

1 **Title**

2 Hybracter: Enabling Scalable, Automated, Complete and Accurate Bacterial Genome

3 Assemblies

4 **Authors**

5 George Bouras^{1,2*}, Ghais Houtak^{1,2}, Ryan R. Wick³, Vijini Mallawaarachchi⁴, Michael J.

6 Roach^{4,5}, Bhavya Papudeshi⁴, Lousie M. Judd³, Anna E. Sheppard⁶, Robert A. Edwards⁴,

7 Sarah Vreugde^{1,2}

8 **Author institutional affiliations**

9 ¹ Adelaide Medical School, Faculty of Health and Medical Sciences, The University of
10 Adelaide, Adelaide, Australia.

11 ² The Department of Surgery - Otolaryngology Head and Neck Surgery, University of
12 Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide
13 Local Health Network, South Australia, Australia.

14 ³ Department of Microbiology and Immunology, University of Melbourne at the Peter
15 Doherty Institute for Infection and Immunity, Melbourne, Australia.

16 ⁴ Flinders Accelerator for Microbiome Exploration, College of Science and Engineering,
17 Flinders University, Adelaide, Australia.

18 ⁵ Adelaide Centre for Epigenetics and South Australian Immunogenomics Cancer Institute,
19 The University of Adelaide, Adelaide, Australia.

20 ⁶ School of Biological Sciences, The University of Adelaide, Adelaide, Australia.

21

22 * Correspondence: george.bouras@adelaide.edu.au;

23 **Abstract**

24

25 Improvements in the accuracy and availability of long-read sequencing mean that complete
26 bacterial genomes are now routinely reconstructed using hybrid (i.e. short- and long-reads)
27 assembly approaches. Complete genomes allow a deeper understanding of bacterial evolution
28 and genomic variation beyond small nucleotide variants (SNVs). They are also crucial for
29 identifying plasmids, which often carry medically significant antimicrobial resistance (AMR)
30 genes. However, small plasmids are often missed or misassembled by long-read assembly
31 algorithms. Here, we present Hybracter, method for fast, automatic and scalable recovery of
32 near-perfect complete bacterial genomes using a long-read first assembly approach. We
33 compared Hybracter to existing automated hybrid assembly tools using a diverse panel of
34 samples with manually curated ground truth reference genomes. We demonstrate that
35 Hybracter is more accurate and faster than the existing gold standard automated hybrid
36 assembler Unicycler. We also show that Hybracter with long-reads only is comparable to
37 hybrid methods in recovering small plasmids.

38

39 **Introduction**

40

41 Reconstructing complete bacterial genomes using *de novo* assembly methods had been
42 considered too costly and time-consuming to be widely recommended in most cases, even as
43 recently as 2015¹. This was due to the reliance on short-read sequencing technologies, which
44 does not allow for reconstructing regions with repeats and extremely high GC content².
45 However, since then, advances in long-read sequencing technologies have allowed for the
46 automatic construction of complete genomes using hybrid assembly approaches. Originally,

47 this involved starting with a short-read assembly followed by scaffolding the repetitive and
48 difficult to resolve regions with long-reads ^{3,4}. This approach was implemented in the
49 command-line tool Unicycler, which remains the most popular tool for generating complete
50 bacterial genome assemblies ⁵. As long-read sequencing has improved in accuracy and
51 availability, with the latest Oxford Nanopore Technologies reads recently reaching Q20
52 (99%+) median accuracy, a long-read first assembly approach supplemented by short-read
53 polishing has recently been favoured for recovering accurate complete genomes. Long-read-
54 first approaches provide greater accuracy and contiguity than short-read-first approaches in
55 difficult regions ⁶⁻¹¹. The current gold standard tool Trycycler even allows for the potential
56 recovery of perfect genome assemblies ⁷. However, Trycycler requires significant microbial
57 bioinformatics expertise and involves manual decision making, creating a significant barrier
58 to useability, scalability and automation ¹².

59

60 Several tools exist that generate automated long-read first genome assemblies, such as
61 MicroPIPE ¹³, ASA3P ¹⁴, Bactopia ¹⁵ and Dragonflye ¹⁶. However, these tools do not consider
62 factors such as genome reorientation ¹⁷ and recent polishing best-practices ¹⁸, and often
63 contain the assembly workflow as a sub-module within a more expansive end-to-end
64 pipeline. Additionally, none of the existing tools consider the targeted recovery of plasmids.
65 As long-read assemblers struggle particularly with small plasmids, this leads to incorrectly
66 recovered or missing plasmids in bacterial assemblies ¹⁹.

67

68 We introduce Hybracter, a new command-line tool for automated near-perfect long-read-first
69 complete bacterial genome assembly. It implements a comprehensive and flexible workflow
70 allowing for long-read assembly polished with long and short-reads ('hybracter hybrid' and
71 'hybracter hybrid-single') or long-read only assembly polished with long-reads ('hybracter

72 long' and 'hybracter long-single'). For ease of use and familiarity, Hybracter has been
73 designed with a command-line interface containing parameters similar to Unicycler.
74 Additionally, thanks to its Snakemake²⁰ and Snaketool²¹ implementation, Hybracter
75 seamlessly scales from a single isolate to hundreds or thousands of genomes with high
76 computational efficiency and supports deployment on HPC clusters and cloud-based
77 environments.

78

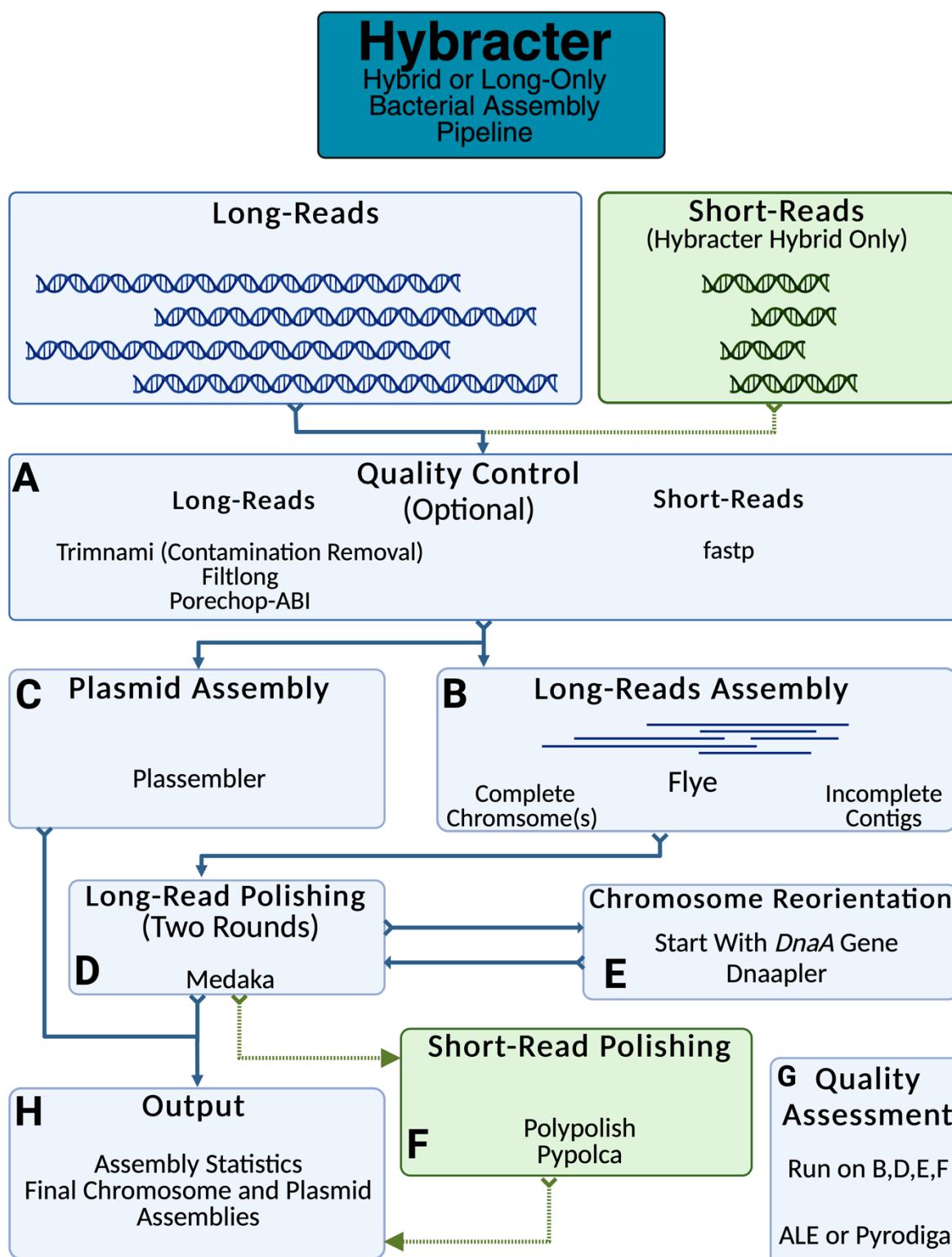
79 **Results**

80 **Assembly Workflow**

81

82 Hybracter implements a long-read-first automated assembly workflow based on current best
83 practices¹². The main subcommands available in Hybracter can be found in Table 1 and the
84 workflow is outlined in Figure 1. Hybracter begins with long-reads for all subcommands, and
85 with short-reads for polishing for 'Hybracter hybrid' and 'Hybracter hybrid-single'
86 subcommands.

87 First, long-read input FASTQs are optionally filtered for quality control with Filtlong²² and
88 Porechop_ABI²³, with optional contaminant removal against a host genome using modules
89 from Trimnami (e.g. if the bacteria has been isolated from a host)²⁴. Quality control of short-
90 read input FASTQs is performed with fastp²⁵ (Fig 1A). Long-reads are then assembled with
91 Flye²⁶. If at least 1 contig is recovered above the cut-off '-c' chromosome length specified by
92 the user for the sample, that sample will be denoted as 'complete'. All such contigs will then
93 be marked as chromosomes and kept for downstream reorientation and polishing. If zero
94 contigs are above the cut-off chromosome length, the assembly will be denoted as
95 'incomplete', and all contigs will be kept for downstream polishing (Fig 1B).


96 For all complete samples, targeted plasmid assembly is then conducted using Plassembler²⁷
97 (Fig 1C). All assemblies are then polished with Medaka, which can be turned off using '--
98 no_medaka'²⁸ (Fig 1D). For complete assemblies, the chromosome will be reoriented to
99 begin with the dnaA chromosomal replication initiator gene using Dnaapler²⁹. These
100 chromosomes are then polished for a second time with Medaka to ensure the sequence around
101 the original chromosome breakpoint is polished. If the user has provided short-reads using
102 Hybracter hybrid, the assemblies are then polished with Polypolish¹⁸ followed by pypolca³⁰
103³¹ (Fig 1F). If short-reads are available (Hybracter hybrid), the quality of each assembly
104 round is scored using ALE³². If only long-reads are available (Hybracter long), the mean
105 coding sequence (CDS) length is calculated for each assembly using Pyrodigal, with larger
106 mean CDS lengths indicating a better quality assembly^{33 34}. The assembly with the highest
107 mean CDS length is chosen.

108

109 Ultimately, the highest-scoring assembly is chosen as the final assembly (Fig 1G). A final
110 output assembly FASTA file is created, along with per contig and overall summary statistic
111 TSV files for each sample, and separate chromosome and plasmid FASTA files for samples
112 denoted as complete (Fig 1H). Once the final assembly has been chosen for all samples, an
113 overall 'hybracter_summary.tsv' file is generated. All main output files are explained in more
114 detail in Table 2. While all these main outputs can be found in the 'FINAL_OUTPUT'
115 subdirectory, all other intermediate output files are available for users who would like extra
116 information about their assemblies, including all assembly assessments, comparisons of all
117 changes introduced by polishing, and Flye and Plassembler output summaries. A full list of
118 these supplementary outputs can be found in Hybracter's Documentation
119 (<https://hybracter.readthedocs.io/en/latest/output/>).

120

121 Figure 1: Outline of the Hybracter workflow.

123 Table 1. Summary of the 4 Primary Hybracter Commands

Command	Input	Number of Samples	Description	Workflow Elements Included by Default (From Figure 1)
<i>hybracter hybrid</i>	5 column csv sample sheet specified with '--input' containing: <ul style="list-style-type: none"> • sample name • long-read FASTQ path, • estimated chromosome length • R1 short-read FASTQ path • R2 short-read FASTQ path 	1+	Long-read first assembly followed by long then short-read polishing for multiple isolates. Snakemake implementation ensures efficient use of available resources	A, B, C, D, E, F, G, H
<i>hybracter hybrid-single</i>	<ul style="list-style-type: none"> • sample name (-s) • long-read FASTQ path (-l) • estimated chromosome length (-c) • R1 short-read FASTQ path (-1) • R2 short-read FASTQ path (-2) 	1	Long-read first assembly followed by long then short-read polishing for a single isolate. Similar command line interface to Unicycler	A, B, C, D, E, F, G, H
<i>hybracter long</i>	3 column csv sample sheet specified with '--input' containing: <ul style="list-style-type: none"> • sample name • long-read FASTQ path, • estimated chromosome length 	1+	Long-read first assembly followed by long-read polishing for multiple isolates. Snakemake implementation ensures efficient use of available resources	A (no fastp), B, C, D, E, G, H
<i>hybracter long-single</i>	<ul style="list-style-type: none"> • sample name (-s) • long-read FASTQ path (-l) • estimated chromosome length (-c) 	1	Long-read first assembly followed by long-read polishing on a single isolate.	A (no fastp), B, C, D, E, G, H

124

125

126 Table 2. Description of the Primary Hybracter Output Files

Output File	Description
{sample}_final.fasta	Final assembly FASTA file for the sample. Contains all chromosome(s) and plasmids for complete isolates and all contigs for incomplete isolates.
{final}_chromosome.fasta	Final assembly FASTA file for the chromosomes(s) in a complete sample.
{final}_plasmid.fasta	Final assembly FASTA file for the plasmids in a complete sample.
hybracter_summary.tsv	A TSV file combining the {sample}_summary.tsv files for all samples.
{sample}_summary.tsv	A TSV file containing columns denoting for the sample: <ul style="list-style-type: none">• Assembly completeness• Total assembly length• Number of contigs assembled• The polishing round deemed to be most accurate and selected as the final assembly• The length of the longest contig• The estimated coverage of the longest contig• The number of circular plasmids recovered by Plassembler
{sample}_per_contig_stats.tsv	A TSV file containing columns denoting for the sample: <ul style="list-style-type: none">• Contig name• Contig Type (chromosome or plasmid) (complete samples only)• Contig length• Contig GC%• Contig circularity (complete samples only)

127

128 Tool Selection

129

130 Tools were selected for inclusion in Hybracter either based on benchmarking from the
131 literature, or they were specifically developed for inclusion in Hybracter. Flye²⁶ was chosen
132 as the long-read assembler because it is more accurate than other long-read assemblers with
133 comparable runtimes, such as Raven³⁵, Redbean³⁶ and Miniasm³⁷, while being dramatically
134 faster than the comparably accurate Canu^{6,38}. Medaka²⁸ was chosen as the long-read polisher
135 because of its ability to improve assembly continuity in addition to accuracy^{12,39}. The
136 benchmarking results of this study also emphasise that it is particularly good at fixing
137 insertion and deletion (InDel) errors, which cause problematic frameshifts and frequently lead
138 to fractured or truncated gene predictions. Polypolish¹⁸ and POLCA³¹ were selected as
139 short-read polishers, as these have been shown to achieve the highest performance with the
140 lowest chance of introducing errors when used in combination¹⁸.

141

142 We developed three standalone programs included in Hybracter. These are Dnaapler,
143 Plassembler and Pypolca. Dnaapler was developed to ensure the chromosome(s) identified by
144 Hybracter is reoriented to consistently begin with the dnaA chromosomal replication initiator
145 gene. Full implementation details can be found in the manuscript, with expanded
146 functionality beyond this use case²⁹. Plassembler was developed to improve the runtime and
147 accuracy when assembling plasmids in bacterial isolates. Full implementation details can be
148 found in the manuscript for hybrid mode²⁷. Hybracter long utilises Plassembler containing a
149 post-publication improvement for long-reads only ('Plassembler long') released in v1.3.
150 Plassembler long assembles plasmids from only long-reads by treating long-reads as both
151 short-reads and long-reads. Plassembler long does this by utilising Unicycler in its pipeline to

152 create a de Bruijn graph-based assembly, treating the long-reads as unpaired single-end reads,
153 which are then scaffolded with the same long-read set.

154

155 The third tool is Pypolca. Pypolca is a Python re-implementation of the POLCA short-read
156 genome polisher, created specifically for inclusion in Hybracter and with an almost identical
157 output format and performance (see Methods). Compared to POLCA, Pypolca features
158 improved useability with a simplified command line interface and allows the user to specify
159 an output directory. Furthermore, Pypolca is available on both MacOS and Linux (POLCA is
160 only available on Linux) and does not require the installation of the entire MaSuRCA genome
161 assembler toolkit⁴⁰. Pypolca is open-source and freely available on Bioconda, PyPI, and
162 GitHub (<https://github.com/gbouras13/pypolca>).

163

164 **Benchmarking**

165

166 To test the performance of Hybracter, we used 20 samples with available short- and long-read
167 sets. These samples represent genomes from a variety of Gram-negative and Gram-positive
168 bacteria, with most containing plasmids. We chose these samples as they have both real
169 hybrid read sets and manually curated genome assemblies produced using either Trycycler⁷
170 or Bact-builder⁴¹—a consensus-building pipeline based on Trycycler. We tested Hybracter
171 with both short- and long-reads ('Hybracter hybrid') and long-reads only ('Hybracter long')
172 against Unicycler and the Dragonflye¹⁶ pipeline both with long-reads only ('Dragonflye
173 long') and with short-read polishing ('Dragonflye hybrid'). More benchmarking details can
174 be found in the Methods section.

175 Chromosome Accuracy Performance

176

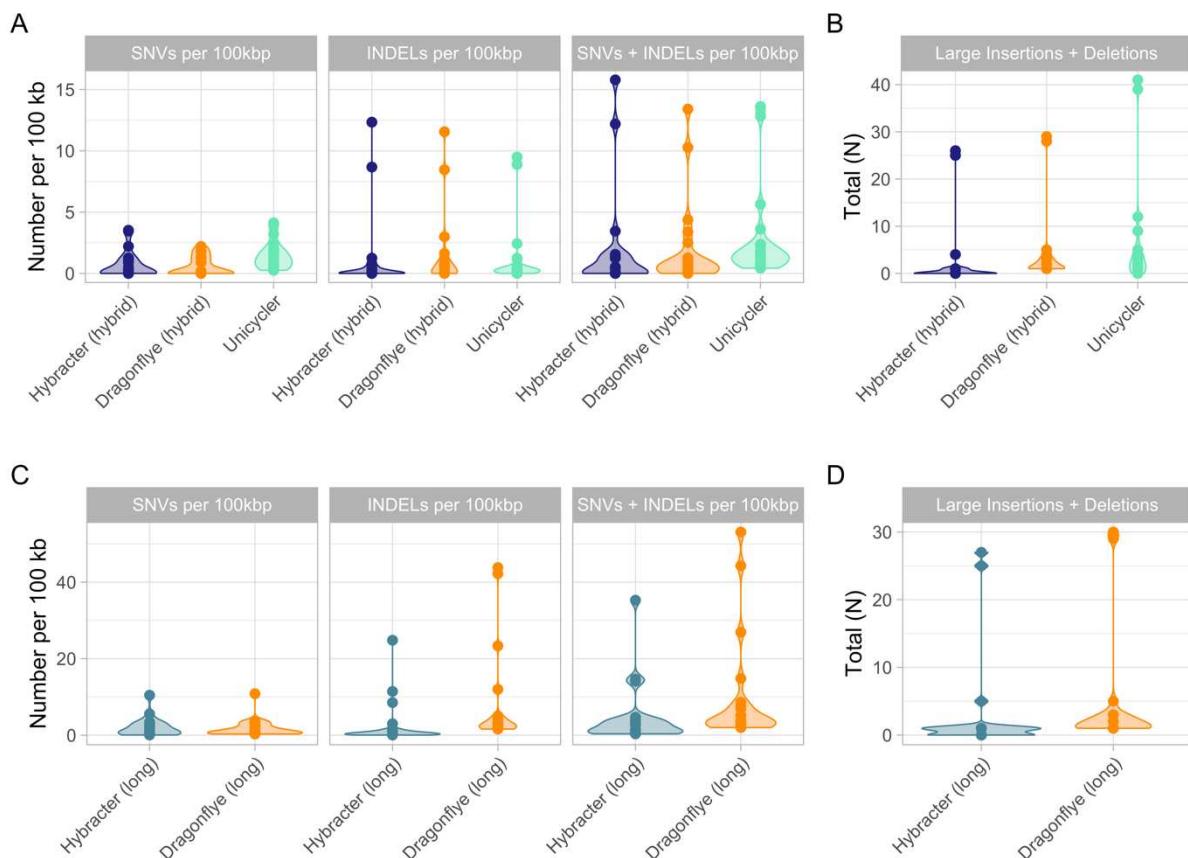
177 All tools recovered complete circular contigs for each chromosome. SNVs, small InDels
178 (under 60 bps), and large InDels (over 60 bps) were compared as a measure of assembly
179 accuracy. To account for differences in genomic size between isolates, SNVs and small InDel
180 counts were normalised by genome length.

181

182 The summary results are presented in Table 3 and visualised in Figure 2. The detailed results
183 for each tool and sample are presented in Supplementary Table 5. Of the hybrid tools,
184 Dragonflye hybrid produced the fewest SNVs per 100kbp (median 0.03) followed by
185 Hybracter hybrid (median 0.16) and Unicycler (median 1.25). Hybracter hybrid produced the
186 fewest InDels per 100kbp (median 0.05), followed by Unicycler (median 0.28) and
187 Dragonflye hybrid (median 0.49). Hybracter hybrid also produced the fewest InDels plus
188 SNVs per 100kbp (median 0.24), followed by Dragonflye hybrid (median 0.74) and
189 Unicycler (median 1.49). The median InDels plus SNVs per 100kbp rate for Hybracter is
190 very low, with 0.24 small InDels plus SNVs per 100kbp corresponding to approximately 12
191 small InDels plus SNVs total for a standard 5MB *E. coli* genome.

192

193 Additionally, Hybracter hybrid showed superior performance in terms of large InDels, with a
194 median of 0 and a total of 59 large InDels across the 20 samples, compared to 1.5 and 91 for
195 Dragonflye hybrid, and 2.5 and 134 for Unicycler.


196

197 Overall, Hybracter hybrid produced the most accurate chromosome assemblies. For eight
198 isolates described in *Lerminiaux et al.* ⁹, Hybracter also assembled a perfect chromosome
199 (Isolates A, B, C, D, E, G, I, L), and another two near-perfect chromosomes (defined as <10

200 total SNVs plus InDels) (Isolate K and H37R2). Dragonflye hybrid did not assemble any
201 perfect chromosomes and recovered six near-perfect chromosomes (Isolate B, D, E, G, H, I).
202

203 **Figure 2: Comparison of the counts of small nucleotide variants (SNVs) and small (<60bp)**
204 **insertions and deletions (InDels) per 100kbp (A) and the total number of large (>60bp)**
205 **InDels (B) for the Hybrid tools benchmarked (Hybracter hybrid in blue, Dragonflye hybrid,**
206 **in orange and Unicycler in green). The counts of SNVs and small InDels per 100kbp (C) and**
207 **the total number of large InDels (D) for the long tools benchmarked (Hybracter long in**
208 **blue, Dragonflye long in orange) are also shown. All data presented is from the**
209 **benchmarking output run with 8 threads.**

210

211
212

213 Table 3. Small (<60bp) InDels, SNVs per 100kbp of sequence and total large (>60bp)

214 InDels of Chromosomes Assemblies for all Benchmarked Isolates.

215

Tool	Type	Small InDels per 100kbp	SNVs per 100kbp	Small InDels + SNVs per 100kbp	Large InDels
Hybracter hybrid	Hybrid	Median = 0.05 Minimum = 0 Maximum = 12.34	Median = 0.16 Minimum = 0 Maximum = 3.52	Median = 0.24 Minimum = 0 Maximum = 15.79	Total = 59 Median = 0 Minimum = 0 Maximum = 26
Dragonflye hybrid	Hybrid	Median = 0.49 Minimum = 0 Maximum = 11.56	Median = 0.03 Minimum = 0 Maximum = 2.21	Median = 0.74 Minimum = 0 Maximum = 13.41	Total = 91 Median = 1.5 Minimum = 1 Maximum = 29
Unicycler	Hybrid	Median = 0.28 Minimum = 0 Maximum = 9.5	Median = 1.25 Minimum = 0.25 Maximum = 4.13	Median = 1.49 Minimum = 0.43 Maximum = 13.62	Total = 134 Median = 2.5 Minimum = 0 Maximum = 41
Hybracter long	Long	Median = 0.49 Minimum = 0.06 Maximum = 24.82	Median = 1.07 Minimum = 0.07 Maximum = 10.46	Median = 2.08 Minimum = 0.37 Maximum = 35.29	Total = 66 Median = 1 Minimum = 0 Maximum = 27
Dragonflye long	Long	Median = 3.01 Minimum = 1.61 Maximum = 43.8	Median = 0.99 Minimum = 0.33 Maximum = 10.86	Median = 3.81 Minimum = 2.01 Maximum = 53.1	Total = 92 Median = 2 Minimum = 1 Maximum = 30

216

217

218 Similar results were found in the long-read only tool comparison. Dragonflye long produced
219 slightly fewer SNVs per 100kbp (median = 0.99) than Hybracter long (median 1.07).
220 However, Hybracter long consistently had fewer small InDels (median 0.49), large InDels
221 (total 66) and small InDels plus SNVs per 100kbp (median 2.08) than Dragonflye long
222 (median 3.01, total 92 and median 3.81 respectively). No perfect or near-perfect
223 chromosomes were assembled by either long-only tool, though Hybracter long did assemble
224 several chromosomes with fewer than 50 total small InDels plus SNVs (*Lerminiaux* isolates
225 A, C, D, G, H, L, J, and ATCC BAA-679).

226

227 Additionally, long-read only assembly methods had consistently worse performance than
228 hybrid tools as measured by SNVs and small InDels, suggesting the continuing utility of
229 short-read polishing for the isolates surveyed.

230

231 Plasmid Recovery Performance and Accuracy

232

233 Hybracter in both hybrid and long modes was superior at recovering plasmids compared to
234 the other tools in the same class (Table 4). Hybracter hybrid was able to completely recover
235 57/59 possible plasmids (the other two were partially recovered), compared to 54/59 for
236 Unicycler and only 34/59 for Dragonflye hybrid. Hybracter hybrid did not miss a single
237 plasmid, while Unicycler missed 3/59 (all in Isolate E from *Lerminiaux* et al. ⁹) and
238 Dragonflye hybrid completely missed 9/59. In terms of accuracy, Hybracter hybrid and
239 Unicycler were similar in terms of SNVs plus small InDels, with medians of 4.15 and 3.83
240 per 100kbp respectively (Supplementary Table 9), while Hybracter hybrid produced fewer
241 large InDels than Unicycler (39 vs 51 in total).

242 Interestingly, Hybracter long showed strong performance at recovering plasmids despite
243 using only long-reads, completely recovering 54/59 plasmids, completely missing only 2/59.
244 This performance was far superior to Dragonflye long (35/59 completely recovered, 8/59
245 missed). In terms of accuracy, both long tools were similar and unsurprisingly less accurate
246 than the hybrid tools in terms of SNVs plus small InDels (medians of 10.64 per 100kbp for
247 Hybracter long and 9.22 per 100kbp for Dragonflye long). However, Hybracter long was the
248 best-performing tool overall as measured by large InDels (total 32), outperforming all hybrid
249 tools and dragonflye long (total 123). Additionally, all five tools detected an additional
250 5411bp plasmid in *Lerminiaux* Isolate G not found in the reference sequence and Hybracter
251 in both hybrid and long modes detected a further 2519bp small plasmid from this genome.

252

253 Hybracter hybrid recovers more plasmids than either Unicycler or Dragonflye because it uses
254 a dedicated plasmid assembler, Plassembler²⁷. In addition, Hybracter long, using only long-
255 reads had an identical complete plasmid recovery rate to Unicycler, which uses both long-
256 and short-reads (54/59 for both). These results suggest that Hybracter long, by applying
257 algorithms designed for short-reads on long-reads, largely solves the existing difficulties of
258 recovering small plasmids from long-reads, at least on the benchmarking dataset of
259 predominantly R10 Nanopore reads^{19,42}.

260

261 Another interesting result from Hybracter hybrid is that in 6/20 isolates, it assembled
262 additional non-plasmid contigs, which occurred in only 1/20 isolates for Unicycler. These
263 contigs are not necessarily an assembly artifact and can provide additional information
264 regarding the quality control and similarity of short and long-read sets. In Plassembler
265 implemented within Hybracter hybrid, the existence of such contigs is often indicative of

266 mismatches between long- and short-read sets²⁷, suggesting that there is likely some
267 heterogeneity between long- and short-reads in those six samples.

268 Table 4. The Total Number of Plasmids Recovered by Each Tool. There were 59 total
269 reference plasmids in the 20 samples.

Tool	Complete Plasmids Recovered	Total Plasmids Partially Recovered or Misassembled	Total Plasmids Missed	Additional Plasmids Recovered not in Reference	Additional Non-Plasmid Contigs Recovered
Hybracter hybrid	57	2	0	2	6
Unicycler	54	2	3	1	1
Dragonflye hybrid	34	16	9	1	7
Hybracter long	54	3	2	2	3
Dragonflye long	35	16	8	1	5

270

271

272

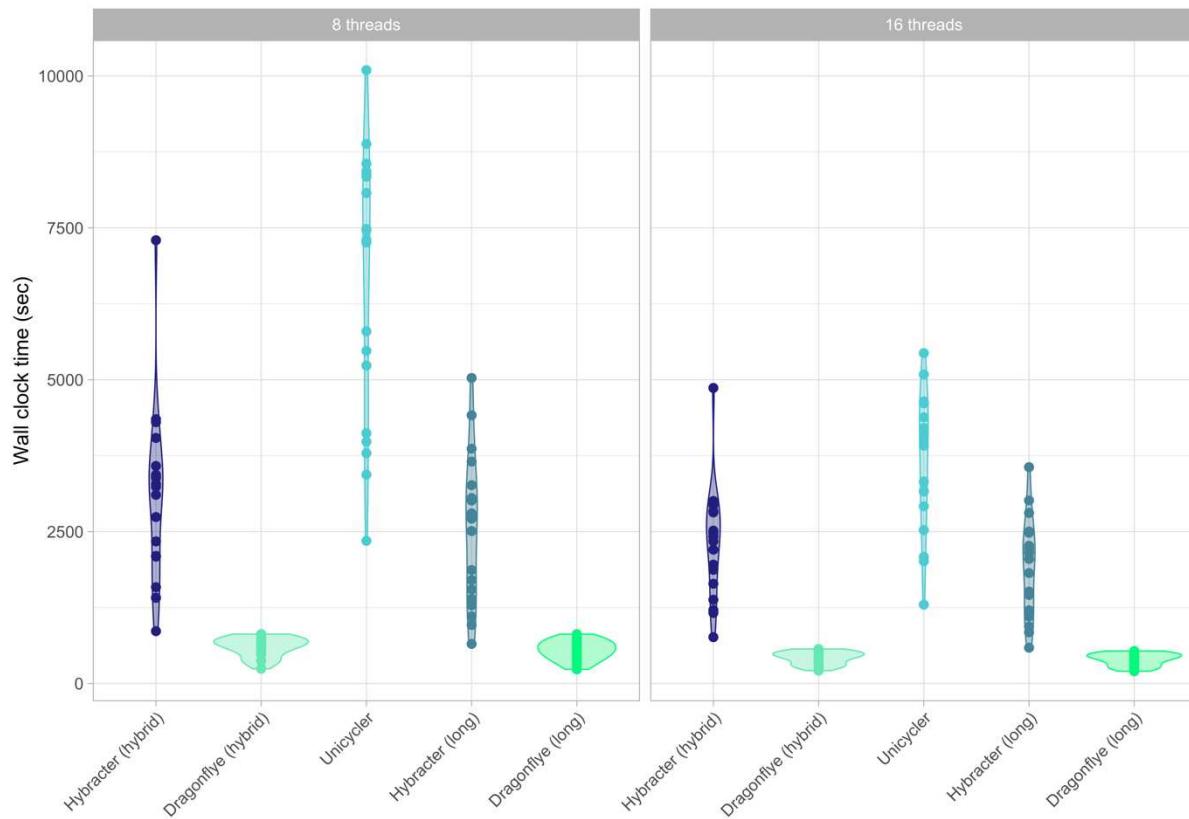
273 Runtime Performance Comparison

274

275 As shown in Table 5 and Figure 3, median wall-clock times with 8 threads for Dragonflye
276 hybrid (10m55s) were smaller than Hybracter hybrid (54m23s), which were in turn smaller
277 than Unicycler (02h03m02s). For the long-only tools, Dragonflye long (9m24s) was faster
278 than Hybracter long (45m29s). Hybracter long was consistently slightly faster than Hybracter
279 hybrid (Table 5).

280

281 The difference in runtime performance between Hybracter and Dragonflye is predominantly
282 the result of the included targeted plasmid assembly and the reorientation and assessment
283 steps in Hybracter that are not included in Dragonflye. Additionally, the results suggest
284 limited benefits to running Hybacter with more than eight threads. As explained in the
285 following section, if a user has multiple isolates to assemble, a superior approach is to modify
286 the configuration file specifying more efficient resource requirements for each job in
287 Hybracter.


288

289 Table 5. Wall-clock Runtime Summary Statistics for Each Tool.

Tool	Type	8 Threads (hh:mm:ss)	16 Threads (hh:mm:ss)
Hybracter hybrid	Hybrid	Median = 00:54:23 Minimum = 00:14:22 Maximum = 02:01:37	Median = 00:40:19 Minimum = 00:12:43 Maximum = 01:21:05
Dragonflye hybrid	Hybrid	Median = 00:10:55 Minimum = 00:04:02 Maximum = 00:13:34	Median = 00:07:21 Minimum = 00:03:33 Maximum = 00:09:28
Unicycler	Hybrid	Median = 02:03:02 Minimum = 00:39:09 Maximum = 02:48:16	Median = 01:06:8 Minimum = 00:21:38 Maximum = 01:30m38
Hybracter long	Long	Median = 00:45:29 Minimum = 00:10:52 Maximum = 01:23:49	Median = 00:34:56 Minimum = 00:09:49 Maximum = 00:59:21
Dragonflye long	Long	Median = 00:09:24 Minimum = 00:03:52 Maximum = 00:13:32	Median = 00:07:00 Minimum = 00:03:22 Maximum = 00:08:56

290

291 **Figure 3: Comparison of wall-clock runtime (in seconds) of Hybracter hybrid, Dragonflye
292 hybrid, Unicycler, Hybracter long and Dragonflye long when run with 8 and 16 threads.**

293

294 **Parallelisation Allows for Improved Efficiency**

295

296 Hybracter allows users to specify and customise a configuration file to maximise resource
297 usage and runtime efficiency. Users can modify the desired threads, memory and time
298 requirements for each type of job that is run within Hybracter to suit their computational
299 resources. So that resources are not idle for most users on single sample assemblies, large
300 jobs such as the Flye and Plassembler assembly steps default to 16 threads and 32 GB of
301 memory.

302

303 To emphasise the efficiency benefits of parallelisation, the 12 *Lerminiaux* et al. isolates were
304 also assembled using ‘hybracter hybrid’ with a customised configuration file designed to
305 improve efficiency on the machine used for benchmarking. Specifically, the configuration
306 was changed to specify 8 threads and 16 GB of memory allocated to big jobs (assembly,
307 polishing and assessment) and 4 threads and 8 GB of memory allocated to medium jobs
308 (reorientation). More details on changing Hybracter’s configuration file to suit specific
309 systems can be found in the documentation
310 (<https://hybracter.readthedocs.io/en/latest/configuration/>). We limited the overall ‘hybracter
311 hybrid’ run with 32 GB of memory and 16 threads to provide a fair comparison. The overall
312 ‘hybracter hybrid’ run was then compared to the sum of the 12 ‘hybracter hybrid-single’ runs.
313 Overall, the 12 isolates took 06h16m53s in the combined run, as opposed to 09h34m08s from
314 the sum of the 12 ‘hybracter hybrid-single’ and 13h32m51s from the sum of the 12 Unicycler
315 runs. This inbuilt parallelisation of Hybracter provides significant efficiency benefits if
316 multiple samples are assembled simultaneously. The performance benefit of Hybracter
317 afforded by Snakemake integration in parallel computing systems may be variable over
318 different architectures, but this provides an example case of potential efficiency and
319 convenience benefits.

320

321 **Discussion**

322

323 As long-read sequencing has improved in accuracy with reduced costs, it is now routine to
324 use a combination of long- and short-reads to generate complete bacterial genomes ^{3,5} Recent
325 advances in assembly algorithms and accuracy improvements mean that a long-read first
326 hybrid assembly should be favoured with short-reads being used after assembly for polishing
327 ¹², as opposed to the short-read first assembly approach (where long-reads are only used for

328 scaffolding a short-read assembly) utilised by the current automated gold standard Unicycler.
329 The Unicycler approach is more prone to larger scale InDel errors as well as smaller scale
330 errors such as those caused by homopolymers or methylation motifs ^{6,11,43,44}. Additionally, it
331 should be noted that it is already possible (while perhaps not routine) to generate perfect
332 hybrid bacterial genome assemblies using manual consensus approaches requiring human
333 intervention, such as Trycycler ^{7,45}. While manual approaches such as Trycycler generally
334 yield superior results to automated approaches, manually assembling many complete
335 genomes manually is challenging as considerable time, resources and bioinformatics
336 expertise are required.

337

338 The results of this study emphasise that the long-read first hybrid approach consistently
339 yields superior assemblies than the short-read first hybrid approach and should therefore be
340 preferred going forward. This study also shows that automated perfect hybrid genome
341 assemblies are already possible with Hybracter. This study and others ^{9,46} also confirm that a
342 long-read first hybrid approach remains preferable to long-read only assembly with Nanopore
343 reads, as short-reads continue to provide accuracy improvements in polishing steps. However,
344 it is foreseeable that short-reads will provide little or no accuracy improvements and will not
345 be needed to polish long-read only assemblies; perfect long-read only assemblies are already
346 possible, at least with manual intervention using Trycycler ¹¹. Accordingly, automated perfect
347 (or near-perfect) bacterial genome assemblies may soon become possible from long-reads
348 only. Hybracter maintains the flexibility to use long-reads only if desired, allowing users to
349 turn long-read polishing all-together. This may become increasingly useful as long-read
350 sequencing continues to improve in accuracy beyond the read sets used in this study, because
351 long-read polishing can introduce errors and make long-read only assemblies worse with
352 highly accurate Nanopore and PacBio reads ^{8,11}.

353

354 Hybracter was created to bridge the gap from the present to the future of automated perfect
355 hybrid and long-read-only bacterial genome assemblies. The results of this study show that
356 Hybracter in hybrid mode is both faster and more accurate than the current gold standard tool
357 for hybrid assembly Unicycler and is more accurate than Dragonflye in both modes. It should
358 be noted that if users want fast chromosome only assemblies where accuracy is not essential
359 (for applications such as species identification or sequence typing), Dragonflye remains a
360 good option due to its speed.

361

362 Hybracter especially excels in recovering complete plasmid genomes compared to other
363 tools. By incorporating Plassembler, Hybracter recovers more complete plasmid genomes
364 than Unicycler in hybrid mode. Further, Hybracter long is comparable to Unicycler and
365 Hybracter hybrid when using long-reads only for plasmid recovery.

366

367 The high error rates of long-read sequencing technologies have prevented the application of
368 assembly approaches designed for highly accurate short-reads, such as constructing de Bruijn
369 graphs (DBGs) based on strings of a particular length k (k -mers)^{47–49}. This resulted in
370 bioinformaticians initially utilising less efficient algorithms designed with long-reads in
371 mind, such as utilising overlap graphs in place of DBGs^{26,36,38,50,51}. While DBGs have been
372 used for long-read assembly in some applications^{52–54}, adoption, especially in microbial
373 genomics, has been limited.

374

375 Although long-read first assembly methods enable complete chromosome and large plasmid
376 reconstruction, it is well established that long-read only assemblers struggle to assemble
377 small (<20 kbp) plasmids accurately, often leading to missing or multiplicated assemblies^{19,27}.

378 These errors may be exacerbated if ligation chemistry based sequencing kits are used⁴².
379 Therefore, hybrid DBG based short-read first assemblies are traditionally recommended for
380 plasmid recovery¹².

381

382 Implemented in our post-publication changes to Plassembler described in this study,
383 Hybracter solves the problem of small plasmid recovery using long-reads. It achieves this by
384 implementing a DBG-based assembly approach with Unicycler. The same read set is used
385 twice, first as unpaired pseudo ‘short’ reads and then as long-reads; the long-read set
386 scaffolds a DBG-based assembly based on the same read set. This study demonstrates that
387 current long-read technologies, such as R10 Nanopore reads, are now accurate enough that
388 some short-read algorithms are applicable. Our results also suggest that similar DBG-based
389 algorithmic approaches could be used to enhance the recovery of small replicons in long-read
390 datasets beyond the use case presented here of plasmids in bacterial isolate assemblies. This
391 could potentially enhance the recovery of replicons such as bacteriophages⁵⁵ or other small
392 contigs from metagenomes using only long-reads^{10,56}.

393

394 Finally, consistent and resource efficient assemblies that are as accurate as possible in
395 recovering both plasmids and chromosomes are crucial, particularly for larger studies
396 investigating plasmid epidemiology and evolution. AMR genes carried on plasmids can have
397 complicated patterns of transmission involving horizontal transfer between different bacterial
398 species and lineages, transfer between different plasmid backbones, and integration into and
399 excision from the bacterial chromosome⁵⁷⁻⁵⁹. Accurate plasmid assemblies are crucial in
400 genomic epidemiology studies investigating transmission of antimicrobial resistant bacteria
401 within outbreak settings, as well as in a broader One Health context, where hundreds or even
402 thousands of assemblies may be analysed⁶⁰⁻⁶³. Hybracter will facilitate the expansion of such

403 studies, allowing for faster and more accurate automated complete genome assemblies than
404 existing tools. Additionally, by utilising Snakemake²⁰ with a Snaketool²¹ command line
405 interface, Hybracter is easily and efficiently parallelised to optimise available resources over
406 various large-scale computing architectures. Individual jobs (such as each assembly,
407 reorientation, polishing or assessment step) within Hybracter are automatically sent to
408 different resources on a high performance computing (HPC) cluster using the HPC's job
409 scheduling system like Slurm⁶⁴. Hybracter can natively use any Snakemake-supported cloud-
410 based deployments such as Kubernetes, Google Cloud Life Sciences, Tibanna, and Azure
411 Batch.

412

413 **Conclusion**

414

415 Hybracter is substantially faster than the current gold standard tool Unicycler, assembles
416 chromosomes more accurately than existing methods, and is superior at recovering complete
417 plasmid genomes. By applying DBG-based algorithms designed for short-reads on current
418 generation long-reads, Hybracter long also solves the problem of long-read-only assemblers
419 entirely missing or duplicating small circular elements such as plasmids. Hybracter is
420 resource efficient and natively supports deployment on high-performance computer clusters
421 and cloud environments for massively parallel analyses. We believe Hybracter will prove to
422 be an extremely useful tool for the automated recovery of complete bacterial genomes from
423 hybrid and long-read-only sequencing data suitable for massive datasets.

424

425

426 **Methods**

427 **Benchmarking**

428

429 To compare Hybracter's functionality and performance, we benchmarked its performance
430 against other software tools. We focused on the most popular state-of-the-art assembly tools
431 for automated hybrid and long only bacterial genome assemblies. All code to replicate these
432 analyses can be found at the repository

433 (https://github.com/gbouras13/hybracter_benchmarking). All programs and dependency
434 versions used for benchmarking can be found in Supplementary Table 4. For the hybrid tools,
435 we chose Unicycler and Dragonflye with both long-read and short-read polishing (denoted
436 'Dragonflye hybrid'). Dragonflye was chosen as it is a popular long-read first assembly
437 pipeline¹⁶. Both tools were run using default parameters. By default, Dragonflye conducts a
438 long-read assembly with Flye that is polished by Racon⁶⁵ followed by Polypolish. For the
439 long-read only tool, we chose Dragonflye with long-read Racon based polishing only
440 (denoted 'Dragonflye long').

441

442 We used 20 samples for benchmarking, representing genomes from a variety of Gram-
443 negative and Gram-positive bacteria. We chose these samples as they have real hybrid read
444 sets in combination with manually curated genome assemblies produced using either
445 Trycycler or Bact-builder⁴¹—a consensus-building pipeline based on Trycycler. These
446 samples came from 4 different studies below. We used the published genomes from these
447 studies (or the available genomes available from the ATCC) as representatives of the 'ground
448 truth' for these samples. Where read coverage exceeded 100x samples were subsampled to
449 approximately 100x coverage of the approximate genome size with Rasusa v0.7.0⁶⁶, as this

450 better reflects more realistic read depth of real life isolate sequencing. Nanoq v0.10.0⁶⁷ was
451 used to generate quality control statistics for the subsampled long-read sets. Four isolates did
452 not have 100x long-read coverage — the entire long-read set was used instead. A full
453 summary table of the read lengths, quality, Nanopore kit and base-calling models used in
454 these studies can be found in Supplementary Table 2.

455

456 These samples contained varying levels of long-read quality (reflecting improvements in
457 Oxford Nanopore Technologies long-read technology), with the median Q score of long-read
458 sets ranging from 12.3 to 18.3. The four studies are:

- 459 1. Five ATCC strain isolates (ATCC-10708 *Salmonella enterica*, ATCC-17802 *Vibrio*
460 *paragaemolyticus*, ATCC-25922 *Escherichia coli*, ATCC-33560 *Campylobacter*
461 *jejuni* and ATCC-BAA-679 *Listeria monocytogenes*) made available as a part of this
462 study⁸
- 463 2. Twelve diverse carbapenemase-producing Gram-negative bacteria from *Lerminiaux*
464 et al.⁹
- 465 3. *Staphylococcus aureus* JKD6159 sequenced with both R9 and R10 chemistry long-
466 read sets from *Wick* et al.⁴⁵
- 467 4. *Mycobacterium tuberculosis* HR37v from *Chitale* et al.⁴¹

468 The full details for each individual isolate used can be found in Supplementary Tables 1 and
469 2.

470 **Chromosome Accuracy**

471

472 The assembly accuracy of the chromosomes recovered by each benchmarked tool was
473 compared using Dnadiff v1.3 packaged with MUMmer v3.23⁶⁸. Comparisons were

474 performed on the largest assembled contig (denoted as the chromosome) by each method,
475 other than for ATCC-17802 *Vibrio parahaemolyticus*, where the two largest contigs were
476 chosen as it has two chromosomes.

477

478 **Plasmid Recovery Performance and Accuracy**

479

480 Plasmid recovery performance for each tool was compared using the following methodology.
481 Summary statistics are presented considered in Table 4. See Supplementary Table 7 for a full
482 sample-by-sample analysis. All samples were analysed using the 4-step approach outlined
483 below using summary length and GC% statistics for all contigs and the output of Dnadiff
484 v1.3 comparisons generated for each sample and tool combination against the reference
485 genome plasmids:

486

487 1. The number of circularised plasmid contigs recovered for each isolate was compared
488 to the reference genome. If the tool recovered a circularised contig homologous to that
489 in the reference, it was denoted as completely recovered. Specifically, a contig was
490 denoted as completely recovered if it had a genome length within 250bp of the
491 reference plasmid, a GC% within 0.1% of the reference plasmid and whether the
492 Total Query Bases covered was within 250bp of the Total Reference Bases from
493 Dnadiff. For Dragonflye assemblies, some plasmids were duplicated or multiplicated
494 due to known issues with the long-read first assembly approach for small plasmids
495 ^{6,19,42}. Any circularised contigs that were multiplicated compared to the reference
496 plasmid were therefore denoted as misassembled.

497 2. For additional circularised contigs not found in the reference recovered, these were
498 tested for homology with NCBI nt database using the web version of blastn⁶⁹. If there
499 was a hit to a plasmid, the Plassembler output within Hybracter was checked for
500 whether the contig had a Mash hit (i.e. a Mash distance of 0.2 or lower) to plasmids in
501 the PLSDB⁷⁰. If there was a hit, the contig was denoted as an additional recovered
502 plasmid. There were 2 in total (see Supplementary Table 7 and supplementary data).
503 3. Plasmids with contigs that were either not circularised but homologous to a reference
504 plasmid, or circularised but incomplete (failing the genome length and Dnadiff criteria
505 in 1.) were denoted as partially recovered or misassembled.
506 4. Reference plasmids without any homologous contigs in the assembly were denoted as
507 missed.

508
509 Additional non-circular contigs that had no homology with reference plasmids and were not
510 identified as plasmids in step 2 were analysed on a contig-by-contig basis and denoted as
511 additional non-plasmid contigs (see Supplementary Table 7 for contig-by-contig analysis
512 details).

513

514 Runtime Performance Comparison

515
516 To compare the performance of Hybracter, we compared wall-clock runtime consumption on
517 a machine with an Intel® Core™ i7-10700K CPU @ 3.80 GHz on a machine running Ubuntu
518 20.04.6 LTS with a total of 16 available threads (8 cores). We ran all tools with 8 and 16
519 threads and with 32 GB of memory to provide runtime metrics comparable to commonly
520 available consumer hardware. Hybracter hybrid and long were run with ‘hybracter hybrid-

521 single' and 'hybracter long-single' for each isolate to generate a comparable per sample
522 runtime for comparison with the other tools. The summary results are available in Table 5
523 and the detailed results for each specific tool and thread combination are found in
524 Supplementary Table 8.

525

526 **Sequencing**

527

528 DNA extraction was performed with the DNeasy Blood and Tissue kit (Qiagen). Illumina
529 library preparation was performed using Illumina DNA prep (Illumina Inc.) according to the
530 manufacturer's instructions. Short-read whole genome sequencing was performed an Illumin
531 MiSeq with a 250bp PE kit. Oxford Nanopore Technologies library preparation ligation
532 sequencing library was prepared using the ONT SQK-NBD114-96 kit and the resultant
533 library was sequenced using an R10.4.1 MinION flow cell (FLO-MIN114) on a MinION
534 Mk1b device. Data was base-called with Super-Accuracy Basecalling (SUP) using the
535 basecaller model dna_r10.4.1_e8.2_sup@v3.5.1.

536

537 **Pypolca Benchmarking**

538

539 Pypolca v0.2.0 was benchmarked against POLCA (in MaSuRCA v4.1.0)³¹ using 18 isolates
540 described above. These were all 12 *Lerminiaux* et al. isolates, the R10 JKD6159 isolate⁴⁵ and
541 the 5 ATCC samples we sequenced as a part of this study. Benchmarking was conducted on
542 an Intel® Core™ i7-10700K CPU @ 3.80 GHz on a machine running Ubuntu 20.04.6 LTS.
543 All short read FASTQs used for benchmarking are identical to those used to benchmark

544 Hybracter. The assemblies used for polishing were intermediate chromosome assemblies
545 from Flye v2.9.2²⁶ generated within Hybracter. The outputs from Pypolca and POLCA were
546 compared using Dnadiff v1.3 packaged with MUMmer v3.23⁶⁸ Overall, Pypolca and
547 POLCA yielded extremely similar results. 16/18 assemblies were identical. ATCC 33560 had
548 2 Single Nucleotide Polymorphisms (SNPs) between Pypolca and POLCA and *Lerminiaux*
549 Isolate I also had 2 SNPs.

550

551 **Data Availability**

552

553 The subsampled FASTQ files used for benchmarking are publicly available at Zenodo with
554 DOI (<https://doi.org/10.5281/zenodo.10158013>). All ATCC FASTQ reads sequenced as a
555 part of this study can be found under BioProject PRJNA1042815 with the genomes publicly
556 available from the ATCC. All raw *Lermaniaux* et al. FASTQ read files and genomes (prior to
557 subsampling) can be found in the SRA under BioProject PRJNA1020811. All *Staphylococcus*
558 *aureus* JKD6159 FASTQ read files and genomes can be found under BioProject
559 PRJNA50759. All *Mycobacterium tuberculosis* H37R2 FASTQ read files and genomes can
560 be found under BioProject PRJNA836783. The complete list of BioSample accession
561 numbers for each benchmarked sample can be found in Supplementary Table 1. The
562 benchmarking assembly output files are publicly available on Zenodo with DOI
563 (<https://doi.org/10.5281/zenodo.10158013>). All Pypolca benchmarking outputs and code are
564 publicly available on Zenodo with DOI (<https://zenodo.org/doi/10.5281/zenodo.10072192>).

565

566 **Code Availability**

567

568 Hybracter is developed using Python and Snakemake as a command-line software tool for
569 Linux and MacOS systems. Hybracter is freely available under an MIT License on GitHub
570 (<https://github.com/gbouras13/hybracter>) and the documentation is available at Read the
571 Docs (<https://hybracter.readthedocs.io/en/latest/>). Hybracter is available to install via PyPI
572 (<https://pypi.org/project/hybracter/>) and Bioconda (<https://anaconda.org/bioconda/hybracter>).

573 All code used to benchmark Hybracter, including the reference genomes, is publicly available
574 on GitHub (https://github.com/gbouras13/hybracter_benchmarking) with released DOI
575 (<https://zenodo.org/doi/10.5281/zenodo.10157987>) available at Zenodo.

576

577 **Acknowledgements**

578

579 This work was supported with supercomputing resources provided by the Phoenix HPC
580 service at the University of Adelaide. We would particularly like to thank Fabien Voisin for
581 his integral role in maintaining and running Phoenix. We would also like to thank Brad Hart
582 for useful comments in testing Hybracter and Simone Pignotti and Oliver Schwengers for
583 providing helpful comments and GitHub pull requests.

584

585 **Funding**

586

587 G.H. was supported by The University of Adelaide International Scholarships and a THRF
588 Postgraduate Top-up Scholarship. A.E.S was supported by a University of Adelaide Barbara
589 Kidman Women's Fellowship. R.A.E was supported by an award from the NIH NIDDK
590 RC2DK116713 and an award from the Australian Research Council DP220102915. S.V. was
591 supported by a Passey and Williams Foundation senior fellowship.

592 **References**

593 1. Land, M. *et al.* Insights from 20 years of bacterial genome sequencing. *Funct Integr*
594 *Genomics* **15**, 141–161 (2015).

595 2. Goldstein, S., Beka, L., Graf, J. & Klassen, J. L. Evaluation of strategies for the assembly
596 of diverse bacterial genomes using MinION long-read sequencing. *BMC Genomics* **20**,
597 23 (2019).

598 3. De Maio, N. *et al.* Comparison of long-read sequencing technologies in the hybrid
599 assembly of complex bacterial genomes. *Microbial Genomics* **5**, e000294 (2019).

600 4. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Y. 2017. Completing bacterial
601 genome assemblies with multiplex MinION sequencing. *Microbial Genomics* **3**,
602 e000132.

603 5. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial
604 genome assemblies from short and long sequencing reads. *PLOS Computational*
605 *Biology* **13**, e1005595 (2017).

606 6. Wick, R. R. & Holt, K. E. Benchmarking of long-read assemblers for prokaryote whole
607 genome sequencing. Preprint at <https://doi.org/10.12688/f1000research.21782.4>
608 (2021).

609 7. Wick, R. R. *et al.* Trycycler: consensus long-read assemblies for bacterial genomes.
610 *Genome Biology* **22**, 266 (2021).

611 8. Wick, R. ONT-only accuracy with R10.4.1. *Ryan Wick's bioinformatics blog*
612 <https://rrwick.github.io/2023/05/05/ont-only-accuracy-with-r10.4.1.html> (2023).

613 9. Lerminiaux, N., Fakharuddin, K., Mulvey, M. R. & Mataseje, L. Do we still need
614 Illumina sequencing data?: Evaluating Oxford Nanopore Technologies R10.4.1 flow
615 cells and v14 library prep kits for Gram negative bacteria whole genome assemblies.

616 2023.09.25.559359 Preprint at <https://doi.org/10.1101/2023.09.25.559359>

617 (2023).

618 10. Sereika, M. *et al.* Oxford Nanopore R10.4 long-read sequencing enables the

619 generation of near-finished bacterial genomes from pure cultures and metagenomes

620 without short-read or reference polishing. *Nat Methods* **19**, 823–826 (2022).

621 11. Wick, R. ONT-only accuracy: 5 kHz and Dorado. *Ryan Wick's bioinformatics blog*

622 <https://rrwick.github.io/2023/10/24/ont-only-accuracy-update.html> (2023).

623 12. Wick, R. R., Judd, L. M. & Holt, K. E. Assembling the perfect bacterial genome using

624 Oxford Nanopore and Illumina sequencing. *PLOS Computational Biology* **19**,

625 e1010905 (2023).

626 13. Murigneux, V. *et al.* MicroPIPE: validating an end-to-end workflow for high-quality

627 complete bacterial genome construction. *BMC Genomics* **22**, 474 (2021).

628 14. Schwengers, O. *et al.* ASA3P: An automatic and scalable pipeline for the assembly,

629 annotation and higher-level analysis of closely related bacterial isolates. *PLOS*

630 *Computational Biology* **16**, e1007134 (2020).

631 15. Petit, R. A. & Read, T. D. Bactopia: a Flexible Pipeline for Complete Analysis of

632 Bacterial Genomes. *mSystems* **5**, 10.1128/msystems.00190-20 (2020).

633 16. Petit III, R. A. Dragonfly: Assemble bacterial isolate genomes from Nanopore reads.

634 17. Hunt, M. *et al.* Circlator: automated circularization of genome assemblies using long

635 sequencing reads. *Genome Biology* **16**, 294 (2015).

636 18. Wick, R. R. & Holt, K. E. Polypolish: Short-read polishing of long-read bacterial

637 genome assemblies. *PLOS Computational Biology* **18**, e1009802 (2022).

638 19. Johnson, J., Soehnlen, M. & Blankenship, H. M. Long read genome assemblers

639 struggle with small plasmids. *Microbial Genomics* **9**, 001024 (2023).

640 20. Mölder, F. *et al.* Sustainable data analysis with Snakemake. Preprint at
641 <https://doi.org/10.12688/f1000research.29032.2> (2021).

642 21. Roach, M. J. *et al.* Ten simple rules and a template for creating workflows-as-
643 applications. *PLOS Computational Biology* **18**, e1010705 (2022).

644 22. Wick, R. R. Filtlong. (2018).

645 23. Bonenfant, Q., Noé, L. & Touzet, H. Porechop_ABI: discovering unknown adapters in
646 Oxford Nanopore Technology sequencing reads for downstream trimming.
647 *Bioinformatics Advances* **3**, vbac085 (2023).

648 24. Roach, M. J. Trimnami: Trim lots of metagenomics samples all at once. (2023).

649 25. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
650 *Bioinformatics* **34**, i884–i890 (2018).

651 26. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads
652 using repeat graphs. *Nat Biotechnol* **37**, 540–546 (2019).

653 27. Bouras, G., Sheppard, A. E., Mallawaarachchi, V. & Vreugde, S. Plasssembler: an
654 automated bacterial plasmid assembly tool. *Bioinformatics* **39**, btad409 (2023).

655 28. medaka: Sequence correction provided by ONT Research.

656 29. Bouras, G., Papudeshi, B., Grigson, S., Mallawaarachchi, V. & Roach, M. J. Dnaapler: A
657 tool to reorient circular microbial genomes. (2023).

658 30. Bouras, G. & Zimin, A. V. pypolca: Standalone Python reimplementation of the
659 genome polishing tool POLCA. (2023).

660 31. Zimin, A. V. & Salzberg, S. L. The genome polishing tool POLCA makes fast and
661 accurate corrections in genome assemblies. *PLOS Computational Biology* **16**,
662 e1007981 (2020).

663 32. Clark, S. C., Egan, R., Frazier, P. I. & Wang, Z. ALE: a generic assembly likelihood
664 evaluation framework for assessing the accuracy of genome and metagenome
665 assemblies. *Bioinformatics* **29**, 435–443 (2013).

666 33. Larralde, M. Pyrodigal: Python bindings and interface to Prodigal, an efficient
667 method for gene prediction in prokaryotes. *Journal of Open Source Software* **7**, 4296
668 (2022).

669 34. Hyatt, D. *et al.* Prodigal: prokaryotic gene recognition and translation initiation site
670 identification. *BMC Bioinformatics* **11**, 119 (2010).

671 35. Vaser, R. & Šikić, M. Time- and memory-efficient genome assembly with Raven. *Nat
672 Comput Sci* **1**, 332–336 (2021).

673 36. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. *Nat Methods* **17**,
674 155–158 (2020).

675 37. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long
676 sequences. *Bioinformatics* **32**, 2103–2110 (2016).

677 38. Koren, S. *et al.* Canu: scalable and accurate long-read assembly via adaptive k-mer
678 weighting and repeat separation. *Genome Res.* **27**, 722–736 (2017).

679 39. Zhang, X. *et al.* Benchmarking of long-read sequencing, assemblers and polishers for
680 yeast genome. *Briefings in Bioinformatics* **23**, bbac146 (2022).

681 40. Zimin, A. V. *et al.* The MaSuRCA genome assembler. *Bioinformatics* **29**, 2669–2677
682 (2013).

683 41. Chitale, P. *et al.* A comprehensive update to the *Mycobacterium tuberculosis* H37Rv
684 reference genome. *Nat Commun* **13**, 7068 (2022).

685 42. Wick, R. R., Judd, L. M., Wyres, K. L. & Holt, K. E. Y. 2021. Recovery of small plasmid
686 sequences via Oxford Nanopore sequencing. *Microbial Genomics* **7**, 000631 (2021).

687 43. Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools
688 for Oxford Nanopore sequencing. *Genome Biology* **20**, 129 (2019).

689 44. Marinus, M. G. & Løbner-Olesen, A. DNA Methylation. *EcoSal Plus* **6**,
690 10.1128/ecosalplus.ESP-0003-2013 (2014).

691 45. Wick, R. R., Judd, L. M., Monk, I. R., Seemann, T. & Stinear, T. P. Improved Genome
692 Sequence of Australian Methicillin-Resistant *Staphylococcus aureus* Strain JKD6159.
693 *Microbiology Resource Announcements* **12**, e01129-22 (2023).

694 46. Sanderson, N. D. *et al.* Comparison of R9.4.1/Kit10 and R10/Kit12 Oxford Nanopore
695 flowcells and chemistries in bacterial genome reconstruction. *Microbial Genomics* **9**,
696 000910 (2023).

697 47. Bankevich, A. *et al.* SPAdes: A New Genome Assembly Algorithm and Its Applications
698 to Single-Cell Sequencing. *Journal of Computational Biology* **19**, 455–477 (2012).

699 48. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-
700 node solution for large and complex metagenomics assembly via succinct de Bruijn
701 graph. *Bioinformatics* **31**, 1674–1676 (2015).

702 49. Compeau, P. E. C., Pevzner, P. A. & Tesler, G. How to apply de Bruijn graphs to
703 genome assembly. *Nature Biotechnology* **29**, 987–991 (2011).

704 50. Wong, J. *et al.* Linear time complexity de novo long read genome assembly with
705 GoldRush. *Nat Commun* **14**, 2906 (2023).

706 51. Amarasinghe, S. L. *et al.* Opportunities and challenges in long-read sequencing data
707 analysis. *Genome Biology* **21**, 30 (2020).

708 52. Lin, Y. *et al.* Assembly of long error-prone reads using de Bruijn graphs. *Proceedings
709 of the National Academy of Sciences* **113**, E8396–E8405 (2016).

710 53. Ekim, B., Berger, B. & Chikhi, R. Minimizer-space de Bruijn graphs: Whole-genome
711 assembly of long reads in minutes on a personal computer. *Cell Syst* **12**, 958-968.e6
712 (2021).

713 54. Bankevich, A., Bzikadze, A. V., Kolmogorov, M., Antipov, D. & Pevzner, P. A. Multiplex
714 de Bruijn graphs enable genome assembly from long, high-fidelity reads. *Nat
715 Biotechnol* **40**, 1075–1081 (2022).

716 55. Mallawaarachchi, V. *et al.* Phables: from fragmented assemblies to high-quality
717 bacteriophage genomes. *Bioinformatics* **39**, btad586 (2023).

718 56. Kolmogorov, M. *et al.* metaFlye: scalable long-read metagenome assembly using
719 repeat graphs. *Nat Methods* **17**, 1103–1110 (2020).

720 57. Sheppard, A. E. *et al.* Nested Russian Doll-Like Genetic Mobility Drives Rapid
721 Dissemination of the Carbapenem Resistance Gene blaKPC. *Antimicrobial Agents and
722 Chemotherapy* **60**, 3767–3778 (2016).

723 58. Mathers, A. J. *et al.* Klebsiella quasipneumoniae Provides a Window into
724 Carbapenemase Gene Transfer, Plasmid Rearrangements, and Patient Interactions
725 with the Hospital Environment. *Antimicrobial Agents and Chemotherapy* **63**,
726 10.1128/aac.02513-18 (2019).

727 59. Houtak, G. *et al.* The intra-host evolutionary landscape and pathoadaptation of
728 persistent *Staphylococcus aureus* in chronic rhinosinusitis. *Microbial Genomics* **9**,
729 001128 (2023).

730 60. Hawkey, J. *et al.* ESBL plasmids in *Klebsiella pneumoniae*: diversity, transmission
731 and contribution to infection burden in the hospital setting. *Genome Medicine* **14**, 97
732 (2022).

733 61. Roberts, L. W. *et al.* Long-read sequencing reveals genomic diversity and associated
734 plasmid movement of carbapenemase-producing bacteria in a UK hospital over 6
735 years. *Microbial Genomics* **9**, 001048 (2023).

736 62. Matlock, W. *et al.* Enterobacterales plasmid sharing amongst human bloodstream
737 infections, livestock, wastewater, and waterway niches in Oxfordshire, UK. *eLife* **12**,
738 e85302 (2023).

739 63. Lerminiaux, N. *et al.* Plasmid genomic epidemiology of blaKPC carbapenemase-
740 producing Enterobacterales in Canada, 2010–2021. *Antimicrobial Agents and*
741 *Chemotherapy* **0**, e00860-23 (2023).

742 64. Yoo, A. B., Jette, M. A. & Grondona, M. SLURM: Simple Linux Utility for Resource
743 Management. in *Job Scheduling Strategies for Parallel Processing* (eds. Feitelson, D.,
744 Rudolph, L. & Schwiegelshohn, U.) 44–60 (Springer, 2003).
745 doi:10.1007/10968987_3.

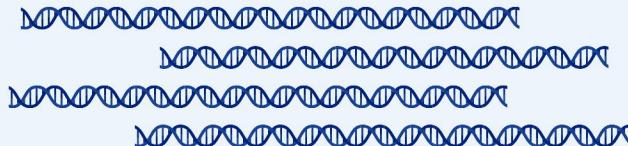
746 65. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome
747 assembly from long uncorrected reads. *Genome Res.* **27**, 737–746 (2017).

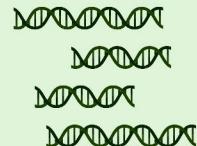
748 66. Hall, M. B. Rasusa: Randomly subsample sequencing reads to a specified coverage.
749 *Journal of Open Source Software* **7**, 3941 (2022).

750 67. Steinig, E. & Coin, L. Nanoq: ultra-fast quality control for nanopore reads. *Journal of*
751 *Open Source Software* **7**, 2991 (2022).

752 68. Kurtz, S. *et al.* Versatile and open software for comparing large genomes. *Genome*
753 *Biology* **5**, R12 (2004).

754 69. Sayers, E. W. *et al.* Database resources of the national center for biotechnology
755 information. *Nucleic Acids Research* **50**, D20–D26 (2022).


756 70. Galata, V., Fehlmann, T., Backes, C. & Keller, A. PLSDB: a resource of complete
757 bacterial plasmids. *Nucleic Acids Research* **47**, D195–D202 (2019).


Hybracter

Hybrid or Long-Only
Bacterial Assembly
Pipeline

Long-Reads

Short-Reads (Hybracter Hybrid Only)

A

Long-Reads

Quality Control (Optional)

Short-Reads

Trimnami (Contamination Removal)
Filtlong
Porechop-ABI

fastp

C Plasmid Assembly

Plassembler

B Long-Reads Assembly

Complete
Chromosome(s)

Flye

Incomplete
Contigs

D Long-Read Polishing (Two Rounds)

D

Medaka

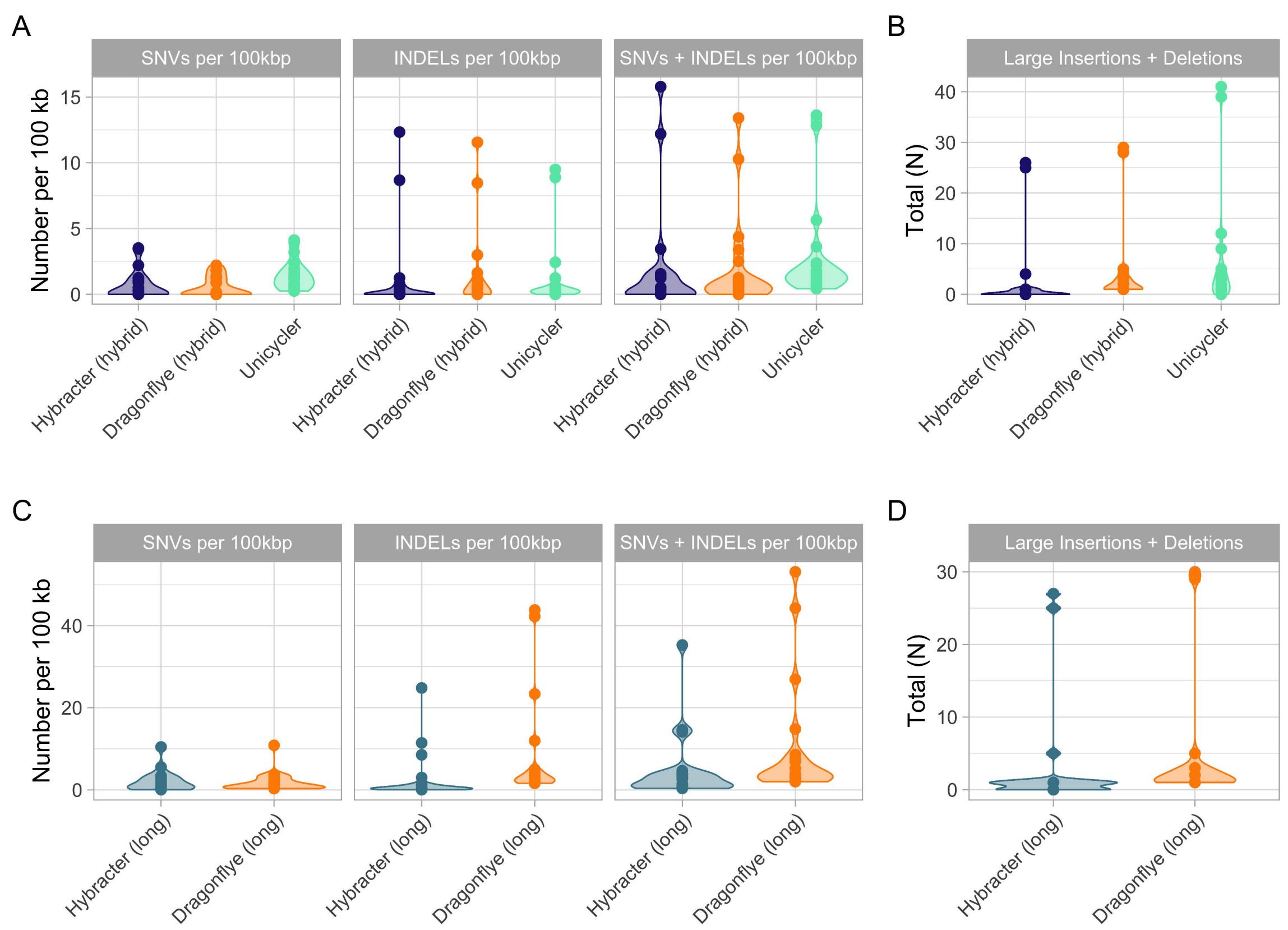
E Chromosome Reorientation

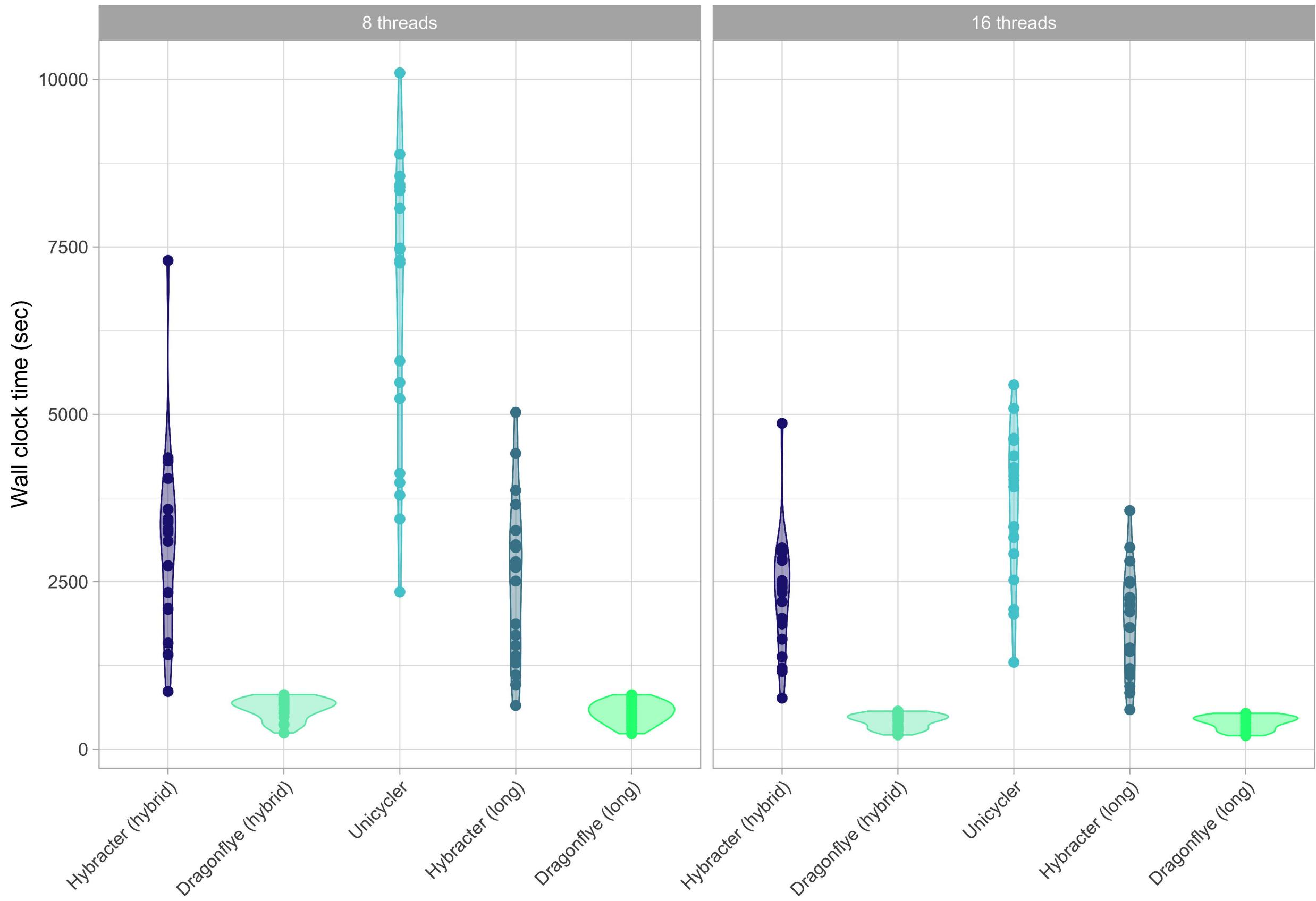
Start With *DnaA* Gene
Dnaapler

H Output

Assembly Statistics
Final Chromosome and Plasmid
Assemblies

F Short-Read Polishing


F


Polypolish
Pypolca

G Quality Assessment

Run on B,D,E,F

ALE or Pyrodigal

