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36

37  ABSTRACT

38 In the field of structure-based drug design, accurately predicting the binding
39  conformation of ligands to proteins is a long-standing objective. Despite recent
40 advances in deep learning yielding various methods for predicting protein-ligand
41  complex structures, these Al-driven approaches frequently fall short of traditional
42  docking methods in practice and often yield structures that lack physical and chemical
43  plausibility. To overcome these limitations, we present SurfDock, an advanced
44  geometric diffusion network, distinguished by its ability to integrate multiple protein
45  representations including protein sequence, three-dimensional structural graphs, and
46  surface-level details into its equivariant architecture. SurfDock employs a generative
47  diffusion model on a non-Euclidean manifold, enabling precise optimization of
48  molecular translations, rotations, and torsions for reliable binding poses generation.
49  Complemented by a mixture density network for scoring using the same comprehensive
50 representation, SurfDock achieves significantly improved docking success rates over
51  all existing methods, excelling in both accuracy and adherence to physical constraints.
52  Equipped with post-docking energy minimization as an optional feature, the plausibility
53  of generated poses is further enhanced. Importantly, SurfDock demonstrates excellent
54  generalizability to unseen proteins and extensibility to virtual screening tasks with
55  state-of-the-art performance. We consider it a transformative contribution that could

56  serve as an invaluable asset in structure-based drug design.

57 INTRODUCTION

58 The realm of life sciences is currently undergoing a renaissance, sparked by
59  groundbreaking advancements in artificial intelligence (Al), particularly deep learning
60 (DL)'. This wave of technological innovation is redefining the landscape of structure-
61  based drug design (SBDD), a pivotal domain in pharmaceutical research. SBDD hinges

62  on the intricate understanding of protein-ligand interactions, with the objective to
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63  discover or design ligands that bind to specific proteins, thereby modulating their
64  function for therapeutic purposes® ’. Understanding these interactions is crucial because
65  the effectiveness of drugs depend heavily on how well they bind to their target proteins,
66  and whether they affect any other proteins in the body. Accurate and rapid prediction of
67  protein-ligand complex structures is pivotal for virtual screening, a process that screens
68  potential drugs from extensive databases against specific protein targets. To date, the
69  advancement of high-throughput structure-based virtual screening techniques has
70  significantly contributed to various drug discovery applications, notably accelerating
71 the pace of drug discovery®°.

72 Nonetheless, predicting how a small molecule binds to a protein, often referred to as
73 ligand docking, presents substantial complexity. This complexity arises from the
74  dynamic and multifaceted nature of protein-ligand interactions. Ligand docking
75  generally involves two phases: the generation of docking poses and their subsequent
76  scoring'®. The initial phase aims to identify feasible binding poses for ligands relative
77  totarget proteins, whereas the scoring phase involves evaluating these poses to estimate
78  binding affinity. Traditional methods in ligand docking, such as AutoDock Vina'l,
79 Glide'?, and Gold" employ heuristic algorithms to explore potential ligand
80 conformations. However, they often struggle to comprehensively cover the vast
81  conformational space, potentially overlooking feasible binding poses. This incomplete
82  exploration can result from their inherent algorithmic constraints, which prioritize
83  computational speed over thoroughness'®. The scoring algorithms in these traditional
84  methods apply simplistic functional terms to estimate binding affinity of docked poses.
85  Researchers have been working on improving scoring functions based on these
86 traditional search techniques, like SMINA'S, GNINA'®, DeepDock!” and other machine
87  learning scoring functions'® 1. While the subsequent scoring phase is also important, it

88  relies on the quality of the generated poses'®

. If the initial pose generation algorithm
89 is flawed, even an accurate scoring system can be misled, leading to suboptimal ligand
90  selections. This limitation is particularly evident in virtual screening contexts, where
91 identifying suitable protein-ligand interactions and ligand conformations for a known

92  protein’s binding pocket is crucial. As a result, developing efficient algorithms for
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93  ligand docking is of crucial importance.
94 This is where DL methods become particularly valuable. With the high-quality data
95 available from sources like the Protein Data Bank (PDB), DL models can decipher the
96 complex interplay between proteins and ligands®!. This capability enhances the
97  prediction accuracy of protein-ligand complex structures. For the pose generation task,
98  pervious deep learning approaches like Uni-Mol?*?, EquiBind**, E3Bind** , TANKBind*
99  and KarmaDock?® predominantly treated it as a regression problem, predicting the
100  binding pose of a ligand to a protein in a one-shot manner. Although these methods are
101  faster, their accuracy improvements over classical methods have been limited. This
102  limitation may stem from the inherent discord between the regression-centric approach
103  and the actual process of ligands binding to the targets, i.e., the interactive process
104  between ligands and the targets to find the most suitable binding conformations. In this
105  context, works by Jaakkola et al. introduces a paradigm shift by treating molecular
106  docking as a generative modeling problem?’. Unlike regression methods, their work
107  DiffDock learns a distribution over possible ligand poses. This approach is
108  implemented through a diffusion generative model (DGM)?3, which defines a diffusion
109  process over the critical degrees of freedom in docking: translations, rotations, and
110  torsions. In recent years, diffusion networks have demonstrated remarkable success in
111 a variety of tasks related to molecular generation and conformer generation®’!.
112 DiffDock's methodology, emphasizing iterative refinement of ligand poses through
113  updates in translations, rotations, and torsion angles from a noisy prior to a learned
114  distribution, mirrors the complex nature of molecular interactions.
115 Despite these advancements, challenges persist. Studies by Ke et al. indicate that in
116  practical SBDD tasks, where the binding pocket is known, DL methods have not yet
117  outperformed traditional approaches®?. Additionally, many Al-generated poses, though
118  technically successful in terms of Root Mean Square Deviation (RMSD) metrics (i.e.,
119  ifthe RMSD between a generated ligand pose and a crystal ligand pose is less than 24,
120  we consider the docking is successful®>®), exhibit biophysical inconsistencies, such as
121  intermolecular steric clashes or unrealistic bonds or angles®*. Thus, the over-reliance on

122 RMSD for pose evaluation is increasingly acknowledged as inadequate, failing to
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123 capture the subtleties of molecular interactions and physical realities of binding poses.
124 Recognizing these limitations, recent efforts have focused on developing better
125  metrics for assessing the rationality of generated poses** *°. Deane et al. introduced
126 PoseBusters, a tool designed to evaluate poses based on physical and chemical
127  rationality, and PoseBusters Benchmark set, a novel set of 428 complexes released from
128 2021 onwards**. Their findings suggest that, when considering the plausibility of
129  generated poses, DL methods have not outperformed traditional techniques. Moreover,
130 it shows that all DL methods perform poorly on proteins with less than 30% sequence
131  similarity to the training set. These two findings suggest that it is challenging for current
132 DL algorithms to generate biophysically plausible complex structures and to generalize
133 to novel proteins. One possible reason for the current shortcomings of DL methods is
134  their reliance on coarse-grained, residue-level representations of proteins. Ideally, a
135  more accurate all-atom representation of the protein or its binding pocket would offer
136  greater precision, but with substantial computational demands. The conventional
137  coarse-grained representation tends to oversimplify protein structures, consequently
138  expanding the ligand pose search space into regions already occupied by protein atoms,
139  potentially resulting in intermolecular clashes. Recent studies, however, have
140  demonstrated the benefits of incorporating protein surface-level information, which
141  offers a more detailed representation by modeling proteins as continuous shapes with
142  geometric and chemical properties'’”- 4!, By utilizing this surface information to more
143  accurate describe geometric space in binding pocket, we anticipate a reduction in the
144  occurrence of intermolecular clashes. Additionally, successes in sequence-based drug
145  design and protein structure prediction have highlighted the value of sequence

146  information in protein representation's * 4>,

Building on these insights, we
147  hypothesized that by leveraging multimodal protein information and advanced
148  generative modeling frameworks, it might be possible to address the current issues in
149  molecular docking while maintaining computational efficiency.

150 In this work, we introduce SurfDock, a geometric diffusion network designed for

151  generating reliable binding ligand poses. SurfDock is conditioned on the protein pocket

152  and a random starting ligand conformation, and it includes an internal scoring module
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153  SurfScore trained on crystal protein-ligand complexes for confidence estimation. By
154  incorporating multimodal protein information—surface features, residue structure
155  features, and pre-trained sequence-level features—into a surface node level
156  representation, SurfDock achieves top performance in docking success rates across
157  several benchmarks, including PDBbind2020%, the Astex Diverse Set*®, and the

158  PoseBusters benchmark set**

. When evaluating the plausibility of generated poses using
159  the PoseBuster tool, SurfDock demonstrates a significant improvement in pose
160  rationality compared to previous DL methods. Additionally, SurfDock incorporates an
161  optional fast force field relaxation step for protein-fixed ligand optimization, further
162  enhancing its accuracy. This improvement allows SurfDock to surpass all existing DL
163  and traditional methods in both docking success rates and pose plausibility. Besides, we
164  also find that SurfDock generalizes effectively to new proteins. In the latter part of our
165  study, we conducted a comprehensive evaluation of SurfDock on the virtual screening
166  benchmark dataset DEKOIS2.0*’. Our results clearly demonstrate that SurfDock not
167  only meets but exceeds the performance of existing docking methods in this domain.

168  This performance, combined with its practicality and reliability, positions SurfDock as

169  a valuable contribution to the SBDD community.
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170  RESULTS AND DISCUSSION

171  Method Overview
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173 Fig. 1 | The overall architecture of SurfDock. a: Illustration of the multimodal
174  representation of proteins in SurfDock. Embeddings from protein sequence and residue
175  graph are mapped onto the surface graph. b: Overview of SurfDock. The model takes
176  separate protein and ligand as inputs. Starting from a random initial ligand pose,
177 SurfDock refines (or denoises) the pose over translational, rotational, and torsional
178  degrees of freedom conditioned on the pocket. The output is complemented with a
179  confidence score provided by SurfScore, with or without an optional energy
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180  minimization. ¢: The docking and scoring both uses the same representation of pocket
181  and ligands, but different readout layers. This enables simultaneous pose generation and
182  confidence estimation without additional scoring model.

183

184 Our ligand docking framework, SurfDock, comprises primarily two stages: a
185  diffusion network for pose generation and a scoring module (SurfScore), supplemented
186 by an optional post-docking energy minimization module. Both the generation and
187  scoring modules employ identical protein-ligand representation layers.

188 For protein binding pocket representation, SurfDock utilizes a tri-level approach:
189  sequence level, residue graph level, and surface level. For the first two levels, SurfDock
190  employs residue structural features and embeddings from the large language model
191 ESM-2* for residue representation. Unique to SurfDock is the integration of a
192  molecular surface representation of the binding site, formatted as a polygon mesh using
193  MaSIF?’. This mesh comprises nodes, edges, and faces that collectively define the
194  molecular surface's shape, with nodes encapsulating chemical and topological features
195  and edges representing node connectivity. The sequence and residue graph embeddings
196  are then mapped onto this molecular surface, as illustrated in Figure 1 a. Ligands in
197  SurfDock are represented as 3D atomic-level graphs, where nodes symbolize atoms and
198  edges denote expanded interatomic distances.

199 Based on these representations, the geometric diffusion network in the first stage
200 learns to refine (or denoise) a random initialized ligand pose conditioned on the binding
201  pocket. To learn the distribution of protein-ligand complexes, we train the diffusion
202  generation module using PDBbind2020 dataset, which contains experimental 3D data
203  ofligands bound to protein targets and the binding affinities., with the protein's binding
204  pocket serving as a conditional factor for generating ligand poses. The diffusion process
205 incrementally introduces noise into the ligand's pose, encompassing translational,
206  rotational, and torsional alterations while the generative process learns to reconstruct
207  the ligand's pose by refining a noise-altered structure back to its ground-truth
208  conformation.

209 The scoring module SurfScore in the second stage aligns closely with our diffusion

210  generation module in terms of representation. This integration marks a departure from
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211  previous deep learning approaches like DiffDock, which typically trained their pose
212  generation and scoring modules separately with distinct training objectives. For
213  instance, DiffDock's scoring module was trained on a binary classification basis, using
214  positive and negative samples produced by its pose generation module. Moreover,
215  DiffDock used a coarse-grained representation for pose generation module and all-atom
216  representation for scoring module. In contrast, SurfScore shares not only the
217  representation layer with the generation module but also its training objective, focusing
218  on the same crystal protein-ligand complexes and supplemented by a mixture density
219 network!”# for scoring. This unified approach is designed to enhance the synergy
220  between the pose generation and scoring stages, potentially leading to improved
221  performance in ligand docking, as we aim to demonstrate in Fig. 3. Moreover, by
222  utilizing a common representation and input for both modules, our method eliminates
223  the need for separate pose generation, format conversion, and scoring processes,
224  streamlining the entire pipeline.

225 The full end-to-end pipeline of ligand docking with SurfDock encapsulates
226  docking, optional post-docking energy minimization, and scoring. Initially, the model
227  identifies the protein binding pocket and initializes a user-defined number of random
228  ligand conformations generated by RDKit>® from input 2D molecular graph or SMILES
229  (Simplified molecular-input line-entry system). These random poses are then refined
230  through a reverse diffusion process to yield final poses. If energy minimization is
231  selected here, all poses undergo further refinement conditioned on the protein structures.
232  Finally, SurfScore assigns a confidence score to each pose, and they are ranked
233 accordingly. The docking-minimization-score pipeline offers a reliable system for
234  generating ranked docking poses. This minimization stage can also be added to refine
235 only the Top N samples selected by SurfScore for practical consideration. In our
236  experiments, SurfDock, even without the post-docking minimization stage, achieves
237  state-of-the-art docking success rates, underscoring its robustness and accuracy. The
238  optional minimization stage serves to further enhance ligand validity, augmenting an

239  already superior performance. Details of our model are provided in Methods.
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240  SurfDock Reaches State-Of-The-Art Docking Performance on Several Public

241  Benchmark Sets

242

243  Table 1 | Comparative Analysis of Docking Performances on PDBbind2020

244  Dataset. This table presents a detailed comparison of various docking methods on the

245  PDBbind2020 time-split test set and against novel protein targets. The results for

246  EquiBind, TANKBind, DiffDock, E3Bind, and Uni-dock are derived from existing

247  literature®?, while KarmaDock's performance is from its original publication®. Glide

248  SP, GNINA, SMINA, Vina and our SurfDock are self-implemented (details in Methods).

249  SurfDock(minimized) adopts additional post-docking minimization. Metrics include

250  Topl/5-RMSD < 1A/2A and median RMSD values, with each method tested three

251  times. We also report PB-valid (ligand poses pass all PoseBusters tests) metric for self-

252  implemented methods. Due to the unavailability of raw data for the adopted methods,

253  PB-valid analysis could not be conducted for them. Best results are in bold and second

254  best are underlined in two categories.

Performance on PDBbind2020 time-split test set (363 complexes)
Model Top1-RMSD Top5-RMSD
Pocket Method %<2A

type %<1A %<2A Med & PBovalid %<1A %<2A Med

DL Blind EquiBind / 5.5+1.2 6.2+0.3 / / / /

DL Blind TANKBind ~ 2.66£026  18.18+0.6  4.240.05 / 4.13£0.0  20.39+0.45  3.5+0.04

DL Blind DiffDock 15413049 36.62+0.35 3.31%0.03 / 21.58+0.38  44.19£0.49  2.37+0.06

DL Blind E3Bind / 25.6 7.2 / / / /

DL Given KarmaDock / 56.2 / / / / /
classical ~ Fpocket Uni-dock 133304 18.7£0.13  13.2+0.26 / 19.16£0.39  27.3240.69  8.3+0.25
classical ~ P2Rank Uni-dock ~ 19.31£1.07  28.6+1.17  6.40+0.22 / 27.76£1.03  39.18+1.03  3.76:0.06
classical ~ PointSite Uni-dock 21.36£1.65 32.12+0.93 5.54+0.46 / 31.38+0.86 46.06+£0.69 2.52+0.18
classical ~ DiffDock Uni-dock  25.49+0.60 38.93+0.23  4.14+0.07 / 36.9741.05 51.07+1.06 1.93+0.12
classical Given Uni-dock 32.77+0.38  51.11+0.6  1.89+0.04 / 47.5+0.23  67.59+0.94 1.11+0.02
classical  Given Glide SP 17.36£0.00 44.63£0.00 2.27+0.00 38.57+0.00 31.13+0.00 60.06+0.00 1.54+0.00
classical ~ Given GNINA 21124026  43.62£1.06 2.45+0.07 41.41+1.13 28.47+0.57 58.13+0.81 1.65+0.02
classical ~ Given SMINA 18.73£0.00 31.68+0.00 3.99+0.00 28.37+0.00 28.47+0.56 48.48+0.00 2.07+0.00
classical ~ Given Vina 18.32+0.02  36.64+0.05 3.42+0.01 32.87+0.91 24.79+0.00 50.96+0.00 1.87+0.01

DL Given SurfDock  40.96£0.34 68.41+0.26 1.18+0.00 36.46£0.26 54.18+0.13 75.11£0.13  0.94=0.00

DL Given SurfDock = 4¢ 0140.67 68.04£020 1.10£0.01 55.0040.13 55.83+0.13 73.55:0.60 0.86:0.00

(minimized)
Performance on unseen proteins in PDBbind2020 time-split test set (144 complexes)
classical  Given Glide SP 16.67£0.0  46.53£0.0  2.13£0.00 35.42+0.00 31.25£0.0  56.25+0.0  1.50+0.00
classical ~ Given GNINA 16.67+0.0  38.43+1.31 2.75+0.18 36.57+0.87 24.31+0.57 53.24+1.18 1.82+0.06
classical  Given SMINA 11.81£0.0  27.08+0.0  4.32+0.00 24.31£0.00 19.44+0.00 45.14+0.0  2.32+0.00
classical  Given Vina 10.41£0.00 25.69+0.08 4.25£0.02 23.61+0.98 18.06+0.00 42.36+0.00 2.41+0.03
DL Given SurfDock ~ 32.87+0.65 60.88+0.33 1.5120.01 30.79+0.33 46.53+0.00 70.60+0.33 1.10+0.00
DL Given SurfDock = 377310.87 62504057 1474002 43.75:0.56 47.2240.00 7106+1.31 1.12£0.00
(minimized)

255

256 To demonstrate the effectiveness of our method, we initially selected the

257  PDBbind2020 time-split dataset as a benchmark due to its stringent standards. In this

258  dataset, molecules are carefully segregated to ensure no overlap between training and
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259  testing sets, thus effectively avoiding data leakage issues. This dataset features a wide
260  spectrum of molecules, including peptides and small molecules, providing a
261  comprehensive platform for evaluating docking capabilities. As shown in Table 1,
262  SurfDock achieves a notable docking success rate (RMSD <= 2A) of 68.41%,
263  considerably outperforming other deep learning and traditional docking models.
264  Additionally, when assessing docking results with RMSD under 1A, SurfDock's
265  performance remains substantially superior under this rigorous metric. This advantage
266  can be seen clearly in Fig. 2 a, where SurfDock clearly have more samples close to
267  smaller RMSD when compared with the traditional docking methods we tested
268  ourselves. To our surprise, when separating out the new proteins in PDBbind2020 test
269  set that our model has never seen, SurfDock can still outperform all methods when
270  comparing the metrics of Topl samples. This separate set exhibits no ‘hard overlap’!
271 with the proteins in the training set, which means they do not possess identical
272  structures. This indicate that the incorporation of multimodal information and diffusion
273 generative modelling with SurfDock substantially improve the generalizability and
274  docking success rates. We further test the rationality of generated poses using
275  PoseBuster tool. As shown in Table 1, SurfDock is comparable with traditional
276  methods in pose plausibility. If equipped with the post-docking minimization stage, the
277  plausibility of SurfDock generated sample can gain around 19% improvements, while
278  keeping the high docking success rate. We also compare different minimization
279  strategies and the sequential validity check results by the PoseBusters tool in
280  Supplementary Table 1 and Supplementary Fig. 1. We show in Supplementary
281  Table 1 that both the docking-minimize-scoring or the docking-scoring-minimize
282  pipeline can improve ligand validity. Here we present the docking-minimize-scoring

283  results in Table 1 as SurfDock(minimized).

284
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Fig. 2 | Comparative Performance of Docking Methods Across Benchmarks. The
results for EquiBind, TANKBind, DiffDock, and Uni-dock are derived from existing
literature, while KarmaDock is implemented from its open-sourced model weights.
Glide SP, GNINA, SMINA, Vina and our SurfDock are self-implemented (details in
Methods). a: SurfDock and traditional method performances on the PDBbind2020
time-split test set (/eff) and new proteins (right). Mean values are reported from three
runs per method. Deep learning method comparisons are omitted due to lack of raw
data. b: Docking method efficacy comparison using the Astex Diverse set (85 cases) as
an easy test set and the PoseBusters Benchmark set (428 cases) as a challenging set.
Striped bars indicate the proportion of predictions with RMSD within 2 A; solid bars
represent predictions also passing PoseBuster tests (PB-Valid), i.e., retaining
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297  biophysical restraints. ¢: Performance of docking methods on the PoseBusters
298  Benchmark set, categorized by sequence similarity to the PDBbind2020. Striped bars
299  show predictions with RMSD within 2 A; solid bars denote those also PB-Valid.

300

301 To assess SurfDock’s efficacy more comprehensively with drug-like small
302 molecules, we conducted evaluations using both the PoseBusters benchmark set and
303 the Astex Diverse set, as shown in Fig. 2 b. These tests compared the plausibility and
304  generalizability of generated poses across various methods. Notably, the PoseBusters
305 benchmark set includes 428 drug-like molecule complexes released post-2021. Given
306  that common DL docking models trained on the PDBbind2020 dataset have not been
307 exposed to these samples, this set provides a fair basis for method comparison. The
308  Astex Diverse set, however, is a relatively easy set, published in 2007, where most
309 samples have been seen in the PDBbind2020 training set. In both datasets, SurfDock
310  significantly leads in docking performance, achieving a success rate (hatched bars in
311  Fig. 2) of 78% on PoseBusters set and 93% on Astex Diverse set. Compared with the
312  other DL methods, SurfDock excels in both docking success rate and ligand validity.
313  After the addition of post-docking minimization, the performance is further enhanced
314  in both success rate and validity (solid bars in Fig. 2 b), outperforming all other DL and
315 traditional docking methods. We also provide the cumulative distribution of topl
316  samples produced by different methods in Supplementary Fig. 2 a. We can see that
317  SurfDock consistently outperform other methods either under RMSD<IA or
318 RMSD<2A, with Glide SP and GNINA following the lead. Supplementary Fig. 2 b
319  and c presents additional results including different versions of KarmaDock for a clear
320  comparison between all competing DL methods.

321 Further, we evaluated SurfDock on the PoseBuster set categorized by protein
322  sequence similarity to the PDBbind2020, as illustrated in Fig. 2 ¢. The group with low
323  similarity can be seen as having no ‘soft overlap’! with the proteins in the training set.
324 Here, we observed that, except for SurfDock, all other DL methods exhibited
325  significantly reduced effectiveness on proteins with less than 30% sequence similarity,
326  regardless of pose validity. Conversely, SurfDock's performance exhibited only a

327 marginal decrease from familiar proteins to unfamiliar proteins in terms of docking
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328  success rate. With the enhancement of post-docking minimization, the performance of
329  SurfDock has surpassed both DL and traditional methods on these benchmarks.
330 SurfDock's consistent performance across proteins with low sequence similarity
331  highlights its exceptional ability to generalize to novel proteins. This is a critical
332 advantage, especially considering the frequent encounter of unfamiliar protein targets
333 in practical virtual screening tasks. The robustness and adaptability demonstrated by
334  SurfDock not only emphasize its reliability but also its potential as a valuable tool in
335  practical virtual screening tasks, where accurately identifying suitable ligands to novel
336  protein targets is crucial. Considering the exceptional performance of SurfDock with
337  the addition of minimization stage for generating accurate and reliable ligand poses, we
338  conducted the following experiments with the minimization stage. When mentioning
339  “SurfDock” in the following experiments, we are referring to the SurfDock with

340  “docking-minimize-scoring” strategy unless otherwise noted.

341  Evaluation of the Sampling Efficiency, Pose Selection Ability of SurfDock, and the

342  Synergy between the Pose Generation and Scoring Module

343 As we have emphasized before, the effectiveness of a docking program is relied on
344  two stages: the conformational sampling stage and the scoring stage. Accordingly, we
345  conducted an evaluation of SurfDock's sampling efficiency and SurfScore's scoring
346  accuracy independently, utilizing the PDBbind2020 time-split test set.

347 To discern the impact of sampling quantity on overall performance, we analyzed
348  outcomes across varying sampling counts. Specifically, we considered a sampling effort
349  successful if at least one instance fell within a predetermined RMSD threshold. As
350 delineated in Fig. 3 a, when the sampling count reaches 10, we observe a slower rate
351  of performance improvement with additional sampling. This indicates that SurfDock
352  can identify a near-native ligand conformation with as few as ten samplings.

353 Further, we assessed the efficacy of our scoring module, SurfScore. Fig. 3 b
354  illustrates that SurfScore significantly bolsters SurfDock's performance. For instance,

355 a single sample per ligand yields a docking success rate of around 40%. However,
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356  generating 40 samples and applying SurfScore to select the top pose elevates the
357  success rate to over 65%. While there remains a disparity between this outcome and
358  'perfect selection' — the ideal scenario of ranking the most accurate ligand pose at the
359 top from all samples — SurfScore's current capability suffices for practical applications.
360 To better illustrate that SurfScore captures key interactions between proteins and
361 ligands, we present a specific case in Fig. 3 ¢. Here, a ligand with two rotatable bonds
362 is analyzed. By treating the crystal ligand pose as a reference point and varying the
363  torsional angles o1 and w2, we observe the scoring trends from SurfScore. Interpreting
364  these scores as energy values reveals a landscape centered around the reference pose,
365  with a plausible distribution of local minima as torsional angles shift. Building upon
366 this, we explored the consistency between our docking and scoring modules, as they
367  share the same representational framework and are separately trained on the same
368  crystal protein-ligand complex data. Fig. 3 d showcases a sequential record of docking
369  outputs and their corresponding SurfScore evaluations. In the dynamic progression of
370 the docking process facilitated by SurfDock, there is a notable trend where the
371  generated ligand poses incrementally gravitate towards lower energy states (or higher
372  confidence). This evolution often involves navigating through and overcoming local
373  energy minima, ultimately resulting in an alignment that is increasingly proximate to
374  both the RDKit aligned pose and the crystal ligand pose. It is important to clarify that
375 the RDKit aligned pose refers to a conformation generated by RDKit aligned to the
376  crystal ligand pose, and is utilized as training objective for our diffusion network, as
377  explained in Methods. This aligned pose can be regarded as a 'theoretical limit' for the
378  generation module of SurfDock in the absence of additional refinements. However,
379  with the integration of our post-docking minimization strategy, SurfDock demonstrates
380 the potential to identify ligand poses that surpass the RDKit aligned pose in terms of
381  energies estimated by our scoring module. We have included several such examples in
382  Supplementary Fig. 4.

383 These findings highlight the effective synergy between the docking and scoring
384  processes, demonstrating their combined strength in capturing crucial protein-ligand

385 interactions during generative modeling. The high degree of consistency between the
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386  two modules, despite their separate training phases, can be attributed to their aligned
387  objective of learning the distribution of crystal structures, which likely plays a key role

388 in their harmonized performance.
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391  Fig. 3 | Evaluation of the Sampling Efficiency of SurfDock, the ranking ability of
392  the scoring module SurfScore, and their consistency. a: Sampling Efficiency of
393  SurfDock: This section illustrates the relationship between the number of samples and
394  docking success rates. As the sampling number increases, there's a corresponding
395 increase in the likelihood of achieving success within a specified RMSD threshold.
396  Notably, with as few as 10 samples, SurfDock demonstrates adequate efficiency. This
397 result is averaged over three repeats. b: Efficacy of SurfScore. The term 'Perfect
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398  Selection' refers to the ideal scenario where the sample with the lowest RMSD is chosen.
399  Remarkably, selecting the top pose from a set of 40 samples yields a 68% success rate,
400  highlighting SurfScore's robustness in enhancing docking precision. ¢: Torsional Profile
401  Analysis: a specific case is presented where the scores related to the torsional profile of
402  a ligand with two rotatable bonds are like an energy landscape. d: Docking as an
403  Optimization Process: a case study where the docking procedure complemented with
404  score estimation is analogized to a geometry optimization process. The RDKit Aligned
405 Ligand Conformation is the RDKit generated conformation that align with the Crystal
406  Ligand Pose, and is served as the training objective in our diffusion network.

407  Influence of ligand flexibility on docking performance

408 In molecular docking, ligand flexibility critically influences conformation
409  sampling efficiency®. This relationship becomes increasingly complex as the number
410  of rotatable bonds and heavy atoms in the ligand rises, expanding the search space for
411  potential conformations. We first count the distribution of the number of rotatable bonds
412  and heavy atoms on PDBbind2020 time-split test set in Supplementary Fig. 3. We find
413  that the distribution is quite large, ranging from 0 to 75 for the number of rotatable
414  bonds, or 6 to 150 for the number of heavy atoms. Thus, the ligand flexibility in this
415  dataset is challenging for both DL and traditional docking methods. Our experimental
416  results, depicted in Fig. 4 a and b, corroborate this trend, aligning with findings>* by
417  Hou et al. We observed a significant decline in the performance of traditional docking
418  methods when ligands possess near or more than 15 rotatable bonds, or approximately
419 35 heavy atoms, on the PDBbind2020 time-split test set. SurfDock, however,
420  demonstrates notable proficiency in handling ligands within these ranges, often
421  matching or surpassing traditional methods. On the other hand, it is widely
422  acknowledged that the majority of drugs and drug-like compounds typically contain
423  fewer than 10 rotatable bonds®>. Within this subset, SurfDock's performance is
424 particularly striking, achieving an efficacy rate close to 80%, which represents a
425  substantial improvement of approximately 20% over conventional methods.

426 We extended our investigation to the PoseBusters Benchmark Set, which primarily
427  comprises drug-like molecules. This set presents a distribution of rotatable bonds and

428  heavy atoms smaller to those in the previous dataset, also depicted in Supplementary
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429  Fig. 3. Consistent with expectations based on the molecular characteristics typical of
430  drug-like compounds, SurfDock exhibits a remarkable performance across varying
431  counts of rotatable bonds and heavy atoms, as shown in Fig. 4 ¢ and d. This
432  performance not only aligns with our observations from the PDBbind2020 set but also
433  distinctly demonstrates SurfDock's superiority or at least equivalence to traditional and
434  other deep learning-based docking methods, especially in handling drug-like molecules.
435 These findings underscore SurfDock's potential in facilitating drug discovery
436 processes. Despite these promising results, we acknowledge the limitations of
437  SurfDock in handling larger molecules like peptides. This constraint could stem from
438  the scarcity of large ligand training data in PDBbind, as indicated in Supplementary
439  Fig. 3. Addressing this challenge will be a focus of our future research, aiming to extend
440  SurfDock's applicability and efficacy in molecular docking.
a Heatmap on PDBbind --- rotatable bond b Heatmap on PDBbind --- heavy atoms
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442  Fig. 4 | The Performance across Different Docking Methods on PDBbind2020
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443  time-split test set and PoseBusters Benchmark set with the number of rotatable
444  bonds and heavy atoms. a, c: Impact of the number of rotatable bonds on docking
445  accuracy. b, d: Impact of the number of heavy atoms on docking accuracy.

446

447  SurfDock Can Serve as A Tool for Virtual Screening with Excellent Performance

448 To further investigate the virtual screening capabilities of SurfDock, we conducted
449  a preliminary evaluation of SurfDock's virtual screening capabilities using the
450  DEKOIS2.0 dataset*’. This dataset, comprising both active ligands and inactive decoys,
451  includes 81 varied targets. Each target is associated with 40 active compounds and
452 1,200 inactive decoys. This diverse and challenging benchmark set serves as an ideal
453  platform to test the efficacy of SurfDock in discerning active ligands from decoys.

454 Considering that efficiency is important in practical virtual screening task, here we
455  adopt the “docking-scoring-minimize-rescoring” approach. In particular, we first
456  generate 40 samples and select the Top 10 samples. We further minimize the 10 selected
457  samples and re-score them using another version of SurfScore that is specifically
458  trained for virtual screening task for fair comparison with other methods, as detailed in
459  Methods. Finally, the Top 1 sample is used for evaluation. The results, illustrated in
460  Fig. 5, position SurfDock at the forefront of current docking algorithms in terms of
461  performance. A notable highlight is SurfDock's achievement in the metric EF 0.5%,
462  reaching 21.00. This is significant in virtual screening, especially when dealing with
463  large libraries of compounds. The primary goal of a docking algorithm in this context
464  1is to prioritize or 'enrich’' the subset of compounds that are most likely to be active, thus
465  reducing the number of compounds that need to be further tested in more resource-
466  intensive experiments. The efficacy of SurfDock in identifying active candidates at the
467  top of the list is critical in large-scale virtual screening processes. This success is in line
468  with prior benchmarks that attest to SurfDock's ability to generate accurate and reliable
469  ligand poses. In contrast, although KarmaDock may generate less plausible poses, it
470  surprisingly outperforms established methods like Glide SP in virtual screening tasks.
471  Asreported in the original KarmaDock publication, the algorithm's other two versions,

472  despite having lower plausibility, also demonstrate effective performance on the
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473  DEKOIS2.0 dataset. These results highlight the necessity for more in-depth research
474  and stringent benchmarking to understand the factors influencing the efficacy of
475  docking algorithms in virtual screening.

476 Next, to evaluate the scoring efficacy of our module, SurfScore, we utilized poses
477  generated by traditional methods, and then reassessed their binding affinities using
478  SurfScore. The outcomes of this assessment are presented in Supplementary Fig. S.
479  The combination of Glide SP/Surflex-Dock with SurfScore shows comparable results
480  to SurfDock across all evaluation metrics, although SurfDock maintains a lead in the
481  EF 0.5% metric. This observation indicates that Glide SP and Surflex-Dock exhibit
482  robust sampling capabilities on the DEKOIS2.0 benchmark set. This is consistent with
483  earlier research highlighting the effectiveness of both Glide SP and Surflex-Dock in
484  accurately sampling conformations®?. Additionally, our previous experiments, as
485  1illustrated in the PoseBusters Benchmark Set (Fig. 2 b) and Supplementary Fig. 2 a,
486  affirm Glide SP's strength as a docking algorithm, especially in benchmarks with
487  simpler ligand compositions. Support for this comes from Supplementary Fig. 3,
488  which reveals that most ligands and decoys in DEKOIS2.0 have fewer than 20 rotatable
489  bonds. Thus, the observation that SurfDock and Glide SP performs similar in sampling
490  power is plausible. It's important to note that in this virtual screening experiment, we
491  chose the less accurate “docking-scoring-minimize-rescoring” for a more efficient
492  testing setup. We anticipate that by optimizing our workflow, SurfDock's performance

493  can be further enhanced in practical virtual screening tasks.
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495  Fig. 5 | The Performance of Different Docking Methods on DEKOQOIS2.0 Dataset.
496  The results except SurfDock are adopted from the publication of KarmaDock?®. The
497  boxenplot illustrates the distribution of key metrics for each model, highlighting data
498  spread and variability. Superimposed red diamonds represent the mean values. This
499  figure displays the performance comparison of various methods on the DEKOIS2.0
500 dataset, featuring key metrics: Boltzmann-Enhanced Discrimination of Receiver
501  Operating Characteristic (BED ROC), which focuses on the early identification of
502  active compounds; Enrichment Factors (EF) is defined as the percentage of active
503 ligands observed among all of the active ligands for a given percentile of the top-ranked
504  candidates (0.5%, 1.0%, or 5.0%) of a chemical library; Receiver Operating
505  Characteristic Area Under the Curve (ROC_AUC), assessing overall classification
506  accuracy; and Precision-Recall Area Under the Curve (PR_AUC), evaluating the trade-
507  off between precision and recall, particularly in datasets with class imbalances.
508
509
510 CONCLUSION
511 In this Article, we have introduced SurfDock, an advanced geometric diffusion
512  network tailored for generating reliable binding ligand poses conditioned on protein
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513  pockets and ligand 2D graph or SMILES. SurfDock also integrates a comprehensive
514  internal scoring module, SurfScore, for confidence estimation, suitable for virtual
515  screening tasks.

516 Throughout our research, SurfDock has demonstrated exceptional performance
517  across various benchmarks, including PDBbind2020 time-split set, the Astex Diverse
518  Set, and the PoseBusters Benchmark set. Its ability to integrate multimodal protein
519  information—encompassing surface features, residue structure, and pre-trained
520  sequence-level features—into a cohesive surface node level representation has been
521  instrumental in achieving high docking success rates and improved plausibility.
522  Another aspect of SurfDock's functionality is its optional force field relaxation step,
523  designed for protein-fixed ligand optimization, which significantly enhances its
524  accuracy. This feature, along with pose generation and scoring, allows SurfDock to
525  outperform existing DL and traditional methods in both docking success rates and pose
526  rationality. More importantly, SurfDock demonstrates remarkable adaptability to new
527  proteins and is highly effective for practical virtual screening. Its combination of strong
528  performance and practical utility highlights its considerable promise in SBDD.

529 In summary, we have shown that diffusion generative modeling, enhanced with
530  multi-modal information, excels in pocket-aware ligand docking, surpassing traditional
531  docking and DL methods. This makes SurfDock a valuable asset to the SBDD
532  community, offering new avenues for drug discovery and protein-ligand interaction
533  studies.

534

535 METHODS

536  Overview

537 Our model, SurfDock, comprises two main components: a docking module and a
538  scoring module. Both modules receive input from a multimodal feature fusion layer
539 that integrates sequence, structure, and surface features. SurfDock is built upon an

540  E(3)-equivariant, diffusion-based graph neural network, while the scoring module is
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541  constructed from an equivariant graph neural network paired with an invariant mixture
542  density network.

543 The challenge in developing deep learning models for molecular docking arises
544  from the inherent aleatoric uncertainty related to pose prediction, where multiple poses
545  could be correct, and the epistemic uncertainty stemming from the complex nature of
546  the task relative to the limited model capacity and available data?’. Despite advances in
547  cryo-electron microscopy and crystallography, high-quality protein-ligand complex
548  data remains scarce, necessitating an architecture that can generalize well with limited
549  high-quality structural information. Research indicates that equivariant networks are
550  highly data-efficient, achieving superior performance with less data®, which makes it
551  a great choice for our situation.

552 Besides equivariant neural networks, we introduce surface information upon to a
553  diffusion model. The molecular surface is a higher-level representation of protein
554  structure, modeling a protein as a continuous shape with geometric and chemical
555  features. This information allows the diffusion model to better perceive the protein's
556  surface geometry, potentially avoiding physically improbable pose predictions too close
557  to protein atoms.

558 Our model, an E(3)-equivariant, diffusion-based graph neural network, follows
559 the generative model training paradigm and is well-suited for molecular docking, a task
560 characterized by limited data but high complexity. Unlike methods that represent
561  proteins and ligands at the atomic level and predict coordinates for each atom, SurfDock
562 1is trained through a process that incrementally distorts the native conformation at
563  various degrees, enabling the model to learn how to restore the correct conformation.
564 In docking, bond lengths and angles can be swiftly and accurately determined by
565  standard cheminformatics methods>*. We consider only the torsion degrees of freedom
566 ~ m, where m is the number of torsion angles, and six degrees of freedom for translation
567 and rotation, significantly narrowing the problem scope. SurfDock takes a seed
568  conformation ¢ € R3*™ of the ligand as input and alters only the relative position and
569  torsion degrees of freedom in the final bound conformation. Thus, our problem is

570  defined on an (m + 6) -dimensional submanifold M, ¢ R3*" formulating molecular
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571  docking as learning a probability distribution p.(x|y) over the manifold, over the
572  manifold, conditioned on a protein pocket structure y.

573 Finally, we follow a similar approach to DiffDock in training the diffusion model
574  on the product space of three subspaces: ligand rotation, translation, and torsion. The
575 input to our model is the crystal conformation of the protein pocket and a seed
576  conformation of the ligand. The output comprises m scalar torsion angles and two
577  translation-rotation vectors for each ligand. Following docking, the SurfScore module

578  receives the docked complex and outputs a scalar score for the complex

579  Details of feature processing

580 In the feature processing methodology for SurfDock, a geometric heterogeneous
581  graph is constructed, incorporating ligand, receptor residues, and surface nodes. The
582 interactions among these components are defined with specific cutoffs and interaction
583  rules:

584 Ligand Atoms-Ligand Atoms Interactions: These interactions are defined using
585 a SA cutoff, aligning with standard practices for atomic interactions. Covalent bonds
586  are additionally preserved as separate edges, providing detailed chemical structure
587  information.

588 Receptor Residues-Receptor Residues Interactions: For interactions between
589  receptor residues, a cutoff of 15A is used, with a maximum of 30 neighbors allowed for
590 each residue. This approach helps to capture significant inter-residue interactions while
591  maintaining computational efficiency.

592 Receptor Residues-Surface Nodes Interactions: For interactions between
593  receptor residues and surface nodes, a cutoff of 15A is used, with a maximum of 30
594  neighbors allowed for each surface node to maintain computational efficiency.

595 Surface Nodes-Surface Nodes Interactions: Similar to DeepDock, each edge e}
596 isrepresented by a vector indicating the relative Cartesian coordinates of the connected
597  nodes, providing spatial context for these interactions.

598 Surface Nodes-Ligand Atoms Interactions: These interactions use a cutoff of
599 10 + 30,, A, where o, represents the current standard deviation of the translational
600  diffusion noise. This dynamically adjusts the interaction range based on the uncertainty

601 in the diffusion process, ensuring high-probability interactions in the final pose are
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602 included in the message passing at every step.

603 The ligand in SurfDock is represented as an attributed graph G = (V!, EY), with
604 V! representing atoms and E' representing edges. Ligand atom features include atomic
605 number, chirality, degree, formal charge, implicit valence, number of connected
606  hydrogens, number of radical electrons, hybridization type, aromaticity, ring
607 membership, and ring size (3 to 8). These features are enriched with sinusoidal
608  embeddings of diffusion time. Edge features include bond type, ring status, conjugation,
609  stereochemistry, and radial basis embeddings of edge length.

610 The protein residue graph is denoted G* = (V¢ E%), with each node representing
611  a residue at the C, position. Node features include amino acid type, language model
612  embeddings from ESM-2, and features used in the RTMScore model. Edge features are
613  informed by RTMScore and include radial basis embeddings of edge length.

614 Surface generation follows the DeepDock and MaSIF process. Surfaces are
615 triangulated using MSMS, with specifications of density and probe radius as per MaSIF
616  guidelines, and processed using PyMesh®®>. The resulting mesh G = (V5,E5)
617  comprises nodes v; € V°and edges e € ES. Node features include Poisson—
618  Boltzmann electrostatics, free electrons and proton donors, hydropathy, shape index,
619  and sinusoidal embeddings of diffusion time. Edge features are defined by relative

620  Cartesian coordinates (vector) and radial basis embeddings of edge length (scalar).

621 Scalar features of each node and edge are transformed using learnable two-layer
622  MLPs into a set of scalar features for initial representations in the interaction layers.
623  Only nodes defining the binding site (within 8A of any ligand atom) are used to train

624  the model, focusing on the most relevant interaction sites.
625  Model architecture

626 The docking module in SurfDock is an advanced E (3)-equivariant, diffusion-based
627  graph neural network that utilizes tensor products of irreducible representations (irreps),
628  following the conventions defined in the e3nn library®®. This framework effectively
629  incorporates both equivariant and invariant features for robust representation learning.

630 Residue-residue intra-interaction:

631 Yl.j-‘ = SphericalHarmonics(pOSia,POS]q) (D
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632 @ij = MLP(e;;, hf®®, h° (2)
a a 1 : a a
633 hi" < h{ @© BN N TensorProduction(Y;}, ¢;;, hj 3)
' jEn;
634 h¥%, h%® represent the residue's features and initial scalar features, respectively. Y%
] ] y ij

635  are the spherical harmonics computed up to [ = 2, and BN denotes batch normalization.
636  The output orders in this process are restricted to a maximum of [ = 1.

637  Residue-surface inter-interaction:

638 In the residue-surface inter-interaction layer of SurfDock, the updated residue node
639  representations are further integrated with surface node information. Once the
640  connected graph structure is established, node messages are updated via the Tensor

641  Product Layer, following a sequence of operations:

642 Y,s; = SphericalHarmonics(posg, pos{) (4)
643 ki = MLP (e, hi’, hi®) (5)
644 h; < h;, @ BN X T Production(Y;} hi (6)
" " N ensorProduction(Yy;, ¢y, hy')
kjENk
645 This module mirrors the earlier one in function but differs in the types of nodes and

646  edges involved in the convolution process.

647  Surface-ligand inter-interaction:

648 In the surface-ligand inter-interaction stage of SurfDock, both the ligand and
649  surface undergo internal updates similar to the residue-residue intra-interaction process.
650  This step involves updating the ligand and surface using a consistent architecture,
651 yielding new representations: h!”™74 for the ligand and h$~™"% for the surface.
652  Concurrently, akin to the residue-surface interaction layer, we construct a ligand-
653  surface radius graph to facilitate information exchange between the ligand and surface,
654  generating representations: h'S~€" for ligand-to-surface and h$' ™" for surface-to-
655  ligand interactions. The final representations of the ligand and surface in SurfDock are
656  updated through an integration of inter- and intra-interaction features, as per the
657  following equations:

658 h! « h! @ Rsi-inter @ pl-intra 7)
659 h$ « hS @ hls—inter @y ps-intra (8)

660 Following the final interaction layer, the updated ligand node representations are
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661  employed to generate the outputs. To predict the translation and rotation of the ligand,
662  aconvolution operation is performed on each ligand atom with the unweighted center
663  of mass c. This approach is in alignment with the methodology used in DiffDock,

664  allowing for accurate determination of ligand pose in relation to the target surface:

665 vl = SphericalHarmonics(posil,posc) 9
666 ®ic = MLP(ey, hi°) (10)
1 : l l
667 Ve Z TensorProduction(Y:*, @, h;) (11)
jevl
668 Following the strategy in DiffDock, the output v for ligand translation and rotation

669  scores is constrained to include two odd parity vectors and two even parity vectors. This
670  composition is essential in the context of the coarse-grained model used for protein
671  representation, where the parity of the scoring output is not distinctly even or odd. Then,
672  we integrate the even and odd components of v, adjusting their magnitude while
673  preserving their original directional characteristics with an MLP. This MLP
674  incorporates the current magnitude and the sinusoidal embeddings of the diffusion time

675  s¢. The following equations detail this process:

v[:3] + v[6:9]

676 tr! « x MLP(||v[: 3] + v[6:9]]|,s (12)
|Iv[: 3] + v[6:9]]| ( bse)
v[3:6] + v[9:]
677 rot! « x MLP(||v[3:]+ v[9:]l|,s (13)
|Iv[3: 6] + v[9: ][] ( bs:)
678 For the torsional score in SurfDock, we adopt a methodology similar to Torsional

679  Diffusion for predicting a scalar score J;,,for each rotatable bond g = (go, g1). This
680  prediction involves convolving the neighbor atoms in a radius graph with the center o
681  of the bond. The convolutional filter T for each bond g is constructed from the tensor

682  product of the spherical harmonics representation (with [ = 2) of the bond axis

683  posy, — POSy,, as detailed in the following steps:

684 Y, = SphericalHarmonics(pos,,, pos,, ) (14)
685 Y, = SphericalHarmonics(pos,, pos,) (15)
636 T, = FullTensorProduction(Yz, Y,) (16)

687 eeV! (17)
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688 The convolutional filter T is then utilized to convolve with the representations of

689  every neighboring atom within the radius graph, as per the following procedure:

690 Poe = MLP(eoe, hio, hé?) + hfq(i (18)
1 . .

691 hg « NI Z TensorProduction(T,, @, he) (19)
9 eENé

692 Finally, the torsional score is refined using a two-layer MLP featuring a tanh

693  nonlinearity and no biases. This MLP output is then "denormalized" by multiplying
694  with the expected magnitude of a score in SO (2), adjusted by the diffusion parameter
695  Sror-

696  Transformation of the ligand conformation

697 During each inference step in SurfDock, the ligand conformation is updated using
698 translation, rotation, and torsion scores. The update process involves a unified global
699 translation, where all ligand atoms are simultaneously translated and rotated around the
700  ligand's geometric center. However, updating the ligand torsion angles is particularly
701  critical in the docking process. To address the potential perturbation of the ligand's
702  center of mass position following torsion angle updates, we employ RMSD alignment,
703 as suggested in DiffDock. This alignment method operates by realigning the ligand,
704  post-torsion angle adjustment, to its original pose prior to the torsion changes.

705 Ranking and Screening module

706 In SurfDock, we introduce SurfScore, a scoring module designed to enhance pose
707  ranking and screening capabilities. SurfScore's input architecture mirrors that of the
708  docking module, retaining interaction layers for residue-residue, residue-surface,
709  surface-surface, and ligand-ligand interactions, while excluding the surface-ligand
710 interaction layer. It employs a mixed density network (MDN) for learning the distance

711  statistical potential between protein surface and ligands.

712 The process begins with extracting ligand and surface node representations h!, h;,
713 which are concatenated and fed into an MDN*. The MDN uses an MLP to generate a
714  hidden representation hfjair integrating both target and ligand node data. This is
715  mathematically represented as follows:

716 hfjair = Dropout (MLP([hﬁ, hf])) (20)

717 uf}lir = ELU (Linear(hf?ir)) +1 (21)
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718 off"" = ELU (Linear(h}§")) + 1.1 (22)
719 nf}‘?ir = ELU (Softmax(hfjir)) (23)
720 The hidden representation is used to compute the outputs of the MDN,

pair

ij ) standard deviations (o™

721  encompassing means (u i ) and mixing coefficients

pair
722 (m;

). These parameters are pivotal in formulating a mixture of Gaussians. In this
723 context, a complex mixture of 20 Gaussians models the probability density distribution
724  pertaining to the distance between ligand and target nodes.

725 Further, the extracted ligand node features h! were used for predicting auxiliary
726  tasks, specifically atom and bond types in relation to neighboring nodes. This approach
727  is inspired by findings from DeepDock, which highlighted the benefits of auxiliary
728  tasks in learning molecular structures, thereby expediting the training process. All
729  MLPs used are composed of a linear layer followed by batch normalization and an

730  Exponential Linear Unit (ELU) as activation function. A consistent dropout rate of 0.1

731  was maintained across experimental setups.
732 Training details

733 For docking

734 In the docking experiments, we aligned our data and partitioning strategy with
735  EquiBind and DiffDock, ensuring that test data comprised entirely unseen ligands. To
736  address the distribution shift encountered during inference due to the use of RDKit-
737  generated conformations, our training objective was reformulated to align with the
738  conformation closest to the ground-truth pose. At each time step ¢, the input ligand pose
739  is subject to random perturbations, which include:

740  Translational perturbation:

741 Atr = N(0,84) (24)
742  Rotational perturbation:

743 Arot = sampling from p(w)® (25)

sin <(l + %) w>

e

(26)

1—
M ) = TN o 1) exp (-1 + 1600

745  Torsional perturbation:
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746 Ator = N(0, 8¢0;) (27)
747 Here, p(w) represents the isotropic Gaussian distribution on SO(3), and the @ is a
748  unit vector from random sampling. The training utilizes a score-based diffusion
749  generative model on a Riemannian manifold, sampling and regressing against the
750  diffusion kernel's score. Our methodology ensures orthogonality between torsional and
751  rot-translational updates. The training employs separate loss functions for translation

752 (L), rotation (L,-,¢) and torsion (L;,, ), with the final loss function being:

1 1 1
753 LdOkcing = §Ltr + §Lrot + §Ltor (28)
754 The diffusion model is trained until no further improvement is observed on the

755  validation set within 50 epochs.

756  For the Scoring Module

757 Different from the training of diffusion model where RMSD-aligned
758  conformations to mitigate training-inference data drift, the scoring module directly use
759  crystal protein-ligand complex conformation for training to learn the distance statistical

760  distribution. The training is governed by the following equations:

761 Lscore = Lypn + 0.001 X Lyroms + 0.001 X Lyonas (29)
N
762 Lupn = —log ) mlfw N (a5 |ubss, ofe (30)
n=1
1 J N
763 ~Score = Potentialy = —log » > > mPfrN (dl"|ubir oPl) (3D
i=1 j=1n=1
764 The Lypy focuses on minimizing the negative log-likelihood of dﬁ?ir, measuring

765  the distance between surface node v° and ligand node v'. This is computed using a

pair _pair

766  mixture model composed of 20 Gaussians, parameterized by predicted y; ;, o; ;" and
767 nf}lir. Additionally, Lgsoms and Lponqs. the cross-entropy cost functions for predicting

768 atom and bond types, serve as auxiliary tasks. The Lypy in equation (30) can be
769  adapted to define a potential function, Potential(,, specifically tailored for evaluating
770  a given target-ligand complex. In practice, this potential function is instrumental in
771  scoring protein-ligand complexes, enabling the assessment of the conformational
772  rationality of compounds. It is a pivotal tool for compound screening, where the lower
773 value of Potential(,) (or a higher score) correlates with a higher likelihood of the

774 target-ligand complex being in a particular conformation.
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775 Training was conducted for 60 epochs with a batch size of 16. During training,

776 contributions from ligand-target node pairs with df;.lir > 5A were masked. In inference,

777  this masking threshold was adjusted to df}lir > 3A.

778 For the virtual screening task, SurfScore was retrained using a random data split

779  from PDBBind2020 to be comparable with other baseline models. During training,

780  contributions from ligand-target node pairs with df;.lir > 7A were masked. In inference,

781  this masking threshold was adjusted to df}lir > 34..

782

783  Post-docking energy minimization protocol

784 Following Deane et al.>*

785  OpenMM?>” with AMBER ff14sb°® for proteins and Sage®” (or GAFF® for incompatible

, we performed post-docking energy minimization using

786  ligands) for small molecules. Protein structures were prepared with PDBfixer’’ as in
787  Alphafold2*. During minimization, we fixed protein atoms, allowing only ligand atoms

788  to move, ensuring focused energy optimization of ligands in the binding pocket.

789

790

791  Data availability

792 The protein-ligand complexes of PDBBind v2020 preprocessed as described in the

793  paper “EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction”
794  https://zenodo.org/records/6408497
795 The protein-ligand complexes of the Astex Diverse set and the PoseBusters
796  Benchmark set as described in the paper “PoseBusters: Al-based docking methods fail
797 to generate physically valid poses or generalise to novel sequences”
798  https://zenodo.org/records/8278563

799

800  Code availability

801

802 The code used to generate the results shown in this study is available under an MIT
803  Licence in the repository.

804 Code will be available after our paper has been published at:

805 https://github.com/CAODH/SurfDock

806
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