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Abstract 

In this study, a new approach for modification of membership functions of a fuzzy inference 

system (FIS) is demonstrated, in order to serve as a pattern recognition tool for classification of 

patients diagnosed with multiple sclerosis (MS) from healthy controls (HC) using their visually 

evoked potential (VEP) recordings. The new approach utilizes Krill Herd (KH) optimization 

algorithm to modify parameters associated with membership functions of both inputs and outputs 

of an initial Sugeno-type FIS, while making sure that the error corresponding to training of the 

network is minimized. 

This novel pattern recognition system is applied for classification of VEP signals in 11 MS patients 

and 11 HC’s. A feature extraction routine was performed on the VEP signals, and later substantial 

features were selected in an optimized feature subset selection scheme employing Ant Colony 

Optimization (ACO) and Simulated Annealing (SA) algorithms. This alone provided further 

information regarding clinical value of many previously unused VEP features as an aide for 

making the diagnosis. The newly designed computational intelligence system is shown to 
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outperform popular classifiers (e.g., multilayer perceptron, support-vector machine, etc.) and was 

able to distinguish MS patients from HC’s with an overall accuracy of 90%. 

KEYWORDS: Multiple sclerosis, Visual evoked potentials, Binary classification, Fuzzy inference 

system, Krill herd optimization 

1.  Introduction 

Our arsenal of immunomodulatory therapy options against the inflammatory aspect of multiple 

sclerosis (MS) has grown during the last ten years. However, it remains unclear which Disease-

Modifying Treatment (DMT) is best for a given patient [1, 2, 3]. As a result, the decisions are the 

result of trial and error, and DMT changes and discontinuations are frequent occurrences [4,5, 6]. 

There is a dearth of information on the causes and timelines in clinical practice, particularly when 

it comes to recently diagnosed patients who have access to the most current DMTs. 

Additionally, treating MS in more rural practices with limited access to neuroimmunological 

knowledge presents a challenge due to its increasingly complicated alternatives. Although MS is 

prevalent across Finland, there are notable regional variations, with MS being most infrequent in 

North Karelia, Finland's most eastern region [7]. This is a rather remote area with a sparse 

population and vast distances. The North Karelia hospital district is not a participant in the national 

MS registry [8], which has demonstrated that, in comparison to other DMTs, the use of 

natalizumab, alemtuzumab, ocrelizumab, or rituximab as the first DMT was linked to a lower risk 

of 5-year disability progression and relapse. The research also found that, after a median of 2.4 

years, 12.4% of the patients who had begun treatment with another DMT subsequently advanced 

to natalizumab, alemtuzumab, rituximab, or ocrelizumab [9]. Following the release of novel oral 

treatments, recent data from Finland also indicated a rise in DMT switches [10]. On the other hand, 

unlike Denmark and Sweden [4], no information is available about specific treatment plans or the 

causes of DMT discontinuation or switch in Finnish MS patients throughout the present treatment 

period. 

In the present study, we search to find and define VEP components independently of amplitude 

that are also associated with MS. Furthermore, performing stochastic, temporal and spatial analysis 

on VEP recordings may yield useful information that may not be well understood in its original 

form [11,12,13,14]. Although there is currently no cure for MS, the FDA has authorized a number 
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of medications for its management. Treatment for exacerbations, disease-modifying treatments 

(DMTs), and symptomatic medicines comprise the three categories of current therapy [15]. DMTs 

that address inflammatory immunopathology, for instance, might delay the onset of functional 

impairments but are unable to alleviate symptoms. As a result, creating efficient and unique 

treatment modalities is crucial [16]. Transcranial direct current stimulation (tDCS) in particular 

has gained popularity as a potential non-pharmacological therapeutic modality in recent years. 

Through the use of scalp electrodes, TDCS adjusts the resting membrane potential and provides 

low-current intensity, which can either increase or decrease the rate at which neurons fire. With 

opposing effects, the supplied current might be either positive or negative (anodal or cathodal 

stimulation, respectively): Excitatory post-synaptic potentials, which depolarize the neuronal 

membrane and alter cortical excitability, are often increased by anodal tDCS. Whereas the 

membrane becomes hyperpolarized and inhibited by cathodal tDCS [17]. Using highly repeatable 

and rater-independent methodologies to assess disease burden is one of the biggest unmet goals in 

MS research and clinical management. Low-contrast letter acuity measures, visual evoked 

potentials (VEP), optical coherence tomography (OCT), and efferent oculometrics have made 

significant strides in the measurement of visual dysfunction. However, most MS clinics do not 

routinely employ these tools, and they frequently need assistance from individuals with 

subspecialty training in neuroophthalmology [18]. The field of application for VEPs that use a 

diffuse flash stimulus, also known as flash-VEP or F-VEP, is rather limited when it comes to 

neurological pathologies affecting the visual pathways because these testing methods are less 

sensitive than P-VEP and produce incredibly variable responses in normal individuals. 

Additionally, P-VEPs enable the selection of features for the best stimulus in the clinical 

examination of the many visual system components, each of which may be triggered in a different 

way based on the image's contrast, chromaticity, spatiality, and timing [19,20].  

This information can offer a better diagnostic criterion in distinguishing normal subjects from 

subjects with neurological diseases, along with an index to indicate the progression of the diseases. 

Hence, it would be of great value to propose a pattern recognition system that can classify normal 

and MS subjects based on the unconventional features extracted from VEP signals. 
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Figure 1: A block diagram of the implemented pattern recognition system. 

The proposed computational intelligence system consists of five major elements: 1. preprocessing 

module for removing any possible artifacts in signals, 2. feature extraction module to calculate 

different components of the VEP signals, 3. feature subset selection module that selects effective 

components in diagnosis of MS, 4. classification module to distinguish signals based on their 

selected features, and 5. diagnosis module that indicates the class in which a signal belongs to. 

Figure 1 shows the block diagram of the proposed system. 

2. VEP Recordings 

2.1. Subjects 

The baseline data is composed of 11 MS patients (median age 38.5 years; 90% female; median 

Expanded Disability Status Scale [20] (EDSS) 3.5, range 2–5.5; median disease duration 7.6 years, 

range 0.7–16 years) who were diagnosed with clinical isolated syndrome (n = 1; 9%), relapsing-

remitting MS (n = 9; 81.8%), and secondary progressive MS (n = 1; 9%) based on the diagnostic 

criteria for multiple sclerosis [21]. The retrospective chart review was used in order to define 

history of optic neuritis (hON). Final diagnosis was made based on the clinical standard criteria: 

unilateral weakening or loss of vision over a period of hours or a few days, pain with eye 

movements, and declined perception of color. Ten patients (81%) had a positive history of ON. 

Also, ON was the first symptom in four patients (36%). Eleven subjects served as healthy controls 

(HC), having no remarkable personal history, accompanied by a normal brief neurological exam, 

while retaining a best corrected visual acuity of 0.8 or better (median age 39.5 years, 78% female). 
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2.2. Data Acquisition 

A 4-chqnnel EMG system (Nihon Kohden MEB2200) at Sina Hospital was utilized in order to 

record Visual EPs. The recording, reference, and ground electrodes were placed with Oz, Fz, and 

Cz, respectively; with pre-auricular points used as landmarks. The impedance for electrodes was 

kept below 40 kΩ. Band-pass filter range for recording was set to 0.1–100 Hz, with the sampling 

frequency of 3 kHz. Pattern reversal VEPs were produced by full-field checkerboard stimulation 

independently applied to each eye, with compliance to international guidelines. Raw data went 

through a visual inspection, applied to a band-pass filter (1–30 Hz) and also averaged, while epochs 

with high amplitude artifacts were excluded. Recorded VEPs from MS patients and healthy 

controls are visualized in figures 2 and 3, respectively. Also, sample VEPs of two MS patients and 

two healthy controls are plotted in figures 4 and 5, respectively. 

 

Figure 2. Pattern reversal VEP of all MS patients collected at Sina Hospital. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.571427doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.13.571427
http://creativecommons.org/licenses/by/4.0/


6 

 

 

Figure 3. Pattern reversal VEP of  all healthy subjects collected at the Sina Hospital. 

  

Figure 4. Two samples of pattern reversal VEP data collected from MS patients <A= and <B= at Sina Hospital. 
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Figure 5. Two samples of pattern reversal VEP data collected from healthy controls <A= and <B= at Sina Hospital. 

The VEP data for each subject consists of four arrays of waves, from which two were collected 

using the potential differences between Oz-Fz and Oz-Cz electrodes while only the subject’s right 

eye was open, and the other two were collected in a similar fashion while only the left eye was 

open. Accordingly, the data acquisition matrix is in the form of Equation 1. 

[Right EyeLeft Eye ] → [Right Eye Oz-FzRight Eye Oz-CzLeft Eye Oz-FzLeft Eye Oz-Cz ]4×2048 (1) 

3. Extraction of the Features 

3.1. Conventional Features 

The aim of this section is to devise a method for extracting suitable features from the raw signal. 

The benefit of having a feature extraction module is to transform raw brain signals into a 

representation that can further simplify the classification. That is to say, feature extraction is an 

effort to remove as much noise and other redundant information from the input signals, while 

retaining information essential to distinguishing different classes of signals. Signal processing 

methods are used to extract feature vectors from the brain signals. This then allows for the 

comparison of the effect of various features on the performance of the detection system. Analysis 

of various time domain, frequency domain and time-frequency domain features resulted in the fact 
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that features based on signal amplitude and time domain characteristics are more effective in 

revealing the P100 component [22]. These features are as follows: 

Amplitude (AM, 
max

C ), which is the maximum signal value in [50,200] time interval: 

{ }max
max ( )C c t=  (2) 

Positive value (PAV, 
p

A ), which is the sum of the positive values: 

( )
600

0

0.5 ( ) ( )
p

t

A c t c t
=

= +å  (3) 

Latency (LTIM, 
max

C
t ), the P-VEP's latency time, i.e. the time where the maximum signal value 

appears: 

{ }
max

max
( )

C
t t c t C= =  (4) 

Where ( )c t  is the P-VEP single trial during 0-600ms after stimulus and 
max

C  is the maximum 

signal value in this time interval. 

Negative area (NAV, 
n

A ), which is the sum of the negative signal values: 

( )
600

0

0.5 ( ) ( )
n

t

A c t c t
=

= -å  (5) 

Peak-to-peak (PP, pp ): 

max min
pp C C= -  (6) 

where 
max

C  and 
min

C  are the maximum and minimum signal values, respectively: 

{ } { }max min
max ( ) , min ( )C c t C c t= =  (7) 

Peak of 100N  (
100N

P ) the minimum signal value in [60, 190] time interval: 

{ }100
min ( ), 60 190

N
P c t t= £ £  (8) 

Latency of 100N  (
100N

t ), the time where the 
100N

P  appears: 
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{ }100
( ) 100

N
t t c t N= =  (9) 

1 3P N , difference between the maximum signal value in [195, 550] time interval and the minimum 

signal value in [340, 500] time interval (corresponding to 100P  amplitude and 300N  amplitude 

respectively). 

1 1P N , difference between the maximum signal value in [195, 550] time interval and the minimum 

signal value in [70, 190] time interval (corresponding to 100P  amplitude and 100N  amplitude 

respectively). 

3.2. Wavelet Transform Features 

In this section, the multi-scale wavelet transform features of VEP signals are calculated. These 

features include: Energy, Variance, Waveform Length, and Entropy. Mentioning that the VEP 

signal length is equal to 2048, since it was intended to divide the signal into two equal time 

windows, the window size was set to 1024, with a 1024 element incrementation designated for 

spacing of the windows. Decomposition level was assumed to be one. For a full tree at 1  level, 2  

features are obtained. As it was decided to extract 4  types of features, the number of calculated 

features are 2 4 8´ =  for each window, making for the total sum of 16  features for the two 

windows. 

By inspection, it was observed that wavelet energy of the first window was quite the same among 

all VEP signals, and the wavelet variance was almost zero in all windows and all signals. Also, the 

wavelet entropy at Level 0  decomposition was almost equal to zero.  Therefore, these 8 features 

were neglected, and the other eight were initially selected: Energy and Variance of first window 

at Level 1  decomposition; Energy and Variance of second window at Level 0  decomposition; and 

Energy, Variance, Waveform Length and Entropy of second window at Level 1  decomposition. 

Overall, 17 features were extracted from each row of the data matrix. From these features, 9 

were conventional signal components (i.e., amplitude, positive value, latency, negative area, 

peak-to-peak, peak of N100, latency of N100, P1N3, and P1N1), and the other 8 were those 

extracted from wavelet transformation of the signal (i.e., energy, variance, waveform length, 

and entropy). The feature extraction procedure is illustrated in Equation 10. 
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[  
   Right Eye Oz-FzRight Eye Oz-CzLeft Eye Oz-FzLeft Eye Oz-Czÿ          VEP Signals ]  

   
4×2048

 FEATURE EXTRACTION →                   
[  
   
 �1��āℎ����� �2��āℎ����� ⋯ �9��āℎ������1��āℎ����� �2��āℎ����� ⋯ �9��āℎ������1�ÿĀ����� �2�ÿĀ����� ⋯ �9�ÿĀ������1�ÿĀ����� �2�ÿĀ����� ⋯ �9�ÿĀ�����ÿ                        9 Conventional Features

�10��āℎ����� ⋯ �17��āℎ������10��āℎ����� ⋯ �17��āℎ������10�ÿĀ����� ⋯ �17��āℎ������10�ÿĀ����� ⋯ �17��āℎ�����ÿ                  8 Wavelet Transform Features ]  
   
 
4×17

 

                                                                                                                                                                                                    (10) 

 

 

4. Feature Subset Selection 

In this section, the objective is to select a suitable subset of extracted features in order to improve 

the classification of MS patients from healthy controls. For this purpose, dimension of the feature 

space needs to be reduced while making sure that the new feature subset results in a more efficient 

classification. This can be done through an optimization method called Direct Objective 

Optimization [23]. In this approach, first an ANN is created and trained using features extracted 

from the VEP. 

Let x  be a vector containing all (i.e., 
f

n ) features, 
1

x , 
2

x , …, 
f

n
x , and t  a vector containing all 

(i.e., 
t

n ) targets 
1

t , 
2

t , …, 
t

n
t : 

,

.

1 2

1 2

[ ]

[ ]

f

t

n

n

x x x

t t t

=

=

x

t

L

L
 

(11) 

Now we assume f  is a function taking feature values , 1,2, ,
i f

x i n= K  and returning its 

representation of target classes as , 1,2, ,
i t

y i n= K  in a vector 
1 2

[ ]
t

n
y y y=y L : 

( )=y f x . (12) 

In order to avoid the complexity of the procedure ( )=y f x  (e.g., curse of dimensionality, Hughes 

effect, etc.), it is useful to reduce the number of features by eliminating those that are either 

redundant or less relevant. For this purpose, we assume x̂  to be a vector containing a subset of 

original features , 1,2, ,
i f

x i n= K , namely ˆ ˆ, 1,2, ,
i f

x i n= K : 
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ˆ1 2
ˆ ˆ ˆ ˆ[ ]

f
n

x x x=x L  (13) 

where obviously ˆ
f f

n n£  and ˆ Íx x . Thus, a new function f̂  must be defined so that ˆ ˆ( )f x  tracks 

( )f x  with a negligible amount of error: 

ˆ ˆ( ) ( )=y f x f x; . (14) 

Now we define a tracking error e  as follows: 

.ˆ ˆ( )

= -

= -

e t y

t f x
 

(15) 

Hence, the mean squared error would be: 

MSE

1

1 t
n

i
it

e
n =

= å . (16) 

Now assuming that ˆ
f

n  number of features needs to be selected, we can formulate a cost function 

as a weighted summation, in the following manner: 

MSE ˆ
f

J w n= + × . (17) 

The weight w  is defined to be proportional to the MSE (i.e., MSEw µ ). Therefore, there is a 

coefficient 0b >  such that MSEw b= ×  and MSE MSE ˆ
f

J nb= + × × . Thus, the cost function 

can be rewritten as follows: 

MSE ˆ(1 )
f

J nb= + . (18) 

Here the goal is to define a scheme in which different subsets of ˆ
f

n  features compete with one 

another, and eventually the subset returning the best cost is selected. We define an array of decision 

variables 
1 2

[ ]
f

n
s s s=s K  such that {0,1}, 1,2, ,

i f
s i nÎ = K . If a decision variable, 

, 1,2, ,
i f

s i n= K , is equal to {1} , it would mean the corresponding feature, , 1,2, ,
i f

x i n= K , is 

selected. On the contrary, a feature 
i

x  is not selected provided that its corresponding decision 

variable, 
i

s , is set to be {0} . It is assumed that the capacity constraint (i.e., the number of features 
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to be selected) is known and equal to ˆ
f

n . Therefore, the sum of {1} ’s in the array s  is also equal 

to ˆ
f

n  and we have: 

1

ˆ
f

n

i f
i

s n
=

=å . (19) 

This can be viewed as a combinatorial optimization problem in which a permutation of features 

1
x , 

2
x , …, 

f
n

x  is created, and is ordered such that the first feature results in the best cost, while 

the last one causes the average cost to be the worst. Consequently, by choosing from the features 

that came first, a determined number of features (i.e., ˆ
f

n ) is selected and its corresponding cost is 

calculated. Two powerful discrete algorithms for solving combinatorial and permutative problems 

are Simulated Annealing (SA) [24], and Ant Colony Optimization (ACO) [25]. 

It was intended to select four most substantial VEP features from each eye (i.e., a total of eight 

features). In order to do so, both SA and ACO algorithms were implemented in MATLAB, 

according to the scheme described earlier. Both algorithms were run for 500 iterations. For SA 

algorithm, initial temperature was set to 10, with temperature reduction rate of 0.99, while having 

20 sub-iterations within each iteration. For the ACO, number of ants was set to be 20, while setting 

the parameters as follows: initial pheromone, 
0

1t = ; pheromone exponential weight, 1a = ; 

heuristic exponential weight, 1b = ; and evaporation rate, 0.05r = . 

The SA was able to find an optimal solution with a cost equal to 
3

1.7 10
-´ , and ACO’s best 

solution resulted in a cost equal to 3
3.6 10

-´ . Therefore, the eight selected feature were the ones 

returned by the SA algorithm. These features were, from the Oz-Fz signals, Amplitude, Positive 

Value, and Latency for both eyes. Also, from the Oz-Cz signals of both eyes, the energies 

corresponding to the second window of wavelet transform at level 0 were selected. 
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Figure 6. Best costs provided by ACO and SA optimization algorithms after 500 iterations. 

5. Modification of Initial FIS with Krill Herd Optimization 

Here, the objective is to modify an initial FIS structure by taking advantage of Krill Herd 

optimization algorithm (Figure 7). For this purpose, it is required to take the following steps: 

1. Loading the training data 

2. Creating an initial fuzzy inference system (FIS) 

3. Modifying the values of FIS parameters according to modeling error, using the 

optimization algorithm 

4. Returning the FIS with best values of parameters, as the final result 

It is feasible to create an initial FIS structure using genfis3 command in MATLAB. After 

applying the training data to the function genfis3, an FIS is generated using fuzzy c-means 

(FCM) clustering [26] by extracting a set of rules that models data behavior. 
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Figure 7: Simplified flowchart of the krill herd optimization algorithm. 
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The rule extraction method first uses the function fcm in order to determine the number of rules 

and membership functions for the antecedents and consequents. In the case of our problem, more 

precisely a Sugeno-type fuzzy inference system [27], the input membership functions are Gaussian 

and have the following form: 

2

2

( )

2( ; , )

x c

f x c e ss

- -

= . 
(20) 

Moreover, membership functions for the outputs are linear and can be noted as follows: 

( )y d= = × +f x x l  (21) 

where y  is a scalar, ( )f x  is a linear (i.e., affine) function, x  is a -by-1 m  vector, l  is an -by-1m  

vector, and d  is a scalar. 

Let 
0 0 0 0

1 2
[ ]

n
p p p=p K  be a vector containing all membership function parameters (i.e., 

i
s ’s 

and 
i

c ’s for Gaussian, and vectors 
j

l  and scalars 
j

d  for linear membership functions). The goal is 

to find optimal values 
* * * *

1 2
[ ]

n
p p p=p K  so that if substituted as modified membership 

function parameters, the training error is minimized. A cost function for the proposed optimization 

routine can be implemented as follows: 

2 2

, ,

1 1

1 1
( )

t t
n n

i j i j i j
j jt t

J t y e
n n= =

= - =å å  (22) 

where , 1,2, ,
i it

J i n= K  is the cost value at iteration i ; 
j

t , 1,2, ,
t

j n= K  is the -thj target; 
,
,

i j
y  

1,2, , , 1,2, ,
it t

i n j n= =K K  is the value of -thj  output of the network at iteration i ; and 

,
, 1,2, , , 1,2, ,

i j it t
e i n j n= =K K  is the training error of the -thj  target at iteration i . The best 

resulted cost can be noted as 
*

J , which is also equal to the cost value at final iteration, 
it

n
J . The 

aim of optimization algorithm is to find a w  belonging to the interval [ , ], 0M M M- >  such that 

the equation 

* 0

i i i
w= ×p p , (23) 
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in each iteration results in the minimization of the cost, and hence, a more optimal set of parameters 

for fuzzy membership functions. 
i

w  is calculated at the end of -thi  iteration, and is multiplied by 

the initial values of parameters 
0

i
p  as a modification coefficient. *p  is calculated at the final 

iteration, and contains the best solution found by optimization algorithm to be set as parameters of 

membership functions. The optimization routine used for the purpose of our problem is a bio-

inspired algorithm named Krill Herd [28]. 

6. Results and Discussion 

Aforementioned classification methods were implemented using MATLAB. Since the dataset for 

MS patients and healthy controls was rather small (i.e., 11 MS and 11 HC), a random permutation 

of selected features was generated and presented as the input for pattern recognition systems. In 

each instance, 70% of the data was excluded for training, while the remaining 30% was used in 

order to test the validity of classification task. Classification procedures were run for 20 times, 

each for 100 epochs or iterations; and at the end all 20 training and testing results were averaged. 

For the sake of comparison, three other more common classifiers were also employed: Multilayer 

Perceptron (MLP) [29], Support Vector Machine (SVM) [30] and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) [31]. For MLP, two hidden layers of sizes 20 and 10 were implemented. 

The training and performance functions were set to Levenberg-Marquardt [32] and Cross-Entropy 

[33], respectively. Again, because of the relatively small dataset we were dealing with, the cross-

validation option was neglected. 

For the FIS and KH, the initial FIS was created with FCM clustering, and the number of clusters 

was set to 11. Exponent for the fuzzy partition matrix U  was chosen as 2.0 , while the minimum 

improvement in objective function between two consecutive iterations was selected to be 
6

10
-

. 

For KH, number of runs was 3, population of the herd of krill was 30, and the crossover flag was 

set to 1. Also, 
f

V , 
max

D , and 
max

N were chosen to be 0.02 , 0.005  and 0.01, respectively. 

Regarding the SVM algorithm, data points were automatically centered at their mean, and scaled 

to have unit standard deviation, before training. Value of the box constraint C  for the soft margin 

was set to 1, and the kernel cache limit was equal to 100. The kernel function was chosen to be 

linear, and the Karush-Kuhn-Tucker (KKT) [34] violation level was set to 0. The method used for 
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finding the separating hyperplane was Sequential Minimal Optimization (SMO) [35], while the 

corresponding tolerance with which the KKT conditions are checked for the SMO training method 

was selected as 
3

10
-

. 

The corresponding confusion matrices for each classification is presented in the following tables. 

Table 1. Confusion matrix for KH. 

  
Condition 

 

  

Condition Positive 

(MS) 

Condition 

Negative (HC)  

Test 

Outcome 

Test 

Outcome 

Positive 

(MS) 

True Positive False Positive 
Positive Predictive 

Value 

58 4 93.5% 

(41.4%) (2.9%) 6.5% 

Test 

Outcome 

Negative 

(HC) 

False Negative True Negative 
Negative Predictive 

Value 

10 68 87.2% 

(7.1%) (48.6%) 12.8% 

  Sensitivity Specificity Overall Accuracy 

  
85.3% 94.4% 90.0% 

  
14.7% 5.6% 10.0% 

Table 2. Confusion matrix for MLP. 

  
Condition 

 

  

Condition Positive 

(MS) 

Condition 

Negative (HC)  

Test 

Outcome 

Test 

Outcome 

Positive 

(MS) 

True Positive False Positive 
Positive Predictive 

Value 

54 7 88.5% 

(38.6%) (5.0%) 11.5% 

Test 

Outcome 

Negative 

(HC) 

False Negative True Negative 
Negative Predictive 

Value 

14 65 82.3% 

(10.0%) (46.4%) 17.7% 

  Sensitivity Specificity Overall Accuracy 

  
79.4% 90.3% 85.0% 

  
20.6% 9.7% 15.0% 
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Table 3. Confusion matrix for SVM. 

  
Condition 

 

  

Condition Positive 

(MS) 

Condition 

Negative (HC)  

Test 

Outcome 

Test 

Outcome 

Positive 

(MS) 

True Positive False Positive 
Positive Predictive 

Value 

55 12 82.1% 

(39.3%) (8.6%) 17.9% 

Test 

Outcome 

Negative 

(HC) 

False Negative True Negative 
Negative Predictive 

Value 

10 63 86.3% 

(7.1%) (45.0%) 13.7% 

  Sensitivity Specificity Overall Accuracy 

  
84.6% 75.0% 84.3% 

  
15.4% 25.0% 15.7% 

Table 4. Confusion matrix for ANFIS. 

  
Condition 

 

  

Condition Positive 

(MS) 

Condition 

Negative (HC)  

Test 

Outcome 

Test 

Outcome 

Positive 

(MS) 

True Positive False Positive 
Positive Predictive 

Value 

50 28 64.1% 

(36.0%) (20.1%) 35.9% 

Test 

Outcome 

Negative 

(HC) 

False Negative True Negative 
Negative Predictive 

Value 

28 33 54.1% 

(20.1%) (23.7%) 45.9% 

  Sensitivity Specificity Overall Accuracy 

  
64.1% 54.1% 59.7% 

  
35.9% 45.9% 40.3% 

Table 5. Comparison of the results of all classification methods. 

Classifier Accuracy Precision Sensitivity Specificity DOR 

KH 90.0% 93.6% 85.3% 94.4% 98.6 

ANN 85.0% 88.5% 79.4% 90.3% 35.8 

SVM 84.3% 82.1% 84.6% 84.0% 28.87 

ANFIS 59.7% 64.1% 64.1% 54.1% 2.1 
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As depicted in Table 5, the modification of FIS with KH optimization, compared to other three 

classification methods, led to the best classification results in accuracy, precision, sensitivity, 

specificity and diagnostic odds ratio (DOR) [36]. This shows that using KH algorithm for 

optimization of FIS training makes a powerful classifier that, in this case, can accurately and 

precisely separate the group of MS patients from healthy controls. 

7. Conclusions 

This study demonstrated the use of KH optimization in modifying and training an FIS as a pattern 

recognition tool for classification of patients diagnosed with MS from healthy controls using VEP 

signals. As mentioned, the KH algorithm was utilized to adjust parameters associated with 

membership functions of both inputs and outputs of an initial Sugeno-type FIS, so that both 

training and testing errors were minimized. The application of this new pattern recognition system 

for classification of the VEP signals in 11 MS patients and 11 healthy controls was presented in 

Section 5. 

As described earlier in Section 3, we also demonstrated the extraction of useful features from VEP 

signals. In Section 4, the most substantial features were selected in a feature subset selection 

scheme by taking advantage of two discrete optimization methods, ACO and SA. This selection 

of features provided further information regarding the value of many previously unused VEP 

features as an aide for making the diagnosis of MS. 

Finally, the designed computational intelligence system was compared to other popular 

classification methods such as ANN, SVM and ANFIS (see Section 5). The new method was 

shown to outperform other classifiers and was able to distinguish MS patients from healthy 

controls with an overall accuracy of 90%. 

In future, given the parameters associated with multiple sclerosis, such as MS subtype, disease 

modifying therapy (DMT), expanded disability status scale (EDSS) scores, and etc., a correlation 

analysis can be performed over the selected VEP features (see Section 4) to further understand the 

connection of VEP components with different aspects of the disease progression and prognosis. 

Topographic VEP (tVEP) also has been a hot topic in improvement of the MS diagnosis [37]. 

Topographic analysis of experimental recordings of VEPs may yield useful information that is not 

well understood in its original form. Such information may provide a good diagnostic criterion in 
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differentiating normal subjects from subjects with neurological diseases, as well as an index of the 

progress of the diseases. Therefore, it would also be useful to apply considerable components of 

tVEP as inputs of a pattern recognition system, in order to see if the accuracy of classification can 

further be improved, hence achieving a less ambiguous computer-aided diagnosis of the disease. 
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