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Abstract

A hallmark of behavioral flexibility is the ability to update behavior in response to
changes in context. Most studies tend to rely on error counting around reward
contingency or rule switches to measure flexibility, but these measures are difficult
to adapt in a way that allows shorter timescale flexibility estimates. Further, choice
accuracy does not account for other markers of flexibility, such as the hesitations
and decision reversals humans and other animals often exhibit as decisions unfold,
a behavior often called vicarious trial and error (VTE). To relate observable
information about decision-making to latent aspects like learning and behavioral
flexibility, we quantified changes in decision-making strategy using a previously
developed, recency-weighted Bayesian inference algorithm. By comparing models
of strategy use with decision history to generate strategy likelihood estimates on a
trial-by-trial basis, the algorithm enabled us to identify learning points, and served
as the basis for the development of a behavioral flexibility score. Aligning flexibility
scores to learning points showed that flexibility peaked around estimated learning
points and near peaks in VTE rate. However, we occasionally observed VTE during
periods of low flexibility, where it often led to incorrect choices, suggesting the
likely existence of multiple VTE-types. Additionally, we built on the decades of
research suggesting a prominent role for the medial prefrontal cortex in enabling
behavioral flexibility by recording field potentials from the medial prefrontal
cortex during task performance. We observed changes in different field potential
frequency bands that varied with respect to the different behavioral measures we
used to characterize learning and decision-making. Overall, we demonstrate the
use of multiple measures that jointly assess relationships between learning,
behavioral flexibility, and decision-making behaviors. Further, we used these
complementary measures to demonstrate that a particular decision-making
behavior, VTE, was likely to be a marker of deliberation at some times, and
uncertainty at others. Finally, we validate these measures by showing that theta,
beta, and gamma rhythms in the medial prefrontal cortex vary with respect to both
observable and latent aspects of behavior.
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1. Introduction

Behavioral flexibility describes the ability to change behavior in response to changing external
conditions or internal states (Brown & Tait, 2010; Dalley et al., 2004; Hones & Mizumori, 2022;
Izquierdo et al., 2017; Ragozzino, 2007; Uddin, 2021). Typical tests of behavioral flexibility
involve assessing how well subjects perform tasks that require them to update their behavior as
task demands change. In humans, one famous example is the Wisconsin Card Sorting Test
(WCST), which requires subjects to learn which stimulus quality (color, number, or shape) is
rewarded, sort cards based on the currently rewarded quality, and update sorting strategies when
rewarded qualities switch (Grant & Berg, 1948; Miyake et al., 2000; Uddin, 2021). Similar tasks
have been adapted to non-human primates (Butter, 1969; Goudar et al., 2023; Mahut, 1971;
Moore et al., 2005; Roberts et al., 1988), and rodents (Becker et al., 1981; Izquierdo & Jentsch,
2012; Kolb et al., 1974; Ragozzino et al., 2003).

In rodents specifically there are two prominent categories of behavioral flexibility tests: reversal
learning tasks and set shifting tasks. Reversal learning tasks involve reward contingency changes,
typically such that an opposite response or stimulus selection confers reward (e.g., from turn left
to turn right). Set shifting tasks, however, require shifts between different task rules that dictate
possible reward contingencies (e.g., from turn left to alternate turn directions). Flexibility on
either reversal learning or set shifting tasks is often measured by 1) number of trials to a certain
performance criterion; 2) number of errors due to use of a strategy that’s no longer rewarded,
called perseverative errors; or 3) overall choice accuracy within blocks of trials, sometimes broken
down by proximity to switches. All of these measures revolve around distinguishing between
possible different types of error and counting the number of errors in different time periods that
are dictated by aspects of the task.

Along with the latent, cognitive changes that enable behavioral flexibility, observable behavior is
also known to vary. For example, rodents (Muenzinger, 1938; Muenzinger & Gentry, 1931;
Tolman, 1926), non-human primates (Kaufman et al., 2015; Medin et al., 1970; Resulaj et al.,
2009), and humans (Santos-Pata & Verschure, 2018; Voss & Cohen, 2017) will sometimes appear
to pause and/or change the course of a decision as it is carried out, a behavior typically called
vicarious trial and error (VTE) but sometimes known as change of mind (Kaufman et al., 2015;
Resulaj et al., 2009). Most initial observations of VTE showed that it tended to happen just before
or as rats learned a task (Gentry, 1930; Muenzinger, 1938; Muenzinger & Gentry, 1931; Tolman,
1926). Since then, multiple studies have shown that VTE tends to occur on more difficult decisions
(Bett et al., 2012; McLaughlin & Redish, 2023; Papale et al., 2012, 2016; Schmidt et al., 2013),
and manipulations that decrease VTE can also impair task performance (Bett et al., 2012; Kidder
et al., 2021; Schmidt et al., 2019). This evidence is coherent with the hypothesis that VTE is a
marker of deliberative behavior (Redish, 2016) and as such suggests that VTE could serve, along
with choice outcome, as another candidate for assessing behavioral flexibility.

Though there is support for the general claim that VTE is associated with behavioral flexibility
and deliberation, the relationship between VTE and choice outcome is not always clear or
consistent across tasks, and most measures of behavioral flexibility rely on evaluating changes in
error rates over multi-trial timescales. While some evidence suggests that VTE and associated
behaviors are affected over these longer timescales (George et al., 2023; McLaughlin & Redish,
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2023; Papale et al., 2016), we wanted to measure the association between behavioral flexibility,
learning, VTE, and choice outcomes more directly, on a trial-by-trial basis, using behavioral
measures that could be calculated independently of one another. To do so, we implemented a
spatial set shifting task that required rats to repeatedly switch between blocks of trials where they
had to either continually return to the same location (follow a place rule) or alternate between
locations on every trial (follow an alternation rule). We utilized a recency-weighted Bayesian
inference approach that compares choice history to explicitly modeled behavioral strategies and
computes the likelihood that each strategy was being used on every trial (Maggi et al., 2023). We
identified putative learning points by finding when the target strategy became the most likely
strategy for the remainder of the block, and, using changes in likelihoods across trials, we
computed a behavioral flexibility score to determine periods of high flexibility that might not be
obvious by proximity to learning points or task structure (e.g., block types/switches) alone.

Further, we hypothesized that we should see changes in neural activity if we did indeed identify
well-defined measures that meaningfully parsed behavior. Many studies have shown that the
rodent medial prefrontal cortex (mPFC) is associated with all of the behavioral measures we were
interested in comparing (Durstewitz et al., 2010; Euston et al., 2012; Euston & McNaughton,
2006; Guise & Shapiro, 2017; Hasz & Redish, 2020a; Hyman et al., 2012; Insel & Barnes, 2015;
Maggi et al., 2018; Powell & Redish, 2016; Pratt & Mizumori, 2001; Rich & Shapiro, 2009).
Accordingly, we recorded field potentials from the mPFC during our set shifting task to assess
whether activity varied with respect to choice outcome, VTE, learning phase, and flexibility score.

Our results show that learning, behavioral flexibility, VTE, and choice outcomes are typically
tightly coupled to one another, but can decouple depending on context. Increases in choice
accuracy, VTE rates, and flexibility scores aligned to identified learning points. In support of the
often-claimed role for VTE in deliberation, VTE trials were more likely to end in correct choices,
and correct VTE trials were more likely to have a higher flexibility score. However, VTE on trials
during low flexibility periods were more likely to lead to errors, and incorrect VTE trials were
more likely to have lower flexibility scores, suggesting that VTE may sometimes be a marker of
uncertainty, not deliberation.

Additionally, both observable and latent behavioral measures were associated with changes to
power distributions in different mPFC field potential frequency bands. Specifically, trials with
VTE showed elevated theta and beta compared to non-VTE trials, and periods when learned
strategies could be exploited after learning were associated with stronger gamma. Taken together,
these results suggest that the confluence of these behavioral measures can be used to delineate
behavioral contexts, as exemplified by our demonstration that VTEs can be separated as either
deliberative or uncertain. Moreover, we strengthen our behavioral findings by showing variations
in mPFC activity that track both observable and latent behavioral measures. Overall, these results
help link learning, behavioral flexibility, variations in decision-making behaviors, and changes in
mPFC physiology through mutually corroborative evidence.

2. Results

We utilized a spatial set shifting task (Figure 1A) that required rats to either continually return
to the same location (use a place rule) or alternate between locations on successive trials (use an
alternation rule). This design is similar to Meyer-Mueller et al., (2020), except we use a plus-maze
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Figure 1 Performance differs according to task rule. A) Diagram of the task rules. Place
blocks (top) reward continual visits to a particular (E or W) arm, and alternation blocks
(bottom) reward alternation between E and W blocks on successive trials. Sessions consist of
3 block switches. Switches occur when 12 of the previous 15 choices were consistent with the
target rule. B) Multiple measures of performance are better for alternation blocks compared
to place blocks. Unpaired cumulative distributions for choice accuracy within a block are
leftward shifted for place blocks (top left, green line), while alternation block durations are
leftward shifted (top right, gold line). p-values are calculated using unpaired, two-sample, two-
sided T-tests. Within-session, paired comparisons suggest the same conclusion (bottom).
Differences between choice accuracy in adjacent place and alternation blocks (bottom left solid
blue line, place minus alternation) are shifted to the left of zero, while differences in block
duration are shifted to the right of zero (bottom right solid blue line, place minus alternation).
p-values are calculated using signed rank tests. Red dashed lines are zero-mean (left) or
median (right), standard deviation-matched normal cumulative distributions for comparison.

instead of T-maze, with randomly chosen start arms to ensure that only strictly allocentric, place
strategies (as opposed to egocentric, body-turn strategies) will be successful. Because prior results
show differences in VTE rates for egocentric compared to allocentric navigation (Schmidt et al.,
2013), but no consistent changes during switches between different egocentric strategies (Meyer-
Mueller et al., 2020), we analyzed whether there were performance differences in allocentric place
compared to allocentric alternation strategies.

Choice accuracy distributions for alternation blocks were right-shifted compared to place blocks
(Figure 1B, top right; 2-sample, 2-tailed, T-test; t = 2.66; alt = 72%, place = 69%; p = 0.009; d
= 0.42; overbars represent the sample mean). Block duration distributions were non-normally
distributed for alternation trials, which showed cumulative probability bunched around the lower
block duration limit (15 trials). This distribution was left-shifted compared place block durations
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(Figure 1B, top right; 2-sample, 2-tailed Wilcoxon rank-sum test; Z = -2.94; alt,, = 23.3, placen
= 25.8, where subscript m denotes median; p = 0.003; d = -0.3). Within session comparison of
the adjacent pairs of place and alternation blocks (Figure 1B, bottom right) yields the same result

for choice accuracy difference (t = 2.71; dacc = 3.02%; p = 0.008; d = 0.30) and block duration

difference (t = 2.71; Adur = -2.78; p = 0.03; d = -0.24). While these differences are consistent,
note that they are not large (~3% performance difference and ~3 trial duration difference; Cohen’s
d values below 0.5).

We implemented a previously developed algorithm that uses recency weighted Bayesian inference
to identify changes in strategy learning (Maggi et al., 2023). Comparing decision history (not
choice outcome) to modeled strategies allowed us to identify learning by finding when a rat’s most
likely strategy matched the target task rule (see Figure 2A for an example of the estimation
output). Conceptually, we regard the learning point as splitting a block into a pre-learning point
exploratory period, where different strategies are tested, and an exploitation period, where
memory can be used to guide decision-making. Since the learning point was identified without
explicit reference to choice outcome, seeing increases in the likelihood of a correct choice with
respect to the putative learning point would corroborate that it had been correctly identified. As
expected, average choice accuracy aligned to learning points showed a striking increase just prior
to the learning point, remaining elevated for several trials after. As shown in Figure 2B, average
choice accuracy (dashed horizontal line) for the 15 trials up to the learning point (dashed vertical
line) is 63.4% and the lower bound of an estimated 95% confidence interval exceeds that value
starting 1 trial before the learning point, peaks 1 trial after the learning point, and remains above
the pre-learning point average for 7 trials after the learning point (data shown for n = 40 sessions,
where each point within 15 trials on either side of the learning point is the average choice accuracy
across 4 blocks; though we see the same result using n = 13 subjects with averages across 4 to 24
blocks).
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Figure 2 Identifying learning points from strategy likelihoods. A) We modeled three
strategies — go east (blue), go west (orange) and alternate (yellow). Learning points are
indicated with vertical, orange, dotted lines, and block switches are indicated by vertical, grey,
dashed lines. The average choice accuracy aligned to learning points is shown in B). A shaded
95% confidence interval surrounds the average. The horizontal dashed line indicates the pre
learning point average, the vertical dashed line indicates the learning point.


https://doi.org/10.1101/2023.12.13.571351
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.13.571351; this version posted December 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

As mentioned, prior reports show VTE rate differences for different types of strategy (Schmidt et
al., 2013). In our task, both strategies had right-skewed, overlapping probability distributions of
VTE rates (Figure 3A, top right; 2-sample, 2-tailed Wilcoxon rank-sum test; Z = 0.36; alt, =
15%, placem = 14%; p = 0.72; d = 0.03). Other studies suggest that the relationship between VTE
and choice outcome is, if nothing else, task dependent, so we calculated the within-session
difference between the number of VTE on trials with correct and incorrect choices. For this task,
VTE was far more likely on correct choice trials. In fact, there were only 4 sessions (10%) where
VTE led to errors more often than correct choices, and out of those 4, VTE was far more likely to

precede errors in only 1 (Figure 3B; t = 5.04; AVTE = 8.8; p < 0.001; d = 0.80, gold lines denote
sessions with at least as many VTEs leading to errors).

A)

- 0.2 o5 1 Fi g
23 > 2 igure 3 Summary of VTEs by
;'_5' *g E E session and block. A) The left
8 :% 0.1 E =05 Place histogram shows the number of
R = 2 VTE trials per block, while the
s 0 R p right shows proportions of
0] 20 40 o) 0.5 1 VTEs per block. The right
Number of VTEs VTE rate column shows that there are no
B) (per block) (proportion trials) differences in how proportions
of VTE per block are distributed
1 for either place (green) or

alternation (gold) blocks. B)
Looking at within session
differences in VTE that led to
correct compared to incorrect
*p <0.001 | choices shows that VTE was far
more likely to lead to a correct

Cumulative
probability
)

[$)]

(0]

Number of VTEs
(per session)
o

0 20 40 .
Out diff choice. Raw numbers are shown
(8} utcome dItierence ,n the left (with log y-axis on
" 10 1 left, not log x on right), and the
= ’.g . distribution of within session
E ) == differences are on the right. C)
S Eo ) Although VTE is more likely to
- D 5 s «© 0.5 .
2w £ 2 lead to correct choices, there are
g 3 S & no differences in  the
:2 & o probabilities of VTEs occurring
O .
Farly Late 5 o s early compared to late in blocks.
Part of block Segment difference

The current and historical literature don’t seem to have come to a consensus on how VTEs should
unfold throughout the course of learning. Some report that VTE in navigation or location-based
tasks decrease over time as learning occurs (Jackson, 1943; Kemble & Beckman, 1970) in a task
dependent manner (Goss & Wischner, 1956), but in other tasks VTE has been shown to stay
elevated throughout, supposedly depending on the task difficulty (Gentry, 1930; Tolman, 1948).
Our task ensures that the current contingency has been learned at the end of a block but is
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unknown at the beginning of a block. Thus, we asked if there were differences in the number of
VTE trials in the first 10 trials of a block compared to the last 10. We saw that there were no

differences in the number of VTE early vs late in the block (Figure 3C; t = -0.43; AVTE = -0.05;
p = 0.67; d = -0.03, gold lines denote blocks with at least as many VTEs later in the block).

Because VTE has been suggested to track task learning and has been proposed as a behavioral
marker for deliberation, we asked whether changes in VTE rates align to learning points. Indeed,
Figure 4C shows that there are significantly elevated VTE rates from 3 trials before to 1 trial after
the learning point (see Methods for estimation of VTE rates and statistical analysis paradigm),
further validating the association between learning and VTE without appealing to choice accuracy.
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These elevations
contrast with VTE
rates aligned to block
switches, which hover
around the average
for almost the entire
window (Figure 4B).
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Figure 5 Flexibility score example and relation to learning point. to define a behavioral
A) Bold, black line indicates flexibility scores for one example session flexibility = measure
(same as Figure 2A, shown in background) Learning points are based on trial-by-trial
indicated with vertical, orange, dotted lines, and block switches are strategy likelihood
indicated by vertical, grey, dashed lines. The average flexibility score changes (Figure 5A).
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learning point average, the vertical dashed line shows the learning point.

measure behavioral
flexibility without reference to choice outcome, which could mask instances where subjects did
switch between strategies, but neither strategy matched the rule they were meant to follow.
Further, it allowed us to assess flexibility trial-by-trial instead of over periods of trials. Much like
choice accuracy and VTE rate dynamics, aligning sequences of flexibility scores to the learning
points showed that there were consistent increases in flexibility starting just before the learning
point that end several trials after (Figure 5B). Note that although learning points and flexibility
scores are defined by strategy likelihoods, flexibility scores can and do vary — sometimes
dramatically — away from the learning point. Likewise, sometimes flexibility scores were lower
during learning points when transitions happened slowly. Thus, this result was expected, but not
guaranteed.

The associations between VTE rates, flexibility dynamics, and choice accuracy changes provide
strong support for the claim that VTE can serve as a marker for deliberation. However, not all
VTE occurred around learning points, some VTE occurred during periods of low flexibility, and
some VTE led to errors. Thus, we asked whether there may have been another, non-deliberative
type of VTE. We know that VTE near learning points happens as choice accuracy and flexibility
are high, but to see if opposing relationships existed as well, we asked if incorrect VTEs were
associated with lower flexibility scores, and if VTEs that happened in inflexible periods were more
likely to be incorrect. Indeed, incorrect VTEs had significantly leftward shifted flexibility scores
(Figure 6A; t = 9.40; flex = 0.60, inflex = -0.32; p < 0.0001; d = 0.57). We defined a set of
criteria that determined whether a VTE occurred during a flexible or inflexible period. First, any
trial within two trials of a learning point was considered flexible (regardless of flexibility score).
Second, a trial had to be more than three trials prior to the end of a block (unless it was within 2
trials from the learning point). Third, any trial with a flexibility score in the top 60t percentile
was considered flexible (unless it was within three trials from a block switch). Similarly, inflexible
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periods could not be within two trials of the learning point (regardless of flexibility score) and had
to have flexibility scores in the bottom 40t percentile (see Methods for further descriptions).
Within-session, paired comparisons showed that choice accuracy was significantly higher during
flexible, learning related VTE than VTE during inflexible periods that didn’t border the learning
point (Figure 6B; t = 5.23; Aacc = 23.5%; p < 0.0001; d = 1.01). Together, these data suggest
that VTE can happen in at least two contexts — one that suggests a deliberative process, and
another which looks more like uncertainty.

The medial prefrontal cortex has been repeatedly implicated in strategy switching tasks and tasks
that require spatial working memory. As such, we recorded mPFC field potential rhythms from a
subset of rats used in the behavioral dataset (n = 3) to see if mPFC rhythms tracked any aspects
of behavioral context formation that we were able to define (see Figure 7 for approximate
recording locations and field potential examples). We examined three mPFC rhythms, each
suggested to have a role in linking cognition to behavior in rodents; 1) the theta rhythm (6 — 12
Hz), which tends to synchronize with hippocampal theta when spatial working memory is taxed

Figure 7 Histological placement and LFP
examples. A) Recording sites were spread
throughout the prelimbic cortex. Different
shapes denote tip locations for the three
different animals in the dataset. Sites span
B) ... . N approximately +3.7 to +4.3 mm anterior to
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(Benchenane et al., 2010; de Mooij-van Malsen et al., 2023; Hallock et al., 2016; Hyman et al.,
2010; Jones & Wilson, 2005; Negron-Oyarzo et al., 2018; Stout et al., 2023; Tavares & Tort,
2022); 2) the beta rhythm (15 — 30 Hz), which tends to be present during decision-making (de
Mooij-van Malsen et al., 2023; Jayachandran et al., 2023; Symanski et al., 2022); and 3) the
gamma rhythm (40 — 100 Hz), which has been associated with working memory, learning, and
sensory information processing (Cansler et al., 2022; de Mooij-van Malsen et al., 2023; Negron-
Oyarzo et al., 2018).

As shown in Figure 7A, the three recording sites we analyzed were located in anterior prelimbic
cortex (see Electrophysiology section of Methods for approximate coordinates). Field potentials
were aligned to decision points (Figure 7B), converted into time-frequency representations, and
normalized by trial across a 6 second window containing 3 seconds before and 3 seconds after the
decision point (average across all trials shown in Figure 7C). On average, most of the variance in
the spectrogram appears distributed within the a priori defined frequency bands described above.

We tested whether mPFC field potential rhythms were related to any of the behavioral
measurements used to define context by comparing rhythms on trials with opposing contextual
components. There were four main components used to delineate behavioral contexts: choice
outcome, whether VTE occurred, flexibility, and learning phase. To make paired, within session
comparisons, we employed a similar hierarchical bootstrap sampling technique used to generate
VTE rate curves. First, subjects were sampled, then, for each subject, a random sample of sessions
were drawn, and, within each session, we computed the mean difference in the strength of
rhythmic activity for the different frequency bands on opposing trial types (i.e., correct minus
incorrect, VTE minus non-VTE, exploit phase minus explore phase, and high flexibility minus low
flexibility). We refer to the first element in the pair (e.g., correct trials) as the condition trial and
its opposite (e.g., incorrect trials) as the comparison trial. Repeatedly sampling in this way
produces a posterior distribution of differences. We assume that if there were no difference
between condition and comparison trials, distributions should be centered at zero with a roughly
even proportion of the data on either size of the mean. As such, we quantified the strength of
evidence for a particular rhythm varying with respect to a given contextual component by the
probability that its distribution sat above zero. If none of the data for a given distribution were
above zero, the probability value (P) would be zero, and this would be very strong evidence that
those condition trials had weaker activity than their accompanying comparison trials in that
frequency band. At the other extreme, if all of the distribution was above zero, this would be a
probability value of 1, and strong evidence that the condition had stronger rhythmic activity in
that band than the comparison.

Results for different opposing trial combinations, separated by rhythm, are shown in Figure 8.
Shades of the distributions vary such that darker shades indicate stronger evidence that condition
trials have weaker rhythms than comparison trials for trial type, whereas lighter shades indicate
stronger evidence of that rhythm’s presence on condition trials than comparison trials. An
additional measure, analogous to Cohen’s D for one sample distributions, is reported in the upper
corner for each distribution. The value’s magnitude measures how many standard deviations the
distribution’s mean is from zero, and its sign tells in which direction. The first row, comparing
correct and incorrect trials, shows that both theta and gamma distributions are close to zero, with
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Figure 8 mPFC rhythms vary based on contextual components. Each box in the grid shows
the distribution of differences for hierarchically sampled trial comparisons. The type of trial
comparison is shown on the left side of the figure, outside the grid of distributions. The left
column shows comparisons for the theta rhythm, the middle for the beta rhythm, and the right
for the gamma rhythm. The probability of the distribution falling above zero is indicated by P
in one of the upper corners of each plot, and a one sample analog to Cohen’s D is indicated by
d underneath. Each distribution is shaded according to its Probability value, as shown by the
gradient below the grid. Distributions outlined in red have P > 0.9 and d > 1.0, and are
considered to represent strong evidence for a difference between groups.

little indication that trial types differ. Gamma, however, appears to be more consistently weaker
on correct trials (Figure 8A, Gamma, P = 0.21, d = -0.84). Interestingly, all rhythms tend to have
stronger increases during VTE trials, with very strong evidence for beta (Figure 8B, Beta, P =
0.98, d = 2.36) and strong evidence for theta (Figure 8B, Theta, P = 0.93, d = 1.49) on VTE trials.
Only gamma appears to show any difference in the post-learning, exploit phase compared to the
explore phase, with strong evidence for higher gamma during the exploit period (Figure 8C,
Gamma, P = 0.95, d = 1.62). Comparing high and low flexibility trials shows weak evidence that
theta may be higher on high flexibility trials while gamma is more consistently lower on high
flexibility trials (Figure 8D, Gamma, P = 0.18, d = -0.85).

3 Discussion

Behavioral flexibility is a complex phenomenon that could manifest in many different ways, but
our typical understanding of it primarily focuses on a single measure — choice outcome. VTE
behavior has been documented for nearly a century, but it has been difficult to reconcile
descriptions of its function. This study sought to supplement our understanding of behavioral
flexibility and fill in some of the gaps in the VTE literature by analyzing VTE with respect to other
streams of behavioral data that also occurred on a trial-by-trial basis during a dynamic decision-
making task. To do so, we estimated strategy likelihoods from rule-based models, which enabled
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learning point identification, and developed a behavioral flexibility measure based on changes in
strategy likelihood estimates. We show that choice accuracy, VTEs, and flexibility scores all
increased surrounding learning points. Further, we show that VTEs were far more likely to be
correct than incorrect in this task, and that correct VTEs were more likely to occur on trials with
higher flexibility scores, suggesting a typical role in deliberation. However, we also found VTE
that occurred during periods of low flexibility and were often wrong, indicating that VTE may
sometimes reflect uncertainty instead of deliberation. Finally, we showed that these behavioral
measures often had distinctive relationships to mPFC field potential activity. Covariations
between mPFC activity and specific behavioral measures provide strong validation that our
analyses effectively partitioned behavior into relevant, naturalistic epochs.

As mentioned, VTE-like behaviors are present in humans (Iggena et al., 2023; Santos-Pata &
Verschure, 2018; Voss & Cohen, 2017), while inflexible, perseverative, behavior and difficulty with
executive control are common measures in clinical diagnoses of neurological disorders (Uddin,
2021). Because any behavior that can be identified and modeled based on decision-making is
amenable to the analysis workflow we’ve utilized, and many decision-making tasks require some
active trajectory toward a decision, we hope that the framework described here will be of general
interest to behavioral neuroscientists asking both basic and clinical questions.

Expanding analyses of behavioral flexibility

Based on the simple premise that behavioral flexibility manifests as changes in strategy use, we
were able to score flexibility on a trial-by-trial basis and track its changes with respect to task
dynamics. We verified that these scores did indeed track flexibility by showing their strong
alignment with putative learning points, increases in choice accuracy, and peaks in VTE rate,
which have also been proposed as a marker of flexible, deliberative behavior. Having a continuous
scale that enables trial-by-trial identification of high and low flexibility based on statistically
derived cutoffs can be useful for providing additional context to other behavioral measures, as we
show in Figure 6. In our case, extra context about flexibility showed that VTE on low flexibility
trials were likely to result in errors. By putting these facts together, we concluded that VTE
resulting in error on low flexibility trials was likely to represent uncertainty about the decision,
which differs from the typical interpretation of VTE as a deliberative behavior.

Another benefit of having flexibility scores that do not depend on choice outcome is the ability to
identify periods of high flexibility but low choice accuracy. This occurs, for example, when a
subject switches from a prior strategy to a new strategy that does not match the target. In our task
this would happen if the prior strategy was go east and the current strategy is go west, but a
subject started alternating instead of switching immediately to go west. Identifying these periods
could prove particularly useful for trying to disentangle learning, reward processing, or attention
from flexibility. Increased flexibility after block switches, but longer exploration phases, for
example, could indicate that flexibility is not affected directly, but something about subjects’
ability to stabilize behavior is impaired. On the other hand, unaffected exploration periods
coupled with long post-learning periods could indicate that subjects struggle to exploit their newly
learned strategies. Both of these are distinct from a situation in which flexibility remained low
after block switches due to continual elevated likelihood of a prior strategy, which would indicate
perseveration.
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Though our analysis of mPFC activity did not reveal strong changes in rhythmic activity as a
function of flexibility, it did suggest that gamma rhythms may be weaker in the high flexibility
state (Figure 8d, right column). Interestingly, when combined with our other observations, we
might expect incorrect, inflexible trials during the exploitation period to have some of the
strongest gamma activity. These are trials where a rat chose incorrectly, despite a recent history
of correct responses. Importantly, because we’ve shown that learning phase and gamma strength
are related, we might expect a similar choice history pattern during the exploration phase to have
weaker gamma band activity. These distinctions highlight the utility of contextualizing behavior
when interpreting neural data.

Reconciling VTE findings and contextualizing behavior

There are several hypotheses about what VTE is and why it happens. Most of the initial reports
claimed that VTE tended to happen just before or as rats learned a task (Gentry, 1930;
Muenzinger, 1938; Muenzinger & Gentry, 1931; Tolman, 1926). Muenzinger (1938) and Gentry
(1930) noted that, although they had assumed the pause and reorient behavior we now call VTE
would primarily reflect active sampling of sensory stimuli, rats still showed VTE when sensory
environments were the same and thus not useful in determining where to go for reward. This
suggested that the behavior was not simply used to compare sensory information but may instead
indicate comparison of past and present experience. Additionally, rats continued to VTE
throughout their learning and training during difficult tasks, but they would typically stop after
they had learned to consistently make simple sensory discriminations, often interpreted as having
formed a habit (Gentry, 1930; Muenzinger, 1938; Tolman, 1948).

In the context of more recent experiments, the repeated observation that VTE tends to occur just
after new reward contingency or rule switch and decrease farther into blocks (Blumenthal et al.,
2011; Kidder et al.,, 2023; Meyer-Mueller et al., 2020), are in accordance with the early
observations that VTE is linked to learning. The majority of modern research treats VTE as a
marker of deliberation, but inconsistency in how VTE relates to choice outcome (George et al.,
2023; Kidder et al., 2021; Meyer-Mueller et al., 2020; Schmidt et al., 2013), suggests that what
VTE represents or is used for may not have a unitary explanation (Goss & Wischner, 1956). This
possibility was reported in Gentry (1930), who showed that some rats seemed to VTE consistently
while never learning proficiently, while others performed exceptionally well, but did not exhibit
the typical decline in VTE rates. Her characterization was that VTE consistently associated with
poor performance could indicate never having truly learned the task, while VTE during high
performance marked continued deliberation. Tolman similarly claimed that VTE during difficult
sensory discriminations may persist because comparison and indecision persist, while its increase
during initial learning on easy sensory discriminations is because rats concurrently learned which
sensory stimuli (visual/auditory) to associate with reward, as well the discriminative reward
contingency (black vs white/toward tone vs away from tone) itself (Tolman, 1948).

Separating VTE into subtypes based on context may help explain some of the idiosyncrasies in
how different studies have reported on and conceptualized VTE. For example, silencing the
nucleus reuniens has been shown to increase VTE during inflexible periods of perseverative
responding, leading to incorrect choices (Stout et al., 2022). In our framework, we would interpret
VTE in this context as indicative of uncertainty instead of deliberation. Similarly, Schmidt et al,,
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(2013) reported that VTE typically led to an error and was most likely on difficult trials — in other
words, during times when uncertainty was likely high. However, they also reported VTE during
periods of high task proficiency and after errors, times when animals could deliberate based on
prior experience and understanding. These situations and our demonstration that VTE could be
separated based on outcome and flexibility score suggest that future work should take steps to
determine whether VTE reflects a deliberative behavior or one driven by uncertainty.

Neural manipulations and VTE

Several mPFC (Kidder et al., 2021, 2023; McLaughlin & Redish, 2023; Schmidt et al., 2019) and
hippocampus (Bett et al., 2012, 2015; Blumenthal et al., 2011; Hu & Amsel, 1995; Meyer-Mueller
et al., 2020) manipulation studies seem to agree that manipulating these regions is unlikely to
increase VTE rates. Curiously, manipulating structures that connect these regions (e.g. the
amygdala, perirhinal cortex, and nucleus reuniens) does increase VTE (Kemble & Beckman, 1970;
Kreher et al., 2019; Stout et al., 2022). One hypothesis for why this may be is that both the
hippocampus and mPFC are specifically involved in enabling deliberative VTE behavior. When
one of these structures isn’t functioning as usual, the deliberation process may fail altogether.
Mechanistically, it may be that sequential hippocampal activity generates an array of possible
options (Johnson & Redish, 2007; Kay et al., 2020) while the mPFC evaluates those options prior
to choices (Hasz & Redish, 2020b; Redish, 2016; Schmidt et al., 2019; Tang et al., 2021; Zielinski
et al., 2019). If either the representation of possibilities in the hippocampus or evaluative process
in the mPFC fails to occur, VTE may become less likely to happen. In contrast, if both processes
proceed as they normally would locally, but are unable to coordinate correctly because of
interruptions in connecting circuitry, VTE may be just as likely — if not more likely to occur — but
related to uncertainty instead of deliberation.

Neural activity in the mPFC

Intriguingly, not only are our behavioral measures self-consistent and useful for defining latent
behavioral contexts, they are also consistent with neural measures of mPFC activity. Our analysis
of mPFC field potentials shows that different contextual components are associated with different
activity states. The primary goal of these analyses was to provide further validation for our
methods of parceling behavior and the measurements we used. Nevertheless, our results provide
some insights into how mPFC rhythms reorganize with respect to behavior. As an example, two
of the strongest relationships we see are higher mPFC theta and beta on VTE trials compared to
non-VTE trials (Figure 8, 274 row, left and middle columns). This is in line with results showing
hippocampal activity changes during VTE (Amemiya & Redish, 2018; Johnson & Redish, 2007;
Miles et al., 2021; Papale et al., 2016; Schmidt et al., 2019) and the evidence for hippocampal-
prefrontal interactions during VTE (Hasz & Redish, 2020b; Schmidt et al., 2019; Stout et al.,
2022). The beta rhythm, specifically, has recently been shown to synchronize the mPFC and
hippocampus via brief activity bursts in the nucleus reuniens during an odor sequence memory
task (Jayachandran et al., 2023), and our result provides further evidence that beta-rhythmic
activity in the mPFC component of this tri-partite circuit is crucial for memory-guided decision-
making.
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Much like we treat VTE as a binary event — it either happens or does not — trials can either be
correct or not. Despite the strong evidence for broad spectral changes in the mPFC on VTE trials
compared to non-VTE trials, we do not see particularly strong evidence of differences in any band
based on trial outcome. There is perhaps some hint that gamma is weaker on correct compared to
incorrect trials, but it could be that latent factors play a larger role in modulating mPFC rhythms
relative to choice accuracy.

The broadest latent context change we define — the shift from strategy exploration to exploitation
after the learning point — is more clearly accompanied by changes in gamma rhythms (Figure 8,
3" row, right column). This is in line with prior work in rodents showing that prefrontal explore-
exploit relationships are impaired if the mPFC is inactivated (Birrell & Brown, 2000; Laskowski
et al., 2016; Ragozzino et al., 1999, 2003), as well as studies of mPFC units in rats showing that
both individual units (Jung et al., 1998; Rich & Shapiro, 2009) and population level encodings
(Guise & Shapiro, 2017; Hasz & Redish, 2020a; Maggi & Humphries, 2022; Malagon-Vina et al.,
2018) track strategy switches. An alternative explanation could be that subjects were more likely
to be correct during exploitation periods, and gamma during choices was related to expected
choice outcome. If this were the case, we would expect to see the same pattern of increased
gamma-rhythmic activity on correct compared to incorrect choices, but, as mentioned, we see a
trend in the opposite direction (Figure 8, 15t row, right column). This suggests that it is not
expected outcome driving the difference in gamma fluctuations during explore and exploit trials.
In support of these observations, recent work in humans with intracranial EEG recordings has
shown that there are changes in gamma band activity during the transition between exploration
and exploitation (Domenech et al., 2020).

Another latent context measure is flexibility magnitude, which, according to our data, may also
be associated with changes in the gamma rhythm (Figure 8, 4t row, right column). When split
into high and low flexibility trials, gamma has a very similar distribution to gamma differences
related to trial outcome. These two measures could very well be related, as both flexibility and
choice accuracy peak around learning points, but there is not as clear a relationship between
flexibility and learning phase. Flexibility can be quite variable during exploration as different
strategies are tested (e.g., around trials 40 and 60 in Figure 5A), and flexibility also typically
transitions quickly from high at the beginning of the exploit period to low within several trials
(Figure 5B). While all of these measures likely have some individual relationship to gamma, it’s
also likely that those relationships are not independent of one another, and it remains to be seen
how they covary. Still, our results suggest that both latent and explicit behavioral measures appear
to have distinct associations with gamma in the prefrontal cortex.

Conclusion

This study characterized learning, decision-making behaviors, and mPFC activity during a spatial
set shifting task. By quantifying changes in strategy use, we proposed a new way of calculating
behavioral flexibility and show that flexibility scores aligned with increases in decision-making
accuracy and VTE-rates that accompanied learning. At other times, relationships between these
patterns broke down. Examining trials with atypical behavioral patterns enabled reinterpretation
of similar looking behaviors as cognitively distinct. Finally, we showed that these measures,
particularly VTE and learning phase, show distinctive relationships to mPFC rhythms.
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4 Methods

Subjects, apparatus, training protocol, and behavioral task

Food restricted (85% of body weight) Long Evans rats (n = 13, Charles River Laboratories) were
trained to perform a spatial set shifting task. Sessions were run on an elevated plus maze (black
plexiglass arms, 58 cm long x 5.5 cm wide, elevated 80 cm from floor), with moveable arms and
reward feeders controlled by custom LabView 2016 software (National Instruments, Austin, TX,
USA) that tracked the rat and automatically raised and lowered arms based on positions recorded
by a SONY USB web camera (Sony Corporation, Minato, Tokyo) acquiring frames at
approximately 35 Hz. Rats were initially habituated to handlers and the maze for however long it
took them to comfortably interact with handlers, forage for pellets on the maze, and habituate to
maze movement and noise (several days to one week).

Task training started with a forced choice paradigm, where rats learned the trial structure,
consisting of leaving its pseudo-randomly chosen “North” or “South” starting arm, then
navigating to an “East” or “West” arm for a 45 mg sucrose pellet reward (TestDiet, Richmond, IN,
USA). Initially, rats completed 5 to 7 trials that forced them to either alternate between reward
sites or return repeatedly to the same East or West location, regardless of their starting point. This
number was increased until rats could do 10 trials of each reward contingency in under 45
minutes, at which point they were given a free choice version of the same task.

In the free-choice training version, we did not change start arms on error trials until rats made a
certain number of correct choices, and initially started with a low choice accuracy criterion for
switching between blocks (typically around a 70% success rate in an 8 to 10 trial window). As rats
started completing all reward contingencies (alternate, go east, go west), we increased the
criterion for success and minimum number of trials per block, and decreased the number of
correct trials needed before errors no longer influenced start arm switches. This procedure was
tailored to each rat until it could complete 4 reward contingencies (two alternation blocks and two
place blocks; one East, one West) in less than 150 trials, with start arms pseudo-randomly chosen
for all trials. We also ensured that two alternation blocks did not occur back-to-back.

Testing sessions followed the same trial structure as the final training sessions. As mentioned
above, start arms were “pseudo-random”. This was done to ensure that between 50 — 60% of trials within
15 trial stretches had start arm switches. Doing so increased the number of switches compared to what
you'd expect from random draws, while slightly decreasing the number of long (4 to 10 trial) sequences
where the start arm stayed the same, and eliminating sequences without a switch that were longer than
that. For this dataset, all rats completed three switches, though not all completed the 4% block. A total of
40 sessions from 13 rats were analyzed with all but one rat contributing at least two sessions.

Position tracking and VTE identification

We identified VTEs in much the same way as Kidder et al. (2023). Briefly, we took the videos that
tracked coarse body location during the task and used DeepLabCut (DLC) version 2.2 (Mathis et
al., 2018; Nath et al., 2019) to identify the rats’ heads. We started with the same model trained in
Kidder et al. (2023) and retrained a new iteration with additional labeled data from the set shifting
experiments. Each training attempt used NVIDIA GEFORCE GTX 1080 GPU with 500,000
iterations. Trajectories with vicarious trial and error (VTE) were detected by projecting the
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position data into principal component (PC) space and clustering the PC-representations of the
trajectories with hierarchical agglomerative clustering. Before projection, all trajectories were
aligned and standardized to the same starting and ending positions and interpolated (or linearly
subsampled, if necessary) to have the same number of points. Visual inspection of the clustering
in PC space naturally formed two clouds in low dimensional plots, and distance-based
dendrograms cut to give two clusters separated trajectories with VTE from non-VTE trajectories,
though with some errors.

To mitigate the errors, we reassigned certain trajectories initially not identified as VTE but with
x-positions that crossed a certain threshold into the VTE category, and used the combination of a
low z-In(idphi) measure (Bett et al., 2012; Blumenthal et al., 2011; McLaughlin & Redish, 2023;
Papale et al., 2012; Schmidt et al., 2013, 2019; Stout et al., 2022) and a failure to cross lower x-
position boundary to reassign any VTEs that may have been mistakenly identified. Informal
inspections of randomly sampled data subsets after classification suggest that this method is
between 80% and 90% accurate, which is in-line with supervised classification methods and near
the threshold for interrater agreement (Miles et al., 2021).

Estimating strategy likelihoods, learning points, and flexibility scores

We adopted the procedure from Maggi et al. (2023) to estimate explicitly modeled strategy
likelihoods, trial-by-trial, based on choice history and a recency-weighted decay factor to account
for the inherent non-stationarity in behavior associated with strategy switching. Minor changes
to strategy templates allowed us to model allocentric versions of the strategies instead of the
egocentric versions originally used; we simply added a column to the data processing input that
parsed “East” and “West” choices instead of “Left” and “Right” (though the algorithm can easily
process both types of reference frame if both types of input are given). As in the original report,
we used 0.9 as the parameter controlling the strength of the recency weighting. One addition we
made was to add several randomly permuted trials to the beginning of sessions prior to processing
with the algorithm. This dampened some of the algorithm’s initial large swings in likelihood
estimates that were due to limited trial history. Further, we smoothed likelihood timeseries with
a 5-trial Gaussian window to increase the reliability of learning point identification. As suggested
in the original paper, we identified learning points as the trial when the target strategy became
the most likely.

Our rationale for calculating flexibility scores from changes in strategy likelihood is based on the
notion that decision-making patterns shifting to become consistent with a different strategy is the
sign of flexible behavior in a set shifting task. Thus, for each trial, the flexibility score is the
absolute difference in strategy likelihoods from trial t-1 to trial t, summed across strategies. For
each session, this value is normalized by median absolute deviation (robust Z-score) because
values tend to deviate more dramatically in the positive than negative direction, but the results
remain the same when a normal, standard deviation-based Z-score is used.

Flexible periods, used for testing whether there were multiple VTE types, were defined based on
three criteria. First, trials on either side of the learning point were automatically considered
flexible, regardless of their flexibility score. Trials that were three trials before the end of a block
were automatically not considered flexible, unless they were within one trial of the learning point.
Third, any remaining trials in the top 60% of flexibility scores were considered flexible, while any
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in the bottom 40% of flexibility scores were not considered flexible. When analyzing choice
accuracy on VTE trials during flexible compared to inflexible periods, we excluded sessions where
there were three or fewer trials of either type. Results for this analysis did not change if we
changed the ratios of flexible and inflexible VTEs that could be included (e.g., based the third
criterion on flexibility score instead of percentile), but this often changed the proportion of data
we were able to use.

Statistical quantification

Critical values were set at 0.05. When sample sizes were large, and distributions looked nearly
normal, two-tailed T-tests were used. If making within session comparisons, one-sample tests of
differences were done, comparing the empirical distribution to what would be expected for a
distribution with 0 mean. When distributions were strongly skewed, we performed two-tailed
Wilcoxon rank sum tests if the data were not paired, and two-tailed Wilcoxon signed rank tests
when they were paired. Learning point aligned choice accuracy and flexibility score data were not
subjected to formal statistical testing — instead, 95% confidence intervals were estimated as if they
were from a normal distribution (using Z-values). These curves are presented as averages and
confidence intervals across sessions (n = 40), but looked nearly identical when comparing across
subjects (n = 13).

Learning point aligned VTE “rasters” and a peri-learn point VTE rate averages suggested that
VTEs likely aligned to learning as well, but to test this we used hierarchical bootstrapping
(Saravanan et al., 2020). This helped safeguard results from bias introduced by uneven data
collection between subjects while also acknowledging that multiple measurements from
individuals were not independent. It also allowed us to create rate distributions out of binary data.
Subjects were sampled randomly with replacement enough times to match the total number of
subjects in the dataset (n = 13), then, for each subject, a certain number of blocks was also
randomly selected with replacement (8 for learning point and 6 for block switch aligned sequences
of VTE data — equivalent to two sessions of data). Average VTE rates were calculated for these
samples and smoothed with a 5 trial Gaussian window across trials. Distributions were formed
by repeating this procedure 1000 times. Significance was determined by asking which trials had
more than 97.5% of their (Z-scored) iterations above 0. Results were tested without smoothing,
using larger smoothing windows, with different numbers of iterations, using median absolute
deviations instead of standard deviation Z-scoring, using shorter and longer sequences of trials,
and across many random seeds, all leading to the same conclusion. The only thing that sometimes
changed was the number of trials surrounding the learning point that show significantly elevated
VTE rates.

Electrophysiology

A subset of the rats (n = 3) had neural recordings from the mPFC. Recordings were collected from
custom-built tetrode micro-drives with Intan headstages and Open-Ephys acquisition systems, as
described in (Kidder et al., 2021; Miles et al., 2021). All mPFC recordings were localized to the
prelimbic cortex (Figure 7A), between approximately 3.7 and 4.3 mm anterior to bregma.

Recording windows analyzed were determined by finding the choice point, identified as the point
closest to the center of the platform for each trajectory, and then extending four seconds before
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and after that point. For each window, time-frequency spectrograms were calculated using
Chronux’s mtspecgramc function (Bokil et al., 2010), using a two second window, 100 msec
overlap, 7 tapers, and a bandpass window of 0.5 to 100 Hz, generating a time-frequency matrix
for each decision. After converting power values to decibels, we Z-scored each frequency
component along the time dimension for each trial to normalize the data (see Figure 77C to see
the average representation of this matrix). Since we were working with a priori frequency bands
and were only interested in decision-based activity, we averaged activity across each frequency
band from -1 second before to 1 second after the decision point, meaning each trial gave a single
average value for theta, beta, and gamma band activity.

We analyzed field potential activity in relation to different behavioral measures by creating
hierarchically sampled bootstrap distributions (Saravanan et al., 2020) for specified pairs of
conditions (Figure 8). Each measure had a reference trial type, which we called the condition
trial, and an opposing trial type called the comparison trial. For example, trials could either be
correct (a condition trial) or incorrect (a comparison trial). This allowed us to perform within-
session, paired comparisons for each pair by subtracting the activity averaged across all sampled
trials in the comparison group from the condition group. For each hierarchical sample, we used 3
individuals, 4 sessions, and 40 trials from each group (condition and comparison), all sampled
with replacement. Thus, each difference is the average of activity from the 40 trials from the
condition group minus the average activity of the 40 trials from the comparison group, and a
member of the overall distribution is the mean of these differences across the 12 sessions drawn
for that sample iteration. This was repeated 1000 times to generate the distributions shown in
Figure 8.
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