
Flexible decision-making is related to strategy learning, vicarious trial and 
error, and medial prefrontal rhythms during spatial set-shifting 

 
Jesse T. Miles1,2, Ginger L. Mullins2, & Sheri J. Y. Mizumori1,2 

1Neuroscience graduate program, University of Washington  
2Psychology department, University of Washington 

 
 

Abstract 

A hallmark of behavioral flexibility is the ability to update behavior in response to 

changes in context. Most studies tend to rely on error counting around reward 

contingency or rule switches to measure flexibility, but these measures are difficult 

to adapt in a way that allows shorter timescale flexibility estimates. Further, choice 

accuracy does not account for other markers of flexibility, such as the hesitations 

and decision reversals humans and other animals often exhibit as decisions unfold, 

a behavior often called vicarious trial and error (VTE). To relate observable 

information about decision-making to latent aspects like learning and behavioral 

flexibility, we quantified changes in decision-making strategy using a previously 

developed, recency-weighted Bayesian inference algorithm. By comparing models 

of strategy use with decision history to generate strategy likelihood estimates on a 

trial-by-trial basis, the algorithm enabled us to identify learning points, and served 

as the basis for the development of a behavioral flexibility score. Aligning flexibility 

scores to learning points showed that flexibility peaked around estimated learning 

points and near peaks in VTE rate. However, we occasionally observed VTE during 

periods of low flexibility, where it often led to incorrect choices, suggesting the 

likely existence of multiple VTE-types. Additionally, we built on the decades of 

research suggesting a prominent role for the medial prefrontal cortex in enabling 

behavioral flexibility by recording field potentials from the medial prefrontal 

cortex during task performance. We observed changes in different field potential 

frequency bands that varied with respect to the different behavioral measures we 

used to characterize learning and decision-making. Overall, we demonstrate the 

use of multiple measures that jointly assess relationships between learning, 

behavioral flexibility, and decision-making behaviors. Further, we used these 

complementary measures to demonstrate that a particular decision-making 

behavior, VTE, was likely to be a marker of deliberation at some times, and 

uncertainty at others. Finally, we validate these measures by showing that theta, 

beta, and gamma rhythms in the medial prefrontal cortex vary with respect to both 

observable and latent aspects of behavior. 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.571351doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.13.571351
http://creativecommons.org/licenses/by-nd/4.0/


1. Introduction  

Behavioral flexibility describes the ability to change behavior in response to changing external 

conditions or internal states (Brown & Tait, 2010; Dalley et al., 2004; Hones & Mizumori, 2022; 

Izquierdo et al., 2017; Ragozzino, 2007; Uddin, 2021). Typical tests of behavioral flexibility 

involve assessing how well subjects perform tasks that require them to update their behavior as 

task demands change. In humans, one famous example is the Wisconsin Card Sorting Test 

(WCST), which requires subjects to learn which stimulus quality (color, number, or shape) is 

rewarded, sort cards based on the currently rewarded quality, and update sorting strategies when 

rewarded qualities switch (Grant & Berg, 1948; Miyake et al., 2000; Uddin, 2021). Similar tasks 

have been adapted to non-human primates (Butter, 1969; Goudar et al., 2023; Mahut, 1971; 

Moore et al., 2005; Roberts et al., 1988), and rodents (Becker et al., 1981; Izquierdo & Jentsch, 

2012; Kolb et al., 1974; Ragozzino et al., 2003).  

In rodents specifically there are two prominent categories of behavioral flexibility tests: reversal 

learning tasks and set shifting tasks. Reversal learning tasks involve reward contingency changes, 

typically such that an opposite response or stimulus selection confers reward (e.g., from turn left 

to turn right). Set shifting tasks, however, require shifts between different task rules that dictate 

possible reward contingencies (e.g., from turn left to alternate turn directions). Flexibility on 

either reversal learning or set shifting tasks is often measured by 1) number of trials to a certain 

performance criterion; 2) number of errors due to use of a strategy that’s no longer rewarded, 
called perseverative errors; or 3) overall choice accuracy within blocks of trials, sometimes broken 

down by proximity to switches. All of these measures revolve around distinguishing between 

possible different types of error and counting the number of errors in different time periods that 

are dictated by aspects of the task. 

Along with the latent, cognitive changes that enable behavioral flexibility, observable behavior is 

also known to vary. For example, rodents (Muenzinger, 1938; Muenzinger & Gentry, 1931; 

Tolman, 1926), non-human primates (Kaufman et al., 2015; Medin et al., 1970; Resulaj et al., 

2009), and humans (Santos-Pata & Verschure, 2018; Voss & Cohen, 2017) will sometimes appear 

to pause and/or change the course of a decision as it is carried out, a behavior typically called 

vicarious trial and error (VTE) but sometimes known as change of mind (Kaufman et al., 2015; 

Resulaj et al., 2009). Most initial observations of VTE showed that it tended to happen just before 

or as rats learned a task (Gentry, 1930; Muenzinger, 1938; Muenzinger & Gentry, 1931; Tolman, 

1926). Since then, multiple studies have shown that VTE tends to occur on more difficult decisions 

(Bett et al., 2012; McLaughlin & Redish, 2023; Papale et al., 2012, 2016; Schmidt et al., 2013), 

and manipulations that decrease VTE can also impair task performance (Bett et al., 2012; Kidder 

et al., 2021; Schmidt et al., 2019). This evidence is coherent with the hypothesis that VTE is a 

marker of deliberative behavior (Redish, 2016) and as such suggests that VTE could serve, along 

with choice outcome, as another candidate for assessing behavioral flexibility. 

Though there is support for the general claim that VTE is associated with behavioral flexibility 

and deliberation, the relationship between VTE and choice outcome is not always clear or 

consistent across tasks, and most measures of behavioral flexibility rely on evaluating changes in 

error rates over multi-trial timescales. While some evidence suggests that VTE and associated 

behaviors are affected over these longer timescales (George et al., 2023; McLaughlin & Redish, 
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2023; Papale et al., 2016), we wanted to measure the association between behavioral flexibility, 

learning, VTE, and choice outcomes more directly, on a trial-by-trial basis, using behavioral 

measures that could be calculated independently of one another. To do so, we implemented a 

spatial set shifting task that required rats to repeatedly switch between blocks of trials where they 

had to either continually return to the same location (follow a place rule) or alternate between 

locations on every trial (follow an alternation rule). We utilized a recency-weighted Bayesian 

inference approach that compares choice history to explicitly modeled behavioral strategies and 

computes the likelihood that each strategy was being used on every trial  (Maggi et al., 2023). We 

identified putative learning points by finding when the target strategy became the most likely 

strategy for the remainder of the block, and, using changes in likelihoods across trials, we 

computed a behavioral flexibility score to determine periods of high flexibility that might not be 

obvious by proximity to learning points or task structure (e.g., block types/switches) alone. 

Further, we hypothesized that we should see changes in neural activity if we did indeed identify 

well-defined measures that meaningfully parsed behavior. Many studies have shown that the 

rodent medial prefrontal cortex (mPFC) is associated with all of the behavioral measures we were 

interested in comparing (Durstewitz et al., 2010; Euston et al., 2012; Euston & McNaughton, 

2006; Guise & Shapiro, 2017; Hasz & Redish, 2020a; Hyman et al., 2012; Insel & Barnes, 2015; 

Maggi et al., 2018; Powell & Redish, 2016; Pratt & Mizumori, 2001; Rich & Shapiro, 2009). 

Accordingly, we recorded field potentials from the mPFC during our set shifting task to assess 

whether activity varied with respect to choice outcome, VTE, learning phase, and flexibility score.   

Our results show that learning, behavioral flexibility, VTE, and choice outcomes are typically 

tightly coupled to one another, but can decouple depending on context. Increases in choice 

accuracy, VTE rates, and flexibility scores aligned to identified learning points. In support of the 

often-claimed role for VTE in deliberation, VTE trials were more likely to end in correct choices, 

and correct VTE trials were more likely to have a higher flexibility score. However, VTE on trials 

during low flexibility periods were more likely to lead to errors, and incorrect VTE trials were 

more likely to have lower flexibility scores, suggesting that VTE may sometimes be a marker of 

uncertainty, not deliberation. 

Additionally, both observable and latent behavioral measures were associated with changes to 

power distributions in different mPFC field potential frequency bands.  Specifically, trials with 

VTE showed elevated theta and beta compared to non-VTE trials, and periods when learned 

strategies could be exploited after learning were associated with stronger gamma. Taken together, 

these results suggest that the confluence of these behavioral measures can be used to delineate 

behavioral contexts, as exemplified by our demonstration that VTEs can be separated as either 

deliberative or uncertain. Moreover, we strengthen our behavioral findings by showing variations 

in mPFC activity that track both observable and latent behavioral measures. Overall, these results 

help link learning, behavioral flexibility, variations in decision-making behaviors, and changes in 

mPFC physiology through mutually corroborative evidence. 

2. Results 

We utilized a spatial set shifting task (Figure 1A) that required rats to either continually return 

to the same location (use a place rule) or alternate between locations on successive trials (use an 

alternation rule). This design is similar to Meyer-Mueller et al., (2020), except we use a plus-maze 
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instead of T-maze, with randomly chosen start arms to ensure that only strictly allocentric, place 

strategies (as opposed to egocentric, body-turn strategies) will be successful. Because prior results 

show differences in VTE rates for egocentric compared to allocentric navigation (Schmidt et al., 

2013), but no consistent changes during switches between different egocentric strategies (Meyer-

Mueller et al., 2020), we analyzed whether there were performance differences in allocentric place 

compared to allocentric alternation strategies. 

Choice accuracy distributions for alternation blocks were right-shifted compared to place blocks 

(Figure 1B, top right; 2-sample, 2-tailed, T-test; t = 2.66; ��ý = 72%, ���ýÿ = 69%; p = 0.009; d 

= 0.42; overbars represent the sample mean). Block duration distributions were non-normally 

distributed for alternation trials, which showed cumulative probability bunched around the lower 

block duration limit (15 trials). This distribution was left-shifted compared place block durations 

Figure 1 Performance differs according to task rule. A) Diagram of the task rules. Place 

blocks (top) reward continual visits to a particular (E or W) arm, and alternation blocks 

(bottom) reward alternation between E and W blocks on successive trials. Sessions consist of 

3 block switches. Switches occur when 12 of the previous 15 choices were consistent with the 

target rule. B) Multiple measures of performance are better for alternation blocks compared 

to place blocks. Unpaired cumulative distributions for choice accuracy within a block are 

leftward shifted for place blocks (top left, green line), while alternation block durations are 

leftward shifted (top right, gold line). p-values are calculated using unpaired, two-sample, two-

sided T-tests. Within-session, paired comparisons suggest the same conclusion (bottom). 

Differences between choice accuracy in adjacent place and alternation blocks (bottom left solid 

blue line, place minus alternation) are shifted to the left of zero, while differences in block 

duration are shifted to the right of zero (bottom right solid blue line, place minus alternation). 

p-values are calculated using signed rank tests. Red dashed lines are zero-mean (left) or 

median (right), standard deviation-matched normal cumulative distributions for comparison. 
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(Figure 1B, top right; 2-sample, 2-tailed Wilcoxon rank-sum test; Z = -2.94; altm = 23.3, placem 

= 25.8, where subscript m denotes median; p = 0.003; d = -0.3). Within session comparison of 

the adjacent pairs of place and alternation blocks (Figure 1B, bottom right) yields the same result 

for choice accuracy difference (t = 2.71;  ��ýý = 3.02%; p = 0.008; d = 0.30) and block duration 

difference (t = 2.71;  �þþ� = -2.78; p = 0.03; d = -0.24). While these differences are consistent, 

note that they are not large (~3% performance difference and ~3 trial duration difference; Cohen’s 
d values below 0.5). 

We implemented a previously developed algorithm that uses recency weighted Bayesian inference 

to identify changes in strategy learning (Maggi et al., 2023). Comparing decision history (not 

choice outcome) to modeled strategies allowed us to identify learning by finding when a rat’s most 
likely strategy matched the target task rule (see Figure 2A for an example of the estimation 

output). Conceptually, we regard the learning point as splitting a block into a pre-learning point 

exploratory period, where different strategies are tested, and an exploitation period, where 

memory can be used to guide decision-making. Since the learning point was identified without 

explicit reference to choice outcome, seeing increases in the likelihood of a correct choice with 

respect to the putative learning point would corroborate that it had been correctly identified. As 

expected, average choice accuracy aligned to learning points showed a striking increase just prior 

to the learning point, remaining elevated for several trials after. As shown in Figure 2B, average 

choice accuracy (dashed horizontal line) for the 15 trials up to the learning point (dashed vertical 

line) is 63.4% and the lower bound of an estimated 95% confidence interval exceeds that value 

starting 1 trial before the learning point, peaks 1 trial after the learning point, and remains above 

the pre-learning point average for 7 trials after the learning point (data shown for n = 40 sessions, 

where each point within 15 trials on either side of the learning point is the average choice accuracy 

across 4 blocks; though we see the same result using n = 13 subjects with averages across 4 to 24 

blocks).   
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Figure 2 Identifying learning points from strategy likelihoods. A) We modeled three 

strategies – go east (blue), go west (orange) and alternate (yellow). Learning points are 

indicated with vertical, orange, dotted lines, and block switches are indicated by vertical, grey, 

dashed lines. The average choice accuracy aligned to learning points is shown in B). A shaded 

95% confidence interval surrounds the average. The horizontal dashed line indicates the pre 

learning point average, the vertical dashed line indicates the learning point. 
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As mentioned, prior reports show VTE rate differences for different types of strategy (Schmidt et 

al., 2013). In our task, both strategies had right-skewed, overlapping probability distributions of 

VTE rates (Figure 3A, top right; 2-sample, 2-tailed Wilcoxon rank-sum test; Z = 0.36; altm = 

15%, placem = 14%; p = 0.72; d = 0.03). Other studies suggest that the relationship between VTE 

and choice outcome is, if nothing else, task dependent, so we calculated the within-session 

difference between the number of VTE on trials with correct and incorrect choices. For this task, 

VTE was far more likely on correct choice trials. In fact, there were only 4 sessions (10%) where 

VTE led to errors more often than correct choices, and out of those 4, VTE was far more likely to 

precede errors in only 1 (Figure 3B; t = 5.04;  ���� = 8.8; p < 0.001; d = 0.80, gold lines denote 

sessions with at least as many VTEs leading to errors).  

The current and historical literature don’t seem to have come to a consensus on how VTEs should 
unfold throughout the course of learning. Some report that VTE in navigation or location-based 

tasks decrease over time as learning occurs (Jackson, 1943; Kemble & Beckman, 1970) in a task 

dependent manner (Goss & Wischner, 1956), but in other tasks VTE has been shown to stay 

elevated throughout, supposedly depending on the task difficulty (Gentry, 1930; Tolman, 1948). 

Our task ensures that the current contingency has been learned at the end of a block but is 

A) 

Figure 3 Summary of VTEs by 

session and block. A) The left 

histogram shows the number of 

VTE trials per block, while the 

right shows proportions of 

VTEs per block. The right 

column shows that there are no 

differences in how proportions 

of VTE per block are distributed 

for either place (green) or 

alternation (gold) blocks. B) 

Looking at within session 

differences in VTE that led to 

correct compared to incorrect 

choices shows that VTE was far 

more likely to lead to a correct 

choice. Raw numbers are shown 

on the left (with log y-axis on 

left, not log x on right), and the 

distribution of within session 

differences are on the right. C) 

Although VTE is more likely to 

lead to correct choices, there are 

no differences in the 

probabilities of VTEs occurring 

early compared to late in blocks. 

B) 

C) 

Place 

Alternation 

*p < 0.001 
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unknown at the beginning of a block. Thus, we asked if there were differences in the number of 

VTE trials in the first 10 trials of a block compared to the last 10. We saw that there were no 

differences in the number of VTE early vs late in the block (Figure 3C; t = -0.43;  ���� = -0.05; 

p = 0.67; d = -0.03, gold lines denote blocks with at least as many VTEs later in the block).  

Because VTE has been suggested to track task learning and has been proposed as a behavioral 

marker for deliberation, we asked whether changes in VTE rates align to learning points. Indeed, 

Figure 4C shows that there are significantly elevated VTE rates from 3 trials before to 1 trial after 

the learning point (see Methods for estimation of VTE rates and statistical analysis paradigm), 

further validating the association between learning and VTE without appealing to choice accuracy. 
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Figure 4 VTE rate changes align 

with learning points. Each row in A) 

shows trajectories from sequences of 

trials aligned to estimated learning 

points (dashed rectangle/trial 0 on 

the bottom axis) for a given block. 

Blue trajectories have been identified 

as VTEs and orange trajectories have 

been identified as non-VTEs. The 

stem plot shows VTE rates for this 

sample of six sequences. Note the 

general increased rate for trials near 

the learning point. The top panels in 

B) and C) show changes in VTE rate 

with respect to block switches on the 

left and estimated learning points on 

the right (dashed, vertical, red lines). 

For all plots, bold, black lines are the 

averages of 1000 iterations of a 

hierarchical bootstrap to estimate 

VTE rate timeseries from binary 

vectors; light grey lines are the 

individual iteration results. Top 

panels show raw rates and bottom 

plots show z-scored rates. Dashed, 

horizontal, red lines in the lower plots 

show the mean for comparison. 

Dotted black lines show the 2.5 and 

97.5 percentiles of the distribution. 

Dotted black points on the graph 

above zero show trials where less than 

2.5% of estimates across iterations 

were below zero for that trial (trials -5 

to 1), and vice-versa for points below 

zero (trial 9 to 15). 
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These elevations 

contrast with VTE 

rates aligned to block 

switches, which hover 

around the average 

for almost the entire 

window (Figure 4B).  

Changes in strategy 

likelihoods suggest 

updates in choice 

behavior, allowing us 

to define a behavioral 

flexibility measure 

based on trial-by-trial 

strategy likelihood 

changes (Figure 5A). 

Importantly, this 

method allowed us to 

measure behavioral 

flexibility without reference to choice outcome, which could mask instances where subjects did 

switch between strategies, but neither strategy matched the rule they were meant to follow. 

Further, it allowed us to assess flexibility trial-by-trial instead of over periods of trials. Much like 

choice accuracy and VTE rate dynamics, aligning sequences of flexibility scores to the learning 

points showed that there were consistent increases in flexibility starting just before the learning 

point that end several trials after (Figure 5B). Note that although learning points and flexibility 

scores are defined by strategy likelihoods, flexibility scores can and do vary – sometimes 

dramatically – away from the learning point. Likewise, sometimes flexibility scores were lower 

during learning points when transitions happened slowly. Thus, this result was expected, but not 

guaranteed.  

The associations between VTE rates, flexibility dynamics, and choice accuracy changes provide 

strong support for the claim that VTE can serve as a marker for deliberation. However, not all 

VTE occurred around learning points, some VTE occurred during periods of low flexibility, and 

some VTE led to errors. Thus, we asked whether there may have been another, non-deliberative 

type of VTE. We know that VTE near learning points happens as choice accuracy and flexibility 

are high, but to see if opposing relationships existed as well, we asked if incorrect VTEs were 

associated with lower flexibility scores, and if VTEs that happened in inflexible periods were more 

likely to be incorrect. Indeed, incorrect VTEs had significantly leftward shifted flexibility scores 

(Figure 6A; t = 9.40; Ā�ÿ� = 0.60, ��Ā�ÿ� = -0.32; p < 0.0001; d = 0.57). We defined a set of 

criteria that determined whether a VTE occurred during a flexible or inflexible period. First, any 

trial within two trials of a learning point was considered flexible (regardless of flexibility score). 

Second, a trial had to be more than three trials prior to the end of a block (unless it was within 2 

trials from the learning point). Third, any trial with a flexibility score in the top 60th percentile 

was considered flexible (unless it was within three trials from a block switch). Similarly, inflexible 
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Figure 5 Flexibility score example and relation to learning point.  

A) Bold, black line indicates flexibility scores for one example session 

(same as Figure 2A, shown in background) Learning points are 

indicated with vertical, orange, dotted lines, and block switches are 

indicated by vertical, grey, dashed lines. The average flexibility score 

aligned to learning points is shown in B). A shaded 95% confidence 

interval surrounds the average. The horizontal dashed line shows the pre-

learning point average, the vertical dashed line shows the learning point. 
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periods could not be within two trials of the learning point (regardless of flexibility score) and had 

to have flexibility scores in the bottom 40th percentile (see Methods for further descriptions). 

Within-session, paired comparisons showed that choice accuracy was significantly higher during 

flexible, learning related VTE than VTE during inflexible periods that didn’t border the learning 
point (Figure 6B; t = 5.23;  ��ýý = 23.5%; p < 0.0001; d = 1.01). Together, these data suggest 

that VTE can happen in at least two contexts – one that suggests a deliberative process, and 

another which looks more like uncertainty. 

The medial prefrontal cortex has been repeatedly implicated in strategy switching tasks and tasks 

that require spatial working memory. As such, we recorded mPFC field potential rhythms from a 

subset of rats used in the behavioral dataset (n = 3) to see if mPFC rhythms tracked any aspects 

of behavioral context formation that we were able to define (see Figure 7 for approximate 

recording locations and field potential examples). We examined three mPFC rhythms, each 

suggested to have a role in linking cognition to behavior in rodents; 1) the theta rhythm (6 – 12 

Hz), which tends to synchronize with hippocampal theta when spatial working memory is taxed 

Figure 7 Histological placement and LFP 

examples. A) Recording sites were spread 

throughout the prelimbic cortex. Different 

shapes denote tip locations for the three 

different animals in the dataset. Sites span 

approximately +3.7 to +4.3 mm anterior to 

bregma. B) LFP examples from each of the 

three recording sites, marked by 

corresponding shapes and shades from A). 

Each recording is aligned so the center of the 

trace is when the rat crosses the center of the 

platform, with 1 second before and 1 second 

after on either side. C) Average spectrogram 

of all LFPs from across choices. Each trial’s 
spectrogram is mean subtracted and scaled 

by the standard deviation, across time, for 

every frequency. 

A) 

C) 

B) 

Figure 6 Evidence for 
multiple VTE types. A) 
Correct VTEs are more likely 
to have higher flexibility 
scores than incorrect VTEs. 

B) VTEs in the top 40
th

 
percentile of flexibility scores 
are more likely to be correct 

than VTEs in the bottom 40
th

 
percentile. 
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(Benchenane et al., 2010; de Mooij-van Malsen et al., 2023; Hallock et al., 2016; Hyman et al., 

2010; Jones & Wilson, 2005; Negrón-Oyarzo et al., 2018; Stout et al., 2023; Tavares & Tort, 

2022); 2) the beta rhythm (15 – 30 Hz), which tends to be present during decision-making (de 

Mooij-van Malsen et al., 2023; Jayachandran et al., 2023; Symanski et al., 2022); and 3) the 

gamma rhythm (40 – 100 Hz), which has been associated with working memory, learning, and 

sensory information processing (Cansler et al., 2022; de Mooij-van Malsen et al., 2023; Negrón-

Oyarzo et al., 2018). 

As shown in Figure 7A, the three recording sites we analyzed were located in anterior prelimbic 
cortex (see Electrophysiology section of Methods for approximate coordinates). Field potentials 
were aligned to decision points (Figure 7B), converted into time-frequency representations, and 
normalized by trial across a 6 second window containing 3 seconds before and 3 seconds after the 
decision point (average across all trials shown in Figure 7C). On average, most of the variance in 
the spectrogram appears distributed within the a priori defined frequency bands described above.  

We tested whether mPFC field potential rhythms were related to any of the behavioral 
measurements used to define context by comparing rhythms on trials with opposing contextual 
components. There were four main components used to delineate behavioral contexts: choice 
outcome, whether VTE occurred, flexibility, and learning phase. To make paired, within session 
comparisons, we employed a similar hierarchical bootstrap sampling technique used to generate 
VTE rate curves. First, subjects were sampled, then, for each subject, a random sample of sessions 
were drawn, and, within each session, we computed the mean difference in the strength of 
rhythmic activity for the different frequency bands on opposing trial types (i.e., correct minus 
incorrect, VTE minus non-VTE, exploit phase minus explore phase, and high flexibility minus low 
flexibility). We refer to the first element in the pair (e.g., correct trials) as the condition trial and 
its opposite (e.g., incorrect trials) as the comparison trial. Repeatedly sampling in this way 
produces a posterior distribution of differences. We assume that if there were no difference 
between condition and comparison trials, distributions should be centered at zero with a roughly 
even proportion of the data on either size of the mean. As such, we quantified the strength of 
evidence for a particular rhythm varying with respect to a given contextual component by the 
probability that its distribution sat above zero. If none of the data for a given distribution were 
above zero, the probability value (P) would be zero, and this would be very strong evidence that 
those condition trials had weaker activity than their accompanying comparison trials in that 
frequency band. At the other extreme, if all of the distribution was above zero, this would be a 
probability value of 1, and strong evidence that the condition had stronger rhythmic activity in 
that band than the comparison.  

Results for different opposing trial combinations, separated by rhythm, are shown in Figure 8. 
Shades of the distributions vary such that darker shades indicate stronger evidence that condition 
trials have weaker rhythms than comparison trials for trial type, whereas lighter shades indicate 
stronger evidence of that rhythm’s presence on condition trials than comparison trials. An 
additional measure, analogous to Cohen’s D for one sample distributions, is reported in the upper 
corner for each distribution. The value’s magnitude measures how many standard deviations the 
distribution’s mean is from zero, and its sign tells in which direction. The first row, comparing 
correct and incorrect trials, shows that both theta and gamma distributions are close to zero, with 
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little indication that trial types differ. Gamma, however, appears to be more consistently weaker 
on correct trials (Figure 8A, Gamma, P = 0.21, d = -0.84). Interestingly, all rhythms tend to have 
stronger increases during VTE trials, with very strong evidence for beta (Figure 8B, Beta, P = 
0.98, d = 2.36) and strong evidence for theta (Figure 8B, Theta, P = 0.93, d = 1.49) on VTE trials. 
Only gamma appears to show any difference in the post-learning, exploit phase compared to the 
explore phase, with strong evidence for higher gamma during the exploit period (Figure 8C, 
Gamma, P = 0.95, d = 1.62). Comparing high and low flexibility trials shows weak evidence that 
theta may be higher on high flexibility trials while gamma is more consistently lower on high 
flexibility trials (Figure 8D, Gamma, P = 0.18, d = -0.85). 

3 Discussion 

Behavioral flexibility is a complex phenomenon that could manifest in many different ways, but 

our typical understanding of it primarily focuses on a single measure – choice outcome. VTE 

behavior has been documented for nearly a century, but it has been difficult to reconcile 

descriptions of its function. This study sought to supplement our understanding of behavioral 

flexibility and fill in some of the gaps in the VTE literature by analyzing VTE with respect to other 

streams of behavioral data that also occurred on a trial-by-trial basis during a dynamic decision-

making task. To do so, we estimated strategy likelihoods from rule-based models, which enabled 

Figure 8 mPFC rhythms vary based on contextual components. Each box in the grid shows 

the distribution of differences for hierarchically sampled trial comparisons. The type of trial 

comparison is shown on the left side of the figure, outside the grid of distributions. The left 

column shows comparisons for the theta rhythm, the middle for the beta rhythm, and the right 

for the gamma rhythm. The probability of the distribution falling above zero is indicated by P 

in one of the upper corners of each plot, and a one sample analog to Cohen’s D is indicated by 
d underneath. Each distribution is shaded according to its Probability value, as shown by the 

gradient below the grid. Distributions outlined in red have P ≥ 0.9 and d ≥ 1.0, and are 

considered to represent strong evidence for a difference between groups. 
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learning point identification, and developed a behavioral flexibility measure based on changes in 

strategy likelihood estimates. We show that choice accuracy, VTEs, and flexibility scores all 

increased surrounding learning points. Further, we show that VTEs were far more likely to be 

correct than incorrect in this task, and that correct VTEs were more likely to occur on trials with 

higher flexibility scores, suggesting a typical role in deliberation. However, we also found VTE 

that occurred during periods of low flexibility and were often wrong, indicating that VTE may 

sometimes reflect uncertainty instead of deliberation. Finally, we showed that these behavioral 

measures often had distinctive relationships to mPFC field potential activity. Covariations 

between mPFC activity and specific behavioral measures provide strong validation that our 

analyses effectively partitioned behavior into relevant, naturalistic epochs. 

As mentioned, VTE-like behaviors are present in humans (Iggena et al., 2023; Santos-Pata & 

Verschure, 2018; Voss & Cohen, 2017), while inflexible, perseverative, behavior and difficulty with 

executive control are common measures in clinical diagnoses of neurological disorders (Uddin, 

2021). Because any behavior that can be identified and modeled based on decision-making is 

amenable to the analysis workflow we’ve utilized, and many decision-making tasks require some 

active trajectory toward a decision, we hope that the framework described here will be of general 

interest to behavioral neuroscientists asking both basic and clinical questions. 

 

Expanding analyses of behavioral flexibility 

Based on the simple premise that behavioral flexibility manifests as changes in strategy use, we 

were able to score flexibility on a trial-by-trial basis and track its changes with respect to task 

dynamics. We verified that these scores did indeed track flexibility by showing their strong 

alignment with putative learning points, increases in choice accuracy, and peaks in VTE rate, 

which have also been proposed as a marker of flexible, deliberative behavior. Having a continuous 

scale that enables trial-by-trial identification of high and low flexibility based on statistically 

derived cutoffs can be useful for providing additional context to other behavioral measures, as we 

show in Figure 6. In our case, extra context about flexibility showed that VTE on low flexibility 

trials were likely to result in errors. By putting these facts together, we concluded that VTE 

resulting in error on low flexibility trials was likely to represent uncertainty about the decision, 

which differs from the typical interpretation of VTE as a deliberative behavior. 

Another benefit of having flexibility scores that do not depend on choice outcome is the ability to 

identify periods of high flexibility but low choice accuracy. This occurs, for example, when a 

subject switches from a prior strategy to a new strategy that does not match the target. In our task 

this would happen if the prior strategy was go east and the current strategy is go west, but a 

subject started alternating instead of switching immediately to go west. Identifying these periods 

could prove particularly useful for trying to disentangle learning, reward processing, or attention 

from flexibility. Increased flexibility after block switches, but longer exploration phases, for 

example, could indicate that flexibility is not affected directly, but something about subjects’ 
ability to stabilize behavior is impaired. On the other hand, unaffected exploration periods 

coupled with long post-learning periods could indicate that subjects struggle to exploit their newly 

learned strategies. Both of these are distinct from a situation in which flexibility remained low 

after block switches due to continual elevated likelihood of a prior strategy, which would indicate 

perseveration.  
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Though our analysis of mPFC activity did not reveal strong changes in rhythmic activity as a 

function of flexibility, it did suggest that gamma rhythms may be weaker in the high flexibility 

state (Figure 8d, right column). Interestingly, when combined with our other observations, we 

might expect incorrect, inflexible trials during the exploitation period to have some of the 

strongest gamma activity. These are trials where a rat chose incorrectly, despite a recent history 

of correct responses. Importantly, because we’ve shown that learning phase and gamma strength 

are related, we might expect a similar choice history pattern during the exploration phase to have 

weaker gamma band activity. These distinctions highlight the utility of contextualizing behavior 

when interpreting neural data.  

 

Reconciling VTE findings and contextualizing behavior 

There are several hypotheses about what VTE is and why it happens. Most of the initial reports 

claimed that VTE tended to happen just before or as rats learned a task (Gentry, 1930; 

Muenzinger, 1938; Muenzinger & Gentry, 1931; Tolman, 1926). Muenzinger (1938) and Gentry 

(1930) noted that, although they had assumed the pause and reorient behavior we now call VTE 

would primarily reflect active sampling of sensory stimuli, rats still showed VTE when sensory 

environments were the same and thus not useful in determining where to go for reward. This 

suggested that the behavior was not simply used to compare sensory information but may instead 

indicate comparison of past and present experience. Additionally, rats continued to VTE 

throughout their learning and training during difficult tasks, but they would typically stop after 

they had learned to consistently make simple sensory discriminations, often interpreted as having 

formed a habit (Gentry, 1930; Muenzinger, 1938; Tolman, 1948).  

In the context of more recent experiments, the repeated observation that VTE tends to occur just 

after new reward contingency or rule switch and decrease farther into blocks (Blumenthal et al., 

2011; Kidder et al., 2023; Meyer-Mueller et al., 2020), are in accordance with the early 

observations that VTE is linked to learning. The majority of modern research treats VTE as a 

marker of deliberation, but inconsistency in how VTE relates to choice outcome (George et al., 

2023; Kidder et al., 2021; Meyer-Mueller et al., 2020; Schmidt et al., 2013), suggests that what 

VTE represents or is used for may not have a unitary explanation (Goss & Wischner, 1956). This 

possibility was reported in Gentry (1930), who showed that some rats seemed to VTE consistently 

while never learning proficiently, while others performed exceptionally well, but did not exhibit 

the typical decline in VTE rates. Her characterization was that VTE consistently associated with 

poor performance could indicate never having truly learned the task, while VTE during high 

performance marked continued deliberation. Tolman similarly claimed that VTE during difficult 

sensory discriminations may persist because comparison and indecision persist, while its increase 

during initial learning on easy sensory discriminations is because rats concurrently learned which 

sensory stimuli (visual/auditory) to associate with reward, as well the discriminative reward 

contingency (black vs white/toward tone vs away from tone) itself (Tolman, 1948). 

Separating VTE into subtypes based on context may help explain some of the idiosyncrasies in 

how different studies have reported on and conceptualized VTE. For example, silencing the 

nucleus reuniens has been shown to increase VTE during inflexible periods of perseverative 

responding, leading to incorrect choices (Stout et al., 2022). In our framework, we would interpret 

VTE in this context as indicative of uncertainty instead of deliberation. Similarly, Schmidt et al., 
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(2013) reported that VTE typically led to an error and was most likely on difficult trials – in other 

words, during times when uncertainty was likely high. However, they also reported VTE during 

periods of high task proficiency and after errors, times when animals could deliberate based on 

prior experience and understanding. These situations and our demonstration that VTE could be 

separated based on outcome and flexibility score suggest that future work should take steps to 

determine whether VTE reflects a deliberative behavior or one driven by uncertainty.  

 

Neural manipulations and VTE 

Several mPFC (Kidder et al., 2021, 2023; McLaughlin & Redish, 2023; Schmidt et al., 2019) and 

hippocampus (Bett et al., 2012, 2015; Blumenthal et al., 2011; Hu & Amsel, 1995; Meyer-Mueller 

et al., 2020) manipulation studies seem to agree that manipulating these regions is unlikely to 

increase VTE rates. Curiously, manipulating structures that connect these regions (e.g. the 

amygdala, perirhinal cortex, and nucleus reuniens) does increase VTE (Kemble & Beckman, 1970; 

Kreher et al., 2019; Stout et al., 2022). One hypothesis for why this may be is that both the 

hippocampus and mPFC are specifically involved in enabling deliberative VTE behavior. When 

one of these structures isn’t functioning as usual, the deliberation process may fail altogether. 

Mechanistically, it may be that sequential hippocampal activity generates an array of possible 

options (Johnson & Redish, 2007; Kay et al., 2020) while the mPFC evaluates those options prior 

to choices (Hasz & Redish, 2020b; Redish, 2016; Schmidt et al., 2019; Tang et al., 2021; Zielinski 

et al., 2019). If either the representation of possibilities in the hippocampus or evaluative process 

in the mPFC fails to occur, VTE may become less likely to happen. In contrast, if both processes 

proceed as they normally would locally, but are unable to coordinate correctly because of 

interruptions in connecting circuitry, VTE may be just as likely – if not more likely to occur – but 

related to uncertainty instead of deliberation. 

 

Neural activity in the mPFC  

Intriguingly, not only are our behavioral measures self-consistent and useful for defining latent 

behavioral contexts, they are also consistent with neural measures of mPFC activity. Our analysis 
of mPFC field potentials shows that different contextual components are associated with different 
activity states. The primary goal of these analyses was to provide further validation for our 
methods of parceling behavior and the measurements we used. Nevertheless, our results provide 
some insights into how mPFC rhythms reorganize with respect to behavior. As an example, two 
of the strongest relationships we see are higher mPFC theta and beta on VTE trials compared to 
non-VTE trials (Figure 8, 2nd row, left and middle columns). This is in line with results showing 
hippocampal activity changes during VTE (Amemiya & Redish, 2018; Johnson & Redish, 2007; 

Miles et al., 2021; Papale et al., 2016; Schmidt et al., 2019) and the evidence for  hippocampal-
prefrontal interactions during VTE (Hasz & Redish, 2020b; Schmidt et al., 2019; Stout et al., 

2022). The beta rhythm, specifically, has recently been shown to synchronize the mPFC and 
hippocampus via brief activity bursts in the nucleus reuniens during an odor sequence memory 
task (Jayachandran et al., 2023), and our result provides further evidence that beta-rhythmic 
activity in the mPFC component of this tri-partite circuit is crucial for memory-guided decision-
making.  
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Much like we treat VTE as a binary event – it either happens or does not – trials can either be 
correct or not. Despite the strong evidence for broad spectral changes in the mPFC on VTE trials 
compared to non-VTE trials, we do not see particularly strong evidence of differences in any band 
based on trial outcome. There is perhaps some hint that gamma is weaker on correct compared to 
incorrect trials, but it could be that latent factors play a larger role in modulating mPFC rhythms 
relative to choice accuracy. 

The broadest latent context change we define – the shift from strategy exploration to exploitation 
after the learning point – is more clearly accompanied by changes in gamma rhythms (Figure 8, 
3rd row, right column). This is in line with prior work in rodents showing that prefrontal explore-
exploit relationships are impaired if the mPFC is inactivated (Birrell & Brown, 2000; Laskowski 

et al., 2016; Ragozzino et al., 1999, 2003), as well as studies of mPFC units in rats showing that 

both individual units (Jung et al., 1998; Rich & Shapiro, 2009) and population level encodings 

(Guise & Shapiro, 2017; Hasz & Redish, 2020a; Maggi & Humphries, 2022; Malagon-Vina et al., 

2018) track strategy switches. An alternative explanation could be that subjects were more likely 
to be correct during exploitation periods, and gamma during choices was related to expected 
choice outcome. If this were the case, we would expect to see the same pattern of increased 
gamma-rhythmic activity on correct compared to incorrect choices, but, as mentioned, we see a 
trend in the opposite direction (Figure 8, 1st row, right column). This suggests that it is not 
expected outcome driving the difference in gamma fluctuations during explore and exploit trials. 
In support of these observations, recent work in humans with intracranial EEG recordings has 

shown that there are changes in gamma band activity during the transition between exploration 

and exploitation (Domenech et al., 2020). 

Another latent context measure is flexibility magnitude, which, according to our data, may also 
be associated with changes in the gamma rhythm (Figure 8, 4th row, right column). When split 
into high and low flexibility trials, gamma has a very similar distribution to gamma differences 
related to trial outcome. These two measures could very well be related, as both flexibility and 
choice accuracy peak around learning points, but there is not as clear a relationship between 
flexibility and learning phase. Flexibility can be quite variable during exploration as different 
strategies are tested (e.g., around trials 40 and 60 in Figure 5A), and flexibility also typically 
transitions quickly from high at the beginning of the exploit period to low within several trials 
(Figure 5B). While all of these measures likely have some individual relationship to gamma, it’s 
also likely that those relationships are not independent of one another, and it remains to be seen 
how they covary. Still, our results suggest that both latent and explicit behavioral measures appear 
to have distinct associations with gamma in the prefrontal cortex. 
 

Conclusion 

This study characterized learning, decision-making behaviors, and mPFC activity during a spatial 

set shifting task. By quantifying changes in strategy use, we proposed a new way of calculating 

behavioral flexibility and show that flexibility scores aligned with increases in decision-making 

accuracy and VTE-rates that accompanied learning. At other times, relationships between these 

patterns broke down. Examining trials with atypical behavioral patterns enabled reinterpretation 

of similar looking behaviors as cognitively distinct. Finally, we showed that these measures, 

particularly VTE and learning phase, show distinctive relationships to mPFC rhythms. 
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4 Methods 

Subjects, apparatus, training protocol, and behavioral task 

Food restricted (85% of body weight) Long Evans rats (n = 13, Charles River Laboratories) were 

trained to perform a spatial set shifting task. Sessions were run on an elevated plus maze (black 

plexiglass arms, 58 cm long x 5.5 cm wide, elevated 80 cm from floor), with moveable arms and 

reward feeders controlled by custom LabView 2016 software (National Instruments, Austin, TX, 

USA) that tracked the rat and automatically raised and lowered arms based on positions recorded 

by a SONY USB web camera (Sony Corporation, Minato, Tokyo) acquiring frames at 

approximately 35 Hz. Rats were initially habituated to handlers and the maze for however long it 

took them to comfortably interact with handlers, forage for pellets on the maze, and habituate to 

maze movement and noise (several days to one week).  

Task training started with a forced choice paradigm, where rats learned the trial structure, 

consisting of leaving its pseudo-randomly chosen <North= or <South= starting arm, then 
navigating to an <East= or <West= arm for a 45 mg sucrose pellet reward (TestDiet, Richmond, IN, 

USA). Initially, rats completed 5 to 7 trials that forced them to either alternate between reward 

sites or return repeatedly to the same East or West location, regardless of their starting point. This 

number was increased until rats could do 10 trials of each reward contingency in under 45 

minutes, at which point they were given a free choice version of the same task.  

In the free-choice training version, we did not change start arms on error trials until rats made a 

certain number of correct choices, and initially started with a low choice accuracy criterion for 

switching between blocks (typically around a 70% success rate in an 8 to 10 trial window). As rats 

started completing all reward contingencies (alternate, go east, go west), we increased the 

criterion for success and minimum number of trials per block, and decreased the number of 

correct trials needed before errors no longer influenced start arm switches. This procedure was 

tailored to each rat until it could complete 4 reward contingencies (two alternation blocks and two 

place blocks; one East, one West) in less than 150 trials, with start arms pseudo-randomly chosen 

for all trials. We also ensured that two alternation blocks did not occur back-to-back.  

Testing sessions followed the same trial structure as the final training sessions. As mentioned 

above, start arms were <pseudo-random=. This was done to ensure that between 50 – 60% of trials within 

15 trial stretches had start arm switches. Doing so increased the number of switches compared to what 

you’d expect from random draws, while slightly decreasing the number of long (4 to 10 trial) sequences 

where the start arm stayed the same, and eliminating sequences without a switch that were longer than 

that. For this dataset, all rats completed three switches, though not all completed the 4th block. A total of 

40 sessions from 13 rats were analyzed with all but one rat contributing at least two sessions.  

Position tracking and VTE identification 

We identified VTEs in much the same way as Kidder et al. (2023). Briefly, we took the videos that 

tracked coarse body location during the task and used DeepLabCut (DLC) version 2.2 (Mathis et 

al., 2018; Nath et al., 2019) to identify the rats’ heads. We started with the same model trained in 
Kidder et al. (2023) and retrained a new iteration with additional labeled data from the set shifting 

experiments. Each training attempt used NVIDIA GEFORCE GTX 1080 GPU with 500,000 

iterations. Trajectories with vicarious trial and error (VTE) were detected by projecting the 
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position data into principal component (PC) space and clustering the PC-representations of the 

trajectories with hierarchical agglomerative clustering. Before projection, all trajectories were 

aligned and standardized to the same starting and ending positions and interpolated (or linearly 

subsampled, if necessary) to have the same number of points. Visual inspection of the clustering 

in PC space naturally formed two clouds in low dimensional plots, and distance-based 

dendrograms cut to give two clusters separated trajectories with VTE from non-VTE trajectories, 

though with some errors.  

To mitigate the errors, we reassigned certain trajectories initially not identified as VTE but with 

x-positions that crossed a certain threshold into the VTE category, and used the combination of a 

low z-ln(idphi) measure (Bett et al., 2012; Blumenthal et al., 2011; McLaughlin & Redish, 2023; 

Papale et al., 2012; Schmidt et al., 2013, 2019; Stout et al., 2022) and a failure to cross lower x-

position boundary to reassign any VTEs that may have been mistakenly identified. Informal 

inspections of randomly sampled data subsets after classification suggest that this method is 

between 80% and 90% accurate, which is in-line with supervised classification methods and near 

the threshold for interrater agreement (Miles et al., 2021). 

Estimating strategy likelihoods, learning points, and flexibility scores 

We adopted the procedure from Maggi et al. (2023) to estimate explicitly modeled strategy 

likelihoods, trial-by-trial, based on choice history and a recency-weighted decay factor to account 

for the inherent non-stationarity in behavior associated with strategy switching.  Minor changes 

to strategy templates allowed us to model allocentric versions of the strategies instead of the 

egocentric versions originally used; we simply added a column to the data processing input that 

parsed <East= and <West= choices instead of <Left= and <Right= (though the algorithm can easily 
process both types of reference frame if both types of input are given). As in the original report, 

we used 0.9 as the parameter controlling the strength of the recency weighting. One addition we 

made was to add several randomly permuted trials to the beginning of sessions prior to processing 

with the algorithm. This dampened some of the algorithm’s initial large swings in likelihood 
estimates that were due to limited trial history. Further, we smoothed likelihood timeseries with 

a 5-trial Gaussian window to increase the reliability of learning point identification. As suggested 

in the original paper, we identified learning points as the trial when the target strategy became 

the most likely.  

Our rationale for calculating flexibility scores from changes in strategy likelihood is based on the 

notion that decision-making patterns shifting to become consistent with a different strategy is the 

sign of flexible behavior in a set shifting task. Thus, for each trial, the flexibility score is the 

absolute difference in strategy likelihoods from trial t-1 to trial t, summed across strategies. For 

each session, this value is normalized by median absolute deviation (robust Z-score) because 

values tend to deviate more dramatically in the positive than negative direction, but the results 

remain the same when a normal, standard deviation-based Z-score is used.  

Flexible periods, used for testing whether there were multiple VTE types, were defined based on 

three criteria. First, trials on either side of the learning point were automatically considered 

flexible, regardless of their flexibility score. Trials that were three trials before the end of a block 

were automatically not considered flexible, unless they were within one trial of the learning point. 

Third, any remaining trials in the top 60% of flexibility scores were considered flexible, while any 
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in the bottom 40% of flexibility scores were not considered flexible. When analyzing choice 

accuracy on VTE trials during flexible compared to inflexible periods, we excluded sessions where 

there were three or fewer trials of either type. Results for this analysis did not change if we 

changed the ratios of flexible and inflexible VTEs that could be included (e.g., based the third 

criterion on flexibility score instead of percentile), but this often changed the proportion of data 

we were able to use. 

Statistical quantification 

Critical values were set at 0.05. When sample sizes were large, and distributions looked nearly 

normal, two-tailed T-tests were used. If making within session comparisons, one-sample tests of 

differences were done, comparing the empirical distribution to what would be expected for a 

distribution with 0 mean. When distributions were strongly skewed, we performed two-tailed 

Wilcoxon rank sum tests if the data were not paired, and two-tailed Wilcoxon signed rank tests 

when they were paired. Learning point aligned choice accuracy and flexibility score data were not 

subjected to formal statistical testing – instead, 95% confidence intervals were estimated as if they 

were from a normal distribution (using Z-values). These curves are presented as averages and 

confidence intervals across sessions (n = 40), but looked nearly identical when comparing across 

subjects (n = 13). 

Learning point aligned VTE <rasters= and a peri-learn point VTE rate averages suggested that 

VTEs likely aligned to learning as well, but to test this we used hierarchical bootstrapping 

(Saravanan et al., 2020). This helped safeguard results from bias introduced by uneven data 

collection between subjects while also acknowledging that multiple measurements from 

individuals were not independent. It also allowed us to create rate distributions out of binary data. 

Subjects were sampled randomly with replacement enough times to match the total number of 

subjects in the dataset (n = 13), then, for each subject, a certain number of blocks was also 

randomly selected with replacement (8 for learning point and 6 for block switch aligned sequences 

of VTE data – equivalent to two sessions of data). Average VTE rates were calculated for these 

samples and smoothed with a 5 trial Gaussian window across trials.  Distributions were formed 

by repeating this procedure 1000 times. Significance was determined by asking which trials had 

more than 97.5% of their (Z-scored) iterations above 0. Results were tested without smoothing, 

using larger smoothing windows, with different numbers of iterations, using median absolute 

deviations instead of standard deviation Z-scoring, using shorter and longer sequences of trials, 

and across many random seeds, all leading to the same conclusion. The only thing that sometimes 

changed was the number of trials surrounding the learning point that show significantly elevated 

VTE rates.  

Electrophysiology 

A subset of the rats (n = 3) had neural recordings from the mPFC. Recordings were collected from 

custom-built tetrode micro-drives with Intan headstages and Open-Ephys acquisition systems, as 

described in (Kidder et al., 2021; Miles et al., 2021). All mPFC recordings were localized to the 

prelimbic cortex (Figure 7A), between approximately 3.7 and 4.3 mm anterior to bregma.  

Recording windows analyzed were determined by finding the choice point, identified as the point 

closest to the center of the platform for each trajectory, and then extending four seconds before 
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and after that point. For each window, time-frequency spectrograms were calculated using 

Chronux’s mtspecgramc function (Bokil et al., 2010), using a two second window, 100 msec 

overlap, 7 tapers, and a bandpass window of 0.5 to 100 Hz, generating a time-frequency matrix 

for each decision. After converting power values to decibels, we Z-scored each frequency 

component along the time dimension for each trial to normalize the data (see Figure 7C to see 

the average representation of this matrix). Since we were working with a priori frequency bands 

and were only interested in decision-based activity, we averaged activity across each frequency 

band from -1 second before to 1 second after the decision point, meaning each trial gave a single 

average value for theta, beta, and gamma band activity.   

We analyzed field potential activity in relation to different behavioral measures by creating 

hierarchically sampled bootstrap distributions (Saravanan et al., 2020) for specified pairs of 

conditions (Figure 8). Each measure had a reference trial type, which we called the condition 

trial, and an opposing trial type called the comparison trial. For example, trials could either be 

correct (a condition trial) or incorrect (a comparison trial). This allowed us to perform within-

session, paired comparisons for each pair by subtracting the activity averaged across all sampled 

trials in the comparison group from the condition group. For each hierarchical sample, we used 3 

individuals, 4 sessions, and 40 trials from each group (condition and comparison), all sampled 

with replacement. Thus, each difference is the average of activity from the 40 trials from the 

condition group minus the average activity of the 40 trials from the comparison group, and a 

member of the overall distribution is the mean of these differences across the 12 sessions drawn 

for that sample iteration. This was repeated 1000 times to generate the distributions shown in 

Figure 8.  
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