 BOS treatment of infected cells reduced the percentage of Annexin V⁺ PI⁺ cells by
300 ~50%, consistent with delayed apoptosis and prolonged viability. Similarly, BOS
301 exposure alone did not affect the level of phosphorylated MLKL (pMLKL), a marker of
302 necroptosis in macrophages [31] (**Fig. 5C and S5A**), VRE infection significantly
303 induced the level of pMLKL, and BOS treatment of infected cells reduced pMLKL by
304 ~30%.

305

306 Pathways associated with cytokine production and inflammatory response were also
307 upregulated in VRE-infected RAW264.7 macrophages that were treated with BOS
308 (**Fig. 5A**). Consistently, induction of NF- κ B activity as measured by reporter assay was
309 induced by VRE infection and further enhanced by BOS treatment (**Fig. 5D**). NF- κ B
310 activation can promote cell survival [32]; therefore, we measured the effect of an NF-
311 κ B inhibitor, the quinazoline derivative compound QNZ, on the survival of infected
312 macrophages with or without BOS treatment. 18h after VRE infection, the percentage
313 of Annexin V⁺ PI⁺ RAW264.7 macrophages was ~45%, which was reduced to 15% in
314 the presence of BOS (**Fig. S5B**). In the presence of QNZ, the percentage of Annexin
315 V⁺ PI⁺ of BOS-treated infected macrophages was increased to ~35%. Furthermore,
316 QNZ did not inhibit macrophage killing of VRE in the absence of BOS, but inhibited
317 BOS-stimulated macrophage killing of bacteria (**Fig. S5C**). Together, these results
318 show that BOS promotes survival of infected macrophages through NF- κ B regulated
319 pathways.

320

321 **Other Src kinase family inhibitors also stimulate macrophage killing of bacteria**

322 Our findings thus far suggest that inhibition of the SRC kinase in macrophages
323 improved bacterial uptake and elimination. Therefore, we tested whether other Src
324 family kinase inhibitors also promote macrophage killing of bacteria. RAW264.7
325 macrophages were infected with VRE for 3 h and then treated with DMAT (a CK2
326 inhibitor), saracatinib (SARA), dasatinib (DASA) and tirbanibulin (TIR), all inhibitors of
327 SRC. Although all four compounds stimulated RAW264.7 killing of bacteria, only
328 DMAT-stimulated killing reached statistical significance (**Fig. 6A**). However, both
329 DMAT and TIR stimulated significantly more killing of bacteria by HMDM *in vitro* (**Fig.**
330 **6B**). Similarly, a single IP dose (5mg/kg) of either DMAT or TIR reduced VRE CFU of
331 wound infection in mice by 1.5-log and 1-log, respectively (**Fig. 6C**). At the dosage
332 used, these compounds did not cause cell death as measured by the LDH assay
333 (**Table S4**). All four compounds, except DMAT, significantly stimulated phagocytosis
334 of bacteria by RAW 264.7 cells (**Fig. 6D**). Furthermore, all compounds stimulated the
335 expression of Dectin-1 (**Fig. 6E**), and DMAT, DASA and TIR also stimulated CD14
336 expression (**Fig. 6F**). Thus, other inhibitors of the Src family kinases also stimulate
337 macrophage killing of bacteria *in vitro* and *in vivo*.

338

339 **BOS and mitoxantrone are additive in promoting macrophage clearance of 340 bacteria**

341 We previously reported that mitoxantrone (MTX) stimulates macrophage killing of
342 bacteria by inducing the expression of lysosomal enzymes without inducing
343 phagocytosis [1]. Since BOS stimulates macrophage killing of bacteria by stimulating
344 phagocytosis without inducing expression of lysosomal enzymes, we tested whether
345 the two compounds are synergistic or additive in stimulating macrophage killing of
346 bacteria. RAW264.7 macrophages were infected with VRE or MRSA for 3 h and then
347 treated with BOS alone, or MTX alone, or both for 15h, followed by intracellular CFU
348 enumeration. BOS or MTX reduced VRE CFU by about 0.8-log whereas the two
349 compounds together reduced CFU by 2.3-log (**Fig. 6G**). Similarly, BOS or MTX
350 reduced MRSA CFU by about 1.2-log whereas the two compounds together reduced
351 CFU by 2.3-log (**Fig. 6H**). In the mouse model of wound infection with VRE, five
352 treatments with BOS alone (IP) or MTX alone (topical) reduced bacterial burden in the
353 wounds by 1.2-log and 1.6-log, respectively (**Fig. 6I**). Combination treatment with the

354 same dosing regimen reduced VRE CFU in wounds by 2.1-log. These results show
355 that BOS and MTX are additive and can be used in combination to improve bacterial
356 clearance *in vitro* and *in vivo*.

357

358 **Discussion**

359 Widespread antimicrobial resistance is a major global health challenge. Compounds
360 that enhance host immune responses are emerging as alternative approaches to treat
361 antibiotic resistant infections. BOS is a chemotherapeutic for treating adults with
362 Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia through its
363 inhibition of the SRC/ABL tyrosine kinases [33]. In this study, we show that BOS has
364 potential as a host-targeted therapy for the control of bacterial infection since it does
365 not possess antibiotic activity but enhances macrophage phagocytosis and
366 intracellular killing of bacteria, as well as the survival of infected macrophages.

367

368 We show that BOS stimulates macrophage clearance of bacterial infection both *in vitro*
369 and *in vivo*. BOS stimulated the effective clearance of VRE, MRSA, *P. aeruginosa* and
370 the multi-drug resistant *E. coli* strain 958 by the murine macrophage cell line
371 RAW264.7 *in vitro*. Similarly, BOS stimulated a significantly more effective clearance
372 of VRE by murine BMDM, the human monocytic cell line THP-1 and HMDM *in vitro*.
373 Pre-treatment of RAW264.7 and BMDM with BOS overnight was sufficient to enhance
374 bacterial killing. Furthermore, mice infected with VRE and treated with a single
375 intraperitoneal dose of BOS showed a significant reduction in bacterial load 24 h later.
376 A similar efficacious effect was also observed with multiple low-dose topical
377 applications on the infected wounds. Importantly, depletion of macrophages in the
378 wounds confirmed that these cells are required for BOS-stimulated bacterial
379 clearance.

380

381 We show that BOS stimulates bacterial clearance through three mechanisms. First,
382 BOS promotes macrophage phagocytosis of bacteria by inducing actin remodelling
383 and upregulating bacterial uptake markers. Studies have shown that BOS inhibits SRC
384 phosphorylation, affects actin remodelling, and affects cell morphology [26, 34]. Past
385 reports also showed that phosphorylation of SLK is dependent on the SRC-CK2-SLK
386 signalling pathway [27]. Moreover, SLK phosphorylation, together with caspase 3
387 activity, directly impacts SLK function [27, 28]. Consistent with these previous studies,

388 we showed that BOS treatment inhibits SLK phosphorylation, leading to extensive
389 actin remodeling, and increased phagocytosis activity, which were abolished by the
390 actin polymerization inhibitor Cytochalasin D and partially inhibited by SLK and
391 caspase 3 inhibitors. With this study, we provide enough evidence to fully bridge the
392 SRC-CK2-SLK phosphorylation cascade to actin remodelling and enhanced
393 phagocytic activity. Furthermore, we show that BOS treatment upregulates expression
394 of cell surface markers involved in bacterial uptake, killing, and presentation, including
395 CD80, CD11b, TLR4, CD206, CD14 and Dectin-1 both *in vitro* and *in vivo*. Together,
396 the increased recognition and uptake of bacteria, together with increased actin-
397 remodeling, likely result in the increased phagocytosis of bacteria by BOS-treated
398 macrophages, leading to more effective clearance of bacteria.

399

400 Second, BOS stimulates macrophage killing of phagocytosed bacteria via increased
401 production of reactive oxygen species. BOS stimulated macrophage ROS production
402 in the absence of infection and even more dramatically in the presence of infection.
403 Live cell imaging showed that ROS colocalized with bacteria in the lysosomes. When
404 ROS was quenched using NAC or TEMPO, intracellular bacterial killing was also
405 reduced, demonstrating a significant role of ROS in enhancing the bactericidal activity
406 of BOS-treated macrophages.

407

408 Third, BOS stimulates survival of infected macrophages, therefore clearance of
409 infection. Transcriptional profiling of infected BOS-treated macrophages showed that
410 pathways associated with stress responses and protein metabolism were upregulated.
411 Consistently, we observed reduced cell death of infected macrophages following BOS
412 treatment. As NF- κ B activation is known to promote cell survival [32], we directly
413 showed induction of NF- κ B activity by BOS using a reporter assay. Furthermore,
414 inhibition of NF- κ B activity by QNZ partially blocked the effect of BOS in promoting the
415 survival of infected macrophages and killing of bacteria. Together, these three
416 mechanisms contribute to the observed effect of BOS on promoting macrophage
417 clearance of bacterial infection.

418

419 We also observed enhanced phagocytic activity and intracellular bacterial killing by
420 other Src kinase inhibitors. DMAT inhibits the kinase CK2. Although CK2 is not strictly

421 considered part of the Src kinase family, it is a close partner downstream of different
422 pathways coordinated by Src family members [35]. DMAT stimulated clearance of
423 VRE by RAW264.7 cells *in vitro* and in a murine wound infection model. SARA, DASA
424 and TIR also inhibit SFKs. SARA is the most promiscuous of these inhibitors and can
425 inhibit several members of SFKs [36]. DASA and TIR are more specific to SRC [37,
426 38]. We showed that some of these inhibitors significantly stimulated phagocytosis of
427 bacteria by RAW 264.7 cells and the expression of Dectin-1. DMAT and TIR also
428 stimulated significantly more killing of bacteria by HMDM *in vitro* and a single IP dose
429 significantly reduced VRE burden in wound infection in mice. Interestingly, a previous
430 study showed that lower doses of DASA can help in a sepsis model of polymicrobial
431 infection and can enhance the phagocytic activity of neutrophils [18]. Since SRC-
432 mediated pathways can collaborate or interact with other signalling pathways, the
433 impact of inhibiting SRC likely varies in different cell types based on the level and
434 activity of SRC partners and the level of inhibition that can be achieved [8].
435 Nevertheless, the similar effects of other Src kinase inhibitors provide further support
436 for a critical role of the phosphorylation cascade axis SRC-CK2-SLK in mediating the
437 observed effect of BOS.

438

439 Finally, we show that BOS and mitoxantrone (MTX) exhibit an additive effect in
440 promoting macrophage clearance of bacterial infection both *in vitro* and *in vivo*. We
441 have previously shown that MTX, a chemotherapeutic used to treat advanced prostate
442 cancer and acute nonlymphocytic leukemia, has antibiotic activity as well as stimulates
443 macrophage recruitment to the site of infection and killing of bacteria by inducing the
444 expression of lysosomal enzymes [1]. In contrast, BOS stimulates phagocytosis,
445 intracellular ROS production and survival of infected macrophages. The observed
446 additive effect between BOS and MTX likely results from their non-overlapping effects
447 on macrophages. These findings open possibilities of reducing bacterial drug
448 resistance by combination use where BOS complements the action of other
449 compounds and antibiotics. As an adjuvant, BOS stimulates host macrophage
450 clearance of bacteria and therefore provides a valuable addition for therapies that aim
451 to target the bacteria in order to achieve complete elimination of infection [39]. Thus,
452 our study of BOS adds a new tool to combat bacterial drug-resistant by boosting host
453 innate immunity.

454

455

456 **Materials and Methods**

457

458 **Bacterial strains and growth conditions**

459 Bacterial strains used in this study are listed in **Table S1**. Bacterial strains were grown
460 using Brain Heart Infusion (BHI) broth and agar (Becton, Dickinson and Company).
461 Bacterial strains were streaked from glycerol stocks stored at -80 °C, inoculated and
462 grown overnight statically for 16-20 h either in 10 mL of liquid BHI broth or DMEM
463 (Gibco, high glucose and no sodium pyruvate) + 10% FBS medium. Cells were
464 harvested by centrifugation at 8000 RPM (25°C) for 5 min. The supernatant was
465 discarded, and the pellet was then resuspended in either DMEM + 10% FBS or sterile
466 PBS to an optical density at 600 nm (OD_{600nm}) of 0.7 for VRE, equivalent to 2–3×10⁸
467 colony forming units (CFU).

468

469 **Antimicrobial and minimum inhibitory concentration assays**

470 Bacterial growth assays were carried out in complete DMEM medium as described
471 previously [40]. 2 µl of overnight cultures grown in DMEM were added to 200 µl of
472 medium in a 96-well plate with increasing concentrations of BOS and/or antibiotics.
473 The OD₆₀₀ at the zero-time point was established. Bacteria were grown statically 96-
474 well plates at 37°C for up to 24 h. Final OD₆₀₀ measurements were acquired using a
475 Tecan M200 microplate reader.

476 **Human monocyte derived macrophages (HMDM) and cell lines**

477 Isolated peripheral blood (PB) primary human monocytes were purchased from
478 StemCells Technologies. For *in vitro* differentiation of monocytes into human
479 macrophages, isolated monocytes were cultured in complete RPMI1640
480 supplemented with 10% heat-inactivated fetal bovine serum (FBS) (PAA, GE
481 Healthcare), 2 mM L-glutamine (Corning) and 1% PenStrep solution (Gibco) in the
482 presence of 50 ng/mL recombinant human M-CSF (Biolegend) for 7 days. The
483 RAW264.7 murine macrophage-like cell line (InvivoGen), and the THP-1 monocytic
484 cells derived from an acute monocytic leukemia patient cell line (ATCC), were cultured
485 at 37°C in a 5% CO₂ humidified atmosphere. THP-1 cells were cultured in complete
486 RPMI1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS). THP-1
487 cells were differentiated to macrophages with 100 ng/mL phorbol-12-myristate 13-
488 acetate (PMA, Sigma-Aldrich) for 3 days. RAW264.7 cells were grown and maintained
489 in Dulbecco's modified Eagle's medium (DMEM) (Gibco, high glucose, no sodium
490 pyruvate) with 10% heat-inactivated FBS (PAA, GE Healthcare), and 100 U of
491 penicillin–streptomycin (Gibco, Thermo Fisher Scientific). The culture medium was
492 replaced every three days, and upon reaching 80% confluence, cultures were
493 passaged. RAW264.7 cells passaging was achieved by gentle cell scraping and
494 seeding cells at a density of 3x10⁶ cells/T75 flask (Nunc; Thermo Fisher Scientific).

495

496 **Mouse bone marrow-derived macrophages (BMDM)**

497 BMDMs were prepared as described previously [41]. Briefly, fresh bone marrow cells
498 were isolated from mice, plated in complete RPMI with 50 ng/mL recombinant M-CSF
499 (Biolegend) and cultured for 6 days with medium change every 3 days.

500

501 **Intracellular infection assay**

502 Intracellular infection assays were performed as described in [22] with some
503 modifications. Cells were seeded at a density of 10⁶ cells/well or 8x10⁵ cells/well in a
504 6-well or 96-well tissue culture plate (Nunc; Thermo Fisher Scientific), respectively,
505 and allowed to attach overnight at 37 °C in a 5 % CO₂ humidified atmosphere. Cells
506 were infected at a multiplicity of infection (MOI) of 10 for up to 3 h. Following infection,
507 the media was aspirated, and the cells were washed three times in PBS and incubated
508 with 150 µg/ml of gentamicin (Sigma-Aldrich) and 50 µg/ml penicillin G (Sigma-Aldrich)

509 to kill extracellular bacteria and BOS (0.52 µg/ml) in complete DMEM for 15-18 h to
510 selectively kill extracellular bacteria. The antibiotic-containing medium was then
511 removed, and the cells were washed 3 times in PBS before addition of 2% Triton X-
512 100 (Sigma-Aldrich) PBS solution to lyse the cells for enumeration of the intracellular
513 bacteria. Variations of this assay included pre-treatment of mammalian cells, prior to
514 bacterial infection, with BOS (0.52 µg/ml) followed by antibiotic treatment only, or co-
515 treatment of cells at the time of infection with 50mM of NAC (Sigma) and the
516 compounds listed in Table S4.

517

518 **Ethics statement**

519 All animal experiments were performed with approval from the Institutional Animal
520 Care and Use Committee (IACUC) in Nanyang Technological University, School of
521 Biological Sciences under protocol ARF-SBS/NIE-A19061.

522

523 **Mouse wound excisional model**

524 The procedure for mouse wound infections was modified from a previous study [42].
525 Briefly, male C57BL/6 mice (6-8 weeks old, 22 to 25 g; NTU, Singapore) were
526 anesthetized with 3% isoflurane. Following dorsal hair trimming, the skin was then
527 disinfected with 70% ethanol before creating a 6-mm full-thickness wound using a
528 biopsy punch (Integra Miltex). Bacteria (1×10^6 CFU) were added to the wound site.
529 Then, the wound site was sealed with a transparent dressing (Tegaderm 3M). The IP
530 injections of 30 µL of DMSO (vehicle), 30 µL BOS (5mg/kg), 30 µL DMAT (5mg/kg) or
531 30 µL TIR (5mg/kg) were performed prior to punching the wound. When preventive
532 treatment was tested, DMSO or BOS were injected 24 h before infection, and when
533 co-treatment with MTX was performed. When multiple treatments with BOS were
534 performed, an 8mm Finn Chamber on Scanpor was placed around the wound to
535 facilitate the removal of the transparent dressing for each treatment without disruption
536 of the underlying bacterial biofilm. In total, five daily treatments of BOS IP injections
537 (5mg/kg) were performed. Alternatively, five daily topical applications of 10 µL of PBS
538 or 10 µL BOS (0.52 µg/mL) and/or MTX (0.515 µg/mL) were applied on the wound.
539 After 24h or 4 days post-infection, mice were euthanized and a 1 cm by 1 cm squared
540 piece of skin surrounding the wound site was excised and collected in sterile PBS.

541 Skin samples were homogenized, and the viable bacteria enumerated by plating onto
542 BHI plates.

543

544 **Phagocytosis Assay**

545 *E. faecalis* V583 cells were fixed with 4% PFA for 15 min and washed thrice with PBS,
546 prior to labelling with the membrane-permeant DNA dye - Syto9 (Thermo Fisher
547 Scientific). Bacterial cells were then washed thrice with PBS and resuspended in
548 DMEM + 10% FBS. Cells were infected with MOI10 of Syto9-labelled bacterial cells
549 and incubated for 30 min to 1 hour at 37°C and 5% CO₂. Following supernatant
550 removal, infected cells were harvested and resuspended in PBS. The fluorescence of
551 bacteria either free in the medium or attached to host cell membranes were quenched
552 with a final concentration of 0.01 % trypan blue. As trypan blue cannot enter viable
553 eukaryotic cells, the unquenched fluorescence reflected the bacterial cells that were
554 internalized in viable cells. After staining, cells were immediately run through the flow
555 cytometer. All data were collected using the BD LSRFortessa X-20 Cell Analyzer and
556 analyzed with FlowJo V10.8.1 (BD Biosciences, USA). The samples were initially
557 gated side scatter area (SSC-A) by forward scatter area (FSC-A) to select the
558 macrophage populations. The cells' population was subsequently gated forward
559 scatter width (FSC-W) by side scatter area (SSC-A) to remove doublet populations.
560 The resulting singlet cell population was then assessed for Syto9 fluorescent marker.

561

562 **Western Immunoblotting**

563 Whole cell (WC) lysates were prepared by adding 488 µl of RIPA buffer (50 mM Tris-
564 HCl, pH 8.0; 1 % Triton X-100; 0.5 % Sodium deoxycholate; 0.1 % SDS; 150 mM
565 NaCl) to the wells after intracellular infection assays, where cells were scraped and
566 kept in RIPA buffer for 30 min at 4 °C. Prior to the addition of 74.5 µl of 1 M DTT and
567 187.5 µl NuPAGE LDS Sample Buffer (4X) (Thermo Fisher Scientific), cells were
568 further mechanically disrupted by passing the lysate through a 26g size needle.
569 Samples were then heated to 95°C for 5 min. 15 µl of cell lysate proteins were then
570 separated in a 4–12% (w/v) NuPAGE Bis-Tris protein gel and transferred to PVDF
571 membranes. Membranes were incubated with Tris-buffered saline, TBS (50 mM Tris,
572 150 mM NaCl, pH 7.5) containing 0.1% (v/v) Tween-20 (TBST) and 5% (w/v) BSA for

573 1 h at room temperature. Membranes were incubated with 1:1000 primary antibodies
574 in TBST containing 1% (w/v) BSA overnight at 4°C. Membranes were washed for 60
575 min with TBST at room temperature and then incubated for 2h at room temperature
576 with goat anti-rabbit (H+L) HRP-linked secondary antibody (Invitrogen) or goat anti-
577 mouse HRP-linked secondary antibodies (Invitrogen). After incubation, membranes
578 were washed with TBST for 30 min and specific protein bands were detected by
579 chemiluminescence using SuperSignal West Femto maximum sensitivity substrate
580 (Thermo Fisher Scientific. All primary antibodies used in this study were monoclonal
581 antibodies raised in rabbits except for the monoclonal antibody anti-
582 phosphoserine/threonine which was raised in mice. All primary antibodies but anti-
583 Nox2 (Invitrogen), polyclonal anti-SLK (Thermo Fisher Scientific) and anti-
584 phosphoserine/threonine (Thermo Fisher Scientific) were purchased from Cell
585 Signaling Technology.

586

587 **Immunoprecipitation of SLK from RAW264.7 cells**

588 Samples were immuno-precipitated with Protein A/G Mag Sepharose (Abcam) and
589 polyclonal anti-SLK (Thermo Fisher Scientific) according to the beads' manufacturer's
590 instructions. Following incubation of 20 µl of magnetic bead slurry with 5 µg of anti-
591 SLK for 1h at room temperature, 500 µl of whole cell lysates of BOS-treated or non-
592 treated RAW264.7 cells in RIPA buffer was added and incubated overnight at 4°C.
593 Using a magnetic particle concentrator, beads were washed twice with PBS and SLK
594 recovered following the addition of 100 µl 0.1M glycine-HCl (pH 2.5 to 3.1). Samples
595 were then subjected to western blot for detection of phosphoserine/threonine.

596

597 **Caspase-3 activity assay**

598 Caspase 3 activity was measured using the Caspase-3 Activity Assay Kit
599 (Fluorometric) (Abcam) as per the manufacturer's instructions. Cells were treated with
600 BOS overnight prior to caspase 3 activity measurement. FMK caspase inhibitor (50
601 mM) was added as negative control.

602

603

604 **Fluorescence Staining**

605 Cells were seeded at 2×10^5 cells/well in a 24-well plate with 10 mm coverslips, and
606 allowed to attach overnight at 37°C and 5 % CO₂. Vehicle (DMSO) or BOS treatment
607 was performed overnight prior to fixation with 4% PFA at 4°C for 15 min. Cells were
608 then blocked with PBS supplemented with 0.1% saponin and 2% bovine serum
609 albumin (BSA). For actin labelling, the phalloidin–Alexa Fluor 555 conjugate (Thermo
610 Fisher Scientific) was diluted 1:40 in blocking solution and incubated for 1h. Coverslips
611 were then washed 3 times in PBS with 0.1 % saponin. For nuclei staining, Hoechst
612 33342 was added in a dilution of 1:1000. Coverslips were then subjected to a final
613 wash with PBS, thrice. Finally, the coverslips were mounted with SlowFade Diamond
614 Antifade (Thermo Fisher Scientific) and sealed. When bacteria were visualised,
615 infection with VRE expressing episomally encoded GFP (pDasherGFP) [43] was
616 performed with MOI10 for 1 h. Similarly, when ROS and lysosomes were visualized
617 using CellRox at final concentration of 5 μ M (Invitrogen) and LysoTracker at a final
618 concentration of 50 nM (Invitrogen), an hour incubation was performed before live
619 imaging of these cells, which were not mounted. Celltracker was added at a final
620 concentration of 2.5 μ M, the night before ROS and lysosomes were visualised.
621 Confocal images were then acquired on a 63x/NA1.4, Plan Apochromat oil objective
622 fitted onto an Elyra PS.1 with LSM 780 confocal unit (Carl Zeiss), using the Zeiss Zen
623 Black 2012 FP2 software suite. Laser power and gain were kept constant between
624 experiments. Z-stacked images were processed using Zen 2.1 (Carl Zeiss). Acquired
625 images were visually analyzed using ImageJ [44].

626

627 **Flow cytometry**

628 Flow cytometry was performed as described in [22] with some modifications. Excised
629 skin samples were placed in 1.5 ml Eppendorf tubes containing 2.5 U/ml liberase
630 prepared in DMEM with 500 μ g/ml of gentamicin and penicillin G (Sigma-Aldrich). The
631 mixture was then transferred into 6-well plates and incubated for 1 h at 37°C in a 5%
632 CO₂ humidified atmosphere with constant agitation. Dissociated cells were then
633 passed through a 70 μ m cell strainer to remove undigested tissues and spun down at
634 1350 RPM for 5 min at 4°C. The enzymatic solution was then aspirated, and cells were
635 blocked in 500 μ l of FACS buffer (2% FBS and 0.2 mM ethylenediaminetetraacetic

636 acid (EDTA) in PBS (Gibco, Thermo Fisher Scientific)). 10^7 cells per sample were then
637 incubated with 10 μ l of Fc-blocker (anti-CD16/CD32 antibody, Biolegend) for 30 min,
638 followed by incubation with an anti-mouse CD45, CD11b, and Ly6G (neutrophils), or
639 CD45, CD11b and F4/80 (macrophages) plus CD14, Dectin-1, CD80, CD36, TIM-4,
640 TLR-4, TLR-2, CD86, MHCII, CD163, or CD206 markers conjugated antibodies
641 (Biolegend) (1:100 dilution) for 30 min at room temperature. Cells were then
642 centrifuged at 500 \times g for 5 min at 4 °C and washed in FACS buffer. Cells were fixed
643 in 4 % PFA for 15 min at 4 °C, before final wash in FACS buffer and final resuspension
644 in this buffer. Following which, cells were analysed using a BD LSRFortessa X-20 Cell
645 Analyzer (Becton Dickinson). Compensation was done using AbC Total Antibody
646 Compensation Bead Kit (Thermo Fisher Scientific) as per manufacturer's instructions.
647 A similar but simplified procedure starting with the incubation of cells with the Fc-
648 blocker was performed to evaluate the BOS effect over cell lines and primary cells.

649

650 **LDH cell viability assay**

651 As described before [45], post intracellular infection assays, culture supernatants were
652 collected from each well to measure lactate dehydrogenase (LDH) release by using
653 an LDH cytotoxicity assay (Clontech) according to the manufacturer's instructions.
654 Background LDH activity was determined using mock (PBS)-treated RAW264.7 cells.
655 Maximal LDH activity was determined by lysing cells with 1% Triton X. The percentage
656 of cytotoxicity was calculated as follows: % cytotoxicity = [(sample absorbance –
657 background absorbance)/(maximal absorbance – background absorbance)] \times 100.

658

659 **Mammalian cell reactive oxygen species quantification**

660 Mammalian cells were seeded at a density of 1×10^6 in a 6-well tissue culture plate
661 (Black Nunc; Thermo Fisher Scientific), respectively and allowed to attach overnight
662 at 37°C in a 5% CO₂ humidified atmosphere. BOS treatment was done overnight, and
663 infection with VRE was performed for 3h prior to measuring ROS using the DCFDA /
664 H2DCFDA kit (Abcam) as per the manufacturer's instructions. TBHP (100 μ M) was
665 used as positive control. Plates were incubated with no shaking at 37°C. DHR123
666 (Sigma) was also used to quantify ROS. Briefly, DHR123 was added to each well to a
667 final concentration of (50 μ M) after overnight incubation with BOS (0.52 μ g/ml) and/or

668 NAC (5 mM). In the end, cells were detached from the 6-well plate using a cell scrapper
669 and the fluorescence was measured using a BD LSRLFortessa X-20 Cell Analyzer
670 (Becton Dickinson) to determine cellular ROS levels.

671

672 **RNA isolation, sequencing, and data analysis**

673 RNAs were extracted with RNeasy MinElute Kit (Qiagen), converted into cDNA and
674 sequenced using an Illumina Hiseq®2500 v.2 (Illumina, Singapore), 150 bp paired-
675 end. RNA-seq data were aligned to the mouse genome (version mm10) and raw
676 counts of each gene of each sample were calculated with bowtie2 2.2.3 [46] and
677 RSEM 1.2.1555 [47]. Differential expression analysis was performed using the
678 program edgeR at $P < 0.05$ with a two fold-change [48]. The gene expression level
679 across different samples was normalized and quantified using the function of cpm.
680 DEGs were annotated using online functional enrichment analysis tool DAVID
681 (<http://david.ncifcrf.gov/>) [49]. Gene set enrichment analysis were performed with
682 GSEA [50] with FDR q-value < 0.05 . Histograms were generated using Prism 9.2.0
683 (Graphpad).

684

685 **NF-κB reporter assay**

686 This assay was performed as described in [45] using RAW-blue cells (InvivoGen). Post
687 treatment of RAW267.4 cells for 15h with BOS (0.52 μ g/ml) or LPS (100 ng/mL) and
688 IFN- γ (50 ng/mL) or IL-4 (10 ng/mL) and IL-13 (10 ng/mL) with or without VRE
689 infection, 20 μ l of supernatant was added to 180 μ l of Quanti-Blue reagent (Invivogen)
690 and incubated overnight at 37°C. SEAP levels were determined at 640 nm by using a
691 Tecan M200 microplate reader.

692

693 **Annexin V apoptosis assay**

694 Annexin V apoptosis assay was performed as per manufacturer's instructions (BD
695 Bioscience). Cells were analysed post infection and BOS treatment within 1h post
696 Annexin V and PI staining.

697

698 **Statistical analysis**

699 Statistical analysis was done using Prism 9.2.0 (Graphpad). We used non-parametric
700 Mann-Whitney Test to compare ranks, and one-way analysis of variance (ANOVA)
701 with appropriate post-tests, as indicated in the figure legend for each figure (unless
702 otherwise stated) to analyze experimental data comprising 3 independent biological
703 replicates, where each data point is typically the average of a minimum 2 technical
704 replicates (unless otherwise noted). In all cases, a p-value of ≤ 0.05 was considered
705 statistically significant.

706

707 **Data and materials availability**

708 All data associated with this study are present in the paper or the Supplementary
709 Materials.

710

711 **Acknowledgments:**

712 We thank Ms Rachel Tan Jing Wen for support with animal work.

713

714 **Funding:**

715 The study was supported by the National Research Foundation, Prime Minister's
716 Office, Singapore, under its Campus for Research Excellence and Technological
717 Enterprise (CREATE) program, through core funding of the Singapore-MIT Alliance
718 for Research and Technology (SMART) Antimicrobial Resistance Interdisciplinary
719 Research Group (AMR IRG), and partly by the National Research Foundation and
720 Ministry of Education Singapore under its Research Centre of Excellence Programme
721 and by the Singapore Ministry of Education under its Tier 2 program (MOE2019-T2-2-
722 089) awarded to K.A.K. The funders had no role in study design, data collection and
723 analysis, decision to publish, or preparation of the manuscript.

724

725 **Author contributions:** R.A.G.D.S. and C.J.S. performed experiments. R.A.G.D.S.,
726 C.J.S. and G.H. analyzed data. R.A.G.D.S., K.A.K. and J.C. interpreted the results.
727 R.A.G.D.S., K.A.K. and J.C. designed the experiments and devised the project.
728 R.A.G.D.S., K.A.K. and J.C. wrote the manuscript. All authors reviewed and approved
729 the final manuscript.

730

731 **Conflict of interest:** The authors declare no competing interest.

732

733 **References:**

734 1 da Silva, R.A.G., *et al.* (2023) Mitoxantrone targets both host and bacteria to overcome vancomycin
735 resistance in *Enterococcus faecalis*. *Sci Adv* 9, eadd9280

736 2 Baxt, L.A., *et al.* (2013) Bacterial subversion of host innate immune pathways. *Science* 340, 697-701

737 3 Thakur, A., *et al.* (2019) Intracellular Pathogens: Host Immunity and Microbial Persistence
738 Strategies. *J Immunol Res* 2019, 1356540

739 4 Rosales, C. and Uribe-Querol, E. (2017) Phagocytosis: A Fundamental Process in Immunity. *Biomed
740 Res Int* 2017, 9042851

741 5 Freeman, S.A. and Grinstein, S. (2014) Phagocytosis: receptors, signal integration, and the
742 cytoskeleton. *Immunol Rev* 262, 193-215

743 6 Desjardins, M. (1995) Biogenesis of phagolysosomes: the 'kiss and run' hypothesis. *Trends Cell Biol*
744 5, 183-186

745 7 Uribe-Querol, E. and Rosales, C. (2020) Phagocytosis: Our Current Understanding of a Universal
746 Biological Process. *Front Immunol* 11, 1066

747 8 Pelaz, S.G. and Tabernero, A. (2022) Src: coordinating metabolism in cancer. *Oncogene* 41, 4917-
748 4928

749 9 Amata, I., *et al.* (2014) Phosphorylation of unique domains of Src family kinases. *Front Genet* 5, 181

750 10 Ortiz, M.A., *et al.* (2021) Src family kinases, adaptor proteins and the actin cytoskeleton in
751 epithelial-to-mesenchymal transition. *Cell Commun Signal* 19, 67

752 11 Roskoski, R., Jr. (2015) Src protein-tyrosine kinase structure, mechanism, and small molecule
753 inhibitors. *Pharmacol Res* 94, 9-25

754 12 Thomas, S.M. and Brugge, J.S. (1997) Cellular functions regulated by Src family kinases. *Annu Rev
755 Cell Dev Biol* 13, 513-609

756 13 Byeon, S.E., *et al.* (2012) The role of Src kinase in macrophage-mediated inflammatory responses.
757 *Mediators Inflamm* 2012, 512926

758 14 Parsons, S.J. and Parsons, J.T. (2004) Src family kinases, key regulators of signal transduction.
759 *Oncogene* 23, 7906-7909

760 15 Angelucci, A. (2019) Targeting Tyrosine Kinases in Cancer: Lessons for an Effective Targeted
761 Therapy in the Clinic. *Cancers (Basel)* 11

762 16 Garcia-Carceles, J., *et al.* (2022) Kinase Inhibitors as Underexplored Antiviral Agents. *J Med Chem*
763 65, 935-954

764 17 Chu, J.J. and Yang, P.L. (2007) c-Src protein kinase inhibitors block assembly and maturation of
765 dengue virus. *Proc Natl Acad Sci U S A* 104, 3520-3525

766 18 Goncalves-de-Albuquerque, C.F., *et al.* (2018) The Yin and Yang of Tyrosine Kinase Inhibition
767 During Experimental Polymicrobial Sepsis. *Front Immunol* 9, 901

768 19 Abram, C.L. and Lowell, C.A. (2008) The diverse functions of Src family kinases in macrophages.
769 *Front Biosci* 13, 4426-4450

770 20 Rusconi, F., *et al.* (2014) Bosutinib : a review of preclinical and clinical studies in chronic
771 myelogenous leukemia. *Expert Opin Pharmacother* 15, 701-710

772 21 Keller, G., *et al.* (2009) Bosutinib: a dual SRC/ABL kinase inhibitor for the treatment of chronic
773 myeloid leukemia. *Expert Rev Hematol* 2, 489-497

774 22 da Silva, R.A.G., *et al.* (2022) *Enterococcus faecalis* alters endo-lysosomal trafficking to replicate
775 and persist within mammalian cells. *PLoS Pathog* 18, e1010434

776 23 Moreno, S.G. (2018) Depleting Macrophages In Vivo with Clodronate-Liposomes. *Methods Mol
777 Biol* 1784, 259-262

778 24 Van Rooijen, N. and Sanders, A. (1994) Liposome mediated depletion of macrophages:
779 mechanism of action, preparation of liposomes and applications. *J Immunol Methods* 174, 83-93
780 25 van Rooijen, N., *et al.* (1996) Apoptosis of macrophages induced by liposome-mediated
781 intracellular delivery of clodronate and propamidine. *J Immunol Methods* 193, 93-99
782 26 Hu, G., *et al.* (2021) High-throughput phenotypic screen and transcriptional analysis identify new
783 compounds and targets for macrophage reprogramming. *Nat Commun* 12, 773
784 27 Chaar, Z., *et al.* (2006) v-Src-dependent down-regulation of the Ste20-like kinase SLK by casein
785 kinase II. *J Biol Chem* 281, 28193-28199
786 28 Sabourin, L.A., *et al.* (2000) Caspase 3 cleavage of the Ste20-related kinase SLK releases and
787 activates an apoptosis-inducing kinase domain and an actin-disassembling region. *Mol Cell Biol* 20,
788 684-696
789 29 Noguchi, S., *et al.* (2018) Bosutinib, an SRC inhibitor, induces caspase-independent cell death
790 associated with permeabilization of lysosomal membranes in melanoma cells. *Vet Comp Oncol* 16,
791 69-76
792 30 Heckmann, B.L. and Green, D.R. (2019) LC3-associated phagocytosis at a glance. *J Cell Sci* 132
793 31 Martinez-Osorio, V., *et al.* (2023) The Many Faces of MLKL, the Executor of Necroptosis. *Int J Mol
794 Sci* 24
795 32 Luo, J.L., *et al.* (2005) IKK/NF-kappaB signaling: balancing life and death--a new approach to
796 cancer therapy. *J Clin Invest* 115, 2625-2632
797 33 Cortes, J.E., *et al.* (2018) Bosutinib Versus Imatinib for Newly Diagnosed Chronic Myeloid
798 Leukemia: Results From the Randomized BFORE Trial. *J Clin Oncol* 36, 231-237
799 34 Wagner, S., *et al.* (2002) Association of the Ste20-like kinase (SLK) with the microtubule. Role in
800 Rac1-mediated regulation of actin dynamics during cell adhesion and spreading. *J Biol Chem* 277,
801 37685-37692
802 35 Donella-Deana, A., *et al.* (2003) Tyrosine phosphorylation of protein kinase CK2 by Src-related
803 tyrosine kinases correlates with increased catalytic activity. *Biochem J* 372, 841-849
804 36 Green, T.P., *et al.* (2009) Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530.
805 *Mol Oncol* 3, 248-261
806 37 Fallah-Tafti, A., *et al.* (2011) Thiazolyl N-benzyl-substituted acetamide derivatives: synthesis, Src
807 kinase inhibitory and anticancer activities. *Eur J Med Chem* 46, 4853-4858
808 38 Lombardo, L.J., *et al.* (2004) Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)-
809 piperazin-1-yl)-2-methylpyrimidin-4- yl amino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl
810 kinase inhibitor with potent antitumor activity in preclinical assays. *J Med Chem* 47, 6658-6661
811 39 Dhanda, G., *et al.* (2023) Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic
812 Resistance. *ACS Omega* 8, 10757-10783
813 40 Juttukonda, L.J., *et al.* (2020) A Small-Molecule Modulator of Metal Homeostasis in Gram-Positive
814 Pathogens. *mBio* 11
815 41 Murray, P.J. (2017) Macrophage Polarization. *Annu Rev Physiol* 79, 541-566
816 42 Chong, K.K.L., *et al.* (2017) Enterococcus faecalis Modulates Immune Activation and Slows Healing
817 During Wound Infection. *J Infect Dis* 216, 1644-1654
818 43 Hallinen, K.M., *et al.* (2020) Fluorescent reporter plasmids for single-cell and bulk-level
819 composition assays in *E. faecalis*. *PLoS One* 15, e0232539
820 44 Schneider, C.A., *et al.* (2012) NIH Image to ImageJ: 25 years of image analysis. *Nat Methods* 9,
821 671-675
822 45 Tien, B.Y.Q., *et al.* (2017) Enterococcus faecalis Promotes Innate Immune Suppression and
823 Polymicrobial Catheter-Associated Urinary Tract Infection. *Infect Immun* 85
824 46 Langmead, B., *et al.* (2009) Ultrafast and memory-efficient alignment of short DNA sequences to
825 the human genome. *Genome Biol* 10, R25
826 47 Li, B. and Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or
827 without a reference genome. *BMC Bioinformatics* 12, 323

828 48 Robinson, M.D., *et al.* (2010) edgeR: a Bioconductor package for differential expression analysis of
829 digital gene expression data. *Bioinformatics* 26, 139-140

830 49 Huang, D.W., *et al.* (2007) The DAVID Gene Functional Classification Tool: a novel biological
831 module-centric algorithm to functionally analyze large gene lists. *Genome Biol* 8, R183

832 50 Subramanian, A., *et al.* (2005) Gene set enrichment analysis: a knowledge-based approach for
833 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* 102, 15545-15550

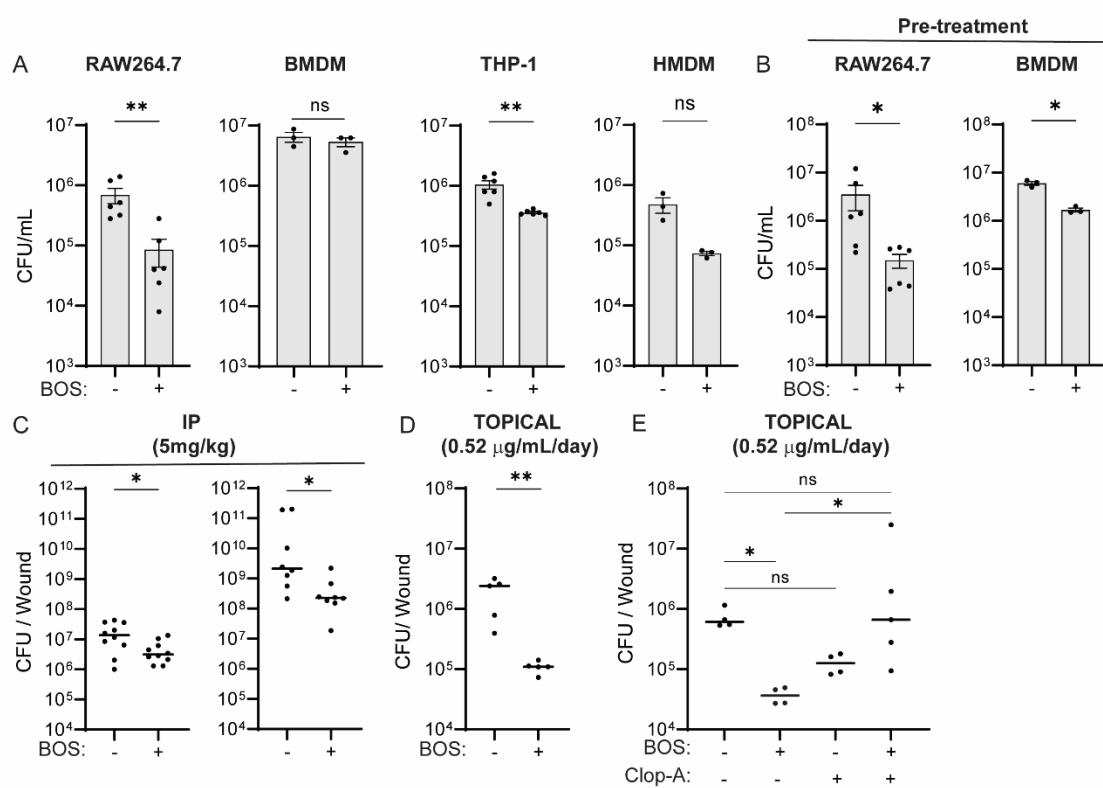
834 51 Bourgogne, A., *et al.* (2008) Large scale variation in *Enterococcus faecalis* illustrated by the
835 genome analysis of strain OG1RF. *Genome Biol* 9, R110

836 52 McDougal, L.K., *et al.* (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant
837 *Staphylococcus aureus* isolates from the United States: establishing a national database. *J Clin
838 Microbiol* 41, 5113-5120

839 53 Totsika, M., *et al.* (2011) Insights into a multidrug resistant *Escherichia coli* pathogen of the
840 globally disseminated ST131 lineage: genome analysis and virulence mechanisms. *PLoS One* 6,
841 e26578

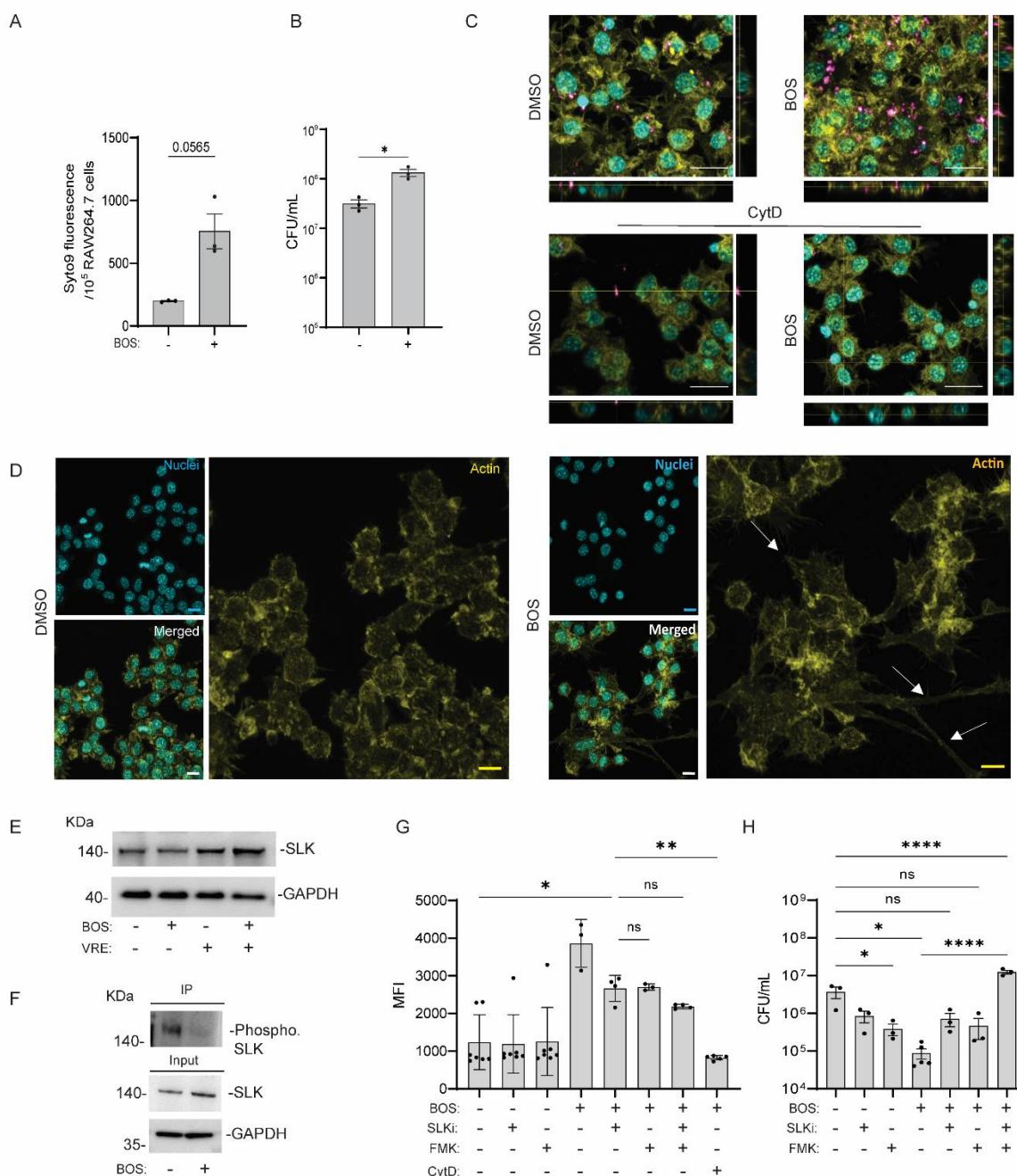
842 54 Hentzer, M., *et al.* (2002) Inhibition of quorum sensing in *Pseudomonas aeruginosa* biofilm
843 bacteria by a halogenated furanone compound. *Microbiology (Reading)* 148, 87-102

844


845

846

847


848

849 **Figures**

850

851 **Figure 1- BOS enhances macrophage killing of intracellular bacteria *in vitro* and**
852 ***in vivo*. (A)** Comparison of VRE CFU in RAW264.7, BMDM, THP-1, and HMDM cells
853 treated with BOS for 15 h after initial infection of 3 h (0.52 µg/mL). **(B)** Comparison of
854 VRE CFU in overnight BOS-pretreated RAW264.7 and BMDM cells. Data shown
855 (mean ± SEM) is summary of at least three independent experiments (A-B). **(C)**
856 Comparison of VRE (left) or MRSA (right) CFU per infected wound from animals
857 treated with a single IP injection of either vehicle (DMSO) or BOS (5 mg/kg in 30 µL
858 DMSO). **(D)** Comparison of VRE CFU per infected wound treated with five topical
859 doses of vehicle (PBS) or BOS (0.52 µg/ml). **(E)** Comparison of VRE CFU per wound
860 treated with five topical doses of vehicle or BOS with or without macrophage depletion
861 with Clop-A. Each symbol represents one mouse with the median indicated by the
862 horizontal line. Data were from two independent experiments with two to five mice per
863 experiment. Statistical analysis was performed using unpaired t test with Welch's
864 corrections (A-B), the nonparametric Mann-Whitney test to compare ranks (C-D), and
865 ordinary one-way ANOVA, followed by Tukey's multiple comparison test (E). For all
866 analyses, NS denotes not significant; *P ≤ 0.05 and **P ≤ 0.01.

867

868 **Figure 2- BOS stimulates macrophage phagocytosis of bacteria through actin**
 869 **remodelling. (A)** Comparison of uptake of SYTO9-labelled VRE by RAW264.7

870 macrophages with or without BOS pre-treatment. RAW264.7 macrophages with or

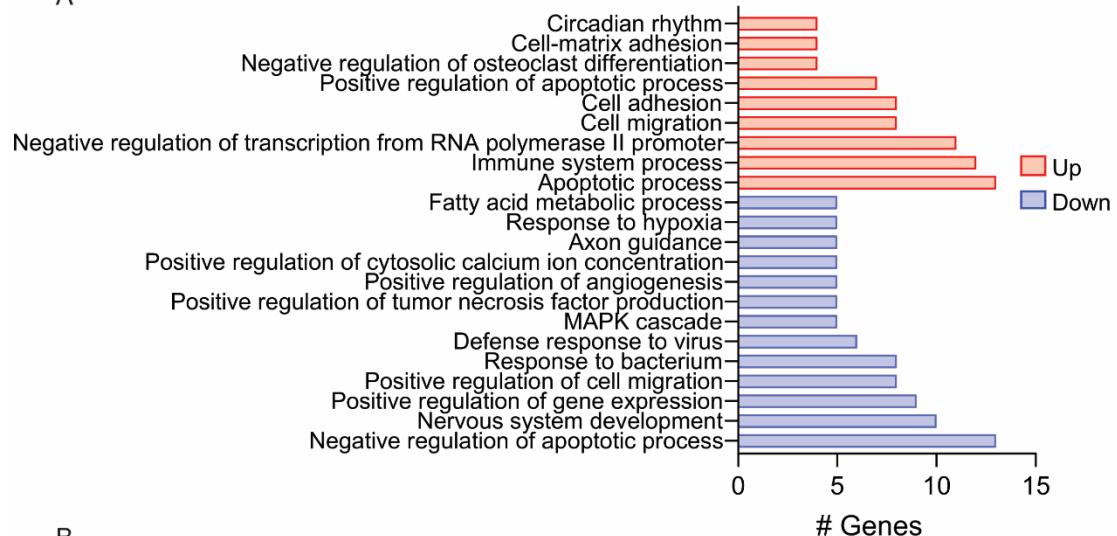
871 without BOS pre-treatment were infected for 1 h with SYTO9-labelled VRE, followed

872 by quenching extracellular fluorescence with trypan blue, and fluorescence intensity

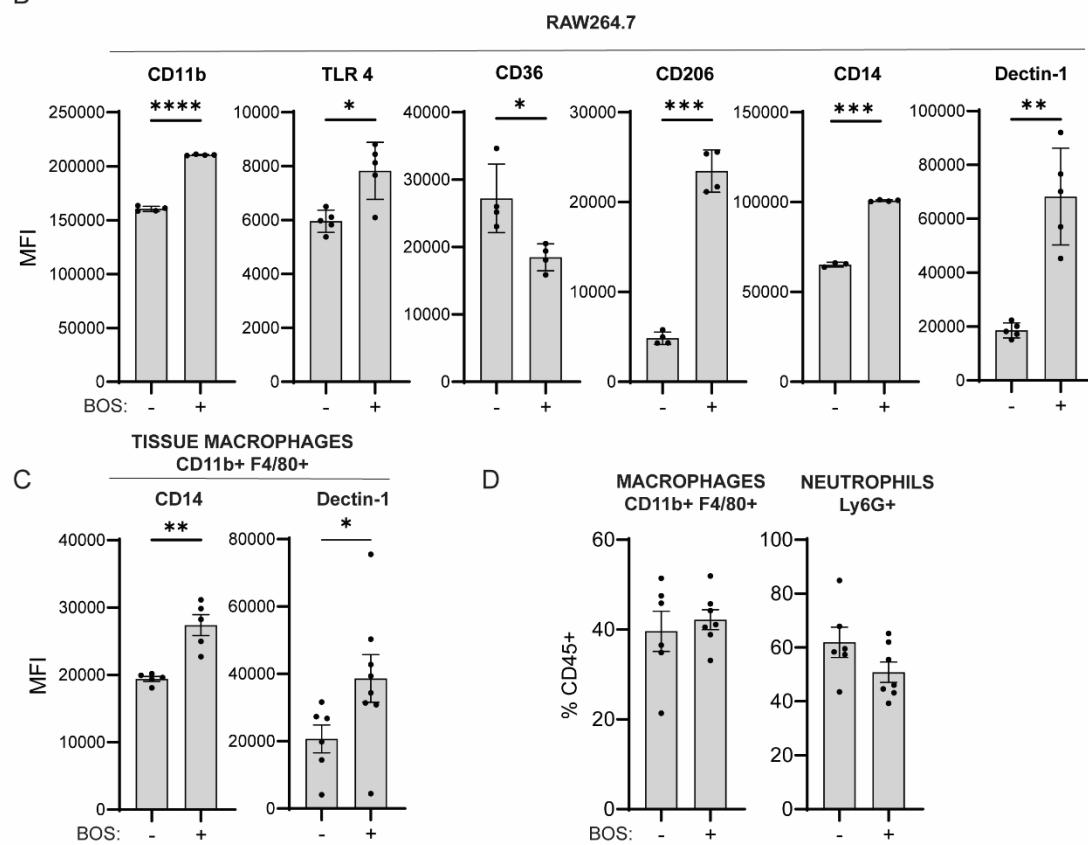
873 measurement by plate reader. **(B)** Comparison of VRE CFU after 1 h infection of

874 RAW264.7 macrophages with or without BOS pre-treatment. Data (mean \pm SEM) are

875 summary of at least three independent experiments (A-B). **(C)** Representative CLSM


876 images and orthogonal views of SYTO9-labelled VRE (pink) infected RAW264.7
877 macrophages with and without BOS pretreatment. CytD (40 μ M) was added 30 min
878 prior to infection. Samples were stained with phalloidin for actin visualization and
879 Hoechst 33342 for DNA visualization. **(D)** Representative CLSM images of DMSO (left
880 panels) or BOS (right panels) treated RAW264.7 macrophages that were stained with
881 phalloidin (actin) and Hoechst 33342 (no infection). White arrows point to examples of
882 cell projections. Images are maximum intensity projections of the optical sections (0.64
883 μ m z-volume) and are representative of 3 independent experiments (C-D). Scale bar:
884 20 μ m. **(E)** Western blotting analysis of SLK levels in whole-cell lysates. RAW264.7
885 cells with (+) and without (−) VRE infection were treated with BOS (+) or left untreated
886 (−) and the lysates were subjected to Western blotting with anti-SLK and anti-GAPDH
887 antibodies. **(F)** Immunoprecipitation of phosphorylated SLK in RAW264.7 cells
888 following BOS treatment. RAW264.7 cells were treated with BOS (+) or left untreated
889 (−), cell lysates were precipitated with anti-SLK antibody, followed by Western blotting
890 with anti-phosphoserine/threonine antibody (top). Whole-cell lysates used for
891 immunoprecipitation were subjected to Western blotting with anti-SLK and anti-
892 GAPDH antibodies (bottom). **(G)** Inhibition of BOS-stimulated phagocytosis by various
893 inhibitors. RAW264.7 macrophages with and without BOS pre-treatment were infected
894 for 1h with SYTO9-labelled VRE in the presence or absence of various inhibitors.
895 Samples were quenched with trypan blue followed by flow cytometry. Mean
896 Fluorescence Intensity (MFI) is shown for samples that were not treated (DMEM) or
897 pre-treated overnight with BOS (0.52 μ g/mL), SLKi (1 μ M), FMK (50 μ M) alone or in
898 combination. CytD (40 μ M) was added 30min prior to VRE infection. **(H)** Inhibition of
899 BOS-stimulated phagocytosis by various inhibitors. RAW264.7 cells were infected with
900 VRE in the presence of BOS (0.52 μ g/mL), SLKi (1 μ M), FMK (50 μ M) alone or in
901 combination. Intracellular bacterial CFU was quantified after 18h. Data (mean \pm SEM)
902 are a summary of at least three independent experiments. Statistical analysis was
903 performed using unpaired t test with Welch's corrections (A-B), using ordinary one-
904 way ANOVA, followed by Tukey's multiple comparison test (G-H); NS, P > 0.05; *P \leq
905 0.05, **P \leq 0.01, and ****P \leq 0.0001.

906

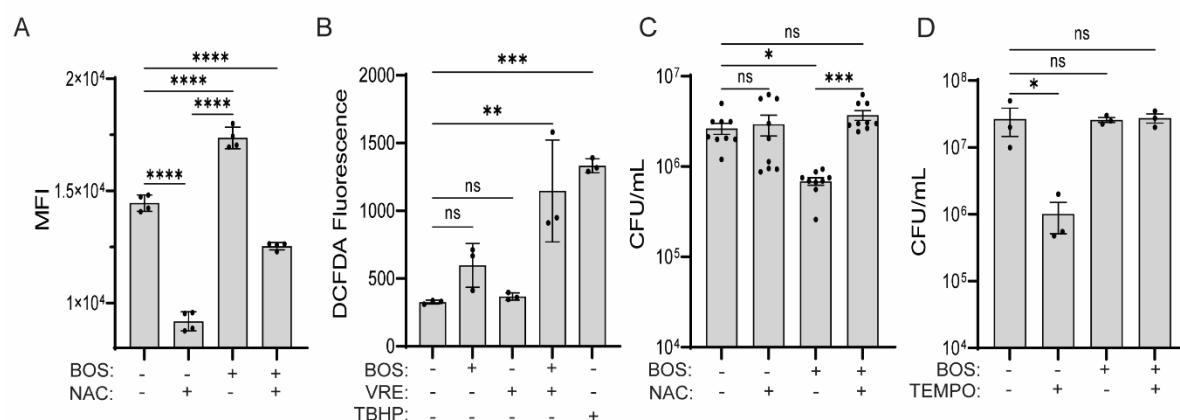

907

908

A

B

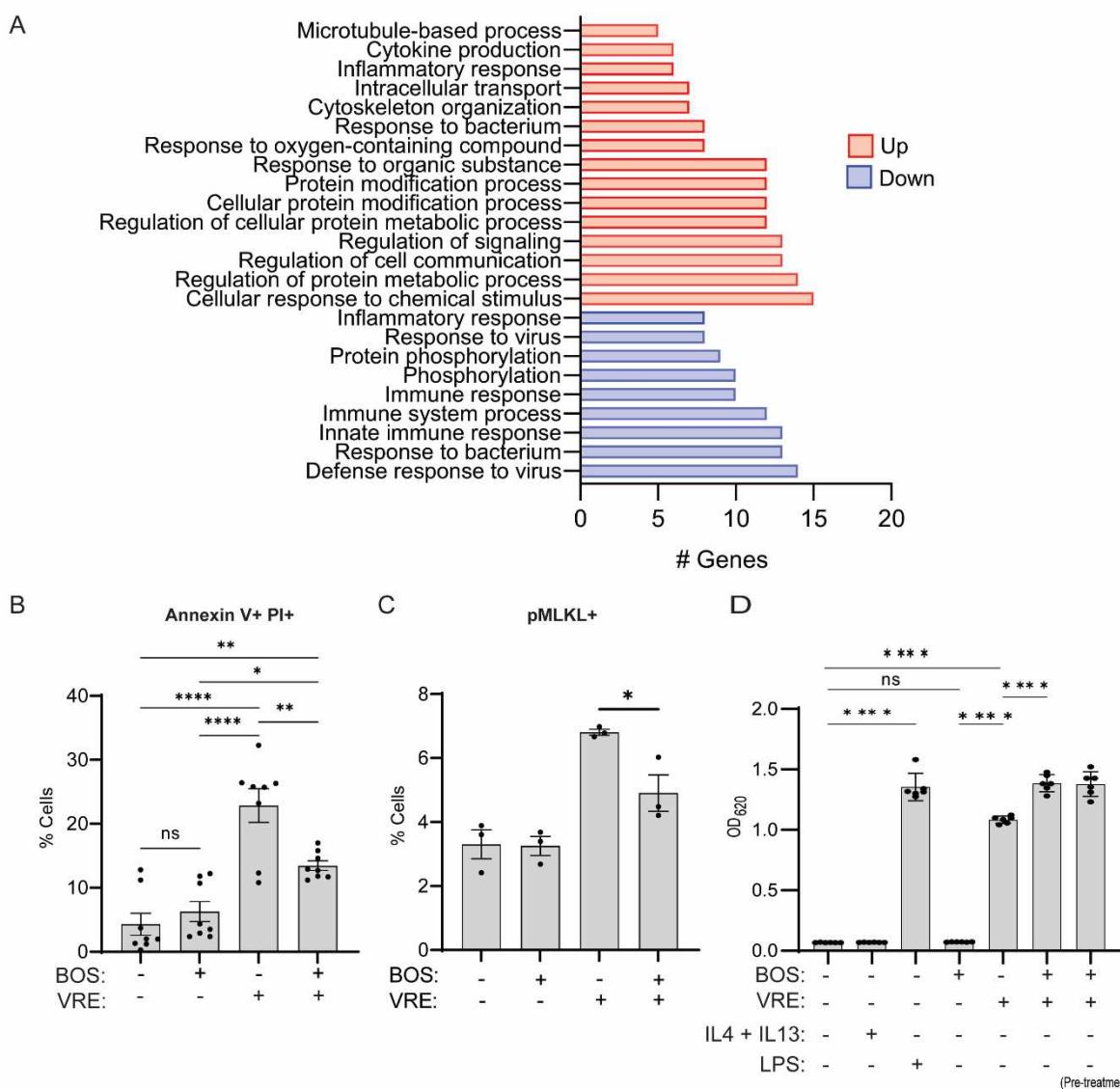
909


910 **Figure 3 – BOS induces macrophage expression of genes involved in bacterial
911 uptake. (A)** Functional enrichment analysis of DEGs induced in RAW264.7 cells after
912 15 h treatment with BOS. **(B-C)** Comparison of mean fluorescence intensity (MFI) of
913 CD11b, TLR4, CD36, CD206, CD14 and Dectin-1 staining gating on CD45⁺
914 RAW264.7 macrophages with or without BOS treatment (B) and CD14 and Dectin-1
915 on CD45⁺ CD11b⁺ F4/80⁺ macrophages from wounds of mice treated with an IP
916 injection of vehicle (-) or BOS (+) (C). Data (mean ± SEM) are summary of at least two

917 independent experiments (B-C) with two to four mice per experiment. **(D)** Relative
918 levels of macrophages and neutrophils recovered from wounds of animals following
919 IP injection with vehicle or BOS. Data (mean \pm SEM) are a summary of at least two
920 independent experiments. Each dot represents one mouse. Statistical analysis was
921 performed using unpaired t test with Welch's corrections. NS, P > 0.05; *P \leq 0.05, **P
922 \leq 0.01 and ***P \leq 0.001.

923

924


925

927

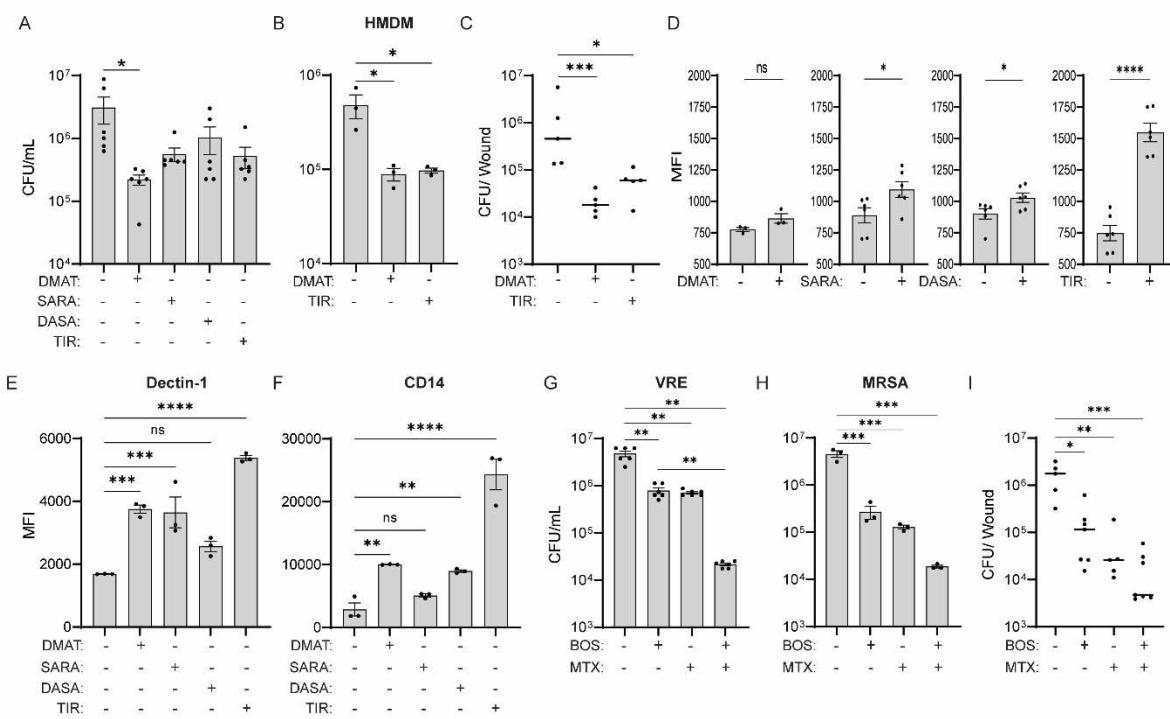
928 **Figure 4- BOS stimulates macrophage killing of bacteria via ROS. (A)** ROS levels
929 as measured by flow cytometry of DHR123 fluorescence. RAW264.7 macrophages
930 were treated with BOS alone or in combination with NAC (5 mM) overnight, followed
931 by flow cytometry. **(B)** ROS levels as measured by plate reader of DCFAD
932 fluorescence. RAW264.7 macrophages were left untreated or treated with BOS or tert-
933 butyl hydroperoxide (TBHP, 100 μ M, positive control), with or without VRE infection
934 for 3 h. **(C-D)** BOS-stimulated bacterial killing by macrophages is abolished by
935 neutralization of ROS. RAW264.7 cells were infected with VRE in the presence of BOS
936 (0.52 μ g/mL), NAC (5 nM), or TEMPO (50 μ M), alone or in combination. Intracellular
937 bacterial CFU was quantified after 15 h. Data (mean \pm SEM) are a summary of at least
938 three independent experiments. Statistical analysis was performed using ordinary
939 one-way ANOVA, followed by Tukey's multiple comparison test; NS, P > 0.05; *P \leq
940 0.05, **P \leq 0.01, and ***P \leq 0.001.

941

942

943 **Figure 5- BOS promotes survival of infected macrophages. (A)** Functional
944 enrichment analysis of DEGs induced by BOS treatment of VRE-infected RAW264.7
945 cells. **(B-C)** Comparison of percentages of Annexin V⁺ and PI⁺ (B) and pMLKL⁺ (C)
946 cells. RAW264.7 cells were not infected or infected with VRE in the presence or
947 absence of BOS. Cell viability was assayed by Annexin V and PI staining and
948 expression of pMLKL was assayed by intracellular staining followed by flow cytometry.
949 **(D)** NF-κB activation measurement. RAW267.4 macrophages were untreated or
950 treated with BOS or LPS (100 ng/mL) or IL-4 (10 ng/mL) and IL-13 (10 ng/mL) for 18h
951 prior to measurement of NF-κB-driven SEAP reporter activity. When the effect of VRE
952 infection in RAW234.7 cells was evaluated, NF-κB-driven SEAP reporter activity was
953 measured at the end of the intracellular infection assay with BOS treatment performed
954 at the time of infection or prior to the start of the experiment (pre-treatment). Data

955 (mean \pm SEM) are a summary of at least three independent experiments. Statistical
956 analysis was performed using ordinary one-way ANOVA, followed by Tukey's multiple
957 comparison test; NS, $P > 0.05$; * $P \leq 0.05$, ** $P \leq 0.01$, *** $P \leq 0.001$ and **** $P \leq 0.0001$.


958

959

960

961

962

963

964 **Figure 6- Other SFK inhibitors also stimulate macrophage killing of bacteria (A)**
965 Comparison of VRE CFU in RAW264.7 cells untreated or treated with various Src
966 kinase inhibitors. Src kinase inhibitors used were: DMAT (1 μ M), SARA (1 μ M), DASA
967 (1 μ M) or TIR (0.33 μ M). Data (mean \pm SEM) are a summary of at least three
968 independent experiments. **(B)** Comparison of VRE CFU in HMDM that were treated
969 with vehicle, DMAT (1 μ M) or TIR (0.33 μ M). **(C)** Comparison of VRE CFU per infected
970 wound of animals treated with an IP injection of DMSO, DMAT (5 mg/kg) or TIR (5
971 mg/kg). Data were from two independent experiments with two to three mice per
972 experiment. Each symbol represents one mouse, with the median indicated by the
973 horizontal line. **(D)** Phagocytosis of SYTO9-labelled VRE by RAW264.7 macrophages
974 in the presence or absence of various inhibitors. Data (mean \pm SEM) are a summary
975 of at least three independent experiments. **(E-F)** Comparison of MFI of CD14 and
976 Dectin-1 staining of CD45⁺ RAW264.7 macrophages non-treated or treated with Src
977 kinase inhibitors. Data (mean \pm SEM) are a summary of at least three independent
978 experiments. Statistical analysis was performed using ordinary one-way ANOVA,
979 followed by Tukey's multiple comparison test (A, E, F), or using Kruskal-Wallis test
980 with uncorrected Dunn's posttest (C) or using unpaired t test with Welch's corrections
981 (D); NS, P > 0.05; *P \leq 0.05, **P \leq 0.01, and ****P \leq 0.0001. **(G-H)** Comparison of
982 VRE (E) and MRSA (F) CFU in RAW264.7 that were treated with BOS or MTX (0.515

983 $\mu\text{g}/\text{ml}$) or in combination. (I) Comparison of VRE CFU per infected wound of animals
984 treated with five IP injections of vehicle (DMSO) or BOS alone or in combination with
985 five topical treatments of MTX (0.515 $\mu\text{g}/\text{ml}$). Data were from two independent
986 experiments with two to three mice per experiment. Each symbol represents one
987 mouse, with the median indicated by the horizontal line. Statistical analysis was
988 performed using ordinary one-way ANOVA, followed by Tukey's multiple comparison
989 test (G-H) or using Kruskal-Wallis test with uncorrected Dunn's posttest (I). NS, $P >$
990 0.05 ; $*P \leq 0.05$, $**P \leq 0.01$, and $****P \leq 0.0001$.

991

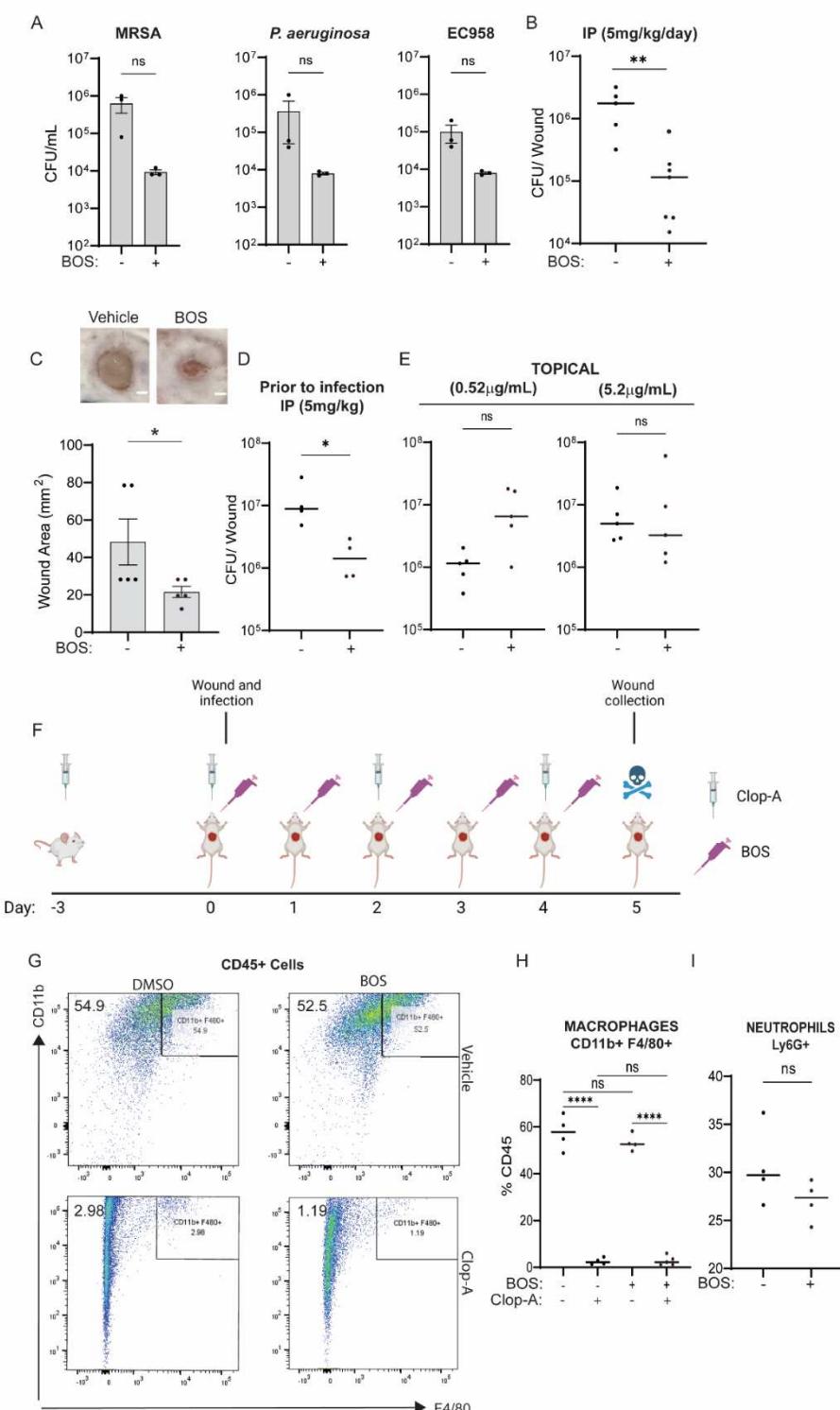
992

993

994

995

996


997

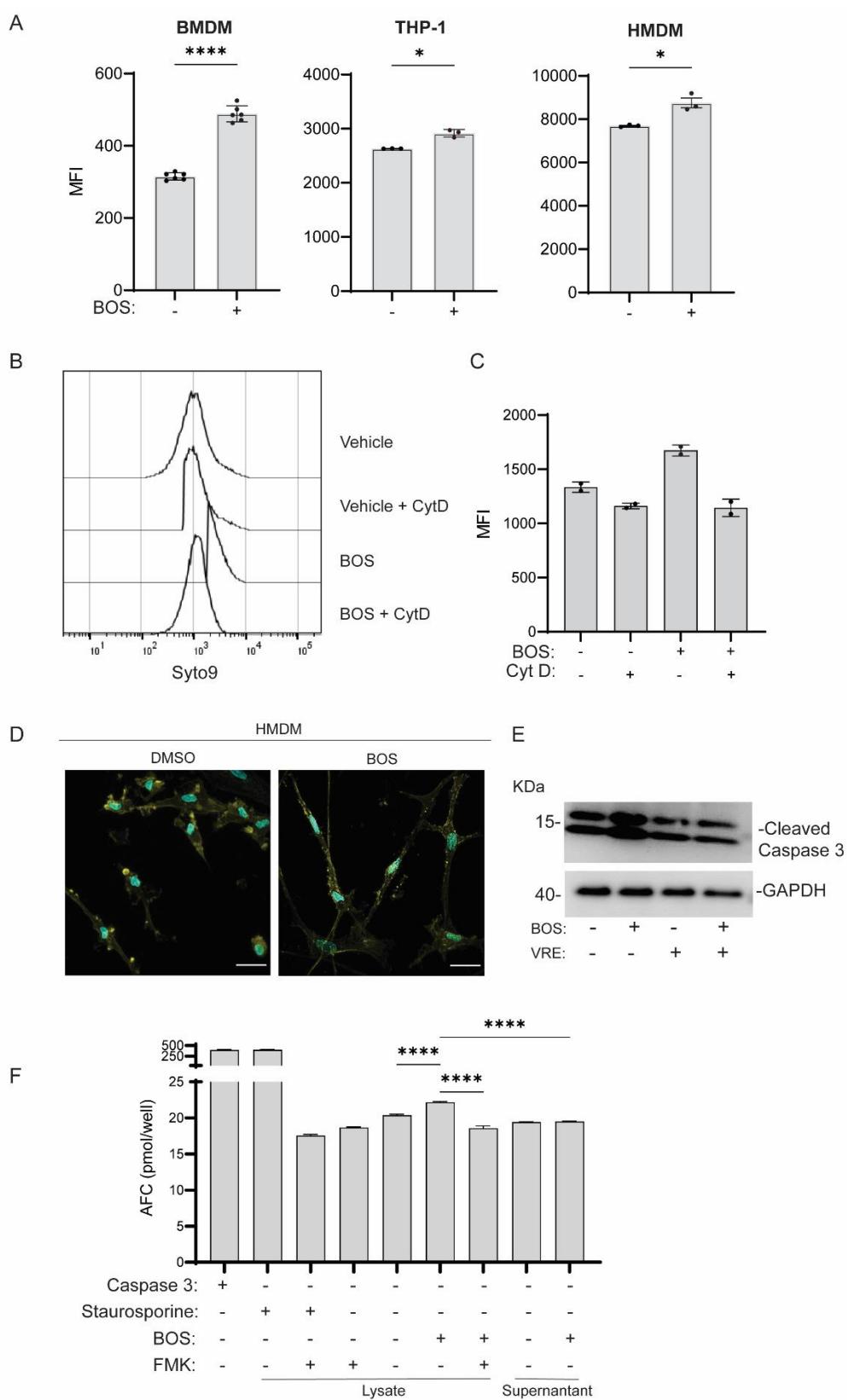
998

999

1000

1001 **Supplementary figures**

1002


1003

1004 **Figure S1- Macrophages are required for BOS-induced phenotype *in vivo*. (A)**

1005 Comparison of MRSA, *P. aeruginosa* and *E. coli* EC958 CFU in RAW264.7 in the

1006 presence or absence of BOS (0.52 μ g/mL). (B) Comparison of VRE CFU per infected

1007 wound of animals treated with five IP injections of vehicle or BOS (30 μ L of 5mg/kg).
1008 **(C)** Representative images of wounds (top panel) and summary of data from five mice
1009 (low panel) at the end of the multiple-treatment experiment. Scale bars, 2 mm. Wound
1010 area measured at 4 dpi after five treatments. **(D)** Comparison of VRE CFU per infected
1011 wound of animals treated with a single IP injection of vehicle or BOS (5mg/kg) 24h
1012 prior to infection. **(E)** Comparison of VRE CFU per infected wound treated topically a
1013 single dose of vehicle or BOS (5.20 μ g/mL). **(F-I)** A schematic diagram of experimental
1014 design (F). Mice were injected IP with clop-A (200 μ L, 6 mg/mL) 3 days prior to
1015 wounding and infection, and additional doses of clop-A on the day of wounding and
1016 infection and every 2 days afterwards. In addition, clop-A (10 μ L, 6 mg/mL) was
1017 applied to the wounds every 2 days. Following VRE infection, BOS (10 μ L, 0.52 μ g/ml)
1018 was applied to the wounds daily for 5 days. Five days after wounding and infection,
1019 mice were sacrificed, and wounds were recovered for assaying macrophage depletion
1020 and VRE CFU. Representative flow cytometry of macrophages (CD45⁺ CD11b⁺
1021 F4/80⁺) from infected wounds (G). The number indicate percentages of cells within the
1022 gated areas. Comparison of the percentages of macrophages recovered from infected
1023 wounds with or without clop-A and/or BOS treatments (H). Comparison of the
1024 percentages of neutrophils recovered from infected wounds that were vehicle or BOS
1025 treated with five topical doses (I). Each symbol represents one mouse with the median
1026 indicated by the horizontal line (B, D-E, and H-I). Data were from at least two
1027 independent experiments with two to three mice per experiment. Statistical analysis
1028 was performed using unpaired t test with Welch's corrections (A), using the
1029 nonparametric Mann-Whitney test to compare ranks or using Kruskal-Wallis test with
1030 uncorrected Dunn's posttest (B-E, H-I)). NS, P > 0.05; *P ≤ 0.05, **P ≤ 0.01, ***P ≤
1031 0.001 and ****P ≤ 0.0001.
1032

1033

1034 **Figure S2- BOS stimulates macrophage phagocytosis. (A)** Phagocytosis of VRE
 1035 by BMDM, THP-1 and HMDM in the presence or absence of BOS. Data (mean \pm SEM)

1036 are summary of at least three independent experiments. **(B-C)** Comparison of uptake
1037 of SYTO9-labelled VRE by RAW264.7 macrophages in the presence or absence of
1038 BOS or CytD. RAW264.7 macrophages with and without BOS pre-treatment in the
1039 presence or absence of CytD were infected for 1h with SYTO9-labelled VRE, followed
1040 by quenching with trypan blue and measurement of fluorescence intensity by flow
1041 cytometry. Shown are the representative staining profiles (B) and MFI from two
1042 independent experiments (C). **(D)** Representative CLSM images of DMSO or BOS
1043 treated HMDM samples that were stained with phalloidin for actin visualization and
1044 Hoechst 33342 for nucleus visualization. Images are maximum intensity projections of
1045 the optical sections (0.64 μ m z-volume) and are representative of 3 independent
1046 experiments. Scale bar: 20 μ m. **(E)** Western blotting analysis of cleaved caspase 3 in
1047 RAW264.7 cells in response to BOS treatment and VRE infection. Whole cell lysate
1048 was Western blotted with anti-cleaved caspase 3 and anti-GAPDH. **(F)** Caspase 3
1049 activity assay of cell lysates or supernatants of RAW234.7 cells that were non-treated
1050 or treated with BOS. Staurosporine (100 μ M) and FMK (50 μ M) were also included as
1051 positive and negative controls for intracellular Caspase 3 activation, respectively. Data
1052 (mean \pm SEM) are a summary of at least three independent experiments. Statistical
1053 analysis was performed using unpaired t test with Welch's corrections (A, C) or
1054 ordinary one-way ANOVA, followed by Tukey's multiple comparison test (F). *P \leq 0.05,
1055 and ****P \leq 0.0001.

1056

1057

1058

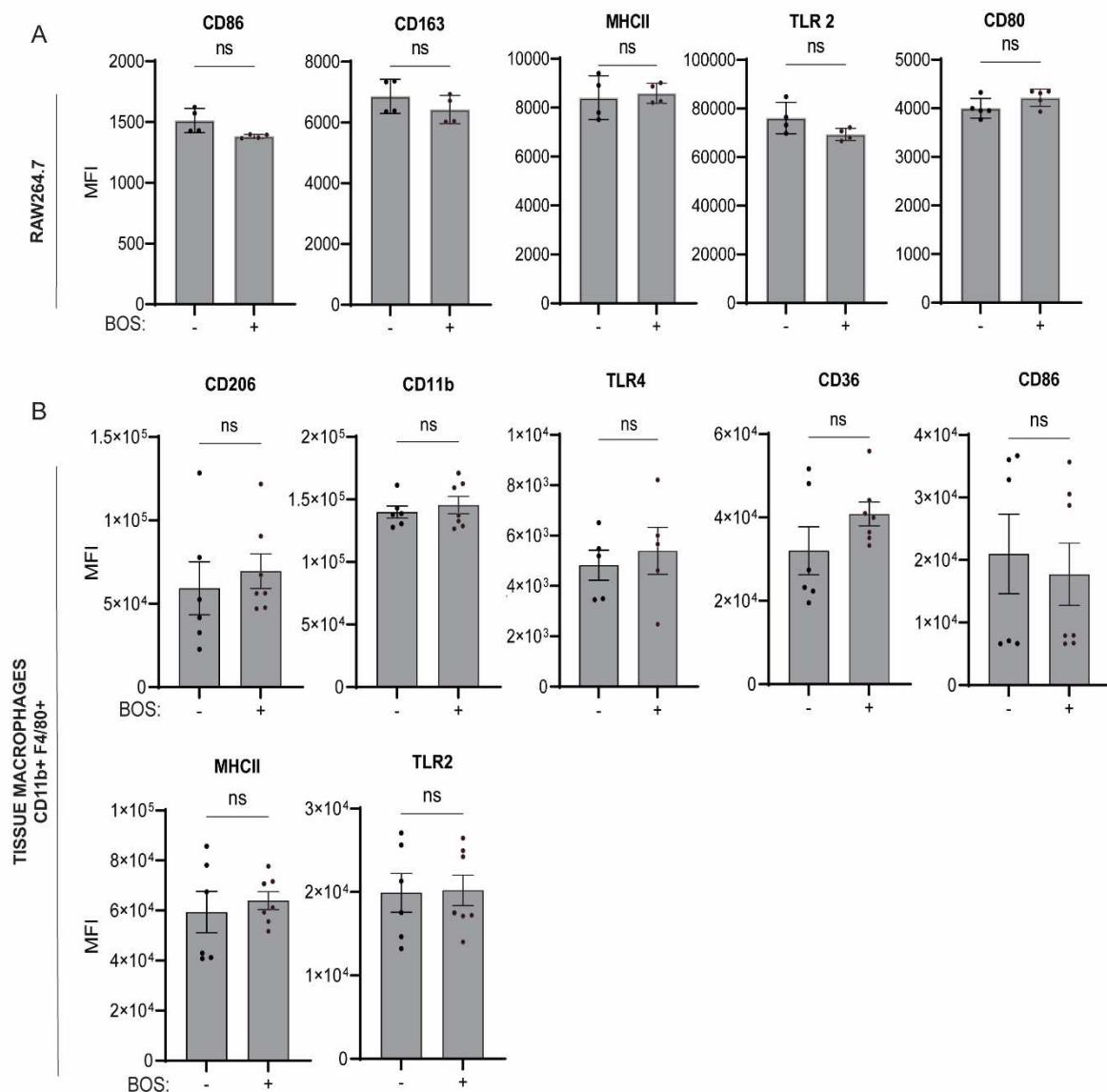
1059

1060

1061

1062

1063

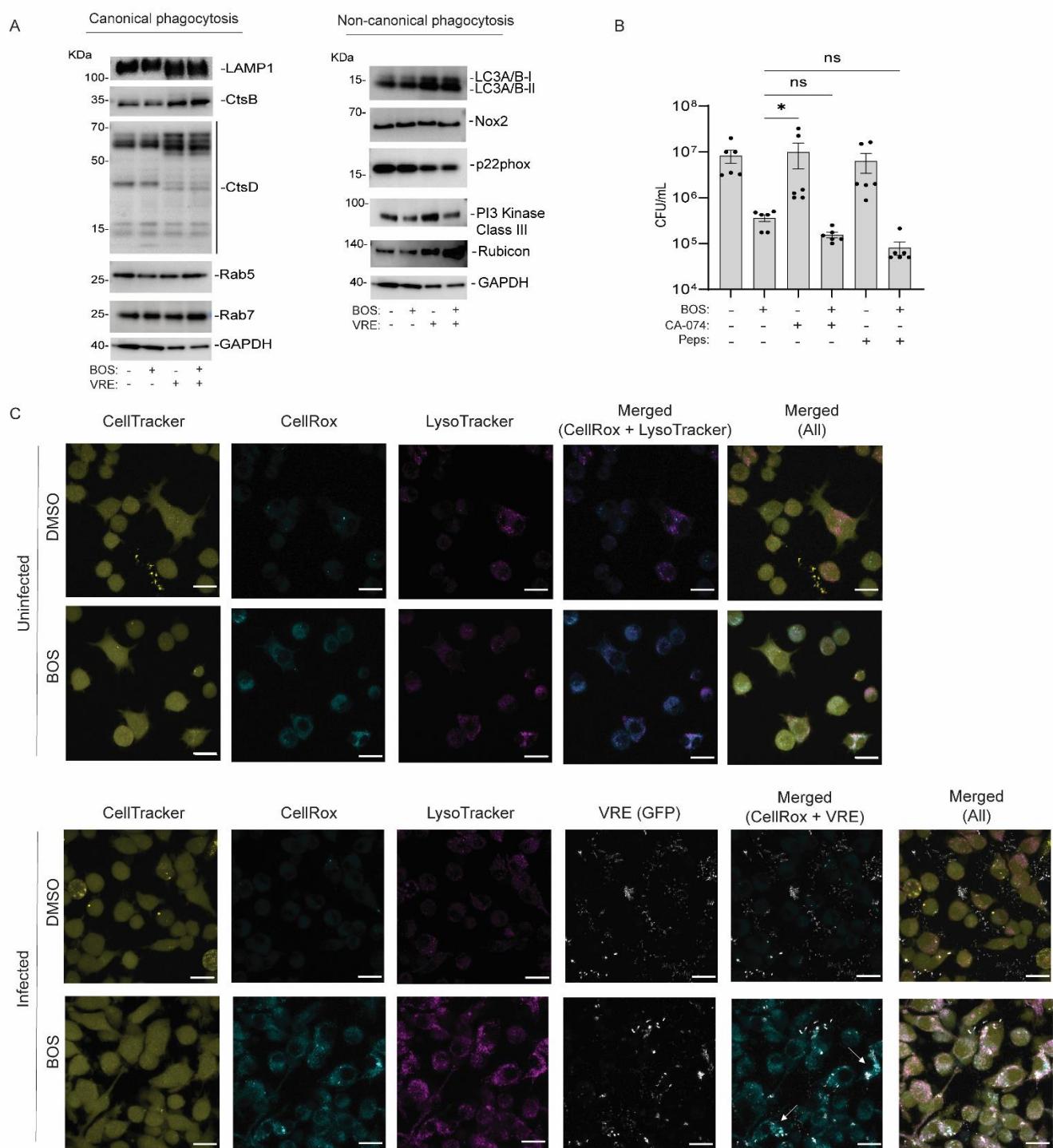

1064

1065

1066

1067

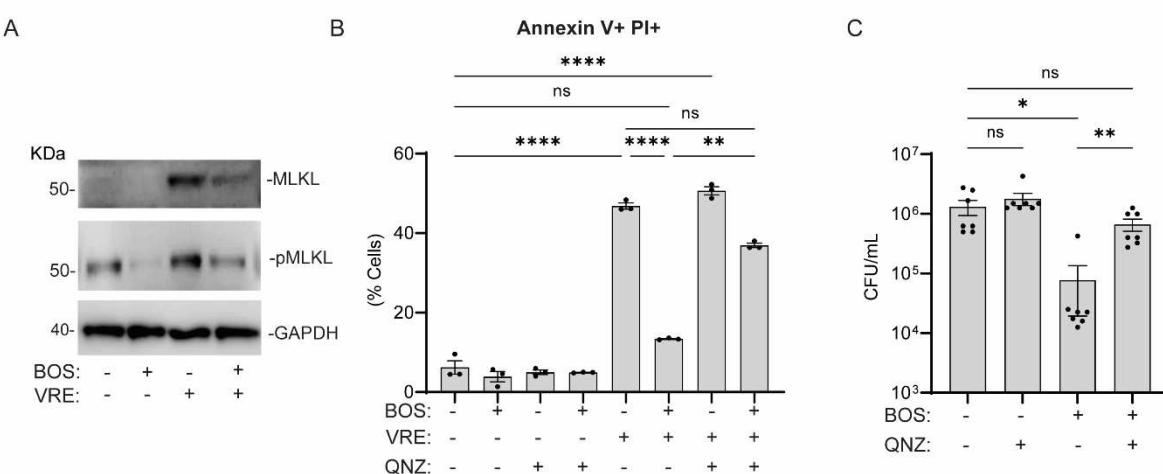
1068


1069

1070

1071 **Figure S3- Effect of BOS treatment on the expression of surface markers related**
1072 **to bacterial uptake. (A-B)** Comparison of MFI of bacterial recognition, uptake and
1073 presentation surface markers gating on CD45⁺ RAW264.7 macrophages non-treated
1074 or treated with BOS (A) and CD45⁺ CD11b⁺ F4/80⁺ macrophages from wounds of
1075 animals treated with an IP injection of vehicle (-) or BOS (+) (B). Data (mean \pm SEM)
1076 are summary of at least two independent experiments (A-B) with two to four mice per
1077 experiment. Statistical analysis was performed using unpaired t test with Welch's
1078 corrections. NS, P > 0.05; *P \leq 0.05, **P \leq 0.01, ***P \leq 0.001, and ****P \leq 0.0001.

1079


1080

1088 experiments. **(B)** Effect of cathepsin inhibitors on BOS-stimulated bacterial killing by
1089 macrophages. RAW264.7 cells were infected with VRE in the presence of BOS (0.52
1090 $\mu\text{g/mL}$), CtsB inhibitor CA-074 (5 nM), and CtsD inhibitor Pepstatin A (Peps, 10 $\mu\text{g/mL}$)
1091 alone or in combination. Intracellular bacterial CFU was quantified after 18h. Data
1092 (mean \pm SEM) are a summary of at least three independent experiments. Statistical
1093 analysis was performed using ordinary one-way ANOVA, followed by Tukey's multiple
1094 comparison test. NS, $P > 0.05$; $^*P \leq 0.05$, $^{**}P \leq 0.01$, and $^{****}P \leq 0.0001$. **(C)**
1095 Visualization of ROS in RAW264.7 cells following BOS and VRE infection by
1096 microscopy. Representative CLSM images of DMSO or BOS-treated RAW264.7
1097 samples that were stained with CellTracker (yellow) for cell shape visualization,
1098 CellRox (cyan) for ROS visualization and LysoTracker (magenta) for lysosomes
1099 visualization. Bottom panels were also infected with pDasher GFP-expressing VRE
1100 cells (gray). White arrows point to areas with intracellular VRE cells and high levels of
1101 ROS. Images are maximum intensity projections of the optical sections (0.64 μm z-
1102 volume) and are representative of at least 2 independent experiments. Scale bar: 20
1103 μm .

1104

1105

1106

1107 **Figure S5- BOS promotes survival of infected macrophages.** (A) Western blotting
1108 analysis of MLKL and pMLKL. RAW264.7 cells with (+) and without (−) VRE infection
1109 were treated with BOS (+) or left untreated (−). Whole-cell lysates were Western
1110 blotted with anti-MLKL, anti-pMLKL and anti-GAPDH antibodies. (B) Comparison of
1111 percentage of Annexin V⁺ and PI⁺ cells at the end of infection. RAW264.7 cells were
1112 either infected or not infected and were treated with BOS alone or in combination with
1113 the NF- κ B inhibitor QNZ (10 nM). Annexin V and PI reactivity was assayed by flow
1114 cytometry. Data (mean \pm SEM) are a summary of at least three independent
1115 experiments. (C) RAW264.7 cells were infected with VRE in the presence of BOS
1116 (0.52 μ g/mL), and QNZ (1 nM), alone or in combination. Intracellular bacterial CFU
1117 was quantified after 18 h. Statistical analysis was performed using ordinary one-way
1118 ANOVA, followed by Tukey's multiple comparison test (B), or Brown-Forsythe and
1119 Welch ANOVA test (C). NS, P > 0.05; *P \leq 0.05, **P \leq 0.01, and ****P \leq 0.0001.

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129 **Supplementary Tables**

1130 **Table S1-** Bacterial strains used in this study.

1131

Strain	Reference
<i>E. faecalis</i> V583 (VRE)	[51]
<i>E. faecalis</i> V583 + pDasher GFP	This study
<i>S. aureus</i> USA300 (MRSA)	[52]
<i>E. coli</i> EC958	[53]
<i>P. aeruginosa</i> PAO1	[54]

1132

1133

1134 **Table S2-** MIC of BOS and antibiotics alone or in combination with 0.52 µg/mL BOS.

Compound or Antibiotic	MIC (µg/mL)	MIC in combination with BOS (0.52 µg/mL)		Strain
		with BOS (0.52 µg/mL)	without BOS (0.52 µg/mL)	
BOS	>13	-	-	VRE
Vancomycin	18	18	-	VRE
Penicillin G	2	2	-	VRE
Gentamycin	1000	500	-	VRE
BOS	>13	-	-	MRSA
BOS	>13	-	-	<i>P. aeruginosa</i> PAO1
BOS	>13	-	-	<i>E. coli</i> EC958

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147 **Table S3 – Cytotoxicity as measured by LDH assay of compounds used in this**
1148 **study.**

Condition	% Cytotoxicity \pm SD	Source
DMEM (Baseline)	8.72 \pm 4.67	Gibco
BOS (1 μ M)	12.38 \pm 1.31	Sigma
Cytchalasin D (40 μ M)	-	Abcam
QNZ (10 nM)	18.62 \pm 13.44	Abcam
CA-074 (5 nM)	-	MedChemExpress
Pepstatin A (10 μ g/mL)	-	Sigma
TEMPO (50 μ M)	13.77 \pm 2.37	Sigma
SLK (1 μ M)	1.56 \pm 3.18	MedChemExpress
BOS (1 μ M) + SLK (1 μ M)	4.38 \pm 0.99	-
FMK (50 μ M)	-	Abcam
BOS (1 μ M) + FMK (50 μ M)	-	-
DMAT (1 μ M)	15.44 \pm 4.30	MedChemExpress
SARA (1 μ M)	-	MedChemExpress
DASA (1 μ M)	10.81 \pm 10.73	MedChemExpress
TIR (0.33 μ M)	13.41 \pm 6.64	MedChemExpress

1149

1150

1151 **Table S4- Comparison of transcript levels of cell surface markers associated with**
1152 **bacterial recognition, uptake, and presentation in RAW264.7 cells with and without**
1153 **BOS treatment.**

Gene	logFC	pValue
CD36	-2.5004664	1.31E-12
CD80	1.06914694	3.32E-06
CLEC7A (DECTIN-1)	-0.1803542	2.79E-01
CD14	-0.2248473	1.39E-01
ITGAM (CD11B)	0.74697971	8.90E-07
TLR4	0.48315495	2.53E-04
TLR2	-0.0713851	5.92E-01
TLR8	1.11318224	8.89E-12

1154

1155

1156