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ABSTRACT

Stochastic Epigenetic Mutations (SEMs) have been proposed as novel aging
biomarkers that have the potential to capture heterogeneity in age-related DNA
methylation (DNAme) changes. SEMs are defined as outlier methylation patterns at
cytosine-guanine dinucleotide (CpG) sites, categorized as hypermethylated (hyperSEM)
or hypomethylated (hypoSEM) relative to a reference. While individual SEMs are rarely
consistent across subjects, the SEM load — the total number of SEMs — increases with
age. However, given poor technical reliability of measurement for many DNA
methylation sites, we posited that many outliers might represent technical noise. Our
study of whole blood samples from 36 individuals, each measured twice, found that
23.3% of hypoSEM and 45.6% hyperSEM are not shared between replicates. This
diminishes the reliability of SEM loads, where intraclass correlation coefficients are 0.96
for hypoSEM and 0.90 for hyperSEM. We linked SEM reliability to multiple factors,
including blood cell type composition, probe beta-value statistics, and presence of

SNPs. A machine learning approach, leveraging these factors, filtered unreliable SEMs,
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enhancing reliability in a separate dataset of technical replicates from 128 individuals.
Analysis of the Framingham Heart Study confirmed previously reported SEM
association with mortality and revealed novel connections to cardiovascular disease.
We discover that associations with aging outcomes are primarily driven by hypoSEMs at
baseline methylated probes and hyperSEMs at baseline unmethylated probes, which
are the same subsets that demonstrate highest technical reliability. These aging
associations are preserved after filtering out unreliable SEMs and are enhanced after
adjusting for blood cell composition. Finally, we utilize these insights to formulate best
practices for SEM detection and introduce a novel R package, SEMdetectR, which
utilizes parallel programming for efficient SEM detection with comprehensive options for

detection, filtering, and analysis.

INTRODUCTION

Many age-related changes are universal or occur in most individuals, but certain
pertinent changes may manifest in only a few individuals. For instance, a specific
somatic mutation might arise in a limited subset of people, even though the collective
burden of somatic mutations increases with age throughout the population [1].
Epigenetic changes are widespread in aging and disease [2], and many studies have
associated aging with shifts in DNA methylation (DNAme) at cytosine-guanine
dinucleotides (CpGs), an epigenetic alteration that modulates gene transcription [3].
Epigenetic clocks, based on DNAme, are frequently employed as aging biomarkers and
have displayed associations with a multitude of aging outcomes and risk determinants

[4,5]. Most existing studies, such as epigenome-wide association or epigenetic clock
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studies, identify CpGs that either undergo hypo- or hyper-methylation with age or those
that change in variance; detecting such changes necessitates their prevalence in a

significant fraction of the population.

Stochastic Epigenetic Mutations (SEMs) have been proposed as a complementary
DNAme-based biomarker of aging. Conceptually, a SEM is an outlier in DNAme value
at a specific genomic site when compared with all subjects in a given population or
cohort. Inherently, specific SEM sites are seldom consistent across individuals, often
being unique to one person within a cohort. Even the most recurrent SEMs manifest in
fewer than 1% of subjects [6,7]. Nonetheless, as with somatic mutations, SEM load (the
total burden of SEMs in an individual) increases with age across the population as well
as longitudinally within individuals during aging [6,8—10]. Gentilini et al. defined SEM as
extreme DNAme outliers that exceed three times the interquartile ranges (IQR) from the
first quartile (Q1-(3IQR)) or the third quartile (Q3+(3IQR)) of the cohort of interest [7].
SEM load is then typically quantified by simply counting the number of outliers observed
in an individual and presented on a logarithmic scale (i.e., logl0(SEM count)) due to the
exponential increase in SEM with age. SEM load can vary by sex, genetic ancestry, and
blood cell composition, though these do not substantially modify the effect of age
[6,8,11]. Smoking, obesity, limited education, and environmental exposures may
augment the effect of aging on SEM load [8,10,11]. Total SEM load has been
associated with future risk of cancer [9] and outcomes in Parkinson’s disease including
mortality [12], though another study found only a nominal association with mortality risk
and no cross-sectional associations with a variety of age-related diseases [8]. Though

both SEM load and epigenetic clock values increase with age, they are weakly
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correlated, and the association of SEM with various cancers remains largely unchanged
after adjusting for epigenetic clock values, suggesting they might offer complementary

information [9,13].

SEM load and individual SEMs remain relatively under-researched in aging when
compared to epigenetic clocks or individual CpGs that undergo hyper- and hypo-
methylation with age. One limiting factor is the absence of readily accessible, publicly
available code — outlined in any publication — for detecting SEMs or calculating SEM

load. This stands in contrast to epigenetic clocks for which multiple published resources

exist [14-18].

There also remain several unresolved questions surrounding the optimal definition of
SEMs and SEM load. For instance, it is uncertain whether all SEMs are best grouped
into a single metric, categorized into two categories as hypo- and hyper-methylated
outliers (hypo- and hyperSEMs respectively), or binned into more detailed SEM
subtypes. Currently, SEMs are categorized into hypo- and hyperSEMs; for example, a
longitudinal twin study indicated that hyperSEM burden has a stronger association with
B cell composition, genetic factors, and current cancer diagnosis in blood than
hypoSEM [6]. However, the potential benefits of more detailed categories, or other
variations in the definition of SEMs, remain to be seen. In particular, it is unknown if
different types of SEMs may have different associations, or if specific subtypes of SEM

are responsible for the observed associations with cancer risk or mortality.

Another concern is the technical reliability of SEM detection. Given that each SEM, by

its definition, appears in a limited number of individuals, it becomes challenging to
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ascertain if the SEM represents a genuine biological outlier or merely stems from
measurement errors. In fact, poor sample quality, as indicated by CpG detection P-
values, correlates with an increased SEM burden [6]. DNAme at specific sites is known
to exhibit substantial technical variation, which can sometimes overshadow regular
biological variations, leading to decreased test-retest reliability [19,20]. For example, up
to 77.5% of 450K probes show poor reliability (intraclass correlation coefficient ICC <
0.5), especially for low-variance CpGs [21]. Importantly, this unreliability was not
connected to the heteroscedasticity of CpG beta-values - in fact, DNAme M-values
present even lower ICC values [19,22]. When assessing SEM stability over time,
findings suggest that SEMs remain consistent in only about 70% of instances [9]. Some
of this inconsistency might arise from technical noise rather than genuine intraindividual
biological changes. SEM loads from 15 technical replicates from a single sample
correlate with each other in the range of 0.8-0.92 [10]. However, it is unknown how
technical variance in SEM load compares to biological variance across multiple

samples. Furthermore, the reliability of individual SEMs has yet to be examined.

Here, we systematically investigate the reliability of both individual SEMs and SEM
loads, as well as their associations with age, mortality, and age-related cardiovascular
phenotypes. We test the hypothesis that a substantial proportion of SEMs represent
technical noise, characterize the features that predict whether a SEM is unreliable, and
identify SEM subtypes that drive associations with mortality and cardiovascular disease.
We formalize our findings in terms of a set of best practices for SEM detection, as well

as SEMdetectR, a publicly available R package for SEM detection and characterization.
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RESULTS

We hypothesized that many SEMs could represent measurement noise rather than
genuine biological outliers, which would imply that they would not be shared between
technical replicates. To investigate the influence of probe and sample characteristics on
SEM reliability, we analyzed the publicly available GSE55763 dataset of whole blood
samples, where our analyses centered on 36 pairs of technical replicates, using the
other 2,664 samples from the dataset as a reference. The large reference dataset is
important for calling SEMs which are by definition outliers relative to a reference

distribution, and for deriving probe statistics to investigate determinants of reliability.

Assessing SEM Reliability with the Standard IQR-Based Method

As expected, SEM loads were correlated with age in the 36 pairs of replicates (log10
hypoSEM r = 0.28, p = 0.016; log10 hyperSEM r = 0.38, p = 8.3e-4) (Eigure 1a). Mean
SEM loads were approximately 705 hypoSEM and 1,118 hyperSEM, while median SEM
loads were 460 for hypoSEM and 380 for hyperSEM, reflecting the skewed distribution
and exponential accumulation of SEMs with aging. Hypo- and hyperSEM loads were

strongly correlated with each other (r = 0.88; p < 2.2e-16) (Supplementary Figure 1).

There were no statistically significant differences in total SEM loads between batches of
replicates (hypoSEMs p = 0.583; hyperSEMs p = 0.067), and SEM loads were

correlated between replicates (hypoSEM r = 0.97, hyperSEM r = 0.90) (Eigure 1Db).
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FIGURE 1. Age associations and technical reliability of SEM in whole blood.

Figure la: Scatterplot illustrating the relationship between age and hypoSEM (left) and hyperSEM (right)
loads in the GSE55763 dataset. The two batches of replicates are color-coded, with one batch
represented in yellow and the other in green. Figure 1b: Scatterplot illustrating the agreement between
hypoSEM (left) and hyperSEM (right) loads across the two batches of replicates in GSE55763 dataset.
The diagonal lines represent the ideal scenario of perfect agreement (slope = 1). Figure 1c: Boxplots
representing the proportion of shared hypoSEMs (left) and hyperSEMs (right) out of the total number of
hypo- and hyperSEMs, respectively, for each sample in the GSE55763 dataset. Different boxplots

illustrate the technical replicates, with lines connecting replicates from the same subjects.

We examined the concordance of individual SEMs between technical replicates and
found that the mean percent of shared SEM was 76% for hypoSEM and 54% for
hyperSEM, suggesting worse reliability for hyperSEM (Eigure 1c). However,
proportions of shared SEM exhibited considerable variation across subjects — spanning
roughly 36-85% for hypoSEM and 9-92% for hyperSEM — and were not significantly

different between replicate batches (hypoSEM p = 0.134; hyperSEM p = 0.209).

These results raise concerns about the reliability of individual SEMs, which could
potentially impact downstream analyses including calculation of SEM loads. Intraclass
correlation coefficient (ICC) values for SEM loads were approximately 0.96 (95% CI:
0.93 < ICC < 0.98) for hypoSEM and 0.90 (95% CI: 0.81 < ICC < 0.95) for hyperSEM.
When adjusted for age, the ICC scores remained at 0.96 (95% CI: 0.92 < ICC < 0.98)

for hypoSEM and decreased slightly to 0.88 (95% CI: 0.78 < ICC < 0.94) for hyperSEM.

Identifying Drivers of SEM Concordance
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We aimed to better understand why SEMs are inconsistently shared across replicates
and identify ways to improve SEM reliability. First, for all SEMs that were detected in at
least one replicate (for any of the 36 samples), we recorded the beta value of the
corresponding CpG in the second replicate. Using this information, we plotted the
"deltalQR" of the second replicates — representing the number of interquartile ranges
the beta value is below Q1 for hypoSEM or above Q3 for hyperSEM — and observed a
bimodal distribution (Eigure 2). In the first mode, the second replicates were either
classified as a SEM, or were directionally consistent with SEMs from corresponding first
replicates, albeit not reaching the 3 x deltalQR threshold. In contrast, the second mode
had the second replicates considerably distanced from the 3 x deltalQR mark, with
some even exceeding Q1 for hypoSEM or dropping below Q3 for hyperSEM. We noted
the boundary between these two modes was approximately at a 1.5 x deltalQR cutoff,
formally corroborated by gaussian mixture modeling analysis (cutoff 1.26 for hypoSEM,
1.49 for hyperSEM). Stemming from these observations, we classified SEMs into three
categories for further analysis:

1) shared SEMs: both replicates surpassed the 3-IQR threshold (57.9% for

hypoSEM and 55.3% for hyperSEM);

2) almost-shared SEMs: one replicate surpassed the 3-IQR threshold, and the

other surpassed the 1.5-IQR threshold (26.3% for hypoSEM and 24.5% for

hyperSEM);

3) unshared SEMs: one replicate surpassed the 3-IQR threshold, and the other

did not reach the 1.5-IQR threshold (15.7% for hypoSEM and 20.2% for

hyperSEM).
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FIGURE 2. Bimodal deltalQR distributions

Histograms illustrating the distribution of 'deltalQR' values in the GSE55763 dataset for hypoSEMs (left
panel) and hyperSEMs (right panel). For each SEM detected in at least one replicate, we plot the
deltalQR for the other technical replicate. The 'deltalQR' is calculated as the number of interquartile
ranges (IQRs) below the first quartile (Q1) for hypoSEMSs or above the third quartile (Q3) for hyperSEMs
regarding the beta value of the second technical replicate. The blue and red vertical lines denote the
original 3 x IQR threshold utilized for SEM detection in hypo- and hyperSEMSs, respectively. Black vertical
lines represent the points of intersection between the two distributions as modeled by Gaussian mixture
modeling. For clarity of presentation, outliers residing in the extended tails of these distributions are
omitted.

Next, we systematically analyzed the three SEM categories in relation to probe and
sample characteristics. Results concerning all probe and sample characteristics

investigated can be found in Supplementary Figures 2 and 3, while particularly notable

results are shown in Figure 3. We discovered significant differences in probe statistics,
such as mean, IQR, quantiles, and others, between shared and unshared SEMs

(Eigure 3 and Supplementary Figure 2). In particular, unshared SEMs had lower IQR

and standard deviation compared to shared and almost shared SEMs (p-value < 2.2e-

16 for both comparisons, for both hyper- and hypoSEMSs), consistent with previously
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reported lower reliability for CpGs with low variance [20]. In contrast, the differences
between shared and almost shared SEMs were not uniformly significant across hypo-
and hyperSEMSs; there was a difference in standard deviation for hypoSEMs and IQR
for hyperSEMs (p-value < 2.2e-16 for both). For sample characteristics, we observed
that both hypoSEM and hyperSEM were more likely to be shared between replicates in
samples estimated to have elevated levels of CD8T and B cells (p < 2.2e-16 for both)

and reduced granulocyte levels (p < 2.2e-16) (Eigure 3).
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FIGURE 3. Selected features analyzed in relation to the reliability status of SEMs

hypoSEMs illustrated in blue and hyperSEMs in red. Continuous features are displayed through violin
plots, while categorical features are displayed through stacked bar plots. For mean, IQR, and standard
deviation, units are in terms of methylation beta-values. For B cells, granulocytes, and CDS8T cells, units
are in terms of the proportion of cells (0 to 1). For SNPs at SBE and probe methylation status, y-axis
corresponds to the total counts of SEMs. Statistically significant differences between violin plots are
indicated by asterisks, with white horizontal lines representing the mean values and quartiles. For the
stacked barplots, asterisks placed atop denote statistically significant differences within hypo- or
hyperSEM groups. Significance values were calculated by the Chi-squared test for categorical variables
and the Mann-Whitney test for continuous variables, and are denoted as follows: *** for p < 2e-16 and **
for p < 3.8e-4 (Bonferroni corrected significance value).
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The presence of Single Nucleotide Polymorphisms (SNPs) overlapping with the single
base extension site (SBE), CpG, or present elsewhere in the probe was linked to an

increase in hypoSEM reliability (p < 2.2e-16 for all) (Eigure 3 and Supplementary

Figure 3). This association was weaker, albeit still statistically significant, for hyperSEM
reliability (probe: p = 1.9e-13; CpG: p < 2.2e-16; SBE: < 1.8e-10). Probes with SNPs
located at SBE had a negligible number of hyperSEMs (SBE: 1.5% of total) but a
considerable proportion of hypoSEMs (18.5%). Further investigating SNPs effects on
SEM reliability, we found that SEM-containing probes with SNPs at the SBE constituted
a minor portion of all SEM-containing probes (~3.5%), and removing them only slightly

reduced the ICC scores from 0.96 to 0.95 for hypoSEM.

Probes containing hypoSEMSs vs probes containing hyperSEMs

We observed that probe statistics not only varied based on SEM reliability but also
differed between hypo- and hyperSEMs. For instance, metrics such as mean, sum
under the curve, minimum, and quartiles were typically higher for hypoSEMs than for

hyperSEMs (Eigure 3 and Supplementary Figure 2). Drawing from these

observations, we postulated that hypo- and hyperSEMs likely arise from probes
exhibiting distinct methylation patterns. To validate this idea, we utilized the full
reference cohort to categorize all probes into three groups based on their DNAme beta
values: unmethylated, intermediate, and methylated (average means 0.08, 0.50, and
0.84 respectively). Our investigation showed that a substantial majority of hypoSEMs
(~63%) originated from methylated probes, whereas a predominant portion of

hyperSEMs (~87%) came from unmethylated probes.
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Notably, the most unreliable SEMs were hypoSEMs originating from unmethylated
probes and hyperSEMs from methylated probes (Eigure 3). This observation was
further supported by ICC scores: for hypoSEM from unmethylated probes, the score
was 0.78 (95% CI: 0.6 < ICC < 0.88), while for hyperSEMs from methylated probes, it

was 0.32 (95% CI: 0 < ICC < 0.59) (Supplementary Figure 4). Conversely, hypoSEMs

from methylated probes and hyperSEMs from unmethylated probes had much higher
ICC scores of 0.94 (95% CI: 0.88 < ICC < 0.96) and 0.9 (95% CI: 0.81 < ICC < 0.94)

respectively, closely aligning in reliability with the overall hypo- and hyperSEM loads.

Addressing SEM Reliability

The original IQR-based approach for SEM detection is designed for normally distributed
data, but DNAme beta values typically exhibit pronounced skewness in their
distributions across subjects. Initially, we hypothesized that this discrepancy between
the SEM detection method's underlying assumptions and the actual distributional
characteristics of DNAme data might be contributing to the observed reliability issues.
To investigate this, we utilized a skewness-adjusted algorithm for outlier detection, as
described by [23]). Contrary to our expectations, this approach did not improve
reliability; in fact, it decreased the percentage of shared SEM and worsened the ICC
scores (data not shown). These outcomes prompted us to experiment with machine
learning techniques to predict the reliability of SEMs identified by the original IQR-based

method.
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We trained two separate random forest (RF) classifiers: one for predicting the reliability
of hypoSEMs, and the other for hyperSEMs. Essentially, these models predicted
whether, for a given SEM, we would identify a SEM in its paired technical replicate. As
previously highlighted, no definitive cutoff existed between shared SEMs and almost-
shared SEMs in terms of the deltalQR of the second replicate, and there were only
subtle differences in terms of probe and sample characteristics. Thus, we grouped
almost-shared SEMs with shared SEMs for the ground truth of the models. It is
important to note that this does not make the SEM detection algorithm more lenient; the
models still only consider SEMs initially detected at a threshold of at least 3 x deltalQR,

but it requires the second replicates to meet a threshold of 1.5 x deltalQR.

Following hyperparameter tuning and cross-validation on the training data split, the
finalized models yielded AUC scores of approximately 0.93 for hypoSEMs and 0.95 for
hyperSEMs when applied to the test data split. As expected from the high AUC values,
our RF-based models notably increased proportions of shared SEMs by on average
approximately 8% (from 76% to 84%) for hypoSEMs (p < 2.4e-18) and 19% (from 54%
to 73%) for hyperSEMs (p < 3.3e-20) (Eigure 4a). Intriguingly, even though the models
were not explicitly trained to enhance ICC scores, they improved these metrics to 0.99
or higher for both hypoSEMs and hyperSEMs, with confidence intervals of 95% CI
0.994 < ICC < 0.998 and 95% CI 0.985 < ICC < 0.996, respectively. Notably, the ICC
scores improved across all subtypes of SEMs (e.g., hypoSEMs from methylated
probes), as shown in Figure 4b. The RF method decreased loads of SEMs per

individuals, particularly hypoSEMs in unmethylated probes (removed on average 68%)
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and hyperSEMs in methylated probes (removed on average 49%). In absolute numbers,

however, it preserved ~71,000 SEM remaining out of initial ~84,000 (combined for all

replicates) (Figure 4c).
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FIGURE 4. SEM reliability: Effect of the random forest filter in GSE55763
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Figure 4a: Boxplots depicting the proportion of shared hypoSEMs (left) and hyperSEMs (right) out of the
total number of identified hypo- and hyperSEMSs, respectively, as detected by the original IQR-based
method vs filtered by the RF-based method in the GSE55763 dataset. Different boxplots represent the
different methods used, with lines connecting the same samples analyzed by the two different methods.
The replicate batch is not shown in this representation. Figure 4b: This forest plot displays the ICC
scores for the SEM load subtypes analyzed by the original IQR-based method vs filtered by the
alternative RF-based method within the GSE55763 dataset. The hypoSEM loads are color-coded in blue,
while the hyperSEM loads are depicted in red. Horizontal bars denote the lower and upper bounds of the
ICC measurements. The label 'Total' refers to the SEM loads obtained from all probes. Labels 'unmeth,’
'intermed," and 'meth’ indicate the SEM loads originating from unmethylated, intermediate, and methylated
probes, respectively, as classified through reference dataset analysis. The tag (rf) indicates that the
SEMs were detected with the RF-based filtering, while the rest were detected using the IQR-based
method. Figure 4c: Scatterplots for the SEM subtypes demonstrating the agreement in SEM loads
between the first and second batches of replicates in the GSE55763 dataset. SEM loads detected with
the original method are illustrated in green, while those identified with the RF-based filtering are depicted

in purple.

For the hypoSEM model, the final features, ranked from most to least important
according to the mean decrease in Gini coefficient, were: probe IQR, minimum, range,
mean, and maximum statistics, deltalQR of the first replicate, probe standard deviation,
B cell, CD8T, and CDAT levels, probe genomic location, number of CpGs overlapping
with probe, probe color channel, presence of a SNP at SBE, and the methylation status
of the probe. For the hyperSEM model, the ranked features included: CD8T level, probe
range, standard deviation, skewness, Q3, and IQR statistics, B cell level, deltalQR of

the first replicate, probe kurtosis, CD4T and NK levels, regulatory features overlapping
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with probe, probe methylation status, overlap with differentially methylated regions,

DNase hypersensitive sites, and enhancers.

To validate our models, we utilized the DNA methylation dataset from the NIEHS Sister
Study (GSE174422), which consists of 128 pairs of technical duplicate blood DNA
samples from women analyzed on 450K arrays. We identified SEMs using both the
original method and our RF-based method, and then compared the results. We again
found statistically significant increases in the proportions of shared SEMs — on average
by roughly 7% (from 63% to 70%) (p < 1.9e-44) for hypoSEM and 17.8% (from 44.2% to
62%) for hyperSEM (p < 6.1e-69) (Eigure 5a). ICC scores also improved, though the
gains were primarily seen for hyperSEM: ICC for hypoSEM increased from 0.75 (95%
Cl: 0.66 < ICC < 0.81) to 0.76 (95% CI: 0.68 < ICC < 0.83), while ICC for hyperSEM
increased from 0.56 (95% CI: 0.44 < ICC < 0.67) to 0.71 (95% CI: 0.62 < ICC < 0.79)
(Eigure 5b). Similarly to GSE55763, the RF-based method removed most hypoSEM
from unmethylated probes (95% on average) and a majority of hyperSEM from
methylated probes (52% on average); the total number of SEM also decreased, more

significantly than in GSE55763 (from ~1,600,000 to ~900,000) (Figure 5c).
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FIGURE 5. SEM reliability: Effect of random forest filter in the Sister Study
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Figure 5a: Boxplots illustrating the proportion of shared hypoSEMs (left) and hyperSEMs (right) out of the
total number of identified hypo- and hyperSEMSs, respectively, as detected by the original IQR-based
method vs filtered by the RF-based method within the Sister Study. The different boxplots represent the
results obtained by the two SEM detection methods, with lines connecting the same samples analyzed by
the two methods. The replicate batch representation is omitted from this representation for clarity. Figure
5b: Forest plot of the ICC scores for SEM load subtypes within the Sister Study. The hypoSEM loads are
color-coded in blue, while the hyperSEM loads are depicted in red. Horizontal bars mark the lower and
upper bounds of the ICC measurements. The label 'Total' signifies the SEM loads derived from all probes,
while labels ‘unmeth,” 'intermed,” and 'meth' specifically denote the SEM loads originating from
unmethylated, intermediate, and methylated probes, respectively. The tag (rf) indicates that the SEMs
were detected with the RF-based filtering, while the rest were detected using the IQR-based method.
Figure 5c: Scatterplots for the SEM subtypes showcasing the agreement in SEM loads between the first
and second batches of replicates within the Sister Study. SEM loads detected with the original method

are illustrated in green, while those identified with the RF-based filtering are depicted in purple.

Impact of Reference Dataset Size on SEM Reliability

We utilized GSE55763 to assess the impact of reference dataset size on SEM reliability.
We found that ICC scores plateaued when the reference dataset reached approximately
50 samples and the proportion of shared SEMs plateaued at 150 samples

(Supplementary Figure 5).

Association between SEMs and Cardiovascular Aging OQutcomes

Lastly, we extended our analyses to the Framingham Heart Study (FHS) dataset to test
SEM associations with mortality and age-related phenotypic data. We observed the
following correlations with age: hypoSEMSs (r = 0.24; p = 1.13e-50) and hyperSEMSs (r =

0.18; p = 1.58e-28) detected with the original method; and hypoSEMs (r = 0.23; p =
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3.39e-50) and hyperSEMs (r = 0.20; p = 8.69e-37) detected with the RF method (Eigure

6a).
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FIGURE 6. SEM associations with age, mortality, and cardiovascular phenotypes
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Figure 6a: Scatterplots illustrating the association between SEM subtype loads (log10) and age within
the Framingham Heart Study (FHS) dataset. SEM loads detected by the conventional method are color-
coded in green, while those identified utilizing the RF-based filtering method are portrayed in purple.
Figure 6b: Forest plot of the Hazard Ratios (HR) of standardized SEM load subtypes in relation to
mortality within the FHS dataset adjusted for age and sex. The hypoSEM loads are represented in blue,
while the hyperSEM loads are in red. Horizontal bars indicate the 95% confidence interval for each HR.
The label 'total' refers to the SEM loads extracted from all probes, whereas labels 'unmeth,' 'intermed,’
and 'meth’ explicitly represent the SEM loads originating from unmethylated, intermediate, and methylated
probes, respectively, as categorized through the reference dataset analysis. The annotation (rf) specifies
that the SEMs were filtered using the RF-based filtering method. Figure 6c¢: Heatmap of associations
between standardized SEM load subtypes and phenotypic traits within the Framingham Heart Study
(FHS) dataset, with adjustments made for age and sex. The color corresponds to odds ratios (OR) of
respective phenotype in relationship to 1 standard deviation increase in SEM load subtypes. Associations
that did not reach statistical significance (Bonferroni corrected) are colored in gray. The label 'Total
signifies the SEM loads derived from all probes. Labels 'unmeth,’ 'intermed,"' and 'meth’ indicate the SEM
loads originating from unmethylated, intermediate, and methylated probes, respectively. The annotation
(rf) indicates that the SEMs were identified using the RF-based filtering method, contrasting the rest

which were detected utilizing the IQR-based method.

Upon examining standardized total SEM loads for potential associations with time-to-
death while controlling for age and sex, we found statistically significant associations for
both IQR (HR 1.149, CI 95% 1.023-1.290; p = 0.0187) and RF detection methods (HR
1.144, Cl 95% 1.020-1.283; p = 0.022). Next, we analyzed associations with mortality of
all six SEM subtypes and found that only three of them had statistically significant
associations with mortality; one standard deviation (sd) increase in hyperSEMs from

unmethylated probes (HR 1.165, Cl 95% 1.032-1.315; p = 0.0135), hypoSEMs from
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intermediate probes (HR 1.090, ClI 95% 1.006-1.180; p = 0.0347), and hypoSEMs from
methylated probes (HR 1.126, Cl 95% 1.010-1.256; p = 0.0331) was associated with
increased risks of mortality. The RF-based detection method maintained these
associations (Eigure 6b). Combining hypoSEMs from both intermediate and methylated
probes only marginally enhanced the associations with mortality (HR 1.129, Cl 95%
1.012-1.263; p = 0.0287). When comparing the performance of the Cox proportional
hazards models with hypoSEMs from methylated probes against hypoSEMs from both
methylated and intermediate probes, minimal differences were observed in both AIC
and BIC (AAIC = 0.228; ABIC = 0.228). Additionally, we conducted a sensitivity analysis
and determined that adjusting for inferred cell type composition strengthens the
associations with mortality for hyperSEMs from unmethylated probes (HR 1.236, CI
95% 1.097-1.391; p = 4.7e-4) and hypoSEMs from methylated probes (HR 1.172, CI
95% 1.053-1.304; p = 3.60e-3). The mortality for hypoSEMs from intermediate probes

was slightly reduced (HR 1.084, Cl 95% 0.999-1.177; p = 0.052) (Supplementary

Figure 6).

We evaluated the associations between SEM loads and available phenotypic data,
controlling for age and sex, and found multiple associations with cardiovascular
diseases including coronary heart disease and congestive heart failure (Eigure 6c¢).
These associations remained after adjusting for sex and smoking status, with
congestive heart failure exhibiting the strongest associations: a 1-SD increase in SEM
loads adjusted for age and sex had increased odds ratio for hyperSEMs from

unmethylated probes (OR 1.29; p = 1.98e-4), hypoSEMs (OR 1.30; p = 6.13e-5) and
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hyperSEMs from intermediate probes (OR 1.28; p = 2.03e-4), and for hypoSEMs from
methylated probes (OR 1.26; p = 4.97e-4). The RF-based method preserved these
associations (Eigure 6c). Finally, after adjusting for inferred cell counts, the odds ratios
increased to OR 1.33 (p = 2.81e-5) for hyperSEMs from unmethylated probes, OR 1.36
(p = 5.26e-6) for hypoSEMs and hyperSEMs (p = 6.14e-6) from intermediate probes,

and OR 1.34 (p = 1.35e-5) for hypoSEMs from methylated probes.

SEMdetectR: a new tool for SEM analysis

To meet the need for robust tools in SEM analysis, we have developed a new R
package: SEMdetectR (Eigure 7). Engineered to utilize parallel programming, this tool
facilitates expedited SEM detection using either IQR- or RF-based techniques,
bolstered by a spectrum of filtering and analytical capabilities. SEMdetectR has the
flexibility to detect SEM in all probes or any subset of probes specified by user, employ
reference methylation data derived from our whole-blood dataset investigations, or
cluster their reference DNAme data based on methylation status. Our additional
analyses revealed a significant overlap in terms of unmethylated (161,754 probes) and
methylated (187,689 probes) probes across the three datasets we investigated, and
these probes are included with the R package. By offering a standardized approach, we
anticipate that more researchers will delve into SEM studies, propelling us closer to

unraveling how epigenetics shapes aging, health, and disease.
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lllustration of a step-by-step SEMdetectR pipeline, highlighting optional actions at each step for improved
SEM analysis. Step 1: The workflow begins with the pre-processing of DNA methylation data, where
probes containing SNPs can be removed to mitigate genetic influences. Probes can then be categorized
based on their methylation levels into unmethylated, intermediate, or methylated groups. Users can
specify custom probe groupings. Step 2: SEMs are identified using the IQR-based method, which can be
applied in parallel to enhance computational efficiency. An optional filtering step can be employed,
utilizing the random forest model to refine the selection of SEMs. Step 3: Adjustments for covariates such
as blood cell counts can be incorporated to correct for their potential confounding effects on subsequent
SEM analyses.

DISCUSSION

In this study, we examined the reliability and biological relevance of stochastic
epigenetic mutations (SEMs) across multiple datasets. We describe the reliability of
both individual SEMs and SEM load, uncover novel associations with mortality and age-
associated phenotypes related to cardiovascular health, and find that specific subsets of

SEMs are both reliable and associated with aging outcomes.

The GSE55763 dataset was particularly useful for technical reliability analysis, given its
inclusion of 36 pairs of technical replicates and 2,664 samples measured once, acting
as a reference dataset for SEM detection and allowing for in-depth examination of how

various probe and sample characteristics impact SEM reliability.

While the SEM intraclass correlation coefficient values (~0.96 for hypoSEM and ~0.90
for hyperSEM) may be interpreted as markers of high reliability [24], our earlier work
suggests that similarly high ICCs for epigenetic clocks are insufficient for multiple use
cases, particularly in longitudinal or interventional contexts, and that strategies to bolster
ICCs to >0.99 are beneficial [22]. This raises questions about the adequacy of the

current SEM detection strategy and underscores the need for its refinement. More
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crucially, despite relatively high ICC scores for SEM load between technical replicates,
the low reliability at the level of individual SEMs (many unshared SEMs between
replicates) demonstrates that a significant proportion of SEMs represent technical noise,
which is particularly problematic for downstream analyses of individual SEMs. For
example, it has been suggested that the different SEM patterns between people with
the same environmental exposure can help explain divergent health outcomes resulting
from that exposure [10]. However, if many individual SEMs are noise, then this
hypothesis is much more difficult to test. This illustrates a need for development of SEM

detection strategies that can discern genuine biological signals from technical artifacts.

Our findings underscore that there is not a single overarching factor, but rather a
complex interplay of multiple determinants shaping SEM reliability, including probe and
sample characteristics such as variance and cell composition. In particular, the lower
IQR and standard deviation in unshared SEMs compared to shared SEMs aligns with
prior findings of reduced reliability for CpGs with low variance [20]. We find that
integrating these determinants into a predictive model can effectively filter out unreliable
SEMs. Our random forest model increased the proportion of shared SEM and
concurrently increased the ICC scores in both the original GSE55763 dataset as well as
the Sister Study test dataset. It is important to note that the RF-based method is
computationally more intensive than the original method. The translatability of the model
across datasets is consistent with prior findings that CpG beta-value ICCs are similar

across different technical replicate datasets [19,25].
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SEMs, especially hyperSEMs, are sensitive to variations in cell type composition,
consistent with prior observations [6]. Because a change in cell composition would be
present in both technical replicates, such SEMs are more likely to be reliable. Blood cell
composition is known to change with aging and may contribute to mortality associations
for epigenetic clocks given that adjusting for cell counts can reduce epigenetic clock
mortality associations [26]. However, we find that adjusting for cell composition can
enhance the associations between SEM load and aging outcomes. Interestingly, the
associations with mortality were independent of smoking status, which is again different
than epigenetic clocks which are known to predict mortality at least partially via smoking

[27]. These findings support examining SEM loads both before and after adjustment for

cell composition, as well as other potential confounders or mediating variables.

At the same time, the presence of SNPs, especially at the Single Base Extension site
(SBE), was specifically associated with increased hypoSEM reliability. A major concern
is that these SNP-associated SEMs may reflect genetic, rather than epigenetic,
variability, since such SNPs would be present in both technical replicates and have a
large effect on measured methylation and might have limited relevance for aging
studies. However, this is likely a minor issue, as others have reported SEM load is not
heritable and most SEMs are not shared between tissues from the same person
[6,8,10], and we found only a small proportion of SEMs are SNP-associated and

removing these probes has minimal impact on ICC scores. Regardless, our advice

leans towards omitting probes with SNPs in aging-focused analyses.
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Our results indicate that the utility of defining multiple SEM subtypes should be further
investigated. As expected, hypo- and hyper-SEM differ in reliability and associated
probe and sample characteristics, supporting the notion that they stem from distinct
underlying factors and represent separate biological phenomena. We find that
hypoSEMs predominantly come from methylated probes and hyperSEMs mainly
originate from unmethylated ones. We define six SEM subtypes, based on their
baseline methylation status: hypo- and hyperSEMs from unmethylated, intermediate,
and methylated probes respectively. HypoSEMs from unmethylated probes and
hyperSEMs from methylated ones have markedly reduced reliability as well as null
associations with all-cause mortality and cardiovascular disease, hinting that these
specific SEM subcategories might contain unwanted noise in SEM data. In_contrast,

hypoSEMs from methylated probes and hyperSEMs from unmethylated probes show

both good reliability and associations with mortality and cardiovascular disease,

indicating that future studies should pay particular attention to these SEM subtypes. It is

notable that prior studies primarily utilized total SEM load when examining risk for
mortality and age-related diseases such as cancer [8,9]. Our results further suggest that
it is important to examine individual SEM subtypes as some subsets display stronger
associations and reliability than others, while simply utilizing total SEM loads can

obscure which SEM subtypes are most important.

It should be noted that there is considerable potential to further delineate SEM subtypes
beyond the categorization based on probe methylation status. For example, SEMs have
previously been reported to be enriched in specific biological pathways or genomic

locations [9,10,13]. One could define SEM subtypes based on genomic location or
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regulatory features, which we found can vary in SEM reliability. It would be interesting to
determine if SEM subtypes based on biological pathways predict different phenotypic
consequences, or if some biological pathways are more vulnerable to unreliable SEMs.
Furthermore, future research could delve into alternative methods for computing SEM
loads, such as using factor analysis, in datasets abundant with phenotypic details
associated with aging. We anticipate that SEMdetectR will serve as a valuable asset for

such research directions.

Notably, we discover associations between SEMs and cardiovascular diseases (CVD)
including coronary heart disease and congestive heart failure. Previous research has
corroborated the idea that alterations in DNA methylation play a role in controlling the
biological mechanisms behind CVD, such as the progression of atherosclerosis, the
management of blood pressure in hypertension, and the inflammatory responses [28].
Thus, our findings contribute to the growing body of research on the influence of
epigenetics in cardiovascular health and underscores the potential for SEMs to serve as

biomarkers for cardiovascular risk assessment.

SEMs must always be defined relative to a reference population. Our analyses of the
impact of sample size on SEM reliability in GSE55763 highlight that after a specific
threshold (approximately 50 samples for ICC scores and 150 samples for the proportion
of shared SEMSs), increasing the reference dataset size does not significantly enhance

the reliability. Thus, we generally recommend at least 150 samples for a reference

dataset, with a wide age range and inclusion of both sexes. Interestingly, ICC scores in

the Sister Study were lower in general than GSE55763, and hypoSEMs in particular did
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not improve in ICC in the Sister Study with the random forest model (though the
proportion of shared hypoSEMs did). This may reflect the study's exclusively female
demography and corresponding reduced biological variation. The impact of reference

and study population characteristics should be a focus of future studies.

Our analyses, investigating technical reliability and aging associations of SEMs and
introducing a novel software tool with the potential to enable consistent interpretations
of SEM studies, advance the understanding and methodological framework for SEM
analysis. Additionally, the associations discovered between SEMs and critical health
outcomes highlight the potential utility of SEM analysis in aging research and possibly in
the broader field of epigenetics and age-related diseases. Future studies can utilize the
insights and best practices identified here to investigate SEMs in a variety of studies
concerning diverse populations, longitudinal or interventional datasets, multiple tissue

types, various diseases, or other methylation measurement platforms.

METHODS
Datasets:
GSES5763
Bisulfite-treated DNA samples from 2,664 human subjects’ peripheral blood, along with
36 technical duplicates, from the London Life Sciences Prospective Population
(LOLIPOP) study were analyzed using lllumina Infinium HumanMethylation450

BeadChip [29]. The dataset underwent quantile normalization, which, according to
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Lehne et al., demonstrated the highest consistency between technical replicates among
10 normalization techniques. Additionally, control probes were employed to mitigate
systematic technical discrepancies, such as those arising from batches and plates. The
dataset contains both males (n=27) and females (n=9) with age ranging from 37 to 74

(mean 53).

NIEHS Sister Study (GSE174422)

In the context of the existing National Institute of Environmental Health Science (NIEHS)
Sister Study, DNA from blood samples of 128 technical duplicate pairs from women
were assayed using lllumina Infinium HumanMethylation450 BeadChip [21]. Genomic
DNA was extracted from aliquots of whole blood and was randomly allocated across
both plates and arrays, ensuring duplicates of any given sample were bisulfite-
converted on separate plates and analyzed on different arrays. The age range is 36.6 to

75.1 (mean 57.6).

Framingham Heart Study

The Framingham Heart Study (FHS) dataset was previously described [25,30,31] and
encompasses 2,748 participants from the Offspring cohort who attended the eighth
examination phase (2005-2008) and 1,457 from the Third Generation group present
during the second examination cycle (2005-2008). lllumina Infinium
HumanMethylation450 BeadChip was employed to assay DNA methylation. The study
was approved by the IRB at Boston University Medical Center, and all participants

provided written informed consent at the time of each examination visit.
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SEM Detection and Analyses:

SEM detection with IQR-based method

To evaluate SEM reliability, both for individual SEMs and cumulative SEM loads, we
used the interquartile range (IQR)-based method for outlier detection, as detailed by [7].
For every locus, this method identifies hypoSEMs as DNA methylation outliers that fall 3
X IQR below the first quartile (Q1) and hyperSEMs as those lying 3 x IQR above the
third quartile (Q3). IQR was calculated based on 2,664 samples without replicates in the
case of the GSE55763 dataset; based on all technical replicates in the case of the
Sister Study dataset; and based on all samples in the case of the FHS dataset. CpGs
with IQR = 0 were removed, since SEMs are undefined for these CpGs. CpGs were

processed in parallel with foreach (version 1.5.2) and doParallel (version 1.0.17).

SEM loads

SEM loads were defined as the cumulative count of SEMs for each individual,
separated into hypoSEM and hyperSEM loads (or further subtypes based on
methylation status). We analyzed these by taking the log10 of the SEM load, consistent

with earlier aging studies [6,7].

SEM associations and statistical differences between groups

The statistical difference in SEM loads between replicates and detection methods, as
well as SEM reliability status across continuous features, were assessed with Wilcoxon
tests (two-sample for paired measurements) using R package stats (version 4.2.3).

Differences in SEM reliability status across categorical features were assessed with


https://doi.org/10.1101/2023.12.12.571149
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.12.571149; this version posted December 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Chi-squared tests using R package stats (version 4.2.3). Pearson correlations between
SEM loads and age were calculated using R package stats (version 4.2.3). The
associations between SEM loads and FHS phenotypic variables were assessed with
logistic regressions using stats (version 4.2.3), and the association with mortality with
Cox proportional hazard regression models using R package survival (version 3.5.7).
Models were standardized, meaning that they represent the effect of a 1 standard
deviation (SD) change in SEM load; for continuous phenotypes, they reflect a 1-SD
change in the phenotype. Expectations-Maximization analysis of deltalQR distributions

was performed with R mixtools package (version 2.0.0).

ICC scores
The ICC scores were computed using R package irr (version 0.84.1), employing a
single-rater, absolute-agreement, two-way random-effects model, as previously

described [25].

Visualization
Visual representations were created utilizing R packages ggplot2 (version 3.4.3),

forestplot (version 3.1.3), and ComplexHeatmap (version 2.13.0).

Probe and Sample Characterization

Probe statistics

Mean, median, quartiles, sum, standard deviation, median absolute deviation, minimum,

and maximum of probes were calculated using R package stats (version 4.2.3);
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skewness and kurtosis were calculated using R package moments (version 0.14.1).

IQR, coefficient of variation, and range were derived from these statistics.

Probe annotations

Probe annotations were retrieved using R package minfi (version 1.44.0).

Probe clustering

Probe clustering based on methylation status was done using probe summary statistics

and kmeans from R package stats (version 4.2.3).

Cell type composition inference

We utilized the method described by [32] to estimate white blood cell sub-populations.

The code was downloaded from the data repository associated with the publication.

Random Forest Training:

Feature selection

We prioritized features most strongly associated with ground truth labels (above 0.1 in
association strength) and selected only one feature from each set of associated
features. For example, "mean" was chosen over "median" from the mean/median pair,
and SNPs at SBE were preferred over SNPs at CpG sites. The strengths of
associations were assessed with cramer’'s v with confintr package (version 1.0.2)
(categorical features), point-biserial correlation (numerical vs binary features, and
numerical vs ordinal categorical after one-hot encoding) and Pearson correlation

coefficients with R package stats (version 4.2.3) (numerical features).
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Model training

We performed a random 80/20 split for training and testing data, used 5-fold cross-
validation and tuned the number of features considered in individual decision trees,
sample size, and number of trees using mir (version 2.19.1). Gini coefficients were

analyzed using randomForest (version 4.7-1.1).

CODE/DATA AVAILABILITY

The datasets comprising technical replicates utilized in this research are publicly
accessible on the NCBI Gene Expression Omnibus (GEO) under accession numbers
GSE55763 and GSE174422. However, due to the sensitive nature of the health data
contained within the Framingham Heart Study (FHS) dataset, researchers interested in
accessing this data will need to submit an application through the database of
Genotypes and Phenotypes (dbGaP) at https://dbgap.ncbi.nim.nih.gov/aa/ (dbGaP
accession number: phs000724.v7.p11). The SEMdetectR software package developed
as part of this study will be made available on GitHub upon publication. The repository
will include the source code, alongside comprehensive documentation to facilitate

utilization by other researchers in the community.
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