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ABSTRACT

A key challenge in the analysis of microbiome data is the integration of multi-omic
datasets and the discovery of interactions between microbial taxa, their expressed
genes, and the metabolites they consume and/or produce. In an effort to improve the
state-of-the-art in inferring biologically meaningful multi-omic interactions, we sought
to address some of the most fundamental issues in causal inference from longitudinal
multi-omics microbiome data sets. We developed METALICA, a suite of tools and tech-
nigues that can infer interactions between microbiome entities. METALICA introduces
novel unrolling and de-confounding techniques used to uncover multi-omic entities that
are believed to act as confounders for some of the relationships that may be inferred
using standard causal inferencing tools. The results lend support to predictions about
biological models and processes by which microbial taxa interact with each other in
a microbiome. The unrolling process helps to identify putative intermediaries (genes
and/or metabolites) to explain the interactions between microbes; the de-confounding
process identifies putative common causes that may lead to spurious relationships
to be inferred. METALICA was applied to the networks inferred by existing causal dis-
covery and network inference algorithms applied to a multi-omics data set resulting
from a longitudinal study of IBD microbiomes. The most significant unrollings and
de-confoundings were manually validated using the existing literature and databases.

Importance: We have developed a suite of tools and techniques capable of infer-
ring interactions between microbiome entities. METALICAintroduces novel techniques
called unrolling and de-confounding that are employed to uncover multi-omic entities
considered to be confounders for some of the relationships that may be inferred us-
ing standard causal inferencing tools. To evaluate our method, we conducted tests
on the Inflammatory Bowel Disease (IBD) dataset from the iHMP longitudinal study,
which we pre-processed in accordance with our previous work.

KEYWORDS: Longitudinal microbiome analysis, Multi-omic integration, Causal
inference, unfolding, de-confounding.

BACKGROUND
Microbiomes are communities of microbes inhabiting an environmental niche. Metage-
nomics data sets contain sequenced reads from samples of a microbial community and
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are used toinfer a detailed abundance profile of the microbial taxa presentin that com-
munity (1, 2). More recently, additional types of biological data are being generated
from microbiome studies, including but not limited to:

« Metatranscriptomics and Metaproteomics, which helps survey the expression of

the totality of genes and proteins in the microbial community (3);
+ Metabolomics, which helps profile the concentrations of the entire set of small
molecules (metabolites) present in the microbiome’s environmental niche (4);

* Metaresistomics, which helps to capture the repertoire of antibiotic resistance

genes present in the microbial community (5); and

* Host transcriptomics, which provides information about the expression levels of

the host genes (6).
Such multi-omic data sets are critical for a more in-depth and functional understand-
ing of microbial communities. They also shed light on some of the interactions be-
tween the entities in the microbiome (7). Thus, the study of microbial communities
offers a powerful approach for inferring interactions within the community (8, 9), their
impact on the host environment (5), and their role in disease and health (10, 11).

A major bioinformatic challenge is the “integrative” analysis of multi-omic data sets
from microbiomes (12). Most multi-omic studies focus on a separate analysis of each
omic data set without building a unified model (13). There have been some attempts
(14, 15, 16, 17, 18) to build tools and develop techniques to facilitate an integrative
analysis (19, 20). Significant advances were recently made on analyzing multi-omic
longitudinal data sets by Ruiz-Perez et al. (21). Questions related to reproducibility,
flexibility, interpretation, and biological validity continue to be challenges in the area
of multi-omic microbiome analysis (21, 22, 23).

Deep Learning approaches for integrating multi-omics (24, 25) have also been de-
veloped, but they are either hard to interpret or limited to predicting just one of the
omic profiles. Additionally, the high computational cost of deep learning further pre-
vents these models from being useful at providing insights into the interplay between
the different omic entities. Partial Least Squares models have also been used to facili-
tate this integration (26). Their limitations depend on the underlying data generation
model, and are generally prone to produce spurious results when applied to high-
dimensional data sets (27).

Given that microbiomes are inherently dynamic, longitudinal multi-omic data sets
areimportant to fully understand the complex interactions that take place within these
communities (28). Many attempts have been made to analyze data from longitudinal
studies (17, 18, 29); however, these approaches do not attempt to study interactions
between taxa. An alternative approach involves the use of dynamical systems such as
the generalized Lotka-Volterra (gLV) models (30, 31). As was noted by Ruiz-Perez et al.
(21), the large set of parameters in these probabilistic models diminishes their utility
for use in inference.

In previous work (32, 21), we have described sophisticated methods to model and
analyze data from longitudinal microbiome studies using Dynamic Bayesian Networks
(DBNs). Our approach involved starting from next generation sequencing data and
other omics measurements. Every attempt was made to ensure that the resulting net-
works had biologically meaningful edges and were not a result of overfitting. However,
even if an edge was directed from an entity measured at a previous time point to an
entity measured at a later one, it did not guarantee that it represented a true and di-
rect causal interaction. It could be possible for the edge to be merely the result of a
statistical correlation caused by an indirect causal relationship or model overfitting.

Microbiomes are complex environments with many subtle relationships. How-
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o1 ever, causal discovery relies on noisy data from error-prone technologies, and has
02 to contend with a host of hidden confounders that may be hard or impossible to iden-
o3 tify, let alone be measured. The jump to infer causality is a natural next step in under-
94 standing multi-omic interactions, and the lack of research in this area is striking. Most
o5 0Of the causal microbiome literature focuses on the causal impact of the microbiome
96 on health or disease, but not on the causal interactions between these microorgan-
o7 isms (33, 34, 35, 36). This shortcoming was addressed in our previous work (10, 11).
o8 Finally, another major challenge in building true models of biological interactions lies
99 in developing methods to validate them and in providing confidence measures.

100 METHODS

101 Overview. In this section, we have considered three network learning methods,
102 Dynamic Bayesian Networks (DBNs) using PALM (21), TETRAD (37, 38, 39), and Tigramite
103 (40), and applied them to a rich, multi-omics data set. We then describe unrolling, a
104 novel method to extract well-supported, biologically-relevant conjectures on entities
105 that appear to mediate complex relationships between microbes in a microbiome. Fi-
106 hally, we describe de-confounding, another novel method to identify network edges for
107 which there is strong support for conjecturing that they are spurious, i.e., not causal.
108 The two methods, unrolling and de-confounding constitute the heart of the METALICA
100 (MicrobiomE Temporal Analysls using CAusality) package presented here.

110 In what follows, we describe the experiments that were performed. We start by
111 describing the data sets used for the experiments and the preprocessing of the data.
112 Nextwe discuss the theory behind the first of the network learning methods, i.e., DBNs,
113 and follow it up with the constraining structures used and the procedure to create a
114 collection of DBNs with the help of PALM. This is followed by a brief description of
115 two well-known methods, TETRAD and Tigramite, to create causal networks for the
116 above data set. Finally, we describe the methods of unrolling and de-confounding to
117 evaluate and compare the causal discoveries made by all the three network learning
18 algorithms.

119 Data sets. To test the three proposed methods, the Inflammatory Bowel Disease
120 (IBD) cohort from a study that included 132 individuals across five clinical centers was
121 used (18). During a period of one year, each subject was profiled (biopsies, blood
122 draws, and stool samples) every two weeks on average. This yielded temporal pro-
123 files for the metagenomes, metatranscriptomes, metaproteomes, metabolomes and
124 viromes across all subjects. Additionally, for each subject, host- and microbe-targeted
125 human RNA sequencing was yielded from biopsies collected atinitial screening colonoscopy
126 sampled from two sites in the gut (ileum and rectum) to obtain the host transcriptomic
127 profile. All data are fully described and available at https://ibdmdb.org.

128 Preprocessing the data. We used the processed version of the IBD dataset gen-
120 erated by our previous work (21), which provided temporally aligned and unaligned
130 versions of metagenomics, metatranscriptomics, metabolomics, and host transcrip-
131 tomics data. As explained in Ruiz-Perez et al. (21), the data were normalized and cen-
132 tered, the time series were smoothed, and then temporally aligned. For completeness,
133 @ summary of this process is described here. The different omics data types were
134 processed separately. First, the taxon, metabolite, and gene abundance values were
135 normalized to make each type separately add up to 1 for each subject, thus express-
136 ing each abundance value as a fraction of the whole metagenome, metabolome, and
137 metatranscriptome. Then, the intensities of the metabolites and genes were scaled
138 to match the mean of the taxa because the larger number of genes and metabolites
130 had made their average values much smaller. Metabolites without an HMDB ID or with
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140 near-zero variance over the originally sampled time points were removed. Any sample
141 that had less than five measured time points in any of the multi-omics measurements
142 was also removed. The multi-omic time series were then smoothed using B-splines to
143 deal with irregular sampling rates and missing time points. Then, temporal alignment
144 of the time series data from individuals was performed as described in Lugo-Martinez
15 et al. (32). This was done because they assumed that even though the underlying
146 biological process of the different subjects may be the same, the speed at which the
147 processes occur in each patient could be different. These temporal alignments use a
148 linear time transformation function to “warp” one time series into a common, repre-
140 sentative sample time series used as the “reference” (32), which was selected as fol-
150 lows for each omics data: All possible pairwise alignments were generated between
151 them and the time series that resulted in the least total overall error in the alignments
152 was selected as the reference. Abnormal and noisy samples from the resulting set of
153 alignments were filtered out. Given an individual's warped/aligned time series for a
154 specific omic type (represented by a transformation), the other multi-omics data were
155 also aligned using the same transformation. The resulting data set comprised of 51
156 sets of multi-omics time series, one set per subject. We also further restricted our-
157 selves to just the Crohn's disease patients for some analyses, which after the same
158 filtering as described above, resulted in 11 patients.

159 Due to the relatively small number of time points in each time series, new datasets
160 were generated by simply increasing the sampling frequency from each smoothed
161 time series. Thus, a time series with a sampling rate of seven days was created. The
162 three preprocessed omics data were then separated, resulting in sets denoted by T, G,
163 and M, representing the data involving just taxa, genes, and metabolites, respectively.
164 They were also combined to generate different subsets and denoted in a natural way
165 by concatenating the individual symbols. The resulting datasets were the temporally
166 aligned and unaligned versions of the following: {T, G, M, TG, T™M, GM, TGM}.

167 In an effort to increase the number of biologically interpretable results and to get
168 the most significant validations of the interactions, the attributes that were cataloged
160 in KEGG (41) were used. This resulted in the selection of 27 bacterial species, 34 genes,
170 and 19 metabolites, in addition to one so-called “clinical” variable (sampling time, rep-
171 resented by the week during which the sample was obtained). The process described
172 above is generalizable, meaning that more omics data sets, metadata, and clinical vari-
173 ables can be added with relative ease.

174 Dynamic Bayesian Networks. DBNs are a variety of Bayesian Networks (BNs)
175 designed to represent temporal connections between variables as their edges repre-
176 sent lagged dependencies. DBNs can be used to conduct time-varying probabilistic
177 inference and causal discovery. They were developed to unify models such as Kalman
17s  filters, autoregressive-moving-average models (ARIMA), and hidden Markov models
179 (HMMs) into a general probabilistic model and inference mechanism (42, 43), and are
180 conceptually similar to Probabilistic Boolean Networks (PBN) (44). DBNs can model
181 the types of relationships supported by the above methods, and can capture even
1822 more complex relationships with both discrete and continuous variables conditioned
183 0N either temporal and non-temporal variables.

184 This work, focuses on a version of DBNs called Two-Timeslice BN (2TBN) (45), which
185 finds relationships between variables over adjacent time steps. Let X/ denote the
186 value of variable X; at time ¢. It can be calculated from the internal regressors if the
187 values of the other variables are known at the previous time point, ¢t — 1. We employed
188 a tool called PALM, which uses a multi-omics DBN model proposed by Ruiz-Perez et
180 al. (21). PALM integrates different omics datasets with flexible structure constraints.
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190 In particular, we also used their proposed Skeleton and Augmented constraints. These
191 constraints are described below in the “Constraining structures” section. ldealized
192 DBN construction methods require an exponential-time exhaustive search using all
103 subsets of nodes. However, it is possible to construct DBNs more efficiently by lim-
194 iting the number of “parents” for each node (i.e., bounding the number of incoming
195 edges for each node).

196 Constraining structures. The above input was fed into PALM (21).The set of al-
197 lowable edges was constrained by providing a Skeleton structure as input to the DBN
198 construction step as described by Ruiz-Perez et al. (21). These constraints, which are
190 provided in the form of a matrix, only allow edges between certain types of nodes,
200 greatly reducing the complexity of searching over possible structures and prevent-
201 ing over-fitting. Specifically, intra edges (i.e., edges within same time point) from taxa
202 nodes to gene (expression) nodes and from gene nodes to metabolites (concentra-
203 tion) nodes were allowed. All other interactions within the same time point (for exam-
204 ple, direct gene to taxa) were disallowed. In addition, inter edges (i.e., edges between
205 nodes from adjacent time points) were only allowed from metabolites to taxa nodes
206 in the next time point, and self-loops, i.e., edges from node X/ to X/*' for all types of
207 nodes. (Note that, whenever it is obvious by the context, random variables and the
208 nodes in the networks that represent them are not differentiated.) The restrictions in
200 the Skeleton reflect the basic ways the different entities interact with each other, i.e.,
210 taxa express genes that they carry on their genomes; these, in turn, are involved in
211 metabolic pathways for the synthesis of metabolites; subsequently the metabolites
212 impact the growth of taxa (in the next time slice).

213 Aless constrained framework referred to as the Augmented skeleton was also used
214 to produce an alternative set of networks. Unlike the original Skeleton, the Augmented
215 framework also allows intra edges from taxa to metabolites to account for cases where
216 noise or other issues related to gene-profiling may limit our ability to indirectly con-
217 nect taxa and the metabolites they produce. All other edges from the skeleton were
218 retained.

219 Computing DBNs using PALM. DBNs were learned using PALM for all subsets of
220 the omics datasets from Section 2.2 (i.e., {T, G, M, TG, ™™, GM, TGM}), for several dif-
221 ferent number of allowable parents ({3, 4, 5, 6}), for temporally aligned and unaligned
222 datasets, and for the Skeleton and Augmented constraint frameworks, thus resulting
223 in atotal of 7x 4 x2x2 = 112 potential DBN networks. A total of 100 networks were
224 learned by subsampling subjects with replacement (i.e., 100 bootstrap repetitions) for
225 each model. The networks were then combined, averaging the regression coefficient
226 (weight) of the edges as long as they appeared in at least 10% of the repetitions. Each
227 edge was also labeled with the bootstrap score or support (proportion of times that
228 edge appears). Each repetition was set to run independently on a separate processor
229 Using Matlab's Parallel Computing Toolbox.

230 In order to explore causal inferencing, two other well-known methods (TETRAD
231 and Tigramite) (37, 38, 39, 40) were applied on our data sets. Note that the exact same
232 set of nodes were used as those in the two-time-slice DBN, meaning that every mi-
233 crobiome quantity (taxon abundance, gene expression, metabolite concentration) is
234 represented by two nodes, one from a “previous” time instant and one from the “cur-
235 rent” time instant. Since all the networks were on the same set of nodes, it facilitates
236 the comparison between all three methods. We also note that TETRAD and Tigramite
237 do not learn based on a global score such as likelihood, but rather on conditional in-
238 dependence tests.
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239 Causal Networks using the TETRAD Suite. The tsGFCI (SVAR-GFCI) (46) algorithm
240 is implemented in the TETRAD package (37, 38, 39), for which the wrapper PyCausal
241 (47) was used. The tsGFCl algorithm is a version of tsFCI (48) and GFCI, while tsFCl is,
242 in turn, the evolution of FCI (49). FCl is in turn a modification of PC-stable, which was
243 designed by modifying PC, an adaptation of the SGS algorithm (50).

244 Algorithm tsFCI (SVAR-FCI) is based on a modified version of the FCI algorithm.
245 Briefly, it uses the direction of time to orient interactions and enforces repeating struc-
246 tures for both adjacencies and orientations based on the stationarity assumption. Since
247 the hybrid score-based GFCl is usually more accurate in finite samples than FCl, similar
248 modifications were made in the development of tsGFCI. In this case, a greedy initial
249 adjacency search is used, enforcing time order and repeating structures, and scores
250 the structures using BIC (51).

251 For each significance threshold a € {0.0001,0.001,0.01,0.1}, different networks
252 were learned with the PositiveCorr Cl test, the FisherZScore network score, and for
253 each combination of omics datasets and alignment. A total of 4 x 7 x 2 = 56 experi-
254 ments were performed with TETRAD. Each TETRAD experiment was repeated with N
255 bootstrapping repetitions. Here, N = 10 was used.

256 Causal Networks with Tigramite. For the discussion below, the following nota-
257 tion is needed. Let Pag(X) represent the parents of node X in network G. When
258 the context is clear, G is dropped and simply denoted as Pa(X). Let PaP(X) denote
250 the p “strongest” parents. Independence of A and B conditioned on C is denoted by
260 A 1L B|C. Tigramite (40) implements the PCMCI algorithm, which works in two stages
261 - conditional selections followed by causal discovery.

262 1. Conditional selections: A modified version of the PC-stable algorithm (adapted
263 for time series and with the skeleton constraints) is used to compute a set of
264 variables that are inferred to have a causal effect on each node X. It obtains
265 the set of parents, Pag(X;), estimated from the data (which may be superset
266 of the true set) for all variables X;,i = 1,...,n. This is achieved as follows. For
267 every variable, the set of parents are initialized to all allowable parents. Then
268 conditional independence tests are applied for each edge, (X!, th), using con-
269 ditioning sets of increasing size, removing the edge as soon as a test fails. (Note
270 that, as per our constraints, ¢’ = t or ¢’ = t — 1.) In each case, the null hypothe-
271 sis states that the two variables at the endpoint of the edge being considered
272 remain dependent even when conditioned on an appropriate set of size p > 0,
273 as stated below:

274 Ho: X/ A X/|S, for any § ¢ Pa(X}) \ {X} with S| = p. 1)
275 The rejection of the null hypothesis Hy requires a significance threshold a. All
276 possible sets § ¢ Pa(X]) \ {X!} with cardinality p are considered such that
277 1< p < Gmax-

278 2. Causal discovery stage: Next the MCl algorithm is applied, which employs a
279 more stringent conditional independence test, for each surviving edge X! —
280 Xj’, retaining it if and only if

281 X! 4 X[ |Pa(X!) \ {X]} U PaP(X)). )

282 Since Tigramite assumes that all the data points belong to a single subject, bootstrap
283 cannot be implemented in the usual way of subsampling subjects with replacement.
284 Instead, a different network was learned for each subject, and the resulting networks
285 were then combined. The percentage of times that a given edge appears in all the
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286 different networks was annotated in the edge, together with the averaged cross-link
287 strength. Different networks were learned for different significance threshold values,
288 a € {0.0001,0.001,0.01,0.1}, for each Cl test available (GPDC, CMIknn, ParCorr) (40),
280 and for each omics dataset. A total of 4 x 3 x 7 x 2 = 168 experiments were performed
200 with Tigramite.

201 The following sections introduce the two causal network analysis techniques in
202 METALICA, which will be applied to the networks learned with the methods introduced
203 in Sections 2.6 - 2.8 using DBNs, TETRAD, and Tigramite.

204 Unrolling. Typical algorithms for network learning and analysis fail to elucidate
205 the actual reasons why two entities may be causally related to each other. An impor-
206 tantchallenge in microbiome analysis is to use multi-omics data to determine whether
207 and how two taxa may be interacting with each other. The term unrolling is hereby
208 introduced as the process of determining the sequential steps by which two omic en-
200 tities potentially interact with each other. This is done by learning independent net-
300 works using different subsets of omics data. For example, by learning two separate
301 networks with the Tand the TM datasets, an interaction between two microbial taxa
302 (as suggested by the former) can be surmised to be via metabolic intermediaries (as
303 suggested by the latter).

304 To make this more formal, let Gx = (Vx, Ex) represent the network learned using
305 dataset X, with vertex set Vi and edge set Ex. Now, an explanation by unrolling occurs
306 if the following three conditions are true:

307 1. Thereis an edge from T; to 7; in Gy, for some T;, T; € Vg, i # j.

308 2. Thereis no edge from T; to T; in the network Guy.

309 3. There exists some metabolite M, € Vqy such that edges (7;, M) and (M,, T))
310 exist in Gqy.

311 If the above three conditions are met, the interaction between the taxa 7; and 7; is
312 inferred to be happening through an intermediary metabolite M,, which is “produced”
313 by 7; and “consumed” by T;.

314 This process can be replicated by unrolling the edges of the network inferred from
315 Twith the one inferred from TG to discover the genes that are likely driving the inter-
316 action between the same pair of taxa. Finally, the networks, Gtg from TG or Gy from
317 TM can be unrolled using the more detailed network, Gygy to find fully unrolled chains
a8 of the form 7; —» G, — M, — T; in Gy With the capability to simultaneously explain
310 theedges 7; — T; in Gy, the chain T - M, — T; in Gy, and the chain T; —» G, — T; in
320 Gig.

321 This step-wise unrolling is necessary to discover relationships with strong support
322 from the data, where the network learned from T was unrolled in a network learned
323 from some subset of {TG, TM, TGM}. The number of the networks from {TG, T™M, TGM}
324 that support the unrolling provide a degree of confidence for that unrolling. Further-
325 more, the bootstrap score for each of the edges involved in the process is reported,
326 together with an Overall Score that is computed as the product of the individual boot-
327 strap scores of the two replacement edges. This unrolling approach is explained with
328 concrete examples in the Discussion Section under Uncovering unrolled biological rela-
329 tionships.

330 De-confounding Most current causal inference techniques rely on the causal suf-
331 ficiency assumption, which assumes that there are no hidden confounders (for any
332 pair of variables) in the data. Confounders are variables that are either (a) unknown,
333 (b) known but not measured, or (c) measured but not used in the analysis, but affect
332 both the cause and the effect of at least one predicted interaction. Predictions of in-
335 teractions with hidden confounders could be incorrect. The strength of a predicted
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336 interaction may be enhanced or diminished when the hidden confounder is not used
337 inthe analysis. Itis also possible that the predicted interaction may introduce spurious
338 edges when the hidden confounder is not used in the analysis.

339 In general, the causal sufficiency assumption may be “too strong” and may be im-
340 possible to verify, even with the availability of richer data sets that include multi-omics
341 data, thus making this assumption a key obstacle to performing accurate causal infer-
342 ence (52). Going beyond the multi-omic domain, causal sufficiency is an assumption
343 that does not strictly hold in most observational datasets, since it is difficult or impos-
344 sible to include all possible explanatory variables in a study.

345 A recent paper by Wang and Blei (53) attempts to perform de-confounding, which
346 is the process of removing the effect of all confounders. They introduce the concept
347 of “substitute confounders”, which attempts to account for the effect of all hidden con-
3ag  foundersin order to arrive at unbiased estimates of causal effects. A major limitations
349 of their method is that the de-confounded interactions are not identified, which is im-
sso  portant for understanding the interactions. Furthermore, there may not be a one-to-
351 one correspondence between the substitute confounder and some real confounder,
352 meaning that one substitute confounder may be an approximation for a combination
353 of several hidden confounders.

354 In this work, a different approach for the task of de-confounding interactions is
355 taken, inspired by the unrolling approach of Section 2.9. Independent networks are
3s6 iteratively learned with different subsets of data with the hope that by adding a new
357 omics layer it would be possible to identify some of the relevant intermediate entities
358 and the corresponding interactions. As before, Gx = (Vx, Ex) represent the network
350 learned using dataset X, with vertex set Vi and edge set Ex. For example, by learning a
360 network with the Tand TM datasets, interactions can be de-confounded if the following
361 three conditions are satisfied:

362 1. Thereis an edge (7;, 7)) in Gr, i.e., (T;,T;) € Ey, for some T;, T; € Vg,i # .

363 2. Thereis no edge from T; to 7; in Gy, i.e., (T;, Tj) ¢ Eqw. i # /.

364 3. Edges (M, Ti) and (M,, T;) exist in Gmy, i.e.,, (My, Tj), (M, Tj) € Em,i # j, for
365 some metabolite M, € Vqu.

366 Using this method, if the above conditions are satisfied for a pair of taxa, 7; and T},
367 the direction for the directed edge (7;,T;) € Ey is deduced and the inferred interac-
368 tion between the two taxa is spuriously introduced by the metabolite M, acting as a
360 confounder. The metabolite can also be inferred to impact the abundance of both
370 taxa, T; and T;. One possible scenario is that the metabolite, M,, could be an essential
3711 metabolite for both taxa, and its presence or absence from the data could make the
372 abundance of the taxa to appear correlated.

373 As with metabolites, this process can be repeated by de-confounding Gy with
374 edges from Grg to discover genes/proteins that could confound a presumed causal
375 connection between the taxa. In general, the networks learned using the T, G, and/or
376 M} datasets can be de-confounded by the networks learned using one or more of the
377 datasets from {TG, TM, GM, TGM}. Similarly, networks learned using one of TG, T™M, or
378 GM} datasets can be de-confounded by the networks learned using TGM. This could
379 lead to chains of de-confoundings, where an interaction that led to the de-confounding
3s0 a relationship is itself later de-confounded.

381 As before, for each de-confounding discovery, the following is reported: (a) the
3s2 confounded edge, (b) the de-confounder, (c) the bootstrap score for the edges in-
383 volved in the discovery, (d) the overall score of the discovery computed as the product
384 of the individual bootstrap scores of the two replacement edges, and (e) the two data
385 sets that were used to discover the specific de-confounding. The results of the de-
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386 confounding approach is explained with examples in the Discussion section.

3s7  RESULTS

3ss A large number of networks were learned with the different data subsets, the differ-
389 ent methods, and the parameter settings, as mentioned in Sections 2.6, 2.7, 2.8, re-
390 spectively for DBN, TETRAD, and Tigramite. Unrolling and de-confounding were im-
301 plemented in METALICA and applied to all the resulting networks, as described in the
392 Methods section. The results from the experiments are presented below.

393 Resulting networks Figure 1 shows the DBNs learned from the T, TM, TG, and
304 TGM versions of the Crohn’s disease datasets without temporal alignment. The struc-
395 ture of the networks learned by the other tools were similar to those shown and can be
306 found in the Supplement. Selfloops were hidden in the visualization to avoid unneces-
397 sary clutter. The remarkable information gain obtained by using additional omics data
308 sets is readily observable in Figure 1 d), with a more complete picture of the state of
390 the whole system, thus setting the stage for biologically-relevant interpretations. The
400 one non-omics variable (week of sample obtained), which is generically referred to as
401 a“clinical variable” did not have any incident edges in the TG network, but it did in the
402 other networks.

403 Tool analysis Network validation is a challenging problem because we do not
404 have the ground truth network, which is what these methods try to approximate. In
405 addition to analyzing the networks, the effect of the different network parameters
406 Was also explored. The heatmap in Figure 2 shows the percentage of unrolling that
407 is effected by METALICA on the networks learned by PyCausal (TETRAD). The columns
208 labeled TGMT, TGT, and TMT represent the proportion of taxon to taxon interactions
400 in the network learned with T that got unrolled with the networks learned with TGM,
410 TG, and TV, respectively. The alpha parameter for experiments with TETRAD is the
411 significance threshold for the conditional independence tests.

412 The last column shows the average overall score of each unrolling, which is de-
213 fined as the product of the individual bootstrap scores of the two replacement edges.
414 Edge bootstrap scores represent the proportion of times an edge appears in bootstrap
415 repetitions as described earlier.

416 Figure 3 shows the unrolling details output by METALICA in the experiments con-
s17  ducted with different methods, averaged over all parameters. All values except the
418 last column represent the proportion of taxon to taxon interactions in the network
419 learned with T that got unrolled with the networks learned with TGM, TG, and TM, re-
420 spectively. Tigramite networks showed the highest percentage of unrolled edges with
421 TGT and TMT when compared with the other two methods, but fell short with TGM,
422 where DBNs resulted in significantly higher percentage of unrolled edges. Note that
423 applying temporal alignments to the data sets seemed to significantly improve the
424 percentage of edges unrolled for the DBN method, especially with TGMT, where the
425 percentage rose from 24.7% to 78.8%. The increase was significantly lower with the
426 other two datasets. The impact of temporal alignments on the other methods was in-
427 consistent, where it showed both increase and decrease in the different columns. We
428 also note that temporal alignments were used to normalize the “rates” of the underly-
420 ing biological process of the different subjects.

430 DISCUSSION

431 As shown in Figure 2, as the alpha parameter decreases, the proportion of edges un-
432 rolled by METALICA decreases substantially. The smaller the alpha, the easier it is
433 for two variables to be dependent, resulting in networks with more edges. This also
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a) Taxa b)Taxa & Metabolites

Mi+1

/

FIG 1 Samples of the two-time-slice DBN networks for the four different multi-omic sub-
sets produced by PALM. Self-edges are not displayed to avoid clutter. Networks were
learned with a maximum number of parents of 3. The four networks show the nodes
representing variables from each omics data source organized in two large circles, one
representing the variables for the current time point (blue) and the other for the next
time point (orange). Node shapes represent the omics data source of the variable. Taxa
nodes are represented as filled circles, metabolites as filled squares, genes as filled di-
amonds, and clinical variables as filled triangles. Red (green) edges represent negative
(positive resp.) regression coefficients. Edge width is proportional to the regression co-
efficient and edge opacity to the bootstrap score. Finally, node opacity is proportional
to abundance. a) DBN learned with just taxa abundance (7). The dataset included abun-
dance of 27 bacteria and a clinical variable indicating the week the sample was obtained
and resulted in a network with 95 edges. b) DBN learned with taxa and metabolites (T\).
A set of 19 metabolites were added to the previous dataset, and 164 edges were learned
in this network. c) DBN learned with the taxa and genes dataset (TG). A set of 34 genes
were added to the taxa dataset, and a network with 230 edges was learned. d) DBN
learned with the 27 taxa, 34 genes, and 19 metabolites (TGM), resulting in a total of 311
edges.
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Temporal Proportion of unrolled edges | Overall
Method . Alpha

Alignment TGMT | TGT T™T Score
PyCausal No 0.01 0.770 0.659 0.667 0.019
PyCausal No 0.001 0.275 0.604 0.451 0.024
PyCausal No 0.0001 | 0058 | 0391 | 0333 | 0060 |
PyCausal Yes 0.01 0.724 0.711 0.158 0.039
PyCausal Yes 0.001 0.288 0.750 0.231 0.055
PyCausal Yes 0.0001 0.117 0.417 0.350 0.047

FIG2 Heatmap showing the proportion of edges unrolled by METALICA in the Crohn’s
disease datasets for the networks obtained from PyCausal (TETRAD) as the alpha param-
eter varies using datasets with and without temporal alighment. Last column shows the
overall bootstrap score.

Method Temporal Proportion of unrolled edges | Overall
Alignment TGMT TGT T™T Score
PyCausal No 0.3675 0.5515 0.4835 0.0343
PyCausal Yes 0.3763 0.6257 0.2462 0.0471
Tigramite No 0.2000 0.7220 0.9449 0.0115
Tigramite Yes 0.2000 0.6663 0.9186 0.0110
DBN No 0.2472 0.3890 0.2136
DBN Yes 0.7879 0.4252 0.3343 0.3736

FIG3 Heatmap showing percentages of edges unrolled by METALICA in the Crohn’s dis-
ease datasets for all the methods averaged over all parameter choices. The last column
shows the overall bootstrap score.

means that higher alpha values result in networks with higher average confidence on
each edge, since it is also more difficult for it to be learned by chance. This is con-
sistent with the higher percentage of unrolling for larger alpha values, indicating that
the edges with higher support get unrolled more frequently, adding support for the
unrolling process. Interestingly, there is a clear reversal of the pattern for the overall
bootstrap score (last column) for the experiments without temporal alignment, where,
contrary to our intuition, the smaller alpha values result in higher overall scores. In-
terestingly, temporally aligning the data set seems to fix this problem, which would
support the necessity of alignment as a pre-processing step.

Also, as shown in Figure 3, the DBN/PALM method seems more stable than the
other two algorithms, since the much higher average overall bootstrap score indicates
thatin each bootstrap, the edges learned are consistent with the ones learned in other
bootstrap runs. This lower variability across the different random data subsamples
used is a clear advantage of the DBN/PALM method.

The top unrollings and de-confoundings discovered by METALICA using the net-
works from all the methods were sorted based on the overall bootstrap score, and
other factors like the number of networks they appear in, or the different network
types that supported this particular finding. We discuss below some particularly inter-
esting results from the METALICA analysis described above.

Uncovering unrolled biological relationships Here, we discuss the unrolling of
specific edges from the METALICA results using the dataset containing all diseases.

1


https://doi.org/10.1101/2023.12.12.571384
http://creativecommons.org/licenses/by-nd/4.0/

ms Submission Template mSystems Submission Template mSystems Submission Template mSystems Submission Template mSystems Submission Template mSystems Submission Te

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.12.571384; this version posted December 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Ruiz-Perez et al.

455 First, we consider the edge Eubacterium siraeum — Bacteroides thetaiotaomicron in
456 G, i.e., the edge between the abundance of the two bacterial taxa, E. siraeum and
457 B. thetaiotaomicron. It manifests itself as the unrolled path E. siraeum — uridine kinase

— cytidine — B. thetaiotaomicron in Gy, as shown in Figure 4. The following is the

»
>

Eubacterium siraeum (T) _ti,y Bacteroides_thetaiotaomicron (T)_t;.4
> >
Eubacterium siraeum_t;, 4 Uridine kinase_t;.4 Cytidine_t;+
[] >
Cytidine_t; Bacteroides_thetaiotaomicron_t;,,

FIG 4 Biologically confirmed unrolling. The edge Eubacterium siraeum — Bacteroides

thetaiotaomicron learned in Gy (T) is unrolled into Eubacterium siraeum — uridine kinase

— cytidine — Bacteroides thetaiotaomicron in Gigy.
458
459 support for each edge in the unrolled path from the literature and the knowledge-
460 bases. Both E. siraeum and B. thetaiotaomicron contain the gene to produce enzyme
461 uridine kinase (54, 55). This enzyme, when present in prokaryotes and eukaryotes,
462 phosphorylates both uridine and cytidine to their mono-phosphate forms, and vice-
463 versa. The specific reactions that this enzyme is capable of performing are the follow-
464 ing (56, 57, 58):
465 * ATP + Uridine = ADP + UMP, and
466 + ATP + Cytidine = ADP + CMP,
467 Where ATP stands for adenosine tri-phosphate, ADP stands for adenosine di-phosphate,
468 UMP stands for uridine mono-phosphate, and CMP stands for cytidine mono-phosphate.
460 Since B. thetaiotaomicron carries the gene for uridine kinase, it has the ability to per-
470 form the forward reaction and consume it by phosphorylating cytidine to CMP. More
471 importantly, B. thetaiotaomicron also has the gene for cytidine deaminase, which scav-
472 enges exogenous and endogenous cytidine for UMP synthesis (59). The reaction per-
473 formed by this enzyme is cytidine + H20 = uridine + Ammonia (60, 61, 62), which
a74 validates the third and last edge (cytidine — B. thetaiotaomicron) in Figure 4. In addi-
475 tion, experimental results show that a cytidine-scavenging system confers colonization
476 fitness to B. thetaiotaomicron, and therefore positively impact its abundance (63). Inter-
477 estingly, uridine may be playing a role in this connection between the two taxa, since
478 both enzymes discussed involve uridine, so both taxa can produce and consume uri-
479 dine. Reinforcing this argument is the fact that the edge uridine — B. thetaiotaomicron
480 is also present in the same network Gigy. Moreover, this unrolling can be important
481 for IBD. Treatment for Crohn's disease with live B. thetaiotaomicron or its products
4s2 displays strong efficacy in preclinical models of IBD, with multiple benefits (64). Sim-
483 ilarly, there is precedent to treat gastrointestinal problems with E. Siraeum (65), and
484 activation-induced cytidine deaminase seems to prevent colon cancer development
485 despite persistent inflammation in the colon (66).

486 In summary, our unrolling methods allow us to make biological sense out of a set
487 of related edges in the series of networks generated from the multi-omics data.
488 As a second example, the path: Bacteroides stercoris — uridine kinase — cytidine

489 — Bacteroides stercoris can also be validated, which can be thought of as an unrolling of
490 the self-loop from Bacteroides stercoris to itself in Gyas shown in Figure 5. The taxon, B.
401  stercoris, carries the gene for both uridine kinase (67) and cytidine deaminase (68), so it
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>
. =

Bacteroides stercoris (T) _t; Bacteroides stercoris (T)_tisq
> >
Bacteroides stercoris_t;. Uridine kinase_t;.q Cytidine_t,.,
[] >
Cytidine_t; Bacteroides stercoris_t;.4

FIG 5 Biologically confirmed unrolling. The edge Bacteroides stercoris — Bacteroides
stercoris learned in Gy (T) is unrolled into Bacteroides stercoris — uridine kinase — cyti-
dine — Bacteroides stercoris in Gygy

can both produce and consume cytidine, and since cytidine deaminase can scavenge
endogenous cytidine, this lends further support to the self-loop edge from B. stercoris
to itself; it might be regulating itself through the cytidine or uridine internally. Inter-
estingly, B. stercoris is linked to colorectal cancer (69), and its increased abundance
was detected in fecal samples of Crohn’s Disease (CD) patients (70). Also, an increased
reactivity of Immunoglobulin G from Crohn'’s Disease patients toward B. stercoris and
other species of Bacteroides has been shown in the serum of CD patients (71).

Two examples of “partial” validations of unrollings from our experiments are also
provided. The unrolled path Bacteroides finegoldii — phosphatidate cytidylyltransferase
— Betaine — Eubacterium ventriosum was discovered by our search. It first appeared
as an edge B. finegoldii — E. ventriosum in T, which then got unrolled in TG, T™M, and TGM.
B. finegoldii is an anaerobic gram-negative bacteria that has been found to be gener-
ally beneficial in the gut (72). It contains the gene BN532_01044 which expresses the
phosphatidate cytidylytransferase protein. This is a membrane-bound enzyme that
participates in the glycerophospholipid metabolism and phosphatidylinositol signal-
ing system. Moreover, B. finegoldii is known to produce the metabolite Betaine (73). In-
creased levels of betaine have been found to benefit IBD patients, allowing for proper
digestion and assimilation of nutrients. Over the last decade, doctors have recom-
mended betaine-rich foods as a way to help IBD patients rapidly absorb and distribute
vital vitamins and minerals needed to maintain diversity in the gut (73). Additionally,
recent studies have shown betaine to be correlated to the Eubacterium genus and to
be of general importance for osmotic adaptation of most species of Eubacterium (74).
Even though no specific study was found about the species Eubacterium ventriosum,
the fact that betaine was found to increase the abundance of the Eubacterium genus
lends support to the argument that Eubacterium members consume betaine through
the conversion of Acetate (75), thus partially validating the unrolling. Moreover, while
Acetate was not contemplated in the dataset, one of its precursors, Choline, was. Many
strong unrollings have a link from Choline to a member of the Eubacterium genus in
the dataset (E. ventriosum, E. siraeum, E. rectale), and almost every method learned the
edge Betaine — E. ventriosum as part of specific unrollings, which could be an indica-
tion of a pathway transforming Choline to Acetate to Betaine, which may be facilitated
by members of the genus, Eubacterium.

The path: Bacteroides ovatus — DNA helicase — Pyridoxine — Bacteroides ovatus
in TGM can be thought of as an unrolling of a self-loop edge in T from B. ovatus to it-
self, which got unrolled in TG, TM, and TGM. Moreover, B. ovatus is present in the gut
microbiome, and plays a crucial role in the dysbiosis of the gut health. This anerobic
bacteria has been found to have significantly elevated abundance in patients suffer-
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ing from IBD. Findings suggest that some species of Bacteroides injure gut tissue and
induce inflammation (76). This bacterium does carry the gene dnaB, which expresses
the protein DNA helicase, an enzyme responsible in unpacking genes in an organism
and DNA repair. The production of the metabolite pyridoxine has been found in great
proportion when there is an abundance of B. ovatus (77). However, evidence suggest-
ing the consumption of pyridoxine by the taxa could not be found. When pyriodoxine
is present in great abundance, it is involved in many biochemical pathways that lead
to the synthesis or metabolism of nucleic acids, immune modulatory metabolites and
many others (77). However, when scarce, it leads to inflammation. We consider this
as another example of a “partial” validation of our unrolling strategy.

Uncovering de-confounded biological relationships We focus next on the de-
confounding actions performed by METALICA on the networks obtained using the
dataset containing all diseases. The edge: thymidylate synthase — glutamate dehy-
drogenase was inferred in the G network but disappeared in the TG network, possi-
bly because both genes are present in the taxon Haemophilus parainfluenzae. This
suggests that the suggested relationship between the two genes is spurious and the
taxon is the confounder. H. parainfluenza is an opportunistic pathogen that has been
found in elevated levels in patients suffering from many diseases including pneumonia
and conjunctivitis. Recent studies have shown that high abundance of this pathogen
was found in patients suffering from IBD. Different dynamics have been noted for the
abundance of H. parainfluenza in the literature. For instance, when IBD patients enter
remission, there is a steep decline in this pathogen (78). Additionally, the two genes
that are present in H. parainfluenzae were found to produce proteins that help drive
diseases including colon cancer.

Limitations and future work The methods used by METALICA are only applica-
ble to multi-omic datasets, which are relatively uncommon. However, this is expected
to change in the near future with the increased effort to understand the underly-
ing mechanisms within biological processes. Second, these methods do not provide
definitive evidence for the causal chains, but rather lend support to generate hypothe-
ses that would have to be proved with experiments in the laboratory. We argue that
as larger data sets become more and more commonplace, METALICA will become in-
creasingly useful.

CONCLUSION
We have developed METALICA, which consists of two novel post hoc network analy-
sis algorithms, namely unrolling and de-confounding. We first learned biological net-
works from a longitudinal multi-omic IBD dataset with three state-of-the-art network
and causal discovery tools. We then applied METALICA to the networks learned by
the tools (DBN/PALM, tsGFCI/TETRAD, and Tigramite), and compared their predictive
performance. The networks produced using DBN/PALM produced the most number
of unrollings, suggesting that even though the tool was not explicitly built for causal
discovery, its conditional probability underpinnings produce edges that have a rea-
sonable chance of representing causal relationships and to lead to further biological
discoveries as outlined above. The top findings by our algorithms were analyzed, and
relevant biological interpretations were presented for specific network-inferred inter-
actions.

Data availability. All code, networks, and longitudinal microbiome data sets will
be made available upon publication.

Data citation. All data analyzed in this work are derived from the iHMP IBD web-
site: https://www.ibdmdb.org (18).
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