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GRAPHICAL ABSTRACT 17 

  18 

ABSTRACT  19 

i-Motifs (iMs), are secondary structures formed in cytosine-rich DNA sequences and are 20 

involved in multiple functions in the genome. Although putative iM forming sequences are 21 
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widely distributed in the human genome, the folding status and strength of putative iMs vary 22 

dramatically. Much previous research on iM has focused on assessing the iM folding properties 23 

using biophysical experiments. However, there are no dedicated computational tools for 24 

predicting the folding status and strength of iM structures. Here, we introduce a machine 25 

learning pipeline, iM-Seeker, to predict both folding status and structural stability of DNA iMs. 26 

The programme iM-Seeker incorporates a Balanced Random Forest classifier trained on 27 

genome-wide iMab antibody-based CUT&Tag sequencing data to predict the folding status 28 

and an Extreme Gradient Boosting regressor to estimate the folding strength according to 29 

both literature biophysical data and our in-house biophysical experiments. iM-Seeker predicts 30 

DNA iM folding status with a classification accuracy of 81% and estimates the folding strength 31 

with coefficient of determination (R2) of 0.642 on the test set. Model interpretation confirms 32 

that the nucleotide composition of the C-rich sequence significantly affects iM stability, with a 33 

positive correlation with sequences containing cytosine and thymine and a negative 34 

correlation with guanine and adenine. 35 

 36 

INTRODUCTION 37 

Nucleotides are the basic units that form DNA and RNA, two key molecules in the central 38 

dogma. DNA encodes genetic information, which is transcribed to mRNA and then translated 39 

to protein. In addition to this transfer of information, DNA and RNA can form complex 40 

structures, which can play crucial functional roles in organisms. Besides the canonical Watson-41 

Crick double-helical B-form structure, DNA can form non-canonical secondary structures such 42 

as G-quadruplexes (G4s) and i-Motifs (iMs). G4s are four-stranded structures formed from G-43 

rich sequences and are stabilised by Hoogsteen hydrogen bonding between guanines (1). iMs 44 

are also four-stranded structures, but formed from cytosine C-rich regions that are stabilised 45 

by hemi-protonated C-C base pairs (C+:C) (2,3). Complementary G-rich and C-rich sequences 46 

can form G4s and iMs interdependently during distinct cellular processes (4). As a non-47 

canonical structure, iMs are indicated to play an important role in the genome. There are an 48 

increasing number of in vitro and in celluo studies that report evidence that iMs could fold in 49 

promotor region of certain genes, telomeres and untranslated regions. They have also been 50 

implicated as a regulatory element associated with the cell cycle, transcription, chromatin 51 

remodelling, as well as transposable element dynamics (5-7).  52 
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Commonly, computational analysis of putative iMs is limited to indirect identification by 53 

searching for potential complementary G4 sequences in the genome (8). Plenty of G4 54 

prediction tools have been developed previously, and these can generally be divided into two 55 

categories based on whether or not the models utilised experimentally-derived G4-specific 56 

data. Classical computational tools which do not use G4-specific data, are typically constructed 57 

from string-matching models based on a specific sequence pattern. Others use a designed 58 

scoring system according to pre-defined rules. For example, platforms like Quadparser (9), 59 

Quadruplexes (10), and AllQuads (11), used algorithms like regular expression to search 60 

G4 forming sequences, whilst QGRS Mapper (12), G4P (13), and G4hunter (14), use scoring 61 

models that can estimate the probability or strength of putative G4s (15). These models 62 

have potential to be used in iM-forming sequences searching, because the putative iMs have 63 

in principle similar sequence patterns and some of the rules will be transferrable to both 64 

structures. For example, enrichment of G/C in a C/G-rich sequence disfavours both G4 and iMs. 65 

In contrast, there are also platforms guided by G4-specific data (e.g., biophysical properties, 66 

G4 ChIP-seq, G4 CUT&Tag, and G4-seq) that can capture additional G4-specific features to 67 

improve the G4 prediction performance (16). Software like PQSfinder (17), G4boost (18), 68 

Quadron (19), DeepG4 (20), and G4-folding energy estimation module integrated in RNAFold 69 

(21) use data from G4-specific experiments to increase the accuracy of predictions. Therefore, 70 

the application of these models on iM identification is limited. Out of the existing searching 71 

platforms, G4-Hunter is the easiest to use for searching for iMs as it was designed to take into 72 

account C with negative values both to disfavour regions rich in alternative G/C and to score 73 

both strand of a DNA duplex simultaneously. C-richness and C-skew is obviously important 74 

for iM formation (14). Besides, G4-iM Grinder can also be used to predict and evaluate G4 and 75 

iM forming sequences (22). Typically, individual C-rich sequences are biophysically assed for 76 

their capability to form iMs. UV spectroscopy is typically used to determine the thermodynamic 77 

properties such as melting (TM) and annealing (TA) temperatures (23). Furthermore, thermal 78 

difference spectra (TDS) are typically generated, using the difference in absorbance spectra 79 

between folded and unfolded DNA, determining a signature to identify the formed secondary 80 

DNA structure (24). UV spectroscopy is often accompanied with circular dichroism (CD) 81 

spectroscopy to conform the formation of i-motif structure. The transitional pH (pHT) is an 82 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.12.11.571121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.11.571121
http://creativecommons.org/licenses/by-nc-nd/4.0/


important measure of the stability of iM structures, determined by assessing the formation of 83 

iM across a pH-range (8,25-27).  84 

 A systematic prediction tool to identify DNA iM folding status and their potential 85 

stability is lacking.  Recently, the landscape of iM forming sequences in the whole human 86 

genome was determined via the novel CUT&Tag sequencing using anti-iM iMab antibodies on 87 

living human cells (7). Here we introduce, iM-Seeker, a novel computational pipeline using the 88 

genome-wide iM profile (7), iM-stability data from the literature, and our in-house biophysical 89 

analysis to predict iM structure formation and stability. iM-Seeker utilised a newly-designed 90 

graph-based algorithm to search for putative iM forming sequences within an entered DNA 91 

sequence. The Balanced Random Forest script is trained on the iMs identified in the human 92 

genome derived from iMab-based CUT&Tag sequencing data (7) and was further developed 93 

to predict iM structure folding status within DNA sequences. iM-Seeker also incorporates the 94 

Extreme Gradient Boosting (XGBoost) regressor to predict the structure stability, by cross 95 

referencing iM forming DNA sequences to their corresponding pHT values. Furthermore, this 96 

computational model has shed new insight into the importance of nucleotide composition in 97 

iM stability. A positive correlation was observed for sequences containing cytosine and 98 

thymine whilst sequences rich in guanine and adenine were found to have a negative 99 

correlation with iM stability. Alongside nucleotide composition, long C-tract lengths 100 

accompanied with short loop lengths contribute towards high stability of iM structure.  101 

 102 

MATERIAL AND METHODS 103 

Data collection 104 

We collected the published CUT&Tag sequencing data in the human genome (7). The data was 105 

downloaded from the NCBI GEO database (accession number GSE220882). The BigWig format 106 

data included iM forming sequences from both 93T449 (WDLPS) cell line and human 107 

embryonic kidney (HEK293T) cell line with three biological replicates for each cell line. The 108 

focus was concentrated on HEK293T cell data which was presented with more high-confident 109 

iM regions than WDLPS cells (7). The downloaded BigWig files were converted to bedGraph 110 

files and iM-peak region were cumulated with SEACR v1.3 set to “0.01 non stringent” 111 
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parameters (7,28). The intersected iM-peak regions among three biological replicates were 112 

defined as the final high-confident iM-peak regions. Literature-derived data of i-Motif forming 113 

sequences and their corresponding pHT values were collected (Supplementary Table S1).  114 

 115 

Graph-based putative i-motif searching 116 

Putative i-Motifs can be identified based on their sequence pattern (C≥3N1–12)3C≥3 where C 117 

represents cytosine and N represent any nucleotide (29,30). The classic approach to identify 118 

potential putative iM-forming sequences is to search complementary sequences of G4-119 

forming sequences based on sequence pattern matching. This assumption and current 120 

approaches limit the identification of iMs with their different variations in C:C(+) formations 121 

and topologies compared to G4s (29,30). To overcome this limitation, we designed a general 122 

pattern for iM formation searching using directed graph traversal process. For one sequence, 123 

the C-tracts can be regarded as nodes, and the loops can be defined as edges. All possible C-124 

tracts (C-tract length ≥3) are identified as nodes in the first phase, and if the distance between 125 

two nodes (loop length) is between one and twelve nucleotides, a directed edge is added 126 

between the two nodes. After constructing the directed graph, all possible iM formations and 127 

conformations are identified via the traversal of the directed graph from every node. All 128 

possible putative iMs are represented with the sub-population containing the first four nodes 129 

and three edges of the traversing paths with at least four nodes. To choose the representative 130 

iM structures from all possible iM structures, four strategies were introduced (greedy non-131 

overlapping, greedy overlapping, non-greedy non-overlapping, and non-greedy overlapping) 132 

maintaining the nomenclature derived from QuadBase2 (31). Overlapping strategy selects an 133 

iM representative structure for each iM starting coordinate while the non-overlapping function 134 

has no coinciding iM representatives. The greedy strategy maximises the loop length of iM 135 

representatives with longest C-tract. For non-greedy strategies, the iM with the most extended 136 

C-tract length and the shortest loop length can be selected. One representative iM forming 137 

sequence may have many different iM conformations although they share the same sequence 138 

content. Two representative iM formations are chosen for according to their stability: (A) the 139 

structure with minimum standard deviation of loop lengths; (B) the structure with minimum 140 

length of the two side loops. We called the initial computational pipeline Putative-iM-Searcher 141 

(Figure 1A).  142 
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 143 

Dataset construction and feature selection for machine learning 144 

We employed a Putative-iM-Searcher in high-confident iM-peak regions and interval regions 145 

in both Watson and Crick strands in the human reference genome (GRCh38). Putative iMs in 146 

high confident iM-peak regions were defined as folded iMs, and unfolded C-rich sequences in 147 

interval regions. We used a non-overlapping strategy to avoid bias in the performance 148 

estimation of the classification model. Four classification datasets were constructed: 149 

(Classification dataset 1) non-overlapping, greedy and conformation A; (Classification dataset 150 

2) non-overlapping, greedy and conformation B; (Classification dataset 3) non-overlapping, 151 

non-greedy and conformation A; (Classification dataset 4) non-overlapping, non-greedy and 152 

conformation B.  153 

 154 

We selected the data items with reliable pHT from literature-derived data. We also generated 155 

our in-house biophysical experimental data for developing regression models. The Putative-156 

iM-Searcher was applied to filtered dataset of iM forming sequences with their corresponding 157 

pHT values.  The iMs which meet the sequence pattern with corresponding pHT were used for 158 

regression model construction. We also filtered iM items with the same putative iM forming 159 

sequence but different pHT and combined iM items with the same putative iM forming 160 

sequence and pHT to avoid bias. Both our classification model and regression model used 161 

thirty-three different features: C-tract length, iM length, loop length, middle loop length, 162 

longest side loop length, shortest side loop length, sum of two side loops, longest loop length, 163 

shortest loop length, A density in iMs, C density in iMs, G density in iMs, T density in iMs, A 164 

density in loops, C density in loops, G density in loops, T density in loops, A density in middle 165 

loop, C density in middle loop, G density in middle loop, T density in middle loop, A density in 166 

longest side loop, C density in longest side loop, G density in longest side loop, T density in 167 

longest side loop, A density in shortest side loop, C density in shortest side loop, G density in 168 

shortest side loop, T density in shortest side loop, A density in two side loops, C density in two 169 

side loops, G density in two side loops, T density in two side loops. For the regression system, 170 

the iM folding strength is defined as the pHT after standardization and min-max scaling. 171 
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 172 

The imbalanced ensemble learning to predict folded and unfolded i-motifs 173 

A five-fold cross-validation assessment was applied to evaluate the classification performance 174 

of the iMs for four datasets via nine classifiers including Decision Trees (32), Random Forest 175 

(33), Balanced Random Forest (34), Naive Bayes (35), Linear Discriminant Analysis (36), Easy 176 

Ensemble (37), Balanced Bagging (38,39), Random Undersampling Boosting (RUSBoost) (40), 177 

and Extreme Gradient Boosting (XGBoost) algorithms (41). The combination of dataset and 178 

model which achieve best performance via area under the receiver operating characteristic 179 

curve (AUROC) and balanced accuracy, was used for classification. 90% of data in the whole 180 

dataset was randomly selected and separated into a training & validation set, and the 181 

remaining 10% of data was used as the test set. Five-fold cross-validation and grid searching 182 

on training & validation set were employed to search for the best hyperparameters and test 183 

set was used to evaluate the model’s classification performance on accuracy, recall, specificity, 184 

and AUROC. 185 

 186 

The regression algorithm to measure the strength of i-motif using ensemble learning. 187 

Consistent iM searching and conformation identification strategy with classification dataset 188 

was applied in the regression model. A five-fold cross validation assessment was applied to 189 

evaluate the regression performance of the iMs based on thirteen regressors including 190 

Decision Trees (32), Random Forest (33), Linear Regression (42), Ridge Regression (43), Lasso 191 

Regression (44), Elastic Net Linear Regression (45), Linear Support Vector Regression (46), 192 

Radial Basis Function Support Vector Regression (47), K-Nearest Neighbors Regression (KNN) 193 

(48), Adaptive Boosting (AdaBoost) (49), Gradient Boosting (50), Extreme Gradient Boosting 194 

(XGBoost) (41), and Random Sample Consensus (RANSAC) algorithms (51). 80% of data in the 195 

whole dataset was separated into training & validation set randomly for hyperparameters 196 

adjustment by five-fold cross-validation and grid searching, and 20% of data was used to 197 

evaluate the regression performance of the model by coefficient of determination (R2), root 198 

mean squared error (RMSE), and mean absolute error (MAE) (18). The feature importance of 199 

the regression model was extracted from the model with ‘importance_type=gain’. 200 

 201 

Implementation 202 
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The algorithm was written in Python 3, and machine learning was employed via the Python 203 

Scikit-learn package (52), Imbalanced-learn package (53), and XGBoost package (41). The 204 

source code and documentation of Putative-iM-Searcher are available at 205 

https://github.com/YANGB1/Putative-iM-Searcher. Combining the classification model and 206 

regression model, we built a computational tool called iM-Seeker, which is available at 207 

https://github.com/YANGB1/iM-Seeker. 208 

 209 

Biophysical Characterisation of C-rich DNA sequences 210 

The test oligonucleotides were synthesised and reverse phase HPLC purified by Eurogentec 211 

(Belgium) and were resuspended in ultra-pure water. The DNA final concentration was 212 

confirmed via Nanodrop. Samples were prepared as 10 µM DNA in 10 mM sodium cacodylate 213 

(NaCaco) and 100 mM KCl buffer with the range of pH 4-8. The DNA samples were annealed 214 

prior to biophysical characterisation by denaturing the DNA for 5 mins at 95°C and allowing 215 

to reanneal by slowly cooling down to room temperature, overnight.  216 

 The CD spectra of the annealed C-rich sequences were recorded on a JASCO 1500 217 

spectropolarimeter under a constant flow of nitrogen. An accumulation of four CD spectra 218 

scans was acquired from 200-320 nm at 20°C with a data pitch of 0.5 nm, scanning speed of 219 

200 nm/min with 1 second response time, 1 nm bandwidth, and 200 mdeg sensitivity. The 220 

measured DNA samples and buffer at corresponding pH were subtracted before zero 221 

correction at 320 nm. The transitional pH (pHT) was determined by plotting the measured 222 

ellipticity at 288 nm and pH range and the resulting inflection point of the Boltzmann 223 

sigmoidal or bi-phase sigmoidal fit using Graphpad Prism (Version 10.1.0.316).  224 

 The CD samples at pH 5.5 were diluted in the same buffer to 2.5 µM final DNA 225 

concentration. These samples were used to perform UV spectroscopy to obtain the thermal 226 

difference spectra (TDS) and determine the melting temperature (TM), annealing temperature 227 

(TA) and their respective hysteresis (TH). For melting/annealing experiments, the absorbance at 228 

295 nm was measured at every 1°C increase/decrease in three cycles of denaturation and 229 

reannealing. The cycle begins with 10 mins at 4°C followed by gradual increase of 0.5°C/min 230 

to 95°C (melting). Once the final temperature was reached, the samples were kept at 95°C for 231 

10 mins before reversing the process (annealing). The melting and annealing temperatures 232 

were determined via the first derivative method of for each measured cycle as previously 233 
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described (54). The samples were kept at 4°C after the completion of the final reannealing 234 

cycle. For the thermal difference spectra (TDS), these samples were used to obtain the 235 

absorbance spectrum (230-320 nm). The samples were kept at 4°C for an additional 10 mins 236 

before measuring the absorbance spectrum of potentially folded iMs. This was followed by a 237 

second absorbance spectrum after 10 mins at 95°C for the unstructured DNA structure. 238 

Individual TDS signatures were determined by subtracting both absorbance spectra (unfolded-239 

folded DNA structure), zero correcting at 320 nm, and finally normalisation to the maximum 240 

absorbance to 1 as previously described (24).  241 

 242 

RESULTS 243 

Description of the iM-Seeker framework 244 

iM-Seeker is a computational framework using machine learning to predict the folding status 245 

and folding strength of iMs. The outline of the whole iM-Seeker structure is shown in Figure 246 

1. The Putative-iM-Searcher was developed to discover the putative iM forming sequences 247 

(Figure 1A). Putative-iM-Searcher constructs a directed graph model and obtains 248 

representative conformation from all DNA structure conformations based on the configuration 249 

of overlapping & non-overlapping strategy, greedy & non-greedy strategy, and 250 

representative-conformation-selection strategy. The Balanced Random Forest classification 251 

model and XGBoost regression model were trained on iMab-based genome-wide iM 252 

landscape and biophysical experimental justified iM with pHT, respectively, for the folding 253 

status prediction and folding strength estimation (Figure 1B). The workflow of iM-Seeker after 254 

receiving the query sequences is shown in Figure 1C. Putative-iM-Searcher was applied to 255 

query sequences to find putative iM forming sequences in the first stage. For each putative iM 256 

individual, the Balanced Random Forest classification model will be used to predict the folding 257 

status. Next, an estimated folding strength score was calculated by the XGBoost regression 258 

model for putative iM individuals.  259 
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 260 

Figure 1. The outline of the whole iM-Seeker. (A) The framework of Putative-iM-Searcher. Putative-iM-261 

Searcher can detect all i-motif conformation and representative conformation based on overlapping & 262 

non-overlapping strategy, greedy & non-greedy strategy, and representative-conformation strategy. (B) 263 

The framework of iM-Seeker. iM-Seeker employs Putative-iM-Searcher to find putative i-motif forming 264 

sequences. Balanced Random Forest classification model and XGBoost regression model are developed 265 

to predict the folding status and folding strength, respectively. (C) The processing flow of query data 266 

using iM-Seeker. Created with BioRender.com. 267 

 268 

iM-Seeker predicts iM structure folding status 269 
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Putative iM forming sequences in the intersected high-confident iM-peak regions among 270 

three biological replicates from the CUT&Tag sequencing data were defined as folded iMs 271 

while unfolded C-rich sequences can be found in interval regions. For greedy and non-272 

overlapped two classification datasets, they both included 8,837 folded iMs and 733,115 273 

unfolded C-rich sequences while 9,641 folded iMs and 755,747 unfolded C-rich sequences 274 

were in non-greedy and non-overlapped two datasets.  275 

 276 

Thirty-three features from labelled folded and unfolded putative iM sequences were derived. 277 

A five-fold cross-validation assessment was applied on nine classifiers on four classification 278 

datasets to select the best dataset and model. Considering the mean AUROC score and mean 279 

balanced accuracy of five folds, Balanced Random Forest performed best in all four datasets 280 

because the balanced learning strategy can better fit our imbalanced datasets. Thus, Balanced 281 

Random Forest was selected as the final classifier. Greedy and non-overlapped two datasets 282 

outperformed the non-greedy and non-overlapped datasets in terms of the two indicators. 283 

Although there is no significant difference between conformation A and B for greedy and non-284 

overlapped datasets, both AUROC and balanced accuracy of conformation A were found to be 285 

higher than B (Figure 2A). Thus, we chose conformation A dataset of greedy and non-286 

overlapped strategy as final dataset for classification task.  287 

 288 

The whole dataset was divided into the training & validation set (90%) and test set (10%) 289 

because the whole dataset contains ~740,000 data items, test set with ~74,000 (10%) data 290 

items is enough to test the model performance. The Balanced Random Forest model was 291 

optimised by cross-validation and grid search on training & validation set. We evaluated the 292 

model performance on the test set with 81% accuracy, 77% recall, 81% specificity, and 87% 293 

AUROC score, which show the model can achieve good performance in both folded iMs and 294 

unfolded C-rich sequences (Figure 2B). Besides, we assessed the model’s generalisation 295 

performance through five-fold cross-validation deployed across the entire dataset on AUROC 296 

(Figure 2C). The AUROC scores on all five folds are all higher than 0.8, which shows the excellent 297 

generalisation performance. 298 
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 299 

Figure 2. Model selection and performance estimation of classification model. (A) The comparison 300 

among nine models (Decision Trees, Random Forest, Balanced Random Forest, Naive Bayes, Linear 301 

Discriminant Analysis, Easy Ensemble, Balanced Bagging, RUSBoost, and XGBoost) on four classification 302 

datasets. AUROC and balanced accuracy show that Balanced Random Forest on greedy & non-303 

overlapping & conformation B dataset has the best performance. (B) The performance of Balanced 304 

Random Forest classifier on the test set. Accuracy, recall, specificity, and AUROC can reach 81%, 77%, 305 

81%, and 87% respectively. (C) The ROC curves for classification performance. The Receiver Operating 306 

Characteristic (ROC) for the five-fold cross validation is shown. Each fold coloured separately with the 307 

AUC score and the mean ROC curve are coloured blue, and the random probability is shown as black 308 

dash lines.  309 

iM-Seeker measures the iM structure stability 310 

The literature-derived data (Supplementary Table S1) and the experimental biophysical data 311 

(Supplementary Table S2) were combined to a collection of 206 C-rich DNA sequences with 312 

their corresponding pHT values. The comparison of CD spectroscopy, UV spectroscopy, and 313 

TDS between representative iM forming sequence and representative non-iM forming 314 

sequence shows the reliability of our experiments (Supplementary Figure S1). However, one 315 

study contained 196 different sequences which contained only C and T. To avoid bias, these 316 
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DNA sequences were excluded to avoid misinterpretation of the importance of different 317 

nucleotides in the loops. 171 data items were selected as high-confident iM-containing items 318 

from 206 items based on criteria including TDS (Supplementary Data Set 1). After filtering data 319 

items with the same putative iM but different pHT and combining iM items with the same 320 

putative iM and equal pHT from high-confident data items, 120 putative iMs were extracted 321 

from the remaining sequence segments using the consistent Putative-iM-Searcher strategies 322 

(greedy, non-overlapped, and conformation A) with classification session followed by feature 323 

selection (Supplementary Data Set 2). The 120 pHT values standardized and rescaled to range 324 

from 0 to 1 via min-max scaling to define iM folding stability. 325 

 326 

A five-fold cross-validation assessment was applied to thirteen regressors on regression 327 

datasets to find the model. Considering the mean of three indicators (R2, RMSE, and MAE) on 328 

five-folds, XGBoost was selected as the final model because of the best performance (Table 1). 329 

The whole dataset was divided into training & validation set with 80% data and test set 330 

containing the remaining data. After optimization using cross-validation and grid search on 331 

training & validation set, the final XGBoost model was applied to the test set to assess the 332 

performance. R2, RMSE, and MAE can reach 0.642, 0.104, and 0.08, respectively, which shows 333 

the model can achieve good performance in estimating the folding strength (Figure 3). The 334 

Pearson Correlation Coefficient (PCC) also reveals a strong correlation between measured and 335 

predicted folding strength (p<10-7). 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 
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Table 1. Model comparison of thirteen regressors. 348 

Index R2 Mean 

Root Mean Squared 

Error Mean 

Mean Absolute Error 

Mean 

Linear Regression -0.158  0.195 0.139 

Ridge Regression -0.012  0.182 0.132 

Lasso Regression -0.027  0.185 0.146 

Elastic Net Linear 

Regression -0.027  0.185 0.146 

Decision Tree -0.002  0.181 0.134 

Random Forest 0.434  0.138 0.105 

Support Vector 

Regression -0.043  0.185 0.130 

Radial Basis Function 

Support Vector 

Regression 0.187  0.165 0.120 

KNN 0.111  0.173 0.128 

AdaBoosting 0.355  0.147 0.113 

Gradient Boosting 0.379  0.144 0.110 

RANSAC -2.184  0.315 0.222 

XGBoost 0.458  0.134 0.103 

 349 
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  350 

Figure 3. The performance evaluation of the XGBoost regressor on the test set (n=24). The Pearson 351 

Correlation Coefficient (PCC, 0.852, p<10-7) and R2 (0.642) show a positive correlation between 352 

measured and predicted iM folding strength. 353 

 354 

Model interpretation provides insights into important features for iM stability  355 

We investigated the relative importance of the iM features extracted from the regression model. 356 

Features with high importance contribute more to the construction of the model and may play a more 357 

crucial role in iM formation than features with low importance. We divided the features into two groups 358 

based on the Pearson Correlation Coefficient (PCC): features with positive PCC were assumed to 359 

strengthen iM formation (Supplementary Table S3). In contrast, negative-correlated features were 360 

supposed to have a negative effect (Supplementary Table S4). In each group, the top 10 critical features 361 

are shown in Figure 4. Nucleotide composition affects the stability of iM structures. Stable iMs prefer to 362 

contain more C and T, especially T in side loops (Figure 4A). High G density and A density are associated 363 

with unstable iMs, especially these two nucleotides in side loops (Figure 4B). In addition, the C-tract 364 

length and loop length are two dominant features in all length-relative features. Long C-tract and short 365 

loop length can help with iM stability. Previous studies showed that in the same experimental condition, 366 

iMs with long C-tracts tend to be more stable than iMs with short C-tracts (55,56). 367 
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 368 

Figure 4. The iM feature importance obtained from the regression model. (A) Top 10 important features 369 

with positive Pearson Correlation Coefficient (PCC) with folding stability. (B) Top 10 important features 370 

with negative Pearson Correlation Coefficient (PCC) with folding stability. 371 

 372 

DISCUSSION 373 

Unlike the computational prediction of G4 structures, iMs are more complex in terms of what 374 

makes them stable (8,27,29,57-60) and it has been difficult to make predictions about iMs in 375 

the same way as G4s. Although, putative iMs have a similar sequence pattern to G4s, the 376 

stability of the structures has been more difficult to predict, as it has been shown that iMs can 377 

tolerate changes in sequence more than G4s (29), but are overall less stable in general. 378 

Therefore, iM-specific experimental data is critical to construct accurate computational models 379 

for iM prediction and stability. To the best of our knowledge, there are no iM-specific 380 

computational tools. Due to the similarity in sequence patterns between G4 and iM, some 381 

previous software developed for G4 can be used on putative iM searching and can calculate a 382 

numeric value to estimate iM (8,14,22) but there was no iM-specific experimental results which 383 

were fed into models to help with model design and training. In this paper, we developed both 384 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.12.11.571121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.11.571121
http://creativecommons.org/licenses/by-nc-nd/4.0/


a putative iM-forming sequence searching tool, Putative-iM-Searcher, and a machine learning 385 

approach to prediction of DNA iM folding status and folding strength, iM-Seeker. We 386 

considered that the identification of putative iM forming sequences, their folding status and 387 

folding strength were three significant parts of iM investigation that could benefit from 388 

computational predictions. Putative-iM-Searcher can construct directed graphs based on 389 

different configurations, can search all putative iM formations and conformations by graph 390 

traversal from input DNA sequences. Users can choose to set parameters including C-tract 391 

length, the first loop length, the second loop length, and the third loop length. The 392 

representative conformations can be obtained based on overlapping & non-overlapping 393 

strategy, greedy & non-greedy strategy, and representative-conformation strategy. Users can 394 

choose to obtain all putative iM formations and conformations as well. Based on the detected 395 

putative iMs by Putative-iM-Searcher, we used genome-wide CUT&Tag sequencing data and 396 

experimental data with pHT from previous studies and our experiments to develop iM-Seeker. 397 

This is the first time a machine learning approach has been applied to classification of this 398 

specific DNA structure motif and will significantly improve the accuracy of in silco iM prediction. 399 

The iMab antibody-based CUT&Tag sequencing data presents the folding status of C-rich 400 

sequences and iM-Seeker captures the difference between features in both folded iMs and 401 

unfolded C-rich sequences and allows for classification. Another regression model was trained 402 

on iM sequences derived from biophysical data, corresponding sequence with pHT to measure 403 

the folding strength. 404 

iM-Seeker has good performance on both classification and regression tasks. The Balanced 405 

Random Forest classifier has higher performance in the imbalanced dataset. The number of 406 

folded iMs (8,837 iMs) is much less than unfolded motifs (733,115 iMs), which can mislead the 407 

classifier to overfit the unfolded dataset and classify folded iMs into unfolded category 408 

incorrectly. However, Balanced Random Forest is a decision-tree-based ensemble learning 409 

model that employs an under-sampling strategy to avoid overfitting of unfolded samples. 410 

Therefore, both folded samples and unfolded samples have good performance (recall 77%; 411 

specificity 81%). XGBoost, another ensemble learning approach which was also used in the G4 412 

classification mission (18), is selected for the estimation of folding strength among thirteen 413 

regressors. Although the number of data items for the regression model is limited, the 414 

regression part of iM-Seeker can also provide a reliable reference to evaluate the iM strength 415 
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(R2 0.642; RMSE 0.104; MAE 0.08). Previous studies investigated the iM formation features 416 

which can influence the iM strength by biophysical characterisation. The length of C-tracts, 417 

short loop length and high density of C and T can enhance the formation of iMs because other 418 

strong structures can be formed with G and A, which can result in the competition between 419 

iM and other structure motifs (8,55,56,61,62). Important features extracted from the regression 420 

model revealed a consistent result with previous research, which also justifies the reliability of 421 

our model. However, the stabilising effect of additional thymines is now quite well 422 

documented and consistent with the results observed here (29,63). Also the competition 423 

between guanines and cytosines were previously used in G4-hunter (14) as a scoring factor as 424 

having the complementary base within the sequences can skew structure formation towards 425 

hairpin (29).  426 

 427 

iM-Seeker offers users the opportunity for a dedicated iM-searching tool, which is based on 428 

machine learning from existing datasets. The approach could be applied to other DNA and 429 

RNA structures where there is a wide range of data available, for example to further increase 430 

the accuracy of prediction of formation of G4 structures.  431 

SUPPLEMENTARY DATA 432 

Supplementary Data are available at NAR online. 433 
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