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ABSTRACT10

A key challenge in the analysis of microbiome data is the integration of multi-omic11

datasets and the discovery of interactions between microbial taxa, their expressed12

genes, and themetabolites they consume and/or produce. In an effort to improve the13

state-of-the-art in inferring biologically meaningful multi-omic interactions, we sought14

to address some of themost fundamental issues in causal inference from longitudinal15

multi-omics microbiome data sets. We developed METALICA, a suite of tools and tech-16

niques that can infer interactions betweenmicrobiome entities. METALICA introduces17

novel unrolling and de-confounding techniques used to uncovermulti-omic entities that18

are believed to act as confounders for some of the relationships that may be inferred19

using standard causal inferencing tools. The results lend support to predictions about20

biological models and processes by which microbial taxa interact with each other in21

a microbiome. The unrolling process helps to identify putative intermediaries (genes22

and/or metabolites) to explain the interactions betweenmicrobes; the de-confounding23

process identifies putative common causes that may lead to spurious relationships24

to be inferred. METALICA was applied to the networks inferred by existing causal dis-25

covery and network inference algorithms applied to a multi-omics data set resulting26

from a longitudinal study of IBD microbiomes. The most significant unrollings and27

de-confoundings were manually validated using the existing literature and databases.28

Importance: We have developed a suite of tools and techniques capable of infer-29

ring interactions betweenmicrobiome entities. METALICAintroduces novel techniques30

called unrolling and de-confounding that are employed to uncover multi-omic entities31

considered to be confounders for some of the relationships that may be inferred us-32

ing standard causal inferencing tools. To evaluate our method, we conducted tests33

on the Inflammatory Bowel Disease (IBD) dataset from the iHMP longitudinal study,34

which we pre-processed in accordance with our previous work.35

KEYWORDS: Longitudinal microbiome analysis, Multi-omic integration, Causal36

inference, unfolding, de-confounding.37

BACKGROUND38

Microbiomes are communities ofmicrobes inhabiting an environmental niche. Metage-39

nomicsdata sets contain sequenced reads fromsamples of amicrobial community and40
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are used to infer a detailed abundance profile of themicrobial taxa present in that com-41

munity (1, 2). More recently, additional types of biological data are being generated42

from microbiome studies, including but not limited to:43

• Metatranscriptomics and Metaproteomics, which helps survey the expression of44

the totality of genes and proteins in the microbial community (3);45

• Metabolomics, which helps profile the concentrations of the entire set of small46

molecules (metabolites) present in the microbiome’s environmental niche (4);47

• Metaresistomics, which helps to capture the repertoire of antibiotic resistance48

genes present in the microbial community (5); and49

• Host transcriptomics, which provides information about the expression levels of50

the host genes (6).51

Such multi-omic data sets are critical for a more in-depth and functional understand-52

ing of microbial communities. They also shed light on some of the interactions be-53

tween the entities in the microbiome (7). Thus, the study of microbial communities54

offers a powerful approach for inferring interactions within the community (8, 9), their55

impact on the host environment (5), and their role in disease and health (10, 11).56

Amajor bioinformatic challenge is the “integrative” analysis ofmulti-omic data sets57

from microbiomes (12). Most multi-omic studies focus on a separate analysis of each58

omic data set without building a unified model (13). There have been some attempts59

(14, 15, 16, 17, 18) to build tools and develop techniques to facilitate an integrative60

analysis (19, 20). Significant advances were recently made on analyzing multi-omic61

longitudinal data sets by Ruiz-Perez et al. (21). Questions related to reproducibility,62

flexibility, interpretation, and biological validity continue to be challenges in the area63

of multi-omic microbiome analysis (21, 22, 23).64

Deep Learning approaches for integrating multi-omics (24, 25) have also been de-65

veloped, but they are either hard to interpret or limited to predicting just one of the66

omic profiles. Additionally, the high computational cost of deep learning further pre-67

vents these models from being useful at providing insights into the interplay between68

the different omic entities. Partial Least Squares models have also been used to facili-69

tate this integration (26). Their limitations depend on the underlying data generation70

model, and are generally prone to produce spurious results when applied to high-71

dimensional data sets (27).72

Given that microbiomes are inherently dynamic, longitudinal multi-omic data sets73

are important to fully understand the complex interactions that take placewithin these74

communities (28). Many attempts have been made to analyze data from longitudinal75

studies (17, 18, 29); however, these approaches do not attempt to study interactions76

between taxa. An alternative approach involves the use of dynamical systems such as77

the generalized Lotka-Volterra (gLV) models (30, 31). As was noted by Ruiz-Perez et al.78

(21), the large set of parameters in these probabilistic models diminishes their utility79

for use in inference.80

In previous work (32, 21), we have described sophisticated methods to model and81

analyze data from longitudinal microbiome studies using Dynamic Bayesian Networks82

(DBNs). Our approach involved starting from next generation sequencing data and83

other omics measurements. Every attempt was made to ensure that the resulting net-84

works had biologically meaningful edges andwere not a result of overfitting. However,85

even if an edge was directed from an entity measured at a previous time point to an86

entity measured at a later one, it did not guarantee that it represented a true and di-87

rect causal interaction. It could be possible for the edge to be merely the result of a88

statistical correlation caused by an indirect causal relationship or model overfitting.89

Microbiomes are complex environments with many subtle relationships. How-90
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ever, causal discovery relies on noisy data from error-prone technologies, and has91

to contend with a host of hidden confounders that may be hard or impossible to iden-92

tify, let alone be measured. The jump to infer causality is a natural next step in under-93

standing multi-omic interactions, and the lack of research in this area is striking. Most94

of the causal microbiome literature focuses on the causal impact of the microbiome95

on health or disease, but not on the causal interactions between these microorgan-96

isms (33, 34, 35, 36). This shortcoming was addressed in our previous work (10, 11).97

Finally, another major challenge in building true models of biological interactions lies98

in developing methods to validate them and in providing confidence measures.99

METHODS100

Overview. In this section, we have considered three network learning methods,101

Dynamic BayesianNetworks (DBNs) using PALM (21), TETRAD (37, 38, 39), and Tigramite102

(40), and applied them to a rich, multi-omics data set. We then describe unrolling, a103

novel method to extract well-supported, biologically-relevant conjectures on entities104

that appear to mediate complex relationships between microbes in a microbiome. Fi-105

nally, we describe de-confounding, another novel method to identify network edges for106

which there is strong support for conjecturing that they are spurious, i.e., not causal.107

The twomethods, unrolling and de-confounding constitute the heart of the METALICA108

(MicrobiomE Temporal AnaLysIs using CAusality) package presented here.109

In what follows, we describe the experiments that were performed. We start by110

describing the data sets used for the experiments and the preprocessing of the data.111

Nextwediscuss the theory behind the first of the network learningmethods, i.e., DBNs,112

and follow it up with the constraining structures used and the procedure to create a113

collection of DBNs with the help of PALM. This is followed by a brief description of114

two well-known methods, TETRAD and Tigramite, to create causal networks for the115

above data set. Finally, we describe the methods of unrolling and de-confounding to116

evaluate and compare the causal discoveries made by all the three network learning117

algorithms.118

Data sets. To test the three proposed methods, the Inflammatory Bowel Disease119

(IBD) cohort from a study that included 132 individuals across five clinical centers was120

used (18). During a period of one year, each subject was profiled (biopsies, blood121

draws, and stool samples) every two weeks on average. This yielded temporal pro-122

files for the metagenomes, metatranscriptomes, metaproteomes, metabolomes and123

viromes across all subjects. Additionally, for each subject, host- and microbe-targeted124

humanRNA sequencingwas yielded frombiopsies collected at initial screening colonoscopy125

sampled from two sites in the gut (ileum and rectum) to obtain the host transcriptomic126

profile. All data are fully described and available at https://ibdmdb.org.127

Preprocessing the data. We used the processed version of the IBD dataset gen-128

erated by our previous work (21), which provided temporally aligned and unaligned129

versions of metagenomics, metatranscriptomics, metabolomics, and host transcrip-130

tomics data. As explained in Ruiz-Perez et al. (21), the data were normalized and cen-131

tered, the time series were smoothed, and then temporally aligned. For completeness,132

a summary of this process is described here. The different omics data types were133

processed separately. First, the taxon, metabolite, and gene abundance values were134

normalized to make each type separately add up to 1 for each subject, thus express-135

ing each abundance value as a fraction of the whole metagenome, metabolome, and136

metatranscriptome. Then, the intensities of the metabolites and genes were scaled137

to match the mean of the taxa because the larger number of genes and metabolites138

hadmade their average valuesmuch smaller. Metabolites without anHMDB ID orwith139
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near-zero variance over the originally sampled time points were removed. Any sample140

that had less than five measured time points in any of the multi-omics measurements141

was also removed. The multi-omic time series were then smoothed using B-splines to142

deal with irregular sampling rates and missing time points. Then, temporal alignment143

of the time series data from individuals was performed as described in Lugo-Martinez144

et al. (32). This was done because they assumed that even though the underlying145

biological process of the different subjects may be the same, the speed at which the146

processes occur in each patient could be different. These temporal alignments use a147

linear time transformation function to “warp” one time series into a common, repre-148

sentative sample time series used as the “reference” (32), which was selected as fol-149

lows for each omics data: All possible pairwise alignments were generated between150

them and the time series that resulted in the least total overall error in the alignments151

was selected as the reference. Abnormal and noisy samples from the resulting set of152

alignments were filtered out. Given an individual’s warped/aligned time series for a153

specific omic type (represented by a transformation), the other multi-omics data were154

also aligned using the same transformation. The resulting data set comprised of 51155

sets of multi-omics time series, one set per subject. We also further restricted our-156

selves to just the Crohn’s disease patients for some analyses, which after the same157

filtering as described above, resulted in 11 patients.158

Due to the relatively small number of time points in each time series, new datasets159

were generated by simply increasing the sampling frequency from each smoothed160

time series. Thus, a time series with a sampling rate of seven days was created. The161

three preprocessed omics data were then separated, resulting in sets denoted by Ô, Ç,162

andÍ, representing the data involving just taxa, genes, and metabolites, respectively.163

They were also combined to generate different subsets and denoted in a natural way164

by concatenating the individual symbols. The resulting datasets were the temporally165

aligned and unaligned versions of the following: {Ô, Ç, Í, ÔÇ, ÔÍ, ÇÍ, ÔÇÍ}.166

In an effort to increase the number of biologically interpretable results and to get167

the most significant validations of the interactions, the attributes that were cataloged168

in KEGG (41) were used. This resulted in the selection of 27 bacterial species, 34 genes,169

and 19 metabolites, in addition to one so-called “clinical” variable (sampling time, rep-170

resented by the week during which the sample was obtained). The process described171

above is generalizable, meaning that more omics data sets, metadata, and clinical vari-172

ables can be added with relative ease.173

Dynamic Bayesian Networks. DBNs are a variety of Bayesian Networks (BNs)174

designed to represent temporal connections between variables as their edges repre-175

sent lagged dependencies. DBNs can be used to conduct time-varying probabilistic176

inference and causal discovery. They were developed to unify models such as Kalman177

filters, autoregressive–moving-average models (ARIMA), and hidden Markov models178

(HMMs) into a general probabilistic model and inference mechanism (42, 43), and are179

conceptually similar to Probabilistic Boolean Networks (PBN) (44). DBNs can model180

the types of relationships supported by the above methods, and can capture even181

more complex relationships with both discrete and continuous variables conditioned182

on either temporal and non-temporal variables.183

Thiswork, focuses on a version ofDBNs called Two-Timeslice BN (2TBN) (45), which184

finds relationships between variables over adjacent time steps. Let X t
i
denote the185

value of variable Xi at time t . It can be calculated from the internal regressors if the186

values of the other variables are known at the previous time point, t −1. We employed187

a tool called PALM, which uses a multi-omics DBN model proposed by Ruiz-Perez et188

al. (21). PALM integrates different omics datasets with flexible structure constraints.189
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In particular, we also used their proposed Skeleton and Augmented constraints. These190

constraints are described below in the “Constraining structures” section. Idealized191

DBN construction methods require an exponential-time exhaustive search using all192

subsets of nodes. However, it is possible to construct DBNs more efficiently by lim-193

iting the number of “parents” for each node (i.e., bounding the number of incoming194

edges for each node).195

Constraining structures. The above input was fed into PALM (21).The set of al-196

lowable edges was constrained by providing a Skeleton structure as input to the DBN197

construction step as described by Ruiz-Perez et al. (21). These constraints, which are198

provided in the form of a matrix, only allow edges between certain types of nodes,199

greatly reducing the complexity of searching over possible structures and prevent-200

ing over-fitting. Specifically, intra edges (i.e., edges within same time point) from taxa201

nodes to gene (expression) nodes and from gene nodes to metabolites (concentra-202

tion) nodes were allowed. All other interactions within the same time point (for exam-203

ple, direct gene to taxa) were disallowed. In addition, inter edges (i.e., edges between204

nodes from adjacent time points) were only allowed from metabolites to taxa nodes205

in the next time point, and self-loops, i.e., edges from node X t
i
to X t+1

i
for all types of206

nodes. (Note that, whenever it is obvious by the context, random variables and the207

nodes in the networks that represent them are not differentiated.) The restrictions in208

the Skeleton reflect the basic ways the different entities interact with each other, i.e.,209

taxa express genes that they carry on their genomes; these, in turn, are involved in210

metabolic pathways for the synthesis of metabolites; subsequently the metabolites211

impact the growth of taxa (in the next time slice).212

A less constrained framework referred to as the Augmented skeletonwas also used213

to produce an alternative set of networks. Unlike the original Skeleton, the Augmented214

framework also allows intra edges from taxa tometabolites to account for caseswhere215

noise or other issues related to gene-profiling may limit our ability to indirectly con-216

nect taxa and the metabolites they produce. All other edges from the skeleton were217

retained.218

Computing DBNs using PALM. DBNs were learned using PALM for all subsets of219

the omics datasets from Section 2.2 (i.e., {Ô, Ç, Í, ÔÇ, ÔÍ, ÇÍ, ÔÇÍ}), for several dif-220

ferent number of allowable parents ({3, 4, 5, 6}), for temporally aligned and unaligned221

datasets, and for the Skeleton and Augmented constraint frameworks, thus resulting222

in a total of 7 × 4 × 2 × 2 = 112 potential DBN networks. A total of 100 networks were223

learned by subsampling subjects with replacement (i.e., 100 bootstrap repetitions) for224

each model. The networks were then combined, averaging the regression coefficient225

(weight) of the edges as long as they appeared in at least 10% of the repetitions. Each226

edge was also labeled with the bootstrap score or support (proportion of times that227

edge appears). Each repetition was set to run independently on a separate processor228

using Matlab’s Parallel Computing Toolbox.229

In order to explore causal inferencing, two other well-known methods (TETRAD230

and Tigramite) (37, 38, 39, 40) were applied on our data sets. Note that the exact same231

set of nodes were used as those in the two-time-slice DBN, meaning that every mi-232

crobiome quantity (taxon abundance, gene expression, metabolite concentration) is233

represented by two nodes, one from a “previous” time instant and one from the “cur-234

rent” time instant. Since all the networks were on the same set of nodes, it facilitates235

the comparison between all three methods. We also note that TETRAD and Tigramite236

do not learn based on a global score such as likelihood, but rather on conditional in-237

dependence tests.238
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CausalNetworks using the TETRADSuite. The tsGFCI (SVAR-GFCI) (46) algorithm239

is implemented in the TETRAD package (37, 38, 39), for which the wrapper PyCausal240

(47) was used. The tsGFCI algorithm is a version of tsFCI (48) and GFCI, while tsFCI is,241

in turn, the evolution of FCI (49). FCI is in turn a modification of PC-stable, which was242

designed by modifying PC, an adaptation of the SGS algorithm (50).243

Algorithm tsFCI (SVAR-FCI) is based on a modified version of the FCI algorithm.244

Briefly, it uses the direction of time to orient interactions and enforces repeating struc-245

tures for both adjacencies andorientations basedon the stationarity assumption. Since246

the hybrid score-based GFCI is usuallymore accurate in finite samples than FCI, similar247

modifications were made in the development of tsGFCI. In this case, a greedy initial248

adjacency search is used, enforcing time order and repeating structures, and scores249

the structures using BIC (51).250

For each significance threshold α ∈ {0.0001, 0.001, 0.01, 0.1}, different networks251

were learned with the PositiveCorr CI test, the FisherZScore network score, and for252

each combination of omics datasets and alignment. A total of 4 × 7 × 2 = 56 experi-253

ments were performed with TETRAD. Each TETRAD experiment was repeated with N254

bootstrapping repetitions. Here, N = 10 was used.255

Causal Networks with Tigramite. For the discussion below, the following nota-256

tion is needed. Let P aG (X ) represent the parents of node X in network G . When257

the context is clear, G is dropped and simply denoted as P a (X ). Let P ap (X ) denote258

the p “strongest” parents. Independence of A and B conditioned on C is denoted by259

A ⊥⊥ B
�

�C . Tigramite (40) implements the PCMCI algorithm, which works in two stages260

– conditional selections followed by causal discovery.261

1. Conditional selections: Amodified versionof the PC-stable algorithm (adapted262

for time series and with the skeleton constraints) is used to compute a set of263

variables that are inferred to have a causal effect on each node X . It obtains264

the set of parents, P aG (Xi ), estimated from the data (which may be superset265

of the true set) for all variables Xi , i = 1, . . . , n. This is achieved as follows. For266

every variable, the set of parents are initialized to all allowable parents. Then267

conditional independence tests are applied for each edge, (X t ′

i
,X t

j
), using con-268

ditioning sets of increasing size, removing the edge as soon as a test fails. (Note269

that, as per our constraints, t ′ = t or t ′ = t − 1.) In each case, the null hypothe-270

sis states that the two variables at the endpoint of the edge being considered271

remain dependent even when conditioned on an appropriate set of size p ≥ 0,272

as stated below:273

H0 : X
t ′

i 6⊥⊥ X t
j

�

�S , for any S ⊆ P a (X t
j ) \ {X

t ′

i }with
�

�S
�

� = p . (1)274

The rejection of the null hypothesis H0 requires a significance threshold α . All275

possible sets S ⊆ P a (X t
j
) \ {X t ′

i
} with cardinality p are considered such that276

1 ≤ p ≤ qmax .277

2. Causal discovery stage: Next the MCI algorithm is applied, which employs a278

more stringent conditional independence test, for each surviving edge X t ′

i
→279

X t
j
, retaining it if and only if280

X t ′

i 6⊥⊥ X t
j

�

�P a (X t
j ) \ {X

t ′

i } ∪ P ap (X t
j ). (2)281

Since Tigramite assumes that all the data points belong to a single subject, bootstrap282

cannot be implemented in the usual way of subsampling subjects with replacement.283

Instead, a different network was learned for each subject, and the resulting networks284

were then combined. The percentage of times that a given edge appears in all the285
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Longitudinal causal multi-omic network inference

different networks was annotated in the edge, together with the averaged cross-link286

strength. Different networks were learned for different significance threshold values,287

α ∈ {0.0001, 0.001, 0.01, 0.1}, for each CI test available (GPDC, CMIknn, ParCorr) (40),288

and for each omics dataset. A total of 4 × 3 × 7 × 2 = 168 experiments were performed289

with Tigramite.290

The following sections introduce the two causal network analysis techniques in291

METALICA, which will be applied to the networks learnedwith themethods introduced292

in Sections 2.6 – 2.8 using DBNs, TETRAD, and Tigramite.293

Unrolling. Typical algorithms for network learning and analysis fail to elucidate294

the actual reasons why two entities may be causally related to each other. An impor-295

tant challenge inmicrobiome analysis is to usemulti-omics data to determinewhether296

and how two taxa may be interacting with each other. The term unrolling is hereby297

introduced as the process of determining the sequential steps by which two omic en-298

tities potentially interact with each other. This is done by learning independent net-299

works using different subsets of omics data. For example, by learning two separate300

networks with the Ô and the ÔÍ datasets, an interaction between two microbial taxa301

(as suggested by the former) can be surmised to be via metabolic intermediaries (as302

suggested by the latter).303

To make this more formal, let GØ = (VØ, EØ) represent the network learned using304

datasetØ, with vertex setVØ and edge set EØ. Now, an explanation by unrolling occurs305

if the following three conditions are true:306

1. There is an edge from Ti to Tj in GÔ, for some Ti ,Tj ∈ VÔ, i , j .307

2. There is no edge from Ti to Tj in the network GÔÍ.308

3. There exists some metabolite Mx ∈ VÔÍ such that edges (Ti ,Mx ) and (Mx ,Tj )309

exist in GÔÍ.310

If the above three conditions are met, the interaction between the taxa Ti and Tj is311

inferred to be happening through an intermediary metaboliteMx , which is “produced”312

by Ti and “consumed” by Tj .313

This process can be replicated by unrolling the edges of the network inferred from314

Ô with the one inferred from ÔÇ to discover the genes that are likely driving the inter-315

action between the same pair of taxa. Finally, the networks, GÔÇ from ÔÇ or GÔÍ from316

ÔÍ can be unrolled using themore detailed network,GÔÇÍ to find fully unrolled chains317

of the form Ti → Gy → Mx → Tj in GÔÇÍ with the capability to simultaneously explain318

the edgesTi → Tj in GÔ, the chainTi → Mx → Tj in GÔÍ, and the chainTi → Gy → Tj in319

GÔÇ.320

This step-wise unrolling is necessary to discover relationships with strong support321

from the data, where the network learned from Ô was unrolled in a network learned322

from some subset of {ÔÇ, ÔÍ, ÔÇÍ}. The number of the networks from {ÔÇ, ÔÍ, ÔÇÍ}323

that support the unrolling provide a degree of confidence for that unrolling. Further-324

more, the bootstrap score for each of the edges involved in the process is reported,325

together with an Overall Score that is computed as the product of the individual boot-326

strap scores of the two replacement edges. This unrolling approach is explained with327

concrete examples in the Discussion Section under Uncovering unrolled biological rela-328

tionships.329

De-confounding Most current causal inference techniques rely on the causal suf-330

ficiency assumption, which assumes that there are no hidden confounders (for any331

pair of variables) in the data. Confounders are variables that are either (a) unknown,332

(b) known but not measured, or (c) measured but not used in the analysis, but affect333

both the cause and the effect of at least one predicted interaction. Predictions of in-334

teractions with hidden confounders could be incorrect. The strength of a predicted335
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interaction may be enhanced or diminished when the hidden confounder is not used336

in the analysis. It is also possible that the predicted interactionmay introduce spurious337

edges when the hidden confounder is not used in the analysis.338

In general, the causal sufficiency assumption may be “too strong” and may be im-339

possible to verify, even with the availability of richer data sets that includemulti-omics340

data, thus making this assumption a key obstacle to performing accurate causal infer-341

ence (52). Going beyond the multi-omic domain, causal sufficiency is an assumption342

that does not strictly hold in most observational datasets, since it is difficult or impos-343

sible to include all possible explanatory variables in a study.344

A recent paper by Wang and Blei (53) attempts to perform de-confounding, which345

is the process of removing the effect of all confounders. They introduce the concept346

of “substitute confounders”, which attempts to account for the effect of all hidden con-347

founders in order to arrive at unbiased estimates of causal effects. Amajor limitations348

of their method is that the de-confounded interactions are not identified, which is im-349

portant for understanding the interactions. Furthermore, there may not be a one-to-350

one correspondence between the substitute confounder and some real confounder,351

meaning that one substitute confounder may be an approximation for a combination352

of several hidden confounders.353

In this work, a different approach for the task of de-confounding interactions is354

taken, inspired by the unrolling approach of Section 2.9. Independent networks are355

iteratively learned with different subsets of data with the hope that by adding a new356

omics layer it would be possible to identify some of the relevant intermediate entities357

and the corresponding interactions. As before, GØ = (VØ, EØ) represent the network358

learned using datasetØ, with vertex setVØ and edge set EØ. For example, by learning a359

networkwith the Ô and ÔÍdatasets, interactions can be de-confounded if the following360

three conditions are satisfied:361

1. There is an edge (Ti ,Tj ) in GÔ, i.e., (Ti ,Tj ) ∈ EÔ, for some Ti ,Tj ∈ VÔ, i , j .362

2. There is no edge from Ti to Tj in GÔÍ, i.e., (Ti ,Tj ) < EÔÍ, i , j .363

3. Edges (Mx ,Ti ) and (Mx ,Tj ) exist in GÔÍ, i.e., (Mx ,Ti ), (Mx ,Tj ) ∈ EÔÍ, i , j , for364

some metabolite Mx ∈ VÔÍ.365

Using this method, if the above conditions are satisfied for a pair of taxa, Ti and Tj ,366

the direction for the directed edge (Ti ,Tj ) ∈ EÔ is deduced and the inferred interac-367

tion between the two taxa is spuriously introduced by the metabolite Mx acting as a368

confounder. The metabolite can also be inferred to impact the abundance of both369

taxa,Ti andTj . One possible scenario is that the metabolite, Mx , could be an essential370

metabolite for both taxa, and its presence or absence from the data could make the371

abundance of the taxa to appear correlated.372

As with metabolites, this process can be repeated by de-confounding GÔ with373

edges from GÔÇ to discover genes/proteins that could confound a presumed causal374

connection between the taxa. In general, the networks learned using the Ô,Ç, and/or375

Í} datasets can be de-confounded by the networks learned using one or more of the376

datasets from {ÔÇ, ÔÍ,ÇÍ, ÔÇÍ}. Similarly, networks learned using one of ÔÇ, ÔÍ, or377

ÇÍ} datasets can be de-confounded by the networks learned using ÔÇÍ. This could378

lead to chains of de-confoundings, where an interaction that led to the de-confounding379

a relationship is itself later de-confounded.380

As before, for each de-confounding discovery, the following is reported: (a) the381

confounded edge, (b) the de-confounder, (c) the bootstrap score for the edges in-382

volved in the discovery, (d) the overall score of the discovery computed as the product383

of the individual bootstrap scores of the two replacement edges, and (e) the two data384

sets that were used to discover the specific de-confounding. The results of the de-385
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confounding approach is explained with examples in the Discussion section.386

RESULTS387

A large number of networks were learned with the different data subsets, the differ-388

ent methods, and the parameter settings, as mentioned in Sections 2.6, 2.7, 2.8, re-389

spectively for DBN, TETRAD, and Tigramite. Unrolling and de-confounding were im-390

plemented in METALICA and applied to all the resulting networks, as described in the391

Methods section. The results from the experiments are presented below.392

Resulting networks Figure 1 shows the DBNs learned from the Ô, ÔÍ, ÔÇ, and393

ÔÇÍ versions of the Crohn’s disease datasets without temporal alignment. The struc-394

ture of the networks learned by the other tools were similar to those shown and can be395

found in the Supplement. Self loops were hidden in the visualization to avoid unneces-396

sary clutter. The remarkable information gain obtained by using additional omics data397

sets is readily observable in Figure 1 d), with a more complete picture of the state of398

the whole system, thus setting the stage for biologically-relevant interpretations. The399

one non-omics variable (week of sample obtained), which is generically referred to as400

a “clinical variable” did not have any incident edges in the ÔÇ network, but it did in the401

other networks.402

Tool analysis Network validation is a challenging problem because we do not403

have the ground truth network, which is what these methods try to approximate. In404

addition to analyzing the networks, the effect of the different network parameters405

was also explored. The heatmap in Figure 2 shows the percentage of unrolling that406

is effected by METALICA on the networks learned by PyCausal (TETRAD). The columns407

labeled ÔÇÍÔ, ÔÇÔ, and ÔÍÔ represent the proportion of taxon to taxon interactions408

in the network learned with Ô that got unrolled with the networks learned with ÔÇÍ,409

ÔÇ, and ÔÍ, respectively. The alpha parameter for experiments with TETRAD is the410

significance threshold for the conditional independence tests.411

The last column shows the average overall score of each unrolling, which is de-412

fined as the product of the individual bootstrap scores of the two replacement edges.413

Edge bootstrap scores represent the proportion of times an edge appears in bootstrap414

repetitions as described earlier.415

Figure 3 shows the unrolling details output by METALICA in the experiments con-416

ducted with different methods, averaged over all parameters. All values except the417

last column represent the proportion of taxon to taxon interactions in the network418

learned with Ô that got unrolled with the networks learned with ÔÇÍ, ÔÇ, and ÔÍ, re-419

spectively. Tigramite networks showed the highest percentage of unrolled edges with420

ÔÇÔ and ÔÍÔ when compared with the other two methods, but fell short with ÔÇÍ,421

where DBNs resulted in significantly higher percentage of unrolled edges. Note that422

applying temporal alignments to the data sets seemed to significantly improve the423

percentage of edges unrolled for the DBN method, especially with ÔÇÍÔ, where the424

percentage rose from 24.7% to 78.8%. The increase was significantly lower with the425

other two datasets. The impact of temporal alignments on the other methods was in-426

consistent, where it showed both increase and decrease in the different columns. We427

also note that temporal alignments were used to normalize the “rates” of the underly-428

ing biological process of the different subjects.429

DISCUSSION430

As shown in Figure 2, as the alpha parameter decreases, the proportion of edges un-431

rolled by METALICA decreases substantially. The smaller the alpha, the easier it is432

for two variables to be dependent, resulting in networks with more edges. This also433
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FIG 1 Samples of the two-time-slice DBN networks for the four different multi-omic sub-

sets produced by PALM. Self-edges are not displayed to avoid clutter. Networks were

learned with a maximum number of parents of 3. The four networks show the nodes

representing variables from each omics data source organized in two large circles, one

representing the variables for the current time point (blue) and the other for the next

time point (orange). Node shapes represent the omics data source of the variable. Taxa

nodes are represented as filled circles, metabolites as filled squares, genes as filled di-

amonds, and clinical variables as filled triangles. Red (green) edges represent negative

(positive resp.) regression coefficients. Edge width is proportional to the regression co-

efficient and edge opacity to the bootstrap score. Finally, node opacity is proportional

to abundance. a) DBN learned with just taxa abundance (Ô). The dataset included abun-

dance of 27 bacteria and a clinical variable indicating theweek the samplewas obtained

and resulted in a networkwith 95 edges. b) DBN learnedwith taxa andmetabolites (ÔÍ).

A set of 19metabolites were added to the previous dataset, and 164 edges were learned

in this network. c) DBN learned with the taxa and genes dataset (ÔÇ). A set of 34 genes

were added to the taxa dataset, and a network with 230 edges was learned. d) DBN

learned with the 27 taxa, 34 genes, and 19 metabolites (ÔÇÍ), resulting in a total of 311

edges.
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FIG 2 Heatmap showing the proportion of edges unrolled by METALICA in the Crohn’s

disease datasets for the networks obtained from PyCausal (TETRAD) as the alpha param-

eter varies using datasetswith andwithout temporal alignment. Last column shows the

overall bootstrap score.

FIG 3 Heatmap showing percentages of edges unrolled byMETALICA in the Crohn’s dis-

ease datasets for all themethods averaged over all parameter choices. The last column

shows the overall bootstrap score.

means that higher alpha values result in networks with higher average confidence on434

each edge, since it is also more difficult for it to be learned by chance. This is con-435

sistent with the higher percentage of unrolling for larger alpha values, indicating that436

the edges with higher support get unrolled more frequently, adding support for the437

unrolling process. Interestingly, there is a clear reversal of the pattern for the overall438

bootstrap score (last column) for the experiments without temporal alignment, where,439

contrary to our intuition, the smaller alpha values result in higher overall scores. In-440

terestingly, temporally aligning the data set seems to fix this problem, which would441

support the necessity of alignment as a pre-processing step.442

Also, as shown in Figure 3, the DBN/PALM method seems more stable than the443

other two algorithms, since themuch higher average overall bootstrap score indicates444

that in each bootstrap, the edges learned are consistent with the ones learned in other445

bootstrap runs. This lower variability across the different random data subsamples446

used is a clear advantage of the DBN/PALM method.447

The top unrollings and de-confoundings discovered by METALICA using the net-448

works from all the methods were sorted based on the overall bootstrap score, and449

other factors like the number of networks they appear in, or the different network450

types that supported this particular finding. We discuss below some particularly inter-451

esting results from the METALICA analysis described above.452

Uncovering unrolled biological relationships Here, we discuss the unrolling of453

specific edges from the METALICA results using the dataset containing all diseases.454
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First, we consider the edge Eubacterium siraeum → Bacteroides thetaiotaomicron in455

GÔ, i.e., the edge between the abundance of the two bacterial taxa, E. siraeum and456

B. thetaiotaomicron. It manifests itself as the unrolled path E. siraeum→ uridine kinase457

→ cytidine → B. thetaiotaomicron in GÔÇÍ, as shown in Figure 4. The following is the

FIG 4 Biologically confirmed unrolling. The edge Eubacterium siraeum → Bacteroides

thetaiotaomicron learned in GÔ (T) is unrolled into Eubacterium siraeum→ uridine kinase

→ cytidine→ Bacteroides thetaiotaomicron in GÔÇÍ.

458

support for each edge in the unrolled path from the literature and the knowledge-459

bases. Both E. siraeum and B. thetaiotaomicron contain the gene to produce enzyme460

uridine kinase (54, 55). This enzyme, when present in prokaryotes and eukaryotes,461

phosphorylates both uridine and cytidine to their mono-phosphate forms, and vice-462

versa. The specific reactions that this enzyme is capable of performing are the follow-463

ing (56, 57, 58):464

• ATP + Uridine
 ADP + UMP, and465

• ATP + Cytidine
 ADP + CMP,466

whereATP stands for adenosine tri-phosphate, ADP stands for adenosine di-phosphate,467

UMPstands for uridinemono-phosphate, andCMP stands for cytidinemono-phosphate.468

Since B. thetaiotaomicron carries the gene for uridine kinase, it has the ability to per-469

form the forward reaction and consume it by phosphorylating cytidine to CMP. More470

importantly, B. thetaiotaomicron also has the gene for cytidine deaminase, which scav-471

enges exogenous and endogenous cytidine for UMP synthesis (59). The reaction per-472

formed by this enzyme is cytidine + H2O 
 uridine + Ammonia (60, 61, 62), which473

validates the third and last edge (cytidine → B. thetaiotaomicron) in Figure 4. In addi-474

tion, experimental results show that a cytidine-scavenging system confers colonization475

fitness to B. thetaiotaomicron, and therefore positively impact its abundance (63). Inter-476

estingly, uridine may be playing a role in this connection between the two taxa, since477

both enzymes discussed involve uridine, so both taxa can produce and consume uri-478

dine. Reinforcing this argument is the fact that the edge uridine→ B. thetaiotaomicron479

is also present in the same network GÔÇÍ. Moreover, this unrolling can be important480

for IBD. Treatment for Crohn’s disease with live B. thetaiotaomicron or its products481

displays strong efficacy in preclinical models of IBD, with multiple benefits (64). Sim-482

ilarly, there is precedent to treat gastrointestinal problems with E. Siraeum (65), and483

activation-induced cytidine deaminase seems to prevent colon cancer development484

despite persistent inflammation in the colon (66).485

In summary, our unrolling methods allow us to make biological sense out of a set486

of related edges in the series of networks generated from the multi-omics data.487

As a second example, the path: Bacteroides stercoris → uridine kinase → cytidine488

→ Bacteroides stercoris can also be validated, which can be thought of as an unrolling of489

the self-loop from Bacteroides stercoris to itself inGÔ as shown in Figure 5. The taxon, B.490

stercoris, carries the gene for both uridine kinase (67) and cytidine deaminase (68), so it491
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FIG 5 Biologically confirmed unrolling. The edge Bacteroides stercoris → Bacteroides

stercoris learned in GÔ (T) is unrolled into Bacteroides stercoris → uridine kinase → cyti-

dine→ Bacteroides stercoris in GÔÇÍ

can both produce and consume cytidine, and since cytidine deaminase can scavenge492

endogenous cytidine, this lends further support to the self-loop edge from B. stercoris493

to itself; it might be regulating itself through the cytidine or uridine internally. Inter-494

estingly, B. stercoris is linked to colorectal cancer (69), and its increased abundance495

was detected in fecal samples of Crohn’s Disease (CD) patients (70). Also, an increased496

reactivity of Immunoglobulin G from Crohn’s Disease patients toward B. stercoris and497

other species of Bacteroides has been shown in the serum of CD patients (71).498

Two examples of “partial” validations of unrollings from our experiments are also499

provided. Theunrolled pathBacteroides finegoldii→phosphatidate cytidylyltransferase500

→ Betaine → Eubacterium ventriosum was discovered by our search. It first appeared501

as an edge B. finegoldii→ E. ventriosum in Ô, which then got unrolled in ÔÇ, ÔÍ, and ÔÇÍ.502

B. finegoldii is an anaerobic gram-negative bacteria that has been found to be gener-503

ally beneficial in the gut (72). It contains the gene BN532_01044 which expresses the504

phosphatidate cytidylytransferase protein. This is a membrane-bound enzyme that505

participates in the glycerophospholipid metabolism and phosphatidylinositol signal-506

ing system. Moreover, B. finegoldii is known to produce themetabolite Betaine (73). In-507

creased levels of betaine have been found to benefit IBD patients, allowing for proper508

digestion and assimilation of nutrients. Over the last decade, doctors have recom-509

mended betaine-rich foods as a way to help IBD patients rapidly absorb and distribute510

vital vitamins and minerals needed to maintain diversity in the gut (73). Additionally,511

recent studies have shown betaine to be correlated to the Eubacterium genus and to512

be of general importance for osmotic adaptation of most species of Eubacterium (74).513

Even though no specific study was found about the species Eubacterium ventriosum,514

the fact that betaine was found to increase the abundance of the Eubacterium genus515

lends support to the argument that Eubacteriummembers consume betaine through516

the conversion of Acetate (75), thus partially validating the unrolling. Moreover, while517

Acetatewas not contemplated in the dataset, one of its precursors, Choline, was. Many518

strong unrollings have a link from Choline to a member of the Eubacterium genus in519

the dataset (E. ventriosum, E. siraeum, E. rectale), and almost every method learned the520

edge Betaine → E. ventriosum as part of specific unrollings, which could be an indica-521

tion of a pathway transforming Choline to Acetate to Betaine, which may be facilitated522

by members of the genus, Eubacterium.523

The path: Bacteroides ovatus → DNA helicase → Pyridoxine → Bacteroides ovatus524

in ÔÇÍ can be thought of as an unrolling of a self-loop edge in Ô from B. ovatus to it-525

self, which got unrolled in ÔÇ, ÔÍ, and ÔÇÍ. Moreover, B. ovatus is present in the gut526

microbiome, and plays a crucial role in the dysbiosis of the gut health. This anerobic527

bacteria has been found to have significantly elevated abundance in patients suffer-528
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ing from IBD. Findings suggest that some species of Bacteroides injure gut tissue and529

induce inflammation (76). This bacterium does carry the gene dnaB, which expresses530

the protein DNA helicase, an enzyme responsible in unpacking genes in an organism531

and DNA repair. The production of the metabolite pyridoxine has been found in great532

proportion when there is an abundance of B. ovatus (77). However, evidence suggest-533

ing the consumption of pyridoxine by the taxa could not be found. When pyriodoxine534

is present in great abundance, it is involved in many biochemical pathways that lead535

to the synthesis or metabolism of nucleic acids, immune modulatory metabolites and536

many others (77). However, when scarce, it leads to inflammation. We consider this537

as another example of a “partial” validation of our unrolling strategy.538

Uncovering de-confounded biological relationships We focus next on the de-539

confounding actions performed by METALICA on the networks obtained using the540

dataset containing all diseases. The edge: thymidylate synthase → glutamate dehy-541

drogenase was inferred in the Ç network but disappeared in the ÔÇ network, possi-542

bly because both genes are present in the taxon Haemophilus parainfluenzae. This543

suggests that the suggested relationship between the two genes is spurious and the544

taxon is the confounder. H. parainfluenza is an opportunistic pathogen that has been545

found in elevated levels in patients suffering frommany diseases including pneumonia546

and conjunctivitis. Recent studies have shown that high abundance of this pathogen547

was found in patients suffering from IBD. Different dynamics have been noted for the548

abundance of H. parainfluenza in the literature. For instance, when IBD patients enter549

remission, there is a steep decline in this pathogen (78). Additionally, the two genes550

that are present in H. parainfluenzae were found to produce proteins that help drive551

diseases including colon cancer.552

Limitations and future work The methods used by METALICA are only applica-553

ble to multi-omic datasets, which are relatively uncommon. However, this is expected554

to change in the near future with the increased effort to understand the underly-555

ing mechanisms within biological processes. Second, these methods do not provide556

definitive evidence for the causal chains, but rather lend support to generate hypothe-557

ses that would have to be proved with experiments in the laboratory. We argue that558

as larger data sets become more and more commonplace, METALICA will become in-559

creasingly useful.560

CONCLUSION561

We have developed METALICA, which consists of two novel post hoc network analy-562

sis algorithms, namely unrolling and de-confounding. We first learned biological net-563

works from a longitudinal multi-omic IBD dataset with three state-of-the-art network564

and causal discovery tools. We then applied METALICA to the networks learned by565

the tools (DBN/PALM, tsGFCI/TETRAD, and Tigramite), and compared their predictive566

performance. The networks produced using DBN/PALM produced the most number567

of unrollings, suggesting that even though the tool was not explicitly built for causal568

discovery, its conditional probability underpinnings produce edges that have a rea-569

sonable chance of representing causal relationships and to lead to further biological570

discoveries as outlined above. The top findings by our algorithms were analyzed, and571

relevant biological interpretations were presented for specific network-inferred inter-572

actions.573

Data availability. All code, networks, and longitudinal microbiome data sets will574

be made available upon publication.575

Data citation. All data analyzed in this work are derived from the iHMP IBD web-576

site: https://www.ibdmdb.org (18).577
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