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Abstract  

 

Background: The lack of non-invasive methods for detection of early metastasis is a crucial 

reason for the poor prognosis of lung cancer (LC) liver metastasis (LM) patients. In this study, 

the goal was to identify circulating biomarkers based on a biomarker model for the early 

diagnosis and monitoring of patients with LCLM. 

 

Methods: An 8-gene panel identified in our previous study was validated in CTC, cfRNA and 

exosomes isolated from primary lung cancer with & without metastasis. Further multivariate 

analysis including PCA & ROC was performed to determine the sensitivity and specificity of 

the biomarker panel. Model validation cohort (n)=)79) was used to verify the stability of the 

constructed predictive model. Further, clinic-pathological factors, survival analysis and 

immune infiltration correlations were also performed.  

 

Results: In comparison to our previous tissue data, exosomes demonstrated a good 

discriminative value with an AUC of 0.7247, specificity (72.48 %) and sensitivity (96.87%) 

for the 8-gene panel. Further individual gene patterns led us to a 5- gene panel that showed an 

AUC of 0.9488 (p = <0.001) and 0.9924 (p = <0.001) respectively for tissue and exosomes. 

Additionally, on validating the model in a larger cohort a risk score was obtained (RS >0.2) for 

prediction of liver metastasis with an accuracy of 95%. Survival analysis and immune filtration 

markers suggested that four exosomal markers were independently associated with poor overall 

survival.  

 
Conclusion: We report a novel blood-based exosomal biomarker panel for early diagnosis, 

monitoring of therapeutic response, and prognostic evaluation of patients with LCLM. 

 

Keywords: Lung cancer, Liver metastasis, Exosomes, Predictive biomarkers, Liquid biopsy, 

Non-invasive, disease progression, risk score, early diagnosis, prognostic factor 
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Introduction  

Lung cancer is one of the most common tumors worldwide with high morbidity and mortality 

(1). Non-small-cell lung carcinoma (NSCLC), is the most prevalent subtype and patients with 

advanced NSCLC die within 18 months of diagnosis, with an overall five-year survival rate of 

only 15%. Lung cancer metastasis is the primary cause of death of the patients with liver being 

the most common metastatic organ for NSCLC. (2). Since there is a long incubation period 

from primary tumor to diagnosis of liver metastasis, many patients develop advanced liver 

metastasis at diagnosis (3). Moreover, these patients frequently develop metastasis to the other 

organs and lead to shorter survival and high mortality in patients with NSCLC liver metastasis. 

(4,5).  

 
Histopathological evaluation using tissue biopsy from the site of the tumor along with 

radiological investigations are currently available diagnostic methods for lung cancer liver 

metastasis which is an invasive procedure. Some of the major limitations of invasive tissue 

biopsies are inadequacy of tissue, difficulty in accessing deep sites, and potential risk for the 

patient. (6). These currently available multistep, extended and invasive procedures are not 

unsuitable as a screening tool. Therefore, it is crucial to identify non-invasive, sensitive and 

specific circulatory biomarkers that will be extremely useful for screening and early detection 

of the disease (7). One of the promising approach to identify the potential biomarkers is to 

analyse the cancer-related biomolecules in bodily fluids. In addition, the non-invasive 

procedure for collection of blood makes biomarkers ideal as a screening tool for liver 

metastasis in lung cancer patients.  

 
To identify novel metastasis-associated genes, our previous study detected differentially 

expressed profile of a multi gene panel specific for liver metastasis in primary lung tumor. The 

gene expression data acquired by real time PCR was further subjected to multivariate analysis 

like PCA and LDA which ultimately led us to the generation of a specific model (8). We found 

that out of the 5 models generated model 4 holds impressive potential for prediction of liver 

metastasis in primary lung cancer patients. Further, we also studied the individual sensitivity, 

specificity and cut-off values of each gene that were implicated in the model. 

 
In this study, we validated 8 gene panel, in CTC, cfRNA and exosomes using real time PCR in 

primary lung cancer patients with & without metastasis and healthy controls, identified in our 

previous study in the tissue samples of the same cohort. ROC curve analysis was used to 

determine the sensitivity and specificity of the shortlisted gene panel and its correlation with 

the most accurate source of liquid biopsy component for early prediction of liver metastasis. 

Further DEP expression, clinic-pathological factors, PCA analysis and survival analysis 

correlations were performed. Using this model absolute quantification of candidate markers 

was done in exosomes from blood of primary lung cancer patients (n=79) resulting in the 

identification of potential biomarker panel with high sensitivity and specificity that could 

predict liver metastasis in high risk cohort. 

 
 

Materials & Methods  

Patient Characteristics 

A total of 156 specimens from patients that passed the inclusion/exclusion criteria for the test 

and validation set were recruited in the study from December 2016 to July 2017. Peripheral 

blood (9 ml) was collected from patients with primary NSCLC with liver metastasis (n=32), 

primary NSCLC without liver metastasis (n=30) and healthy individuals (n=15) for the test 

cohort. For the validation cohort, peripheral blood (4 ml) was collected from primary NSCLC 
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patients (n=79). Patients with only liver metastasis from primary lung cancer were included in 

the metastatic cohort and for the primary cohort only those patients with NSCLC subtype were 

included. Patients with multiple metastasis, HIV/HBsAg positive other malignant tumors or 

incomplete clinical data were excluded from the study. All the patients recruited in the test and 

the validation cohort in the study provided written consents for their sample procurement and 

use of them for research purpose. 

 
Culture of peripheral blood mononuclear cells for isolation of CTCs  

Peripheral blood mononuclear cells (PBMNCs) were isolated by Ficoll-Hypaque 

density gradient centrifugation. The isolated PBMCs were cultured in RPMI growth media, 

and were incubated in a 5% CO2 incubator at 37 °C. After 24 h, the adherent cells were further 

expanded ex-vivo and observed daily for 30 days under a phase contrast microscope (Nikon 

Eclipse TS100). Adherent cells that appeared CTC-like were counted manually using a 

microscope to calculate the number of cells present in each cultured sample.  
 

Tumor Sphere formation & Cytotoxicity assay:  

Cells were plated to 6 well ultra-low attachment plates (Corning; New York, USA) at 

a density of 5x 10
3
 cells/well and further expanded with RPMI-1640 supplemented growth 

media. Wells containing spheres were counted manually under inverted phase contrast 

microscope and the percentage of cells exhibiting sphere-forming capacity was calculated by 

dividing the number of spheres by the number of cells seeded per well. For the cytotoxicity 

assay the isolated CTCs were seeded at a density of 1x10
4 

cells/well in 96-well plate and 

exposed to Cisplatin and Carboplatin drugs for 24 hours in increased concentrations ranging 

from 0.25 to 1.0 µg/ml. Further, 5 mg/ml MTT (Hi-Media, India) and 100 µl of DMSO were 

added to each well for formazon crystal formation and the cells were incubated at 37 °C. 

Absorbance was taken at 590 nm with a reference filter of 620 nm using an ELISA reader 

(Multiskan Spectrum Microplate Reader, Thermo Scientific). All data were normalized against 

DMSO blank controls.  

 

Flow cytometry 

The purity of cultured CTC subpopulation was validated by gating the sorted cells with 

conjugated primary antibodies of CD44-FITC (Stem Cell Technologies), CD24-PE, CK-FITC 

and CD45-PE (BD Biosystems, USA) using flow cytometry analysis and for characterization 

of exosomes, exosome-coated beads (Stem Cell Technologies; USA), were stained with 

primary mouse monoclonal antibodies directed against CD63, CD81 and CD9. The percentage 

of each population was calculated by acquiring the sample in FACS Canto II instrument and 

result was analyzed using FACS Diva software (BD Biosystems, USA). 

 

Exosome Isolation & Characterization  

Exosomes were isolated from 1 ml of serum using a Total Exosome Isolation Kit 

(Invitogen, Thermo Fisher Scientific Inc., USA), according to the manufacturers protocol. 

Exosomal pellets were split and resuspended (i) in 300 µl PBS for characterization, (ii) in 

500 µl PBS for RNA isolation and real time PCR and the remaining exosomes were stored at 

280 °C. The purified exosomes were fixed with 2% (w/v) para-formaldehyde (PFA) in PBS 

(pH 7.4); dropped onto a carbon-coated grid and left to dry at room temperature. Further they 

were fixed with 1% (w/v) glutaraldehyde and stained with saturated aqueous uranyl oxalate. 

Exosomes were then re-suspended in a solution of 0.4% (w/v) uranyl acetate & 1.8% (w/v) 

methylcellulose, incubated on ice, excess liquid was drained off and the grid was air dried. 

Exosomes were viewed using a Field Emission Scanning Electron microscope (JSM-7600F; 

JEOL, Tokyo, Japan) (9). Nanoparticle Tracking Analysis (NTA) was performed using a 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2023. ; https://doi.org/10.1101/2023.12.12.571044doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.12.571044
http://creativecommons.org/licenses/by-nd/4.0/


Nanosight LM10 and NTA 2.3 Software (NanoSight, Wiltshire, UK). EV samples were 

resuspended in filtered PBS. Three 60-sec videos were recorded of each sample with camera 

level and detection threshold set at 10. Temperature was monitored throughout the 

measurements. 

 

Quantitative Real Time PCR (qRT- PCR) 

Total RNA from CTCs was isolated using RNeasy kit (Qiagen 74106) following 

manufacturer's instructions whereas TRIzol reagent (Invitrogen, USA) was used for total RNA 

isolation from exosomes and cell free RNA from serum of patients and healthy individuals. 1 

µg total RNA was reverse transcribed using the cDNA archive kit (Applied Biosystems – ABI, 

USA) following manufacturer’s instructions and the resulting cDNA was used as a template 

for Real Time PCR analysis. qRT-PCR was performed using AriaMX (Agilent Technologies, 

USA) with a SYBR Green PCR Master Mix (Primer sequences are provided in Supp Table I). 

The generation of a specific PCR product was tested using the ��CT method with ³-actin as 

the endogenous control and average CT value was calculated for the quantification fold change 

analysis.  
 

Principal component analysis 

To obtain a reliable model for prediction of liver metastasis, data was analyzed statistically by 

applying Principal Component Analysis (PCA) method. Data dimensionality was reduced by 

using an orthogonal transformation to convert correlated variables into uncorrelated variables, 

which are termed principal components. PCA score was obtained using the following formulae: 

 

PCA score = C1V1 + C2V2 + C3V3 + C4V4 + ……….+ CnVn 

 

where C1, C2, C3 … Cn are coefficients of each of the variables and V1, V2, V3 … Vn are 

the values of original variables 

 

The accuracy, specificity and sensitivity of the PCA based model was securitized to check for 

the robustness of the model. For this, patient stratification process was simulated 100 times by 

resampling. The patients were divided into primary lung cancer set (30 patients, 48%) and liver 

metastatic test set (32 patients, 52%) groups. PCA was applied to the data sets to determine the 

coefficient of each variable, and a PCA score was generated for each patient. The data sets 

were then stratified into groups based on the mean value of the PCA scores. Statistical analyses 

and the PCA algorithm were performed using SPSS 20.00 software and R and a p-value of < 

0.05 was considered statistically significant. 

 

Linear discriminant analysis & receiver operating characteristics curve analysis 

Linear Discriminant Analysis (LDA) was used to determine whether mRNA expression 

patterns could accurately discriminate liver metastasis in an independent data set. The accuracy 

of the predicted model was calculated using 1000 repetitions of a random partitioning process 

to regulate the number and proportion of false discoveries (10). For diagnostic accuracy and 

discriminating metastatic tumor from primary tumor, a held-out test set from each database 

was utilized to evaluate the performance of each of the different classifiers. Receiver operator 

characteristics curves (ROC) were generated and AUCs of each classifier were calculated using 

MedCalc (Belgium, Europe). To understand the false positives and/or weaknesses of our 

classifiers, images frequently misclassified by the classifiers were also reviewed. 
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Connections between liver metastasis-associated genes, immune cell infiltration and 

immune checkpoints 

TIMER (https://cistrome.shinyapps.io/timer/) is a computational tool that aids in 

comprehensively exploring the molecular characterization of tumor immune interactions 

across diverse tumors (11). It calculates the abundances of six immune infiltrates (CD8)+)T 

cells, CD4)+)T cells, B cells, neutrophils, macrophages, and dendritic cells) based on RNA-Seq 

expression profiles data. We used TIMER to evaluate correlations between liver metastasis-

associated gene expression and six immune cells and CTLA4, CD274, PDCD1, & PDCD1LG2 

checkpoint genes. 

 

Statistical Analysis  

All experiments were reproducible and each set was repeated at least three times to 

check the reproducibility. All data were recorded as mean ± standard deviation (SD) unless 

stated otherwise. PCA and LDA were performed using SPSS 20.00 statistical software 

(Chicago, IL, USA). Kaplan Meier Survival curve analysis was performed using Graph Pad 

Prism 7.0 software (GraphPad Software Inc.). Chi Square test and Mann Whitney U test were 

performed using the SPSS 29 software (IBM, USA) for clinical correlation with differential 

gene expression data. P-value < 0.05 was considered to be statistically significant 
 

Results 

Isolation and characterization of CTCs from PBMNCs of primary and metastatic 

tumors: 

PBMCs were isolated from peripheral blood of NSCLC patients with and without liver 

metastasis and cells were expanded ex-vivo after incubation for 24 h. The cells were cultured 

for a period of 15-20 days and circulating tumor stem like cells were observed as circular cells 

with spikes on their circumference. These cells were considered to be CTCs and their 

morphology and other characteristics were examined by phase contrast microscopy. 

Furthermore, we characterized these CTCs to check the purity by analyzing the presence of 

CSC and epithelial markers like CD44, CD24, CD45 and CK using flow cytometry. Based on 

the flow cytometry analysis, we identified three distinctive sub-populations: (i) CD44+ CD24-

; (ii) CD44+ CK7+; (iii) CK7+ [Supp Fig I(A)] for primary lung cancer patients whereas the 

other hand, CTCs isolated from patients with lung cancer liver metastasis exhibited three 

distinctive subpopulations: (i) CD44+ CD24+; (ii) CD44+ CD24-; and (iii) CD24+ [Supp Fig  

I(B)]. However, absence of CD45+ cells in the sorted population confirmed the non-

lymphocytic characteristic of these cancer stem like cell population.  

 

Increased self-renewal potential and drug resistance properties of CTCs: 

Intrinsic sphere forming ability of the isolated CTCs was assessed and they 

demonstrated enhanced colony forming ability with a significant increase in the number and 

size of spheres of metastatic patients [Supp Fig I(D)] as compared to CTCs isolated from 

primary tumors [Supp Fig I(C)]. Further, on assessing the proliferation rate, CTCs isolated 

from both the primary and metastatic patients demonstrated a colony forming efficiency of 

nearly 60-70% with the colonies exponentially increasing at regular intervals, suggestive of the 

fact that both the subpopulations possess the intrinsic self-renewal potential but the metastatic 

subpopulation had a 15% higher proliferation efficiency as compared to the other counterpart 

[Supp Fig I(E) & (F)].  

 

 Drug resistance is an intrinsic property of CSC population as these slow growing cells 

tend to often escape the conventional therapeutic regimen unlike the proliferating cells. Thus, 
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we assessed the cytotoxic effect of carboplatin and cisplatin on CTCs isolated from primary 

lung cancer with and without metastasis. The CTCs from lung cancer and liver metastasis 

demonstrated 88.2% and 89.32 % viability respectively as compared to merely 36.43% 

viability of MNC cells from healthy individuals even at higher concentrations of Cisplatin (100 

µM; p-value < 0.001) Moreover, lung cancer derived CTCs showed viability of 85% and those 

of metastasis demonstrated a viability of 88% at higher concentrations of Carboplatin (100 µM; 

p-value < 0.001) as compared to the healthy MNC cells (viability 41.8%) [Supp Fig I(G) & 

(H), Supp Table I & II]. Collectively, these results are suggestive of the fact that the CTCs 

were significantly chemo-resistant and showed dose dependent drug resistance to advanced 

chemotherapeutic drugs - Cisplatin and Carboplatin.  

 

Characterization of the exosomes derived from primary lung cancer cells with and 

without liver metastasis: 

To investigate the role of exosomes in lung cancer liver metastasis, exosomes were 

isolated from the serum of lung patients with and without liver metastasis and their identity 

was confirmed by electron microscopy, flow cytometry and NTA. The vesicles isolated from 

the serum appeared as round-shaped 40 - 50 nm diameter vesicles under electron microscopy 

[Supp Fig II(A)]. We further confirmed whether these vesicles were exosomes by performing 

NTA analysis [Supp Fig II(B)]. Results of flow cytometry also showed CD63 and CD81to be 

present in exosomes derived from serum of lung cancer patients with and without liver 

metastasis which is are commonly used exosomal markers [Supp Fig II(C)]. 

 

Differential gene expression analysis in CTC, Exosomes and cfRNA: Identifying a better 

marker for liquid biopsy 

Quantitative gene expression patterns of CXCL12, CK7, CDH1, CTNNB1, HIF1A, 

MUC16, TGFBR2 and CD44v6 were analyzed from CTC, exosomes and cell free RNA of 

lung cancer patients with and without liver metastasis. CXCL12, CK7, CDH1, CTNNB1, 

TGFBR2 and CD44v6 were upregulated in CTC as well as cfRNA [Fig I(A) &(C)] whereas 

all these genes were downregulated in exosomes of primary lung cancer with and without 

metastasis [Fig I(B)]. Interestingly, it was observed that HIF1A was downregulated in primary 

lung cancer but was upregulated in liver metastasis in CTCs and exosomes [Figure I(A) & (B)]. 

Moreover, MUC16 was only expressed in CTCs derived from liver metastasis but were not 

expressed in CTCs of primary lung cancer [Fig I(A)]. In exosomes, it was seen that MUC16 

was upregulated in primary lung cancer whereas it was downregulated in liver metastasis 

[Figure I(B)]. In cfRNA the expression of all the genes were observed to be upregulated in 

both the cohorts [Figure I(C)].  

 

Generation of Candidate Biomarker Panel  

ROC analysis, was performed, using the values, to determine and confirm robustness of the 

models generated using different sample source (Exosomes, cfRNA and CTC) comprising of 

the genes (CD44v6, CXCL12, CTNNB1, CK7, HIF1A, TGFBR2, MUC16, CDH1) that were 

shortlisted for the tissue model [Fig I(D)] (8). Area under the curve (AUC) specificity and 

sensitivity are mentioned in Supp Table II. In order to determine if the multigene signature has 

any practical application, we performed ROC analysis for individual genes as seen in Supp Fig 

III and the genes with maximum significant sensitivity, specificity & AUC in exosomes, 

cfRNA and CTC were further considered for the final biomarker model. From the ROC curve 

analysis of individual genes, we further speculated that a more precise model for prediction of 

lung liver metastasis could be formed with 5 genes (CXCL12, CK7, CD44v6, HIF1A, and 

TGFBR2) algorithm as described in [Fig I(E)] and Supp Table III. Moreover, it was observed 
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that exosomal model came out as the best model and was at par with the tissue model and hence 

can be used for predicting liver metastasis non-invasively with the highest AUC of 0.975 a 

Specificity and Sensitivity of 90% and 96.87% respectively showing good discriminative 

ability between primary and metastatic tumors. CTC and cfRNA did not show significant AUC, 

sensitivity and specificity as a diagnostic model and hence cannot be used for early prediction 

of liver metastasis in lung cancer patients.  

 

PCA Analysis distinguishing between primary and metastatic carcinomas. 

The liver is one of the most frequent sites of metastasis. Distinguishing between primary and 

metastatic carcinomas is important due to differences in their management. Therefore, genes 

from FNAC samples were profiled and added to the primary lung carcinoma dataset.  The 

metastases originated from lung carcinomas. When the combined dataset was analyzed by 

PCA, primary and metastatic adenocarcinomas were clearly distinct in the tissue and the 

exosome cohorts [Fig II(C) & (D)]. The small sample size for metastatic adenocarcinomas 

precluded us from performing class prediction analysis after training-to-test set allocation. 

Instead, we performed cross-validation analysis using all samples as a training set. The 

permutation p-values for the misclassification rate (at feature selection p<1026) were CCP: 0.02, 

LDA: 0.01, 1-NN: <0.01, 3-NN: 0.01, NC: 0.01 and SVM: <0.01. In primary vs. metastatic 

carcinomas, CXCL12, CD44v6, CK7, HIF1A and TGFBR2 were differentially expressed 

at p<10
26; the level of expression of all the above-mentioned genes from exosomes of 

metastatic carcinoma were downregulated as compared to tissue samples where CD44v6 was 

upregulated and the other genes had a downregulated expression.  

Risk Score equation for lung cancer liver metastasis 

(0.713*0.47) +(0.570*0.340) +(0.632*0.346) +(0.774*10.305) +(0.588*0.468) = 8.689686 

Risk Score equation for primary lung tumor 

(-0.711*0.076) +(0.927*0.043) +(0.908*0.035) +(0.302*0.019) +(0.791*0.166) = 0.154649 

When we further performed the ROC for the model we had got a cut off value of >0.2 for 

predicting metastasis (mentioned in Supp Table III). Our results comply with the associated 

criteria and thus from the above equation we can say that these markers together can be used 

for predicting liver metastasis in lung cancer patients. Moreover, from the above equation we 

observed that the metastasis patients have an average value of 8.689686 which is higher than 

the cut off value whereas for the primary patients the value obtained was 0.154649 which is 

lower than the cut off value for prediction. The combination variables had the best overall 

accuracy, resulting in an AUC of 0.80 (95% CI = 0.74 to 0.86). Next, ideal cutoff points were 

assessed as maximum sum of sensitivity and specificity. This revealed both a sensitivity and a 

specificity of 98.2% and 95.29% respectively and the AUC of 0.992 (95% CI = 0.968 to 0.996).  

Gene Expression and Clinical/Pathological Correlation in metastatic tissue and exosome 

cohorts 

We further analysed the correlation between CXCL12, CD44v6, HIF1A, TGFBR2 and 

KRT7 expression in metastatic tumor tissues & exosomes with sex, age, habit, Tumor 

Differentiation grade, TNM stage, EGFR mutation status, AE1, Chromogranin, CDX2, CEA, 

CK20, TTF-1 & CK7. Results showed the correlation between CXCL12 and differentiation 

grade, CEA and TTF-1 protein expression, CD44v6 was associated with tumor stage, 
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chromogranin expression whereas HIF1A and KRT7 were significantly associated with CEA 

protein expression in the metastatic tissues. On the other hand, in the exosome cohort it was 

observed that CD44v6 was associated with stage, Chromogranin, CK20 & TTF-1 protein 

expression, CXCL12 was significantly correlated to EGFR mutations, TGFBR2 was 

significantly associated with AE1 protein expression and HIF1A with CEA protein expression 

(p value < 0.05) (Table I & II).  

 

Clinical Validation, Risk Stratification and Heatmap generation  

The five-marker signature was tested in the exosomes isolated from the blood of patients in the 

validation set (n= 79). The score plot demonstrated that patients at high-risk had poorer 

outcomes and developed liver metastasis as compared to patients at low-risk. Figure shows the 

distribution of the Risk Score, and heatmap of the 5-gene signature in the validation set [Fig 

III (A) & (B)]. It was observed that out of 79 patients 44 patients had a high risk for developing 

liver metastasis as compared to the other 35 patients. In the high-risk cohort, it was observed 

that out of 44 patients 39 developed liver metastases, 3 patients developed multiple metastasis 

(brain, bone & liver), whereas 2 patients did not develop any distant metastasis. In the other 35 

patients 9 patients could not be evaluated at follow up as there was no data available whereas 

the other 26 did not develop any distant metastasis. The survival prognosis was significantly 

worse for the high-risk group as compared to the low risk cohort [Fig III]. These results 

demonstrate that the algorithm developed could accurately predict liver metastasis in 42 out of 

44 patients (95% accuracy) with high-risk score based on the equation derived.  

 

Clinical relevance and Kaplan–Meier survival analyses of the metastasis associated 

genes in tissue and exosome cohorts 

To further demonstrate the clinical significance of the 5-gene signature in patients with lung 

cancer liver metastasis, the association between gene expressions and various clinico-

pathological variables was investigated by real-time quantitative PCR in 32 lung cancer liver 

metastasis patients. We found that in the tissue cohort CXCL12 expression was strongly 

correlated with differentiation, CEA & TTF-1 protein expression, CD44v6 was associated with 

tumor stage and chromogranin protein expression and HIF1A & KRT7 showed positive 

correlation with CEA expression alone (Table I). In the exosome cohort CXCL12 expression 

was strongly correlated with EGFR status, CD44v6 was associated with tumor stage, TTF-1 

expression & chromogranin protein expression and HIF1A & TGFBR2 showed positive 

correlation with CEA expression & CK20 expression (Table II). The Kaplan–Meier survival 

analyses of the metastasis associated genes in lung cancer patients with liver metastasis was 

evaluated. Among all the patients, low expression of KRT7 (P = 0.0079) & TGFBR2 (P = 

0.0075) exhibited significantly worse Overall Survival (OS) compared to high expression in 

tissue cohort [Fig II (A)]. Contradictorily it was observed that low expression of KRT7 (P = 

0.0009), TGFBR2 (P = 0.024), & HIF1A (P = 0.0246) and high expression of CD44v6 (P = 

0.0326) was associated with worse OS in the exosome cohort [Fig II(B)].  

 

Association of marker panel genes to immune cell infiltration in LCLM 

To ascertain if correlations existed between tumor infiltrating immune cells and metastasis-

associated gene levels, we examined associations using TIMER. KRT7 expression was 

positively correlated with infiltrating CD8)+)T cells (P)=)0.00923), B cells (P)=)6.50e-10), and 

myeloid dendritic cells (P)=)0.0048). Similarly, HIF1A was also positively correlated with 

infiltrating B cell (P = 0.03), CD8)+)T cells (P)=)8.14e-08), macrophages (P)=)7.32e-07), 

neutrophil (P)=)3.66e-18), and myeloid dendritic cells (P)=)4.24e-09). Moreover, CD44, 

CXCL12 and TGFBR2 were positively correlated with all tumor infiltrating immune cells [Fig 

IV]. As current immunotherapy strategies rely on immunological checkpoint inhibitors (12, 
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13) we used TIMER to investigate co-expression relationship of all 5 genes with immune 

checkpoint-related genes. CD44, CXCL12 and HIF1A displayed strong co-expression 

relationships with CD274, CTLA4, PDCD1, and PDCD1LG2, whereas KRT7 had co-

expression relationships with CTLA4, & PDCD1LG2 and TGFBR2 has co-expression with 

CTLA4, CD274 and PDCD1LG2 [Fig V].  

 

Discussion  

Non-small cell carcinoma (NSCLC) is one of the major causes of cancer death globally. 

Liver metastasis is one of the most critical prognostic factor for NSCLC (14). Early detection 

of heterochronous lung cancer liver metastasis, may provide useful information for designing 

treatment strategy to improve patient survival. Most patients with early lung cancer have a 70% 

survival rate after appropriate surgical resections, yet many patients already develop distant 

metastasis, which is difficult to detected solely by imaging methods (15). Moreover, patients 

with poor tumor differentiation and higher TNM stage develop distant metastasis, and their 

average survival period is 4 months (16). However, TNM staging is unable to facilitate accurate 

prognosis and hence it becomes difficult to determine treatment. It has been recommended that 

the traditional TNM staging should include number of involved metastatic sites, number of 

metastatic foci per involved site and the diameter of each metastatic focus. This will help in 

prediction of metastasis for more accurate tumor staging, which could improve treatment 

efficacy and increase survival rates (17).  

 

Presently, serum biomarkers including sCEA, sCA125, sCA199 and sNSE have been widely 

used in the diagnosis and monitoring the progression of lung cancer liver metastasis (18). 

However, the sensitivity of CEA and CA199 have always been lower compared to that of 

sCA125 and NSE. Unfortunately, the results of predictive ability of these markers or in 

combination with other indices are greatly discrepant (19, 20). Therefore, identification of non-

invasive biomarkers for early diagnosis of NSCLC LM and dynamic monitoring of disease 

status is a key research imperative. There is a growing consensus that biomarker panels have 

higher specificity and sensitivity than single biomarkers and may be more effective in detecting 

cancer (20, 21). Herein, we sought to discover the unique patterns of circulating markers in 

NSCLC patients with LM, and to identify biomarkers with sufficient sensitivity and specificity 

for use as a supplement or substitute for invasive biopsy in clinical practice. In the present 

study, exosomal CXCL12, TFBR2, CD44v6, HIF1A and KRT7 were identified as novel 

diagnostic biomarkers for NSCLC LM. Moreover, the combination of this marker panel may 

be a sensitive biomarker for follow-up monitoring of therapeutic response, as well as a 

prognostic marker in patients with LM. 

 
In this study, we used a previously established multi-gene panel for generating a model specific 

for prediction of liver metastasis. We generated the model using PCA and LDA and further 

calculated the accuracy of the model generated by ROC curve analysis that showed accuracy 

greater than 90%. Additionally, the Kaplan Meier survival data also showed a significance 

(p<0.0001) amongst the gene expression patterns of the different genes and their association 

with overall survival (OS) in metastatic patients. Moreover, the developed equation with the 

co-efficient and the risk score aided in predicting metastasis in the primary lung cancer 

validation cohort with an accuracy of 92%. Furthermore, there was a significant association 

between the gene panel expression and the tumor infiltrating markers signifying the important 

role of these biomarkers in the development and diagnosis of liver metastasis. Thus, the five-

gene panel (CXCL12, KRT7, CD44v6, TGFBR2 and HIF1A) can be a highly significant 

predictor of liver metastasis outcome independent of the standard prognostic criteria. 
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Additionally, the ability of this panel to accurately predict recurrence in the liver independent 

of stage of the primary tumor is likely to be a useful enhancement to routine staging.  

 

The biomarker panel identified in this study are not conventional tumor-derived cancer 

biomarkers but their combination generating a cut off score that aids in early detection of liver 

metastasis. This panel shows better diagnostic accuracy in comparison to the individual 

markers. Stromal cell-derived factor 1 (SDF-1) also known as CXCL12 is a crucial chemotactic 

factor that stimulates proliferation, adhesion, dissociation, migration, survival of tumor cells 

and the formation of tumor- associated vessels and invasion in a wide variety of tumor cells, 

especially reported in liver metastasis (22). Furthermore, the CXCL12/CXCR4 has been 

recognized as a prognostic marker in different cancers and preclinical models; signifying that 

metastasis is mediated by CXCR4 activation and migration of tumor cells towards CXCL12 

expressing organs. Moreover, KRT7 is a membrane-cytoskeletal linker which contributes to 

regulation of cell adhesion and overexpression is associated with cellular transformation. KRT7 

plays an important role in preserving tissue architecture, tumor progression, invasion, and 

metastasis. Cytoskeletal component levels, such as the degree of keratinization, have been 

reported to be valuable in identifying patients at risk for developing regional metastases (23). 

CD44 transmembrane glycoproteins are cell adhesion molecules that have been associated with 

aggressiveness and metastasis. Through HIF-1/2³, hypoxia transcriptionally controls a host of 

factors that contribute to increased resistance to radiation and chemotherapy, and to the 

emergence of a more aggressive phenotype by regulating CD44v6 in metastasis (24-27) The 

functional effects of the upregulation of CD44v6 and its variant isoforms under hypoxic 

conditions should be considered, since cell signaling events that promote anchorage-

independent tumor cell growth, survival, migration and metastasis occur through the binding 

of hyaluronan with CD44 (28). Upregulation of both CD44 and hyaluronan under hypoxic 

conditions most likely amplify the signaling events and lead to tumor progression (29). 

Hypoxia Inducing Factor 1³ (HIF1A) plays an important role in the formation of liver 

metastasis. Further studies have reported that HIF1A overexpression enhances ZEB1 trans-

activity by binding to its promoter leading to a loss in E-cadherin causing increased invasion, 

migration and tumor progression (30). Lastly, TGFB signaling is also suggested to be involved 

in the malignant progression of tumors and can induce epithelial–mesenchymal transition and 

promote tumor cell invasion, and may also have angiogenic and immunosuppressive effects on 

the tumor microenvironment, all of which promote metastasis.8 It has been observed that 

reduced TGFBR2 expression significantly is correlated with the aggressive features in 

Hepatocellular carcinomas as well as other tumors. Morover, TGFBR2 has also been reported 

in liver metastasis arising from colorectal tumors (31). Additionally, all these markers have an 

important role in liver metastasis and hence the generated model will assist in the early 

diagnosis of liver metastasis.  

 

Although combination of exosomal serum levels of CD44v6, HIF1A, TGFBR2, KRT7 and 

CXCL12 seem to be promising biomarkers and may guide in the development of novel targeted 

drugs, some limitations of our study should be considered while interpreting the results. For 

example, there might be some inherent biases since clinical parameters are variable between 

institutions and individual clinicians. Therefore, a well-designed and large-scale multicenter 

follow-up cohort study is warranted to provide more robust evidence. 
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Conclusion  

In summary, using a multiplexed, molecularly driven approach, we have identified a panel 

comprising CXCL12, KRT7, CD44v6, TGFBR2 and HIF1A that can predict recurrence in the 

liver independent of conventional prognostic criteria and identify patients with lung cancer 

who will develop liver metastasis despite undergoing definitive surgery and/or treatment. 

Increasing numbers of alterations in these genes predict poorer prognosis. As an outcome of 

this study, we report a sensitive biomarker panel which can be developed into a multi-

parameter rapid testing kit to explore its potential in clinical settings. However, the study being 

a pilot study in nature, the outcome needs to be evaluated in a larger patient population. For 

future directions, cross-validation of this prediction model in terms of accuracy, precision, 

sensitivity, specificity and positive and negative predictive values using a separate large cohort 

of lung cancer liver metastasis cases, disease controls and healthy controls is needed so that 

the potential value of this prediction model as a biomarker panel in the clinical setting can be 

explored and a rapid detection kit can be developed for the model to facilitate population 

screening. 

 

Data Availability  

All data generated or analysed during this study are included in this article and its 

supplementary material files. Further inquiries can be directed to the corresponding author 
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Table I: Correlation between tissue gene panel expression levels and clinical characteristics 
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Table II: Correlation between exosome gene panel expression levels and clinical characteristics 
 

Sr.  n  CXCL12 p  TGFBR2 p CD44v6 p HIF1A p KRT7  p 

Sr. 
No 

 n 
values 
(%) 

 CXCL12 
(Mean 
rank 
values) 

p  TGFBR2 p CD44v6 p HIF1A p KRT7 p 

1 Age 33  0.417  0.857  0.259  0.787  0.1074 

 >=59  18 15.72  16.69  15.25  16.56  14.5  

 <59  15 18.53  17.37  19.1  17.53  20  

2 Habit    0.096  0.689  0.253  0.0818  0.624 

 Smoking  23 18.73  17.44  18.3  15.04  16.43  

 Non-
smoking  

10 12.39  15.83  14  21.5  18.3  

3 Differentiation   0.048  0.685  0.671  0.896  0.659 

 poorly 
diff 

12 12.58  16.58  16  16.67  15.91  

 diff 
unknown  

21 19.52  17.24  17.57  17.19  17.55  

4 Stage   0.681  0.96  0.008  0.857  0.303 

 III 15 17.88  17.14  21.8  16.58  14.81  

 IV 18 16.42  16.89  13  17.27  18.42  

5 EGFR Status   0.275  0.322  0.427  0.645  1 

 wildtype 12 19.64  14.59  15.21  15.86  17.05  

 mutation  21 15.68  18.2  18.02  17.57  16.98  

6 AE1   0.417  0.303  0.899  0.528  0.496 

 Positive  13 15.27  19.19  17.31  18.35  18.46  

 Negative  20 18.12  15.58  16.8  16.12  16.05  

7 Chromogranin  0.818  0.896  0.043  0.802  0.603 

 Positive  11 16.56  18.28  13.45  17.47  17.94  

 Negative  22 17.41  17.76  20.77  16.56  16.12  

8 CEA   0.031  0.96  0.735  0.0093  0.0423 

 Positive  15 21  16.87  17.63  21.83  12.64  

 Negative  18 13.67  17.11  16.47  12.97  19.5  

9 CK20   0.541  0.638  0.696  0.1556  0.483 

 Positive  6 14.75  18.75  15.75  22.17  19.58  

 Negative  27 17.5  16.61  17.4  15.85  16.43  

10 CK7   0.173  1  0.643  0.757  0.152 

 Positive  28 17.98  17.02  16.64  17.09  18.04  

 Negative  5 11.5  16.9  19  19.9  11.2  

11 CDX2   0.218  0.794  0.899  0.332  0.238 

 Positive  12 14.62  16.38  17.31  19.21  19.67  

 Negative  21 19.02  17.36  16.8  15.74  15.48  

12 TTF-1   0.033  0.802  0.708  0.322  0.158 

 Positive  15 20.97  17.5  16.3  15.13  14.37  

 Negative  18 13.69  16.58  17.58  18.56  19.19  
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No value
s (%) 

(Mean 
rank 
values) 

1 Age 34  0.794  0.417  0.851  0.849  0.7188 

 >=59  18 17.94  16.17  17.19  17.17  18.11  

 <59  16 17  19  17.84  17.88  16.81  

2 Habit    0.234  0.865  0.828  0.378  0.603 

 Smoking  23 18.35  17.72  17.24  18.57  18.13  

 Non-
smoking  

11 13.9  17.05  18.05  15.27  16.18  

3 Differentiation   0.535  0.183  0.944  0.617  0.872 

 poorly 
diff 

13 18.42  14.58  17.35  18.62  17.88  

 diff 
unknown  

21 16.19  19.31  17.6  16.81  17.26  

4 Stage   0.96  0.096  0.03  0.275  0.928 

 III 16 17.13  13.5  19.88  14.69  16.79  

 IV 18 16.89  19.27  14.39  18.5  17.16  

5 EGFR Status   0.043  0.141  0.606  0.214  0.936 

 wildtype 12 21.64  13.45  16.25  20  17.23  

 mutation  22 14.68  18.77  18.18  15.5  16.89  

6 AE1   0.984  0.043  0.274  0.368  0.327 

 Positive  14 17.08  12.92  19.75  18.92  14.92  

 Negative  20 16.95  19.65  15.93  15.75  18.35  

7 Chromogranin  0.624  0.447  0.024  0.322  0.368 

 Positive  11 16.12  18.34  20.59  15.25  15.41  

 Negative  23 17.82  15.7  14.02  18.65  18.5  

8 CEA   0.092  0.207  0.443  0.0009  0.303 

 Positive  16 13.87  19.81  18.94  23.5  18.93  

 Negative  18 19.61  15.44  16.22  12.17  15.39  

9 CK20   0.378  0.013  0.413  0.037  0.748 

 Positive  6 14.17  10.83  14.88  24.33  16.25  

 Negative  28 18.21  19.71  18.31  16.04  17.77  

10 CK7   0.352  0.118  0.644  0.126  0.596 

 Positive  28 16.32  18.12  17.13  15.89  16.61  

 Negative  6 20.8  10.7  19.25  23.2  19.2  

11 CDX2   0.727  0.293  0.691  0.1443  0.373 

 Positive  12 18.33  16.14  16.64  20.92  15.96  

 Negative  22 17.05  20  18.1  15.64  19.2  

12 TTF-1   0.0929  0.667  0.015  0.126  0.378 

 Positive  15 13.87  18.37  14.16  20.47  15.77  

 Negative  19 20.61  16.82  20.58  15.16  18.87  
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