

1 Location analysis of presynaptically active and silent 2 synapses in single-cultured hippocampal neurons

3
4 Otoya Kitaoka¹, Kohei Oyabu¹, Kaori Kubota¹, Takuya Watanabe¹, Satoru Kondo^{2,3},
5 Teppei Matsui⁴, Shutaro Katsurabayashi^{1, *}, Katsunori Iwasaki¹
6

7 ¹Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka
8 University, Fukuoka, Japan.

9 ²Department of Physiology, School of Medicine, The University of Tokyo, Tokyo,
10 Japan.

11 ³World Premier International Research Center - International Research Center for
12 Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study
13 (UTIAS), Tokyo, Japan.

14 ⁴Laboratory of Neurocomputation, Graduate School of Brain Science, Doshisha
15 University, Kyoto, Japan

16
17 *Correspondence should be addressed to:

18 Prof. Shutaro Katsurabayashi, Ph.D.

19 Department of Neuropharmacology, Faculty of Pharmaceutical Sciences,
20 Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.

21 E-mail: shutarok@fukuoka-u.ac.jp

22 Tel: (+81) 92-871-6631 (ext. 6634), Fax: (+81) 92-863-0389

23

24 Number of text pages: 17

25 Number of references: 29

26 Number of figures: 2

27 Number of tables: 0

28

29 ORCID numbers of the corresponding author: 0000-0002-8595-5820 (Shutaro
30 Katsurabayashi)

31

32 **Keywords**

33 Silent synapse, single neuron, sholl analysis, donut analysis, autapse culture, location
34 analysis

35 **Scope statement**

36 A morphologically present but non-functioning synapse is termed a silent synapse.
37 The presence of presynaptically silent synapses remains enigmatic, and their
38 physiological significance is highly intriguing. This study focused on the distribution
39 and developmental changes of presynaptically active and silent synapses in individual
40 neurons. To pinpoint the distribution of presynaptically active and silent synapses, we
41 enhanced the traditional Sholl analysis and introduced a novel method termed "donut
42 analysis." We found that the distribution of presynaptically silent synapses within a
43 single neuron does not exhibit a distinct pattern during synapse development in different
44 areas. However, irrespective of neuronal development, the proportion of presynaptically
45 silent synapses tends to rise as the projection site moves farther from the cell body.

46 This is a new paper that applies "Sholl analysis," a method invented 70 years ago
47 that is now the gold standard of morphological analysis of the single neuron.

48 This study represents the first observation of changes in the distribution of
49 presynaptically active and silent synapses within a single neuron. Additionally, we
50 propose that donut analysis can serve as a valuable analytical tool for evaluating
51 synaptic positional information for the design of "synaptic maps" in neural circuits.
52 (195 words)

53

54 **Abstract**

55 A morphologically present but non-functioning synapse is termed a silent synapse.
56 Silent synapses are categorized into “postsynaptically silent synapses,” where AMPA
57 receptors are either absent or non-functional, and “presynaptically silent synapses,”
58 where neurotransmitters cannot be released from nerve terminals. The presence of
59 presynaptically silent synapses remains enigmatic, and their physiological significance
60 is highly intriguing. In this study, we examined the distribution and developmental
61 changes of presynaptically active and silent synapses in individual neurons. Our
62 findings show a gradual increase in the number of excitatory synapses, along with a
63 corresponding decrease in the percentage of presynaptically silent synapses during
64 neuronal development. To pinpoint the distribution of presynaptically active and silent
65 synapses, i.e., their positional information, we enhanced the traditional Sholl analysis
66 and introduced a novel method termed “donut analysis.” Our results indicate that the
67 distribution of presynaptically silent synapses within a single neuron does not exhibit a
68 distinct pattern during synapse development in different areas. However, irrespective of
69 neuronal development, the proportion of presynaptically silent synapses tends to rise as
70 the projection site moves farther from the cell body, suggesting that synapses near the
71 cell body may exhibit higher synaptic transmission efficiency. This study represents the
72 first observation of changes in the distribution of presynaptically active and silent
73 synapses within a single neuron. Additionally, we propose that donut analysis can serve
74 as a valuable analytical tool for evaluating synaptic positional information.

75

76

77 **1. Introduction**

78 An excitatory synapse releases glutamate as a neurotransmitter, and it is referred to
79 as an active synapse. Conversely, a synapse that maintains its synaptic structure but fails
80 to transmit neuronal information is known as a silent synapse (1). Silent synapses can
81 become inactive for one of two reasons: (I) the absence or impairment of receptor
82 function in the post-synaptic membrane or (II) the loss of synaptic exocytotic function
83 in the nerve terminal.

84 Regarding reason(I), the relationship between two types of glutamate receptors,
85 namely the N-methyl-D-aspartate (NMDA) receptor and the α -amino-3-hydroxy-5-
86 methyl-4-isoxazolepropionic acid (AMPA) receptor, is speculated as follows: In the
87 immature brain shortly after birth, NMDA receptors are expressed but blocked by Mg^{2+} .
88 Even when neurotransmitters are released and glutamate is received, NMDA receptors
89 remain inactive, and neuronal information is not transmitted to subsequent neurons

90 (2,3). However, as the brain matures, AMPA receptors appear near NMDA receptors.
91 When released glutamate binds to AMPA receptors, depolarization occurs, removing the
92 magnesium block at the NMDA receptor, leading to the activation of the synapse (4).
93 Consequently, the nerve cell becomes more excited and transmits information to the
94 next cell. In contrast to the mechanism described above, the physiological significance
95 of reason (II) has not been fully elucidated (5).

96 *In vitro* conditions allowed for electrophysiological and morphological analyses,
97 revealing notable distinctions in neuronal synaptogenesis (6,7,8,9). Building upon
98 widely accepted concepts concerning presynaptic synaptogenesis, this study delves into
99 presynaptic synaptogenesis within cultures spanning 1 week, 2 weeks, and 3 weeks. Our
100 investigation also places particular emphasis on the distance from the cell body in
101 relation to the proportion of presynaptically active and silent synapses projecting to
102 dendrites.

103
104

105 **2. Materials and methods**

106 **2.1 Animal ethics**

107 All animal care procedures followed the rules of the Fukuoka University
108 Experimental Animal Welfare Committee (equivalent to NIH guidelines). The
109 experiment was strictly conducted after the Committee's approval of the experimental
110 plan. Cultured cells were obtained by decapitating newborn mice, and efforts were made
111 to minimize distress.

112 All experiments were performed in compliance with the ARRIVE guidelines.
113 Experiments were performed blind.

114

115 **2.2 Experimental animals**

116 Timed-pregnant Jcl:ICR mice (Catalog ID: Jcl:ICR, CLEA Japan, Inc., Tokyo,
117 Japan) were purchased at gestational day 15 from the Kyudo Company (Tosu, Japan).
118 Fifteen to seventeen-week-old pregnant Jcl:ICR mice were used. The pregnant mice
119 were housed in plastic cages in an environment with a room temperature of $23\pm2^\circ\text{C}$, a
120 humidity of $60\pm2\%$, and a 12-h light–dark cycle (lights on at 7:00 AM, lights off at 7:00
121 PM). Food (CLEA Rodent Diet, CE-2, CLEA Japan, Inc., Tokyo, Japan) and water were
122 provided *ad libitum*. The body weights of pregnant mice were not recorded.

123 Experimental animals were handled in accordance with the animal ethics
124 regulations of the Fukuoka University Animal Care and Use Committee (Approval No.
125 2112094 and 2311081).

126

127 **2.3 Autaptic culture preparation**

128 A sample in which a single neuron is cultured on a dot-like layer of astrocytes is
129 referred to as an autaptic culture (11). The autaptic culture preparations were conducted
130 in accordance with previous reports (11,12). To provide a brief overview, postnatal day
131 0–1 neonatal mice were used, and their brains were extracted and immersed in Hank's
132 Balanced Saline Solution (Invitrogen, Cat. # 084-08345) cooled to 4°C. In this state, the
133 cerebral cortices on both sides were excised under a microscope, and cerebral cortical
134 cells were isolated via trypsinization. The isolated cells were then cultured in 75-cm²
135 culture flasks (Corning Inc., NY, USA). After 2 weeks, the culture flask was gently
136 tapped multiple times to remove non-astrocytic cells. Subsequently, the astrocytes that
137 remained in close contact with the bottom of the culture flask were detached using
138 trypsinization. These cells were replated at a density of 6,000 cells/cm² per well onto
139 22-mm round coverslips (thickness No. 1; Matsunami, Osaka, Japan) within 6-well
140 plates (TPP, Switzerland).

141 To cultivate the seeded astrocytes in dot shapes, a mixture of collagen (final
142 concentration 1.0 mg/mL; BD Biosciences, San Jose, CA, USA) and poly-D-lysine
143 (final concentration 0.25 mg/mL; Sigma-Aldrich, St Louis, MO, USA) was prepared.
144 Subsequently, 300-μm square dots were stamped onto a round cover glass pre-coated
145 with 0.5% agarose. This stamp design was an original development. One week after
146 seeding the astrocytes, it was confirmed that the astrocytes had successfully formed dot-
147 shaped cultures.

148 Next, brains were excised from neonatal ICR mice on days 0–1 after birth and
149 immersed in Hank's Balanced Saline Solution cooled to 4°C. In this state, the
150 hippocampal CA3–CA1 region was dissected under a microscope. Finally, hippocampal
151 neurons were isolated through treatment in Dulbecco's modified Eagle's medium
152 (Invitrogen) containing 2 U/ml of papain (Worthington, Cat. # PAP) at 37°C for 1 hour.
153 The isolated hippocampal neurons were then seeded at a density of 1,500 cells/cm² per
154 well and cultured in a 37°C, 5% CO₂ incubator. Data from three groups (1 week, 2
155 weeks, and 3 weeks *in vitro*, respectively) were obtained from the same sister cultures
156 (15 cultures in total).

157

158 **2.4 FM1-43FX dye staining**

159 Presynaptic terminals that actively release neurotransmitters, referred to as active
160 synapses, were visualized using N-(3-triethylammoniumpropyl)-4-(4-(dibutyl amino)
161 styryl) pyridinium dibromide (FM1-43FX, a fixable analog of FM1-43 membrane stain,

162 Thermo Fisher Scientific, Waltham, MA, USA). To stain the presynaptically active
163 synapses of autaptic cultured neurons, we followed the method of Moulder et al. (5,13).
164 In brief, we dissolved 10 μ M FM1-43FX in a high potassium (45 mM) extracellular
165 solution containing the NMDA receptor inhibitor (2R)-amino-5-phosphonovaleric acid
166 (APV, 25 μ M, Sigma-Aldrich, St Louis, MO, USA) and the AMPA receptor inhibitor 6-
167 cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μ M, Sigma Aldrich, St Louis, MO,
168 USA). This solution was applied to the autaptic culture neurons for 2 min.
169 Subsequently, the cells were washed three times for 2 min each with a standard
170 extracellular solution containing 1 μ M tetrodotoxin (TTX), a sodium channel blocker.

171 Following the staining procedure, autaptic culture neurons were fixed using a 4%
172 paraformaldehyde solution in phosphate-buffered saline (PBS) for 10 minutes. To
173 minimize the loss of FM1-43FX signals, such as photobleaching due to ambient light
174 exposure, the images were captured promptly after fixing the neurons. We acquired
175 sixteen-bit images using an all-in-one fluorescence microscope (BZ-X810, KEYENCE,
176 Osaka, Japan) with a 20 \times objective lens (Plan Apochromat, numerical aperture 0.75), or
177 an sCMOS camera (pco.edge 4.2, pco, Kelheim, Germany) mounted on an inverted
178 microscope (Eclipse-TiE, Nikon, Tokyo, Japan) equipped with a 40 \times objective lens
179 (Plan Apo λ , numerical aperture 0.95). In the case of using the inverted microscope,
180 FM1-43FX was excited using a white LED (Lambda HPX, Sutter Instruments, Novato,
181 CA, USA) at 100% maximum intensity and imaged using a filter cube (470/40-nm
182 excitation, 500-nm dichroic long-pass, 535/50-nm emission). In each sample, ten
183 images were captured with an exposure time of 300 ms per image, averaged, and
184 utilized for analysis based on the average pixel intensity.

185

186 **2.5 Immunostaining**

187 Autaptic culture preparations underwent immunostaining based on the method
188 established by Moulder et al. (5,13). After capturing FM1-43FX images, autaptic culture
189 neurons were incubated in a microscope chamber with PBS containing 5% normal goat
190 serum and 0.1% Triton X-100 (Sigma Aldrich, St Louis, MO, USA) for 30 minutes.
191 Following the Triton X-100 blocking step, the decolorization of FM1-43FX was
192 visually confirmed (data not shown). Primary antibodies were subsequently applied for
193 3 h at the following dilutions: anti-microtubule-associated protein 2 (MAP 2) at 1:1,000
194 (guinea pig polyclonal, antiserum, Synaptic Systems, Göttingen, Germany) and anti-
195 vesicular glutamate transporter 1 (anti-vGLUT1) at 1:2,000 (rabbit polyclonal, affinity-
196 purified, Synaptic Systems, Göttingen, Germany). Secondary antibodies were applied
197 using Alexa Fluor 488 or 594 (Thermo Fisher Scientific, Waltham, Mass., USA) at a

198 dilution of 1:400 for 30 min. Since FM1-43FX can be completely removed by Triton X-
199 100 blocking (5,12), the excitation light (480 nm) used for fluorescence observation of
200 FM1-43FX was also employed for fluorescence excitation of Alexa Fluor 488.

201 Imaging of autaptic culture preparations was performed using an all-in-one
202 fluorescence microscope (BZ-X810, KEYENCE, Osaka, Japan) with a 20 \times objective
203 lens (Plan Apochromat, numerical aperture 0.75), or an sCMOS camera (pco.edge 4.2,
204 pco, Kelheim, Germany) mounted on an inverted microscope (Eclipse-TiE, Nikon,
205 Tokyo, Japan) equipped with a 40 \times objective lens (Plan Apo λ , numerical aperture 0.95).
206 Similar to FM1-43FX imaging, ten images were captured per sample, and these images
207 were subsequently normalized to obtain the average intensity for analysis.

208

209 **2.6 Qualification of synaptic puncta**

210 To identify the vGLUT1 puncta, we employed ImageJ software (version 1.46j;
211 Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,
212 <https://imagej.nih.gov/ij/>, 1997-2016). We subtracted the original images from an image
213 filtered with a Gaussian blur of the duplicated original image. For detailed procedures,
214 please refer to Iwabuchi et al. (14). The subtracted images were then subjected to
215 binarization using a threshold set at the top of 0.01% of the cumulative intensity of the
216 background area in the vGLUT1 image. Subsequently, we detected the number of
217 puncta overlaid with MAP2 images, applying a size threshold of ≥ 5 pixels.

218

219 **2.7 Qualification of presynaptically silent synapses**

220 The FM1-43FX puncta were identified in a manner similar to that employed for
221 vGLUT1 puncta. We overlaid images of FM1-43FX with images of vGLUT1 and
222 MAP2 to identify presynaptically silent synapses. Utilizing ImageJ, we defined the
223 region of interest (ROI) of vGLUT1 that was not stained with FM1-43FX as a
224 presynaptically silent synapse. For a more comprehensive understanding of the analysis
225 of silent synapses, please refer to our previous study (12).

226

227 **2.8 Donut analysis**

228 The Sholl analysis plugin (15) within Image J was employed to examine the
229 projection positions of presynaptically silent synapses. The methodology for this
230 analysis is outlined as follows: Initially, a minimum circle with a diameter of 20 μ m was
231 delineated around the cell body. Subsequently, concentric circles were drawn to
232 encompass the entire MAP2 image, including three additional concentric circles
233 positioned between the maximum circle and the central minimum circle (Fig. 2A). The

234 region inside the minimal circle was designated as area 1, the region between the outer
235 edge of the minimum circle and the subsequent concentric circle was labeled as area 2,
236 the area extending to the next concentric circle was designated as area 3, the region
237 encompassing the following concentric circle was defined as area 4, and the outermost
238 region was identified as area 5 (Fig. 2B). By categorizing the synapses present within
239 each of these donut-shaped areas, it becomes possible to quantify the positional
240 information of the synapses. We coined this analytical method “donut analysis” due to
241 the donut-shaped nature of the areas under investigation.

242

243 **2.9 Statistics**

244 Data are expressed as mean \pm SEM. Statistical tests were conducted using Matlab
245 Statistics Toolbox (MathWorks, Natick, M.A.). Developmental changes of total number
246 of synapses or total proportion of synapses were evaluated using Pearson correlation
247 coefficients between the culture period and number of synapses or the culture period
248 and proportion of synapses, respectively (Fig. 1B-E). Developmental changes of
249 numbers and proportions of synapses across areas were evaluated using two-way
250 analysis of variance followed by Tukey’s HSD test (Fig. 2C-E). Differences were
251 considered significant when $p < 0.05$.

252

253

254 **3. Results**

255 **3.1 Quantification of presynaptically active and presynaptically silent synapses**

256 FM1-43FX is internalized into the presynaptic terminals through the process of
257 synaptic vesicle endocytosis. Consequently, we used fluorescent puncta labeling to
258 identify presynaptically active synapses capable of neurotransmitter exocytosis. Figure
259 1A illustrates a representative fluorescence image in which vGLUT1 is pseudocolored
260 in red, FM1-43FX in green, and MAP2 in blue. In the case of presynaptically active
261 synapses, the overlap of the green FM1-43FX and red vGLUT1 stains results in a
262 yellow appearance, indicating the presence of a presynaptically active synapse.
263 Conversely, presynaptically silent synapses, which fail to uptake FM1-43FX, are not
264 marked in green but appear solely as red puncta by vGLUT1 (indicated by arrows in
265 Fig. 1A). Essentially, the red fluorescent puncta denote presynaptically silent synapses,
266 which are excitatory synapses that do not release glutamate through exocytosis.

267 First, we quantified the number of synapses positive for the vGLUT1 antibody.
268 Although not statistically significant, the results showed a gradual increase in the
269 number of excitatory synapses as neurons developed (Fig. 1B, 1 w: 381.58 \pm 36.63, 2 w:

270 426.58±62.55, 3 w: 486.56±57.11; R = 0.16, p = 0.14). It is important to note that the
271 vGLUT1 puncta in this result represents both presynaptically active and presynaptically
272 silent synapses.

273 To specifically quantify presynaptically active synapses, we counted the number of
274 synapses labeled with FM1-43FX among vGLUT1-positive synapses. The results
275 indicated a gradual increase in the number of presynaptically active synapses as neurons
276 developed (Fig. 1C, 1 w: 287.09±29.42, 2 w: 347.65±54.92, 3 w: 393.13±46.25), though
277 the correlation was not significant (R = 0.19, p = 0.075).

278 Next, we quantified presynaptically silent synapses among vGLUT1-positive
279 synapses, identified as those where FM1-43FX was not labeled (Fig. 1D). The results
280 revealed no change in the number of presynaptically silent synapses with neuronal
281 development (Fig. 1D, 1 w: 94.48±16.76, 2 w: 81.88±12.87, 3 w: 93.44±14.93; R = -
282 0.0059, p = 0.96). Based on these findings, we calculated the ratio of presynaptically
283 silent synapses (Fig. 1E) and observed that the proportion significantly decreased with
284 neuronal development (Fig. 1E, 1 w: 25.04±2.75%, 2 w: 20.91±2.73%, 3 w:
285 18.45±1.61%; R = -0.2097, p < 0.05).

286

287 **3.2 Location analysis of synapses using donut analysis**

288 Upon observing the image in Fig. 1A, we noted that the projection positions of
289 presynaptically active and silent synapses onto the dendrites exhibited uneven
290 distribution. Consequently, we endeavored to quantify the positional information of
291 these synapses within a single neuron. To conduct this positional analysis of synaptic
292 puncta, we employed the conventionally known Sholl analysis (15). Sholl analysis is a
293 widely used and straightforward method for quantifying the branching patterns of
294 dendrites and axons. In this study, concentric circles were drawn around the neuron's
295 cell body (Fig. 2A), and these concentric circles were then divided into donut-shaped
296 areas (Fig. 2B). Synapses were tallied within each of these donut-shaped regions,
297 enabling precise quantification of the synapse distribution.

298 The number of presynaptically active synapses in each area exhibited a peak in
299 area 2 for all three groups (Fig. 2C). Significant differences were found between area 2
300 and area 5 for all three groups and between area 2 and area 4 for 2 and 3 weeks (p <
301 0.05). In general, the number of presynaptically active synapses decreased as the
302 distance from the cell body increased (Fig. 2C) (1 w, R = -0.42, p < 0.05; 2 w, R = -
303 0.38, p < 0.05; 3 w, R = -0.42, p < 0.05). Similarly, the number of presynaptically silent
304 synapses in each area exhibited a relative decrease as the distance from the cell body
305 increased (Fig. 2D) (1 w, R = -0.19, p < 0.05; 2 w, R = -0.26, p < 0.05; 3 w, R = -0.17, p

306 < 0.05). Based on these findings, we calculated the percentage of presynaptically silent
307 synapses for each area (Fig. 2E). Intriguingly, the proportions of presynaptically silent
308 synapses near the cell body (area 1 and area 2) and that of the most distal part of the cell
309 body (area 5) were significantly different for 2 and 3 weeks ($p < 0.05$) but not for 1
310 week, indicating developmental change of the distribution of presynaptically silent
311 synapses. Additionally, the location analysis revealed a statistically significant trend of
312 an increasingly higher proportion of presynaptically silent synapses as the distance
313 from the cell body increased (Fig. 2E) (1 w, $R = 0.20, p < 0.05$; 2 w, $R = 0.37, p < 0.05$;
314 3 w, $R = 0.38, p < 0.05$).

315

316 **4. Discussion**

317 Compared to a previous study (16), where the percentage of active synapses was
318 approximately 66%, our experiments revealed percentages ranging from about 75-80%
319 (Fig. 1E). Clearly, these disparities can be attributed to extrinsic factors such as the
320 culture conditions of the neurons, though differences in experimental methods cannot be
321 discounted. In the previous study (16), FM dye staining was conducted using action
322 potential trains and treated with a high potassium solution for FM dye-destaining. In our
323 present experiment, we employed robust stimuli, including a high-potassium solution. It
324 is plausible that such a potent stimulus may have “awakened” dormant presynaptic
325 synapses. Therefore, measuring functional active presynapses through electrical
326 stimulation is an avenue for future investigation.

327 The increase in the number of excitatory synapses with neuronal development is a
328 well-documented phenomenon (17,18), and the findings of our study align with this
329 observation (Fig. 1B). Turning attention to the percentage of presynaptically silent
330 synapses within each compartment, we observed that approximately 20% remained
331 silent in areas 2–3, while approximately 40% were silent in area 5, indicating that silent
332 synapses tend to form at a greater distance from the cell body. This suggests a trend
333 toward an increased presence of excitatory active synapses proximal to the soma (Fig.
334 2C). Synapses in close proximity to the cell body were posited to be more active than
335 those distal to the cell body during neuronal development, with two potential
336 explanations. Firstly, as synapses develop, they undergo synaptic pruning, a process
337 where axons reshape neuron dendrites and synapses, eliminating unnecessary synapses
338 during brain development (19,20,21,22). Synapses were initially formed across the
339 entire dendritic structure in immature neurons, with presynaptically silent synapses near
340 the soma being pruned during development. Secondly, presynaptic synapses situated far
341 from the soma may undergo slower development. Activation of presynaptically silent

342 synapses in immature neurons is believed to be contingent on the PKA signaling
343 pathway (23,24). Consequently, synaptic function may evolve in tandem with neuronal
344 development, especially in the vicinity of the cell body, where second messengers exert
345 influence and activate previously inactive synapses.

346 In this study, we did not observe significant changes in the number of
347 presynaptically silent synapses during development (Fig. 1D). It is worth noting that
348 changes in the number of postsynaptically silent synapses during development have
349 been reported (25). For instance, in the neonatal rat visual cortex, many silent synapses
350 exist in layer VI pyramidal neurons, and the number of active synapses increases with
351 growth, similar to the hippocampus. On the other hand, layer II/III pyramidal cells have
352 many active synapses at birth, and silent synapses increase with growth, followed by a
353 return to active synapses (25). Thus, the patterns of developmental post-synaptic
354 expression appear to vary by brain region. It remains unclear whether the results of this
355 study are specific to glutamatergic neurons in the hippocampus or if similar patterns are
356 observed in other brain regions.

357 While no distinct changes were observed in the ratio of silent synapses in each area
358 during neuronal development, an interesting finding was that, regardless of neuronal
359 maturation, the proportion of presynaptically silent synapses was lower in the proximal
360 region compared to the distal region of the cell body. Although the physiological
361 significance of changes in the rate of presynaptically silent synapse formation during
362 neuronal development remains unknown, it may contribute to the establishment of
363 functional neural circuits.

364 Presynaptically silent synapses, despite being structurally mature, are believed to
365 lack neurotransmitter release due to the inability of synaptic vesicles to exocytose (24).
366 Several proteins, such as Munc13, RIM, CAST, and bassoon, are involved in
367 neurotransmitter exocytosis from nerve terminals (26,27). Among these, Rim1 and
368 Munc13-1 have been reported to decrease in expression after the induction of silent
369 synapses following depolarization induction in hippocampal neurons (28). It remains
370 unclear whether such presynaptic proteins associated with exocytosis from nerve
371 terminals are more highly expressed at synapses projecting closer to the cell body.
372 Renger et al. (10) revealed that functional synaptic vesicle turnover follows the
373 localization of synapsin I with a 1-2 day delay. However, the primary factor
374 distinguishing early-stage synaptogenesis from silent synapses remains unknown.

375 The NMDA receptor NR2B subunit has been reported to be replaced by NR2A
376 during neuronal maturation, resulting in decreased exocytosis (29). Based on these
377 results, presynaptically silent synapses may possibly increase due to premature

378 maturation of synapses closer to the distal cell body as neurons develop, along with an
379 increase in the NR2A subunit. To verify this hypothesis, a qualitative determination of
380 the expression position of the NR2A subunit is necessary. However, the regulation of
381 expression and location of presynaptically silent synapses during development remains
382 unclear, necessitating further research in the future.

383 It may be challenging to ensure that donut analysis accurately distinguishes distal
384 from proximal synapses. For instance, axons and dendrites can freely extend within the
385 astrocytic dot area, and the possibility that proximal concentric rings capture distal
386 synapses cannot be dismissed. However, this concern applies similarly to conventional
387 Sholl analysis. Nonetheless, we trust that the findings of this study will offer insights
388 into unraveling the mechanism of synapse development, including its unknown
389 potential, significance, and functions.

390 Above all, we aspire for this innovative technique, “donut analysis,” to become a
391 valuable method for analyzing the positional information of synapses within a single
392 neuron.

393

394 **5. Data Availability**

395 The data that support the findings of this study are available from the
396 corresponding author upon reasonable request.

397

398

399 **6. Author Contributions Statement**

400 O.K., K.O., and S.K. (Shutaro Katsurabayashi) performed experiments and
401 analyzed data; K.K., T.W., S.K. (Shutaro Katsurabayashi), and K.I. conceived the study;
402 S.K. (Satoru Kondo), and T.M., K.I interpreted the data; K.O. and S.K. (Shutaro
403 Katsurabayashi) wrote the manuscript with input from all authors. All authors reviewed
404 the manuscript.

405

406

407 **7.1 Competing interests**

408 None of the authors has any conflict of interest to disclose.

409

410

411 **7.2 Ethical publication statement**

412 We confirm that we have read the Journal's position on issues involved in ethical
413 publication and affirm that this report is consistent with those guidelines.

414

415

416 **7.3 Acknowledgments**

417 We thank the following members for supporting the preliminary experiments and
418 analyzing the data: Miharu Koyama, Mika Suenaga, and Shuya Tsuneoka. This work
419 was supported by a KAKENHI Grant-in-Aid for Transformative Research Areas (B)
420 “Multicellular Neurobiocomputing” (21H05165), and a KAKENHI Grant-in-Aid for
421 Scientific Research (B) (20H04506, 23H02805, and 23H02884, and 23H02572) from
422 the Japan Society for the Promotion of Science.

423

424

425 **8. Figure legends**

426 **Figure 1.** Changes in the number of synapses during development. (A) Typical
427 fluorescence image. In terms of pseudocolors, vGLUT1 is labeled in red, FM1-43FX is
428 in green, and MAP2 is in blue. Therefore, when the green staining of FM1-43FX and
429 the red staining of vGLUT1 overlap, presynaptically active synapses appear yellow.
430 Conversely, presynaptically silent synapses lack the green label and are denoted as red-
431 only puncta by vGLUT1 (as indicated by the arrows in Fig. 1A). (B) Quantification of
432 the number of vGLUT1-positive synapses (blue bar: 1 w: $n = 33$, orange bar: 2 w: $n =$
433 26, gray bar: 3 w: $n = 32$). (C) Quantification of the number of presynaptically active
434 synapses (blue bar: 1 w: $n = 33$, orange bar: 2 w: $n = 26$, gray bar: 3 w: $n = 32$). Data
435 were obtained from the same neuron as in Figure 1B. (D) Quantitation of the number of
436 presynaptically silent synapses (blue bar: 1 w: $n = 33$, orange bar: 2 w: $n = 26$, gray bar:
437 3 w: $n = 32$). Data were obtained from the same neuron as in Figure 1B. (E) Percentage
438 of presynaptically silent synapse numbers (blue bar: 1 w: $n = 33$, orange bar: 2 w: $n =$
439 26, gray bar: 3 w: $n = 32$). Data were obtained from the same neuron as in Figure 1B.

440

441 **Figure 2.** Quantification of synaptic location information by donut analysis. (A)
442 Fluorescence image of an autaptic culture preparation before sectioning into donuts. The
443 inside of the minimal circle is area 1, the area from the outside of the minimum circle to
444 the next concentric circle is area 2, the area to the next concentric circle is area3, the
445 area to the next concentric circle is area 4, and the outermost area is area 5. (B)
446 Sectioned donut area cut away. (C) Quantification of the number of presynaptically
447 active synapses in each area (blue line: 1 w: $n = 33$, orange line: 2 w: $n = 26$, gray line:
448 3 w: $n = 32$). The horizontal axis indicates the area number. Data were obtained from
449 the same neuron as in Figure 1B. (D) Quantification of the number of presynaptically

450 silent synapses in each area (blue line: 1 w: $n = 33$, orange line: 2 w: $n = 26$, gray line: 3
451 w: $n = 32$). The horizontal axis indicates the area number. Data were obtained from the
452 same neuron as in Figure 1B. (E) Percentage of presynaptically silent synapse numbers
453 per area (blue line: 1 w: $n = 33$, orange line: 2 w: $n = 26$, gray line: 3 w: $n = 32$). The
454 horizontal axis indicates the area number. Data were obtained from the same neuron as
455 in Figure 1B.

456

457

458 **9. References**

- 459 1. Durand GM, Kovalchuk Y, Konnerth A. Long-term potentiation and functional
460 synapse induction in developing hippocampus. *Nature*. (1996) 381(6577):71-75.
461 doi:10.1038/381071a0
- 462 2. Kerchner GA, Nicoll RA. Silent synapses and the emergence of a postsynaptic
463 mechanism for LTP. *Nat Rev Neurosci*. (2008) 9(11):813-825. doi:10.1038/nrn2501
- 464 3. Hanse E, Seth H, Riebe I. AMPA-silent synapses in brain development and
465 pathology. *Nat Rev Neurosci*. (2013) 14(12):839-850. doi:10.1038/nrn3642
- 466 4. Itami C, Kimura F, Kohno T, et al. Brain-derived neurotrophic factor-dependent
467 unmasking of "silent" synapses in the developing mouse barrel cortex. *Proc Natl
468 Acad Sci U S A*. (2003) 100(22):13069-13074. doi:10.1073/pnas.2131948100
- 469 5. Moulder KL, Jiang X, Chang C, et al. A specific role for Ca^{2+} -dependent adenylyl
470 cyclases in recovery from adaptive presynaptic silencing. *J Neurosci*. (2008)
471 28(20):5159-5168. doi:10.1523/JNEUROSCI.5317-07.2008
- 472 6. Fletcher TL, Cameron P, De Camilli P, Banker G. The distribution of synapsin I and
473 synaptophysin in hippocampal neurons developing in culture. *J Neurosci*. (1991)
474 11(6):1617-1626. doi:10.1523/JNEUROSCI.11-06-01617.1991
- 475 7. Basarsky TA, Parpura V, Haydon PG. Hippocampal synaptogenesis in cell culture:
476 developmental time course of synapse formation, calcium influx, and synaptic
477 protein distribution. *J Neurosci*. (1994) 14(11 Pt 1):6402-6411.
478 doi:10.1523/JNEUROSCI.14-11-06402.1994

479

486 8. Gottmann K, Pfrieger FW, Lux HD. The formation of glutamatergic synapses in
487 cultured central neurons: selective increase in miniature synaptic currents. *Brain*
488 *Res Dev Brain Res.* (1994) 81(1):77-88. doi:10.1016/0165-3806(94)90070-1
489

490 9. Mohrmann R, Lessmann V, Gottmann K. Developmental maturation of synaptic
491 vesicle cycling as a distinctive feature of central glutamatergic
492 synapses. *Neuroscience.* (2003) 117(1):7-18. doi:10.1016/s0306-4522(02)00835-7
493

494 10. Renger JJ, Egles C, Liu G. A developmental switch in neurotransmitter flux
495 enhances synaptic efficacy by affecting AMPA receptor activation. *Neuron.* (2001)
496 29(2):469-484. doi:10.1016/s0896-6273(01)00219-7
497

498 11. Bekkers JM, Stevens CF. Excitatory and inhibitory autaptic currents in isolated
499 hippocampal neurons maintained in cell culture. *Proc Natl Acad Sci U S A.* (1991)
500 88(17):7834-7838. doi:10.1073/pnas.88.17.7834
501

502 12. Oyabu K, Takeda K, Kawano H, et al. Presynaptically silent synapses are
503 modulated by the density of surrounding astrocytes. *J Pharmacol Sci.* (2020)
504 144(2):76-82. doi:10.1016/j.jphs.2020.07.009
505

506 13. Moulder KL, Jiang X, Taylor AA, Benz AM, Mennerick S. Presynaptically silent
507 synapses studied with light microscopy. *J Vis Exp.* (2010) (35):1676. Published
508 2010 Jan 4. doi:10.3791/1676
509

510 14. Iwabuchi S, Kakazu Y, Koh JY, Harata NC. Evaluation of the effectiveness of
511 Gaussian filtering in distinguishing punctate synaptic signals from background
512 noise during image analysis. *J Neurosci Methods.* (2014) 223:92-113.
513 doi:10.1016/j.jneumeth.2013.12.003
514

515 15. SHOLL DA. Dendritic organization in the neurons of the visual and motor cortices
516 of the cat. *J Anat.* (1953) 87(4):387-406.
517

518 16. Rosenmund C, Sigler A, Augustin I, Reim K, Brose N, Rhee JS. Differential
519 control of vesicle priming and short-term plasticity by Munc13 isoforms. *Neuron.*
520 (2002) 33(3):411-424. doi:10.1016/s0896-6273(02)00568-8
521

522 17. Brewer GJ, Boehler MD, Pearson RA, DeMaris AA, Ide AN, Wheeler BC. Neuron
523 network activity scales exponentially with synapse density. *J Neural Eng.* (2009)
524 6(1):014001. doi:10.1088/1741-2560/6/1/014001

525

526 18. Ito D, Komatsu T, Gohara K. Measurement of saturation processes in glutamatergic
527 and GABAergic synapse densities during long-term development of cultured rat
528 cortical networks. *Brain Res.* (2013) 1534:22-32.
529 doi:10.1016/j.brainres.2013.08.004

530

531 19. Lichtman JW, Colman H. Synapse elimination and indelible memory. *Neuron.*
532 (2000) 25(2):269-278. doi:10.1016/s0896-6273(00)80893-4

533

534 20. Hua JY, Smith SJ. Neural activity and the dynamics of central nervous system
535 development. *Nat Neurosci.* (2004) 7(4):327-332. doi:10.1038/nn1218

536

537 21. Kano M, Hashimoto K. Synapse elimination in the central nervous system. *Curr
538 Opin Neurobiol.* (2009) 19(2):154-161. doi:10.1016/j.conb.2009.05.002

539

540 22. Riccomagno MM, Kolodkin AL. Sculpting neural circuits by axon and dendrite
541 pruning. *Annu Rev Cell Dev Biol.* (2015) 31:779-805. doi:10.1146/annurev-
542 cellbio-100913-013038

543

544 23. Yao J, Qi J, Chen G. Actin-dependent activation of presynaptic silent synapses
545 contributes to long-term synaptic plasticity in developing hippocampal neurons. *J
546 Neurosci.* (2006) 26(31):8137-8147. doi:10.1523/JNEUROSCI.1183-06.2006

547

548 24. Crawford DC, Mennerick S. Presynaptically silent synapses: dormancy and
549 awakening of presynaptic vesicle release. *Neuroscientist.* (2012) 18(3):216-223.
550 doi:10.1177/1073858411418525

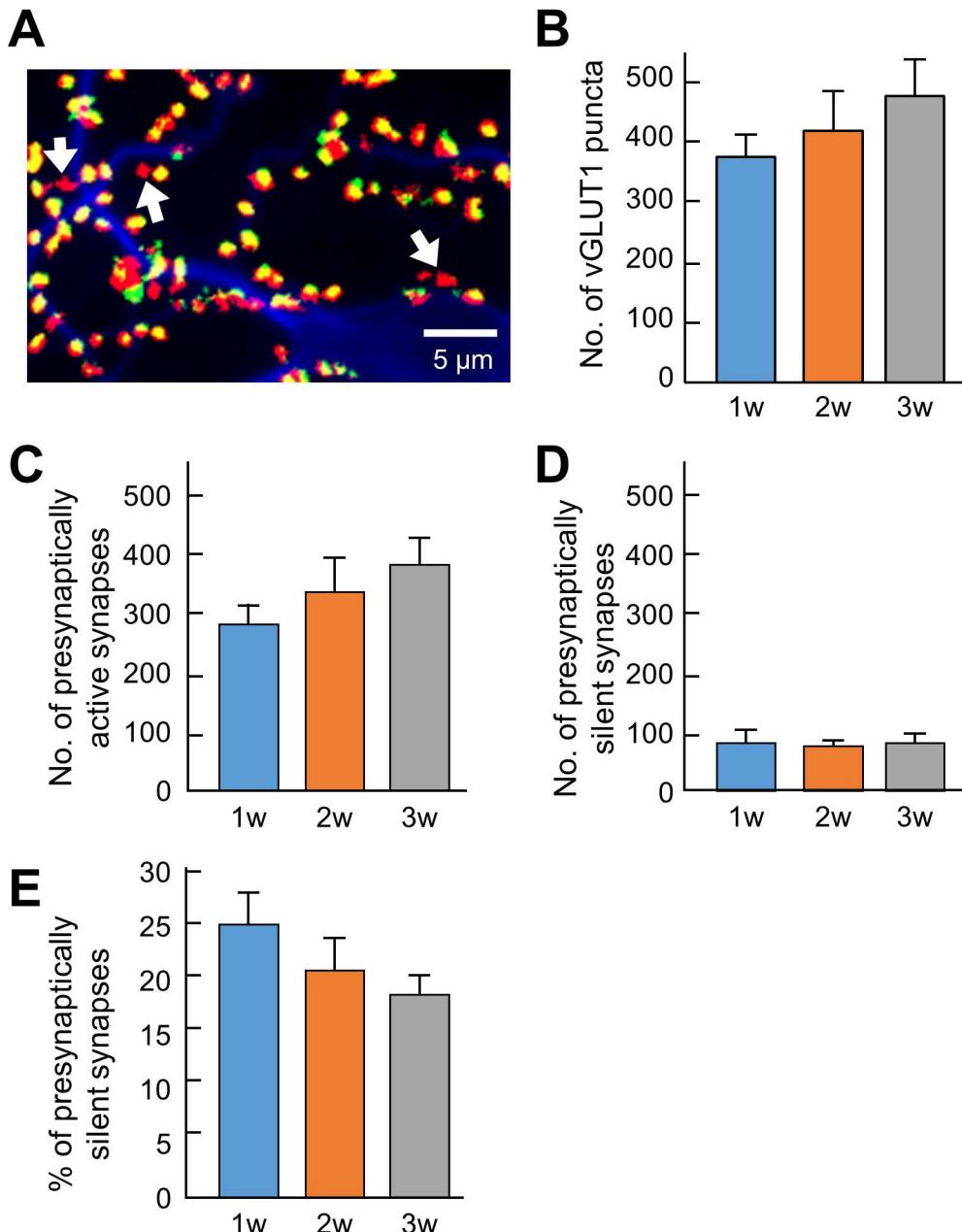
551

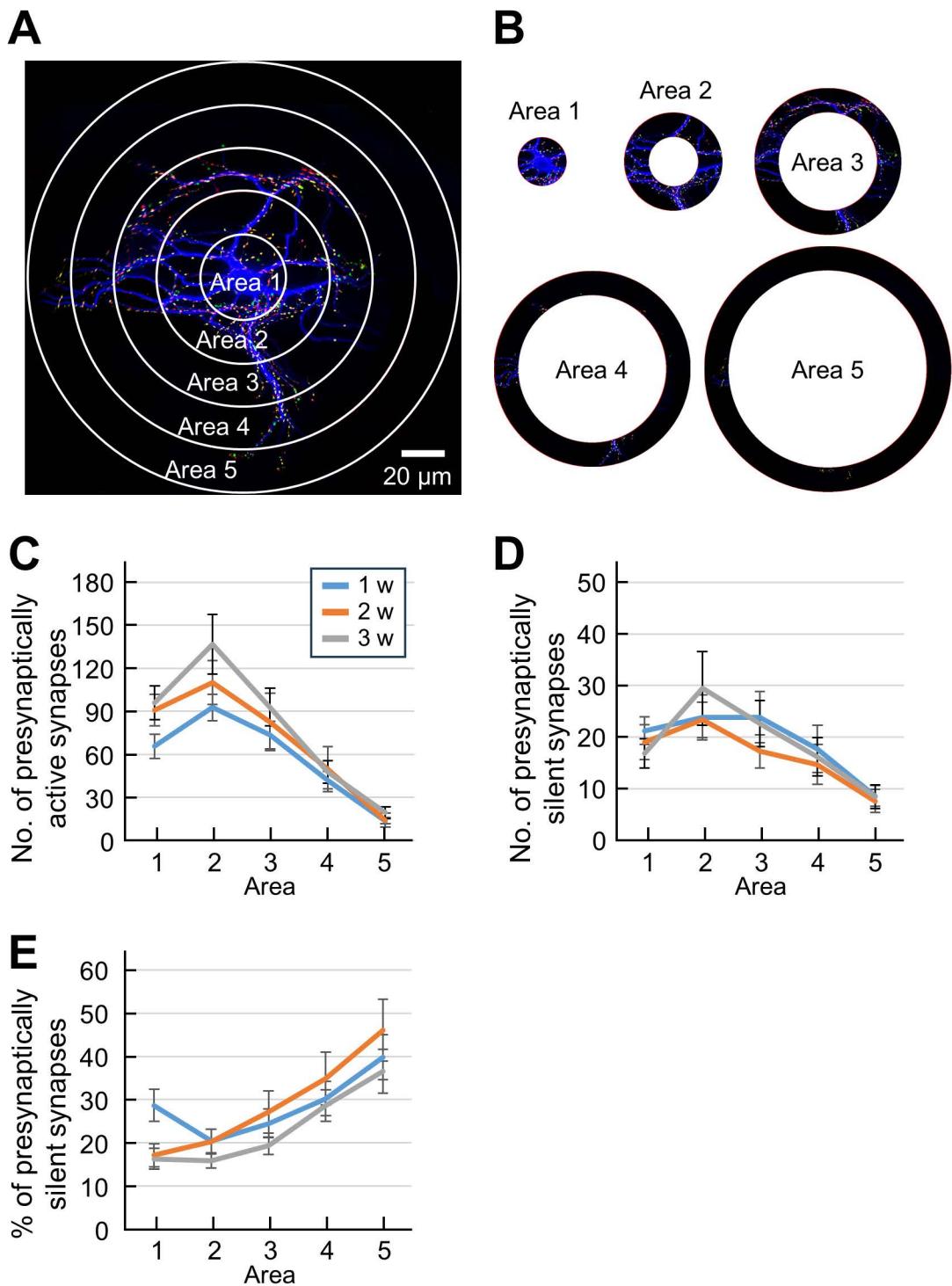
552 25. Rumpel S, Kattenstroth G, Gottmann K. Silent synapses in the immature visual
553 cortex: layer-specific developmental regulation. *J Neurophysiol.* (2004)
554 91(2):1097-1101. doi:10.1152/jn.00443.2003

555

556 26. Südhof TC. The presynaptic active zone. *Neuron.* (2012) 75(1):11-25.
557 doi:10.1016/j.neuron.2012.06.012

558


559 27. Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. *Biomedicines*.
560 (2022) 10(7):1593. Published 2022 Jul 4. doi:10.3390/biomedicines10071593


561

562 28. Jiang X, Litkowski PE, Taylor AA, Lin Y, Snider BJ, Moulder KL. A role for the
563 ubiquitin-proteasome system in activity-dependent presynaptic silencing. *J
564 Neurosci.* (2010) 30(5):1798-1809. doi:10.1523/JNEUROSCI.4965-09.2010

565

566 29. Chavis P, Westbrook G. Integrins mediate functional pre- and postsynaptic
567 maturation at a hippocampal synapse. *Nature*. (2001) 411(6835):317-321.
568 doi:10.1038/35077101

