

1 A barley MLA receptor is targeted by a non-ribosomal peptide effector
2 of the necrotrophic spot blotch fungus for disease susceptibility

3 Yueqiang Leng^{1#}, Florian Kümmel^{2#}, Mingxia Zhao^{1†}, István Molnár^{3‡}, Jaroslav Doležel³,
4 Elke Logemann², Petra Köchner², Pinggen Xi^{1§}, Shengming Yang⁴, Matthew J. Moscou^{5,6},
5 Jason D. Fiedler⁴, Yang Du⁷, Burkhard Steuernagel⁸, Steven Meinhardt¹, Brian J. Steffenson⁵,
6 Paul Schulze-Lefert^{2,9*}, and Shaobin Zhong^{1*}

7

8 ¹Department of Plant Pathology, North Dakota State University, Fargo, ND 58108 USA

9 ²Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research,
10 Cologne 50829, Germany

11 ³Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural
12 and Functional Genomics, Olomouc CZ-77900, Czech Republic

13 ⁴Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS,
14 Fargo, ND 58102, USA

15 ⁵Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA

16 ⁶USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108, USA

17 ⁷Department of Computer Systems and Software Engineering, Valley City State University, Valley
18 City, ND 58072, USA

19 ⁸John Innes Centre, Crop Genetics, Norwich Research Park, Norwich NR4 7UH UK

20 ⁹Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research,
21 Cologne 50829, Germany

22 [†]Current address: Peking University Institute of Advanced Agricultural Sciences, Shandong
23 Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000 China

24 [‡]Current address: Hungarian Research Network (HUN-REN), Centre for Agricultural Research,
25 2462 Martonvásár, Hungary

26 [§]Current address: Guangdong Province Key Laboratory of Microbial Signals and Disease Control,
27 South China Agricultural University, Guangzhou, Guangdong 510642 China

28 [#]These authors contributed equally to this work

29 ***Corresponding authors.** Email: Paul Schulze-Lefert: schlef@mpipz.mpg.de; Shaobin Zhong:
30 shaobin.zhong@ndsu.edu

31

32

33 **Abstract**

34 The evolutionary history of plant interactions with necrotrophic pathogens that feed on dying host
35 cells and their virulence mechanisms remains fragmentary. We have isolated the barley gene
36 *Scs6*, which is required for the necrotrophic fungus *Bipolaris sorokiniana* isolate ND90Pr to cause
37 spot blotch disease. *Scs6* is located at the disease resistance gene locus *Mildew locus a* (*Mla*)
38 and encodes an intracellular nucleotide-binding leucine-rich repeat receptor (NLR). In transgenic
39 barley, *Scs6* is sufficient to confer susceptibility to ND90Pr in accessions naturally lacking the
40 receptor, resulting in infection-associated host cell death. Expression of *Scs6* in evolutionarily
41 distant *Nicotiana benthamiana* reconstitutes a cell death response to an uncharacterized
42 non-ribosomal peptide effector produced by ND90Pr-specific non-ribosomal peptide synthetases
43 (NRPSs) encoded at the *VHv1* virulence locus. Our data suggest that the heat-resistant effector
44 directly activates the *SCS6* receptor. *Scs6* is an allelic variant of functionally diversified *Mla*
45 resistance genes each conferring strain-specific immunity to barley powdery mildew isolates with
46 a matching proteinaceous pathogen effector. Domain swaps between *MLA* and *SCS6* NLRs and
47 expression of the resulting hybrid proteins in *N. benthamiana* reveal that the *SCS6* leucine-rich
48 repeat domain is a specificity determinant for the NRPS-derived effector to activate the receptor.
49 *Scs6* evolved after the divergence of barley from wheat and is maintained in several wild barley
50 populations with an incidence of 8%, suggesting a beneficial function for the host. Evolution of
51 the *bona fide* immune receptor *SCS6* targeted by the NRPS-derived effector was key for the
52 emergence of strain-specific spot blotch disease in domesticated barley.

53 **Introduction**

54 Plants have evolved an innate immune system that is constantly challenged by a wide variety of
55 microbial pathogens with different lifestyles, each of which has evolved different strategies to
56 manipulate the host and establish virulence. Interactions between plants and biotrophic
57 pathogens, which must retrieve nutrients from living host cells to proliferate, are often subject to
58 co-evolution, with the pathogen restricted to a particular host species. The dynamics of these
59 interactions are often driven by competing sets of co-evolving genes encoding plant immune
60 receptors and pathogen effectors, the former being essential components for non-self-perception
61 in the host and the latter being required for pathogen virulence (1). Despite recent advances, our
62 understanding of the evolutionary history and dynamics of plant interactions with necrotrophic
63 pathogens that kill and feed on dying host cells is less understood, even though these pathogens
64 cause substantial economic damage in crops (2, 3).

65 Necrotrophic pathogens may have a wide or narrow host range. The molecular basis of host
66 generalism is not well defined, but appears to be linked to the repertoire of secreted cell wall-
67 degrading enzymes (3). Computational mining of pathogen genomes has revealed large
68 arsenals of lineage- or species-specific effector proteins, often structurally related but with
69 extreme divergence in their amino acid sequences (4-9). Experimental evidence shows that a
70 subset of these effectors is required for virulence in necrotrophic pathogens with a narrow host
71 range (2). Host-specialized necrotrophs often rely on proteinaceous or specialized metabolites
72 that act as host-selective toxins (HSTs) to induce host cell death and promote infection.
73 *Pyrenophora tritici-repentis* produces the proteinaceous ToxA effector, which targets the
74 extracellular C-terminal domain of the wheat transmembrane protein TaNHL10, but susceptibility
75 depends on wheat *Tsn1*, which encodes an intracellular hybrid protein consisting of an N-terminal
76 S/T protein kinase fused to an NLR composed of nucleotide-binding (NB) and leucine-rich repeat
77 (LRR) domains (10, 11). The necrotrophic *Parastagonospora nodorum* secretes the cysteine-rich
78 proteinaceous effector SnTox1, which appears to directly target the plasma membrane-resident
79 and wall-associated kinase (WAK) Snn1 for disease susceptibility in wheat (12, 13).

80 Chemically diverse metabolite effectors that act as HSTs have been identified in the fungal
81 genera *Cochliobolus*, *Corynespora*, and *Periconia*. The susceptibility of sorghum to *Periconia*
82 *circinata* depends on the *Pc* locus, which encodes a cluster of three tandemly repeated *NLR*
83 genes and production of chlorinated peptide toxins by the pathogen, called peritoxins (14, 15).
84 Loss of the central *NLR* results in loss of susceptibility to *P. circinata*, but it is unknown whether
85 the toxin targets the NLR receptor directly or indirectly. The HC toxin of the causal agent of
86 northern corn leaf spot, *Cochliobolus carbonum*, is a cyclic tetrapeptide and targets histone

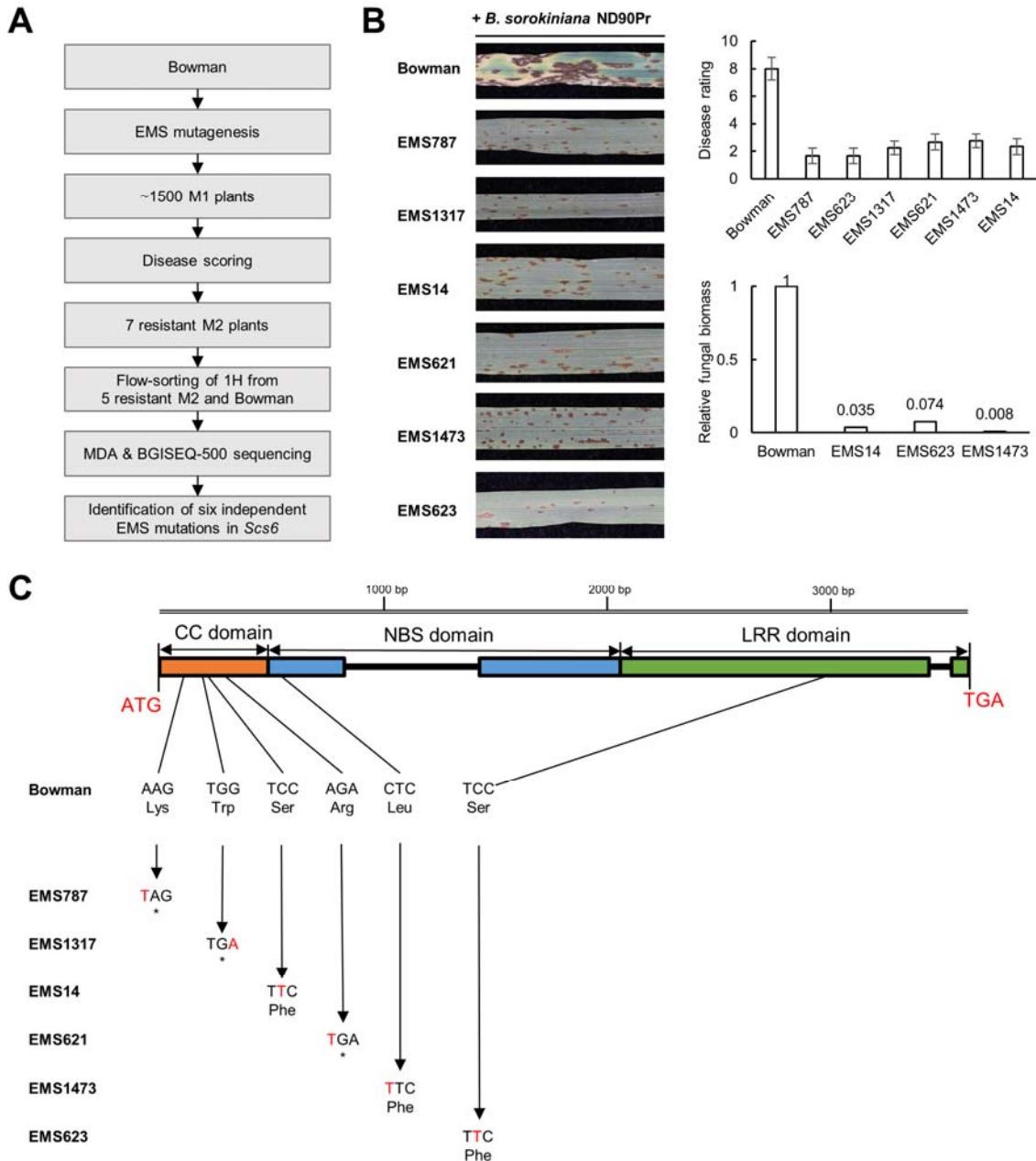
87 deacetylases of susceptible corn plants to establish infection (16, 17). *Cochliobolus victoriae*
88 deploys victorin toxin, a mixture of ribosomally encoded but highly modified hexapeptides, to
89 induce cell death and establish infection on *Vb*-containing oat genotypes (18). *Vb* is genetically
90 inseparable from *Pc-2*, which mediates disease resistance to the biotrophic pathogen *Puccinia*
91 *coronata*, but it remains unclear whether they are the same or two closely linked genes (19, 20).
92 Victorin toxin is sufficient to induce cell death in several 'non-host' species, including about 1% of
93 accessions of *Arabidopsis thaliana* (20-25). The NLR LOV1 in *A. thaliana* accession CI-0
94 determines sensitivity to victorin, but also requires the thioredoxin *AtTRXh5*, which contributes to
95 salicylic acid-dependent defense through its denitrosylation activity on host proteins, including
96 NPR1, the activator of systemic acquired resistance (26-28). Victorin binds to *AtTRXh5* and
97 inhibits its activity. Since *AtTRXh5* binds to LOV1 in the absence of victorin, it is proposed that the
98 receptor senses the toxin indirectly through victorin-mediated perturbation of *AtTRXh5* activity
99 (23).

100 Isolate-specific disease resistance to biotrophic or hemibiotrophic pathogens is often conferred by
101 intracellular plant NLRs that directly or indirectly sense the presence of pathogen effectors. This
102 results in receptor oligomerization and resistosome formation, inducing immune signaling and
103 termination of pathogen proliferation. Canonical plant NLRs consist of three domains, a variable
104 N-terminal signaling domain, a central nucleotide-binding oligomerization (NOD) domain, followed
105 by a C-terminal leucine-rich repeat region (LRR) (29). Most plant NLRs carry either a Toll-
106 interleukin-1 receptor-like (TIR) domain or a coiled-coil (CC) domain at the N-terminus and are
107 referred to as TNLs and CNLs, respectively (29, 30). The recognition specificity of sensor TNLs or
108 CNLs is usually determined by their polymorphic LRR, whereas signaling NLRs become engaged
109 in immune signaling initiated by sensor NLRs. CNL resistosomes integrate into host cell
110 membranes and act as calcium-permeable channels that mediate Ca^{2+} influx, triggering immune
111 signaling leading to host cell death (31-34). Sensor TNLs produce nucleotide-based second
112 messengers that converge on the conserved EDS1 family to activate signaling/helper NLRs that
113 carry a RESISTANCE TO POWDERY MILDEW 8 (RPW8) -CC domain (CC_R) (31-38). Similar to
114 sensor CNL resistosomes, activated signaling NLRs of *A. thaliana* have calcium-permeable
115 channel activity (39). Ca^{2+} influx and the accumulation of reactive oxygen species are key events
116 in immune signaling and are tightly linked to a regulated death of host cells at sites of attempted
117 pathogen ingress, the so-called hypersensitive response (HR) (40-42). While the HR likely
118 contributes to the termination of growth of biotrophic pathogens, it may promote the virulence of
119 necrotrophs that retrieve nutrients from dying cells (43).

120 The necrotroph *Bipolaris sorokiniana* (*Bs*) (teleomorph *Cochliobolus sativus*) is the causal agent
121 of a wide range of diseases in cereals, including leaf spot blotch, common root rot, seedling blight

122 and kernel blight (44). Although *Bs* can infect a wide range of grass species, strain-specific
123 variation in virulence among a worldwide collection of isolates has been identified based on
124 differential infection responses on a panel of barley accessions, distinguishing four *Bs* pathotypes
125 (45-47). Major genes or QTLs for spot blotch resistance/susceptibility have been identified in
126 various barley genotypes depending on the *Bs* pathotype (48-54), but the dominant/recessive
127 nature of each gene or QTL has yet to be determined in most cases. Recently, two wall-
128 associated kinase genes, *Sbs1* and *Sbs2*, were isolated at the *Rcs5* locus, which confer
129 susceptibility to spot blotch induced by the *Bs* isolate ND85F (55). Barley cultivar Bowman initially
130 displayed moderate resistance to spot blotch when it was released in North Dakota, USA, in 1985
131 (56). Only six years later, Bowman and cultivars derived from Bowman showed hyper-
132 susceptibility to a newly emerged isolate of spot blotch, named *Bs_{ND90Pr}* (57). This isolate belongs
133 to *Bs* pathotype 2 and its high virulence on Bowman depends on the unique *Vhv1* locus, which
134 harbors a cluster of genes including two non-ribosomal peptide synthetases (NRPSs) (53, 58).
135 Deletion of one of the two NRPS genes, termed *NPS1*, is sufficient to abolish the high virulence
136 of *Bs_{ND90Pr}* on cultivar Bowman (58). We recently identified *Scs6* as the dominant gene needed
137 for susceptibility to spot blotch caused by *Bs_{ND90Pr}* in Bowman and physically anchored the locus
138 to a 125 kb genomic region overlapping with the *Mla* locus in the barley cv. Morex reference
139 genome (59). Interestingly, the complex *Mla* locus is known to confer isolate-specific disease
140 resistance to several foliar biotrophic pathogens, including the barley powdery mildew *Blumeria*
141 *graminis* f. sp. *hordei* (*Bgh*), the stripe rust pathogen *Puccinia striiformis* and the hemibiotrophic
142 blast pathogen *Magnaporthe oryzae* (60-64). The *Mla* locus harbors three NLR families, *Rgh1*,
143 *Rgh2* and *Rgh3*, all of which encode CNL receptors (65). For several MLA CNL immune
144 receptors belonging to the RGH1 family, cognate pathogen effector proteins, termed avirulence
145 effectors, have been isolated and at least some bind directly to the corresponding receptor (66-
146 69). Barley MLA immune receptors identified to date all belong to one of two MLA subfamilies
147 from the RGH1 superfamily (63).

148 Here, we used chemical mutagenesis of the susceptible cultivar Bowman to identify several
149 *Bs_{ND90Pr}* resistant mutants. A customized Mutant Chromosome Sequencing (MutChromSeq) (70)
150 approach was then used to identify independent mutations in the susceptibility factor *Scs6*, which
151 we show to be a naturally occurring *Mla* allele present in 16% of domesticated barley germplasm.
152 We generated *Scs6* transgenic barley in accessions lacking the receptor to show that *Scs6* is
153 sufficient to confer *Bs_{ND90Pr}* susceptibility. We collected intercellular washing fluids (IWFs) from
154 Bowman leaves inoculated with wild-type *Bs_{ND90Pr}* or the *nps1* *Bs_{ND90Pr}* mutant and show that the
155 former IWF is necessary and sufficient to reconstitute a cell death response in *Scs6*-containing
156 barley and in *N. benthamiana* transiently expressing *Scs6*. Domain swaps between the SCS6
157 CNL and the MLA1 or MLA6 barley powdery mildew immune receptors and expression of the


158 resulting hybrid proteins in *N. benthamiana* revealed that the SCS6 LRR domain determines
159 sensitivity to the NPS1-derived effector. We performed *Bs_{ND90Pr}* inoculation experiments with a
160 collection of wild barley lines to show that *Scs6* is maintained in multiple geographically separated
161 wild barley populations. Phylogenetic analysis suggests that *Scs6* is a *Hordeum*-specific
162 innovation. We infer that SCS6 is a *bona fide* immune receptor that is directly targeted for disease
163 susceptibility by the NPS1-derived effector of *Bs_{ND90Pr}*.

164 **Results**

165 **SCS6 is a naturally occurring variant of MLA subfamily 2 CNL receptors**

166 To molecularly isolate *Scs6*, we applied the MutChromSeq approach (70) (**Fig. 1A**). We first
167 mutagenized seeds of the susceptible barley cultivar Bowman with ethyl methanesulfonate (EMS;
168 (71) and screened M₂ families derived from approximately 1,500 M₁ plants by inoculation of the
169 seedlings with *B. sorokiniana* isolate ND90Pr (*Bs*_{ND90Pr}) (**Fig. 1A**; Methods). A total of seven
170 resistant M₂ families (EMS14, EMS494, EMS621, EMS623, EMS787, EMS1317 and EMS1473)
171 were identified, each characterized by drastically reduced cell death lesion formation in *Bs*_{ND90Pr}-
172 inoculated leaves compared to wild-type Bowman (**Fig. 1B**). Next, we flow-sorted chromosome
173 1H from five of the resistant EMS mutants and wild-type Bowman (**Fig. S1**), performed multiple
174 displacement amplification (MDA) and BGISEQ-500 DNA sequencing of the 1H chromosomes
175 (**Table S1**). We mapped sequence reads of each mutant line to the Bowman 1H assembly using
176 the MutChromSeq pipeline and identified only one Bowman scaffold (scaffold_4918245 with a
177 length = 23,130 bp) that was mutated in four mutant lines (EMS14, EMS621, EMS1317 and
178 EMS1473) or deleted (the whole 23,130 bp sequence was missing) in one mutant (EMS494)
179 (**Table S2**). The four mutant lines (EMS14, EMS621, EMS1317 and EMS1473) each carry
180 different non-synonymous single nucleotide substitutions in a single gene (**Fig. 1C**). These
181 substitutions are consistent with EMS alkylating activity on guanine residues and result in either
182 premature stop codons or deduced single amino acid substitutions in the 5' coding region of a
183 candidate *Scs6* gene (**Fig. 1C**). Targeted genomic DNA resequencing of this gene, amplified by
184 PCR from all seven mutant lines, validated the MutChromSeq analysis and identified two
185 additional EMS mutant lines, EMS787 and EMS623, each carrying unique non-synonymous
186 single nucleotide substitutions that resulted in a premature stop codon in the 5' or a deduced
187 single amino acid substitution in the 3' coding region, respectively, making it likely that the
188 corresponding wild-type gene is *Scs6* (**Fig. 1C**). The deduced protein of candidate *Scs6* consists
189 of 959 amino acids with a tripartite domain organization typical of canonical CNL-type immune
190 receptors, i.e., an N-terminal coiled-coil domain (CC), a central nucleotide-binding domain (NB),
191 and C-terminal leucine-rich repeats (LRRs) (**Fig. 1C**). Protein sequence alignment with
192 MLA/RGH1 variants found in multiple wild barley populations identified the candidate SCS6 as a
193 novel member of the MLA receptor subfamily 2 (63). This subfamily differs from MLA subfamily 1
194 mainly by polymorphisms in the CC domain, but both subfamilies have an overall high protein
195 sequence similarity of at least 88%.

196

197

198

199

200

201

202

203

204

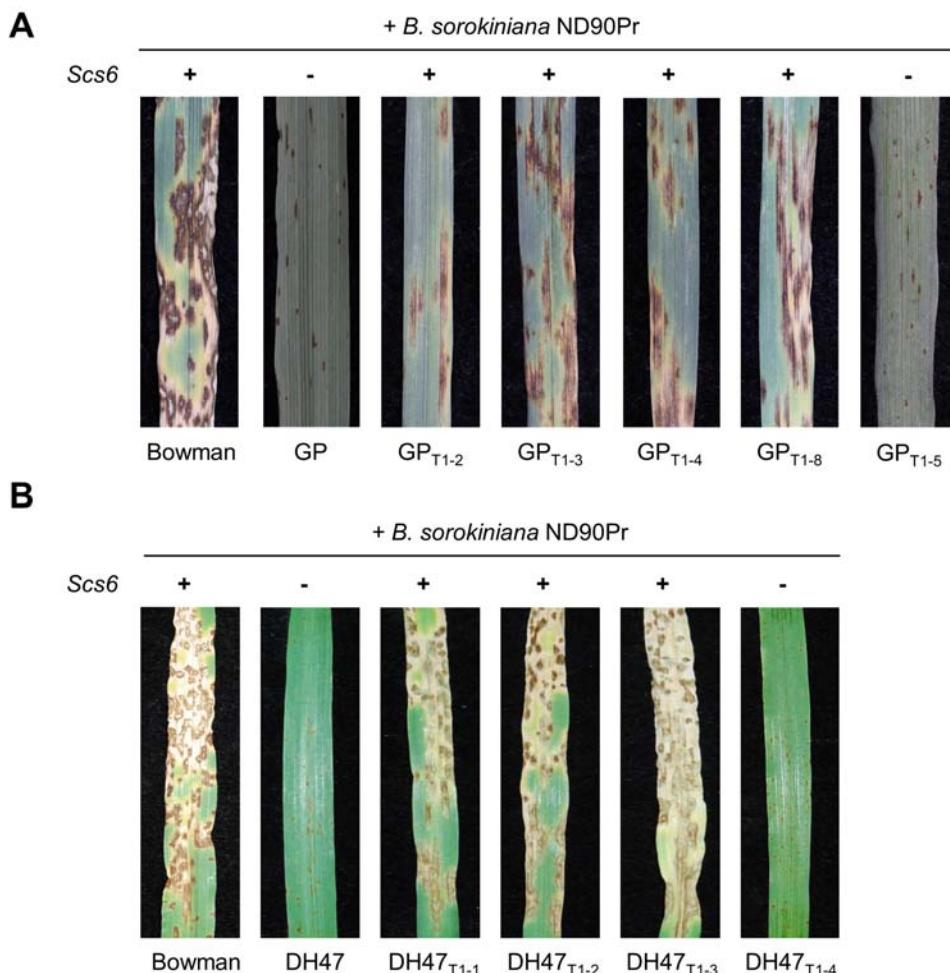

205

Figure 1. Identification of *Scs6* by MutChromSeq. (A) Workflow for MutChromSeq. (B) Infection responses, disease scorings, and quantification of fungal biomass in Bowman and six barley EMS M1 lines after inoculation with *Bipolaris sorokiniana* ND90Pr. Photos were taken at seven days after inoculation. The 1-9 rating scale of Fetch and Steffenson (96) was used to rate the spot blotch disease. Fungal biomass was quantified for Bowman and three EMS M1 lines using quantitative PCR. (C) Gene structure and EMS mutations in *Scs6*, a gene encoding a canonical coiled-coiled-type NLR (CNL).

206

207 **Scs6 is necessary and sufficient to confer susceptibility to Bs_{ND90Pr} in barley**

208 To further confirm that the candidate SCS6 confers susceptibility to Bs_{ND90Pr} in barley, we
209 generated transgenic plant lines in Bs_{ND90Pr} -resistant barley cultivar Golden Promise (GP) and
210 barley line SxGP DH-47 (DH47) using two binary vectors that carry the coding sequence of
211 candidate *Scs6* flanked either by the maize *Ubi* promotor and *NOS* terminator sequences or by 5'
212 and 3' regulatory sequences of barley *Mla6*, respectively (Fig. S2). T_1 progeny of T_0 transgenic
213 plants obtained from both GP and SxGP DH-47 genetic backgrounds showed a segregation
214 pattern of strong susceptibility to Bs_{ND90Pr} that was dependent on the presence of *Scs6* transgene
215 copies (Fig. 2, Fig. S3 and Table S3), validating that the candidate gene is *Scs6*. We conclude
216 that *Scs6* is not only necessary for susceptibility to Bs_{ND90Pr} in cultivar Bowman but also sufficient
217 to confer susceptibility to the fungal pathogen when introduced as transgene in both tested
218 resistant barleys lacking the receptor.

219

220 **Figure 2. Scs6 is necessary and sufficient to confer susceptibility to *Bipolaris sorokiniana***
221 **ND90Pr in barley.** (A-B) Representative images of infection responses of Golden Promise (GP),
222 SxGP DH47 (DH47) and derived transgenic Scs6 T1 plants to *B. sorokiniana* ND90Pr, seven
223 days after inoculation.

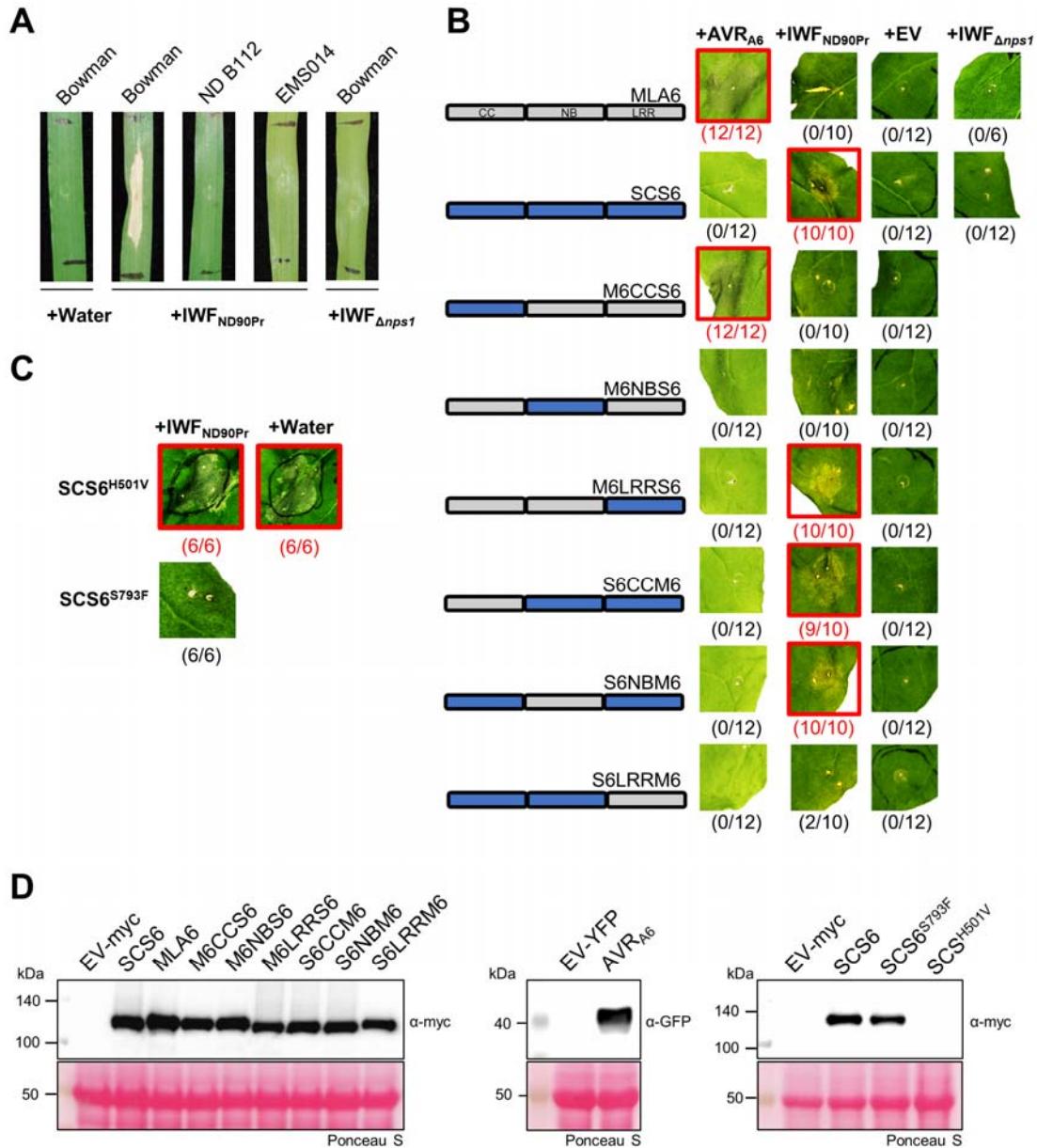
224

225

226 **Barley SCS6 is activated by a *Bs*_{ND90Pr} non-ribosomal peptide effector to induce cell death**
227 **in barley and *N. benthamiana***

228 In previous studies, we identified two fungal genes in *Bs*_{ND90Pr} which encode a nonribosomal
229 peptide synthetase (NRPS; *NPS1*) and a 4'-phosphopantetheinyl transferase (PPTase),
230 respectively (57, 71). Both *NPS1* and PPTase are necessary for *Bs*_{ND90Pr} to become virulent and
231 induce necrotic lesions in Bowman leaves, and PPTase is required for activation of the NRPS
232 enzyme (58, 72). We hypothesized that *Bs*_{ND90Pr} synthesizes and delivers a non-ribosomal
233 peptide effector inside barley cells to induce SCS6-mediated cell death thereby facilitating its
234 necrotrophic growth. We attempted to produce the effector by *in vitro* culture of *Bs*_{ND90Pr} in
235 nutrient-limited media, but the fungal culture filtrates did not elicit necrotic symptoms after
236 infiltration into Bowman leaves. We reasoned that the fungus might produce the effector during
237 infection *in planta*. Therefore, we inoculated Bowman seedlings with wild-type *Bs*_{ND90Pr} and
238 collected Intercellular Washing Fluid (IWF) from leaves seven days after the inoculation (denoted
239 IWF_{ND90Pr}, Methods). When IWF_{ND90Pr} was infiltrated into healthy leaves of Bowman, ND B112,
240 and previously characterized double-haploid (DH) progeny derived from a cross between
241 susceptible Bowman and resistant Culicuchima (59), only susceptible barley lines harboring Scs6
242 developed necrotic lesions at the sites of IWF infiltration (**Fig. 3A, Fig. S4A and S4B**). This
243 indicates that susceptibility to isolate *Bs*_{ND90Pr} and cell death activity of IWF_{ND90Pr} both depend on
244 the presence of Scs6. IWF collected from barley leaves inoculated with the *Bs*_{ND90Pr} Δ *nps1* mutant
245 (denoted IWF _{Δ nps1}) failed to induce necrotic leaf lesions in Scs6-containing barley lines (**Fig. 3A**).
246 Cell death activity of IWF_{ND90Pr} on Bowman was retained upon prolonged heat treatment of the
247 IWF but lost after proteinase K incubation, consistent with an NRPS-derived effector (20 min 95
248 °C; **Fig. S4C**). Collectively, these results suggest that *Bs*_{ND90Pr} secretes a non-ribosomal peptide
249 effector, that can be recovered by IWF extraction, to trigger Scs6-dependent cell death in barley.

250 To investigate whether SCS6 can serve as a target of the *Bs*_{ND90Pr}-derived effector, we expressed
251 the barley CNL in leaves of heterologous *Nicotiana benthamiana*, a dicotyledonous plant. We
252 delivered wild-type Scs6 or a *scs6* mutant *via* *Agrobacterium tumefaciens* infiltration. Scs6

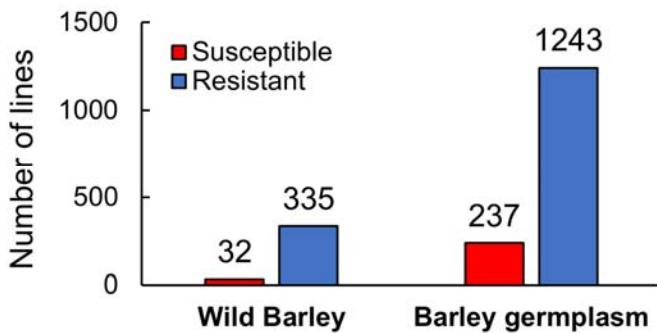

253 expression in *N. benthamiana* caused a rapid and robust induction of cell death after infiltration of
254 IWF_{ND90Pr} but not IWF_{Δnps1} (**Fig. 3B**). Expression of scs6 present in EMS mutant 623 (SCS6^{S793F})
255 followed by IWF_{ND90Pr} infiltration also did not result in a cell death response. This is consistent
256 with the finding that the EMS mutant 623 in barley is resistant to isolate *Bs*_{ND90Pr} (**Fig. 1C**),
257 suggesting that the corresponding single amino acid substitution S793F in the SCS6 LRR domain
258 renders the protein insensitive to the *Bs*_{ND90Pr}-derived effector (**Fig. 3C**). Expression of a Scs6
259 variant (SCS6^{H501V}) resulting from a single amino acid substitution in the conserved MHD motif of
260 the NB domain rendered SCS6 autoactive, i.e., SCS6^{H501V}-mediated cell death in *N. benthamiana*
261 occurred in the absence of IWF_{ND90Pr} (**Fig. 3C**). Equivalent substitutions in the MHD motif have
262 been shown to result in autoactive MLA immune receptors triggering cell death *in planta* in the
263 absence of matching *Bgh* avirulence effector proteins (73). Wild-type SCS6 and SCS6^{S793F}
264 accumulated to similar steady-state levels in *N. benthamiana* leaf tissue (**Fig. 3D**). However, the
265 auto-active SCS6^{H501V} variant was undetectable, presumably because little or no protein was
266 produced due to immediate onset of cell death following *Agrobacterium*-mediated delivery of the
267 corresponding gene construct (**Fig. 3D**). Taken together, these results demonstrate that barley
268 Scs6 expression in heterologous *N. benthamiana* is sufficient to recapitulate an IWF_{ND90Pr}-
269 dependent cell death.

270

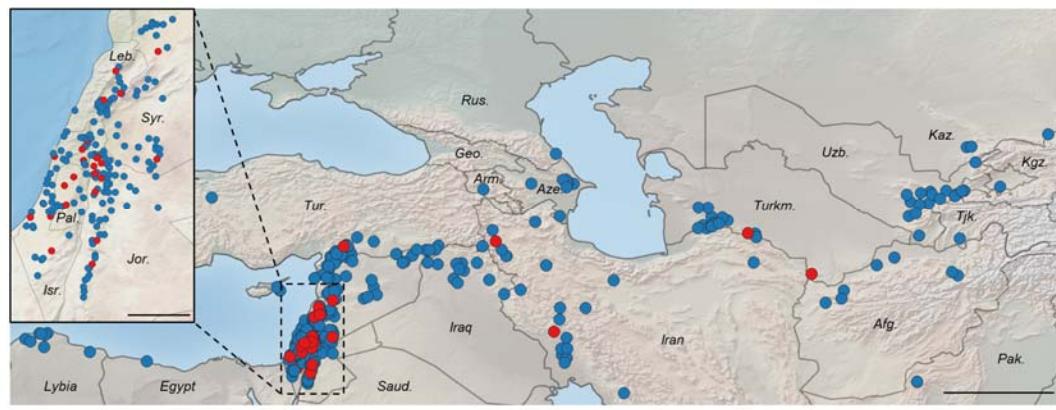
271 ***Bs*_{ND90Pr}-delivered effector specifically activates SCS6 via its LRR and NB domains**

272 To further characterize SCS6-mediated cell death *in planta*, we constructed a series of hybrid
273 receptors between SCS6 and MLA subfamily 1 immune receptors MLA6 or MLA1, guided by their
274 shared modular domain architecture. The respective gene constructs were expressed in *N.*
275 *benthamiana* following agroinfiltration and tested for their ability to induce cell death in the
276 presence of matching *Bgh* avirulence effectors, AVR_{A1} or AVR_{A6}, or IWF_{ND90Pr} or IWF_{Δnps1} (**Fig.**
277 **3B; Fig. S5A**; (66). MLA1 and MLA6 were activated by cognate avirulence effectors AVR_{A1} and
278 AVR_{A6}, respectively, but not IWF_{ND90Pr}, indicating that MLA recognition specificities for the
279 proteinaceous and non-ribosomal peptide effectors are retained despite receptor overexpression.
280 Hybrid receptors constructed through the exchange of the N-terminal CC domain of MLA1 or
281 MLA6 with the corresponding sequence-diverged CC domain of SCS6 retained the ability to
282 detect *Bgh* effectors AVR_{A1} or AVR_{A6}, respectively (**Fig. 3B; Fig. S5A**). This is consistent with
283 previous data showing that recognition specificities of MLA1 and MLA6 for the matching *Bgh*
284 avirulence effectors are mainly determined by their polymorphic C-terminal LRRs (74). Similarly,
285 SCS6 hybrids carrying the CC domain of either MLA1 or MLA6 retained the ability for cell death
286 activation upon IWF_{ND90Pr} infiltration (**Fig. 3B; Fig. S5A**). This indicates that the CC domains of

287 SCS6 and MLA1/MLA6 receptors are functionally interchangeable when mediating cell death in
288 *N. benthamiana*, although the corresponding MLA subfamilies 1 and 2 are mainly differentiated
289 by this polymorphic N-terminal CC module. Recognition of AVR_{A1} and AVR_{A6} by SCS6-MLA
290 hybrids required the presence of both NB and LRR domains from MLA1/MLA6 receptors. A
291 hybrid receptor carrying MLA6 CC and NB domains and the SCS6 LRR stimulated cell death
292 upon IWF_{ND90Pr} infiltration, although cell death activity was slightly weaker compared to wild-type
293 SCS6 (M6LRRS6; **Fig. 3B**). However, when the LRR of MLA1 was exchanged with the SCS6
294 LRR (M1LRRS6), the resulting hybrid was non-responsive to IWF_{ND90Pr} (**Fig. S5A**), indicating that
295 both SCS6 NB and LRR domains are involved in SCS6 activation by the *Bs*_{ND90Pr} non-ribosomal
296 peptide effector. All tested hybrid receptors accumulated to similar steady-state levels in *N.*
297 *benthamiana* leaf tissue (**Fig. 3D**; **Fig. S5B**). These findings suggest that a *Bs*_{ND90Pr}-released
298 non-ribosomal peptide effector specifically activates SCS6 via its LRR and NB domains.



299
300 **Figure 3. Bipolaris sorokiniana ND90Pr secretes an effector that activates Scs6 via its LRR**
301 **region to cause cell death in barley and Nicotiana benthamiana.** (A) Barley genotypes that
302 express Scs6 (Bowman) or negative control (ND B112) were infiltrated with intercellular washing
303 fluid (IWF) that was isolated from Bowman leaves infected either with wild type *B. sorokiniana*
304 ND90Pr (IWF_{ND90Pr}) or mutant *B. sorokiniana* Δ nps1 (IWF_{Dnps1}), as indicated. (B-C) *N.*
305 *benthamiana* plants were transformed transiently, as indicated. Genes were fused in between the
306 35S promotor sequence and 4xmyc (receptors) or mYFP (AVR_{A6} without signal peptide) epitope
307 sequences. Twenty-four hours after *Agrobacterium*-mediated gene delivery, IWF_{ND90Pr}, IWF_{Dnps1} or
308 water was infiltrated, as indicated. Cell death phenotypes were assessed and documented at two
309 or four days after agroinfiltration for IWF-triggered cell death or effector-triggered cell death,
310 respectively. Representative pictures of at least six biological replicates (indicated in brackets)
311 are shown and combinations that resulted in cell death are highlighted with a red box. (D) For
312 determination of protein levels of receptor-4xMyc (approx. 114 kDa) and AVR_{A6}-mYFP (39 kDa) in
313 *N. benthamiana*, leaf tissue was harvested two days post *Agrobacterium* infiltration.


314 **Scs6 susceptibility to spot blotch is common in barley**

315 In nature, direct activation of SCS6-mediated cell death might be a strategy for the spot blotch
316 pathogen to sustain its necrotrophic growth phase on susceptible barley. Therefore, we
317 investigated the prevalence of *Scs6*-mediated susceptibility in domesticated and wild barley (**Fig.**
318 **4, Table S4 and S5**). We first performed *Bs_{ND90Pr}* inoculation experiments with 1,480
319 domesticated and 367 wild barley lines, the latter consisting of 318 accessions from the Wild
320 Barley Diversity Collection (WBDC) and 49 additional *H. spontaneum* lines belonging to nine
321 populations distributed throughout the Fertile Crescent (52, 75). We then conducted targeted
322 DNA sequencing of *Mla* haplotypes to clarify whether susceptibility to *Bs_{ND90Pr}* spot blotch is
323 strictly linked to the presence of *Scs6*, identified here as a member of MLA subfamily 2. The
324 results showed that susceptibility to the fungal pathogen was invariably associated with the
325 presence of *Scs6* identified in cv. Bowman (total of 269 accessions). Barley line FT153 was
326 clearly susceptible to *Bs_{ND90Pr}* although previously only one MLA subfamily 1 variant was
327 annotated at its *Mla* locus (*FT153-1*) (63), but the DNA sequencing of the corresponding genomic
328 region detected a *Scs6* haplotype (*FT153-2*) that had escaped earlier analysis (63). Thirty-
329 two wild barley accessions were susceptible to *Bs_{ND90Pr}* (**Figure 4A**). Based on targeted
330 sequencing on twenty-one accessions and seven previously sequenced wild barley accessions
331 (63), we confirmed that they all encode closely related SCS6 haplotypes (>97.90% protein
332 sequence identity). FT170, for example, is highly susceptible and carries *FT170-1* as its sole
333 subfamily 2 member, previously designated *Mla18-1* (63).

A

B

334

335

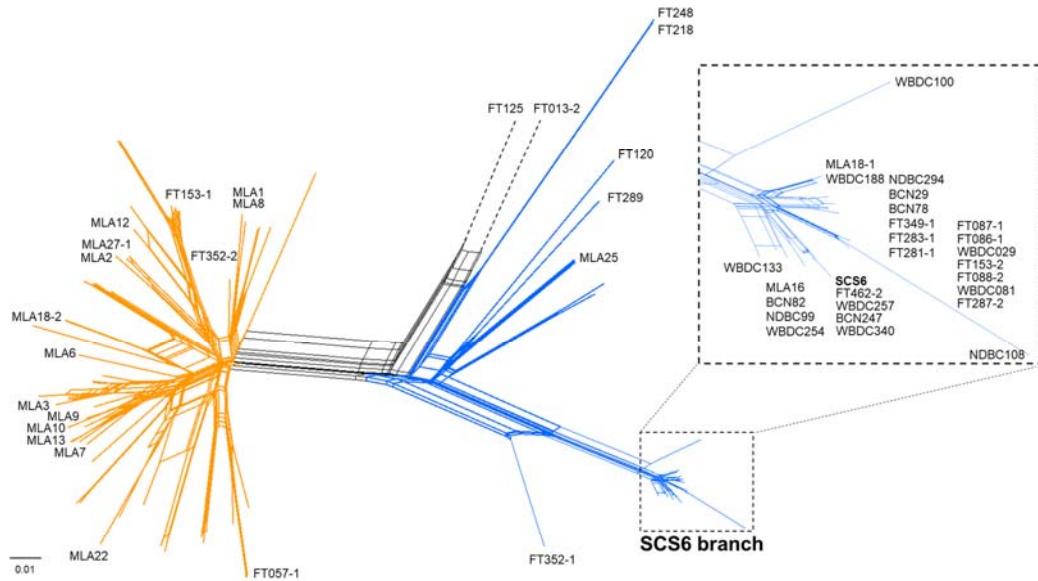
336

337

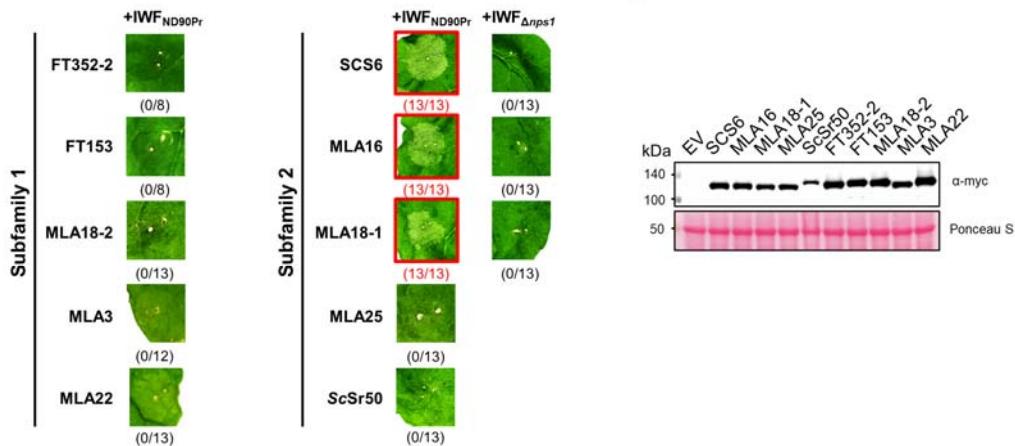
338

339

340


Figure 4. *Scs6* susceptibility to spot blotch is common in wild and cultivated barley
(A) Summary of inoculation experiments of wild barley (*Hordeum spontaneum*) accessions, including accessions from the Wild Barley Diversity Collection (WBDC; 52) and (63), and a panel of *Hordeum vulgare* germplasm with *Bipolaris sorokiniana* ND90Pr. (B) Geographic distribution of surveyed *Hordeum spontaneum* accessions. Susceptibility or resistance to Bs_{ND90Pr} is indicated in red or blue, respectively. Scale: 500 km (large map) and 100 km (map section on the left).

341 **The SCS6 receptor is likely a *Hordeum*-specific innovation**


342 To investigate the evolutionary history of SCS6/MLA-mediated susceptibility to spot blotch, we
343 curated a phylogenetic tree of all MLA variants found in wild and domesticated barley using
344 neighbor-net analysis of full-length proteins. This revealed that SCS6 variants cluster within MLA
345 subfamily 2 (**Fig. 5A**). In comparison to sequence divergence of individual MLA recognition
346 specificities belonging to subfamily 1, sequence variation between SCS6 variants appear to be
347 more limited although the corresponding accessions were sampled in distinct geographical
348 regions and belong to different *H. vulgare* subsp. *spontaneum* populations (**Fig. 5A**). We
349 examined an array of MLA subfamily 1 and subfamily 2 variants for sensitivity to IWF_{ND90Pr} in *N.*
350 *benthamiana* and found that not only SCS6, but also subfamily 2 variants MLA16 and MLA18-1,
351 can mediate effector-induced cell death and can therefore be considered SCS6 variants (**Fig.**
352 **5B**). However, sensitivity to the IWF was not shared among all MLA subfamily 2 members (e.g.,
353 MLA25, Sr50; **Fig. 5B and C**). This shows that there is natural genetic variation among all
354 available MLA subfamily 2 members that accounts for their differential sensitivity to the *Bs*_{ND90Pr}
355 NPS1-derived effector as well as susceptibility to the pathogen.

356 We extended our aforementioned phylogenetic analysis, limited to *Hordeum* RGH1 variants, by
357 including full-length proteins encoded by *Mla* orthologs or paralogs in other Triticeae species,
358 including wheat (*Triticum*) and rye (*Secale*), and the wild grass *Dasypyrum villosum* (**Fig. S6**;
359 (76)). MLA subfamilies 1 and 2 are mainly distinguished by their polymorphic CC domains (e.g.,
360 65% identity and 81% similarity for MLA6 and SCS6 CC domains; (63)). The CC domains of
361 some MLA haplotypes present in *D. villosum* can be assigned to MLA subfamily 1, while others
362 are assigned to MLA subfamily 2 (**Fig. S7**), indicating that the differentiation of the CC domain
363 occurred prior to the speciation of barley and *Dasypyrum villosum*, i.e., approximately 14.9 Mya,
364 which predates the divergence of wheat and barley 8 Mya (77). Notably, we did not identify SCS6
365 homologs in other grass species, suggesting that SCS6 is likely a *Hordeum*-specific innovation.
366 We performed statistical analysis on the coding sequences of *Scs6* variants, MLA subfamily 2
367 members from barley, and other *Mla* subfamily 2 members in the Triticeae to identify sites under
368 positive selection. Strong signatures of positive selection in the LRR domain of Triticeae
369 subfamily 2 members confirms and extends earlier analysis that MLA subfamily 2 includes
370 resistance specificities against pathogens, e.g., Sr50 (**Fig. S8**; (63)). Limited positive selection
371 detected among SCS6 variants may indicate that SCS6 evolves more slowly compared to the
372 rapid evolution of MLA subfamily 1 members.

A

B

C

373

374 **Figure 5. Diversity at the barley MLA locus underlies differential sensitivity to the *Bs*_{ND90Pr}**
 375 **NPS1-derived effector as well as susceptibility to spot blotch.** (A) Neighbor-Net analysis of
 376 114 MLA protein sequences including 28 previously identified MLA proteins from barley (64) 59
 377 sequences from wild barley (63), as well as 27 sequences from wild or domesticated barley
 378 identified in this study. MLA subfamily 1 and MLA subfamily 2 members are represented using
 379 yellow or blue edges, respectively, based on (63) and Fig. S7. (B) *Nicotiana benthamiana* plants
 380 were transformed transiently, as indicated. Twenty-four hours after *Agrobacterium*-mediated gene
 381 delivery, *IWF*_{ND90Pr} or *IWF*_{Dnps1} was infiltrated, as indicated. Representative pictures of at least
 382 eighth biological replicates (indicated in brackets) were taken two days after agroinfiltration and
 383 combinations that resulted in cell death are highlighted with a red box. OD₆₀₀ of *A. tumefaciens*
 384 was set to 0.5, except for ScSr50, for which the OD₆₀₀ was reduced to 0.2 to attenuate auto-
 385 activity. (C) Protein accumulation levels of expressed receptor-4xmyc constructs were determined
 386 by α-myc western blotting using total protein extracted from *N. benthamiana* leaves, one day post
 387 *agrobacterium*-infiltration.

388

389 **Discussion**

390 We have shown here that barley *Scs6* is necessary and sufficient to confer hyper-susceptibility to
391 necrotrophic *Bs_{ND90Pr}*. *SCS6* is a canonical CNL encoded at the complex *Mla* locus on
392 chromosome 1H, which harbors three highly dissimilar but physically linked *NLR* families, *Rgh1*,
393 *Rgh2* and *Rgh3* (65, 78). All characterized disease resistance specificities at this locus have been
394 assigned to the *Rgh1* family and a survey of wild barley revealed that *Rgh1* members are further
395 sequence-diversified into two subfamilies, termed *MLA* subfamily 1 and subfamily 2 (63). Owing
396 to the genomic head-to-head orientation of *Rgh2* and *Rgh3*, it has been proposed that they might
397 act as paired NLRs against unknown pathogens (79). *SCS6* shares 82% amino acid sequence
398 identity with *MLA6* and 28% and 24% sequence identity with *RGH2* and *RGH3*, respectively,
399 suggesting that a *bona fide* *RGH1* member is needed for disease susceptibility of *Bs_{ND90Pr}*.
400 Expression of barley *Scs6*, but not barley *Mla1* or *Mla6*, in evolutionarily distant *N. benthamiana*
401 reconstitutes a cell death response, specifically triggered by IWF collected from *Bs_{ND90Pr}* with an
402 intact *VHv1* locus. Taken together with the capacity of autoactive *SCS6^{H501V}* to mediate cell death
403 in the absence of a pathogen effector and the fact that all resistant EMS mutants carry mutations
404 in *Scs6*, this indicates that *SCS6* acts as a singleton NLR targeted by the NPS1-derived non-
405 ribosomal peptide effector. The deduced function of *SCS6* as a virulence target contrasts with
406 characterized immune receptors encoded by *Rgh1*. In addition, only *SCS6* is activated by a small
407 molecule, whereas all other *RGH1* members are activated upon sensing proteinaceous pathogen
408 effectors to confer immunity (61, 66-69, 80, 81).

409 Drastically reduced fungal biomass on barley *scs6* leaves compared to wild-type *Scs6* Bowman
410 following inoculation with wild-type *Bs_{ND90Pr}* suggests that *Scs6* is a virulence target for the
411 fungus. As the reduced fungal biomass is tightly linked to loss of infection-associated host cell
412 death on *scs6* mutants, it raises the possibility that *Scs6*-triggered signaling and/or cell death
413 promotes the necrotrophic lifestyle of the spot blotch pathogen. Two deduced NRPSs are
414 encoded at the *VHv1* locus in the *Bs_{ND90Pr}* genome and are unique to pathotype 2 strains (46, 58).
415 Since deletion of one of the two NRPS genes at *VHv1* is sufficient to abolish high virulence of
416 *Bs_{ND90Pr}* on cultivar Bowman (58), we conclude that a nonribosomally-encoded peptide effector
417 produced by the fungus activates the *SCS6* receptor.

418 Our data obtained with transgenic barley show that *Scs6* is the only host factor needed to render
419 resistant barley cultivars lacking this CNL hyper-susceptible to *Bs_{ND90Pr}*. This finding together with
420 the observation that expression of barley *Scs6* is sufficient to reconstitute a cell death response in
421 evolutionarily distant *N. benthamiana* in response to IWF_{ND90Pr} infiltration, strongly suggest that
422 *SCS6* is the direct virulence target for the NRPS-derived effector. Besides direct binding of

423 pathogen avirulence effectors to the LRR domain, plant NLR receptors can also indirectly sense
424 effector-mediated modifications in host proteins that serve as virulence targets (35, 82-84). In
425 such an indirect activation model for SCS6 one would expect the formation of a pre-activation
426 receptor complex through specific association with an unknown barley virulence target for the
427 *Bs_{ND90Pr}*-derived effector. As *Scs6* is shown here to be a lineage-specific innovation in barley
428 (*Hordeum*), it seems unlikely that a pre-activation SCS6 complex can assemble in heterologous
429 *N. benthamiana*, as this would imply an exceptional degree of evolutionary conservation of a
430 hypothetical virulence target between dicotyledonous and monocotyledonous plants – species
431 that diverged from each other approximately 140 Mya (85). Thus, our results contrast with the
432 indirect recognition of the victorin toxin by the LOV1 CNL of *A. thaliana* through victorin-mediated
433 disruption of *AtTRXh5* activity (23). In agreement with our conclusion, neither the expression of
434 *LOV1* nor *AtTRXh5* alone in *N. benthamiana* leaves is sufficient to induce cell death after victorin
435 infiltration (23). If *Vb/Pc-2* in oat is the same gene and encodes an NLR (19, 20), it will be
436 interesting to test whether this receptor from the natural host of *C. victoriae* is directly or indirectly
437 activated by victorin. Finally, the reconstitution of IWF-triggered and barley SCS6-dependent cell
438 death in heterologous *N. benthamiana* suggests that the *Bs_{ND90Pr}* NPS1-derived effector can enter
439 plant cells in the absence of pathogen infection structures and in the absence of a potential host
440 species-specific surface receptor or transporter.

441 Similar to the proposed function of SCS6 as a direct virulence target for the *Bs_{ND90Pr}* NPS1-
442 derived effector, experimental evidence strongly suggests that several other characterized barley
443 RGH1 CNLs directly bind to proteinaceous avirulence effectors delivered by biotrophic *B.*
444 *graminis* f sp *hordei* via the polymorphic LRR. These include MLA7, MLA10, MLA13, and MLA22,
445 which respectively bind to sequence-diversified avirulence effectors AVR_{A7}, AVR_{A10}, AVR_{A13} and
446 AVR_{A22} that share a common structural scaffold (66, 69, 81). Similar to SCS6, matching pairs of
447 these MLA receptors and AVR_A effectors are necessary and sufficient to induce a cell death
448 response in heterologous *N. benthamiana*. Additionally, the CNL receptor encoded by the stem
449 rust resistance gene *Sr50* in wheat, an orthologue of barley *Rgh1* derived from rye chromosome
450 1R, assigned here to MLA subfamily 2, appears to bind directly to the stem rust effector *AvrSr50*
451 (67, 86). Collectively, this indicates that RGH1 CNLs have a propensity to interact directly with
452 structurally distinct proteinaceous and even specialized non-ribosomal peptide effectors.

453 One of the EMS-induced mutants encodes a receptor variant with a single amino acid substitution
454 in the LRR domain, SCS6^{S793F}, which results in both loss of susceptibility to *Bs_{ND90Pr}* in barley and
455 loss of cell death activity in response to IWF_{ND90Pr} infiltration in *N. benthamiana* (Fig. 1 and Fig.
456 3). Based on an AlphaFold2-generated SCS6 model, the residue S793 has an outward-facing
457 side chain and is located on the concave side of the LRR. This, together with our observation that

458 the SCS6 LRR domain is sufficient to confer IWF responsiveness to the corresponding MLA6
459 hybrid receptor M6LRRS6, corroborates an essential role of the SCS6 LRR as direct virulence
460 target for the fungal-derived NRPS effector. In contrast, in the *Bs*_{ND90Pr}-resistant barley mutants
461 EMS14 and EMS1473, the deduced inward-facing receptor residues S73 and L183 are
462 substituted by bulky phenylalanine, which is expected to destabilize the conformation of the CC
463 and NB-ARC domains, respectively. If SCS6 functions similarly to sensor CNLs Sr35 and ZAR1
464 in wheat and Arabidopsis, then the latter two single amino acid substitutions in the SCS6 receptor
465 might abolish the virulence activity of SCS6 by interfering with receptor oligomerization or Ca²⁺
466 pore formation after binding of the effector to the SCS6 LRR domain (31, 87). In addition to the
467 LRR, the NB domain was found to contribute to the specific targeting of SCS6 by the peptide
468 effector (Fig. S5), suggesting that the effector might interfere with NB and LRR interdomain
469 interactions for receptor activation. A common activation mechanism for sensor CNLs and TNLs
470 has recently been proposed on the basis of available cryo-EM structures of CNL and TNL
471 resistosomes: Upon binding of proteinaceous avirulence effectors to the LRR domain, a steric
472 clash with the central NB-ARC is triggered by the bound bulky protein effectors, inducing a
473 conformational change of the NB-ARC domain followed by the exchange of ADP for ATP (88).
474 However, NRPS-generated peptides are significantly smaller than known proteinaceous
475 avirulence effectors, generally < 10 amino acids in length (89). Consequently, future work will
476 address the question of how a much smaller NRPS-derived effector can both bind to the SCS6
477 LRR and induce a steric clash with the central NB domain.

478 Although *B. sorokiniana* isolates are typically generalists that can infect a wide range of Triticeae
479 species, including wheat, the isolate *Bs*_{ND90Pr} is specialized to barley hosts. This is consistent with
480 our finding that *Scs6* alleles were not detected in wheat or wheat progenitors, suggesting that
481 *Scs6* might be a *Hordeum*-specific innovation that evolved after the divergence of the genera
482 *Triticum* and *Hordeum* less than 8 Mya (90). This could explain why *Bs*_{ND90Pr} confers hyper-
483 susceptibility only on *Scs6* barley genotypes, raising the possibility that *Bs* pathotype 2 acquired
484 its unique *Vhv1* virulence gene cluster during interactions with *Hordeum* hosts. However, whether
485 *Vhv1* of *Bs*_{ND90Pr} evolved as a post-domestication event in agricultural environments or in wild
486 barley pathogen populations and subsequently spread to North America remains to be clarified.

487 All characterized *Mla* powdery mildew disease resistance specificities in barley belong to *Mla*
488 subfamily 1, whereas no disease resistance function has yet been assigned to barley *Mla*
489 subfamily 2, which includes *Scs6*. Extensive data support the notion that functional diversification
490 of MLA subfamily 1 members is driven by a co-evolutionary arms race with the genetically highly
491 diverse biotrophic *Bgh* pathogen (63, 91-93). Compared to MLA subfamily 1 members, our
492 analysis of positive selection among subfamily 2 members indicates much less functional

493 diversification, which is particularly striking among naturally occurring *Scs6* variants. We have
494 shown here that SCS6 is maintained in several wild barley populations with an incidence of about
495 8%, strongly suggesting a beneficial function for the host. This widespread occurrence and the
496 ability of autoactive SCS6^{H501V} to trigger cell death in the absence of a pathogen effector, makes
497 it likely that the SCS6 CNL confers immunity against an unknown biotrophic or hemi-biotrophic
498 pathogen endemic to barley populations in the Fertile Crescent. The postulated pathogen may
499 not engage in a rapid co-evolutionary arms race with extant *Hordeum spontaneum* germplasm.

500 The hyper-virulent *Bs_{ND90Pr}* isolate emerged five years after barley cultivar Bowman was
501 introduced in North Dakota in 1985. Unexpectedly, our pathotyping survey shows that *Scs6*-
502 dependent susceptibility to *Bs_{ND90Pr}* is twice as high in domesticated barley as in wild barley
503 populations (16% and 8%, respectively). Domestication and breeding for disease resistance in
504 barley may have inadvertently resulted in the co-enrichment of *Scs6*-dependent disease
505 susceptibility to *Bs_{ND90Pr}*, probably due to linkage drag from another disease resistance gene on
506 barley chromosome 1H. Recently, the *Pyrenophora teres* f. *maculata* susceptibility factor *Spm1*
507 was mapped to the *Mla* locus in the cultivar Baudin (94). Although it remains to be tested whether
508 *Spm1* is also a member of the *Rgh1* family, our results demonstrate that the evolution of allelic
509 variants of a single *R* gene is shaped by contrasting selective pressures exerted by multiple
510 pathogens with different lifestyles. Elucidating the molecular principles underlying SCS6
511 activation by the NPS1-derived effector is likely to be of broader importance, as this could aid
512 future development and deployment of synthetic NLR receptors in crops that are less vulnerable
513 to manipulation by economically important necrotrophic pathogens.

514

515

516

517 **Materials and Methods**

518

519 **Plant materials and generation of EMS mutant population**

520 The barley cv. Bowman carrying *Scs6* (1) was used to generate mutant lines that were resistant
521 to spot blotch caused by *B. sorokiniana* isolate ND90Pr. The mutagenesis procedure was
522 performed according to (2) with some modifications. Approximately 2,000 seeds of barley cv.
523 Bowman were presoaked in 300 ml of phosphate buffer (0.05 M, pH 8.0) for 8 hours at room
524 temperature with gentle agitation. Then, the seeds were treated in 0.3% (v/v) ethylmethane
525 sulfonate (EMS) in phosphate buffer for 16 hours at room temperature. Treated seeds were
526 rinsed with water for 1 min and sown in pots immediately. The M₁ plants were grown in the
527 greenhouse at 20 to 24 °C under supplemental fluorescent lighting with a 16/8-h day/night cycle.
528 Spikes were harvested separately from individual M₁ plants. Approximately 20 M₂ seedlings from
529 each M₁ plant were screened for spot blotch resistance using isolate ND90Pr following the
530 procedures described by (3). Bowman was included as a positive control for susceptibility and
531 ND5883 and NDB112 as positive controls for resistance. Resistant M₂ seedlings were selected
532 and propagated by selfing to develop homozygous M₃ mutant lines, which were further confirmed
533 for resistance to ND90Pr and then used for MutChromSeq analysis. Cultivated barley accessions
534 from the USDA National Small Grains Collection (4) and the Wild Barley Diversity Collection
535 (WBDC) accessions (5) were also screened against isolate ND90Pr and used in the *Scs6* gene
536 diversity study.

537

538 **Fungal isolate, spot blotch phenotyping, Intercellular Washing Fluid (IWF) extraction and**
539 **relative fungal biomass quantification**

540 The pathotype 2 isolate ND90Pr of *B. sorokiniana* was used for phenotyping throughout this
541 research. V8 PDA (150 mL of V8 juice, 850 of mL H₂O, 10 g of PDA, 10 g of agar and 3 g of
542 CaCO₃) was used to culture *Bs*_{ND90Pr} under the conditions of 14 h of light and 10 h of darkness.
543 Spore suspension containing 2×10³ conidia/ml was prepared and sprayed on seedlings with the
544 second leaves fully expanded (12–14 days after planting). Inoculated plants were incubated in a
545 humidity chamber for 18–24 hours and then transferred into the same greenhouse room. Disease
546 ratings were conducted at 7 days post-inoculation using the 1–9 rating scale of (3).

547 To prepare the IWF, barley cv. Bowman was inoculated with *Bs*_{ND90Pr} or *Bs*_{ND90Pr} Δnps1 as
548 described above, and leaves were harvested 7 days after inoculation. Harvested leaves were cut
549 into fragments of about 1 inch in length, and leaf fragments were submerged into distilled water in

550 the beaker. The beaker was then set into a vacuum chamber and vacuumed for 30 minutes.
551 Then, leaf fragments were surface-dried and transferred into 50-ml centrifuge tubes, which were
552 centrifuged at 3900 rpm for 30 minutes. Finally, IWFs were harvested from the bottom of each
553 centrifuge tubes, confirmed on barley cv. Bowman seedlings by infiltration, and stored at -20 °C
554 for further use.

555 To quantify the fungal biomass, DNA was extracted from the leaves harvested at 7 days after
556 pathogen inoculation using a DNeasy Plant Mini Kit (Qiagen, Germany). Subsequently, 50 ng of
557 each DNA sample were used for quantitative real time PCR (qPCR), which was performed using
558 the ITS region as fungal target and the actin gene of barley as reference. Real-time PCR was
559 performed as described by (6). The ITS Ct values were normalized using the barley actin gene,
560 and the relative gene copy number of ITS was calculated according to the $2^{-\Delta\Delta CT}$ method (7). The
561 relative quantity of fungal biomass was calculated using barley cv. Bowman leaves inoculated
562 with wild type isolate ND90Pr as a control.

563

564 **Flow sorting of barley chromosomes and preparation of DNA for sequencing**

565 Suspensions of mitotic metaphase chromosomes were prepared from root tips of barley cv.
566 Bowman carrying SCS6 and its five EMS mutants following (8). Briefly, root-tip cells were
567 synchronized using hydroxyurea, accumulated in metaphase using amiprohos-methyl and fixed
568 by formaldehyde. Intact chromosomes were released by mechanical homogenization of 100 root
569 tips in 600 µL ice-cold LB01 buffer (9). GAA microsatellites on the isolated chromosomes were
570 labelled by fluorescence *in situ* hybridization in suspension (FISHIS) using 5'-FITC-GAA7-FITC-3'
571 oligonucleotides (Sigma, Saint Louis, USA) according to (10) and chromosomal DNA was stained
572 by DAPI (4',6-diamidino 2-phenylindole) at 2 µg/mL. Bivariate chromosome analysis and sorting
573 was done using a FACSAria II SORP flow cytometer and sorter (Becton Dickinson
574 Immunocytometry Systems, San José, USA). Sort window delimiting the population of
575 chromosome 1H was setup on a dot-plot FITC-A vs. DAPI-A and 55,000–70,000 copies of 1H
576 chromosomes were sorted from each sample at rates of 1,500–2,000 particles per second into
577 PCR tubes containing 40 µL sterile deionized water. Chromosome content of flow-sorted fractions
578 was checked by microscopic observation of 1,500–2,000 chromosomes flow sorted into 10 µL
579 drop of PRINS buffer containing 2.5% sucrose (11) on a microscopic slide. Air-dried
580 chromosomes were labelled by FISH with a probe for GAA microsatellite according to (12). In
581 order to determine chromosome content and the purity, which was expressed as percent of 1H in
582 the sorted fraction, at least 100 chromosomes in each sorted sample were classified following the
583 molecular karyotype of barley (12). The samples of flow-sorted chromosomes 1H were treated

584 with proteinase K, after which their DNA was amplified by multiple displacement amplification
585 (MDA) (**Table S1**) using an Illustra GenomiPhi V2 DNA Amplification Kit (GE Healthcare, Chalfont
586 St. Giles, United Kingdom) as described by (13). The DNA samples were sequenced by BGI
587 using BGISEQ-500 (Cambridge, MA) to generate 100-bp paired-end (PE) reads.

588

589 **MutChromSeq**

590 Raw sequencing data from flow-sorted chromosome 1H of the wild type and EMS mutants were
591 quality-trimmed using Trimmomatic (14). The Bowman 1H chromosome sequencing data was
592 assembled using ABySS 2.0 (15, 16) and was masked for repeats using RepeatMasker
593 (<http://repeatmasker.org>). Sequence reads from EMS mutants were aligned to the repeats-
594 masked Bowman 1H assembly using software BWA (17). The reads-aligned bam files were
595 further processed using SAMtools 0.1.19 (17) following parameters suggested by (18). The
596 resulting pileup formatted files for wild type and EMS mutants were used as the inputs analyzed
597 by Pileup2XML.jar (<https://github.com/steuernb/MutChromSeq>). Finally, MutChromSeq.jar
598 (<https://github.com/steuernb/MutChromSeq>) was executed to identify the candidate contigs with
599 mutations in EMS mutants analyzed. All mutations were manually validated using Integrative
600 Genomics Viewer software (IGV, version 2.5.2, (19)).

601

602 **Identification of the candidate gene for *Scs6***

603 Gene annotation for the MutChromSeq-identified contig with mutations in EMS mutants was
604 performed by FGENESH (20). The genomic structure of *Scs6* was confirmed by PCR sequencing
605 using both genomic DNA and cDNA as templates and primers listed in **Table S6**. *Scs6* was
606 amplified by PCR from the five EMS mutants used in MutChromSeq and three additional EMS
607 mutants with primer pair SCS6-F2/SCS6-R17 (**Table S6**).

608

609 **Binary vector construction and *Agrobacterium*-mediated transformation of barley**

610 To determine the function of *Scs6*, two expression vectors of *Scs6* were constructed and used to
611 transform Golden Promise and SxGP DH-47 (DH47), which are resistant to isolate ND90Pr, using
612 the *Agrobacterium*-mediated transformation method. The whole coding sequence (CDS) of *Scs6*
613 was synthesized by GenScript (Piscataway, NJ) and inserted between the *Spel* and *BsrGI*
614 restriction sites of the binary vector pANIC12A (21), producing a new construct pANIC12A-*Scs6*

615 with the *Scs6* gene driven by a *Ubi* promoter and stopped by a *NOS* terminator. Another binary
616 vector (22) (pBract202-pMla6-*Scs6*-tMla6, **Figure S2**) was constructed, which carries the coding
617 sequence of candidate *Scs6* flanked by the 5' and 3' regulatory sequences of *Mla6*. The two
618 binary vectors pANIC12A-*Scs6* and pBract202-pMla6-*Scs6*-tMla6 were introduced into barley cv.
619 Golden Promise and DH47 by *Agrobacterium*-mediated transformation following the methods
620 described by (23, 24), respectively.

621

622 **Transient gene expression in *N. benthamiana* and protein detection by immunoblotting**

623 Generation of entry and destination vectors of *MLA1*, *MLA6*, *MLA22*, and *AVR_{A1}* and *AVR_{A6}* is
624 described in (25, 26). The wild-type coding sequence without the stop codon of *Scs6* and of
625 *MLA16*, *MLA18-1* and *MLA25* (27) was amplified by PCR using attB-primers followed by BP
626 reaction into pDONR221 to generate a gateway-compatible entry clone (**Table S6**). Entry vectors
627 carrying wild-type cDNAs of *MLA3*, *FT153*, *FT352-2* and *MLA18-2* without stop codons and
628 insect-cell codon-optimized *Sr50* were obtained by gene synthesis (GeneArt, Invitrogen).
629 Plasmids encoding chimeric *SCS6/MLA1* and *SCS6/MLA6* receptors were assembled using the
630 NEBuilder HiFi assembly Kit (NEB) based on the domain boundaries reported in (28).
631 pENTR221-*Scs6* was used as a template to generate *Scs6*^{S793F} and *Scs6*^{H510V} via PCR
632 mutagenesis using the Q5 Site-Directed Mutagenesis Kit (NEB).

633 LR-Clonase II (Thermo Fisher) was used to recombine the genes into the expression vector
634 pGWB517 that carries a C-terminal linker region followed by an in-frame 4xmyc epitope tag (29).
635 The integrity of all entry and destination vectors was confirmed by whole-plasmid nanopore
636 sequencing (Eurofins). Expression constructs were transformed into *Agrobacterium tumefaciens*
637 GV3101 (pMP90RK) by electroporation. Transformants were selected for three days at 28 °C on
638 LB agar medium containing rifampicin (15 mg ml⁻¹), gentamycin (25 mg ml⁻¹), kanamycin (50 mg
639 ml⁻¹), and spectinomycin (50 mg ml⁻¹). Transformants were cultured in liquid LB medium
640 containing the corresponding antibiotics at 28 h overnight, after which they were harvested by
641 centrifugation at 2500 g for 6 minutes and resuspended in infiltration buffer (10 mM MES pH 5.6,
642 10 mM MgCl₂, and 200 µM acetosyringone). Transient gene expression in leaves of four-week-
643 old *N. benthamiana* plants was performed via *Agrobacterium*-mediated transient expression
644 assays in the presence of the P19 and CMV2b suppressors of RNAi silencing (30). The final
645 OD₆₀₀ of bacteria carrying expression vectors of immune receptors and silencing suppressors
646 was set to 0.5, unless stated otherwise. For the expression of effector proteins, the OD₆₀₀ was
647 increased to 1.0 unless stated differently. Twenty-four hours after *agrobacterium*-mediated gene
648 delivery, IWF was infiltrated, as indicated. For this, a small subset towards the outer part of the

649 region of transgene expression was infiltrated with approx. 25–50 μ L of IWF. Cell death
650 phenotypes were assessed and documented at 2 or 5 days after agroinfiltration for IWF-triggered
651 cell death or effector-triggered cell death, respectively.

652 For the detection of protein accumulation, leaf material of four individual plants was harvested 48
653 h after infiltration, flash-frozen in liquid nitrogen and ground to powder using a Retsch bead
654 beater. Then, 100 mg plant tissue powder was resuspended in 200 μ L Urea-SDS sample buffer
655 (50 mM Tris-HCl pH 6.8, 2% SDS, 8 M Urea, 4% β -mercaptoethanol, 5% Glycerol and 0.004%
656 bromophenol blue) and vortexed at room temperature for 10 min. After centrifugation at 16,000 g
657 for 15 min, 10 μ l of supernatant were loaded onto a 10% SDS-PAGE without prior boiling.
658 Separated proteins were transferred to a PVDF membrane and probed with monoclonal mouse
659 anti-Myc (1:3,000; R950-25, ThermoFisher), polyclonal rabbit anti-GFP (1:3,000; pabg1,
660 Chromotek) followed by polyclonal goat anti-mouse IgG-HRP (1:7,500; ab6728, Abcam) or
661 polyclonal swine anti-rabbit IgG-HRP (1:5,000; PO399, Agilent DAKO) antibodies. Myc-tagged
662 proteins were detected using SuperSignal West Femto: SuperSignal substrates (ThermoFisher
663 Scientific) in a 1:1 ratio. SuperSignal Femto Substrate was used for AVR_{A1} and SuperSignal
664 Substrate for AVR_{A6}.

665 **Sequencing of *Scs6* homologs in cultivated and wild barley accessions**

666 The primer pair SCS6-F2 and SCS6-R17 (**Table S6**) was used to amplify the whole gene of *Scs6*
667 in cultivated and wild barley accessions (**Table S4**). PCR products were purified using Quick PCR
668 Purification Kit (Invitrogen, Carlsbad, CA) and sequenced by EurofinGenomics (Louisville, KY)
669 using primers F2, R2, R3, SCS6-Seq-R1, SCS6-Seq-F1, and SCS6-Seq-F2 (**Table S6**).
670 Homologs were aligned against the CDS of *Scs6* and any single nucleotide polymorphism (SNP)
671 was validated by checking the sequence quality manually. Finally, the sequences of *Scs6*
672 homologs excluding introns were translated into amino acid sequences and used for phylogenetic
673 analysis.

674

675 **Phylogenetic analysis of *Scs6* and *Mla* alleles**

676 Previously published MLA protein sequences were retrieved from NCBI and aligned via
677 SnapGene using Clustal Omega. Protein sequences of SCS6 variants in wild barley identified in
678 this study were manually added to the alignment (**Supplementary Data S1 and S3**). A BLAST
679 search was conducted to identify MLA-like sequences in the Triticeae using MLA1 and SCS6 as
680 an input. The identified candidate sequences were manually inspected to remove truncated (>
681 840 aa) sequences. The resulting alignment was used to generate neighbor-net networks as

682 described in (31) using splitstree4 (32). For the phylogenetic analyses of individual SCS6/MLA
683 domains, we regarded the first N-terminal 161 amino acids that align with SCS6 as the CC
684 domain, the sequence stretching from amino acid 162 to 551 as the NB domain, and the
685 sequence from amino acid 551 to the end as the LRR. To analyze sites undergoing positive
686 selection, the Clustal alignment of protein sequences as well as the corresponding nucleotide
687 coding sequences were used as an input for PAL2NAL to generate a codon-aware MSA
688 (**Supplementary Data S1**). In this MSA, sites under episodic positive selection were identified
689 using the MEME algorithm (33) with default parameters and sites under pervasive positive
690 selection identified using FUBAR (34) with default settings. Both MEME as well as FUBAR were
691 accessed via the datammonkey application (35).

692 **Geographic distribution of wild barley accessions susceptible to *Bs*_{ND90Pr}**

693 The geographic coordinates of sampled accessions from the WBDC (5) and (31) were plotted in
694 QGIS 3.32. Geographic vector map datasets were downloaded from the Natural Earth repository
695 (<http://www.naturalearthdata.com>).

696

697 **Acknowledgements**

698 The authors thank Joseph Mullins for assistance in disease phenotyping experiments in
699 greenhouse, Inmaculada Hernandez-Pinzon and Xiaohong Jiang for barley transformation,
700 Megan Overlander-Chen for taking care of transgenic barley plants, Antonín Dreiseitl for testing
701 Bowman for reaction to barley powdery mildew isolates, Maria von Korff for providing some of the
702 wild barley accessions used in the study. We also thank P. Cápal, M. Said, Z. Dubská, J.
703 Weiserová, and E. Jahnová for assistance with chromosome flow sorting and preparation of
704 chromosome DNA. This research was funded by the Triticeae-CAP project (2011-68002-30029)
705 of the US Department of Agriculture National Institute of Food and Agriculture (S.Z.), the Marie
706 Curie Fellowship grant 'AEGILWHEAT' (H2020-MSCA-IF-2016-746253) (I.M.), the Hungarian
707 National Research, Development and Innovation Office (K135057) (I.M.), the Max-Planck-
708 Gesellschaft (P.S.-L.), the Deutsche Forschungsgemeinschaft (DFG, German Research
709 Foundation) in the Collaborative Research Centre Grant (SFB-1403 – 414786233 B08) (P.S.-L.),
710 Germany's Excellence Strategy CEPLAS (EXC-2048/1, project 390686111) (P.S.-L.), the Gatsby
711 Charitable Foundation (M.J.M.), and the United States Department of Agriculture-Agricultural
712 Research Service CRIS #5062-21220-025-000D (M.J.M.) and 3060-21000-046-
713 000D (S.Y.). Mention of trade names or commercial products in this publication is solely for the

714 purpose of providing specific information and does not imply recommendation or endorsement by
715 the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

716

717

718 **Author Contributions**

719 Y.L., F.K., P.S.-L. and S.Z. designed research; Y.L., F.K., M.Z., I.M., E.L., P.K., P.X., S.Y.,
720 M.J.M., S.M. performed research; J.D., J.D.F., Y.D., B.S., S.M., B.J.S contributed new
721 reagents/resources/analytic tools; Y.L., F.K., S.Y., P.S.-L. and S.Z. analyzed data; and F.K., Y.L.,
722 P.S.-L. and S.Z. wrote the paper. All reviewed the manuscript.

723 **Competing Interest Statement:** The authors declare no competing interests.

724

725 **References**

- 726 1. I. M. L. Saur, R. Panstruga, P. Schulze-Lefert, NOD-like receptor-mediated plant
727 immunity: from structure to cell death. *Nat Rev Immunol* **21**, 305-318 (2021).
- 728 2. M. C. Derbyshire, S. Raffaele, Till death do us pair: Co-evolution of plant-necrotroph
729 interactions. *Curr Opin Plant Biol* **76**, 102457 (2023).
- 730 3. T. E. Newman, M. C. Derbyshire, The Evolutionary and Molecular Features of Broad
731 Host-Range Necrotrophy in Plant Pathogenic Fungi. *Front Plant Sci* **11**, 591733 (2020).
- 732 4. M. Derbyshire *et al.*, The complete genome sequence of the phytopathogenic fungus
733 *Sclerotinia sclerotiorum* reveals insights into the genome architecture of broad host range
734 pathogens. *Genome Biol Evol* **9**, 593-618 (2017).
- 735 5. M. C. Derbyshire, S. Raffaele, Surface frustration re-patterning underlies the structural
736 landscape and evolvability of fungal orphan candidate effectors. *Nat Commun* **14**, 5244
737 (2023).
- 738 6. M. Le Marquer, H. San Clemente, C. Roux, B. Savelli, N. Frei Dit Frey, Identification of
739 new signalling peptides through a genome-wide survey of 250 fungal secretomes. *BMC
740 Genomics* **20**, 64 (2019).
- 741 7. D. Lopez *et al.*, Genome-Wide Analysis of *Corynespora cassiicola* Leaf Fall Disease
742 Putative Effectors. *Front Microbiol* **9**, 276 (2018).
- 743 8. K. Seong, K. V. Krasileva, Prediction of effector protein structures from fungal
744 phytopathogens enables evolutionary analyses. *Nat Microbiol* **8**, 174-187 (2023).
- 745 9. J. Sperschneider *et al.*, EffectorP: predicting fungal effector proteins from secretomes
746 using machine learning. *New Phytol* **210**, 743-761 (2016).
- 747 10. B. Dagvadorj, M. A. Outram, S. J. Williams, P. S. Solomon, The necrotrophic effector
748 ToxA from *Parastagonospora nodorum* interacts with wheat NHL proteins to facilitate
749 *Tsn1*-mediated necrosis. *Plant J* **110**, 407-418 (2022).
- 750 11. J. D. Faris *et al.*, A unique wheat disease resistance-like gene governs effector-triggered
751 susceptibility to necrotrophic pathogens. *Proc Natl Acad Sci U S A* **107**, 13544-13549
752 (2010).
- 753 12. Z. Liu *et al.*, SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat
754 Carrying the *Snn3* Gene. *PLoS Pathogens* **5**, e1000581 (2009).

755 13. G. Shi *et al.*, The hijacking of a receptor kinase–driven pathway by a wheat fungal
756 pathogen leads to disease. *Science Advances* 10.1126/sciadv.1600822 (2016).

757 14. L. D. Dunkle, V. Macko, Peritoxins and their effects on sorghum. *Canadian Journal of
758 Botany* **73**, 444-452 (1995).

759 15. E. D. Nagy, J. L. Bennetzen, Pathogen corruption and site-directed recombination at a
760 plant disease resistance gene cluster. *Genome Res* **18**, 1918-1923 (2008).

761 16. G. Brosch, R. Ransom, T. Lechner, J. D. Walton, P. Loidl, Inhibition of maize histone
762 deacetylases by HC toxin, the host-selective toxin of *Cochliobolus carbonum*. *Plant Cell*
763 **7**, 1941-1950 (1995).

764 17. J. D. Walton, HC-toxin. *Phytochemistry* **67**, 1406-1413 (2006).

765 18. S. C. Kessler *et al.*, Victorin, the host-selective cyclic peptide toxin from the oat pathogen
766 *Cochliobolus victoriae*, is ribosomally encoded. *Proc Natl Acad Sci U S A* **117**, 24243-
767 24250 (2020).

768 19. S. Mayama, A. P. A. Bordin, T. Morikawa, H. Tanpo, H. Kato, Association of avenalumin
769 accumulation with co-segregation of victorin sensitivity and crown rust resistance in oat
770 lines carrying the *Pc-2* gene. *Physiological and Molecular Plant Pathology* **46**, 263-274
771 (1995).

772 20. T. J. Wolpert, J. M. Lorang, Victoria Blight, defense turned upside down. *Physiological
773 and Molecular Plant Pathology* **95**, 8-13 (2016).

774 21. J. Lorang, A. Cuesta-Marcos, P. M. Hayes, T. J. Wolpert, Identification and mapping of
775 adult-onset sensitivity to victorin in barley. *Molecular Breeding* **26**, 545-550 (2010).

776 22. J. Lorang, C. Hagerty, R. Lee, P. McClean, T. Wolpert, Genetic analysis of victorin
777 sensitivity and identification of a causal nucleotide-binding site leucine-rich repeat gene in
778 *Phaseolus vulgaris*. *Molecular Plant-Microbe Interactions* **31**, 1069-1074 (2018).

779 23. J. Lorang *et al.*, Tricking the Guard: Exploiting Plant Defense for Disease Susceptibility.
780 *Science* **338**, 659-662 (2012).

781 24. J. M. Lorang, N. Carkaci-Salli, T. J. Wolpert, Identification and characterization of victorin
782 sensitivity in *Arabidopsis thaliana*. *Mol Plant Microbe Interact* **17**, 577-582 (2004).

783 25. J. M. Lorang, T. A. Sweat, T. J. Wolpert, Plant disease susceptibility conferred by a
784 “resistance” gene. *Proc Natl Acad Sci U S A* **104**, 14861-14866 (2007).

785 26. S. Kneeshaw, S. Gelineau, Y. Tada, G. J. Loake, S. H. Spoel, Selective protein
786 denitrosylation activity of Thioredoxin-h5 modulates plant Immunity. *Mol Cell* **56**, 153-162
787 (2014).

788 27. T. A. Sweat, T. J. Wolpert, Thioredoxin h5 is required for victorin sensitivity mediated by a
789 CC-NBS-LRR gene in *Arabidopsis*. *Plant Cell* **19**, 673-687 (2007).

790 28. Y. Tada *et al.*, Plant immunity requires conformational changes [corrected] of NPR1 via
791 S-nitrosylation and thioredoxins. *Science* **321**, 952-956 (2008).

792 29. Z. Hu, J. Chai, Assembly and Architecture of NLR Resistosomes and Inflammasomes.
793 *Annu Rev Biophys* **52**, 207-228 (2023).

794 30. D. Lapin, O. Johannndrees, Z. Wu, X. Li, J. E. Parker, Molecular innovations in plant TIR-
795 based immunity signaling. *Plant Cell* **34**, 1479-1496 (2022).

796 31. A. Forderer *et al.*, A wheat resistosome defines common principles of immune receptor
797 channels. *Nature* **610**, 532-539 (2022).

798 32. S. Ma *et al.*, Direct pathogen-induced assembly of an NLR immune receptor complex to
799 form a holoenzyme. *Science* **370** (2020).

800 33. R. Martin *et al.*, Structure of the activated ROQ1 resistosome directly recognizing the
801 pathogen effector XopQ. *Science* **370** (2020).

802 34. Y. Zhao *et al.*, Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct
803 recognition mechanism. *Science Advances* **8** (2022).

804 35. J. Wang *et al.*, Ligand-triggered allosteric ADP release primes a plant NLR complex.
805 *Science* **364** (2019).

806 36. J. Chai, W. Song, J. E. Parker, New Biochemical Principles for NLR Immunity in Plants.
807 *Mol Plant Microbe Interact* **36**, 468-475 (2023).

808 37. S. Huang *et al.*, Identification and receptor mechanism of TIR-catalyzed small molecules
809 in plant immunity. *Science* **377**, eabq3297 (2022).

810 38. A. Jia *et al.*, TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for
811 plant immunity. *Science* **377**, eabq8180 (2022).

812 39. P. Jacob *et al.*, Plant “helper” immune receptors are Ca^{2+} -permeable nonselective cation
813 channels. *Science* **373**, 420-425 (2021).

814 40. M. A. Torres, J. Dangl, J. D. G. Jones, *Arabidopsis* gp91^{phox} homologues *AtrobohD* and
815 *AtrobohF* are required for accumulation of reactive oxygen intermediates in the plant
816 defense response. *Proc Natl Acad Sci U S A* **99** (2001).

817 41. M. Grant *et al.*, The *RPM1* plant disease resistance gene facilitates a rapid and sustained
818 increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive
819 cell death. *Plant J* **23**, 441-450 (2000).

820 42. H. Thordal-Christensen, Z. Zhang, Y. Wei, D. B. Collinge, Subcellular localization of
821 H_2O_2 in plants. H_2O_2 accumulation in papillae and hypersensitive response during the
822 barley-powdery mildew interaction. *Plant J* **11**, 1187-1194 (1997).

823 43. E. Govrin , Levine, A, The hypersensitive response facilitates plant infection by the
824 necrotrophic pathogen *Botrytis cinerea*. *Current Biology* **10**, 751-757 (2000).

825 44. J. Kumar *et al.*, *Bipolaris sorokiniana*, a cereal pathogen of global concern: cytological
826 and molecular approaches towards better control. *Mol Plant Pathol* **3**, 185-195 (2002).

827 45. Y. Leng, R. Wang, S. Ali, M. Zhao, S. Zhong, Sources and genetics of spot blotch
828 resistance to a new pathotype of *Cochliobolus sativus* in the USDA National small grains
829 collection. *Plant Disease* **100**, 1988-1993 (2016).

830 46. M. Valjavec-Gratian, B. Steffenson, Pathotypes of *Cochliobolus sativus* on barley in North
831 Dakota. *Plant Disease* **81**, 1275-1278 (1997).

832 47. S. Zhong, B. Steffenson, Identification and characterization of DNA markers associated
833 with a locus conferring virulence on barley in the plant pathogenic fungus *Cochliobolus*
834 *sativus*. *Theor Appl Genet* **104**, 1049-1054 (2002).

835 48. H. Bilgic, B. Steffenson, P. Hayes, Molecular mapping of loci conferring resistance to
836 different pathotypes of the spot blotch pathogen in barley. *Phytopathology* **96**, 699-708
837 (2006).

838 49. H. Bilgic, B. J. Steffenson, P. Hayes, Comprehensive genetic analyses reveal differential
839 expression of spot blotch resistance in four populations of barley. *Theor Appl Genet* **111**,
840 1238-1250 (2005).

841 50. J. Bovill *et al.*, Mapping spot blotch resistance genes in four barley populations. *Molecular*
842 *Breeding* **26**, 653-666 (2010).

843 51. T. S. Grewal, B. G. Rossnagel, G. J. Scoles, Mapping quantitative trait loci associated
844 with spot blotch and net blotch resistance in a doubled-haploid barley population.
845 *Molecular Breeding* **30**, 267-279 (2012).

846 52. J. K. Roy *et al.*, Association mapping of spot blotch resistance in wild barley. *Molecular*
847 *Breeding* **26**, 243-256 (2010).

848 53. M. Valjavec-Gratian, B. J. Steffenson, Genetics of virulence in *Cochliobolus sativus* and
849 resistance in barley. *Phytopathology* **87**, 1140-1143 (1997).

850 54. R. Wang, Y. Leng, S. Ali, M. Wang, S. Zhong, Genome-wide association mapping of spot
851 blotch resistance to three different pathotypes of *Cochliobolus sativus* in the USDA barley
852 core collection. *Molecular Breeding* **37**, 1-14 (2017).

853 55. G. S. Ameen, Shyam *et al.*, *rcc5*-mediated spot blotch resistance in barley is conferred by
854 wall-associated kinases that resist pathogen manipulation. *bioRxiv*
855 10.1101/2020.04.13.040238, 2020.2004.2013.040238 (2020).

856 56. J. D. Franckowiak, A. E. Foster, V. D. Pederson, R. E. Pyler, Registration of ‘Bowman’
857 Barley. *Crop Science* **25**, cropsci1985.0011183X002500050037x (1985).

858 57. T. G. Fetch, B. J. Steffenson, Identification of *Cochliobolus sativus* isolates expressing
859 differential virulence on two-row barley genotypes from North Dakota. *Canadian Journal*
860 *of Plant Pathology* **16**, 202-206 (1994).

861 58. B. J. Condon *et al.*, Comparative genome structure, secondary metabolite, and effector
862 coding capacity across *Cochliobolus* pathogens. *PLoS Genet* **9**, e1003233 (2013).

863 59. Y. Leng *et al.*, The gene conferring susceptibility to spot blotch caused by *Cochliobolus*
864 *sativus* is located at the *Mla* locus in barley cultivar Bowman. *Theor Appl Genet* **131**,
865 1531-1539 (2018).

866 60. J. Bettgenhaeuser *et al.*, The barley immune receptor *Mla* recognizes multiple pathogens
867 and contributes to host range dynamics. *Nat Commun* **12** (2021).

868 61. H. J. Brabham *et al.*, Barley MLA3 recognizes the host-specificity effector Pwl2 from
869 *Magnaporthe oryzae*. *Plant Cell* 10.1093/plcell/koad266 (2023).

870 62. J. H. Jørgensen, M. Wolfe, Genetics of powdery mildew resistance in barley. *Critical*
871 *Reviews in Plant Sciences* **13**, 97-119 (1994).

872 63. T. Maekawa *et al.*, Subfamily-Specific Specialization of RGH1/MLA Immune Receptors in
873 Wild Barley. *Mol Plant Microbe Interact* **32**, 107-119 (2019).

874 64. S. Seeholzer *et al.*, Diversity at the *Mla* powdery mildew resistance locus from cultivated
875 barley reveals sites of positive selection. *Mol Plant Microbe Interact* **23**, 497-509 (2010).

876 65. F. Wei, R. A. Wing, R. P. Wise, Genome dynamics and evolution of the *Mla* (powdery
877 mildew) resistance locus in barley. *Plant Cell* **14**, 1903-1917 (2002).

878 66. S. Bauer *et al.*, The leucine-rich repeats in allelic barley MLA immune receptors define
879 specificity towards sequence-unrelated powdery mildew avirulence effectors with a
880 predicted common RNase-like fold. *PLoS Pathogens* **17**, e1009223 (2021).

881 67. J. Chen *et al.*, Loss of *AvrSr50* by somatic exchange in stem rust leads to virulence for
882 *Sr50* resistance in wheat. *Science* **358**, 1607-1610 (2017).

883 68. X. Lu *et al.*, Allelic barley MLA immune receptors recognize sequence-unrelated
884 avirulence effectors of the powdery mildew pathogen. *Proc Natl Acad Sci U S A* **113**,
885 E6486-E6495 (2016).

886 69. I. M. Saur *et al.*, Multiple pairs of allelic MLA immune receptor-powdery mildew AVR_A
887 effectors argue for a direct recognition mechanism. *eLife* **8** (2019).

888 70. B. Steuernagel, J. Vrana, M. Karafiatova, B. B. H. Wulff, J. Dolezel, Rapid Gene Isolation
889 Using MutChromSeq. *Methods Mol Biol* **1659**, 231-243 (2017).

890 71. N. Williams, J. Miller, D. Klindworth, Induced Mutations of a Genetic Suppressor of
891 Resistance to Wheat Stem Rust. *Crop Science - CROP SCI* **32** (1992).

892 72. Y. Leng, S. Zhong, Sfp-type 4'-phosphopantetheinyl transferase is required for lysine
893 synthesis, tolerance to oxidative stress and virulence in the plant pathogenic fungus
894 *Cochliobolus sativus*. *Mol Plant Pathol* **13**, 375-387 (2012).

895 73. S. Bai *et al.*, Structure-function analysis of barley NLR immune receptor MLA10 reveals
896 its cell compartment specific activity in cell death and disease resistance. *PLoS Pathog* **8**,
897 e1002752 (2012).

898 74. Q. H. Shen *et al.*, Recognition specificity and RAR1/SGT1 dependence in barley *Mla*
899 disease resistance genes to the powdery mildew fungus. *Plant Cell* **15**, 732-744 (2003).

900 75. A. Pankin, J. Altmüller, C. Becker, M. von Korff, Targeted resequencing reveals genomic
901 signatures of barley domestication. *New Phytologist* **218**, 1247-1259 (2018).

902 76. Z. Huang *et al.*, Genome-wide identification of the NLR gene family in *Haynaldia villosa*
903 by SMRT-RenSeq. *BMC Genomics* **23**, 118 (2022).

904 77. X. Zhang *et al.*, A chromosome-scale genome assembly of *Dasypyrum villosum* provides
905 insights into its application as a broad-spectrum disease resistance resource for wheat
906 improvement. *Molecular Plant* **16**, 432-451 (2023).

907 78. F. Wei *et al.*, The *Mla* (powdery mildew) resistance cluster is associated with three NBS-
908 LRR gene families and suppressed recombination within a 240-kb DNA interval on
909 chromosome 5S (1HS) of barley. *Genetics* **153**, 1929-1948 (1999).

910 79. H. Brabham, I. Hernández-Pinzón, S. Holden, J. Lorang, M. J. Moscou, An ancient
911 integration in a plant NLR is maintained as a trans-species polymorphism. *bioRxiv*
912 10.1101/239541, 239541 (2018).

913 80. T. Maekawa, B. Kracher, S. Vernaldi, E. Ver Loren van Themaat, P. Schulze-Lefert,
914 Conservation of NLR-triggered immunity across plant lineages. *Proc Natl Acad Sci U S A*
915 **109**, 20119-20123 (2012).

916 81. Y. Cao *et al.*, Structural polymorphisms within a common powdery mildew effector
917 scaffold as a driver of coevolution with cereal immune receptors. *Proc Natl Acad Sci U S*
918 **A** **120**, e2307604120 (2023).

919 82. H. Burdett *et al.*, The Plant "Resistosome": Structural Insights into Immune Signaling. *Cell*
920 *Host Microbe* **26**, 193-201 (2019).

921 83. S. Cesari, Multiple strategies for pathogen perception by plant immune receptors. *New*
922 *Phytologist* **219**, 17-24 (2018).

923 84. J. Wang *et al.*, Reconstitution and structure of a plant NLR resistosome conferring
924 immunity. *Science* **364** (2019).

925 85. S. M. Chaw, C. C. Chang, H. L. Chen, W. H. Li, Dating the monocot-dicot divergence and
926 the origin of core eudicots using whole chloroplast genomes. *J Mol Evol* **58**, 424-441
927 (2004).

928 86. D. Ortiz *et al.*, The stem rust effector protein AvrSr50 escapes Sr50 recognition by a
929 substitution in a single surface-exposed residue. *New Phytologist* **234**, 592-606 (2022).

930 87. G. Bi *et al.*, The ZAR1 resistosome is a calcium-permeable channel triggering plant
931 immune signaling. *Cell* **184**, 3528-3541 e3512 (2021).

932 88. A. Förderer, D. Yu, E. Li, J. Chai, Resistosomes at the interface of pathogens and plants.
933 *Curr Opin Plant Biol* **67**, 102212 (2022).

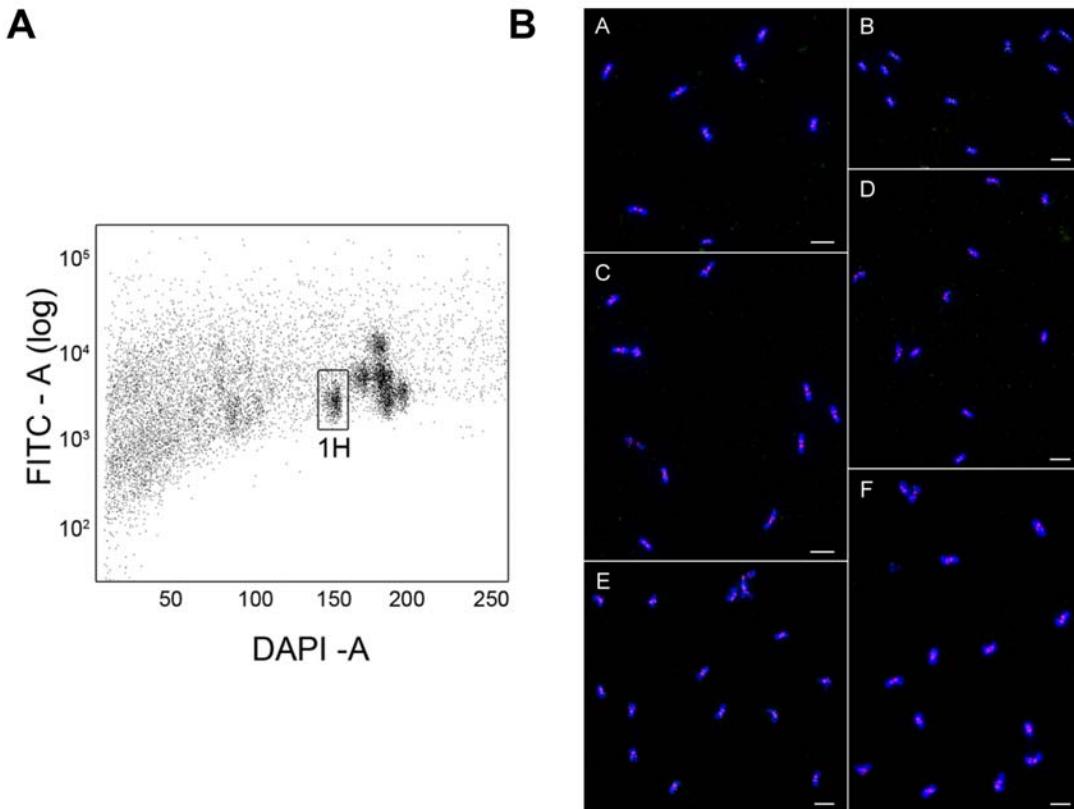
934 89. T. J. Montavon, S. D. Bruner, "5.19 - Nonribosomal Peptide Synthetases" in
935 Comprehensive Natural Products II, H.-W. Liu, L. Mander, Eds. (Elsevier, Oxford, 2010),
936 pp. 619-655 (2010).

937 90. C. P. Middleton *et al.*, Sequencing of Chloroplast Genomes from Wheat, Barley, Rye and
938 Their Relatives Provides a Detailed Insight into the Evolution of the Triticeae Tribe. *PLoS*
939 *ONE* **9**, e85761 (2014).

940 91. P. D. Spanu *et al.*, Genome expansion and gene loss in powdery mildew fungi reveal
941 tradeoffs in extreme parasitism. *Science* **330**, 1543-1546 (2010).

942 92. C. Pedersen *et al.*, Structure and evolution of barley powdery mildew effector candidates.
943 *BMC genomics* **13**, 1-21 (2012).

944 93. L. Frantzeskakis *et al.*, Signatures of host specialization and a recent transposable
945 element burst in the dynamic one-speed genome of the fungal barley powdery mildew
946 pathogen. *BMC genomics* **19**, 1-23 (2018).

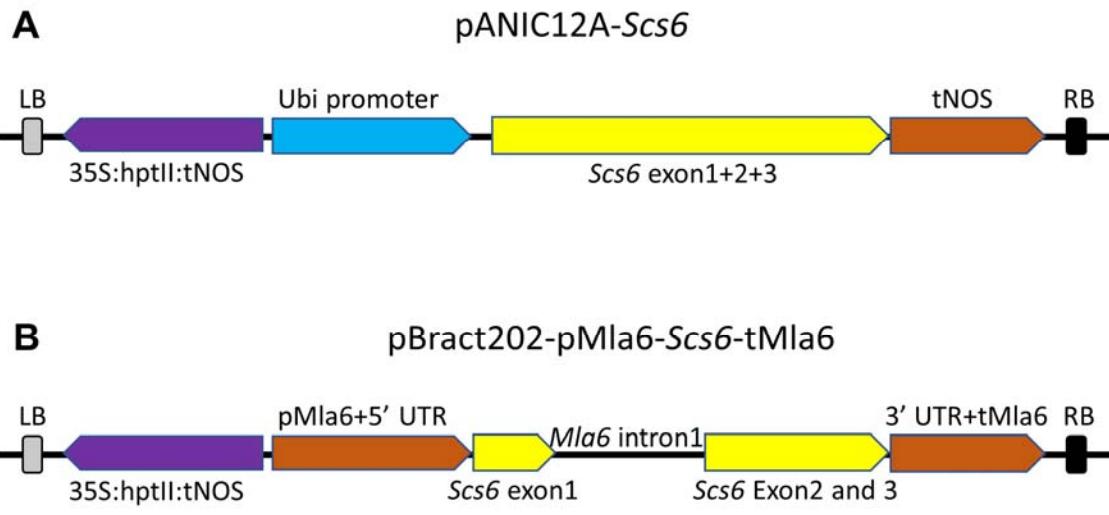

947 94. M. J. Muria-Gonzalez *et al.*, Major susceptibility gene epistasis over minor gene
948 resistance to spot form net blotch in a commercial barley cultivar. *Phytopathology* **113**,
949 1058-1065 (2023).

950 95. V. Solovyev, P. Kosarev, I. Seledsov, D. Vorobyev, Automatic annotation of eukaryotic
951 genes, pseudogenes and promoters. *Genome biology* **7**, 1-12 (2006).

952 96. T. G. Fetch Jr, B. J. Steffenson, Rating scales for assessing infection responses of barley
953 infected with *Cochliobolus sativus*. *Plant Disease* **83**, 213-217 (1999).

954

955

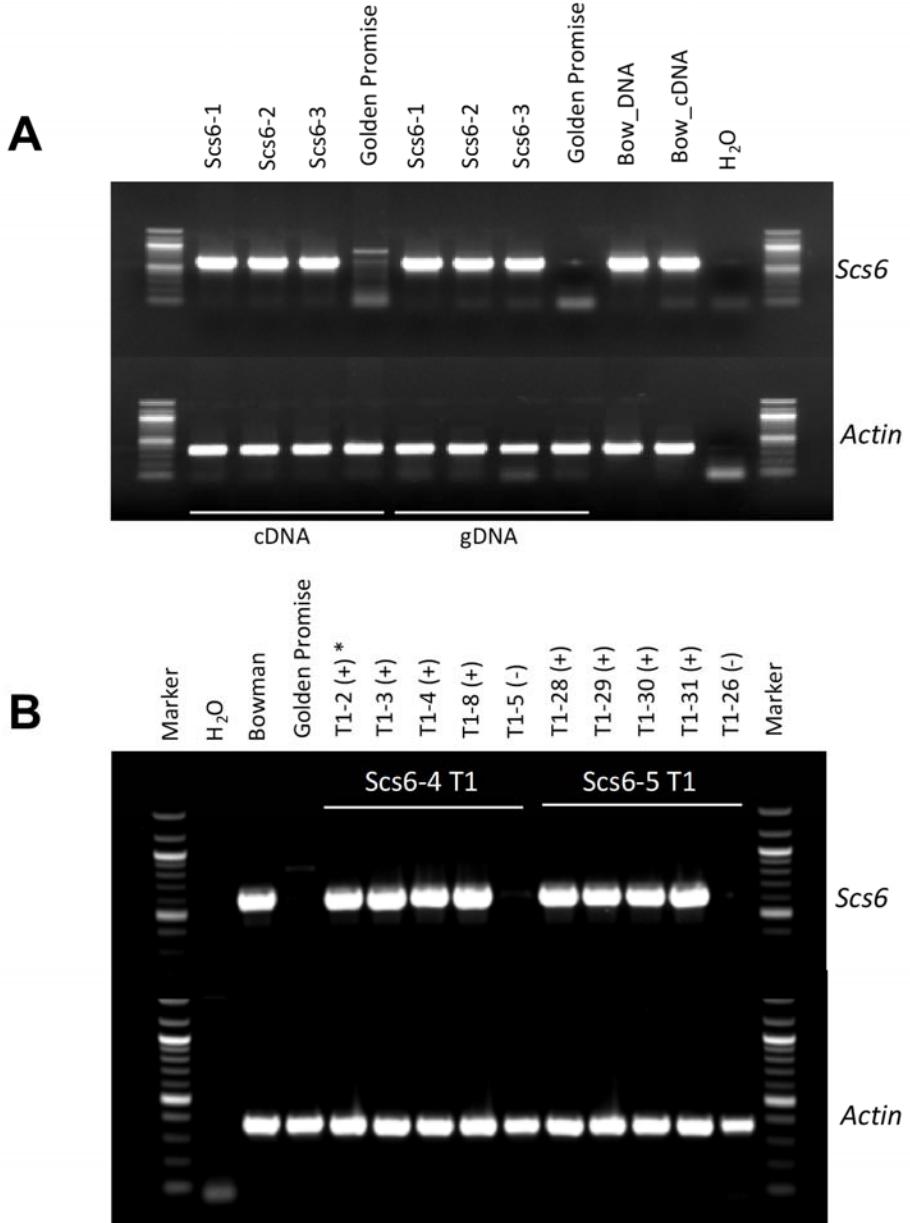


956

957

958 **Figure S1. Chromosome flow sorting of 1H.** (A) Bivariate flow karyotype of mitotic metaphase
959 chromosomes isolated from barley cv. Bowman. DAPI-A vs. FITC-A dot plot was obtained after
960 the analysis of DAPI-stained chromosome suspensions labeled by FISHIS with FITC-conjugated
961 probes for GAA microsatellites. 1H chromosomes were sorted from the sort window shown as
962 rectangle at purities of 87-96%. (B), Chromosome 1H flow-sorted from barley cv. Bowman a) and
963 its mutants EMS14 b), EMS494 c), EMS621 d), EMS1317 e) and EMS1473 f). The chromosomes
964 were flow-sorted onto microscope slides, counterstained by DAPI (blue) and identified by
965 fluorescence *in situ* hybridization with a probe GAA microsatellite repeats (red). Bar = 10 mm.
966

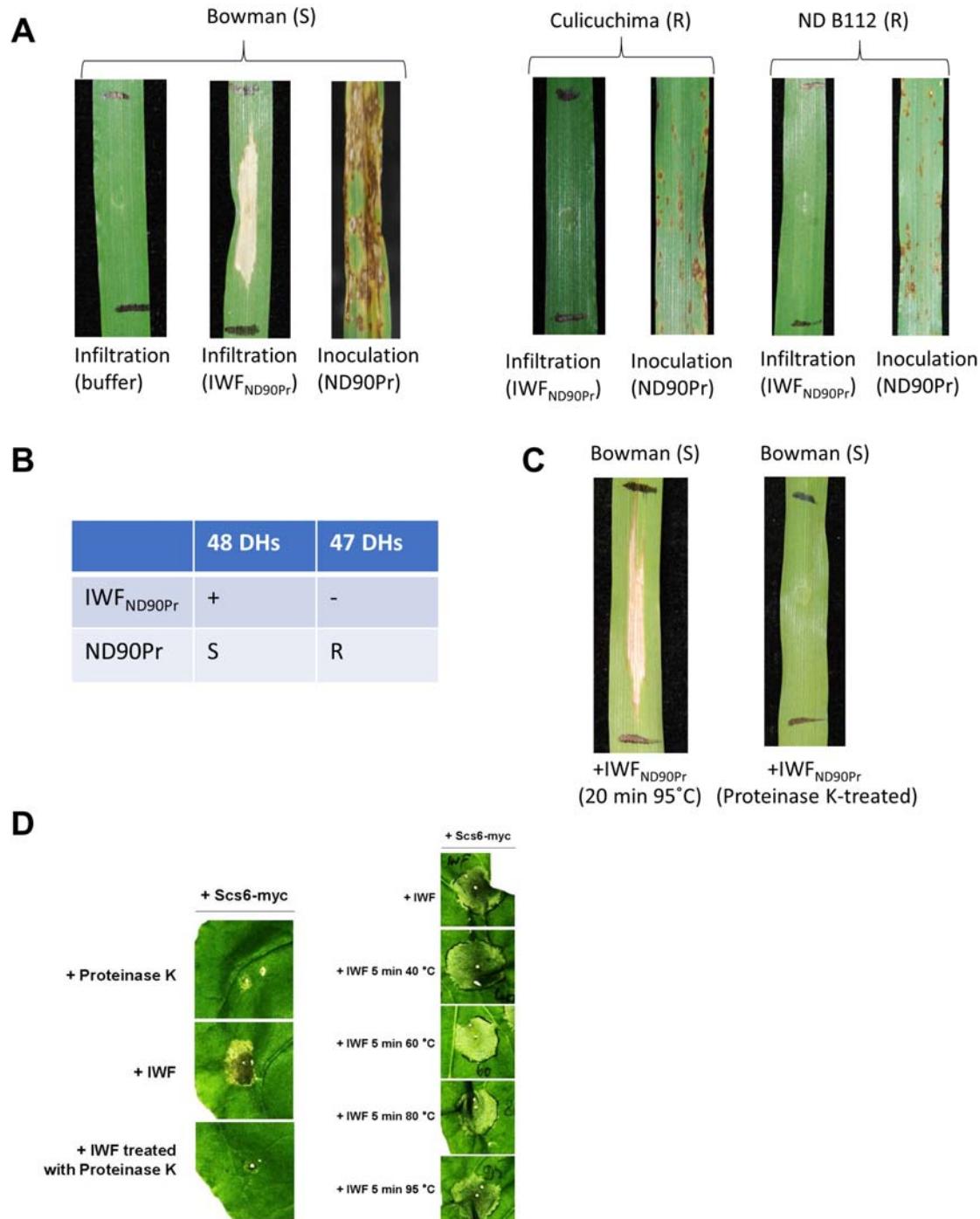
967
968



969

970 **Figure S2. Gene constructs used for transformation of barley cv. Golden Promise and**
971 **barley line SxGP DH-47.** (A) The coding sequence of *Scs6* was expressed under the maize Ubi
972 *promoter* and NOS terminator (NOS_t), and cloned into the backbone of binary vector pANIC12A
973 (21). (B) The coding sequence of *Scs6* was expressed under the promoter+5'UTR (pMla6+5'
974 UTR) and 3'UTR+terminator (3' UTR+tMla6) of *Mla6*, which was assembled into binary vector
975 pBract202 (22). Both constructs use hptII driven by the 35S Cauliflower Mosaic Virus (35S)
976 promoter for plant selection during transformation (shown in purple). Left and right T-DNA borders
977 (LB and RB) are shown with filled grey and black blocks, respectively.

978


979

980

981 **Figure S3. PCR analysis of *Scs6* transgenic barley plants.** (A) PCR amplification of *Scs6* with
982 genomic DNA and cDNA from Bowman (Bow_DNA and Bow_cDNA), Golden Promise (GP_DNA
983 and GP_cDNA) and three T0 transgenic barley plants (GP_Scs6-1, GP_Scs6-2, and GP_Scs6-3)
984 using primers Scs6-F4+Scs6-R1 (Table S6). (B) PCR amplification of *Scs6* with cDNA derived
985 from Bowman (Bow_cDNA), Golden Promise (GP_cDNA), and five T1 plants derived from each
986 of the two T0 transgenic barley plants (GP_Scs6-4 and GP_Scs6-5) using primers Scs6-
987 F4+Scs6-R1 (Table S6). * (+) indicated that PCR was positive and (-) indicated that PCR was
988 negative.

989

990

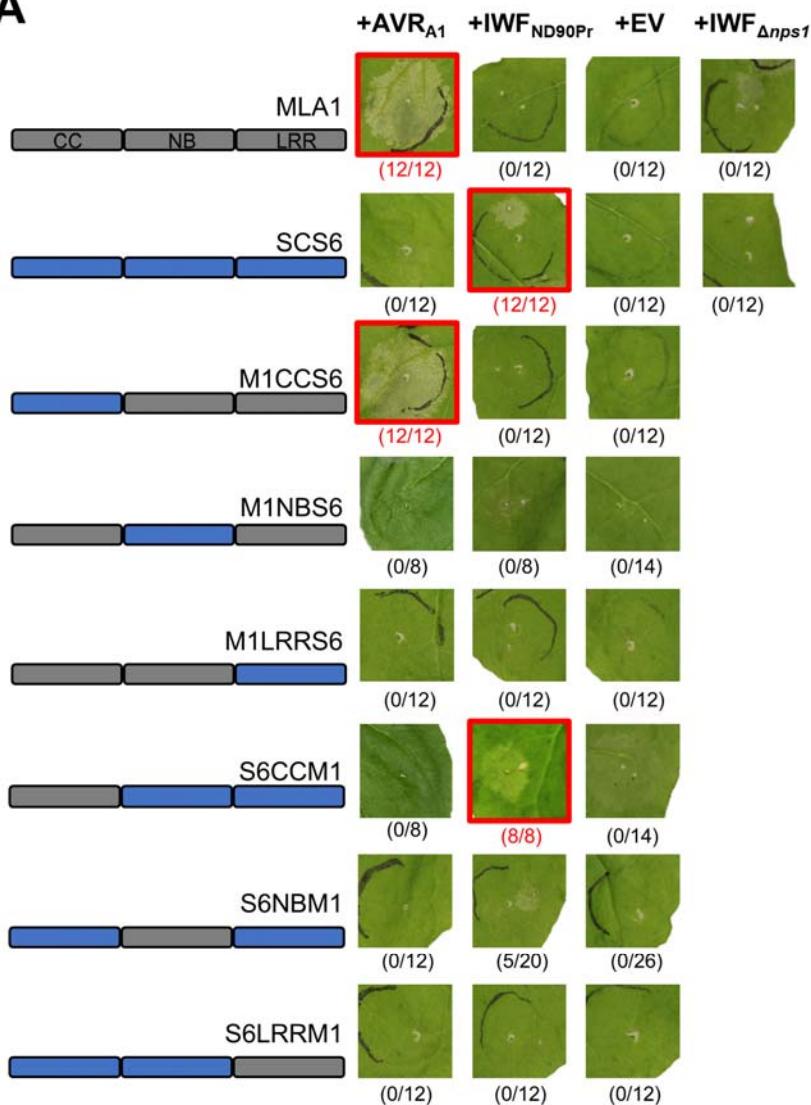
991

992

993

994

995


996

997

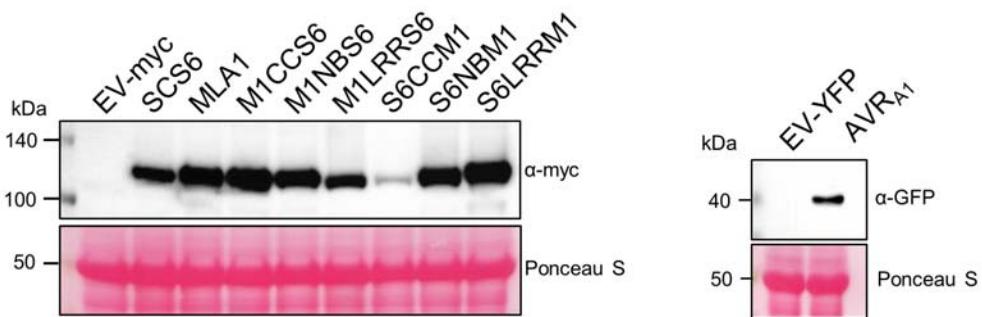
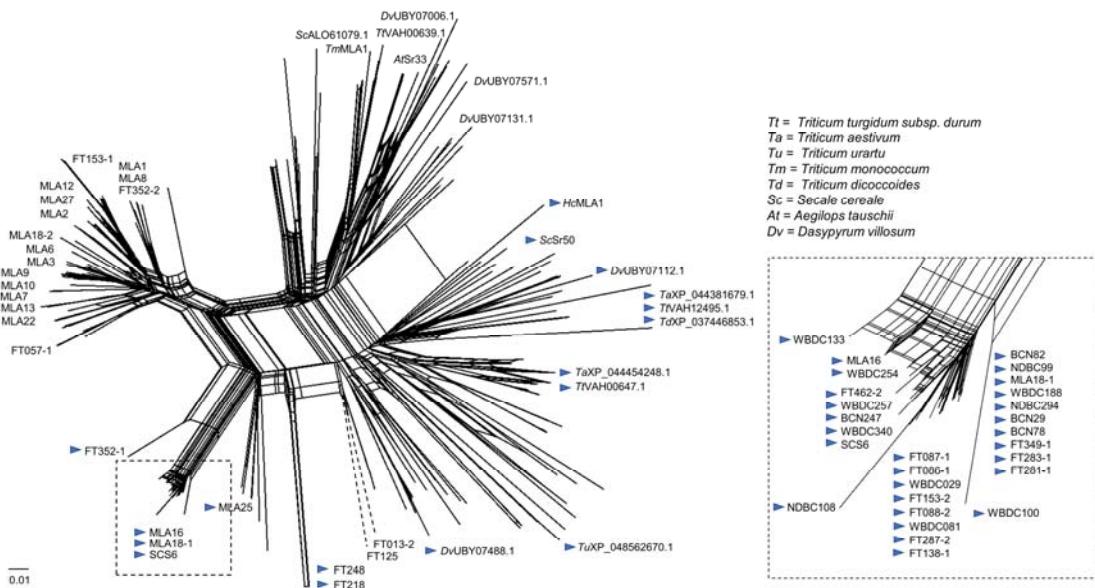
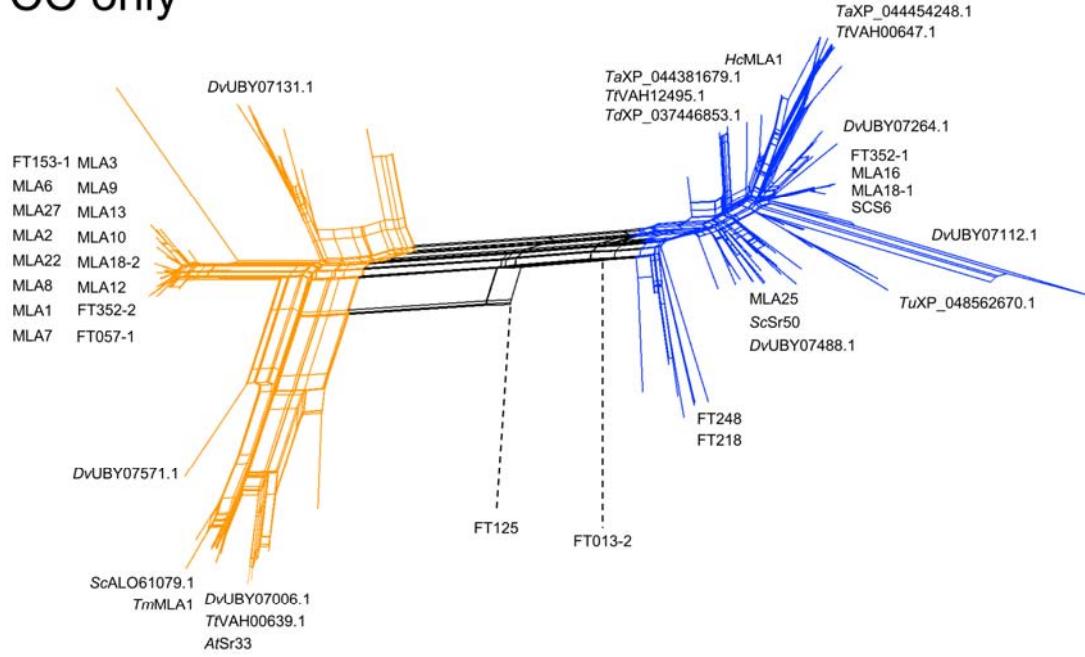

998

Figure S4. Partial characterization of the *Bipolaris sorokiniana* isolate ND90Pr NPS1-derived effector. (A) Reactions of different barley genotypes to *B. sorokiniana* isolate ND90Pr at seven days after inoculation or infiltration of intracellular washing fluid (IWF_{ND90Pr}) extracted from ND90Pr-infected Bowman leaves. B. Sensitivity ('+') to IWF_{ND90Pr} is coupled with susceptibility ('S') to ND90Pr inoculation in the doubled haploid (DH) mapping population derived from the cross between Bowman-BC and Culicuchima. (C-D) The NPS1-derived effector is heat-resistant but sensitive to proteinase K-treatment.

A

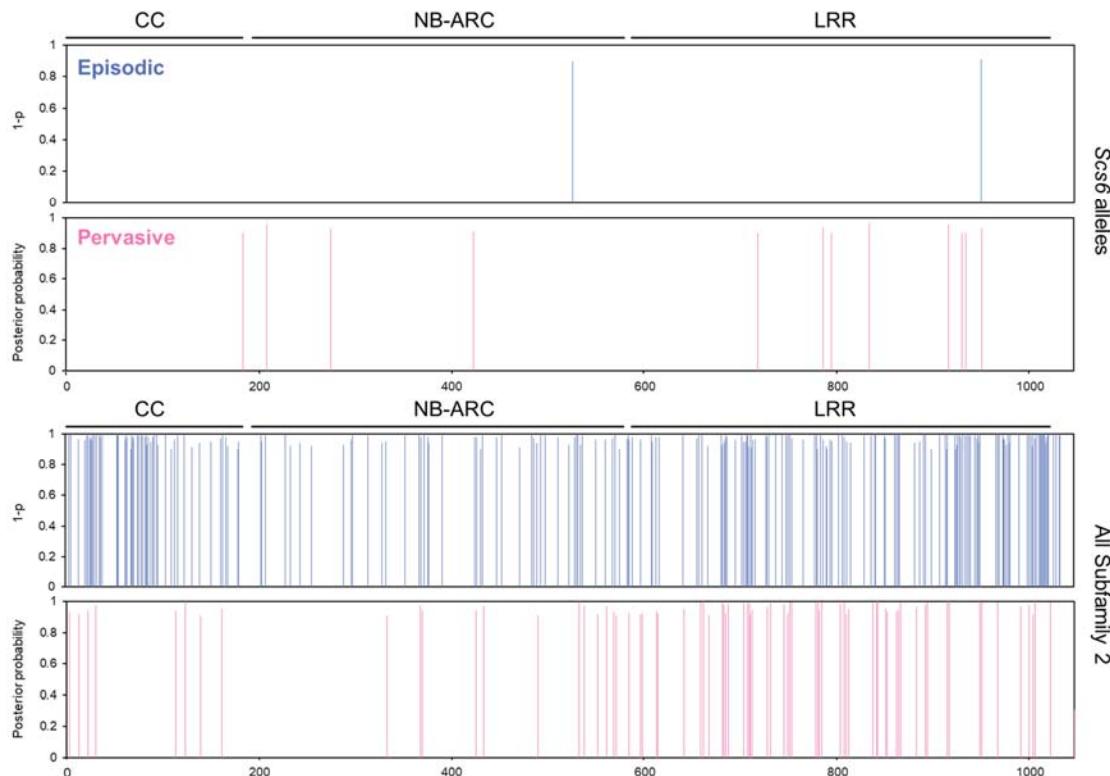


B


1000 **Figure S5. A *Bipolaris sorokiniana* ND90Pr effector activates SCS6 to cause cell death in**
1001 ***Nicotiana benthamiana* depending on its NB and LRR domain.** (A) *Nicotiana benthamiana*
1002 plants were transformed transiently, as indicated. AVR_{A1} does not carry a signal peptide. Twenty-
1003 four hours after *Agrobacterium*-mediated gene delivery, IWF_{ND90Pr} or IWF_{Δnps1} was infiltrated, as
1004 indicated. Cell death phenotypes were assessed and documented at two or four days after
1005 agroinfiltration for IWF-triggered cell death or effector-triggered cell death, respectively.
1006 Representative pictures of at least eight biological replicates (indicated in brackets) are shown
1007 and combinations that resulted in cell death are highlighted with a red box. All gene constructs
1008 were transformed by setting the OD₆₀₀ of *A. tumefaciens* to 0.5, except S6CCM1, which was
1009 reduced to 0.2 to attenuate auto-activity. (B). Protein levels of receptor-4xMyc (approx. 114 kDa
1010 and AVR_{A1}-mYFP (39 kDa) in *Nicotiana benthamiana*.

1011

1012
1013 **Figure S6. Phylogenetic tree including RGH1 sequences identified in members of the**
1014 **Triticeae.** Neighbor-Net analysis of 207 RGH1 protein sequences including 28 previously
1015 identified MLA proteins from barley (27), 50 sequences from wild barley (31), as well as additional
1016 sequences from wild or domesticated barley identified in this study. Sequences identified in
1017 *Dasypyrum villosum* are based on (36). Additional RGH1 sequences outside the genus *Hordeum*
1018 were identified using BLASTp. MLA subfamily 2 members are highlighted using a blue triangle.
1019 Dashed lines indicate that the respective branch was reduced to 50% of its size.
1020


CC only

1021
1022 **Figure S7. Phylogenetic tree of CC domains of RGH1 members identified in members of**
1023 **the Triticeae.** Neighbor-Net analysis of 207 RGH1 protein sequences including 28 previously
1024 identified MLA proteins from barley (27), 50 sequences from wild barley (31), as well as additional
1025 sequences from wild or domesticated barley identified in this this study. Sequences identified in
1026 *Dasypyrum villosum* are based on (36). Bootsstrap support for the separation of the two
1027 Subfamilies: 100% (1000 iterations). Dashed lines indicate that the respective branch was
1028 reduced to 50% of its size.

1029

1030

1031
1032 **Figure S8. Identification of sites under positive selection in SCS6 and all MLA subfamily 2**
1033 **members from the Triticeae.** Sites under episodic (blue bars) or pervasive (pink bars) positive
1034 selection were identified using MEME or FUBAR, respectively. Analysis was performed as
1035 described in (31). For the analysis of MLA Subfamily 2 members, 112 sequences that were
1036 identified via BLASTp and belonging to MLA Subfamily 2 based on Figure S7 were included in
1037 the analysis.
1038

1039 **Table S1. Summary of chromosome 1H sorting and sequencing of wild type and EMS**
1040 **mutants.**

1041

Sample	Purity of Chromosome 1H	Amount of DNA after MDA (ug)	Number of reads ^a	Coverage of Chromosome 1H ^b
Bowman	87.70%	5.56	338,824,744	61
EMS14	90.90%	1.94	439,682,584	79
EMS494	88.50%	5.38	470,198,020	84
EMS621	96.70%	2.14	469,926,034	84
EMS1317	93.45%	5.45	470,243,174	84
EMS1473	96.07%	5.58	453,842,418	81

1042

1043 ^aThe total number of clean reads of 100 base pair.

1044 ^bThe coverage was calculated based on the length of chromosome 1H of reference genome
1045 Morex (558,535,432 bp).

1046

1047

1048 **Table S2. Mutation overlap in contigs from flow-sorted 1H chromosome of barley.**

1049

Barley 1H ^a	Number of contigs
Mutated in 0 line	126353
Mutated in 1 line	2842
Mutated in 2 lines	87
Mutated in 3 lines	4
Mutated in 4 lines	1
Mutated in 5 lines	0

1050 ^a The number of total assembled contigs of chromosome 1H of wild type.

1051

1052

1053 **Table S3. Copy number of the transgene in T1 progeny derived from barley line SxGP**
1054 **DH47 and their segregating infection responses to *Bipolaris sorokiniana* isolate ND90Pr.**

1055

ID	CallusID	Generation	T-DNA Insert*	R : IM : S **
HVT_04655	1-1	T1	3 copies	11 : 0 : 46
HVT_04656	1-2	T1	3 copies	33 : 0 : 92
HVT_04657	1-3	T1	3 copies	16 : 0 : 53
HVT_04658	1-4	T1	3 copies	27 : 0 : 97
HVT_04659	2-1	T1	1 copy	28 : 23 : 36
HVT_04660	2-2	T1	1 copy	33 : 17 : 12
HVT_04682	3-1	T1	2 copies	10 : 3 : 34
HVT_04683	4-1	T1	5 copies	3 : 1 : 5
HVT_04684	4-2	T1	5 copies	13 : 0 : 21
HVT_04686	5-2	T1	2 copies	25 : 36 : 33
HVT_04688	7-1	T1	2 copies	0 : 0 : 23
HVT_04689	7-2	T1	2 copies	0 : 14 : 11
HVT_04690	8-1	T1	1 copy	16 : 5 : 45
HVT_04692	10-1	T1	3 copies	0 : 1 : 19
HVT_04693	11-1	T1	1 copy	21 : 2 : 45
HVT_04694	11-2	T1	1 copy	10 : 0 : 23
HVT_04695	11-3	T1	2 copies	7 : 0 : 29
HVT_04696	12-1	T1	2 copies	28 : 18 : 69
HVT_04697	12-2	T1	5 copies	2 : 1 : 77

1056

1057 * Determined by qPCR for the Hygromycin resistant gene

1058 ** Infection response of T1 plants against isolate ND90Pr of *B. sorokiniana*. R indicates
1059 resistance with disease rating 1-3; IM indicates an intermediate reaction with disease rating 4-6;
1060 S indicates susceptibility with disease rating 7-9.

1061

1062

1063

1064

1065 **Table S4. Fully sequenced *Scs6* haplotypes found in wild and domesticated barley lines.**

1066

Accession name	PI/CI Number	Identifier	Country	Haplotype
Bowman				I
BCN22	Clho 3390	Carre 180	Algeria	I
BCN234	PI 175506	Vankkuri	Finland	I
BCN267	PI 190203	Eglfinger Monachia	Germany	I
BCN274	PI 193063	Orge D'Hiver 174	Belgium	I
BCN294	PI 221307	Helmi	Finland	I
BCN318	PI 232914	Hanna	Hungary	I
BCN352	PI 264205	Sarlis	Morocco	I
BCN375	PI 268180	Triumf	Czech Republic	I
BCN380	PI 269151	Fresa	United Kingdom	I
BCN402	PI 274625	Mutans Sandomierski	Poland	I
BCN412	PI 283401	Hatvani 1108	Hungary	I
BCN414	PI 283429	Maja	Denmark	I
BCN430	PI 290215	Hatvani 308	Hungary	I
BCN433	PI 290267	Stepovoj Medicum 2/5	Hungary	I
BCN439	PI 290322	Hatvani 445	Hungary	I
BCN444	PI 292018	Nissanith	Israel	I
BCN447	PI 294740	Nutans Rode	Bulgaria	I
BCN450	PI 294765	Nachtschiwandani	Bulgaria	I
BCN472	PI 308138	Europeum 353/133	Ukraine	I
BCN477	PI 315932	Ariel	France	I
BCN488	PI 321807	Krimskij 301	Ukraine	I
BCN489	PI 321827	Adlesici	Slovenia	I

BCN490	PI 321845	Retje 89	Slovenia	I
BCN499	PI 327658	Nachcyvandany	Azerbaijan	I
BCN512	PI 327907	HOR 52	Bulgaria	I
BCN513	PI 327969	Vankkuri	Finland	I
BCN516	PI 328015	Thigina 2621	Romania	I
BCN522	PI 328162	HOR 392	Bulgaria	I
NDBC217	PI 57065			I
NDBC260	PI 94834			I
NDBC279	PI 129428			I
NDBC286	PI 129491			I
BCN174	PI 60694	Kober	Ethiopia	I
NDBC104	Ciho 13453			I
NDBC98	Ciho 11812			I
NDBC224	PI 61342			I
WBDC113	40099		Turkmenistan	II
WBDC324	135609		Turkmenistan	II
WBDC350	41-1 (#1)		Israel	II
BCN29	Ciho 4046	4036	Mongolia	II
BCN36	Ciho 4072	3971	Mongolia	II
BCN42	Ciho 4165	Afghanistan	Afghanistan	II
BCN71	Ciho 6939	4691	Afghanistan	II
BCN130	Ciho 14260	6067	Afghanistan	II
BCN339	PI 244823	5068	Pakistan	II
BCN455	PI 295958	Israeli 121	Israel	II
NDBC43	Ciho 4169			II
NDBC85	Ciho 10620			II
NDBC88	Ciho 11587			II
NDBC121	Ciho 14216			II
NDBC122	Ciho 14222			II

NDBC126	Clho 14250		II	
NDBC291	PI 135761		II	
NDBC293	PI 138709		II	
NDBC223	PI 60701		II	
NDBC227	PI 61533		II	
NDBC228	PI 61537		II	
BCN134	Clho 14286	CI 14286	Chile	III
BCN351	PI 264204	Tripoli	Morocco	III
BCN418	PI 283445	C.P.I. 16026	Belgium	III
BCN492	PI 321856	Amrigschwander	Germany	III
NDBC71	Clho 7498		III	
NDBC89	Clho 11588		III	
NDBC303	PI 157884		III	
NDBC130	Clho 14287		III	
WBDC133	40178		Lebanon	IV
WBDC141	40187		Lebanon	IV
WBDC303	38640		Syria	IV
WBDC275	39390		Israel	IV
WBDC029	38843		Israel	V
WBDC122	40140		Iran	V
WBDC318	39919		Syria	V
WBDC293	38932		Israel	VI
NDBC261	PI 94886			VI
BCN82	Clho 7790	Earl	United Kingdom	VI
WBDC080	39996		Jordan	VII
BCN247	PI 182681	Black Haurani	Syria	VII
WBDC183	115789		Jordan	VIII
WBDC082	40009		Jordan	VIII
WBDC312	40079		Syria	IX

BCN78	CIho 7494	CI 7494	Mexico	IX
NDBC108	CIho 13653			X *
NDBC294	PI 138710			XI
NDBC99	CIho 11829			XII
WBDC081	40002		Jordan	XIII
WBDC100	40060		Jordan	XIV
WBDC254	115790		Jordan	XV
WBDC257	39399		Jordan	XVI
WBDC340	116116		Turkey	XVII

1067

1068

* NDBC108 is a resistant line that encodes a truncated SCS6 haplotype (844 aa)

1069

1070
1071**Table S5. Summary of 50 wild barley lines used in previous study and their reaction to *Bipolaris sorokiniana* ND90Pr. Modified based on (31).**

Sample	Line_ID	Origin ^a	Latitude	Longitude	Population	No. of <i>Rgh1/Mla</i>	Subfamily 1	Subfamily 2	Other	Reaction to <i>B. sorokiniana</i> ^c
FT010	B1K-04-08	ISR	31.834371	35.305292	JJ	—	—	—	—	R
FT012 ^d	B1K-04-13	ISR	31.834361	35.304309	JJ	1	1	—	—	—
FT013	B1K-05-11	ISR	31.926131	35.469146	JJ	2	1	—	1	R
FT017	B1K-06-07	ISR	32.068642	35.398412	JJ	2	—	2	—	R
FT021	B1K-07-02	ISR	32.342164	35.515748	JJ	—	—	—	—	R
FT041	B1K-11-05	ISR	30.889786	34.631073	NM	1	1	—	—	R
FT045	B1K-12-06	ISR	31.672915	35.436719	JJ	1	1	—	—	R
FT048	B1K-13-01	ISR	32.852183	35.680149	GH	—	—	—	—	R
FT057	B1K-15-07	ISR	32.6906	35.662224	GH	2	2	—	—	R
FT086	B1K-21-08	ISR	32.647805	34.967268	CG	2	1	1	—	S
FT087	B1K-21-11	ISR	32.647599	34.967754	CG	3	2	1	—	S
FT088	B1K-21-20	ISR	32.647674	34.966946	CG	2	1	1	—	S
FT113	B1K-27-02	ISR	32.875386	35.544077	HG	2	—	1	1	R
FT115	B1K-27-11	ISR	32.874543	35.54338	HG	1	1	—	—	R
FT120	B1K-28-10	ISR	32.823909	35.497509	HG	1	—	1	—	R
FT125	B1K-29-20	ISR	32.821027	35.507253	HG	1	—	—	1	R
FT132	B1K-31-01	ISR	32.773355	35.44657	NM	2	2	—	—	R
FT138	B1K-32-08	ISR	32.578564	35.471275	NM	2	1	1	—	S
FT145	B1K-33-19	ISR	30.571722	34.676408	HG	—	—	—	—	R

FT146	B1K-34-04	ISR	30.845141	34.744956	NM	2	1	-	1	R
FT152	B1K-35-04	ISR	31.596864	34.898841	SCJ	1	1	-	-	R
FT153 ^e	B1K-35-08	ISR	31.596249	34.898955	SCJ	1 ^e	1	- ^e	-	S
FT158	B1K-36-05	ISR	32.925892	35.531067	HG	1	-	-	1	R
FT169	B1K-39-02	ISR	33.070336	35.769545	GH	1	1	-	-	R
FT170	B1K-39-20	ISR	33.070844	35.769422	GH	2	1	1	-	S
FT174	B1K-41-03	ISR	33.251503	35.647858	SCJ	2	2	-	-	R
FT218	B1K-49-18	ISR	31.771952	35.112916	SCJ	1	-	-	1	R
FT231	HID-4	IRQ	35.58333333	43	UM	1	-	1	-	R
FT233	HID-8-1	IRQ	36.41666667	41.65	UM	1	-	1	-	R
FT248	HID-53	IRN	31.67589444	48.57915556	LM	1	-	-	1	R
FT256	HID-65	TUR	36.75194444	37.47527778	UM	1	-	1	-	R
FT271	HID-104	SYR	36.77194444	40.86194444	UM	1	-	1	-	R
FT281	HID-137	TUR	36.85083333	40.0475	UM	2	1	1	-	R
FT282	HID-138	IRN	32	48.55	LM	-	-	-	-	R
FT283	HID-140	IRQ	36.4	44.2	UM	2	1	1	-	R
FT287	HID-145	ISR	31	34.91666667	NM	2	1	1	-	S
FT289	HID-149	ISR	32.96666667	35.6	GH	1	-	1	-	R
FT293	HID-160	ISR	31.6	34.9	GH	2	2	-	-	R
FT313	HID-213	ISR	31.4	34.6	SCJ	2	1	-	1	R
FT320	HID-230	ISR	32.25	34.85	SCJ	2	1	1	-	R
FT349	HID-302	IRN	32.55	48.81666667	LM	3	2	1	-	R

FT352	HID-307	IRN	31.53333333	48.81666667	LM	2	1	1	-	R
FT353	HID-308	IRN	31.53333333	48.81666667	LM	1	1	-	-	R
FT355	HID-310	IRN	31.53333333	48.81666667	LM	2	-	1	1	R
FT393 ^b	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	-	-	R
FT394 ^b	HID-386	ISR	31.7747333	35.0485083	SCJ (mixed)	1	-	1	-	R
FT454	HP-10-4	TUR	36.2558333	36.4672222	NL	1	1	-	-	R
FT458	HP-15-1	TUR	37.49333333	38.87666667	NL	1	1	-	-	R
FT462	HP-20-1	TUR	37.77833333	39.78	NL	2	1	1	-	S
FT471	HP-34-3	TUR	37.70222222	38.01222222	NL	1	1	-	-	R

1072

1073 ^a ISR = Israel, IRQ = Iraq, IRN = Iran, TUR = Turkey, and SYR = Syria; n.d. = not determined.

1074 ^b FT393 and FT394 are also known as ISR42-8 and ISR101-23, respectively. Taxonomy of FT393 is not determined (n.d.).

1075 ^c The reaction to the isolate ND90Pr of *B. sorokiniana*. R indicates resistant with disease rating 1-3 and S indicates susceptible with disease rating 1076 5-9.

1077 ^d FT012 was not tested for susceptibility to ND90Pr.

1078 ^e Targeted resequencing identified a *Scs6* allele that escaped previous analysis, termed *FT153-2*.

1079

1080 **Table S6. Primers used in this study.**

Primer name	Primer sequence 5'-3'	Function of primer
Scs6-F2	ATGTAGAGCATTGCCACACAAC	Amplify Scs6 and sequencing
Scs6-R17	AAGGTGAGCTCCAGAGATGG	Amplify Scs6
Scs6-R2	GTGGCATTATCCCTCGTCTAC	Sequencing of Scs6
Scs6-Seq-R1	TTTTCATGGTGGACGAATCC	Sequencing of Scs6
Scs6-Seq-F1	CTCAAGGAGGTCGGACATT	Sequencing of Scs6
Scs6-R3	TTCCAAGATCCAACACCTCC	Sequencing of Scs6
Scs6-Seq-F2	AGCAGGATGACGTGGAAATC	Sequencing of Scs6
Scs6-F3	ATGGAGGTGGTCACGGGT	Amplify cds of Scs6
Scs6-Stop	TCAGAAATCAGTCCACTCCTCAC	Amplify cds of Scs6
Actin-RT-F1	AGAGGTTACTCCTCACCACCA	Real time PCR
Actin-RT-R1	CAGTGATCTCCTTGCTCATACG	Real time PCR
ITS4	TCCTCCGCTTATTGATATGC	Real time PCR
ITS5	GGAAGTAAAAGTCGTAACAAGG	Real time PCR
Scs6-F4	GCGAGCTGCTTATGGATGA	Amplify Scs6 in transgenic lines
Scs6-R1	GTTCTCTAGAAATTCATGAAGC	Amplify Scs6 in transgenic lines
attB MLA16/18f	GGGGACAAGTTGTACAAAAAAGCAGGCTT AATGGAGGTGTCACGGG	Generation of entry clone
attB MLA16/18r	GGGGACCACTTGTACAAGAAAGCTGGGTT GAAATCAGTCCACTCCTCACACA	Generation of entry clone
attB MLA25_f	GGGGACAAGTTGTACAAAAAAGCAGGCTT AATGAATATTGTCACGGGGCC	Generation of entry clone
attB MLA25_r	GGGGACCACTTGTACAAGAAAGCTGGGTT GTTCTGACCTCGTCCTCGTT	Generation of entry clone
SDM_S793F_f	cgagtTATTCCTCTGTCAGTGAAG	Generation of Scs6(S793F)
SDM_S793F_r	aagagGTTCGAGAGATGGAAGGG	Generation of Scs6(S793F)
SDM_H501V_f	TTGTCGTGTAgttGATATGGTTCTGGAC	Generation of Scs6(H510V)
SDM_H510V_r	GCATATACCTTCCCTGTAC	Generation of Scs6(H510V)

1081