
PhysiCell Studio: a graphical tool to make agent-based
modeling more accessible
Randy Heiland1, Daniel Bergman2,3, Blair Lyons4, Julie Cass4, Heber L. Rocha1, Marco
Ruscone5,6,7,8, Vincent Noël5,6,7, Paul Macklin1,*

1Department of Intelligent Systems Engineering, Indiana University. Bloomington, IN
USA.
2Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins
University. Baltimore, MD USA

3Convergence Institute, Johns Hopkins University. Baltimore, MD USA
4Allen Institute for Cell Science, Seattle, WA USA
5Institut Curie, Université PSL, F-75005, Paris, France
6INSERM, U900, F-75005, Paris, France
7Mines ParisTech, Université PSL, F-75005, Paris, France
8Sorbonne Université, Collège Doctoral, F-75005 Paris, France

*Corresponding author. macklinp@iu.edu

Abstract
Defining a multicellular model can be challenging. There may be hundreds of parameters that
specify the attributes and behaviors of objects. Hopefully the model will be defined using some
format specification, e.g., a markup language, that will provide easy model sharing (and a
minimal step toward reproducibility). PhysiCell is an open source, physics-based multicellular
simulation framework with an active and growing user community. It uses XML to define a
model and, traditionally, users needed to manually edit the XML to modify the model. PhysiCell
Studio is a tool to make this task easier. It provides a graphical user interface that allows editing
the XML model definition, including the creation and deletion of fundamental objects, e.g., cell
types and substrates in the microenvironment. It also lets users build their model by defining
initial conditions and biological rules, run simulations, and view results interactively. PhysiCell
Studio has evolved over multiple workshops and academic courses in recent years which has led
to many improvements. Its design and development has benefited from an active undergraduate
and graduate research program. Like PhysiCell, the Studio is open source software and
contributions from the community are encouraged.

Introduction and Background
Agent-based simulation frameworks[1] offer various approaches to modeling biological systems.
PhysiCell[2] models cells as agents with independent attributes (e.g., position, volume, cycle
status) and phenotypic behaviors (e.g., adhesion/repulsion, motility, secretion). PhysiCell is
written in C++ and a model’s parameters are defined using the eXtensible Markup Language
(XML). As PhysiCell has evolved, many model parameters that were originally defined in C++
have been moved into XML. While this has been a definite improvement for modifying

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

mailto:macklinp@iu.edu
https://paperpile.com/c/itCWUL/FfDZ
https://paperpile.com/c/itCWUL/lPL8
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


parameters during a model’s development, it still poses significant challenges. We now have a
rather large XML file for any moderately complex model which makes it challenging to edit by
hand. Some would argue that XML should not even be edited by humans – that it was created
primarily to be just a <machine-readable= (and editable) format. Unless a user is familiar with a
text editor that supports XML syntax and can, for example, collapse sections of hierarchical
information, it is difficult to see the skeleton of a PhysiCell model, e.g., its substrates and cell
types, and visually associate parameters with their parent objects.

We present PhysiCell Studio, a graphical tool that makes it easier to build, run, and visualize a
PhysiCell model. PhysiCell Studio began as a graphical user interface that focused solely on
editing the contents of the XML model. Over time, it has evolved to include additional
functionality. A graphical user interface can provide several benefits over a command line
interface. This is especially true for a simulation framework like PhysiCell where output results
are visual and the user is interactively developing a model – changing parameters, running a
simulation, plotting results, and repeating. Benefits of using a graphical user interface (GUI)
include:

● Easier to use: point and click to access and edit objects and parameters offers an
alternative to traditional text editing and is especially appealing to those who are less
experienced developing code.

● Faster prototyping: if the tool can also run a simulation and plot results, it can <close the
loop=, allowing for faster model development. These capabilities can also allow users to
skip setting up a development environment, which can be a barrier to getting started.

● Reduce input errors: a GUI can incorporate validation constraints, e.g., numeric input or
pre-defined object selection, reducing the likelihood of input errors.

PhysiCell Studio now joins other agent-based modeling frameworks that provide some level of
graphical user interfaces, e.g., NetLogo[3], Chaste[4], Morpheus[5], CompuCell3D[6],
Artistoo[7], and more.

PhysiCell Models
Defining a model in PhysiCell has been an evolving process as new functionality has been added
over the past few years. A PhysiCell model currently consists of: 1) an XML configuration file
containing model parameter values, 2) optional files (specified in the configuration file) that
contain additional input data: initial conditions for cells (and in the future, substrates), and rules
defining how cells respond to signals, and 3) optional custom C++ code. An executable model is
the result of compiling the core PhysiCell C++ code together with any custom C++ code. Several
sample models are provided in the PhysiCell source code distribution.

We show a portion of an XML configuration file in Figure 1. This is taken from one of
PhysiCell’s sample models (<interaction= model). We are showing just a single <cell_definition=
(cell type) and its phenotype (containing more than 100 actual parameters). Note that for each of
the eight phenotypic behaviors, we have collapsed the actual parameters and their values. There
are seven cell types, i.e., <cell_definition= sections, in this particular model, bringing the total

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://paperpile.com/c/itCWUL/Swha
https://paperpile.com/c/itCWUL/EfBH
https://paperpile.com/c/itCWUL/3p6x
https://paperpile.com/c/itCWUL/6nll
https://paperpile.com/c/itCWUL/U0fR
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


number of parameters for all cell types to more than 700. There will typically be multiple
substrates (signals) defined in a model as well. For example, a COVID-19 PhysiCell model has 8
cell types and 11 substrates[8] (nanohub.org/tools/pc4covid19).

Figure 1.

Building a Tumor Model
We demonstrate PhysiCell Studio by showing how one could build a 2D tumor model. As is
recommended when starting a PhysiCell model, we will load an existing model from the sample
projects that ship with every PhysiCell download. We will use the <template= project. The
<template= model defines one cell type (<default=) and one substrate (<substrate=). In this model,
a specific (predefined) cell cycle is defined that results in proliferation and the cell death
parameters result in apoptosis. The other cell phenotype parameters use defaults provided by
PhysiCell: <standard= mechanics, no motility, no secretion, etc.. And the substrate has no initial
conditions or Dirichlet boundary conditions defined. There is a user parameter that defines the
number of initial cells positioned randomly and uniformly in the spatial domain.

We start by copying this template (.xml) model into a new file, tumor_demo.xml. There are a
few different workflows for using the Studio, however, the most common way is discussed in the
Studio Guide
(https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#installing-and-runni
ng-the-studio). Assuming the Studio is installed in a PhysiCell root directory and you have
compiled the template project executable (called <project=), then you can create the new
tumor_demo.xml and run the Studio from the command line with (adjust the syntax for Windows
if necessary):

~/PhysiCell$ cp studio/config/template.xml tumor_demo.xml
~/PhysiCell$ python studio/bin/studio.py -c tumor_demo.xml -e project

(If you need help installing PhysiCell, in order to build the template project, see
https://github.com/physicell-training/ws2023/blob/main/agenda.md#set-up-physicell)

You should see something similar to Figure 2 which displays the first tab for Configuration
Basics parameters for your model (same as the template model). In this tab, you can configure
the size of the domain, set time stepping parameters, set the frequency of collecting model data,

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://paperpile.com/c/itCWUL/49re
https://nanohub.org/tools/pc4covid19
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#installing-and-running-the-studio
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md#installing-and-running-the-studio
https://github.com/physicell-training/ws2023/blob/main/agenda.md#set-up-physicell
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


and more. For now, check the <enable= checkbox in the <initial conditions of cells= section as we
will be using it for the tumor model.

Figure 2

Next, select the <Microenvironment= tab where the substrates (or signals) are defined. In the
template model, you will see a <substrate= defined. This tab will display all substrates in the
model in the left panel along with buttons to create new substrates, copy substrates, and delete
substrates. On the right, you will see all the available parameters for the highlighted substrate on
the left. In addition, two checkboxes appear at the bottom that change the behavior of the model
for all substrates: <calculate gradients= and <track in agents=. Perform the following steps to set
up oxygen in the model:

● select <substrate=, e.g., double-click the name, and rename it <oxygen=
● set the <decay rate= to 0.1
● set the <initial condition= to 38
● set the <boundary condition= to 38
● press <Apply to all= then check the <on= checkbox for xmin,xmax,ymin,ymax

Your screen should look like Figure 3.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Figure 3

Next, select the <Cell Types= tab. True to its name, PhysiCell is an agent-based model of cells,
hence the most detail goes into defining the cell types. That is why this tab contains the most
information, organized by nine subtabs. Similar to the <Microenvironment= tab, the left panel
shows the list of current cell types as well as their ID, a nonnegative integer that you only need to
account for if you create your own custom C++ code referring directly to cell type IDs. On the
right, you can cycle through the nine subtabs, displaying the related information for the
highlighted cell type on the left. In the template model, you will see a <default= cell type defined.

● select <default=, double-click the name, and rename it <cancer=
● the <Cycle= tab should already be selected, but if not, select it
● click the dropdown widget containing predefined cell cycles and select <live cells=
● be sure the <duration= radio button is selected and set the <phase 0 duration= to 1440

(mins, i.e., 24 hrs)

Your screen should look like Figure 4.

Figure 4

Staying in the <Cell Types= top tab, select the <Secretion= subtab. Note its dropdown widget only
lists <oxygen= since that’s the only substrate defined so far. In a model with more substrates,
those will automatically be added to this dropdown for you to select and update the four
cell-type-specific parameters shown below.

● set the <uptake= to 10 (this corresponds to a 100 micron length scale)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Your screen should look like Figure 5.

Figure 5

Next, we will create the initial conditions for the circular tumor. Select the <ICs= tab. In this tab,
initial cell locations can be set using a graphical interface. Select the cell type from the dropdown
widget, use the two dropdown widgets below to set how you will add cells, fine tune your
placement with parameters, and <Plot= the result. If you choose <point= from the first dropdown,
you can click on the figure in the right panel to add cells at specific locations.

● the top <cell type= dropdown widget should only contain <cancer=
● be sure <annulus/disk= is selected in the geometry dropdown
● select <hex fill= in the fill options dropdown
● set R1 (min radius) to 0
● set R2 (max radius) to 200
● click <Plot=
● click <Save=

Your screen should look like Figure 6. After any change to these initial conditions, you must
click <Save=. PhysiCell Studio only saves to the CSV when this button is pressed, not when you
<File > Save= the XML.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Figure 6

In the <Config Basics= tab, confirm that you have checked <enable= for the initial conditions
(Figure 7). If you do not, these initial conditions will not be loaded into your simulation.

Figure 7

Next, select the <User Params= tab. You will see a table of user parameters that you can add to,
modify, or delete from. The first three columns of this table are required by PhysiCell while the
final two are for interpretability. Only those parameters that display upon initial loading of
Studio with the sample project, i.e. those that the sample project uses, will affect simulations
without further editing the C++ code.

● set the <number_of_cells= to 0 (so that we only have our hex-packed disk of cells)

Your screen should look like Figure 8.

Figure 8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Next, select the <Run= tab and click <Run simulation=. This will cause all edits you have made
so far be saved into <tumor_demo.xml=. Additionally, PhysiCell Studio uses the inputs you gave
to launch it to populate the executable and configuration files for you. The simulation will run,
showing the normal terminal output in this tab (Figure 9).

Figure 9

While the simulation is running, navigate to the <Plot= tab. In this tab, you can advance through
snapshots of the model as it is running by navigating with the arrows, entering a specific
snapshot ID, or clicking <Play= and watching a movie of the recorded output. For the best
experience, select the <Sync= option on <Config Basics= in the <Save data (intervals)= row to
synchronize the cellular and substrate snapshots. Many options exist for what data to display,
including cell-specific data (pressure, cycle phase, etc) and individual substrate concentrations.
By clicking the <Legend= button, a legend will appear in a new window identifying the cell
types. Clicking the <Population plot= will open a new window with time series corresponding to
the item in the dropdown widget. For now,

● leave the <cells= checkbox checked and the <.svg= radio button selected
● check the <substrates= checkbox to plot the diffusing oxygen substrate and choose <jet= in

the colormap dropdown
● press the <>= button to advance a single frame

Your screen should look similar to Figure 10a. If you press the <Play= button, it should animate
results from the simulation. Figure 10b shows results at 2.5 days. Be aware that results from
PhysiCell simulations will be stochastic if you are using more than one OpenMP thread, so there
will be some variability between runs.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Figure 10. Results at 1 hr (left) and 2 days, 12 hrs (right)

We have modeled a growing tumor whose cells uptake oxygen. One thing to note is the tumor
cells overlap in a non-realistic manner. This can be made more obvious if we plot the tumor cells
color-coded by how much pressure is exerted on each one (Figure 11).

Figure 11. Pressure values on cells (at 2 days, 12 hrs)

To correct this non-realistic outcome, we can define a pressure mechanofeedback rule. A rule
defines a cell behavior as a function of some signal, providing a powerful modeling feature of
PhysiCell[9]. This, along with more extensions to this tumor model, can be found in the
Supplemental material.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://paperpile.com/c/itCWUL/13Hv
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Design and Development
PhysiCell Studio has been designed and developed by academic researchers. Unlike a corporate
software tool that may have significant funding and a large multidisciplinary development team
of computer scientists, human-computer interaction professionals, psychologists, etc., an
academic research tool is typically developed by just a few people with funding scattered over
multiple grants. It will typically involve graduate students that are both producers and
consumers. That is to say, they will be making actual code contributions, but will also be using
the tool for their personal research and thereby testing its usability. In our lab at Indiana
University, we also include undergraduate students in research projects and this has definitely
been true for PhysiCell Studio. By combining graduate and undergraduate students in regular lab
meetings, we blur the line between education and research. Undergraduates learn more about
active research projects; graduate students, postdocs, and staff become mentors[10].
Undergraduates have opportunities to contribute, in various ways, to projects they find
interesting.

One key design goal was to have PhysiCell Studio be an independent project from PhysiCell. By
<independent= we mean that, first, it should not affect the legacy workflow for using PhysiCell.
A modeler should still be able to edit the XML model by hand, run a simulation from the
command line, and visualize output results however they wish. Second, we want the Studio to
have an independent development path, likely with more frequent software releases than
PhysiCell. However, the latest version of the Studio should always expose whatever model
parameters are available in the latest version of PhysiCell. And third, it allows for having
different software licenses.

The development of PhysiCell Studio has progressed in stages. In the first stage, as part of a NSF
nanoBIO grant, we developed a Python script and workflow to transform an existing PhysiCell
model configuration file (XML) into a Jupyter notebook with a graphical user interface (Figure
12). Undergraduate students played an active role during this stage and contributed to the
xml2jupyter project[11]. When the GUI was combined with the PhysiCell C++ code base and
custom C++ for that particular model, the model was accessible from a Web browser, parameter
values could be modified, and a simulation executed in the cloud on the nanoHUB platform. In
addition, 2D simulation results could be visualized in the same tool. The ability to edit the
model, however, was limited to modifying values of existing parameters. A user could not add
more (nor delete, nor rename existing) objects or parameters in the model using the GUI.
Nevertheless, the layout of the GUI during this stage influenced the layout of PhysiCell Studio.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://paperpile.com/c/itCWUL/t8ta
https://paperpile.com/c/itCWUL/Xk7x
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Figure 12. Jupyter notebook GUI showing some model parameters (left) and simulation results
(right) (nanohub.org/tools/pc4covid19)

The second stage of development was to prototype a desktop tool that resembled the Jupyter
notebook’s layout and functionality, but was more powerful. It needed to be able to 1) add (or
delete or rename) objects, e.g., substrates, cell types, custom data parameters, and user
parameters, and 2) define associations between objects, e.g., cell type C {secretes, or chemotaxis
to/from} substrate S, or cell type C1 {interacts with} cell type C2. All model edits performed in
the Studio would then be saved in the XML configuration file.

We chose Qt (https://www.qt.io/) as the preferred GUI library for the desktop tool for multiple
reasons. It is used by several other desktop (scientific) applications, runs on the three major
operating systems (Windows, macOS, and Linux) that PhysiCell supports, and has Python APIs.
Undergraduate students explored the C++ API to Qt, along with Qt Designer
(https://doc.qt.io/qt-6/qtdesigner-manual.html) to create a primitive prototype of the desktop
Studio. Others explored a Python API to Qt (https://pypi.org/project/PyQt5/) to do the same. In
the end, we selected the Python API for two reasons: 1) the development cycle seemed faster (no
compilation required), and 2) we believed the PhysiCell community (who might further develop
the Studio) would be more familiar with Python than C++ (this was also true for undergraduate
and graduate students).

We made early prototypes of the Studio available to lab members and <friendly= users who
attended PhysiCell workshops. Their feedback led to a third stage of development that included
the ability to create cells’ initial conditions (in 2D) and additional visualization functionality,
including cells’ scalar values (in the .mat output files) and plotting for 3D models (using VTK).

Finally, a fourth stage of development provided a graphical interface to a recent, powerful
modeling concept in PhysiCell: cell behaviors can be interactively defined as responses to
signals (stimuli)[9]. These behaviors are specified using a constrained grammar, leading to
model <rules= (Figure 13). As a modeler adds (or deletes or renames) substrates or cell types, in

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://nanohub.org/tools/pc4covid19
https://www.qt.io/
https://doc.qt.io/qt-6/qtdesigner-manual.html
https://pypi.org/project/PyQt5/
https://paperpile.com/c/itCWUL/13Hv
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


their respective tabs, the widgets in the <Rules= tab for signals and behaviors will be dynamically
updated, in addition to any rules already defined and listed in the table.

Figure 13. An example of model rules (see Supplemental material).

One general usability feature of the Studio is worth mentioning. It operates mostly in <immediate
mode=, i.e., a confirmation of an action is not required. For example, in the Plot tab, clicking on
a widget or changing a text value will, most of the time, cause an immediate, visible change in
the plot window. One exception is the <cmin= or <cmax= value that pertains to the colorbars. If a
user changes either one of these values, they need to press the <Enter= key for the plot results to
be updated. There is text next to those widgets as a reminder. The reason for this required action
is because it may be an expensive operation. In other tabs, for example the Cell Types, entering a
new value in a text parameter widget does not require pressing <Enter= for it to be saved (to
intermediate data structures). A related design feature is that we store all XML objects and
parameter values in internal Python dictionaries (the intermediate data structures) during a Studio
session. The contents of these dictionaries will be written to an XML file when the user
explicitly does a <File → Save= (or <Save as=) or performs a <Run Simulation= in the Run tab.

The breakdown of the relevant core code used in PhysiCell Studio is shown in Table 1. However,
the Studio GitHub repository also includes sample PhysiCell models (.xml files) and additional,
standalone Python scripts that provide functionality outside of the Studio.

Language files blank comment code
-------------------------------------------------------------------------------
Python 26 6081 9695 19314
SVG 1 1 0 8

Table 1. Core code in the Studio

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Graphics: Plotting and Initial Conditions
During the early design of PhysiCell Studio, we considered having it be just a model editor, with
no plotting functionality. There are plenty of scientific visualization libraries and tools, both
commercial and open source, that a modeler could use to post-process results of a PhysiCell
simulation, e.g., MATLAB, matplotlib, VTK, ParaView, Simularium, etc.. We decided it was
worth the effort to include some degree of interactive visualization within the Studio. It offers
benefits such as: 1) avoid a potential steep learning curve using other plotting tools, 2) avoid
cognitive context switching between tools, and 3) reduce the time to develop a model (the
edit→run→visualize cycle). PhysiCell Studio uses the matplotlib library[12] for 2D and VTK
(its Python API) for 3D visualizations. However, a very limited and targeted subset of
functionality from those libraries is used and exposed in the GUI. Nevertheless, there are plenty
of challenges when visualizing any scientific data. For PhysiCell data, we need to interactively
plot possibly hundreds of thousands of cells, changing position, size, and color (where color is
specified in either SVG or scalar values). In addition, there may be multiple scalar fields
representing the microenvironment, e.g., oxygen, glucose, chemokine, interferon, etc., that also
needs to be interactively rendered. Therefore the Studio offers choices for colormaps and an
option to clamp its scalar range. There are additional challenges with 3D models and data,
requiring, for example, the need to hide (clip) data or extract 2D subsets (Figure 14). The Studio
will never meet everyone’s needs for visualizing simulation data, but we try to provide a
sufficient set of options and can expand it when the community generally agrees they need more.

Figure 14. 3D plots of the PhysiCell cancer-immune-sample model with clipping planes and slice
planes.

In addition to plotting output data from a simulation, the Studio can also generate input data
(currently 2D only). Specifically, the <ICs= tab lets a user graphically create initial conditions for
cells (in the future it will also provide ways to create initial conditions for substrates). By
selecting a cell type, a geometric region, the type of fill (random or hexagonal), plus additional
parameters, one can generate a .csv file for cells’ initial conditions. Figure 15 shows a circular
region of tumor cells and an outer annulus of immune cells.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://paperpile.com/c/itCWUL/6bBy
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Figure 15. Creating initial conditions for cells.

Software Engineering
We have adopted a software engineering workflow that uses GitHub
(https://github.com/PhysiCell-Tools/PhysiCell-Studio) and takes advantage of several features it
offers: hosting and distributing software, discussing issues, submitting pull requests, developing
code in staged repositories, and automated testing.

Most of our community is already familiar with GitHub, but for those who are not, we help them
learn the basics. For anyone who wants to contribute code to the Studio, we ask that they fork the
repository into their own account, make edits, test (on at least one of the three supported
operating systems), and make pull requests to the development branch of the Studio repository.
Community discussion about bugs (and hopefully proposed solutions) or new features for the
Studio is encouraged via Slack channels and GitHub Issues.

The Studio uses Python logging to capture significant actions that occur during a modeling
session. This log file can then be shared with developers in the event of a fatal error or unusual
behavior.

For automated testing, we use pytest, a very popular tool for Python applications, and pytest-qt, a
pytest plugin for testing Python APIs to Qt applications. We have only recently begun automated
tests, but will be adding more as the Studio evolves. Not only is there a large parameter space in
a PhysiCell model, there is also a large <parameter= space (user-widget actions) that can occur in
a Studio session. Automated tests are necessary to ensure ongoing development of the software
does not introduce unwanted results.

Bundling and Distributing
The current version of the Studio does not bundle any pre-built PhysiCell executable model,
pre-built library, or C++ code in its distribution. Therefore, a user will still need to download and
build an executable model which can then be used in the Studio’s <Run= tab to run a simulation.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://github.com/PhysiCell-Tools/PhysiCell-Studio
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


In the future, we will likely provide bundled distributions of the Studio which will include both a
minimal Python distribution and a <template= PhysiCell executable model.

Since the Studio uses a Python API to Qt, Python is one dependency. Python’s standard library
provides many useful data structures and an efficient XML API module for handling much of the
functionality in the Studio. However, it will also need modules that are not in the standard
library: PyQt5 (GUI), matplotlib and numpy (2D plotting, numerical computing), scipy (reading
.mat files), and vtk (3D plotting). For PhysiCell (and Studio)-related workshops and university
courses, we typically ask users to install the free Anaconda Python distribution
(https://www.anaconda.com/download). Although it is relatively large and provides many more
modules than the Studio needs, experience has shown that users will avoid many potential
problems by using it. In addition, some of those extra Python modules may later prove to be
useful, e.g., doing data analysis on PhysiCell output results.

Community Support
The PhysiCell Studio User Guide
(github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md) should help new users get
started. Additional support is possible using Slack channels and GitHub Issues
(github.com/PhysiCell-Tools/PhysiCell-Studio/issues). An introductory video from a recent
PhysiCell workshop is at https://youtu.be/jkbPP1yDzME. More details about defining Rules
using the constrained grammar for cell behaviors can be found in that paper’s Supplemental
section[9]. We are always open to new ideas for learning how to use PhysiCell Studio and
welcome community contributions.

Interfacing to Other Tools
PhysiCell Studio will never provide everything that users need. There will always be additional
functionality that modelers want, whether it be something mundane such as creating a montage
of output images for a publication, something computationally intensive like data analysis on a
model’s parameter space exploration, or numerous other things. To help bridge the gap to other
tools, we provide functionality that transforms output data into other formats. In collaboration
with a team at the Allen Institute for Cell Science, the Studio can generate data (File → Export
→ Simularium) for their Simularium[13] viewer (simularium.allencell.org/viewer) shown in
Figure 16.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://www.anaconda.com/download
https://github.com/PhysiCell-Tools/Studio-Guide/blob/main/README.md
https://github.com/PhysiCell-Tools/PhysiCell-Studio/issues
https://youtu.be/jkbPP1yDzME
https://paperpile.com/c/itCWUL/13Hv
https://paperpile.com/c/itCWUL/dB17
https://simularium.allencell.org/viewer
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Figure 16. Studio 3D display (left) and the Simularium viewer (running in a Web browser) which
allows cell types to be hidden (right).

ParaView (paraview.org) is a very popular open source desktop tool for scientific visualization.
There is no direct interface from PhysiCell Studio to ParaView, but we provide a customized
workflow that lets ParaView render output data from a PhysiCell simulation. This workflow,
along with the necessary Python scripts and example ParaView state files are provided at
https://github.com/PhysiCell-Tools/vis3D/tree/main/ParaView. An example is shown in Figure
17.

The trade-offs of providing functionality in the Studio versus using other tools, especially for
visualization, is something we have struggled with from the beginning and we strive to maintain
a balance. But the community will need to provide feedback and contributions for additional data
format transformations for other tools.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://www.paraview.org/
https://github.com/PhysiCell-Tools/vis3D/tree/main/ParaView
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


Figure 17. ParaView rendering of data from the PhysiCell cancer-immune-sample model.

Discussion
Developing PhysiCell Studio has been a somewhat lengthy, iterative process in an academic
environment where multiple projects required our attention. Developing any graphical user
interface has unique challenges. For the Studio, it tries to 1) help a user create and maintain a
mental model of interacting objects in a multicellular system (e.g., cells with phenotypic
behaviors and signals in the microenvironment), and 2) manage user expectations of GUI actions
(e.g., clicking a button or selecting an item in a dropdown widget). Although we have had some
past experience developing GUIs for computational science[14–17], we lack formal training in
human-computer interaction (HCI) - an entire academic field. We also lacked formal user studies
during the development of PhysiCell Studio. In spite of these shortcomings, we believe the end
result is an extremely useful tool which seems to be quite popular, both with seasoned PhysiCell
modelers and with new users just learning PhysiCell.

This paper has presented the desktop tool version of PhysiCell Studio (version 2.30.5). In
addition, we provide an interactive version that runs in a Web browser at
nanohub.org/tools/pcstudio (access requires creating a free nanoHUB account). Unfortunately,
the browser version currently lags behind the desktop version, so there will be slight differences
in the GUI and the functionality. We plan to synchronize their code bases in the future. In
addition, there are interactive PhysiCell training modules that can be run in the browser[18].

Looking to the future, we are planning to add new features based on community feedback and
contributions. In terms of promoting even broader accessibility, it would be interesting to explore
the Qt speech interface (www.qt.io/blog/qt-speech-coming-to-qt-6.4) at some point.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://paperpile.com/c/itCWUL/IGwC+yiMR+nfMx+IUMI
https://nanohub.org/tools/pcstudio
https://paperpile.com/c/itCWUL/PFfj
https://www.qt.io/blog/qt-speech-coming-to-qt-6.4
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


An interesting extension to the Rules functionality (cell signal-behavior grammar)[9] would be to
provide an interface to a large language model (LLM) trained on publications that could provide
relevant parameter values.

Summary
We have presented PhysiCell Studio, an open source desktop tool that provides a graphical user
interface for building, simulating, and visualizing a PhysiCell model. The Studio has gone
through several iterations of development and benefited from user feedback at several PhysiCell
workshops and university classes. The end result is a transformative tool for developing a
multicellular model, not only for new users, but also for experienced PhysiCell modelers. The
process of designing and developing the Studio has involved both graduate and undergraduate
students, as well as several members in the larger PhysiCell community.

Funding
We thank the National Science Foundation (Awards 1642070 and 1720625), the National
Institutes of Health (U01-CA232137-01), the Breast Cancer Research Foundation, and the Jayne
Koskinas Ted Giovanis Foundation for Health and Policy. This work was also supported by the
European Commission under the PerMedCoE project [H2020-ICT-951773] and Inserm
amorçage project.

Acknowledgements
We thank the entire PhysiCell community for providing helpful feedback and contributions to the
Studio, including several undergraduate students over the past few years: Daniel Mishler, Tyler
Zhang, Eric Bower, Carlos Juarez, Jay Thilking, Nicholas Goh, Yuchen Yang, Drew Willis,
Adam Morrow, Grant Waldow, Kimberly Crèvecoeur, Dylan Taylor, Kali Konstantinopoulos,
Marshal Gress, and Eric Freeman, as well as graduate students: John Metzcar, Elmar Bucher,
Furkan Kurtoglu, Aneequa Sundus, Yafei Wang, Supriya Bidanta, and postdoc Michael Getz. We
also thank Steven Clark, Daniel Mejia, Martin Hunt, and Lynn Zentner for their support with
nanoHUB. Finally, we thank the ParaView community for their support.

Bibliography

1. Metzcar J, Wang Y, Heiland R, Macklin P. A Review of Cell-Based Computational
Modeling in Cancer Biology. JCO Clin Cancer Inform. 2019;3: 1–13.

2. Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P. PhysiCell: An
open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol.
2018;14: e1005991.

3. Wilensky U. NetLogo. 1999 [cited 1 Sep 2023]. Available:
http://ccl.northwestern.edu/netlogo

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

https://paperpile.com/c/itCWUL/13Hv
http://paperpile.com/b/itCWUL/FfDZ
http://paperpile.com/b/itCWUL/FfDZ
http://paperpile.com/b/itCWUL/lPL8
http://paperpile.com/b/itCWUL/lPL8
http://paperpile.com/b/itCWUL/lPL8
http://paperpile.com/b/itCWUL/Swha
http://ccl.northwestern.edu/netlogo
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


4. Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, et al.
Chaste: A test-driven approach to software development for biological modelling. Comput
Phys Commun. 2009;180: 2452–2471.

5. Starruß J, de Back W, Brusch L, Deutsch A. Morpheus: a user-friendly modeling
environment for multiscale and multicellular systems biology. Bioinformatics. 2014;30:
1331–1332.

6. Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA. Multi-scale
modeling of tissues using CompuCell3D. Methods Cell Biol. 2012;110: 325–366.

7. Wortel IMN, Textor J. Artistoo, a library to build, share, and explore simulations of cells
and tissues in the web browser. Elife. 2021;10: e61288.

8. Wang Y, An G, Becker A, Cockrell C, Collier N, Craig M, et al. Rapid community-driven
development of a SARS-CoV-2 tissue simulator. bioRxiv. 2020.
doi:10.1101/2020.04.02.019075

9. Jeanette A.I. Johnson, Genevieve L Stein-O’Brien, Max Booth, Randy Heiland, Furkan
Kurtoglu, Daniel Bergman, et al. Digitize your Biology! Modeling multicellular systems
through interpretable cell behavior. bioRxiv. 2023; 2023.09.17.557982.

10. Madamanchi A, Thomas M, Magana A, Heiland R, Macklin P. Supporting Computational
Apprenticeship through educational and software infrastructure. A case study in a
mathematical oncology research lab. bioRxiv. 2019. p. 835363. doi:10.1101/835363

11. Heiland R, Mishler D, Zhang T, Bower E, Macklin P. xml2jupyter: Mapping parameters
between XML and Jupyter widgets. J Open Source Softw. 2019;4. doi:10.21105/joss.01408

12. Hunter JD. Matplotlib: A 2D graphics environment. Computing in science and engineering.
2007. Available:
http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.55?crawler=true

13. Lyons B, Isaac E, Choi NH, Do TP, Domingus J, Iwasa J, et al. The Simularium Viewer: an
interactive online tool for sharing spatiotemporal biological models. Nat Methods. 2022;19:
513–515.

14. Armbruster D, Heiland R, Kostelich EJ. kltool: A tool to analyze spatiotemporal
complexity. Chaos. 1994;4: 421–424.

15. Heiland RW, Baker MP, Tafti DK. Visbench: A framework for remote data visualization and
analysis. International Conference on. 2001. Available:
https://link.springer.com/chapter/10.1007/3-540-45718-6_77

16. Moad AJ, Moad CW, Perry JM, Wampler RD, Goeken GS, Begue NJ, et al. NLOPredict:
visualization and data analysis software for nonlinear optics. J Comput Chem. 2007;28:
1996–2002.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

http://paperpile.com/b/itCWUL/EfBH
http://paperpile.com/b/itCWUL/EfBH
http://paperpile.com/b/itCWUL/EfBH
http://paperpile.com/b/itCWUL/3p6x
http://paperpile.com/b/itCWUL/3p6x
http://paperpile.com/b/itCWUL/3p6x
http://paperpile.com/b/itCWUL/6nll
http://paperpile.com/b/itCWUL/6nll
http://paperpile.com/b/itCWUL/U0fR
http://paperpile.com/b/itCWUL/U0fR
http://paperpile.com/b/itCWUL/49re
http://paperpile.com/b/itCWUL/49re
http://paperpile.com/b/itCWUL/49re
http://dx.doi.org/10.1101/2020.04.02.019075
http://paperpile.com/b/itCWUL/13Hv
http://paperpile.com/b/itCWUL/13Hv
http://paperpile.com/b/itCWUL/13Hv
http://paperpile.com/b/itCWUL/t8ta
http://paperpile.com/b/itCWUL/t8ta
http://paperpile.com/b/itCWUL/t8ta
http://dx.doi.org/10.1101/835363
http://paperpile.com/b/itCWUL/Xk7x
http://paperpile.com/b/itCWUL/Xk7x
http://dx.doi.org/10.21105/joss.01408
http://paperpile.com/b/itCWUL/6bBy
http://paperpile.com/b/itCWUL/6bBy
http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.55?crawler=true
http://paperpile.com/b/itCWUL/dB17
http://paperpile.com/b/itCWUL/dB17
http://paperpile.com/b/itCWUL/dB17
http://paperpile.com/b/itCWUL/IGwC
http://paperpile.com/b/itCWUL/IGwC
http://paperpile.com/b/itCWUL/yiMR
http://paperpile.com/b/itCWUL/yiMR
https://link.springer.com/chapter/10.1007/3-540-45718-6_77
http://paperpile.com/b/itCWUL/nfMx
http://paperpile.com/b/itCWUL/nfMx
http://paperpile.com/b/itCWUL/nfMx
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/


17. Heiland R, Shirinifard A, Swat M, Thomas GL, Sluka J, Lumsdaine A, et al. Visualizing
cells and their connectivity graphs for CompuCell3D. 2012 IEEE Symposium on Biological
Data Visualization (BioVis). 2012. pp. 85–90.

18. Sundus A, Kurtoglu F, Konstantinopoulos K, Chen M, Willis D, Heiland R, et al. PhysiCell
training apps: Cloud hosted open-source apps to learn cell-based simulation software.
bioRxiv. 2022. doi:10.1101/2022.06.24.497566

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.10.24.563727doi: bioRxiv preprint 

http://paperpile.com/b/itCWUL/IUMI
http://paperpile.com/b/itCWUL/IUMI
http://paperpile.com/b/itCWUL/IUMI
http://paperpile.com/b/itCWUL/PFfj
http://paperpile.com/b/itCWUL/PFfj
http://paperpile.com/b/itCWUL/PFfj
http://dx.doi.org/10.1101/2022.06.24.497566
https://doi.org/10.1101/2023.10.24.563727
http://creativecommons.org/licenses/by/4.0/

