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 36 

ABSTRACT 37 

In the field of structure-based drug design, accurately predicting the binding 38 

conformation of ligands to proteins is a long-standing objective. Despite recent 39 

advances in deep learning yielding various methods for predicting protein-ligand 40 

complex structures, these AI-driven approaches frequently fall short of traditional 41 

docking methods in practice and often yield structures that lack physical and chemical 42 

plausibility. To overcome these limitations, we present SurfDock, an advanced 43 

geometric diffusion network, distinguished by its ability to integrate multiple protein 44 

representations including protein sequence, three-dimensional structural graphs, and 45 

surface-level details into its equivariant architecture. SurfDock employs a generative 46 

diffusion model on a non-Euclidean manifold, enabling precise optimization of 47 

molecular translations, rotations, and torsions for reliable binding poses generation. 48 

Complemented by a mixture density network for scoring using the same comprehensive 49 

representation, SurfDock achieves significantly improved docking success rates over 50 

all existing methods, excelling in both accuracy and adherence to physical constraints. 51 

Equipped with post-docking energy minimization as an optional feature, the plausibility 52 

of generated poses is further enhanced. Importantly, SurfDock demonstrates excellent 53 

generalizability to unseen proteins and extensibility to virtual screening tasks with 54 

state-of-the-art performance. We consider it a transformative contribution that could 55 

serve as an invaluable asset in structure-based drug design. 56 

INTRODUCTION 57 

The realm of life sciences is currently undergoing a renaissance, sparked by 58 

groundbreaking advancements in artificial intelligence (AI), particularly deep learning 59 

(DL)1-5. This wave of technological innovation is redefining the landscape of structure-60 

based drug design (SBDD), a pivotal domain in pharmaceutical research. SBDD hinges 61 

on the intricate understanding of protein-ligand interactions, with the objective to 62 
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discover or design ligands that bind to specific proteins, thereby modulating their 63 

function for therapeutic purposes6, 7. Understanding these interactions is crucial because 64 

the effectiveness of drugs depend heavily on how well they bind to their target proteins, 65 

and whether they affect any other proteins in the body. Accurate and rapid prediction of 66 

protein-ligand complex structures is pivotal for virtual screening, a process that screens 67 

potential drugs from extensive databases against specific protein targets. To date, the 68 

advancement of high-throughput structure-based virtual screening techniques has 69 

significantly contributed to various drug discovery applications, notably accelerating 70 

the pace of drug discovery8, 9. 71 

Nonetheless, predicting how a small molecule binds to a protein, often referred to as 72 

ligand docking, presents substantial complexity. This complexity arises from the 73 

dynamic and multifaceted nature of protein-ligand interactions. Ligand docking 74 

generally involves two phases: the generation of docking poses and their subsequent 75 

scoring10. The initial phase aims to identify feasible binding poses for ligands relative 76 

to target proteins, whereas the scoring phase involves evaluating these poses to estimate 77 

binding affinity. Traditional methods in ligand docking, such as AutoDock Vina11, 78 

Glide12, and Gold13 employ heuristic algorithms to explore potential ligand 79 

conformations. However, they often struggle to comprehensively cover the vast 80 

conformational space, potentially overlooking feasible binding poses. This incomplete 81 

exploration can result from their inherent algorithmic constraints, which prioritize 82 

computational speed over thoroughness14. The scoring algorithms in these traditional 83 

methods apply simplistic functional terms to estimate binding affinity of docked poses. 84 

Researchers have been working on improving scoring functions based on these 85 

traditional search techniques, like SMINA15, GNINA16, DeepDock17 and other machine 86 

learning scoring functions18, 19. While the subsequent scoring phase is also important, it 87 

relies on the quality of the generated poses10, 20. If the initial pose generation algorithm 88 

is flawed, even an accurate scoring system can be misled, leading to suboptimal ligand 89 

selections. This limitation is particularly evident in virtual screening contexts, where 90 

identifying suitable protein-ligand interactions and ligand conformations for a known 91 

protein’s binding pocket is crucial. As a result, developing efficient algorithms for 92 
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ligand docking is of crucial importance. 93 

This is where DL methods become particularly valuable. With the high-quality data 94 

available from sources like the Protein Data Bank (PDB), DL models can decipher the 95 

complex interplay between proteins and ligands21. This capability enhances the 96 

prediction accuracy of protein-ligand complex structures. For the pose generation task, 97 

pervious deep learning approaches like Uni-Mol22, EquiBind23, E3Bind24 ,TANKBind25 98 

and KarmaDock26 predominantly treated it as a regression problem, predicting the 99 

binding pose of a ligand to a protein in a one-shot manner. Although these methods are 100 

faster, their accuracy improvements over classical methods have been limited. This 101 

limitation may stem from the inherent discord between the regression-centric approach 102 

and the actual process of ligands binding to the targets, i.e., the interactive process 103 

between ligands and the targets to find the most suitable binding conformations. In this 104 

context, works by Jaakkola et al. introduces a paradigm shift by treating molecular 105 

docking as a generative modeling problem27. Unlike regression methods, their work 106 

DiffDock learns a distribution over possible ligand poses. This approach is 107 

implemented through a diffusion generative model (DGM)28, which defines a diffusion 108 

process over the critical degrees of freedom in docking: translations, rotations, and 109 

torsions. In recent years, diffusion networks have demonstrated remarkable success in 110 

a variety of tasks related to molecular generation and conformer generation29-31. 111 

DiffDock's methodology, emphasizing iterative refinement of ligand poses through 112 

updates in translations, rotations, and torsion angles from a noisy prior to a learned 113 

distribution, mirrors the complex nature of molecular interactions.  114 

Despite these advancements, challenges persist. Studies by Ke et al. indicate that in 115 

practical SBDD tasks, where the binding pocket is known, DL methods have not yet 116 

outperformed traditional approaches32. Additionally, many AI-generated poses, though 117 

technically successful in terms of Root Mean Square Deviation (RMSD) metrics (i.e., 118 

if the RMSD between a generated ligand pose and a crystal ligand pose is less than 2Å, 119 

we consider the docking is successful33), exhibit biophysical inconsistencies, such as 120 

intermolecular steric clashes or unrealistic bonds or angles34. Thus, the over-reliance on 121 

RMSD for pose evaluation is increasingly acknowledged as inadequate, failing to 122 
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capture the subtleties of molecular interactions and physical realities of binding poses. 123 

Recognizing these limitations, recent efforts have focused on developing better 124 

metrics for assessing the rationality of generated poses34, 35. Deane et al. introduced 125 

PoseBusters, a tool designed to evaluate poses based on physical and chemical 126 

rationality, and PoseBusters Benchmark set, a novel set of 428 complexes released from 127 

2021 onwards34. Their findings suggest that, when considering the plausibility of 128 

generated poses, DL methods have not outperformed traditional techniques. Moreover, 129 

it shows that all DL methods perform poorly on proteins with less than 30% sequence 130 

similarity to the training set. These two findings suggest that it is challenging for current 131 

DL algorithms to generate biophysically plausible complex structures and to generalize 132 

to novel proteins. One possible reason for the current shortcomings of DL methods is 133 

their reliance on coarse-grained, residue-level representations of proteins. Ideally, a 134 

more accurate all-atom representation of the protein or its binding pocket would offer 135 

greater precision, but with substantial computational demands. The conventional 136 

coarse-grained representation tends to oversimplify protein structures, consequently 137 

expanding the ligand pose search space into regions already occupied by protein atoms, 138 

potentially resulting in intermolecular clashes. Recent studies, however, have 139 

demonstrated the benefits of incorporating protein surface-level information, which 140 

offers a more detailed representation by modeling proteins as continuous shapes with 141 

geometric and chemical properties17, 36-41. By utilizing this surface information to more 142 

accurate describe geometric space in binding pocket, we anticipate a reduction in the 143 

occurrence of intermolecular clashes. Additionally, successes in sequence-based drug 144 

design and protein structure prediction have highlighted the value of sequence 145 

information in protein representation1, 3, 42-44. Building on these insights, we 146 

hypothesized that by leveraging multimodal protein information and advanced 147 

generative modeling frameworks, it might be possible to address the current issues in 148 

molecular docking while maintaining computational efficiency.  149 

In this work, we introduce SurfDock, a geometric diffusion network designed for 150 

generating reliable binding ligand poses. SurfDock is conditioned on the protein pocket 151 

and a random starting ligand conformation, and it includes an internal scoring module 152 
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SurfScore trained on crystal protein-ligand complexes for confidence estimation. By 153 

incorporating multimodal protein information—surface features, residue structure 154 

features, and pre-trained sequence-level features—into a surface node level 155 

representation, SurfDock achieves top performance in docking success rates across 156 

several benchmarks, including PDBbind202045, the Astex Diverse Set46, and the 157 

PoseBusters benchmark set34. When evaluating the plausibility of generated poses using 158 

the PoseBuster tool, SurfDock demonstrates a significant improvement in pose 159 

rationality compared to previous DL methods. Additionally, SurfDock incorporates an 160 

optional fast force field relaxation step for protein-fixed ligand optimization, further 161 

enhancing its accuracy. This improvement allows SurfDock to surpass all existing DL 162 

and traditional methods in both docking success rates and pose plausibility. Besides, we 163 

also find that SurfDock generalizes effectively to new proteins. In the latter part of our 164 

study, we conducted a comprehensive evaluation of SurfDock on the virtual screening 165 

benchmark dataset DEKOIS2.047. Our results clearly demonstrate that SurfDock not 166 

only meets but exceeds the performance of existing docking methods in this domain. 167 

This performance, combined with its practicality and reliability, positions SurfDock as 168 

a valuable contribution to the SBDD community. 169 
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RESULTS AND DISCUSSION  170 

Method Overview 171 

 172 

Fig. 1 | The overall architecture of SurfDock. a: Illustration of the multimodal 173 

representation of proteins in SurfDock. Embeddings from protein sequence and residue 174 

graph are mapped onto the surface graph. b: Overview of SurfDock. The model takes 175 

separate protein and ligand as inputs. Starting from a random initial ligand pose, 176 

SurfDock refines (or denoises) the pose over translational, rotational, and torsional 177 

degrees of freedom conditioned on the pocket. The output is complemented with a 178 

confidence score provided by SurfScore, with or without an optional energy 179 
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minimization. c: The docking and scoring both uses the same representation of pocket 180 

and ligands, but different readout layers. This enables simultaneous pose generation and 181 

confidence estimation without additional scoring model. 182 

 183 

Our ligand docking framework, SurfDock, comprises primarily two stages: a 184 

diffusion network for pose generation and a scoring module (SurfScore), supplemented 185 

by an optional post-docking energy minimization module. Both the generation and 186 

scoring modules employ identical protein-ligand representation layers. 187 

For protein binding pocket representation, SurfDock utilizes a tri-level approach: 188 

sequence level, residue graph level, and surface level. For the first two levels, SurfDock 189 

employs residue structural features and embeddings from the large language model 190 

ESM-248 for residue representation. Unique to SurfDock is the integration of a 191 

molecular surface representation of the binding site, formatted as a polygon mesh using 192 

MaSIF37. This mesh comprises nodes, edges, and faces that collectively define the 193 

molecular surface's shape, with nodes encapsulating chemical and topological features 194 

and edges representing node connectivity. The sequence and residue graph embeddings 195 

are then mapped onto this molecular surface, as illustrated in Figure 1 a. Ligands in 196 

SurfDock are represented as 3D atomic-level graphs, where nodes symbolize atoms and 197 

edges denote expanded interatomic distances. 198 

Based on these representations, the geometric diffusion network in the first stage 199 

learns to refine (or denoise) a random initialized ligand pose conditioned on the binding 200 

pocket. To learn the distribution of protein-ligand complexes, we train the diffusion 201 

generation module using PDBbind2020 dataset, which contains experimental 3D data 202 

of ligands bound to protein targets and the binding affinities., with the protein's binding 203 

pocket serving as a conditional factor for generating ligand poses. The diffusion process 204 

incrementally introduces noise into the ligand's pose, encompassing translational, 205 

rotational, and torsional alterations while the generative process learns to reconstruct 206 

the ligand's pose by refining a noise-altered structure back to its ground-truth 207 

conformation. 208 

The scoring module SurfScore in the second stage aligns closely with our diffusion 209 

generation module in terms of representation. This integration marks a departure from 210 
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previous deep learning approaches like DiffDock, which typically trained their pose 211 

generation and scoring modules separately with distinct training objectives. For 212 

instance, DiffDock's scoring module was trained on a binary classification basis, using 213 

positive and negative samples produced by its pose generation module. Moreover, 214 

DiffDock used a coarse-grained representation for pose generation module and all-atom 215 

representation for scoring module. In contrast, SurfScore shares not only the 216 

representation layer with the generation module but also its training objective, focusing 217 

on the same crystal protein-ligand complexes and supplemented by a mixture density 218 

network17, 49 for scoring. This unified approach is designed to enhance the synergy 219 

between the pose generation and scoring stages, potentially leading to improved 220 

performance in ligand docking, as we aim to demonstrate in Fig. 3. Moreover, by 221 

utilizing a common representation and input for both modules, our method eliminates 222 

the need for separate pose generation, format conversion, and scoring processes, 223 

streamlining the entire pipeline. 224 

The full end-to-end pipeline of ligand docking with SurfDock encapsulates 225 

docking, optional post-docking energy minimization, and scoring. Initially, the model 226 

identifies the protein binding pocket and initializes a user-defined number of random 227 

ligand conformations generated by RDKit50 from input 2D molecular graph or SMILES 228 

(Simplified molecular-input line-entry system). These random poses are then refined 229 

through a reverse diffusion process to yield final poses. If energy minimization is 230 

selected here, all poses undergo further refinement conditioned on the protein structures. 231 

Finally, SurfScore assigns a confidence score to each pose, and they are ranked 232 

accordingly. The docking-minimization-score pipeline offers a reliable system for 233 

generating ranked docking poses. This minimization stage can also be added to refine 234 

only the Top N samples selected by SurfScore for practical consideration. In our 235 

experiments, SurfDock, even without the post-docking minimization stage, achieves 236 

state-of-the-art docking success rates, underscoring its robustness and accuracy. The 237 

optional minimization stage serves to further enhance ligand validity, augmenting an 238 

already superior performance. Details of our model are provided in Methods. 239 
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SurfDock Reaches State-Of-The-Art Docking Performance on Several Public 240 

Benchmark Sets 241 

 242 

Table 1 | Comparative Analysis of Docking Performances on PDBbind2020 243 

Dataset. This table presents a detailed comparison of various docking methods on the 244 

PDBbind2020 time-split test set and against novel protein targets. The results for 245 

EquiBind, TANKBind, DiffDock, E3Bind, and Uni-dock are derived from existing 246 

literature32, while KarmaDock's performance is from its original publication26. Glide 247 

SP, GNINA, SMINA, Vina and our SurfDock are self-implemented (details in Methods). 248 

SurfDock(minimized) adopts additional post-docking minimization.  Metrics include 249 

Top1/5-RMSD < 1Å/2Å and median RMSD values, with each method tested three 250 

times. We also report PB-valid (ligand poses pass all PoseBusters tests) metric for self-251 

implemented methods. Due to the unavailability of raw data for the adopted methods, 252 

PB-valid analysis could not be conducted for them. Best results are in bold and second 253 

best are underlined in two categories. 254 

 255 

To demonstrate the effectiveness of our method, we initially selected the 256 

PDBbind2020 time-split dataset as a benchmark due to its stringent standards. In this 257 

dataset, molecules are carefully segregated to ensure no overlap between training and 258 

Performance on PDBbind2020 time-split test set (363 complexes) 

Model 
type 

Pocket Method 
Top1-RMSD Top5-RMSD 

%<1Å %<2Å Med 
%<2Å 

& PB-valid 
%<1Å %<2Å Med 

DL Blind EquiBind / 5.5±1.2 6.2±0.3 / / / / 
DL Blind TANKBind 2.66±0.26 18.18±0.6 4.2±0.05 / 4.13±0.0 20.39±0.45 3.5±0.04 
DL Blind DiffDock 15.41±0.49 36.62±0.35 3.31±0.03 / 21.58±0.38 44.19±0.49 2.37±0.06 
DL Blind E3Bind / 25.6 7.2 / / / / 
DL Given KarmaDock / 56.2 / / / / / 

classical Fpocket Uni-dock 13.33±0.4 18.7±0.13 13.2±0.26 / 19.16±0.39 27.32±0.69 8.3±0.25 
classical P2Rank Uni-dock 19.31±1.07 28.6±1.17 6.40±0.22 / 27.76±1.03 39.18±1.03 3.76±0.06 
classical PointSite Uni-dock 21.36±1.65 32.12±0.93 5.54±0.46 / 31.38±0.86 46.06±0.69 2.52±0.18 
classical DiffDock Uni-dock 25.49±0.60 38.93±0.23 4.14±0.07 / 36.97±1.05 51.07±1.06 1.93±0.12 
classical Given Uni-dock 32.77±0.38 51.11±0.6 1.89±0.04 / 47.5±0.23 67.59±0.94 1.11±0.02 
classical Given Glide SP 17.36±0.00 44.63±0.00 2.27±0.00 38.57±0.00 31.13±0.00 60.06±0.00 1.54±0.00 
classical Given GNINA 21.12±0.26 43.62±1.06 2.45±0.07 41.41±1.13 28.47±0.57 58.13±0.81 1.65±0.02 
classical Given SMINA 18.73±0.00 31.68±0.00 3.99±0.00 28.37±0.00 28.47±0.56 48.48±0.00 2.07±0.00 
classical Given Vina 18.32±0.02 36.64±0.05 3.42±0.01 32.87±0.91 24.79±0.00 50.96±0.00 1.87±0.01 

DL Given SurfDock 40.96±0.34 68.41±0.26 1.18±0.00 36.46±0.26 54.18±0.13 75.11±0.13 0.94±0.00 

DL Given 
SurfDock 

(minimized) 
46.01±0.67 68.04±0.22 1.10±0.01 55.00±0.13 55.83±0.13 73.55±0.60 0.86±0.00 

Performance on unseen proteins in PDBbind2020 time-split test set (144 complexes) 

classical Given Glide SP 16.67±0.0 46.53±0.0 2.13±0.00 35.42±0.00 31.25±0.0 56.25±0.0 1.50±0.00 
classical Given GNINA 16.67±0.0 38.43±1.31 2.75±0.18 36.57±0.87 24.31±0.57 53.24±1.18 1.82±0.06 
classical Given SMINA 11.81±0.0 27.08±0.0 4.32±0.00 24.31±0.00 19.44±0.00 45.14±0.0 2.32±0.00 
classical Given Vina 10.41±0.00 25.69±0.08 4.25±0.02 23.61±0.98 18.06±0.00 42.36±0.00 2.41±0.03 

DL Given SurfDock 32.87±0.65 60.88±0.33 1.51±0.01 30.79±0.33 46.53±0.00 70.60±0.33 1.10±0.00 

DL Given 
SurfDock 

(minimized) 
37.73±0.87 62.50±0.57 1.47±0.02 43.75±0.56 47.22±0.00 71.06±1.31 1.12±0.00 
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testing sets, thus effectively avoiding data leakage issues. This dataset features a wide 259 

spectrum of molecules, including peptides and small molecules, providing a 260 

comprehensive platform for evaluating docking capabilities. As shown in Table 1, 261 

SurfDock achieves a notable docking success rate (RMSD <= 2Å) of 68.41%, 262 

considerably outperforming other deep learning and traditional docking models. 263 

Additionally, when assessing docking results with RMSD under 1Å, SurfDock's 264 

performance remains substantially superior under this rigorous metric. This advantage 265 

can be seen clearly in Fig. 2 a, where SurfDock clearly have more samples close to 266 

smaller RMSD when compared with the traditional docking methods we tested 267 

ourselves. To our surprise, when separating out the new proteins in PDBbind2020 test 268 

set that our model has never seen, SurfDock can still outperform all methods when 269 

comparing the metrics of Top1 samples. This separate set exhibits no ‘hard overlap’51 270 

with the proteins in the training set, which means they do not possess identical 271 

structures. This indicate that the incorporation of multimodal information and diffusion 272 

generative modelling with SurfDock substantially improve the generalizability and 273 

docking success rates. We further test the rationality of generated poses using 274 

PoseBuster tool. As shown in Table 1, SurfDock is comparable with traditional 275 

methods in pose plausibility. If equipped with the post-docking minimization stage, the 276 

plausibility of SurfDock generated sample can gain around 19% improvements, while 277 

keeping the high docking success rate. We also compare different minimization 278 

strategies and the sequential validity check results by the PoseBusters tool in 279 

Supplementary Table 1 and Supplementary Fig. 1. We show in Supplementary 280 

Table 1 that both the docking-minimize-scoring or the docking-scoring-minimize 281 

pipeline can improve ligand validity. Here we present the docking-minimize-scoring 282 

results in Table 1 as SurfDock(minimized).  283 

 284 
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 285 

Fig. 2 | Comparative Performance of Docking Methods Across Benchmarks. The 286 

results for EquiBind, TANKBind, DiffDock, and Uni-dock are derived from existing 287 

literature, while KarmaDock is implemented from its open-sourced model weights. 288 

Glide SP, GNINA, SMINA, Vina and our SurfDock are self-implemented (details in 289 

Methods). a: SurfDock and traditional method performances on the PDBbind2020 290 

time-split test set (left) and new proteins (right). Mean values are reported from three 291 

runs per method. Deep learning method comparisons are omitted due to lack of raw 292 

data. b: Docking method efficacy comparison using the Astex Diverse set (85 cases) as 293 

an easy test set and the PoseBusters Benchmark set (428 cases) as a challenging set. 294 

Striped bars indicate the proportion of predictions with RMSD within 2 Å; solid bars 295 

represent predictions also passing PoseBuster tests (PB-Valid), i.e., retaining 296 
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biophysical restraints. c: Performance of docking methods on the PoseBusters 297 

Benchmark set, categorized by sequence similarity to the PDBbind2020. Striped bars 298 

show predictions with RMSD within 2 Å; solid bars denote those also PB-Valid. 299 

 300 

To assess SurfDock’s efficacy more comprehensively with drug-like small 301 

molecules, we conducted evaluations using both the PoseBusters benchmark set and 302 

the Astex Diverse set, as shown in Fig. 2 b. These tests compared the plausibility and 303 

generalizability of generated poses across various methods. Notably, the PoseBusters 304 

benchmark set includes 428 drug-like molecule complexes released post-2021. Given 305 

that common DL docking models trained on the PDBbind2020 dataset have not been 306 

exposed to these samples, this set provides a fair basis for method comparison. The 307 

Astex Diverse set, however, is a relatively easy set, published in 2007, where most 308 

samples have been seen in the PDBbind2020 training set. In both datasets, SurfDock 309 

significantly leads in docking performance, achieving a success rate (hatched bars in 310 

Fig. 2) of 78% on PoseBusters set and 93% on Astex Diverse set. Compared with the 311 

other DL methods, SurfDock excels in both docking success rate and ligand validity. 312 

After the addition of post-docking minimization, the performance is further enhanced 313 

in both success rate and validity (solid bars in Fig. 2 b), outperforming all other DL and 314 

traditional docking methods. We also provide the cumulative distribution of top1 315 

samples produced by different methods in Supplementary Fig. 2 a. We can see that 316 

SurfDock consistently outperform other methods either under RMSD<1Å or 317 

RMSD<2Å, with Glide SP and GNINA following the lead. Supplementary Fig. 2 b 318 

and c presents additional results including different versions of KarmaDock for a clear 319 

comparison between all competing DL methods.  320 

Further, we evaluated SurfDock on the PoseBuster set categorized by protein 321 

sequence similarity to the PDBbind2020, as illustrated in Fig. 2 c. The group with low 322 

similarity can be seen as having no ‘soft overlap’51 with the proteins in the training set. 323 

Here, we observed that, except for SurfDock, all other DL methods exhibited 324 

significantly reduced effectiveness on proteins with less than 30% sequence similarity, 325 

regardless of pose validity. Conversely, SurfDock's performance exhibited only a 326 

marginal decrease from familiar proteins to unfamiliar proteins in terms of docking 327 
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success rate. With the enhancement of post-docking minimization, the performance of 328 

SurfDock has surpassed both DL and traditional methods on these benchmarks. 329 

SurfDock's consistent performance across proteins with low sequence similarity 330 

highlights its exceptional ability to generalize to novel proteins. This is a critical 331 

advantage, especially considering the frequent encounter of unfamiliar protein targets 332 

in practical virtual screening tasks. The robustness and adaptability demonstrated by 333 

SurfDock not only emphasize its reliability but also its potential as a valuable tool in 334 

practical virtual screening tasks, where accurately identifying suitable ligands to novel 335 

protein targets is crucial. Considering the exceptional performance of SurfDock with 336 

the addition of minimization stage for generating accurate and reliable ligand poses, we 337 

conducted the following experiments with the minimization stage. When mentioning 338 

“SurfDock” in the following experiments, we are referring to the SurfDock with 339 

“docking-minimize-scoring” strategy unless otherwise noted. 340 

Evaluation of the Sampling Efficiency, Pose Selection Ability of SurfDock, and the 341 

Synergy between the Pose Generation and Scoring Module 342 

As we have emphasized before, the effectiveness of a docking program is relied on 343 

two stages: the conformational sampling stage and the scoring stage. Accordingly, we 344 

conducted an evaluation of SurfDock's sampling efficiency and SurfScore's scoring 345 

accuracy independently, utilizing the PDBbind2020 time-split test set.  346 

To discern the impact of sampling quantity on overall performance, we analyzed 347 

outcomes across varying sampling counts. Specifically, we considered a sampling effort 348 

successful if at least one instance fell within a predetermined RMSD threshold. As 349 

delineated in Fig. 3 a, when the sampling count reaches 10, we observe a slower rate 350 

of performance improvement with additional sampling. This indicates that SurfDock 351 

can identify a near-native ligand conformation with as few as ten samplings. 352 

Further, we assessed the efficacy of our scoring module, SurfScore. Fig. 3 b 353 

illustrates that SurfScore significantly bolsters SurfDock's performance. For instance, 354 

a single sample per ligand yields a docking success rate of around 40%. However, 355 
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generating 40 samples and applying SurfScore to select the top pose elevates the 356 

success rate to over 65%. While there remains a disparity between this outcome and 357 

'perfect selection' – the ideal scenario of ranking the most accurate ligand pose at the 358 

top from all samples – SurfScore's current capability suffices for practical applications. 359 

To better illustrate that SurfScore captures key interactions between proteins and 360 

ligands, we present a specific case in Fig. 3 c. Here, a ligand with two rotatable bonds 361 

is analyzed. By treating the crystal ligand pose as a reference point and varying the 362 

torsional angles ω1 and ω2, we observe the scoring trends from SurfScore. Interpreting 363 

these scores as energy values reveals a landscape centered around the reference pose, 364 

with a plausible distribution of local minima as torsional angles shift. Building upon 365 

this, we explored the consistency between our docking and scoring modules, as they 366 

share the same representational framework and are separately trained on the same 367 

crystal protein-ligand complex data. Fig. 3 d showcases a sequential record of docking 368 

outputs and their corresponding SurfScore evaluations. In the dynamic progression of 369 

the docking process facilitated by SurfDock, there is a notable trend where the 370 

generated ligand poses incrementally gravitate towards lower energy states (or higher 371 

confidence). This evolution often involves navigating through and overcoming local 372 

energy minima, ultimately resulting in an alignment that is increasingly proximate to 373 

both the RDKit aligned pose and the crystal ligand pose. It is important to clarify that 374 

the RDKit aligned pose refers to a conformation generated by RDKit aligned to the 375 

crystal ligand pose, and is utilized as training objective for our diffusion network, as 376 

explained in Methods. This aligned pose can be regarded as a 'theoretical limit' for the 377 

generation module of SurfDock in the absence of additional refinements. However, 378 

with the integration of our post-docking minimization strategy, SurfDock demonstrates 379 

the potential to identify ligand poses that surpass the RDKit aligned pose in terms of 380 

energies estimated by our scoring module. We have included several such examples in 381 

Supplementary Fig. 4. 382 

These findings highlight the effective synergy between the docking and scoring 383 

processes, demonstrating their combined strength in capturing crucial protein-ligand 384 

interactions during generative modeling. The high degree of consistency between the 385 
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two modules, despite their separate training phases, can be attributed to their aligned 386 

objective of learning the distribution of crystal structures, which likely plays a key role 387 

in their harmonized performance. 388 

 389 

 390 

Fig. 3 | Evaluation of the Sampling Efficiency of SurfDock, the ranking ability of 391 

the scoring module SurfScore, and their consistency. a: Sampling Efficiency of 392 

SurfDock: This section illustrates the relationship between the number of samples and 393 

docking success rates. As the sampling number increases, there's a corresponding 394 

increase in the likelihood of achieving success within a specified RMSD threshold. 395 

Notably, with as few as 10 samples, SurfDock demonstrates adequate efficiency. This 396 

result is averaged over three repeats. b: Efficacy of SurfScore. The term 'Perfect 397 
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Selection' refers to the ideal scenario where the sample with the lowest RMSD is chosen. 398 

Remarkably, selecting the top pose from a set of 40 samples yields a 68% success rate, 399 

highlighting SurfScore's robustness in enhancing docking precision. c: Torsional Profile 400 

Analysis: a specific case is presented where the scores related to the torsional profile of 401 

a ligand with two rotatable bonds are like an energy landscape. d: Docking as an 402 

Optimization Process: a case study where the docking procedure complemented with 403 

score estimation is analogized to a geometry optimization process. The RDKit Aligned 404 

Ligand Conformation is the RDKit generated conformation that align with the Crystal 405 

Ligand Pose, and is served as the training objective in our diffusion network. 406 

Influence of ligand flexibility on docking performance 407 

In molecular docking, ligand flexibility critically influences conformation 408 

sampling efficiency52. This relationship becomes increasingly complex as the number 409 

of rotatable bonds and heavy atoms in the ligand rises, expanding the search space for 410 

potential conformations. We first count the distribution of the number of rotatable bonds 411 

and heavy atoms on PDBbind2020 time-split test set in Supplementary Fig. 3. We find 412 

that the distribution is quite large, ranging from 0 to 75 for the number of rotatable 413 

bonds, or 6 to 150 for the number of heavy atoms. Thus, the ligand flexibility in this 414 

dataset is challenging for both DL and traditional docking methods. Our experimental 415 

results, depicted in Fig. 4 a and b, corroborate this trend, aligning with findings52 by 416 

Hou et al. We observed a significant decline in the performance of traditional docking 417 

methods when ligands possess near or more than 15 rotatable bonds, or approximately 418 

35 heavy atoms, on the PDBbind2020 time-split test set. SurfDock, however, 419 

demonstrates notable proficiency in handling ligands within these ranges, often 420 

matching or surpassing traditional methods. On the other hand, it is widely 421 

acknowledged that the majority of drugs and drug-like compounds typically contain 422 

fewer than 10 rotatable bonds52. Within this subset, SurfDock's performance is 423 

particularly striking, achieving an efficacy rate close to 80%, which represents a 424 

substantial improvement of approximately 20% over conventional methods.  425 

We extended our investigation to the PoseBusters Benchmark Set, which primarily 426 

comprises drug-like molecules. This set presents a distribution of rotatable bonds and 427 

heavy atoms smaller to those in the previous dataset, also depicted in Supplementary 428 
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Fig. 3. Consistent with expectations based on the molecular characteristics typical of 429 

drug-like compounds, SurfDock exhibits a remarkable performance across varying 430 

counts of rotatable bonds and heavy atoms, as shown in Fig. 4 c and d. This 431 

performance not only aligns with our observations from the PDBbind2020 set but also 432 

distinctly demonstrates SurfDock's superiority or at least equivalence to traditional and 433 

other deep learning-based docking methods, especially in handling drug-like molecules.  434 

These findings underscore SurfDock's potential in facilitating drug discovery 435 

processes. Despite these promising results, we acknowledge the limitations of 436 

SurfDock in handling larger molecules like peptides. This constraint could stem from 437 

the scarcity of large ligand training data in PDBbind, as indicated in Supplementary 438 

Fig. 3. Addressing this challenge will be a focus of our future research, aiming to extend 439 

SurfDock's applicability and efficacy in molecular docking.  440 

 441 

Fig. 4 | The Performance across Different Docking Methods on PDBbind2020 442 
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time-split test set and PoseBusters Benchmark set with the number of rotatable 443 

bonds and heavy atoms. a, c: Impact of the number of rotatable bonds on docking 444 

accuracy. b, d: Impact of the number of heavy atoms on docking accuracy.  445 

 446 

SurfDock Can Serve as A Tool for Virtual Screening with Excellent Performance  447 

To further investigate the virtual screening capabilities of SurfDock, we conducted 448 

a preliminary evaluation of SurfDock's virtual screening capabilities using the 449 

DEKOIS2.0 dataset47. This dataset, comprising both active ligands and inactive decoys, 450 

includes 81 varied targets. Each target is associated with 40 active compounds and 451 

1,200 inactive decoys. This diverse and challenging benchmark set serves as an ideal 452 

platform to test the efficacy of SurfDock in discerning active ligands from decoys.  453 

Considering that efficiency is important in practical virtual screening task, here we 454 

adopt the “docking-scoring-minimize-rescoring” approach. In particular, we first 455 

generate 40 samples and select the Top 10 samples. We further minimize the 10 selected 456 

samples and re-score them using another version of SurfScore that is specifically 457 

trained for virtual screening task for fair comparison with other methods, as detailed in 458 

Methods. Finally, the Top 1 sample is used for evaluation. The results, illustrated in 459 

Fig. 5, position SurfDock at the forefront of current docking algorithms in terms of 460 

performance. A notable highlight is SurfDock's achievement in the metric EF 0.5%, 461 

reaching 21.00. This is significant in virtual screening, especially when dealing with 462 

large libraries of compounds. The primary goal of a docking algorithm in this context 463 

is to prioritize or 'enrich' the subset of compounds that are most likely to be active, thus 464 

reducing the number of compounds that need to be further tested in more resource-465 

intensive experiments. The efficacy of SurfDock in identifying active candidates at the 466 

top of the list is critical in large-scale virtual screening processes. This success is in line 467 

with prior benchmarks that attest to SurfDock's ability to generate accurate and reliable 468 

ligand poses. In contrast, although KarmaDock may generate less plausible poses, it 469 

surprisingly outperforms established methods like Glide SP in virtual screening tasks. 470 

As reported in the original KarmaDock publication, the algorithm's other two versions, 471 

despite having lower plausibility, also demonstrate effective performance on the 472 
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DEKOIS2.0 dataset. These results highlight the necessity for more in-depth research 473 

and stringent benchmarking to understand the factors influencing the efficacy of 474 

docking algorithms in virtual screening. 475 

Next, to evaluate the scoring efficacy of our module, SurfScore, we utilized poses 476 

generated by traditional methods, and then reassessed their binding affinities using 477 

SurfScore. The outcomes of this assessment are presented in Supplementary Fig. 5. 478 

The combination of Glide SP/Surflex-Dock with SurfScore shows comparable results 479 

to SurfDock across all evaluation metrics, although SurfDock maintains a lead in the 480 

EF 0.5% metric. This observation indicates that Glide SP and Surflex-Dock exhibit 481 

robust sampling capabilities on the DEKOIS2.0 benchmark set. This is consistent with 482 

earlier research highlighting the effectiveness of both Glide SP and Surflex-Dock in 483 

accurately sampling conformations52. Additionally, our previous experiments, as 484 

illustrated in the PoseBusters Benchmark Set (Fig. 2 b) and Supplementary Fig. 2 a, 485 

affirm Glide SP's strength as a docking algorithm, especially in benchmarks with 486 

simpler ligand compositions. Support for this comes from Supplementary Fig. 3, 487 

which reveals that most ligands and decoys in DEKOIS2.0 have fewer than 20 rotatable 488 

bonds. Thus, the observation that SurfDock and Glide SP performs similar in sampling 489 

power is plausible. It's important to note that in this virtual screening experiment, we 490 

chose the less accurate “docking-scoring-minimize-rescoring” for a more efficient 491 

testing setup. We anticipate that by optimizing our workflow, SurfDock's performance 492 

can be further enhanced in practical virtual screening tasks. 493 
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 494 

Fig. 5 | The Performance of Different Docking Methods on DEKOIS2.0 Dataset. 495 

The results except SurfDock are adopted from the publication of KarmaDock26. The 496 

boxenplot illustrates the distribution of key metrics for each model, highlighting data 497 

spread and variability. Superimposed red diamonds represent the mean values. This 498 

figure displays the performance comparison of various methods on the DEKOIS2.0 499 

dataset, featuring key metrics: Boltzmann-Enhanced Discrimination of Receiver 500 

Operating Characteristic (BED_ROC), which focuses on the early identification of 501 

active compounds; Enrichment Factors (EF) is defined as the percentage of active 502 

ligands observed among all of the active ligands for a given percentile of the top-ranked 503 

candidates (0.5%, 1.0%, or 5.0%) of a chemical library; Receiver Operating 504 

Characteristic Area Under the Curve (ROC_AUC), assessing overall classification 505 

accuracy; and Precision-Recall Area Under the Curve (PR_AUC), evaluating the trade-506 

off between precision and recall, particularly in datasets with class imbalances. 507 

 508 

 509 

CONCLUSION  510 

In this Article, we have introduced SurfDock, an advanced geometric diffusion 511 

network tailored for generating reliable binding ligand poses conditioned on protein 512 
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pockets and ligand 2D graph or SMILES. SurfDock also integrates a comprehensive 513 

internal scoring module, SurfScore, for confidence estimation, suitable for virtual 514 

screening tasks.  515 

Throughout our research, SurfDock has demonstrated exceptional performance 516 

across various benchmarks, including PDBbind2020 time-split set, the Astex Diverse 517 

Set, and the PoseBusters Benchmark set. Its ability to integrate multimodal protein 518 

information—encompassing surface features, residue structure, and pre-trained 519 

sequence-level features—into a cohesive surface node level representation has been 520 

instrumental in achieving high docking success rates and improved plausibility. 521 

Another aspect of SurfDock's functionality is its optional force field relaxation step, 522 

designed for protein-fixed ligand optimization, which significantly enhances its 523 

accuracy. This feature, along with pose generation and scoring, allows SurfDock to 524 

outperform existing DL and traditional methods in both docking success rates and pose 525 

rationality. More importantly, SurfDock demonstrates remarkable adaptability to new 526 

proteins and is highly effective for practical virtual screening. Its combination of strong 527 

performance and practical utility highlights its considerable promise in SBDD.  528 

In summary, we have shown that diffusion generative modeling, enhanced with 529 

multi-modal information, excels in pocket-aware ligand docking, surpassing traditional 530 

docking and DL methods. This makes SurfDock a valuable asset to the SBDD 531 

community, offering new avenues for drug discovery and protein-ligand interaction 532 

studies. 533 

 534 

METHODS 535 

Overview 536 

Our model, SurfDock, comprises two main components: a docking module and a 537 

scoring module. Both modules receive input from a multimodal feature fusion layer 538 

that integrates sequence, structure, and surface features. SurfDock is built upon an 539 끫歰(3)-equivariant, diffusion-based graph neural network, while the scoring module is 540 
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constructed from an equivariant graph neural network paired with an invariant mixture 541 

density network. 542 

The challenge in developing deep learning models for molecular docking arises 543 

from the inherent aleatoric uncertainty related to pose prediction, where multiple poses 544 

could be correct, and the epistemic uncertainty stemming from the complex nature of 545 

the task relative to the limited model capacity and available data27. Despite advances in 546 

cryo-electron microscopy and crystallography, high-quality protein-ligand complex 547 

data remains scarce, necessitating an architecture that can generalize well with limited 548 

high-quality structural information. Research indicates that equivariant networks are 549 

highly data-efficient, achieving superior performance with less data53, which makes it 550 

a great choice for our situation. 551 

Besides equivariant neural networks, we introduce surface information upon to a 552 

diffusion model. The molecular surface is a higher-level representation of protein 553 

structure, modeling a protein as a continuous shape with geometric and chemical 554 

features. This information allows the diffusion model to better perceive the protein's 555 

surface geometry, potentially avoiding physically improbable pose predictions too close 556 

to protein atoms. 557 

Our model, an 끫歰(3)-equivariant, diffusion-based graph neural network, follows 558 

the generative model training paradigm and is well-suited for molecular docking, a task 559 

characterized by limited data but high complexity. Unlike methods that represent 560 

proteins and ligands at the atomic level and predict coordinates for each atom, SurfDock 561 

is trained through a process that incrementally distorts the native conformation at 562 

various degrees, enabling the model to learn how to restore the correct conformation. 563 

In docking, bond lengths and angles can be swiftly and accurately determined by 564 

standard cheminformatics methods54. We consider only the torsion degrees of freedom 565 

m, where m is the number of torsion angles, and six degrees of freedom for translation 566 

and rotation, significantly narrowing the problem scope. SurfDock takes a seed 567 

conformation 끫殠 ∈ ℝ3×끫殶 of the ligand as input and alters only the relative position and 568 

torsion degrees of freedom in the final bound conformation. Thus, our problem is 569 

defined on an (끫殴 + 6) -dimensional submanifold 끫殀끫殠 ⊂ ℝ3×끫殶, formulating molecular 570 
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docking as learning a probability distribution  끫殺끫殠 (x|y) over the manifold, over the 571 

manifold, conditioned on a protein pocket structure y.  572 

Finally, we follow a similar approach to DiffDock in training the diffusion model 573 

on the product space of three subspaces: ligand rotation, translation, and torsion. The 574 

input to our model is the crystal conformation of the protein pocket and a seed 575 

conformation of the ligand. The output comprises 끫殴  scalar torsion angles and two 576 

translation-rotation vectors for each ligand. Following docking, the SurfScore module 577 

receives the docked complex and outputs a scalar score for the complex 578 

Details of feature processing 579 

In the feature processing methodology for SurfDock, a geometric heterogeneous 580 

graph is constructed, incorporating ligand, receptor residues, and surface nodes. The 581 

interactions among these components are defined with specific cutoffs and interaction 582 

rules: 583 

Ligand Atoms-Ligand Atoms Interactions: These interactions are defined using 584 

a 5Å cutoff, aligning with standard practices for atomic interactions. Covalent bonds 585 

are additionally preserved as separate edges, providing detailed chemical structure 586 

information. 587 

Receptor Residues-Receptor Residues Interactions: For interactions between 588 

receptor residues, a cutoff of 15Å is used, with a maximum of 30 neighbors allowed for 589 

each residue. This approach helps to capture significant inter-residue interactions while 590 

maintaining computational efficiency. 591 

Receptor Residues-Surface Nodes Interactions: For interactions between 592 

receptor residues and surface nodes, a cutoff of 15Å is used, with a maximum of 30 593 

neighbors allowed for each surface node to maintain computational efficiency. 594 

Surface Nodes-Surface Nodes Interactions: Similar to DeepDock, each edge 끫殤끫殬끫毀 595 

is represented by a vector indicating the relative Cartesian coordinates of the connected 596 

nodes, providing spatial context for these interactions. 597 

Surface Nodes-Ligand Atoms Interactions: These interactions use a cutoff of 598 

10 + 3σ끫毂끫毂 Å, where σ끫毂끫毂 represents the current standard deviation of the translational 599 

diffusion noise. This dynamically adjusts the interaction range based on the uncertainty 600 

in the diffusion process, ensuring high-probability interactions in the final pose are 601 
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included in the message passing at every step. 602 

The ligand in SurfDock is represented as an attributed graph 끫歴끫殲 = (끫殒끫殲,끫歰끫殲), with 603 끫殒끫殲 representing atoms and 끫歰끫殲 representing edges. Ligand atom features include atomic 604 

number, chirality, degree, formal charge, implicit valence, number of connected 605 

hydrogens, number of radical electrons, hybridization type, aromaticity, ring 606 

membership, and ring size (3 to 8). These features are enriched with sinusoidal 607 

embeddings of diffusion time. Edge features include bond type, ring status, conjugation, 608 

stereochemistry, and radial basis embeddings of edge length. 609 

The protein residue graph is denoted 끫歴끫毸 = (끫殒끫毸,끫歰끫毸), with each node representing 610 

a residue at the C끫毸 position. Node features include amino acid type, language model 611 

embeddings from ESM-2, and features used in the RTMScore model. Edge features are 612 

informed by RTMScore and include radial basis embeddings of edge length. 613 

Surface generation follows the DeepDock and MaSIF process. Surfaces are 614 

triangulated using MSMS, with specifications of density and probe radius as per MaSIF 615 

guidelines, and processed using PyMesh55. The resulting mesh 끫歴끫毀 = (끫殒끫毀,끫歰끫毀) 616 

comprises nodes 끫毆끫殬끫毀 ∈ 끫殒끫毀 and edges 끫殤끫殬끫毀 ∈ 끫歰끫毀 . Node features include Poisson–617 

Boltzmann electrostatics, free electrons and proton donors, hydropathy, shape index, 618 

and sinusoidal embeddings of diffusion time. Edge features are defined by relative 619 

Cartesian coordinates (vector) and radial basis embeddings of edge length (scalar). 620 

Scalar features of each node and edge are transformed using learnable two-layer 621 

MLPs into a set of scalar features for initial representations in the interaction layers. 622 

Only nodes defining the binding site (within 8Å of any ligand atom) are used to train 623 

the model, focusing on the most relevant interaction sites. 624 

Model architecture  625 

The docking module in SurfDock is an advanced 끫歰(3)-equivariant, diffusion-based 626 

graph neural network that utilizes tensor products of irreducible representations (irreps), 627 

following the conventions defined in the e3nn library56. This framework effectively 628 

incorporates both equivariant and invariant features for robust representation learning.  629 

Residue-residue intra-interaction: 630 끫殘끫殬끫殬끫毸 = SphericalHarmonics�끫殺끫殺끫殺끫殬끫毸,끫殺끫殺끫殺끫殬끫毸� (1) 631 
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끫欢끫殬끫殬 = MLP�끫殤끫殬끫殬,ℎ끫歸끫毸0, ℎ끫殬끫毸0� (2) 632 

ℎ끫殬끫毸 ← ℎ끫殬끫毸 ⊕ BN� 1끫殂끫殬 � TensorProduction(끫殘끫殬끫殬끫毸,끫殬∈끫殂끫殬 끫欢끫殬끫殬,ℎ끫殬끫毸)� (3) 633 

ℎ끫殬끫毸, ℎ끫殬끫毸0  represent the residue's features and initial scalar features, respectively. 끫殘끫殬끫殬 
끫毸  634 

are the spherical harmonics computed up to 끫殲 = 2, and BN denotes batch normalization. 635 

The output orders in this process are restricted to a maximum of 끫殲 = 1. 636 

Residue-surface inter-interaction:  637 

In the residue-surface inter-interaction layer of SurfDock, the updated residue node 638 

representations are further integrated with surface node information. Once the 639 

connected graph structure is established, node messages are updated via the Tensor 640 

Product Layer, following a sequence of operations: 641 끫殘끫殰끫殬끫毀 = SphericalHarmonics(끫殺끫殺끫殺끫殰끫毀,끫殺끫殺끫殺끫殬끫毸) (4) 642 끫欢끫殰끫殬 = MLP(끫殤끫殰끫殬,ℎ끫殰끫毀0,ℎ끫殬끫毸0) (5) 643 

ℎ끫殰끫毀 ← ℎ끫殰끫毀 ⊕ BN� 1끫殂끫殰 � TensorProduction(끫殘끫殰끫殬끫毂끫毀,끫殬∈끫殂끫殰 끫欢끫殰끫殬,ℎ끫殬끫毀)� (6) 644 

This module mirrors the earlier one in function but differs in the types of nodes and 645 

edges involved in the convolution process. 646 

Surface-ligand inter-interaction: 647 

In the surface-ligand inter-interaction stage of SurfDock, both the ligand and 648 

surface undergo internal updates similar to the residue-residue intra-interaction process. 649 

This step involves updating the ligand and surface using a consistent architecture, 650 

yielding new representations:  ℎ끫殬끫殲−끫殬끫殶끫毂끫毂끫殬  for the ligand and ℎ끫殬끫毀−끫殬끫殶끫毂끫毂끫殬  for the surface. 651 

Concurrently, akin to the residue-surface interaction layer, we construct a ligand-652 

surface radius graph to facilitate information exchange between the ligand and surface, 653 

generating representations: ℎ끫殬끫殲끫毀−끫殬끫殶끫毂끫殬끫毂 for ligand-to-surface and ℎ끫殬끫毀끫殲−끫殬끫殶끫毂끫殬끫毂 for surface-to-654 

ligand interactions. The final representations of the ligand and surface in SurfDock are 655 

updated through an integration of inter- and intra-interaction features, as per the 656 

following equations: 657 

 ℎ끫殬끫殲 ← ℎ끫殬끫殲 ⊕ℎ끫殬끫毀끫殲−끫殬끫殶끫毂끫殬끫毂⊕ℎ끫殬끫殲−끫殬끫殶끫毂끫毂끫殬 (7) 658 ℎ끫殬끫毀 ← ℎ끫殬끫毀 ⊕ℎ끫殬끫殲끫毀−끫殬끫殶끫毂끫殬끫毂⊕ℎ끫殬끫毀−끫殬끫殶끫毂끫毂끫殬 (8) 659 

Following the final interaction layer, the updated ligand node representations are 660 
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employed to generate the outputs. To predict the translation and rotation of the ligand, 661 

a convolution operation is performed on each ligand atom with the unweighted center 662 

of mass 끫殠. This approach is in alignment with the methodology used in DiffDock, 663 

allowing for accurate determination of ligand pose in relation to the target surface: 664 끫殘끫殠끫殲끫殠 = SphericalHarmonics�끫殺끫殺끫殺끫殬끫殲,끫殺끫殺끫殺끫殠� (9) 665 끫欢끫殬끫殠 = MLP�끫殤끫殬끫殠 ,ℎ끫殬끫殲0� (10) 666 

끫毆 ← 1끫殒끫殲 � TensorProduction(끫殘끫殠끫殲끫殠,끫殬∈끫殒끫殲 끫欢끫殬끫殠 ,ℎ끫殬끫殲) (11) 667 

Following the strategy in DiffDock, the output 끫毆 for ligand translation and rotation 668 

scores is constrained to include two odd parity vectors and two even parity vectors. This 669 

composition is essential in the context of the coarse-grained model used for protein 670 

representation, where the parity of the scoring output is not distinctly even or odd. Then, 671 

we integrate the even and odd components of 끫毆 , adjusting their magnitude while 672 

preserving their original directional characteristics with an MLP. This MLP 673 

incorporates the current magnitude and the sinusoidal embeddings of the diffusion time 674 끫殺끫毂. The following equations detail this process: 675 끫毂끫毂끫殲 ← 끫毆[: 3] + 끫毆[6: 9]�|끫毆[: 3] + 끫毆[6: 9]|�× MLP��|끫毆[: 3] + 끫毆[6: 9]|�, 끫殺끫毂� (12) 676 

끫毂끫殺끫毂끫殲 ← 끫毆[3: 6] + 끫毆[9: ]�|끫毆[3: 6] + 끫毆[9: ]|�× MLP��|끫毆[3: ] + 끫毆[9: ]|�, 끫殺끫毂� (13) 677 

For the torsional score in SurfDock, we adopt a methodology similar to Torsional 678 

Diffusion for predicting a scalar score 끫毾끫毂끫毂끫毂for each rotatable bond 끫殨 = (끫殨0,끫殨1). This 679 

prediction involves convolving the neighbor atoms in a radius graph with the center 끫殺 680 

of the bond. The convolutional filter 끫殎끫殨 for each bond 끫殨 is constructed from the tensor 681 

product of the spherical harmonics representation (with 끫殲 = 2)  of the bond axis 682 끫殺끫殺끫殺끫殨0 − 끫殺끫殺끫殺끫殨1, as detailed in the following steps: 683 끫殘끫毂 = SphericalHarmonics�끫殺끫殺끫殺끫殨0 ,끫殺끫殺끫殺끫殨1� (14) 684 끫殘끫殬 = SphericalHarmonics(끫殺끫殺끫殺끫毂 ,끫殺끫殺끫殺끫殬) (15) 685 끫殎끫殨 = FullTensorProduction(끫殘끫毂2,끫殘끫殬) (16) 686 끫殤 ∈ 끫殒끫殲 (17) 687 
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The convolutional filter 끫殎끫殨  is then utilized to convolve with the representations of 688 

every neighboring atom within the radius graph, as per the following procedure: 689 끫欢끫毂끫殬 = MLP�끫殤끫毂끫殬,ℎ끫殬끫殲0,ℎ끫殨0끫殲0 + ℎ끫殨1끫殲0 � (18) 690 

ℎ끫殨 ← 1끫殂끫殨끫殲 � TensorProduction(끫殎끫殨,끫殬∈끫殂끫殨끫殲 끫欢끫殬끫殠,ℎ끫殬끫殲 ) (19) 691 

Finally, the torsional score is refined using a two-layer MLP featuring a tanh 692 

nonlinearity and no biases. This MLP output is then "denormalized" by multiplying 693 

with the expected magnitude of a score in 끫殌끫殌(2), adjusted by the diffusion parameter 694 끫毾끫毂끫毂끫毂. 695 

Transformation of the ligand conformation 696 

During each inference step in SurfDock, the ligand conformation is updated using 697 

translation, rotation, and torsion scores. The update process involves a unified global 698 

translation, where all ligand atoms are simultaneously translated and rotated around the 699 

ligand's geometric center. However, updating the ligand torsion angles is particularly 700 

critical in the docking process. To address the potential perturbation of the ligand's 701 

center of mass position following torsion angle updates, we employ RMSD alignment, 702 

as suggested in DiffDock. This alignment method operates by realigning the ligand, 703 

post-torsion angle adjustment, to its original pose prior to the torsion changes. 704 

Ranking and Screening module 705 

In SurfDock, we introduce SurfScore, a scoring module designed to enhance pose 706 

ranking and screening capabilities. SurfScore's input architecture mirrors that of the 707 

docking module, retaining interaction layers for residue-residue, residue-surface, 708 

surface-surface, and ligand-ligand interactions, while excluding the surface-ligand 709 

interaction layer. It employs a mixed density network (MDN) for learning the distance 710 

statistical potential between protein surface and ligands. 711 

The process begins with extracting ligand and surface node representations ℎ끫殬끫殲, ℎ끫殬끫毀, 712 

which are concatenated and fed into an MDN49. The MDN uses an MLP to generate a 713 

hidden representation ℎ끫殬끫殬끫殺끫殬끫殬끫毂  integrating both target and ligand node data. This is 714 

mathematically represented as follows: 715 ℎ끫殬끫殬끫殺끫殬끫殬끫毂 = Dropout �MLP��ℎ끫殬끫殲,ℎ끫殬끫毀��� (20) 716 끫欎끫殬,끫殬끫殺끫殬끫殬끫毂 = ELU �Linear�ℎ끫殬,끫殬끫殺끫殬끫殬끫毂�� + 1 (21) 717 
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끫欜끫殬,끫殬끫殺끫殬끫殬끫毂 = ELU �Linear�ℎ끫殬,끫殬끫殺끫殬끫殬끫毂��+ 1.1 (22) 718 끫欖끫殬,끫殬끫殺끫殬끫殬끫毂 = ELU �Softmax�ℎ끫殬,끫殬끫殺끫殬끫殬끫毂�� (23) 719 

The hidden representation is used to compute the outputs of the MDN, 720 

encompassing means (끫欎끫殬끫殬끫殺끫殬끫殬끫毂 ), standard deviations (끫欜끫殬끫殬끫殺끫殬끫殬끫毂 ) and mixing coefficients 721 

(끫欖끫殬끫殬끫殺끫殬끫殬끫毂). These parameters are pivotal in formulating a mixture of Gaussians. In this 722 

context, a complex mixture of 20 Gaussians models the probability density distribution 723 

pertaining to the distance between ligand and target nodes. 724 

Further, the extracted ligand node features ℎ끫殬끫殲 were used for predicting auxiliary 725 

tasks, specifically atom and bond types in relation to neighboring nodes. This approach 726 

is inspired by findings from DeepDock, which highlighted the benefits of auxiliary 727 

tasks in learning molecular structures, thereby expediting the training process. All 728 

MLPs used are composed of a linear layer followed by batch normalization and an 729 

Exponential Linear Unit (ELU) as activation function. A consistent dropout rate of 0.1 730 

was maintained across experimental setups. 731 

Training details 732 

For docking 733 

In the docking experiments, we aligned our data and partitioning strategy with 734 

EquiBind and DiffDock, ensuring that test data comprised entirely unseen ligands. To 735 

address the distribution shift encountered during inference due to the use of RDKit-736 

generated conformations, our training objective was reformulated to align with the 737 

conformation closest to the ground-truth pose. At each time step 끫毂, the input ligand pose 738 

is subject to random perturbations, which include: 739 

Translational perturbation: 740 끫毊끫毂끫毂 = 끫殂(0, 끫毾끫毂끫毂) (24) 741 

Rotational perturbation:  742 끫毊끫毂끫殺끫毂 = sampling from 끫殺(끫欨)끫欨� (25) 743 

끫殺(끫欨) =
1 − 끫殠끫殺끫殺(끫欨)끫欖 �(2끫殲 + 1) 끫殤끫殤끫殺(−끫殲(끫殲 + 1)(끫毾끫毂끫毂끫毂)2)

끫殺끫毀끫毀 ��끫殲 +
1
2�끫欨�끫殺끫毀끫毀 �끫欨2� (26) 744 

Torsional perturbation:   745 
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끫毊끫毂끫殺끫毂 = 끫殂(0, 끫毾끫毂끫毂끫毂) (27) 746 

Here, 끫殺(끫欨) represents the isotropic Gaussian distribution on 끫殌끫殌(3), and the 끫欨� is a 747 

unit vector from random sampling. The training utilizes a score-based diffusion 748 

generative model on a Riemannian manifold, sampling and regressing against the 749 

diffusion kernel's score. Our methodology ensures orthogonality between torsional and 750 

rot-translational updates. The training employs separate loss functions for translation 751 

(끫歾끫毂끫毂), rotation (끫歾끫毂끫毂끫毂) and torsion (끫歾끫毂끫毂끫毂), with the final loss function being: 752 끫歾끫殢끫毂끫殰끫殠끫殬끫殶끫殨 =  
1

3
끫歾끫毂끫毂 +

1

3
끫歾끫毂끫毂끫毂 +

1

3
끫歾끫毂끫毂끫毂 (28) 753 

The diffusion model is trained until no further improvement is observed on the 754 

validation set within 50 epochs. 755 

For the Scoring Module 756 

Different from the training of diffusion model where RMSD-aligned 757 

conformations to mitigate training-inference data drift, the scoring module directly use 758 

crystal protein-ligand complex conformation for training to learn the distance statistical 759 

distribution. The training is governed by the following equations: 760 끫歾끫毀끫殠끫毂끫毂끫殬 = 끫歾끫殀끫殀끫殂 + 0.001 × 끫歾끫殬끫毂끫毂끫殜끫毀 + 0.001 × 끫歾끫殞끫毂끫殶끫殢끫毀 (29) 761 

끫歾MDN =  −끫殲끫殺끫殨�끫欖끫殬,끫殬,끫殶끫殺끫殬끫殬끫毂끫殂끫殂
끫殶=1 �끫殢끫殬,끫殬끫殺끫殬끫殬끫毂�끫欎끫殬,끫殬,끫殶끫殺끫殬끫殬끫毂 ,끫欜끫殬,끫殬,끫殶끫殺끫殬끫殬끫毂� (30) 762 

−Score = Potential(끫毊) =  −끫殲끫殺끫殨���끫欖끫殬,끫殬,끫殶끫殺끫殬끫殬끫毂끫殂끫殂
끫殶=1 �끫殢끫殬,끫殬끫殺끫殬끫殬끫毂�끫欎끫殬,끫殬,끫殶끫殺끫殬끫殬끫毂 ,끫欜끫殬,끫殬,끫殶끫殺끫殬끫殬끫毂�끫殬

끫殬=1
끫歸
끫殬=1 (31) 763 

The L끫殀끫殀끫殂 focuses on minimizing the negative log-likelihood of 끫殢끫殬,끫殬끫殺끫殬끫殬끫毂, measuring 764 

the distance between surface node 끫毆끫毀 and ligand node 끫毆끫殲. This is computed using a 765 

mixture model composed of 20 Gaussians, parameterized by predicted 끫欎끫殬,끫殬끫殺끫殬끫殬끫毂, 끫欜끫殬,끫殬끫殺끫殬끫殬끫毂 and 766 끫欖끫殬,끫殬끫殺끫殬끫殬끫毂. Additionally,  끫歾끫殬끫毂끫毂끫殜끫毀 and 끫歾끫殞끫毂끫殶끫殢끫毀, the cross-entropy cost functions for predicting 767 

atom and bond types, serve as auxiliary tasks. The L끫殀끫殀끫殂  in equation (30) can be 768 

adapted to define a potential function, 끫殆끫殺끫毂끫殤끫毀끫毂끫毀끫殆끫殲(끫毊), specifically tailored for evaluating 769 

a given target-ligand complex. In practice, this potential function is instrumental in 770 

scoring protein-ligand complexes, enabling the assessment of the conformational 771 

rationality of compounds. It is a pivotal tool for compound screening, where the lower 772 

value of Potential(끫毊)  (or a higher score) correlates with a higher likelihood of the 773 

target-ligand complex being in a particular conformation.  774 
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Training was conducted for 60 epochs with a batch size of 16. During training, 775 

contributions from ligand-target node pairs with 끫殢끫殬,끫殬끫殺끫殬끫殬끫毂 > 5Å were masked. In inference, 776 

this masking threshold was adjusted to 끫殢끫殬,끫殬끫殺끫殬끫殬끫毂 > 3Å. 777 

For the virtual screening task, SurfScore was retrained using a random data split 778 

from PDBBind2020 to be comparable with other baseline models. During training, 779 

contributions from ligand-target node pairs with 끫殢끫殬,끫殬끫殺끫殬끫殬끫毂 > 7Å were masked. In inference, 780 

this masking threshold was adjusted to 끫殢끫殬,끫殬끫殺끫殬끫殬끫毂 > 3Å..  781 

 782 

Post-docking energy minimization protocol 783 

Following Deane et al.34, we performed post-docking energy minimization using 784 

OpenMM57 with AMBER ff14sb58 for proteins and Sage59 (or GAFF60 for incompatible 785 

ligands) for small molecules. Protein structures were prepared with PDBfixer57 as in 786 

Alphafold24. During minimization, we fixed protein atoms, allowing only ligand atoms 787 

to move, ensuring focused energy optimization of ligands in the binding pocket. 788 

 789 

 790 

Data availability 791 

The protein-ligand complexes of PDBBind v2020 preprocessed as described in the 792 

paper “EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction” 793 

https://zenodo.org/records/6408497 794 

The protein-ligand complexes of the Astex Diverse set and the PoseBusters 795 

Benchmark set as described in the paper “PoseBusters: AI-based docking methods fail 796 

to generate physically valid poses or generalise to novel sequences” 797 

https://zenodo.org/records/8278563 798 

 799 

Code availability 800 

  801 

The code used to generate the results shown in this study is available under an MIT 802 

Licence in the repository. 803 

Code will be available after our paper has been published at: 804 

https://github.com/CAODH/SurfDock 805 
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