

1 **SurfDock is a Surface-Informed Diffusion Generative Model for Reliable and**
2 **Accurate Protein-ligand Complex Prediction**

3 Duanhua Cao,^{▽,1,2} Mingan Chen,^{▽,2,3,4} Runze Zhang^{▽,2,5}, Jie Yu^{2,4,6}, Xinyu Jiang^{2,5},
4 Zhehuan Fan^{2,5}, Wei Zhang^{2,5}, Mingyue Zheng^{*,1,2,5}

5

6 ¹Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University,
7 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058,
8 China

9 ²Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai
10 Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road,
11 Shanghai 201203, China

12 ³School of Physical Science and Technology, Shanghai Tech University, Shanghai,
13 201210, China

14 ⁴Lingang Laboratory, Shanghai, 200031, China

15 ⁵University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049,
16 China

17 ⁶School of Information Science and Technology, Shanghai Tech University, Shanghai,
18 201210, China

19

20

21 **Corresponding Authors**

22 *(Mingyue Zheng) E-mail: myzheng@simm.ac.cn

23

24 **Author Contributions**

25

26 [▽]D.H.C., M.A.C., R.Z.Z. contributed equally. M.Y.Z. conceived the research project.
27 D.H.C and M.A.C developed the method and implemented the code. All authors
28 contributed to the analysis of the results. D.H.C., M.A.C., and M.Y.Z. wrote the paper.
29 All authors read and approved the manuscript.

30

31 **Notes**

32

33 The authors declare no competing financial interest.

34

36

37 **ABSTRACT**

38 In the field of structure-based drug design, accurately predicting the binding
39 conformation of ligands to proteins is a long-standing objective. Despite recent
40 advances in deep learning yielding various methods for predicting protein-ligand
41 complex structures, these AI-driven approaches frequently fall short of traditional
42 docking methods in practice and often yield structures that lack physical and chemical
43 plausibility. To overcome these limitations, we present SurfDock, an advanced
44 geometric diffusion network, distinguished by its ability to integrate multiple protein
45 representations including protein sequence, three-dimensional structural graphs, and
46 surface-level details into its equivariant architecture. SurfDock employs a generative
47 diffusion model on a non-Euclidean manifold, enabling precise optimization of
48 molecular translations, rotations, and torsions for reliable binding poses generation.
49 Complemented by a mixture density network for scoring using the same comprehensive
50 representation, SurfDock achieves significantly improved docking success rates over
51 all existing methods, excelling in both accuracy and adherence to physical constraints.
52 Equipped with post-docking energy minimization as an optional feature, the plausibility
53 of generated poses is further enhanced. Importantly, SurfDock demonstrates excellent
54 generalizability to unseen proteins and extensibility to virtual screening tasks with
55 state-of-the-art performance. We consider it a transformative contribution that could
56 serve as an invaluable asset in structure-based drug design.

57 **INTRODUCTION**

58 The realm of life sciences is currently undergoing a renaissance, sparked by
59 groundbreaking advancements in artificial intelligence (AI), particularly deep learning
60 (DL)¹⁻⁵. This wave of technological innovation is redefining the landscape of structure-
61 based drug design (SBDD), a pivotal domain in pharmaceutical research. SBDD hinges
62 on the intricate understanding of protein-ligand interactions, with the objective to

63 discover or design ligands that bind to specific proteins, thereby modulating their
64 function for therapeutic purposes^{6,7}. Understanding these interactions is crucial because
65 the effectiveness of drugs depend heavily on how well they bind to their target proteins,
66 and whether they affect any other proteins in the body. Accurate and rapid prediction of
67 protein-ligand complex structures is pivotal for virtual screening, a process that screens
68 potential drugs from extensive databases against specific protein targets. To date, the
69 advancement of high-throughput structure-based virtual screening techniques has
70 significantly contributed to various drug discovery applications, notably accelerating
71 the pace of drug discovery^{8,9}.

72 Nonetheless, predicting how a small molecule binds to a protein, often referred to as
73 ligand docking, presents substantial complexity. This complexity arises from the
74 dynamic and multifaceted nature of protein-ligand interactions. Ligand docking
75 generally involves two phases: the generation of docking poses and their subsequent
76 scoring¹⁰. The initial phase aims to identify feasible binding poses for ligands relative
77 to target proteins, whereas the scoring phase involves evaluating these poses to estimate
78 binding affinity. Traditional methods in ligand docking, such as AutoDock Vina¹¹,
79 Glide¹², and Gold¹³ employ heuristic algorithms to explore potential ligand
80 conformations. However, they often struggle to comprehensively cover the vast
81 conformational space, potentially overlooking feasible binding poses. This incomplete
82 exploration can result from their inherent algorithmic constraints, which prioritize
83 computational speed over thoroughness¹⁴. The scoring algorithms in these traditional
84 methods apply simplistic functional terms to estimate binding affinity of docked poses.
85 Researchers have been working on improving scoring functions based on these
86 traditional search techniques, like SMINA¹⁵, GNINA¹⁶, DeepDock¹⁷ and other machine
87 learning scoring functions^{18,19}. While the subsequent scoring phase is also important, it
88 relies on the quality of the generated poses^{10,20}. If the initial pose generation algorithm
89 is flawed, even an accurate scoring system can be misled, leading to suboptimal ligand
90 selections. This limitation is particularly evident in virtual screening contexts, where
91 identifying suitable protein-ligand interactions and ligand conformations for a known
92 protein's binding pocket is crucial. As a result, developing efficient algorithms for

93 ligand docking is of crucial importance.

94 This is where DL methods become particularly valuable. With the high-quality data
95 available from sources like the Protein Data Bank (PDB), DL models can decipher the
96 complex interplay between proteins and ligands²¹. This capability enhances the
97 prediction accuracy of protein-ligand complex structures. For the pose generation task,
98 previous deep learning approaches like Uni-Mol²², EquiBind²³, E3Bind²⁴, TANKBind²⁵
99 and KarmaDock²⁶ predominantly treated it as a regression problem, predicting the
100 binding pose of a ligand to a protein in a one-shot manner. Although these methods are
101 faster, their accuracy improvements over classical methods have been limited. This
102 limitation may stem from the inherent discord between the regression-centric approach
103 and the actual process of ligands binding to the targets, i.e., the interactive process
104 between ligands and the targets to find the most suitable binding conformations. In this
105 context, works by Jaakkola et al. introduces a paradigm shift by treating molecular
106 docking as a generative modeling problem²⁷. Unlike regression methods, their work
107 DiffDock learns a distribution over possible ligand poses. This approach is
108 implemented through a diffusion generative model (DGM)²⁸, which defines a diffusion
109 process over the critical degrees of freedom in docking: translations, rotations, and
110 torsions. In recent years, diffusion networks have demonstrated remarkable success in
111 a variety of tasks related to molecular generation and conformer generation²⁹⁻³¹.
112 DiffDock's methodology, emphasizing iterative refinement of ligand poses through
113 updates in translations, rotations, and torsion angles from a noisy prior to a learned
114 distribution, mirrors the complex nature of molecular interactions.

115 Despite these advancements, challenges persist. Studies by Ke et al. indicate that in
116 practical SBDD tasks, where the binding pocket is known, DL methods have not yet
117 outperformed traditional approaches³². Additionally, many AI-generated poses, though
118 technically successful in terms of Root Mean Square Deviation (RMSD) metrics (i.e.,
119 if the RMSD between a generated ligand pose and a crystal ligand pose is less than 2Å,
120 we consider the docking is successful³³), exhibit biophysical inconsistencies, such as
121 intermolecular steric clashes or unrealistic bonds or angles³⁴. Thus, the over-reliance on
122 RMSD for pose evaluation is increasingly acknowledged as inadequate, failing to

123 capture the subtleties of molecular interactions and physical realities of binding poses.

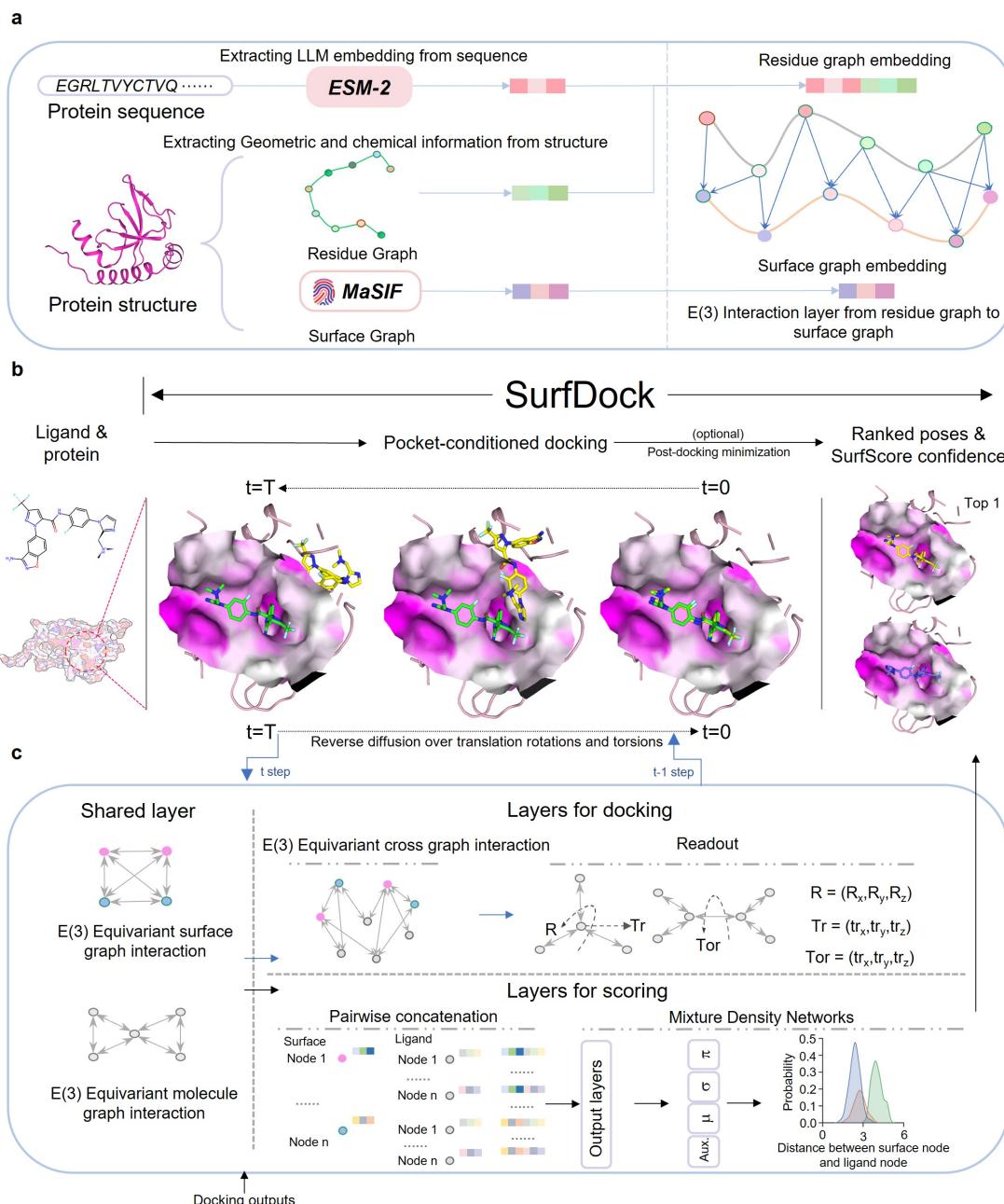
124 Recognizing these limitations, recent efforts have focused on developing better
125 metrics for assessing the rationality of generated poses^{34, 35}. Deane et al. introduced
126 PoseBusters, a tool designed to evaluate poses based on physical and chemical
127 rationality, and PoseBusters Benchmark set, a novel set of 428 complexes released from
128 2021 onwards³⁴. Their findings suggest that, when considering the plausibility of
129 generated poses, DL methods have not outperformed traditional techniques. Moreover,
130 it shows that all DL methods perform poorly on proteins with less than 30% sequence
131 similarity to the training set. These two findings suggest that it is challenging for current
132 DL algorithms to generate biophysically plausible complex structures and to generalize
133 to novel proteins. One possible reason for the current shortcomings of DL methods is
134 their reliance on coarse-grained, residue-level representations of proteins. Ideally, a
135 more accurate all-atom representation of the protein or its binding pocket would offer
136 greater precision, but with substantial computational demands. The conventional
137 coarse-grained representation tends to oversimplify protein structures, consequently
138 expanding the ligand pose search space into regions already occupied by protein atoms,
139 potentially resulting in intermolecular clashes. Recent studies, however, have
140 demonstrated the benefits of incorporating protein surface-level information, which
141 offers a more detailed representation by modeling proteins as continuous shapes with
142 geometric and chemical properties^{17, 36-41}. By utilizing this surface information to more
143 accurately describe geometric space in binding pocket, we anticipate a reduction in the
144 occurrence of intermolecular clashes. Additionally, successes in sequence-based drug
145 design and protein structure prediction have highlighted the value of sequence
146 information in protein representation^{1, 3, 42-44}. Building on these insights, we
147 hypothesized that by leveraging multimodal protein information and advanced
148 generative modeling frameworks, it might be possible to address the current issues in
149 molecular docking while maintaining computational efficiency.

150 In this work, we introduce SurfDock, a geometric diffusion network designed for
151 generating reliable binding ligand poses. SurfDock is conditioned on the protein pocket
152 and a random starting ligand conformation, and it includes an internal scoring module

153 SurfScore trained on crystal protein-ligand complexes for confidence estimation. By
154 incorporating multimodal protein information—surface features, residue structure
155 features, and pre-trained sequence-level features—into a surface node level
156 representation, SurfDock achieves top performance in docking success rates across
157 several benchmarks, including PDBbind2020⁴⁵, the Astex Diverse Set⁴⁶, and the
158 PoseBusters benchmark set³⁴. When evaluating the plausibility of generated poses using
159 the PoseBuster tool, SurfDock demonstrates a significant improvement in pose
160 rationality compared to previous DL methods. Additionally, SurfDock incorporates an
161 optional fast force field relaxation step for protein-fixed ligand optimization, further
162 enhancing its accuracy. This improvement allows SurfDock to surpass all existing DL
163 and traditional methods in both docking success rates and pose plausibility. Besides, we
164 also find that SurfDock generalizes effectively to new proteins. In the latter part of our
165 study, we conducted a comprehensive evaluation of SurfDock on the virtual screening
166 benchmark dataset DEKOIS2.0⁴⁷. Our results clearly demonstrate that SurfDock not
167 only meets but exceeds the performance of existing docking methods in this domain.
168 This performance, combined with its practicality and reliability, positions SurfDock as
169 a valuable contribution to the SBDD community.

170 **RESULTS AND DISCUSSION**

171 **Method Overview**



172

173 **Fig. 1 | The overall architecture of SurfDock. a:** Illustration of the multimodal
 174 representation of proteins in SurfDock. Embeddings from protein sequence and residue
 175 graph are mapped onto the surface graph. **b:** Overview of SurfDock. The model takes
 176 separate protein and ligand as inputs. Starting from a random initial ligand pose,
 177 SurfDock refines (or denoises) the pose over translational, rotational, and torsional
 178 degrees of freedom conditioned on the pocket. The output is complemented with a
 179 confidence score provided by SurfScore, with or without an optional energy

180 minimization. **c**: The docking and scoring both uses the same representation of pocket
181 and ligands, but different readout layers. This enables simultaneous pose generation and
182 confidence estimation without additional scoring model.

183

184 Our ligand docking framework, SurfDock, comprises primarily two stages: a
185 diffusion network for pose generation and a scoring module (SurfScore), supplemented
186 by an optional post-docking energy minimization module. Both the generation and
187 scoring modules employ identical protein-ligand representation layers.

188 For protein binding pocket representation, SurfDock utilizes a tri-level approach:
189 sequence level, residue graph level, and surface level. For the first two levels, SurfDock
190 employs residue structural features and embeddings from the large language model
191 ESM-2⁴⁸ for residue representation. Unique to SurfDock is the integration of a
192 molecular surface representation of the binding site, formatted as a polygon mesh using
193 MaSIF³⁷. This mesh comprises nodes, edges, and faces that collectively define the
194 molecular surface's shape, with nodes encapsulating chemical and topological features
195 and edges representing node connectivity. The sequence and residue graph embeddings
196 are then mapped onto this molecular surface, as illustrated in **Figure 1 a**. Ligands in
197 SurfDock are represented as 3D atomic-level graphs, where nodes symbolize atoms and
198 edges denote expanded interatomic distances.

199 Based on these representations, the geometric diffusion network in the first stage
200 learns to refine (or denoise) a random initialized ligand pose conditioned on the binding
201 pocket. To learn the distribution of protein-ligand complexes, we train the diffusion
202 generation module using PDBbind2020 dataset, which contains experimental 3D data
203 of ligands bound to protein targets and the binding affinities., with the protein's binding
204 pocket serving as a conditional factor for generating ligand poses. The diffusion process
205 incrementally introduces noise into the ligand's pose, encompassing translational,
206 rotational, and torsional alterations while the generative process learns to reconstruct
207 the ligand's pose by refining a noise-altered structure back to its ground-truth
208 conformation.

209 The scoring module SurfScore in the second stage aligns closely with our diffusion
210 generation module in terms of representation. This integration marks a departure from

211 previous deep learning approaches like DiffDock, which typically trained their pose
212 generation and scoring modules separately with distinct training objectives. For
213 instance, DiffDock's scoring module was trained on a binary classification basis, using
214 positive and negative samples produced by its pose generation module. Moreover,
215 DiffDock used a coarse-grained representation for pose generation module and all-atom
216 representation for scoring module. In contrast, SurfScore shares not only the
217 representation layer with the generation module but also its training objective, focusing
218 on the same crystal protein-ligand complexes and supplemented by a mixture density
219 network^{17, 49} for scoring. This unified approach is designed to enhance the synergy
220 between the pose generation and scoring stages, potentially leading to improved
221 performance in ligand docking, as we aim to demonstrate in **Fig. 3**. Moreover, by
222 utilizing a common representation and input for both modules, our method eliminates
223 the need for separate pose generation, format conversion, and scoring processes,
224 streamlining the entire pipeline.

225 The full end-to-end pipeline of ligand docking with SurfDock encapsulates
226 docking, optional post-docking energy minimization, and scoring. Initially, the model
227 identifies the protein binding pocket and initializes a user-defined number of random
228 ligand conformations generated by RDKit⁵⁰ from input 2D molecular graph or SMILES
229 (Simplified molecular-input line-entry system). These random poses are then refined
230 through a reverse diffusion process to yield final poses. If energy minimization is
231 selected here, all poses undergo further refinement conditioned on the protein structures.
232 Finally, SurfScore assigns a confidence score to each pose, and they are ranked
233 accordingly. The docking-minimization-score pipeline offers a reliable system for
234 generating ranked docking poses. This minimization stage can also be added to refine
235 only the Top N samples selected by SurfScore for practical consideration. In our
236 experiments, SurfDock, even without the post-docking minimization stage, achieves
237 state-of-the-art docking success rates, underscoring its robustness and accuracy. The
238 optional minimization stage serves to further enhance ligand validity, augmenting an
239 already superior performance. Details of our model are provided in **Methods**.

240 **SurfDock Reaches State-Of-The-Art Docking Performance on Several Public**
241 **Benchmark Sets**

242

243 **Table 1 | Comparative Analysis of Docking Performances on PDBbind2020**
244 **Dataset.** This table presents a detailed comparison of various docking methods on the
245 PDBbind2020 time-split test set and against novel protein targets. The results for
246 EquiBind, TANKBind, DiffDock, E3Bind, and Uni-dock are derived from existing
247 literature³², while KarmaDock's performance is from its original publication²⁶. Glide
248 SP, GNINA, SMINA, Vina and our SurfDock are self-implemented (details in Methods).
249 SurfDock(minimized) adopts additional post-docking minimization. Metrics include
250 Top1/5-RMSD < 1Å/2Å and median RMSD values, with each method tested three
251 times. We also report PB-valid (ligand poses pass all PoseBusters tests) metric for self-
252 implemented methods. Due to the unavailability of raw data for the adopted methods,
253 PB-valid analysis could not be conducted for them. Best results are in bold and second
254 best are underlined in two categories.

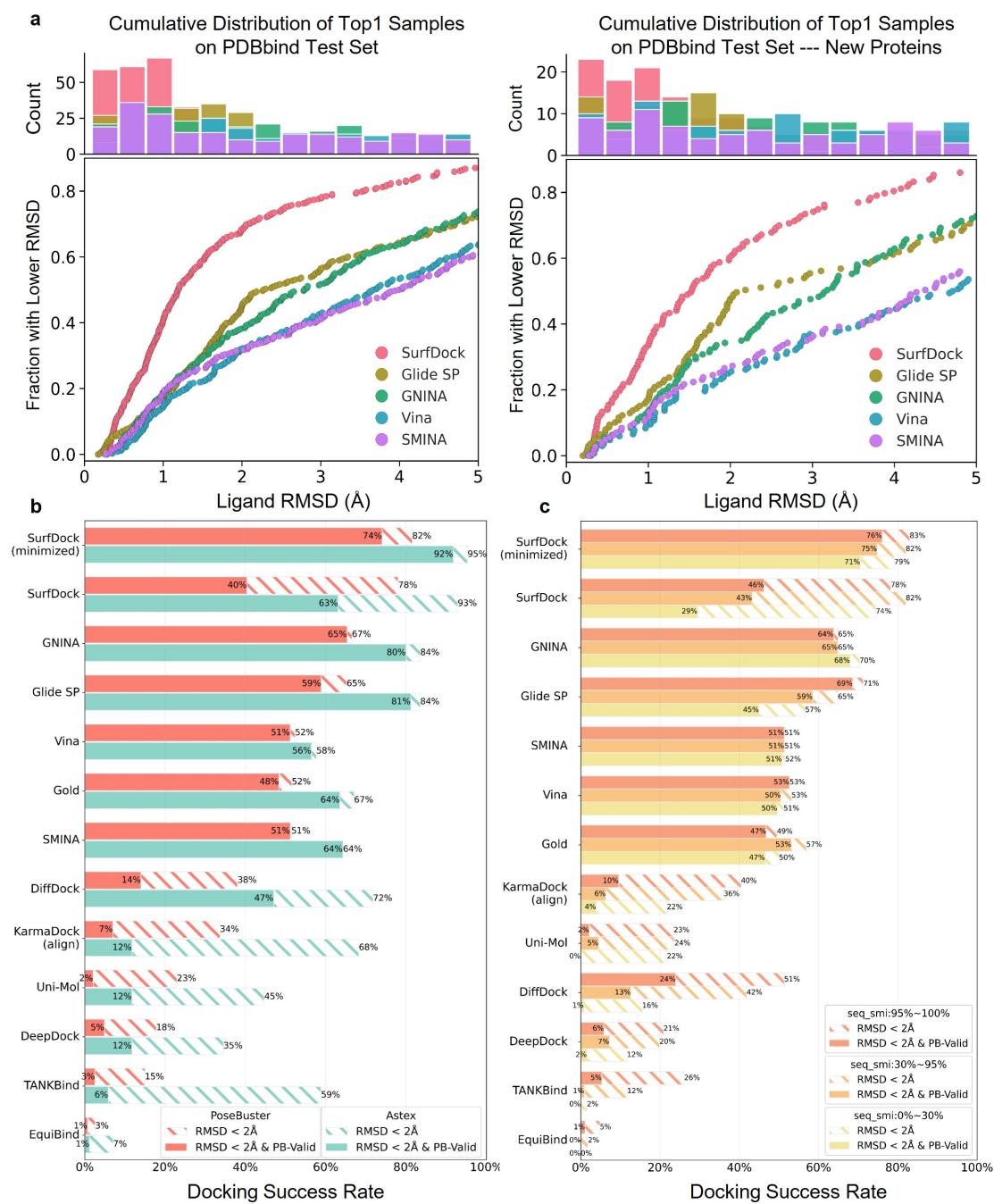
Performance on PDBbind2020 time-split test set (363 complexes)								
Model type	Pocket	Method	Top1-RMSD			Top5-RMSD		
			%<1Å	%<2Å	Med	%<2Å & PB-valid	%<1Å	%<2Å
DL	Blind	EquiBind	/	5.5±1.2	6.2±0.3	/	/	/
DL	Blind	TANKBind	2.66±0.26	18.18±0.6	4.2±0.05	/	4.13±0.0	20.39±0.45
DL	Blind	DiffDock	15.41±0.49	36.62±0.35	3.31±0.03	/	21.58±0.38	44.19±0.49
DL	Blind	E3Bind	/	25.6	7.2	/	/	/
DL	Given	KarmaDock	/	56.2	/	/	/	/
classical	Fpocket	Uni-dock	13.33±0.4	18.7±0.13	13.2±0.26	/	19.16±0.39	27.32±0.69
classical	P2Rank	Uni-dock	19.31±1.07	28.6±1.17	6.40±0.22	/	27.76±1.03	39.18±1.03
classical	PointSite	Uni-dock	21.36±1.65	32.12±0.93	5.54±0.46	/	31.38±0.86	46.06±0.69
classical	DiffDock	Uni-dock	25.49±0.60	38.93±0.23	4.14±0.07	/	36.97±1.05	51.07±1.06
classical	Given	Uni-dock	32.77±0.38	51.11±0.6	1.89±0.04	/	47.5±0.23	67.59±0.94
classical	Given	Glide SP	17.36±0.00	44.63±0.00	2.27±0.00	38.57±0.00	31.13±0.00	60.06±0.00
classical	Given	GNINA	21.12±0.26	43.62±1.06	2.45±0.07	41.41±1.13	28.47±0.57	58.13±0.81
classical	Given	SMINA	18.73±0.00	31.68±0.00	3.99±0.00	28.37±0.00	28.47±0.56	48.48±0.00
classical	Given	Vina	18.32±0.02	36.64±0.05	3.42±0.01	32.87±0.91	24.79±0.00	50.96±0.00
DL	Given	SurfDock	<u>40.96±0.34</u>	68.41±0.26	<u>1.18±0.00</u>	36.46±0.26	<u>54.18±0.13</u>	75.11±0.13
DL	Given	SurfDock (minimized)	46.01±0.67	<u>68.04±0.22</u>	1.10±0.01	55.00±0.13	55.83±0.13	<u>73.55±0.60</u>
Performance on unseen proteins in PDBbind2020 time-split test set (144 complexes)								
classical	Given	Glide SP	16.67±0.0	46.53±0.0	2.13±0.00	35.42±0.00	31.25±0.0	56.25±0.0
classical	Given	GNINA	16.67±0.0	38.43±1.31	2.75±0.18	<u>36.57±0.87</u>	24.31±0.57	53.24±1.18
classical	Given	SMINA	11.81±0.0	27.08±0.0	4.32±0.00	24.31±0.00	19.44±0.00	45.14±0.0
classical	Given	Vina	10.41±0.00	25.69±0.08	4.25±0.02	23.61±0.98	18.06±0.00	42.36±0.00
DL	Given	SurfDock	<u>32.87±0.65</u>	<u>60.88±0.33</u>	<u>1.51±0.01</u>	30.79±0.33	<u>46.53±0.00</u>	<u>70.60±0.33</u>
DL	Given	SurfDock (minimized)	37.73±0.87	62.50±0.57	1.47±0.02	43.75±0.56	47.22±0.00	71.06±1.31

255

256 To demonstrate the effectiveness of our method, we initially selected the
257 PDBbind2020 time-split dataset as a benchmark due to its stringent standards. In this
258 dataset, molecules are carefully segregated to ensure no overlap between training and

259 testing sets, thus effectively avoiding data leakage issues. This dataset features a wide
260 spectrum of molecules, including peptides and small molecules, providing a
261 comprehensive platform for evaluating docking capabilities. As shown in **Table 1**,
262 SurfDock achieves a notable docking success rate (RMSD $\leq 2\text{\AA}$) of 68.41%,
263 considerably outperforming other deep learning and traditional docking models.
264 Additionally, when assessing docking results with RMSD under 1 \AA , SurfDock's
265 performance remains substantially superior under this rigorous metric. This advantage
266 can be seen clearly in **Fig. 2 a**, where SurfDock clearly have more samples close to
267 smaller RMSD when compared with the traditional docking methods we tested
268 ourselves. To our surprise, when separating out the new proteins in PDBbind2020 test
269 set that our model has never seen, SurfDock can still outperform all methods when
270 comparing the metrics of Top1 samples. This separate set exhibits no 'hard overlap'⁵¹
271 with the proteins in the training set, which means they do not possess identical
272 structures. This indicate that the incorporation of multimodal information and diffusion
273 generative modelling with SurfDock substantially improve the generalizability and
274 docking success rates. We further test the rationality of generated poses using
275 PoseBuster tool. As shown in **Table 1**, SurfDock is comparable with traditional
276 methods in pose plausibility. If equipped with the post-docking minimization stage, the
277 plausibility of SurfDock generated sample can gain around 19% improvements, while
278 keeping the high docking success rate. We also compare different minimization
279 strategies and the sequential validity check results by the PoseBusters tool in
280 **Supplementary Table 1** and **Supplementary Fig. 1**. We show in **Supplementary**
281 **Table 1** that both the docking-minimize-scoring or the docking-scoring-minimize
282 pipeline can improve ligand validity. Here we present the docking-minimize-scoring
283 results in **Table 1** as SurfDock(minimized).

284



285

286 **Fig. 2 | Comparative Performance of Docking Methods Across Benchmarks.** The
 287 results for EquiBind, TANKBind, DiffDock, and Uni-dock are derived from existing
 288 literature, while KarmaDock is implemented from its open-sourced model weights.
 289 Glide SP, GNINA, SMINA, Vina and our SurfDock are self-implemented (details in
 290 Methods). **a:** SurfDock and traditional method performances on the PDBbind2020
 291 time-split test set (*left*) and new proteins (*right*). Mean values are reported from three
 292 runs per method. Deep learning method comparisons are omitted due to lack of raw
 293 data. **b:** Docking method efficacy comparison using the Astex Diverse set (85 cases) as
 294 an easy test set and the PoseBusters Benchmark set (428 cases) as a challenging set.
 295 Striped bars indicate the proportion of predictions with RMSD within 2 Å; solid bars
 296 represent predictions also passing PoseBuster tests (PB-Valid), i.e., retaining

297 biophysical restraints. **c**: Performance of docking methods on the PoseBusters
298 Benchmark set, categorized by sequence similarity to the PDBbind2020. Striped bars
299 show predictions with RMSD within 2 Å; solid bars denote those also PB-Valid.

300

301 To assess SurfDock's efficacy more comprehensively with drug-like small
302 molecules, we conducted evaluations using both the PoseBusters benchmark set and
303 the Astex Diverse set, as shown in **Fig. 2 b**. These tests compared the plausibility and
304 generalizability of generated poses across various methods. Notably, the PoseBusters
305 benchmark set includes 428 drug-like molecule complexes released post-2021. Given
306 that common DL docking models trained on the PDBbind2020 dataset have not been
307 exposed to these samples, this set provides a fair basis for method comparison. The
308 Astex Diverse set, however, is a relatively easy set, published in 2007, where most
309 samples have been seen in the PDBbind2020 training set. In both datasets, SurfDock
310 significantly leads in docking performance, achieving a success rate (hatched bars in
311 **Fig. 2**) of 78% on PoseBusters set and 93% on Astex Diverse set. Compared with the
312 other DL methods, SurfDock excels in both docking success rate and ligand validity.
313 After the addition of post-docking minimization, the performance is further enhanced
314 in both success rate and validity (solid bars in **Fig. 2 b**), outperforming all other DL and
315 traditional docking methods. We also provide the cumulative distribution of top1
316 samples produced by different methods in **Supplementary Fig. 2 a**. We can see that
317 SurfDock consistently outperform other methods either under $\text{RMSD} < 1\text{\AA}$ or
318 $\text{RMSD} < 2\text{\AA}$, with Glide SP and GNINA following the lead. **Supplementary Fig. 2 b**
319 and **c** presents additional results including different versions of KarmaDock for a clear
320 comparison between all competing DL methods.

321 Further, we evaluated SurfDock on the PoseBuster set categorized by protein
322 sequence similarity to the PDBbind2020, as illustrated in **Fig. 2 c**. The group with low
323 similarity can be seen as having no 'soft overlap'⁵¹ with the proteins in the training set.
324 Here, we observed that, except for SurfDock, all other DL methods exhibited
325 significantly reduced effectiveness on proteins with less than 30% sequence similarity,
326 regardless of pose validity. Conversely, SurfDock's performance exhibited only a
327 marginal decrease from familiar proteins to unfamiliar proteins in terms of docking

328 success rate. With the enhancement of post-docking minimization, the performance of
329 SurfDock has surpassed both DL and traditional methods on these benchmarks.
330 SurfDock's consistent performance across proteins with low sequence similarity
331 highlights its exceptional ability to generalize to novel proteins. This is a critical
332 advantage, especially considering the frequent encounter of unfamiliar protein targets
333 in practical virtual screening tasks. The robustness and adaptability demonstrated by
334 SurfDock not only emphasize its reliability but also its potential as a valuable tool in
335 practical virtual screening tasks, where accurately identifying suitable ligands to novel
336 protein targets is crucial. Considering the exceptional performance of SurfDock with
337 the addition of minimization stage for generating accurate and reliable ligand poses, we
338 conducted the following experiments with the minimization stage. When mentioning
339 "SurfDock" in the following experiments, we are referring to the SurfDock with
340 "docking-minimize-scoring" strategy unless otherwise noted.

341 **Evaluation of the Sampling Efficiency, Pose Selection Ability of SurfDock, and the**
342 **Synergy between the Pose Generation and Scoring Module**

343 As we have emphasized before, the effectiveness of a docking program is relied on
344 two stages: the conformational sampling stage and the scoring stage. Accordingly, we
345 conducted an evaluation of SurfDock's sampling efficiency and SurfScore's scoring
346 accuracy independently, utilizing the PDBbind2020 time-split test set.

347 To discern the impact of sampling quantity on overall performance, we analyzed
348 outcomes across varying sampling counts. Specifically, we considered a sampling effort
349 successful if at least one instance fell within a predetermined RMSD threshold. As
350 delineated in **Fig. 3 a**, when the sampling count reaches 10, we observe a slower rate
351 of performance improvement with additional sampling. This indicates that SurfDock
352 can identify a near-native ligand conformation with as few as ten samplings.

353 Further, we assessed the efficacy of our scoring module, SurfScore. **Fig. 3 b**
354 illustrates that SurfScore significantly bolsters SurfDock's performance. For instance,
355 a single sample per ligand yields a docking success rate of around 40%. However,

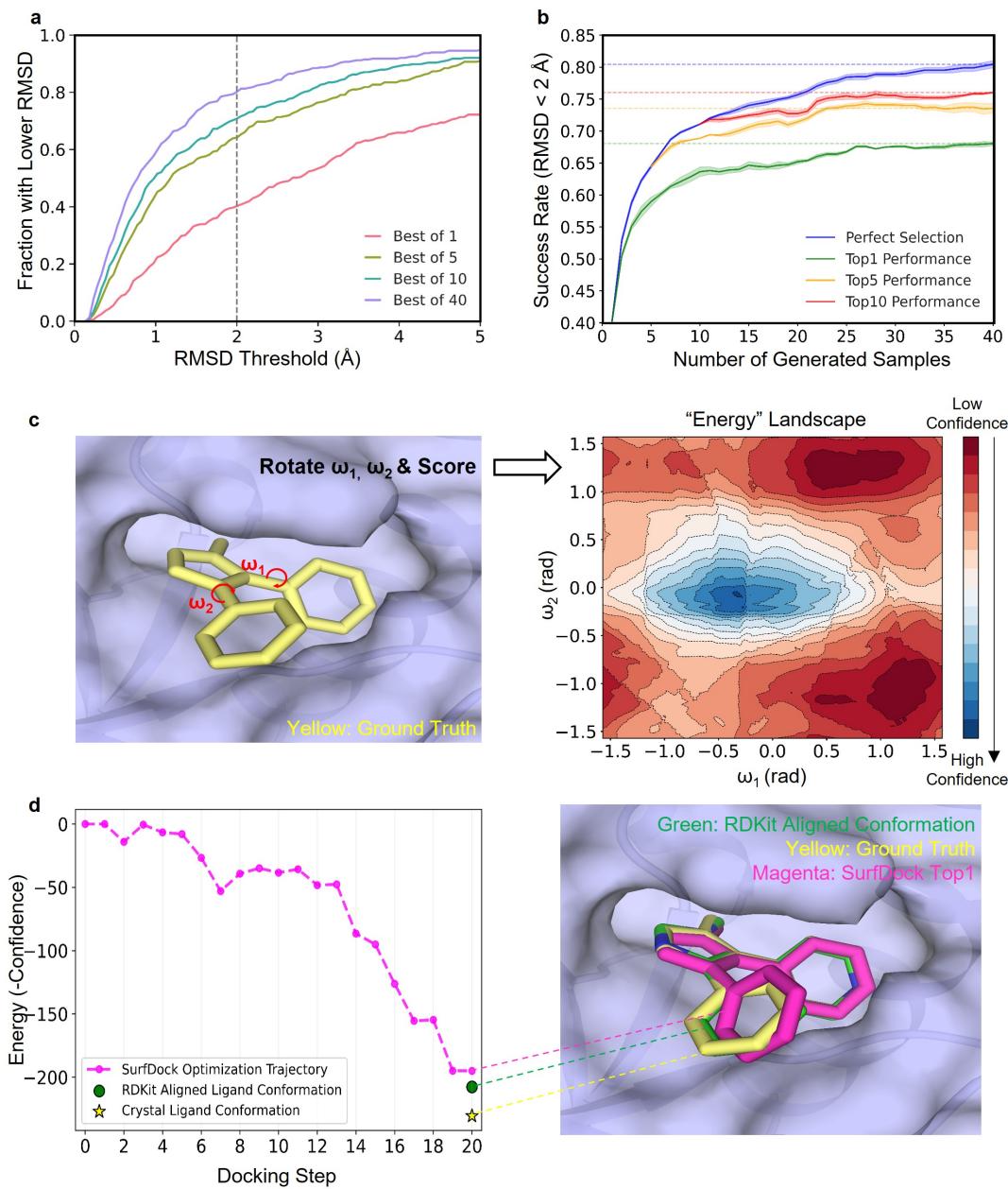
356 generating 40 samples and applying SurfScore to select the top pose elevates the
357 success rate to over 65%. While there remains a disparity between this outcome and
358 'perfect selection' – the ideal scenario of ranking the most accurate ligand pose at the
359 top from all samples – SurfScore's current capability suffices for practical applications.

360 To better illustrate that SurfScore captures key interactions between proteins and
361 ligands, we present a specific case in **Fig. 3 c**. Here, a ligand with two rotatable bonds
362 is analyzed. By treating the crystal ligand pose as a reference point and varying the
363 torsional angles ω_1 and ω_2 , we observe the scoring trends from SurfScore. Interpreting
364 these scores as energy values reveals a landscape centered around the reference pose,
365 with a plausible distribution of local minima as torsional angles shift. Building upon
366 this, we explored the consistency between our docking and scoring modules, as they
367 share the same representational framework and are separately trained on the same
368 crystal protein-ligand complex data. **Fig. 3 d** showcases a sequential record of docking
369 outputs and their corresponding SurfScore evaluations. In the dynamic progression of
370 the docking process facilitated by SurfDock, there is a notable trend where the
371 generated ligand poses incrementally gravitate towards lower energy states (or higher
372 confidence). This evolution often involves navigating through and overcoming local
373 energy minima, ultimately resulting in an alignment that is increasingly proximate to
374 both the RDKit aligned pose and the crystal ligand pose. It is important to clarify that
375 the RDKit aligned pose refers to a conformation generated by RDKit aligned to the
376 crystal ligand pose, and is utilized as training objective for our diffusion network, as
377 explained in **Methods**. This aligned pose can be regarded as a 'theoretical limit' for the
378 generation module of SurfDock in the absence of additional refinements. However,
379 with the integration of our post-docking minimization strategy, SurfDock demonstrates
380 the potential to identify ligand poses that surpass the RDKit aligned pose in terms of
381 energies estimated by our scoring module. We have included several such examples in
382 **Supplementary Fig. 4**.

383 These findings highlight the effective synergy between the docking and scoring
384 processes, demonstrating their combined strength in capturing crucial protein-ligand
385 interactions during generative modeling. The high degree of consistency between the

386 two modules, despite their separate training phases, can be attributed to their aligned
 387 objective of learning the distribution of crystal structures, which likely plays a key role
 388 in their harmonized performance.

389



390

391 **Fig. 3 | Evaluation of the Sampling Efficiency of SurfDock, the ranking ability of**
 392 **the scoring module SurfScore, and their consistency. a:** Sampling Efficiency of
 393 SurfDock: This section illustrates the relationship between the number of samples and
 394 docking success rates. As the sampling number increases, there's a corresponding
 395 increase in the likelihood of achieving success within a specified RMSD threshold.
 396 Notably, with as few as 10 samples, SurfDock demonstrates adequate efficiency. This
 397 result is averaged over three repeats. **b:** Efficacy of SurfScore. The term 'Perfect

398 Selection' refers to the ideal scenario where the sample with the lowest RMSD is chosen.
399 Remarkably, selecting the top pose from a set of 40 samples yields a 68% success rate,
400 highlighting SurfScore's robustness in enhancing docking precision. **c**: Torsional Profile
401 Analysis: a specific case is presented where the scores related to the torsional profile of
402 a ligand with two rotatable bonds are like an energy landscape. **d**: Docking as an
403 Optimization Process: a case study where the docking procedure complemented with
404 score estimation is analogized to a geometry optimization process. The RDKit Aligned
405 Ligand Conformation is the RDKit generated conformation that align with the Crystal
406 Ligand Pose, and is served as the training objective in our diffusion network.

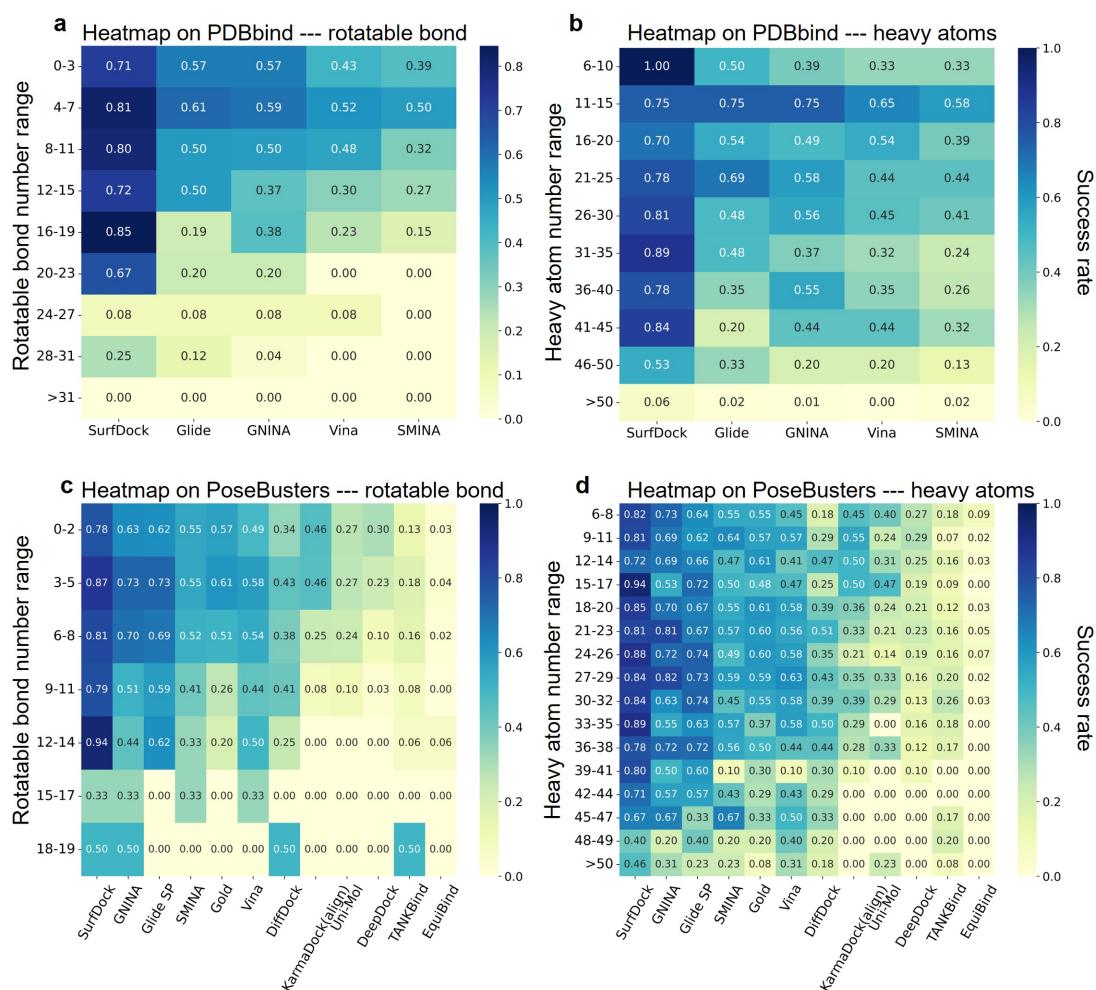
407 **Influence of ligand flexibility on docking performance**

408 In molecular docking, ligand flexibility critically influences conformation
409 sampling efficiency⁵². This relationship becomes increasingly complex as the number
410 of rotatable bonds and heavy atoms in the ligand rises, expanding the search space for
411 potential conformations. We first count the distribution of the number of rotatable bonds
412 and heavy atoms on PDBbind2020 time-split test set in **Supplementary Fig. 3**. We find
413 that the distribution is quite large, ranging from 0 to 75 for the number of rotatable
414 bonds, or 6 to 150 for the number of heavy atoms. Thus, the ligand flexibility in this
415 dataset is challenging for both DL and traditional docking methods. Our experimental
416 results, depicted in **Fig. 4 a and b**, corroborate this trend, aligning with findings⁵² by
417 Hou et al. We observed a significant decline in the performance of traditional docking
418 methods when ligands possess near or more than 15 rotatable bonds, or approximately
419 35 heavy atoms, on the PDBbind2020 time-split test set. SurfDock, however,
420 demonstrates notable proficiency in handling ligands within these ranges, often
421 matching or surpassing traditional methods. On the other hand, it is widely
422 acknowledged that the majority of drugs and drug-like compounds typically contain
423 fewer than 10 rotatable bonds⁵². Within this subset, SurfDock's performance is
424 particularly striking, achieving an efficacy rate close to 80%, which represents a
425 substantial improvement of approximately 20% over conventional methods.

426 We extended our investigation to the PoseBusters Benchmark Set, which primarily
427 comprises drug-like molecules. This set presents a distribution of rotatable bonds and
428 heavy atoms smaller to those in the previous dataset, also depicted in **Supplementary**

429 **Fig. 3.** Consistent with expectations based on the molecular characteristics typical of
 430 drug-like compounds, SurfDock exhibits a remarkable performance across varying
 431 counts of rotatable bonds and heavy atoms, as shown in **Fig. 4 c and d**. This
 432 performance not only aligns with our observations from the PDBbind2020 set but also
 433 distinctly demonstrates SurfDock's superiority or at least equivalence to traditional and
 434 other deep learning-based docking methods, especially in handling drug-like molecules.

435 These findings underscore SurfDock's potential in facilitating drug discovery
 436 processes. Despite these promising results, we acknowledge the limitations of
 437 SurfDock in handling larger molecules like peptides. This constraint could stem from
 438 the scarcity of large ligand training data in PDBbind, as indicated in **Supplementary**
 439 **Fig. 3**. Addressing this challenge will be a focus of our future research, aiming to extend
 440 SurfDock's applicability and efficacy in molecular docking.



441
 442 **Fig. 4 | The Performance across Different Docking Methods on PDBbind2020**

443 **time-split test set and PoseBusters Benchmark set with the number of rotatable
444 bonds and heavy atoms. a, c: Impact of the number of rotatable bonds on docking
445 accuracy. b, d: Impact of the number of heavy atoms on docking accuracy.**
446

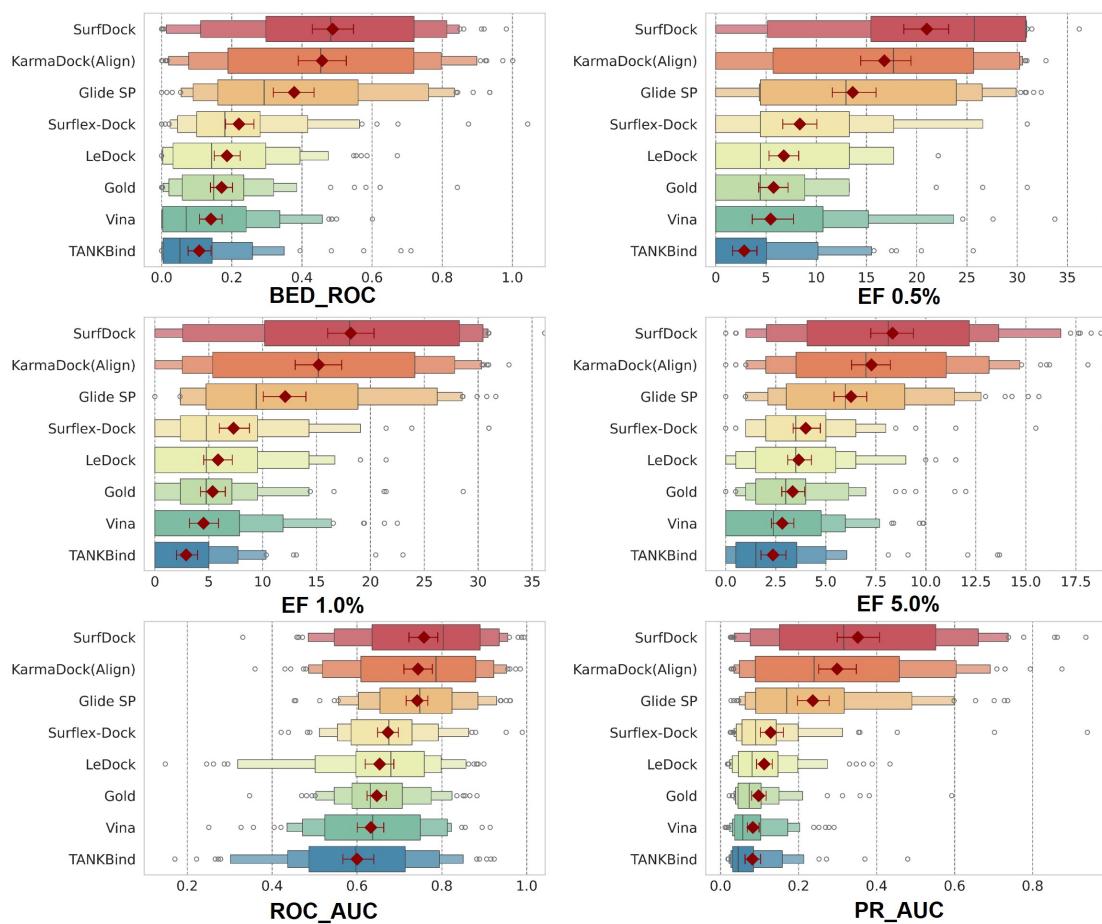
447 **SurfDock Can Serve as A Tool for Virtual Screening with Excellent Performance**

448 To further investigate the virtual screening capabilities of SurfDock, we conducted
449 a preliminary evaluation of SurfDock's virtual screening capabilities using the
450 DEKOIS2.0 dataset⁴⁷. This dataset, comprising both active ligands and inactive decoys,
451 includes 81 varied targets. Each target is associated with 40 active compounds and
452 1,200 inactive decoys. This diverse and challenging benchmark set serves as an ideal
453 platform to test the efficacy of SurfDock in discerning active ligands from decoys.

454 Considering that efficiency is important in practical virtual screening task, here we
455 adopt the “docking-scoring-minimize-rescoring” approach. In particular, we first
456 generate 40 samples and select the Top 10 samples. We further minimize the 10 selected
457 samples and re-score them using another version of SurfScore that is specifically
458 trained for virtual screening task for fair comparison with other methods, as detailed in
459 **Methods**. Finally, the Top 1 sample is used for evaluation. The results, illustrated in
460 **Fig. 5**, position SurfDock at the forefront of current docking algorithms in terms of
461 performance. A notable highlight is SurfDock's achievement in the metric EF 0.5%,
462 reaching 21.00. This is significant in virtual screening, especially when dealing with
463 large libraries of compounds. The primary goal of a docking algorithm in this context
464 is to prioritize or 'enrich' the subset of compounds that are most likely to be active, thus
465 reducing the number of compounds that need to be further tested in more resource-
466 intensive experiments. The efficacy of SurfDock in identifying active candidates at the
467 top of the list is critical in large-scale virtual screening processes. This success is in line
468 with prior benchmarks that attest to SurfDock's ability to generate accurate and reliable
469 ligand poses. In contrast, although KarmaDock may generate less plausible poses, it
470 surprisingly outperforms established methods like Glide SP in virtual screening tasks.
471 As reported in the original KarmaDock publication, the algorithm's other two versions,
472 despite having lower plausibility, also demonstrate effective performance on the

473 DEKOIS2.0 dataset. These results highlight the necessity for more in-depth research
474 and stringent benchmarking to understand the factors influencing the efficacy of
475 docking algorithms in virtual screening.

476 Next, to evaluate the scoring efficacy of our module, SurfScore, we utilized poses
477 generated by traditional methods, and then reassessed their binding affinities using
478 SurfScore. The outcomes of this assessment are presented in **Supplementary Fig. 5**.
479 The combination of Glide SP/Surflex-Dock with SurfScore shows comparable results
480 to SurfDock across all evaluation metrics, although SurfDock maintains a lead in the
481 EF 0.5% metric. This observation indicates that Glide SP and Surflex-Dock exhibit
482 robust sampling capabilities on the DEKOIS2.0 benchmark set. This is consistent with
483 earlier research highlighting the effectiveness of both Glide SP and Surflex-Dock in
484 accurately sampling conformations⁵². Additionally, our previous experiments, as
485 illustrated in the PoseBusters Benchmark Set (**Fig. 2 b**) and **Supplementary Fig. 2 a**,
486 affirm Glide SP's strength as a docking algorithm, especially in benchmarks with
487 simpler ligand compositions. Support for this comes from **Supplementary Fig. 3**,
488 which reveals that most ligands and decoys in DEKOIS2.0 have fewer than 20 rotatable
489 bonds. Thus, the observation that SurfDock and Glide SP performs similar in sampling
490 power is plausible. It's important to note that in this virtual screening experiment, we
491 chose the less accurate “docking-scoring-minimize-rescoring” for a more efficient
492 testing setup. We anticipate that by optimizing our workflow, SurfDock's performance
493 can be further enhanced in practical virtual screening tasks.



494

495 **Fig. 5 | The Performance of Different Docking Methods on DEKOIS2.0 Dataset.**

496 The results except SurfDock are adopted from the publication of KarmaDock²⁶. The
497 boxenplot illustrates the distribution of key metrics for each model, highlighting data
498 spread and variability. Superimposed red diamonds represent the mean values. This
499 figure displays the performance comparison of various methods on the DEKOIS2.0
500 dataset, featuring key metrics: Boltzmann-Enhanced Discrimination of Receiver
501 Operating Characteristic (BED_ROC), which focuses on the early identification of
502 active compounds; Enrichment Factors (EF) is defined as the percentage of active
503 ligands observed among all of the active ligands for a given percentile of the top-ranked
504 candidates (0.5%, 1.0%, or 5.0%) of a chemical library; Receiver Operating
505 Characteristic Area Under the Curve (ROC_AUC), assessing overall classification
506 accuracy; and Precision-Recall Area Under the Curve (PR_AUC), evaluating the trade-
507 off between precision and recall, particularly in datasets with class imbalances.

508

509

510 **CONCLUSION**

511 In this Article, we have introduced SurfDock, an advanced geometric diffusion
512 network tailored for generating reliable binding ligand poses conditioned on protein

513 pockets and ligand 2D graph or SMILES. SurfDock also integrates a comprehensive
514 internal scoring module, SurfScore, for confidence estimation, suitable for virtual
515 screening tasks.

516 Throughout our research, SurfDock has demonstrated exceptional performance
517 across various benchmarks, including PDBbind2020 time-split set, the Astex Diverse
518 Set, and the PoseBusters Benchmark set. Its ability to integrate multimodal protein
519 information—encompassing surface features, residue structure, and pre-trained
520 sequence-level features—into a cohesive surface node level representation has been
521 instrumental in achieving high docking success rates and improved plausibility.
522 Another aspect of SurfDock's functionality is its optional force field relaxation step,
523 designed for protein-fixed ligand optimization, which significantly enhances its
524 accuracy. This feature, along with pose generation and scoring, allows SurfDock to
525 outperform existing DL and traditional methods in both docking success rates and pose
526 rationality. More importantly, SurfDock demonstrates remarkable adaptability to new
527 proteins and is highly effective for practical virtual screening. Its combination of strong
528 performance and practical utility highlights its considerable promise in SBDD.

529 In summary, we have shown that diffusion generative modeling, enhanced with
530 multi-modal information, excels in pocket-aware ligand docking, surpassing traditional
531 docking and DL methods. This makes SurfDock a valuable asset to the SBDD
532 community, offering new avenues for drug discovery and protein-ligand interaction
533 studies.

534

535 **METHODS**

536 **Overview**

537 Our model, SurfDock, comprises two main components: a docking module and a
538 scoring module. Both modules receive input from a multimodal feature fusion layer
539 that integrates sequence, structure, and surface features. SurfDock is built upon an
540 *E*(3)-equivariant, diffusion-based graph neural network, while the scoring module is

541 constructed from an equivariant graph neural network paired with an invariant mixture
542 density network.

543 The challenge in developing deep learning models for molecular docking arises
544 from the inherent aleatoric uncertainty related to pose prediction, where multiple poses
545 could be correct, and the epistemic uncertainty stemming from the complex nature of
546 the task relative to the limited model capacity and available data²⁷. Despite advances in
547 cryo-electron microscopy and crystallography, high-quality protein-ligand complex
548 data remains scarce, necessitating an architecture that can generalize well with limited
549 high-quality structural information. Research indicates that equivariant networks are
550 highly data-efficient, achieving superior performance with less data⁵³, which makes it
551 a great choice for our situation.

552 Besides equivariant neural networks, we introduce surface information upon to a
553 diffusion model. The molecular surface is a higher-level representation of protein
554 structure, modeling a protein as a continuous shape with geometric and chemical
555 features. This information allows the diffusion model to better perceive the protein's
556 surface geometry, potentially avoiding physically improbable pose predictions too close
557 to protein atoms.

558 Our model, an $E(3)$ -equivariant, diffusion-based graph neural network, follows
559 the generative model training paradigm and is well-suited for molecular docking, a task
560 characterized by limited data but high complexity. Unlike methods that represent
561 proteins and ligands at the atomic level and predict coordinates for each atom, SurfDock
562 is trained through a process that incrementally distorts the native conformation at
563 various degrees, enabling the model to learn how to restore the correct conformation.
564 In docking, bond lengths and angles can be swiftly and accurately determined by
565 standard cheminformatics methods⁵⁴. We consider only the torsion degrees of freedom
566 m , where m is the number of torsion angles, and six degrees of freedom for translation
567 and rotation, significantly narrowing the problem scope. SurfDock takes a seed
568 conformation $c \in \mathbb{R}^{3 \times n}$ of the ligand as input and alters only the relative position and
569 torsion degrees of freedom in the final bound conformation. Thus, our problem is
570 defined on an $(m + 6)$ -dimensional submanifold $M_c \subset \mathbb{R}^{3 \times n}$, formulating molecular

571 docking as learning a probability distribution $p_c(x|y)$ over the manifold, over the
572 manifold, conditioned on a protein pocket structure y .

573 Finally, we follow a similar approach to DiffDock in training the diffusion model
574 on the product space of three subspaces: ligand rotation, translation, and torsion. The
575 input to our model is the crystal conformation of the protein pocket and a seed
576 conformation of the ligand. The output comprises m scalar torsion angles and two
577 translation-rotation vectors for each ligand. Following docking, the SurfScore module
578 receives the docked complex and outputs a scalar score for the complex

579 **Details of feature processing**

580 In the feature processing methodology for SurfDock, a geometric heterogeneous
581 graph is constructed, incorporating ligand, receptor residues, and surface nodes. The
582 interactions among these components are defined with specific cutoffs and interaction
583 rules:

584 **Ligand Atoms-Ligand Atoms Interactions:** These interactions are defined using
585 a 5Å cutoff, aligning with standard practices for atomic interactions. Covalent bonds
586 are additionally preserved as separate edges, providing detailed chemical structure
587 information.

588 **Receptor Residues-Receptor Residues Interactions:** For interactions between
589 receptor residues, a cutoff of 15Å is used, with a maximum of 30 neighbors allowed for
590 each residue. This approach helps to capture significant inter-residue interactions while
591 maintaining computational efficiency.

592 **Receptor Residues-Surface Nodes Interactions:** For interactions between
593 receptor residues and surface nodes, a cutoff of 15Å is used, with a maximum of 30
594 neighbors allowed for each surface node to maintain computational efficiency.

595 **Surface Nodes-Surface Nodes Interactions:** Similar to DeepDock, each edge e_i^s
596 is represented by a vector indicating the relative Cartesian coordinates of the connected
597 nodes, providing spatial context for these interactions.

598 **Surface Nodes-Ligand Atoms Interactions:** These interactions use a cutoff of
599 $10 + 3\sigma_{tr}$ Å, where σ_{tr} represents the current standard deviation of the translational
600 diffusion noise. This dynamically adjusts the interaction range based on the uncertainty
601 in the diffusion process, ensuring high-probability interactions in the final pose are

602 included in the message passing at every step.

603 The ligand in SurfDock is represented as an attributed graph $G^l = (V^l, E^l)$, with
604 V^l representing atoms and E^l representing edges. Ligand atom features include atomic
605 number, chirality, degree, formal charge, implicit valence, number of connected
606 hydrogens, number of radical electrons, hybridization type, aromaticity, ring
607 membership, and ring size (3 to 8). These features are enriched with sinusoidal
608 embeddings of diffusion time. Edge features include bond type, ring status, conjugation,
609 stereochemistry, and radial basis embeddings of edge length.

610 The protein residue graph is denoted $G^\alpha = (V^\alpha, E^\alpha)$, with each node representing
611 a residue at the C_α position. Node features include amino acid type, language model
612 embeddings from ESM-2, and features used in the RTMScore model. Edge features are
613 informed by RTMScore and include radial basis embeddings of edge length.

614 Surface generation follows the DeepDock and MaSIF process. Surfaces are
615 triangulated using MSMS, with specifications of density and probe radius as per MaSIF
616 guidelines, and processed using PyMesh⁵⁵. The resulting mesh $G^s = (V^s, E^s)$
617 comprises nodes $v_i^s \in V^s$ and edges $e_i^s \in E^s$. Node features include Poisson–
618 Boltzmann electrostatics, free electrons and proton donors, hydropathy, shape index,
619 and sinusoidal embeddings of diffusion time. Edge features are defined by relative
620 Cartesian coordinates (vector) and radial basis embeddings of edge length (scalar).

621 Scalar features of each node and edge are transformed using learnable two-layer
622 MLPs into a set of scalar features for initial representations in the interaction layers.
623 Only nodes defining the binding site (within 8Å of any ligand atom) are used to train
624 the model, focusing on the most relevant interaction sites.

625 **Model architecture**

626 The docking module in SurfDock is an advanced $E(3)$ -equivariant, diffusion-based
627 graph neural network that utilizes tensor products of irreducible representations (irreps),
628 following the conventions defined in the e3nn library⁵⁶. This framework effectively
629 incorporates both equivariant and invariant features for robust representation learning.

630 **Residue-residue intra-interaction:**

631
$$Y_{ij}^\alpha = \text{SphericalHarmonics}(pos_i^\alpha, pos_j^\alpha) \quad (1)$$

632 $\varphi_{ij} = \text{MLP}(e_{ij}, h_i^{\alpha 0}, h_j^{\alpha 0})$ (2)

633
$$h_i^\alpha \leftarrow h_i^\alpha \oplus \text{BN} \left(\frac{1}{N_i} \sum_{j \in N_i} \text{TensorProduction}(Y_{ij}^\alpha, \varphi_{ij}, h_j^\alpha) \right)$$
 (3)

634 $h_j^\alpha, h_j^{\alpha 0}$ represent the residue's features and initial scalar features, respectively. Y_{ij}^α

635 are the spherical harmonics computed up to $l = 2$, and BN denotes batch normalization.

636 The output orders in this process are restricted to a maximum of $l = 1$.

637 **Residue-surface inter-interaction:**

638 In the residue-surface inter-interaction layer of SurfDock, the updated residue node
639 representations are further integrated with surface node information. Once the
640 connected graph structure is established, node messages are updated via the Tensor
641 Product Layer, following a sequence of operations:

642 $Y_{ki}^s = \text{SphericalHarmonics}(pos_k^s, pos_i^\alpha)$ (4)

643 $\varphi_{ki} = \text{MLP}(e_{ki}, h_k^{s0}, h_i^{\alpha 0})$ (5)

644
$$h_k^s \leftarrow h_k^s \oplus \text{BN} \left(\frac{1}{N_k} \sum_{j \in N_k} \text{TensorProduction}(Y_{ki}^{rs}, \varphi_{ki}, h_j^s) \right)$$
 (6)

645 This module mirrors the earlier one in function but differs in the types of nodes and
646 edges involved in the convolution process.

647 **Surface-ligand inter-interaction:**

648 In the surface-ligand inter-interaction stage of SurfDock, both the ligand and
649 surface undergo internal updates similar to the residue-residue intra-interaction process.
650 This step involves updating the ligand and surface using a consistent architecture,
651 yielding new representations: $h_i^{l-intra}$ for the ligand and $h_i^{s-intra}$ for the surface.
652 Concurrently, akin to the residue-surface interaction layer, we construct a ligand-
653 surface radius graph to facilitate information exchange between the ligand and surface,
654 generating representations: $h_i^{ls-inter}$ for ligand-to-surface and $h_i^{sl-inter}$ for surface-to-
655 ligand interactions. The final representations of the ligand and surface in SurfDock are
656 updated through an integration of inter- and intra-interaction features, as per the
657 following equations:

658
$$h_i^l \leftarrow h_i^l \oplus h_i^{sl-inter} \oplus h_i^{l-intra}$$
 (7)

659
$$h_i^s \leftarrow h_i^s \oplus h_i^{ls-inter} \oplus h_i^{s-intra}$$
 (8)

660 Following the final interaction layer, the updated ligand node representations are

661 employed to generate the outputs. To predict the translation and rotation of the ligand,
662 a convolution operation is performed on each ligand atom with the unweighted center
663 of mass c . This approach is in alignment with the methodology used in DiffDock,
664 allowing for accurate determination of ligand pose in relation to the target surface:

665
$$Y_c^{lc} = \text{SphericalHarmonics}(pos_i^l, pos_c) \quad (9)$$

666
$$\varphi_{ic} = \text{MLP}(e_{ic}, h_i^{l0}) \quad (10)$$

667
$$v \leftarrow \frac{1}{V^l} \sum_{j \in V^l} \text{TensorProduction}(Y_c^{lc}, \varphi_{ic}, h_j^l) \quad (11)$$

668 Following the strategy in DiffDock, the output v for ligand translation and rotation
669 scores is constrained to include two odd parity vectors and two even parity vectors. This
670 composition is essential in the context of the coarse-grained model used for protein
671 representation, where the parity of the scoring output is not distinctly even or odd. Then,
672 we integrate the even and odd components of v , adjusting their magnitude while
673 preserving their original directional characteristics with an MLP. This MLP
674 incorporates the current magnitude and the sinusoidal embeddings of the diffusion time
675 s_t . The following equations detail this process:

676
$$tr^l \leftarrow \frac{v[:3] + v[6:9]}{\|v[:3] + v[6:9]\|} \times \text{MLP}(\|v[:3] + v[6:9]\|, s_t) \quad (12)$$

677
$$rot^l \leftarrow \frac{v[3:6] + v[9:]}{\|v[3:6] + v[9:]\|} \times \text{MLP}(\|v[3:6] + v[9:]\|, s_t) \quad (13)$$

678 For the torsional score in SurfDock, we adopt a methodology similar to Torsional
679 Diffusion for predicting a scalar score δ_{tor} for each rotatable bond $g = (g_0, g_1)$. This
680 prediction involves convolving the neighbor atoms in a radius graph with the center o
681 of the bond. The convolutional filter T_g for each bond g is constructed from the tensor
682 product of the spherical harmonics representation (with $l = 2$) of the bond axis
683 $pos_{g_0} - pos_{g_1}$, as detailed in the following steps:

684
$$Y_o = \text{SphericalHarmonics}(pos_{g_0}, pos_{g_1}) \quad (14)$$

685
$$Y_e = \text{SphericalHarmonics}(pos_o, pos_e) \quad (15)$$

686
$$T_g = \text{FullTensorProduction}(Y_o^2, Y_e) \quad (16)$$

687
$$e \in V^l \quad (17)$$

688 The convolutional filter T_g is then utilized to convolve with the representations of
689 every neighboring atom within the radius graph, as per the following procedure:

690
$$\varphi_{oe} = \text{MLP}(e_{oe}, h_e^{l0}, h_{g_0}^{l0} + h_{g_1}^{l0}) \quad (18)$$

691
$$h_g \leftarrow \frac{1}{N_g^l} \sum_{e \in N_g^l} \text{TensorProduction}(T_g, \varphi_{ic}, h_e^l) \quad (19)$$

692 Finally, the torsional score is refined using a two-layer MLP featuring a tanh
693 nonlinearity and no biases. This MLP output is then "denormalized" by multiplying
694 with the expected magnitude of a score in $SO(2)$, adjusted by the diffusion parameter
695 δ_{tor} .

696 Transformation of the ligand conformation

697 During each inference step in SurfDock, the ligand conformation is updated using
698 translation, rotation, and torsion scores. The update process involves a unified global
699 translation, where all ligand atoms are simultaneously translated and rotated around the
700 ligand's geometric center. However, updating the ligand torsion angles is particularly
701 critical in the docking process. To address the potential perturbation of the ligand's
702 center of mass position following torsion angle updates, we employ RMSD alignment,
703 as suggested in DiffDock. This alignment method operates by realigning the ligand,
704 post-torsion angle adjustment, to its original pose prior to the torsion changes.

705 Ranking and Screening module

706 In SurfDock, we introduce SurfScore, a scoring module designed to enhance pose
707 ranking and screening capabilities. SurfScore's input architecture mirrors that of the
708 docking module, retaining interaction layers for residue-residue, residue-surface,
709 surface-surface, and ligand-ligand interactions, while excluding the surface-ligand
710 interaction layer. It employs a mixed density network (MDN) for learning the distance
711 statistical potential between protein surface and ligands.

712 The process begins with extracting ligand and surface node representations h_i^l, h_j^s ,
713 which are concatenated and fed into an MDN⁴⁹. The MDN uses an MLP to generate a
714 hidden representation h_{ij}^{pair} integrating both target and ligand node data. This is
715 mathematically represented as follows:

716
$$h_{ij}^{pair} = \text{Dropout} \left(\text{MLP}([h_i^l, h_j^s]) \right) \quad (20)$$

717
$$\mu_{i,j}^{pair} = \text{ELU} \left(\text{Linear}(h_{ij}^{pair}) \right) + 1 \quad (21)$$

718 $\sigma_{i,j}^{pair} = \text{ELU}(\text{Linear}(h_{i,j}^{pair})) + 1.1$ (22)

719 $\pi_{i,j}^{pair} = \text{ELU}(\text{Softmax}(h_{i,j}^{pair}))$ (23)

720 The hidden representation is used to compute the outputs of the MDN,
721 encompassing means (μ_{ij}^{pair}), standard deviations (σ_{ij}^{pair}) and mixing coefficients
722 (π_{ij}^{pair}). These parameters are pivotal in formulating a mixture of Gaussians. In this
723 context, a complex mixture of 20 Gaussians models the probability density distribution
724 pertaining to the distance between ligand and target nodes.

725 Further, the extracted ligand node features h_i^l were used for predicting auxiliary
726 tasks, specifically atom and bond types in relation to neighboring nodes. This approach
727 is inspired by findings from DeepDock, which highlighted the benefits of auxiliary
728 tasks in learning molecular structures, thereby expediting the training process. All
729 MLPs used are composed of a linear layer followed by batch normalization and an
730 Exponential Linear Unit (ELU) as activation function. A consistent dropout rate of 0.1
731 was maintained across experimental setups.

732 **Training details**

733 **For docking**

734 In the docking experiments, we aligned our data and partitioning strategy with
735 EquiBind and DiffDock, ensuring that test data comprised entirely unseen ligands. To
736 address the distribution shift encountered during inference due to the use of RDKit-
737 generated conformations, our training objective was reformulated to align with the
738 conformation closest to the ground-truth pose. At each time step t , the input ligand pose
739 is subject to random perturbations, which include:

740 **Translational perturbation:**

741 $\Delta tr = N(0, \delta_{tr})$ (24)

742 **Rotational perturbation:**

743 $\Delta rot = \text{sampling from } p(\omega) \hat{\omega}$ (25)

744 $p(\omega) = \frac{1 - \cos(\omega)}{\pi} \sum (2l + 1) \exp(-l(l + 1)(\delta_{rot})^2) \frac{\sin\left(\left(l + \frac{1}{2}\right)\omega\right)}{\sin\left(\frac{\omega}{2}\right)}$ (26)

745 **Torsional perturbation:**

746 $\Delta tor = N(0, \delta_{tor})$ (27)

747 Here, $p(\omega)$ represents the isotropic Gaussian distribution on $SO(3)$, and the $\hat{\omega}$ is a
748 unit vector from random sampling. The training utilizes a score-based diffusion
749 generative model on a Riemannian manifold, sampling and regressing against the
750 diffusion kernel's score. Our methodology ensures orthogonality between torsional and
751 rot-translational updates. The training employs separate loss functions for translation
752 (L_{tr}), rotation (L_{rot}) and torsion (L_{tor}), with the final loss function being:

753 $L_{dokcing} = \frac{1}{3}L_{tr} + \frac{1}{3}L_{rot} + \frac{1}{3}L_{tor}$ (28)

754 The diffusion model is trained until no further improvement is observed on the
755 validation set within 50 epochs.

756 For the Scoring Module

757 Different from the training of diffusion model where RMSD-aligned
758 conformations to mitigate training-inference data drift, the scoring module directly use
759 crystal protein-ligand complex conformation for training to learn the distance statistical
760 distribution. The training is governed by the following equations:

761 $L_{score} = L_{MDN} + 0.001 \times L_{atoms} + 0.001 \times L_{bonds}$ (29)

762 $L_{MDN} = -\log \sum_{n=1}^N \pi_{i,j,n}^{pair} N(d_{i,j}^{pair} | \mu_{i,j,n}^{pair}, \sigma_{i,j,n}^{pair})$ (30)

763 $-\text{Score} = \text{Potential}_{(x)} = -\log \sum_{i=1}^I \sum_{j=1}^J \sum_{n=1}^N \pi_{i,j,n}^{pair} N(d_{i,j}^{pair} | \mu_{i,j,n}^{pair}, \sigma_{i,j,n}^{pair})$ (31)

764 The L_{MDN} focuses on minimizing the negative log-likelihood of $d_{i,j}^{pair}$, measuring
765 the distance between surface node v^s and ligand node v^l . This is computed using a
766 mixture model composed of 20 Gaussians, parameterized by predicted $\mu_{i,j}^{pair}$, $\sigma_{i,j}^{pair}$ and
767 $\pi_{i,j}^{pair}$. Additionally, L_{atoms} and L_{bonds} , the cross-entropy cost functions for predicting
768 atom and bond types, serve as auxiliary tasks. The L_{MDN} in equation (30) can be
769 adapted to define a potential function, $\text{Potential}_{(x)}$, specifically tailored for evaluating
770 a given target-ligand complex. In practice, this potential function is instrumental in
771 scoring protein-ligand complexes, enabling the assessment of the conformational
772 rationality of compounds. It is a pivotal tool for compound screening, where the lower
773 value of $\text{Potential}_{(x)}$ (or a higher score) correlates with a higher likelihood of the
774 target-ligand complex being in a particular conformation.

775 Training was conducted for 60 epochs with a batch size of 16. During training,
776 contributions from ligand-target node pairs with $d_{i,j}^{pair} > 5\text{\AA}$ were masked. In inference,
777 this masking threshold was adjusted to $d_{i,j}^{pair} > 3\text{\AA}$.

778 For the virtual screening task, SurfScore was retrained using a random data split
779 from PDBBind2020 to be comparable with other baseline models. During training,
780 contributions from ligand-target node pairs with $d_{i,j}^{pair} > 7\text{\AA}$ were masked. In inference,
781 this masking threshold was adjusted to $d_{i,j}^{pair} > 3\text{\AA}$.

782

783 **Post-docking energy minimization protocol**

784 Following Deane et al.³⁴, we performed post-docking energy minimization using
785 OpenMM⁵⁷ with AMBER ff14sb⁵⁸ for proteins and Sage⁵⁹ (or GAFF⁶⁰ for incompatible
786 ligands) for small molecules. Protein structures were prepared with PDBfixer⁵⁷ as in
787 AlphaFold2⁴. During minimization, we fixed protein atoms, allowing only ligand atoms
788 to move, ensuring focused energy optimization of ligands in the binding pocket.

789

790

791 **Data availability**

792 The protein-ligand complexes of PDBBind v2020 preprocessed as described in the
793 paper “EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction”
794 <https://zenodo.org/records/6408497>

795 The protein-ligand complexes of the Astex Diverse set and the PoseBusters
796 Benchmark set as described in the paper “PoseBusters: AI-based docking methods fail
797 to generate physically valid poses or generalise to novel sequences”
798 <https://zenodo.org/records/8278563>

799

800 **Code availability**

801

802 The code used to generate the results shown in this study is available under an MIT
803 Licence in the repository.

804 Code will be available after our paper has been published at:

805 <https://github.com/CAODH/SurfDock>

806

807 **ACKNOWLEDGMENTS**

808 **REFERENCE**

- 809 1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-
810 589 (2021).
- 811 2. Watson, J.L. et al. De novo design of protein structure and function with RFdiffusion. *Nature*
812 **620**, 1089-1100 (2023).
- 813 3. Wayment-Steele, H.K. et al. Predicting multiple conformations via sequence clustering and
814 AlphaFold2. *Nature* (2023).
- 815 4. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track
816 neural network. *Science* **373**, 871-876 (2021).
- 817 5. Sadybekov, A.V. & Katritch, V. Computational approaches streamlining drug discovery. *Nature*
818 **616**, 673-685 (2023).
- 819 6. Isert, C., Atz, K. & Schneider, G. Structure-based drug design with geometric deep learning.
820 *Curr. Opin. Struct. Biol.* **79**, 102548 (2023).
- 821 7. Blundell, T.L. Structure-based drug design. *Nature* **384**, 23 (1996).
- 822 8. Kaplan, A.L. et al. Bespoke library docking for 5-HT2A receptor agonists with antidepressant
823 activity. *Nature* **610**, 582-591 (2022).
- 824 9. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. *Nature* **566**, 224-229
825 (2019).
- 826 10. Tran-Nguyen, V.-K., Junaid, M., Simeon, S. & Ballester, P.J. A practical guide to machine-
827 learning scoring for structure-based virtual screening. *Nat. Protoc.* **18**, 3460-3511 (2023).
- 828 11. Eberhardt, J., Santos-Martins, D., Tillack, A.F. & Forli, S. AutoDock Vina 1.2.0: New docking
829 methods, expanded force field, and Python bindings. *J. Chem. Inf. Model.* **61**, 3891-3898 (2021).
- 830 12. Friesner, R.A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method
831 and assessment of docking accuracy. *J. Med. Chem.* **47**, 1739-1749 (2004).
- 832 13. Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W. & Taylor, R.D. Improved protein-
833 ligand docking using GOLD. *Proteins* **52**, 609-623 (2003).
- 834 14. Masters, M.R., Mahmoud, A.H., Wei, Y. & Lill, M.A. Deep learning model for efficient protein-
835 ligand docking with implicit side-chain flexibility. *J. Chem. Inf. Model.* **63**, 1695-1707 (2023).
- 836 15. Koes, D.R., Baumgartner, M.P. & Camacho, C.J. Lessons learned in empirical scoring with
837 smina from the CSAR 2011 benchmarking exercise. *J. Chem. Inf. Model.* **53**, 1893-1904 (2013).
- 838 16. Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J. & Koes, D.R. Protein-ligand scoring with
839 convolutional neural networks. *J. Chem. Inf. Model.* **57**, 942-957 (2017).
- 840 17. Méndez-Lucio, O., Ahmad, M., del Rio-Chanona, E.A. & Wegner, J.K. A geometric deep
841 learning approach to predict binding conformations of bioactive molecules. *Nat. Mach. Intell.*
842 **3**, 1033-1039 (2021).
- 843 18. Cao, D. et al. EquiScore: A generic protein-ligand interaction scoring method integrating
844 physical prior knowledge with data augmentation modeling. *Preprint at*
845 <https://www.biorxiv.org/content/10.1101/2023.06.18.545464v2> (2023).
- 846 19. Li, H., Sze, K.-H., Lu, G. & Ballester, P.J. Machine-learning scoring functions for structure-
847 based virtual screening. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **11** (2021).
- 848 20. Ricci-Lopez, J., Aguila, S.A., Gilson, M.K. & Brizuela, C.A. Improving structure-based virtual
849 screening with ensemble docking and machine learning. *J. Chem. Inf. Model.* **61**, 5362-5376
850 (2021).

851 21. Xiong, G. et al. Featurization strategies for protein–ligand interactions and their applications in
852 scoring function development. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **12** (2022).

853 22. Zhou, G. et al. Uni-Mol: A Universal 3D Molecular Representation Learning Framework. In
854 *International Conference on Learning Representations* (2023).

855 23. Stärk, H., Ganea, O., Pattanaik, L., Barzilay, R. & Jaakkola, T. Equibind: Geometric deep
856 learning for drug binding structure prediction. In *International Conference on Machine
857 Learning*, 20503-20521 (2022).

858 24. Zhang, Y., Cai, H., Shi, C. & Tang, J. E3Bind: An End-to-End Equivariant Network for Protein-
859 Ligand Docking. In *International Conference on Learning Representations* (2023).

860 25. Lu, W. et al. TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein Binding
861 Structure Prediction. In *Advances in Neural Information Processing Systems* Vol. 35, 7236-7249
862 (2022).

863 26. Zhang, X. et al. Efficient and accurate large library ligand docking with KarmaDock. *Nat.
864 Comput. Sci.* **3**, 789-804 (2023).

865 27. Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T.S. DiffDock: Diffusion Steps, Twists,
866 and Turns for Molecular Docking. In *The Eleventh International Conference on Learning
867 Representations* (2023).

868 28. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. In *Advances in Neural
869 Information Processing Systems* Vol. 33, 6840-6851 (2020).

870 29. Guan, J. et al. 3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity
871 Prediction. In *The 11th International Conference on Learning Representations* (2023).

872 30. Xu, M. et al. GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation.
873 In *International Conference on Learning Representations* (2022).

874 31. Hoogeboom, E., Satorras, V.G., Vignac, C. & Welling, M. Equivariant diffusion for molecule
875 generation in 3d. In *International Conference on Machine Learning*, 8867-8887 (2022).

876 32. Yu, Y., Lu, S., Gao, Z., Zheng, H. & Ke, G. Do deep learning models really outperform
877 traditional approaches in molecular docking? In *International Conference on Learning
878 Representations* (2023).

879 33. Alhossary, A., Handoko, S.D., Mu, Y. & Kwoh, C.-K. Fast, accurate, and reliable molecular
880 docking with QuickVina 2. *Bioinformatics* **31**, 2214-2216 (2015).

881 34. Buttenschoen, M., Morris, G.M. & Deane, C.M. PoseBusters: AI-based docking methods fail
882 to generate physically valid poses or generalise to novel sequences. *Preprint at
883 <https://arxiv.org/abs/2308.05777>* (2023).

884 35. Harris, C. et al. PoseCheck: Generative Models for 3D Structure-based Drug Design Produce
885 Unrealistic Poses. In *NeurIPS 2023 Generative AI and Biology (GenBio) Workshop* (2023).

886 36. Atz, K., Grisoni, F. & Schneider, G. Geometric deep learning on molecular representations. *Nat.
887 Mach. Intell.* **3**, 1023-1032 (2021).

888 37. Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using
889 geometric deep learning. *Nat. Methods* **17**, 184-192 (2020).

890 38. Tubiana, J., Schneidman-Duhovny, D. & Wolfson, H.J. ScanNet: an interpretable geometric
891 deep learning model for structure-based protein binding site prediction. *Nat. Methods* **19**, 730-
892 739 (2022).

893 39. Gainza, P. et al. De novo design of protein interactions with learned surface fingerprints. *Nature
894* **617**, 176-184 (2023).

895 40. Zhang, O. et al. Learning on topological surface and geometric structure for 3D molecular
896 generation. *Nat. Comput. Sci.* **3**, 849-859 (2023).

897 41. Svärdsson, F., Feydy, J., Correia, B.E. & Bronstein, M.M. Fast end-to-end learning on protein
898 surfaces. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 15267-15276
899 (2021).

900 42. Chen, L. et al. TransformerCPI: improving compound-protein interaction prediction by
901 sequence-based deep learning with self-attention mechanism and label reversal experiments.
902 *Bioinformatics* **36**, 4406-4414 (2020).

903 43. Chen, L. et al. Sequence-based drug design as a concept in computational drug design. *Nat.*
904 *Commun.* **14**, 4217 (2023).

905 44. Bryant, P., Kelkar, A., Guljas, A., Clementi, C. & Noé, F. Structure prediction of protein-ligand
906 complexes from sequence information with Umol. *Preprint at*
907 <https://www.biorxiv.org/content/10.1101/2023.11.03.565471v1> (2023).

908 45. Wang, R., Fang, X., Lu, Y. & Wang, S. The PDBbind database: collection of binding affinities
909 for protein-ligand complexes with known three-dimensional structures. *J. Med. Chem.* **47**, 2977-
910 2980 (2004).

911 46. Hartshorn, M.J. et al. Diverse, high-quality test set for the validation of protein-ligand docking
912 performance. *J. Med. Chem.* **50**, 726-741 (2007).

913 47. Bauer, M.R., Ibrahim, T.M., Vogel, S.M. & Boeckler, F.M. Evaluation and optimization of
914 virtual screening workflows with DEKOIS 2.0--a public library of challenging docking
915 benchmark sets. *J. Chem. Inf. Model.* **53**, 1447-1462 (2013).

916 48. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language
917 model. *Science* **379**, 1123-1130 (2023).

918 49. Bishop, C.M. Mixture density networks. (1994).

919 50. Landrum, G. RDKit: Open-source cheminformatics. (2006).

920 51. Su, M., Feng, G., Liu, Z., Li, Y. & Wang, R. Tapping on the black box: How is the scoring power
921 of a machine-learning scoring function dependent on the training set? *J. Chem. Inf. Model.* **60**,
922 1122-1136 (2020).

923 52. Wang, Z. et al. Comprehensive evaluation of ten docking programs on a diverse set of protein-
924 ligand complexes: the prediction accuracy of sampling power and scoring power. *Phys. Chem.*
925 *Chem. Phys.* **18**, 12964-12975 (2016).

926 53. Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate
927 interatomic potentials. *Nat. Commun.* **13**, 2453 (2022).

928 54. Jing, B., Corso, G., Chang, J., Barzilay, R. & Jaakkola, T.S. Torsional Diffusion for Molecular
929 Conformer Generation. In *Advances in Neural Information Processing Systems* Vol. 35, 24240-
930 24253 (2022).

931 55. Zhou, Q. Pymesh—geometry processing library for python. *Software available for download at*
932 <https://github.com/PyMesh/PyMesh> (2019).

933 56. Geiger, M. & Smidt, T. e3nn: Euclidean neural networks. *Preprint at*
934 <https://arxiv.org/abs/2207.09453> (2022).

935 57. Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for molecular
936 dynamics. *PLoS Comput. Biol.* **13**, e1005659 (2017).

937 58. Maier, J.A. et al. Ff14SB: Improving the accuracy of protein side chain and backbone
938 parameters from ff99SB. *J. Chem. Theory Comput.* **11**, 3696-3713 (2015).

939 59. Boothroyd, S. et al. Development and benchmarking of Open Force Field 2.0.0: The Sage small
940 molecule force field. *J. Chem. Theory Comput.* **19**, 3251-3275 (2023).

941 60. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A. & Case, D.A. Development and testing of
942 a general amber force field. *J. Comput. Chem.* **25**, 1157-1174 (2004).

943