bioRxiv preprint doi: https://doi.org/10.1101/2023.12.13.571427; this version posted December 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Design of a Computational Intelligence System

for Detection of Multiple Sclerosis with Visual Evoked
Potentials

Moussa Mohsenpourian?, Amir Abolfazl Suratgar®, Heidar Ali Talebi®, Mahsa Arzani,
Abdorreza Naser Moghadasid’e, Fariba Moghaddamf , Seyed Matin Malakouti® , Mohammad
Bagher Menhaj®

“Distributed and Intelligent Optimization Research Laboratory, Department of Electrical Engineering,
Amirkabir University of Technology, Tehran, Iran

"Real-time and Robotics Laboratory, Department of Electrical Engineering, Amirkabir University of
Technology, Hafez Ave., Tehran, Iran

“Department of Neurology, Sian Hospital, Tehran University of Medical Sciences, Tehran, Iran

’MS Research Center, Sina Hospital, Tehran University of Medical Sciences, Hasan Abad Sq., Tehran,
Iran

f School of Engineering, Institute of Systems Engineering, HES-SO Valais-Wallis, Route du Rawil Sion,
Switzerland

Abstract

In this study, a new approach for modification of membership functions of a fuzzy inference
system (FIS) is demonstrated, in order to serve as a pattern recognition tool for classification of
patients diagnosed with multiple sclerosis (MS) from healthy controls (HC) using their visually
evoked potential (VEP) recordings. The new approach utilizes Krill Herd (KH) optimization
algorithm to modify parameters associated with membership functions of both inputs and outputs
of an initial Sugeno-type FIS, while making sure that the error corresponding to training of the

network is minimized.

This novel pattern recognition system is applied for classification of VEP signals in 11 MS patients
and 11 HC’s. A feature extraction routine was performed on the VEP signals, and later substantial
features were selected in an optimized feature subset selection scheme employing Ant Colony
Optimization (ACO) and Simulated Annealing (SA) algorithms. This alone provided further
information regarding clinical value of many previously unused VEP features as an aide for

making the diagnosis. The newly designed computational intelligence system is shown to
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outperform popular classifiers (e.g., multilayer perceptron, support-vector machine, etc.) and was

able to distinguish MS patients from HC’s with an overall accuracy of 90%.

KEYWORDS: Multiple sclerosis, Visual evoked potentials, Binary classification, Fuzzy inference

system, Krill herd optimization

1. Introduction

Our arsenal of immunomodulatory therapy options against the inflammatory aspect of multiple
sclerosis (MS) has grown during the last ten years. However, it remains unclear which Disease-
Modifying Treatment (DMT) is best for a given patient [1, 2, 3]. As a result, the decisions are the
result of trial and error, and DMT changes and discontinuations are frequent occurrences [4,5, 6].
There is a dearth of information on the causes and timelines in clinical practice, particularly when

it comes to recently diagnosed patients who have access to the most current DMTs.

Additionally, treating MS in more rural practices with limited access to neuroimmunological
knowledge presents a challenge due to its increasingly complicated alternatives. Although MS is
prevalent across Finland, there are notable regional variations, with MS being most infrequent in
North Karelia, Finland's most eastern region [7]. This is a rather remote area with a sparse
population and vast distances. The North Karelia hospital district is not a participant in the national
MS registry [8], which has demonstrated that, in comparison to other DMTs, the use of
natalizumab, alemtuzumab, ocrelizumab, or rituximab as the first DMT was linked to a lower risk
of 5-year disability progression and relapse. The research also found that, after a median of 2.4
years, 12.4% of the patients who had begun treatment with another DMT subsequently advanced
to natalizumab, alemtuzumab, rituximab, or ocrelizumab [9]. Following the release of novel oral
treatments, recent data from Finland also indicated a rise in DMT switches [10]. On the other hand,
unlike Denmark and Sweden [4], no information is available about specific treatment plans or the
causes of DMT discontinuation or switch in Finnish MS patients throughout the present treatment

period.

In the present study, we search to find and define VEP components independently of amplitude
that are also associated with MS. Furthermore, performing stochastic, temporal and spatial analysis
on VEP recordings may yield useful information that may not be well understood in its original

form [11,12,13,14]. Although there is currently no cure for MS, the FDA has authorized a number
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of medications for its management. Treatment for exacerbations, disease-modifying treatments
(DMTs), and symptomatic medicines comprise the three categories of current therapy [15]. DMTs
that address inflammatory immunopathology, for instance, might delay the onset of functional
impairments but are unable to alleviate symptoms. As a result, creating efficient and unique
treatment modalities is crucial [16]. Transcranial direct current stimulation (tDCS) in particular
has gained popularity as a potential non-pharmacological therapeutic modality in recent years.
Through the use of scalp electrodes, TDCS adjusts the resting membrane potential and provides
low-current intensity, which can either increase or decrease the rate at which neurons fire. With
opposing effects, the supplied current might be either positive or negative (anodal or cathodal
stimulation, respectively): Excitatory post-synaptic potentials, which depolarize the neuronal
membrane and alter cortical excitability, are often increased by anodal tDCS. Whereas the
membrane becomes hyperpolarized and inhibited by cathodal tDCS [17]. Using highly repeatable
and rater-independent methodologies to assess disease burden is one of the biggest unmet goals in
MS research and clinical management. Low-contrast letter acuity measures, visual evoked
potentials (VEP), optical coherence tomography (OCT), and efferent oculometrics have made
significant strides in the measurement of visual dysfunction. However, most MS clinics do not
routinely employ these tools, and they frequently need assistance from individuals with
subspecialty training in neuroophthalmology [18]. The field of application for VEPs that use a
diffuse flash stimulus, also known as flash-VEP or F-VEP, is rather limited when it comes to
neurological pathologies affecting the visual pathways because these testing methods are less
sensitive than P-VEP and produce incredibly variable responses in normal individuals.
Additionally, P-VEPs enable the selection of features for the best stimulus in the clinical
examination of the many visual system components, each of which may be triggered in a different

way based on the image's contrast, chromaticity, spatiality, and timing [19,20].

This information can offer a better diagnostic criterion in distinguishing normal subjects from
subjects with neurological diseases, along with an index to indicate the progression of the diseases.
Hence, it would be of great value to propose a pattern recognition system that can classify normal

and MS subjects based on the unconventional features extracted from VEP signals.
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Figure 1: A block diagram of the implemented pattern recognition system.

The proposed computational intelligence system consists of five major elements: 1. preprocessing

module for removing any possible artifacts in signals, 2. feature extraction module to calculate

different components of the VEP signals, 3. feature subset selection module that selects effective

components in diagnosis of MS, 4. classification module to distinguish signals based on their

selected features, and 5. diagnosis module that indicates the class in which a signal belongs to.

Figure 1 shows the block diagram of the proposed system.

2. VEP Recordings

2.1. Subjects

The baseline data is composed of 11 MS patients (median age 38.5 years; 90% female; median
Expanded Disability Status Scale [20] (EDSS) 3.5, range 2-5.5; median disease duration 7.6 years,
range 0.7-16 years) who were diagnosed with clinical isolated syndrome (n = 1; 9%), relapsing-
remitting MS (n =9; 81.8%), and secondary progressive MS (n = 1; 9%) based on the diagnostic
criteria for multiple sclerosis [21]. The retrospective chart review was used in order to define
history of optic neuritis (hON). Final diagnosis was made based on the clinical standard criteria:
unilateral weakening or loss of vision over a period of hours or a few days, pain with eye
movements, and declined perception of color. Ten patients (81%) had a positive history of ON.
Also, ON was the first symptom in four patients (36%). Eleven subjects served as healthy controls
(HC), having no remarkable personal history, accompanied by a normal brief neurological exam,

while retaining a best corrected visual acuity of 0.8 or better (median age 39.5 years, 78% female).
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2.2. Data Acquisition

A 4-chgnnel EMG system (Nihon Kohden MEB2200) at Sina Hospital was utilized in order to
record Visual EPs. The recording, reference, and ground electrodes were placed with Oz, Fz, and
Cz, respectively; with pre-auricular points used as landmarks. The impedance for electrodes was
kept below 40 kQ. Band-pass filter range for recording was set to 0.1-100 Hz, with the sampling
frequency of 3 kHz. Pattern reversal VEPs were produced by full-field checkerboard stimulation
independently applied to each eye, with compliance to international guidelines. Raw data went
through a visual inspection, applied to a band-pass filter (1-30 Hz) and also averaged, while epochs
with high amplitude artifacts were excluded. Recorded VEPs from MS patients and healthy
controls are visualized in figures 2 and 3, respectively. Also, sample VEPs of two MS patients and

two healthy controls are plotted in figures 4 and 5, respectively.
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Figure 2. Pattern reversal VEP of all MS patients collected at Sina Hospital.
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Figure 3. Pattern reversal VEP of all healthy subjects collected at the Sina Hospital.
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Figure 4. Two samples of pattern reversal VEP data collected from MS patients “A” and “B” at Sina Hospital.
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Figure 5. Two samples of pattern reversal VEP data collected from healthy controls “A” and “B” at Sina Hospital.

The VEP data for each subject consists of four arrays of waves, from which two were collected
using the potential differences between Oz-Fz and Oz-Cz electrodes while only the subject’s right
eye was open, and the other two were collected in a similar fashion while only the left eye was

open. Accordingly, the data acquisition matrix is in the form of Equation 1.
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3. Extraction of the Features

3.1. Conventional Features

The aim of this section is to devise a method for extracting suitable features from the raw signal.
The benefit of having a feature extraction module is to transform raw brain signals into a
representation that can further simplify the classification. That is to say, feature extraction is an
effort to remove as much noise and other redundant information from the input signals, while
retaining information essential to distinguishing different classes of signals. Signal processing
methods are used to extract feature vectors from the brain signals. This then allows for the
comparison of the effect of various features on the performance of the detection system. Analysis

of various time domain, frequency domain and time-frequency domain features resulted in the fact
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that features based on signal amplitude and time domain characteristics are more effective in

revealing the P100 component [22]. These features are as follows:

Amplitude (AM, C e )» Which is the maximum signal value in [50,200] time interval:

C,.. = max{c@®)} 2)

max

Positive value (PAYV, Ap ), which is the sum of the positive values:

600

A =8 05(c)+ o)) 3)
t=0

Latency (LTIM, ¢. ), the P-VEP's latency time, i.e. the time where the maximum signal value

appears:

e, =feo=c,.} (4)

max

Where c(t) is the P-VEP single trial during 0-600ms after stimulus and C__  is the maximum

signal value in this time interval.

Negative area (NAV, A ), which is the sum of the negative signal values:

600
A, =8 05(c)- @) (5)
t=0
Peak-to-peak (PP, pp ):

pp = Cmax B Cmin (6)

where C_and C . are the maximum and minimum signal values, respectively:

C,.=max{@®}, C . = minf@)} (7)

Peak of N100 (P, ) the minimum signal value in [60, 190] time interval:

100

Py = min {c(),60 £ 1 £ 190} (8)

N 100

Latency of N 100 (¢, ), the time where the P appears:

N 100 N 100
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b = | = N100} 9)

P1N 3, difference between the maximum signal value in [195, 550] time interval and the minimum
signal value in [340, 500] time interval (corresponding to P 100 amplitude and N 300 amplitude

respectively).

P 1N 1, difference between the maximum signal value in [195, 550] time interval and the minimum
signal value in [70, 190] time interval (corresponding to P 100 amplitude and N 100 amplitude

respectively).

3.2. Wavelet Transform Features

In this section, the multi-scale wavelet transform features of VEP signals are calculated. These
features include: Energy, Variance, Waveform Length, and Entropy. Mentioning that the VEP
signal length is equal to 2048, since it was intended to divide the signal into two equal time
windows, the window size was set to 1024, with a 1024 element incrementation designated for
spacing of the windows. Decomposition level was assumed to be one. For a full tree at 1 level, 2
features are obtained. As it was decided to extract 4 types of features, the number of calculated
features are 2° 4 = 8 for each window, making for the total sum of 16 features for the two

windows.

By inspection, it was observed that wavelet energy of the first window was quite the same among
all VEP signals, and the wavelet variance was almost zero in all windows and all signals. Also, the
wavelet entropy at Level 0 decomposition was almost equal to zero. Therefore, these 8 features
were neglected, and the other eight were initially selected: Energy and Variance of first window
at Level 1 decomposition; Energy and Variance of second window at Level 0 decomposition; and

Energy, Variance, Waveform Length and Entropy of second window at Level 1 decomposition.

Overall, 17 features were extracted from each row of the data matrix. From these features, 9
were conventional signal components (i.e., amplitude, positive value, latency, negative area,
peak-to-peak, peak of N100, latency of N100, P1N3, and P1N1), and the other 8 were those
extracted from wavelet transformation of the signal (i.e., energy, variance, waveform length,

and entropy). The feature extraction procedure is illustrated in Equation 10.
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4. Feature Subset Selection

9 Conventional Features

8 Wavelet Transform Features

(10)

In this section, the objective is to select a suitable subset of extracted features in order to improve
the classification of MS patients from healthy controls. For this purpose, dimension of the feature
space needs to be reduced while making sure that the new feature subset results in a more efficient
classification. This can be done through an optimization method called Direct Objective
Optimization [23]. In this approach, first an ANN is created and trained using features extracted

from the VEP.

Let x be a vector containing all (i.e., n f) features, x , x,, ..., x ,and t a vector containing all
f

(ie., n, ) targets [ t

t

x=[x x, L x |,

f
t=0, 1, L 1]

(11)

Now we assume f is a function taking feature values x,i=12K,n ’ and returning its

representation of target classes as y,i = 1,2 K ,n inavectory=1[y y, L Y, ]:

y = f(x). (12)
In order to avoid the complexity of the procedure y = f(x) (e.g., curse of dimensionality, Hughes
effect, etc.), it is useful to reduce the number of features by eliminating those that are either
redundant or less relevant. For this purpose, we assume X to be a vector containing a subset of
original features x,i=12K s namely x,i=12K ,ﬁ_

X

10

4X17
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5(:[)%1 )22 L fcﬁf] (13)

where obviously 7 , £ n, and X[ X.Thus, anew function f must be defined so that f(x) tracks

f(x) with a negligible amount of error:

y=f(x); f&). (14)

Now we define a tracking error e as follows:

e=t-y
=t- £(%). (15)
Hence, the mean squared error would be:
1o
MSE= —3 e,. (16)
n .

1

t 1

Now assuming that 72 . number of features needs to be selected, we can formulate a cost function

!

as a weighted summation, in the following manner:
J=MSE+w><ﬁf. (17)

The weight w is defined to be proportional to the MSE (i.e., w @ MSE). Therefore, there is a
coefficient b > 0 such that w = b xXMSE and J = MSE + b XMSE > ;e Thus, the cost function

can be rewritten as follows:
J = MSE( + bﬁf). (18)
Here the goal is to define a scheme in which different subsets of 7 , features compete with one

another, and eventually the subset returning the best cost is selected. We define an array of decision

variables s=[s, s, K s ] such that s 1{01},i= 1,2,K,nf. If a decision variable,
nf l

2
s,i=12K N is equal to {1}, it would mean the corresponding feature, x ,i = 1,2 K e is

selected. On the contrary, a feature X, is not selected provided that its corresponding decision

variable, s, is set to be {0} . It is assumed that the capacity constraint (i.e., the number of features

11
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to be selected) is known and equal to 72 ;e Therefore, the sum of {1} ’s in the array s is also equal

to 7 ; and we have:

\:

5, = i, (19)
1

Qo

i

This can be viewed as a combinatorial optimization problem in which a permutation of features

X, X,,..., x is created, and is ordered such that the first feature results in the best cost, while
f

the last one causes the average cost to be the worst. Consequently, by choosing from the features
that came first, a determined number of features (i.e., 7 ;) 1s selected and its corresponding cost is

calculated. Two powerful discrete algorithms for solving combinatorial and permutative problems

are Simulated Annealing (SA) [24], and Ant Colony Optimization (ACO) [25].

It was intended to select four most substantial VEP features from each eye (i.e., a total of eight
features). In order to do so, both SA and ACO algorithms were implemented in MATLAB,
according to the scheme described earlier. Both algorithms were run for 500 iterations. For SA
algorithm, initial temperature was set to 10, with temperature reduction rate of 0.99, while having

20 sub-iterations within each iteration. For the ACO, number of ants was set to be 20, while setting

the parameters as follows: initial pheromone, ¢, = 1; pheromone exponential weight, a = 1;

heuristic exponential weight, b = 1; and evaporation rate, r = 0.05.

The SA was able to find an optimal solution with a cost equal to 1.7" 10, and ACO’s best

solution resulted in a cost equal to 3.6" 10 *. Therefore, the eight selected feature were the ones
returned by the SA algorithm. These features were, from the Oz-Fz signals, Amplitude, Positive
Value, and Latency for both eyes. Also, from the Oz-Cz signals of both eyes, the energies

corresponding to the second window of wavelet transform at level O were selected.

12
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Figure 6. Best costs provided by ACO and SA optimization algorithms after 500 iterations.

5. Modification of Initial FIS with Krill Herd Optimization

Here, the objective is to modify an initial FIS structure by taking advantage of Krill Herd

optimization algorithm (Figure 7). For this purpose, it is required to take the following steps:

1. Loading the training data

2. Creating an initial fuzzy inference system (FIS)

3. Modifying the values of FIS parameters according to modeling error, using the
optimization algorithm

4. Returning the FIS with best values of parameters, as the final result

It is feasible to create an initial FIS structure using genfis3 command in MATLAB. After
applying the training data to the function genfis3, an FIS is generated using fuzzy c-means

(FCM) clustering [26] by extracting a set of rules that models data behavior.

13
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Figure 7: Simplified flowchart of the krill herd optimization algorithm.
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The rule extraction method first uses the function fcm in order to determine the number of rules
and membership functions for the antecedents and consequents. In the case of our problem, more
precisely a Sugeno-type fuzzy inference system [27], the input membership functions are Gaussian

and have the following form:

- (x- )

flss,o)=e 2 °0)
Moreover, membership functions for the outputs are linear and can be noted as follows:
y=fx)=xx+d (21)

where y is a scalar, f(x) is a linear (i.e., affine) function, x is a 1-by-m vector, | is an m -by-1

vector, and d is a scalar.

Let p” = [p] p, K p’lbea vector containing all membership function parameters (i.e., 5, ’s
and ¢, ’s for Gaussian, and vectors 1. and scalars d; for linear membership functions). The goal is

to find optimal values p" = [p, p, K p ] so that if substituted as modified membership

function parameters, the training error is minimized. A cost function for the proposed optimization

routine can be implemented as follows:

n, n,

1, 1
Ji= 8 (- y,0 = —4 e (22)

n -

~.

r J=1 t
where J.i=12K,n, is the cost value at iteration i ts j=12K ,n, is the Jj-th target; Vi
i=12K,n ,j=1L2K,n is the value of j-th output of the network at iteration i; and
e i=12K,n,,j=12K,n_ is the training error of the Jj-th target at iteration i. The best
resulted cost can be noted as J *, which is also equal to the cost value at final iteration, J . The

aim of optimization algorithm is to find a w belonging to the interval [- M,M ], M > 0 such that

the equation

P, = w, P, (23)
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in each iteration results in the minimization of the cost, and hence, a more optimal set of parameters

for fuzzy membership functions. w, is calculated at the end of i -th iteration, and is multiplied by

the initial values of parameters p? as a modification coefficient. p” is calculated at the final

iteration, and contains the best solution found by optimization algorithm to be set as parameters of
membership functions. The optimization routine used for the purpose of our problem is a bio-

inspired algorithm named Krill Herd [28].

6. Results and Discussion

Aforementioned classification methods were implemented using MATLAB. Since the dataset for
MS patients and healthy controls was rather small (i.e., 11 MS and 11 HC), a random permutation
of selected features was generated and presented as the input for pattern recognition systems. In
each instance, 70% of the data was excluded for training, while the remaining 30% was used in
order to test the validity of classification task. Classification procedures were run for 20 times,

each for 100 epochs or iterations; and at the end all 20 training and testing results were averaged.

For the sake of comparison, three other more common classifiers were also employed: Multilayer
Perceptron (MLP) [29], Support Vector Machine (SVM) [30] and Adaptive Neuro-Fuzzy
Inference System (ANFIS) [31]. For MLP, two hidden layers of sizes 20 and 10 were implemented.
The training and performance functions were set to Levenberg-Marquardt [32] and Cross-Entropy
[33], respectively. Again, because of the relatively small dataset we were dealing with, the cross-

validation option was neglected.

For the FIS and KH, the initial FIS was created with FCM clustering, and the number of clusters

was set to 11. Exponent for the fuzzy partition matrix U was chosen as 2.0, while the minimum

improvement in objective function between two consecutive iterations was selected to be 10 °.

For KH, number of runs was 3, population of the herd of krill was 30, and the crossover flag was

setto 1. Also, V D™ ,and N ™" were chosen to be 0.02, 0.005 and 0.01, respectively.

Regarding the SVM algorithm, data points were automatically centered at their mean, and scaled
to have unit standard deviation, before training. Value of the box constraint C for the soft margin
was set to 1, and the kernel cache limit was equal to 100. The kernel function was chosen to be

linear, and the Karush-Kuhn-Tucker (KKT) [34] violation level was set to 0. The method used for
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finding the separating hyperplane was Sequential Minimal Optimization (SMO) [35], while the

corresponding tolerance with which the KKT conditions are checked for the SMO training method

was selected as 107° .

The corresponding confusion matrices for each classification is presented in the following tables.

Table 1. Confusion matrix for KH.

Condition Positive Condition
(MS) Negative (HC)
Test True Positive False Positive Presiafe Pledheihe
Value
Outcome
Positive 58 4 93.5%
Test (MS) (41.4%) (2.9%) 6.5%
Qutcome Test False Negative True Negative NESINELEEEINE
Value
Outcome
Negative 10 68 87.2%
(HC) (7.1%) (48.6%) 12.8%
Sensitivity Specificity Overall Accuracy
85.3% 94.4% 90.0%
14.7% 5.6% 10.0%
Table 2. Confusion matrix for MLP.
Condition Positive Condition
(MS) Negative (HC)
Test True Positive False Positive eisiae Pl
Value
Outcome
Positive 54 7 88.5%
Test (MS) (38.6%) (5.0%) 11.5%
Outcome Test False Negative True Negative Negative Predictive
Value
Outcome
Negative 14 65 82.3%
(HC) (10.0%) (46.4%) 17.7%
Sensitivity Specificity Overall Accuracy
79.4% 90.3% 85.0%
20.6% 9.7% 15.0%
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Table 3. Confusion matrix for SVM.

Condition Positive Condition
(MS) Negative (HC)
Test True Positive False Positive Hosiibive Preclivie
Value
Outcome
Positive 55 12 82.1%
Test MS) (39.3%) (8.6%) 17.9%
Outcome Test False Negative True Negative Negative Predictive
Value
Outcome
Negative 10 63 86.3%
(HC) (7.1%) (45.0%) 13.7%
Sensitivity Specificity Overall Accuracy
84.6% 75.0% 84.3%
15.4% 25.0% 15.7%
Table 4. Confusion matrix for ANFIS.
Condition Positive Condition
(MS) Negative (HC)
Test True Positive False Positive Presia Pledlieiie
Value
Outcome
Positive 50 28 64.1%
Test (MS) (36.0%) (20.1%) 35.9%
S Test False Negative True Negative AESUNELE UG
Value
Outcome
Negative 28 33 54.1%
(HC) (20.1%) (23.7%) 45.9%
Sensitivity Specificity Overall Accuracy
64.1% 54.1% 59.7%
35.9% 45.9% 40.3%

Table 5. Comparison of the results of all classification methods.

Classifier Accuracy Precision Sensitivity Specificity = DOR

KH 90.0% 93.6% 85.3% 94.4% 98.6
ANN 85.0% 88.5% 79.4% 90.3% 35.8
SVM 84.3% 82.1% 84.6% 84.0% 28.87

ANFIS 59.7% 64.1% 64.1% 54.1% 2.1
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As depicted in Table 5, the modification of FIS with KH optimization, compared to other three
classification methods, led to the best classification results in accuracy, precision, sensitivity,
specificity and diagnostic odds ratio (DOR) [36]. This shows that using KH algorithm for
optimization of FIS training makes a powerful classifier that, in this case, can accurately and

precisely separate the group of MS patients from healthy controls.

7. Conclusions

This study demonstrated the use of KH optimization in modifying and training an FIS as a pattern
recognition tool for classification of patients diagnosed with MS from healthy controls using VEP
signals. As mentioned, the KH algorithm was utilized to adjust parameters associated with
membership functions of both inputs and outputs of an initial Sugeno-type FIS, so that both
training and testing errors were minimized. The application of this new pattern recognition system
for classification of the VEP signals in 11 MS patients and 11 healthy controls was presented in

Section 5.

As described earlier in Section 3, we also demonstrated the extraction of useful features from VEP
signals. In Section 4, the most substantial features were selected in a feature subset selection
scheme by taking advantage of two discrete optimization methods, ACO and SA. This selection
of features provided further information regarding the value of many previously unused VEP

features as an aide for making the diagnosis of MS.

Finally, the designed computational intelligence system was compared to other popular
classification methods such as ANN, SVM and ANFIS (see Section 5). The new method was
shown to outperform other classifiers and was able to distinguish MS patients from healthy

controls with an overall accuracy of 90%.

In future, given the parameters associated with multiple sclerosis, such as MS subtype, disease
modifying therapy (DMT), expanded disability status scale (EDSS) scores, and etc., a correlation
analysis can be performed over the selected VEP features (see Section 4) to further understand the
connection of VEP components with different aspects of the disease progression and prognosis.
Topographic VEP (tVEP) also has been a hot topic in improvement of the MS diagnosis [37].
Topographic analysis of experimental recordings of VEPs may yield useful information that is not

well understood in its original form. Such information may provide a good diagnostic criterion in
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differentiating normal subjects from subjects with neurological diseases, as well as an index of the
progress of the diseases. Therefore, it would also be useful to apply considerable components of
tVEP as inputs of a pattern recognition system, in order to see if the accuracy of classification can

further be improved, hence achieving a less ambiguous computer-aided diagnosis of the disease.
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