0 NOoO O, WO DN -

I O U G G Y
O b~ WODN-~ O ©

-_—
~

18
19

20

21

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.11.571121,; this version posted December 12, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Prediction of DNA i-Motifs Via Machine Learning

Bibo Yang," ' Dilek Guneri,>" Haopeng Yu," " " Elisé P. Wright,®> Wengjian Chen,? Zoé A. E. Waller,*
" Yiliang Ding"”

! Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park,
Norwich, NR4 7UH, UK

2School of Pharmacy, University College London, London, WCTN 1AX, UK

*Molecular Physiology School of Medicine, and Molecular Medicine Research Group, University
of Western Sydney, Campbelltown, NSW 1797, Australia

*To whom correspondence s’hould be addressed. Tel: +44 (0)1603 450266; Email:
yiliang.ding@jic.ac.uk. Correspondence may also be addressed to haopeng.yu@jic.ac.uk or
z.waller@ucl.ac.uk.

tJoint First Authors.

GRAPHICAL ABSTRACT

Putative i-Motif Identification

CCCCGACCCCAACCCCTCCCCAACCCCTCCCC

Genome-wide
measurement of
folding status

i-Motif Peak

Individual -
measurement

of folding
strength i

| Folding status |

—— ENEEN
il \.I\' ':/T‘.\‘\I\'

Important features Tree-based Ensemble Learning

ABSTRACT

i-Motifs (iMs), are secondary structures formed in cytosine-rich DNA sequences and are

involved in multiple functions in the genome. Although putative iM forming sequences are
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widely distributed in the human genome, the folding status and strength of putative iMs vary
dramatically. Much previous research on iM has focused on assessing the iM folding properties
using biophysical experiments. However, there are no dedicated computational tools for
predicting the folding status and strength of iM structures. Here, we introduce a machine
learning pipeline, iM-Seeker, to predict both folding status and structural stability of DNA iMs.
The programme iM-Seeker incorporates a Balanced Random Forest classifier trained on
genome-wide iMab antibody-based CUT&Tag sequencing data to predict the folding status
and an Extreme Gradient Boosting regressor to estimate the folding strength according to
both literature biophysical data and our in-house biophysical experiments. iM-Seeker predicts
DNA iM folding status with a classification accuracy of 81% and estimates the folding strength
with coefficient of determination (R?) of 0.642 on the test set. Model interpretation confirms
that the nucleotide composition of the C-rich sequence significantly affects iM stability, with a
positive correlation with sequences containing cytosine and thymine and a negative

correlation with guanine and adenine.

INTRODUCTION

Nucleotides are the basic units that form DNA and RNA, two key molecules in the central
dogma. DNA encodes genetic information, which is transcribed to mRNA and then translated
to protein. In addition to this transfer of information, DNA and RNA can form complex
structures, which can play crucial functional roles in organisms. Besides the canonical Watson-
Crick double-helical B-form structure, DNA can form non-canonical secondary structures such
as G-quadruplexes (G4s) and i-Motifs (iMs). G4s are four-stranded structures formed from G-
rich sequences and are stabilised by Hoogsteen hydrogen bonding between guanines (1). iMs
are also four-stranded structures, but formed from cytosine C-rich regions that are stabilised
by hemi-protonated C-C base pairs (C*:C) (2,3). Complementary G-rich and C-rich sequences
can form G4s and iMs interdependently during distinct cellular processes (4). As a non-
canonical structure, iMs are indicated to play an important role in the genome. There are an
increasing number of in vitro and in celluo studies that report evidence that iMs could fold in
promotor region of certain genes, telomeres and untranslated regions. They have also been
implicated as a regulatory element associated with the cell cycle, transcription, chromatin

remodelling, as well as transposable element dynamics (5-7).
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Commonly, computational analysis of putative iMs is limited to indirect identification by
searching for potential complementary G4 sequences in the genome (8). Plenty of G4
prediction tools have been developed previously, and these can generally be divided into two
categories based on whether or not the models utilised experimentally-derived G4-specific
data. Classical computational tools which do not use G4-specific data, are typically constructed
from string-matching models based on a specific sequence pattern. Others use a designed
scoring system according to pre-defined rules. For example, platforms like Quadparser (9),
Quadruplexes (10), and AllQuads (11), used algorithms like regular expression to search
G4 forming sequences, whilst QGRS Mapper (12), G4P (13), and G4hunter (14), use scoring
models that can estimate the probability or strength of putative G4s (15). These models
have potential to be used in iM-forming sequences searching, because the putative iMs have
in principle similar sequence patterns and some of the rules will be transferrable to both
structures. For example, enrichment of G/C in a C/G-rich sequence disfavours both G4 and iMs.
In contrast, there are also platforms guided by G4-specific data (e.g., biophysical properties,
G4 ChlIP-seq, G4 CUT&Tag, and G4-seq) that can capture additional G4-specific features to
improve the G4 prediction performance (16). Software like PQSfinder (17), G4boost (18),
Quadron (19), DeepG4 (20), and G4-folding energy estimation module integrated in RNAFold
(21) use data from G4-specific experiments to increase the accuracy of predictions. Therefore,
the application of these models on iM identification is limited. Out of the existing searching
platforms, G4-Hunter is the easiest to use for searching for iMs as it was designed to take into
account C with negative values both to disfavour regions rich in alternative G/C and to score
both strand of a DNA duplex simultaneously. C-richness and C-skew is obviously important
for iM formation (14). Besides, G4-iM Grinder can also be used to predict and evaluate G4 and
iM forming sequences (22). Typically, individual C-rich sequences are biophysically assed for
their capability to form iMs. UV spectroscopy is typically used to determine the thermodynamic
properties such as melting (Tm) and annealing (Ta) temperatures (23). Furthermore, thermal
difference spectra (TDS) are typically generated, using the difference in absorbance spectra
between folded and unfolded DNA, determining a signature to identify the formed secondary
DNA structure (24). UV spectroscopy is often accompanied with circular dichroism (CD)

spectroscopy to conform the formation of i-motif structure. The transitional pH (pHr) is an
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83  important measure of the stability of iM structures, determined by assessing the formation of

84  iM across a pH-range (8,25-27).

85 A systematic prediction tool to identify DNA iM folding status and their potential
86  stability is lacking. Recently, the landscape of iM forming sequences in the whole human
87  genome was determined via the novel CUT&Tag sequencing using anti-iM iMab antibodies on
88  living human cells (7). Here we introduce, iM-Seeker, a novel computational pipeline using the
89 genome-wide iM profile (7), iM-stability data from the literature, and our in-house biophysical
90 analysis to predict iM structure formation and stability. iM-Seeker utilised a newly-designed
91  graph-based algorithm to search for putative iM forming sequences within an entered DNA
92  sequence. The Balanced Random Forest script is trained on the iMs identified in the human
93  genome derived from iMab-based CUT&Tag sequencing data (7) and was further developed
94  to predict iM structure folding status within DNA sequences. iM-Seeker also incorporates the
95 Extreme Gradient Boosting (XGBoost) regressor to predict the structure stability, by cross
96 referencing iM forming DNA sequences to their corresponding pHrvalues. Furthermore, this
97  computational model has shed new insight into the importance of nucleotide composition in
98 iM stability. A positive correlation was observed for sequences containing cytosine and
99  thymine whilst sequences rich in guanine and adenine were found to have a negative
100  correlation with iM stability. Alongside nucleotide composition, long C-tract lengths

101  accompanied with short loop lengths contribute towards high stability of iM structure.

102
103 MATERIAL AND METHODS
104 Data collection

105  We collected the published CUT&Tag sequencing data in the human genome (7). The data was
106  downloaded from the NCBI GEO database (accession number GSE220882). The BigWig format
107  data included iM forming sequences from both 937449 (WDLPS) cell line and human
108  embryonic kidney (HEK293T) cell line with three biological replicates for each cell line. The
109  focus was concentrated on HEK293T cell data which was presented with more high-confident
110  iM regions than WDLPS cells (7). The downloaded BigWig files were converted to bedGraph

111 files and iM-peak region were cumulated with SEACR v1.3 set to "0.01 non stringent”
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112  parameters (7,28). The intersected iM-peak regions among three biological replicates were
113 defined as the final high-confident iM-peak regions. Literature-derived data of i-Motif forming
114 sequences and their corresponding pHr values were collected (Supplementary Table S1).

115

116  Graph-based putative i-motif searching

117  Putative i-Motifs can be identified based on their sequence pattern (C-3N1-12)3C=3 where C
118  represents cytosine and N represent any nucleotide (29,30). The classic approach to identify
119  potential putative iM-forming sequences is to search complementary sequences of G4-
120  forming sequences based on sequence pattern matching. This assumption and current
121 approaches limit the identification of iMs with their different variations in C:C(+) formations
122 and topologies compared to G4s (29,30). To overcome this limitation, we designed a general
123  pattern for iM formation searching using directed graph traversal process. For one sequence,
124  the C-tracts can be regarded as nodes, and the loops can be defined as edges. All possible C-
125  tracts (C-tract length =3) are identified as nodes in the first phase, and if the distance between
126  two nodes (loop length) is between one and twelve nucleotides, a directed edge is added
127  between the two nodes. After constructing the directed graph, all possible iM formations and
128  conformations are identified via the traversal of the directed graph from every node. All
129  possible putative iMs are represented with the sub-population containing the first four nodes
130  and three edges of the traversing paths with at least four nodes. To choose the representative
131 iM structures from all possible iM structures, four strategies were introduced (greedy non-
132  overlapping, greedy overlapping, non-greedy non-overlapping, and non-greedy overlapping)
133 maintaining the nomenclature derived from QuadBase2 (31). Overlapping strategy selects an
134  iM representative structure for each iM starting coordinate while the non-overlapping function
135  has no coinciding iM representatives. The greedy strategy maximises the loop length of iM
136  representatives with longest C-tract. For non-greedy strategies, the iM with the most extended
137 C-tract length and the shortest loop length can be selected. One representative iM forming
138  sequence may have many different iM conformations although they share the same sequence
139  content. Two representative iM formations are chosen for according to their stability: (A) the
140  structure with minimum standard deviation of loop lengths; (B) the structure with minimum
141 length of the two side loops. We called the initial computational pipeline Putative-iM-Searcher

142 (Figure 1A).
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143

144  Dataset construction and feature selection for machine learning

145  We employed a Putative-iM-Searcher in high-confident iM-peak regions and interval regions
146 in both Watson and Crick strands in the human reference genome (GRCh38). Putative iMs in
147  high confident iM-peak regions were defined as folded iMs, and unfolded C-rich sequences in
148  interval regions. We used a non-overlapping strategy to avoid bias in the performance
149  estimation of the classification model. Four classification datasets were constructed:
150  (Classification dataset 1) non-overlapping, greedy and conformation A; (Classification dataset
151 2) non-overlapping, greedy and conformation B; (Classification dataset 3) non-overlapping,
152  non-greedy and conformation A; (Classification dataset 4) non-overlapping, non-greedy and

153  conformation B.

154

155  We selected the data items with reliable pHr from literature-derived data. We also generated
156  our in-house biophysical experimental data for developing regression models. The Putative-
157  iM-Searcher was applied to filtered dataset of iM forming sequences with their corresponding
158  pHrvalues. The iMs which meet the sequence pattern with corresponding pHr were used for
159  regression model construction. We also filtered iM items with the same putative iM forming
160  sequence but different pHr and combined iM items with the same putative iM forming
161  sequence and pHr to avoid bias. Both our classification model and regression model used
162  thirty-three different features: C-tract length, iM length, loop length, middle loop length,
163  longest side loop length, shortest side loop length, sum of two side loops, longest loop length,
164  shortest loop length, A density in iMs, C density in iMs, G density in iMs, T density in iMs, A
165  density in loops, C density in loops, G density in loops, T density in loops, A density in middle
166  loop, C density in middle loop, G density in middle loop, T density in middle loop, A density in
167  longest side loop, C density in longest side loop, G density in longest side loop, T density in
168  longest side loop, A density in shortest side loop, C density in shortest side loop, G density in
169  shortest side loop, T density in shortest side loop, A density in two side loops, C density in two
170  side loops, G density in two side loops, T density in two side loops. For the regression system,

171 the iM folding strength is defined as the pHr after standardization and min-max scaling.
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172

173  The imbalanced ensemble learning to predict folded and unfolded i-motifs

174  Afive-fold cross-validation assessment was applied to evaluate the classification performance
175  of the iMs for four datasets via nine classifiers including Decision Trees (32), Random Forest
176 (33), Balanced Random Forest (34), Naive Bayes (35), Linear Discriminant Analysis (36), Easy
177  Ensemble (37), Balanced Bagging (38,39), Random Undersampling Boosting (RUSBoost) (40),
178  and Extreme Gradient Boosting (XGBoost) algorithms (41). The combination of dataset and
179  model which achieve best performance via area under the receiver operating characteristic
180  curve (AUROC) and balanced accuracy, was used for classification. 90% of data in the whole
181  dataset was randomly selected and separated into a training & validation set, and the
182  remaining 10% of data was used as the test set. Five-fold cross-validation and grid searching
183  on training & validation set were employed to search for the best hyperparameters and test
184  set was used to evaluate the model's classification performance on accuracy, recall, specificity,
185  and AUROC.

186

187  The regression algorithm to measure the strength of i-motif using ensemble learning.
188  Consistent iM searching and conformation identification strategy with classification dataset
189  was applied in the regression model. A five-fold cross validation assessment was applied to
190  evaluate the regression performance of the iMs based on thirteen regressors including
191 Decision Trees (32), Random Forest (33), Linear Regression (42), Ridge Regression (43), Lasso
192  Regression (44), Elastic Net Linear Regression (45), Linear Support Vector Regression (46),
193  Radial Basis Function Support Vector Regression (47), K-Nearest Neighbors Regression (KNN)
194  (48), Adaptive Boosting (AdaBoost) (49), Gradient Boosting (50), Extreme Gradient Boosting
195  (XGBoost) (41), and Random Sample Consensus (RANSAC) algorithms (51). 80% of data in the
196  whole dataset was separated into training & validation set randomly for hyperparameters
197  adjustment by five-fold cross-validation and grid searching, and 20% of data was used to
198  evaluate the regression performance of the model by coefficient of determination (R?), root
199  mean squared error (RMSE), and mean absolute error (MAE) (18). The feature importance of
200  the regression model was extracted from the model with ‘importance_type=gain’.

201

202  Implementation
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203  The algorithm was written in Python 3, and machine learning was employed via the Python
204  Scikit-learn package (52), Imbalanced-learn package (53), and XGBoost package (41). The
205 source code and documentation of Putative-iM-Searcher are available at

206  https://github.com/YANGB1/Putative-iM-Searcher. Combining the classification model and

207  regression model, we built a computational tool called iM-Seeker, which is available at

208 https://github.com/YANGB1/iM-Seeker.

209

210  Biophysical Characterisation of C-rich DNA sequences

211 The test oligonucleotides were synthesised and reverse phase HPLC purified by Eurogentec
212 (Belgium) and were resuspended in ultra-pure water. The DNA final concentration was
213 confirmed via Nanodrop. Samples were prepared as 10 uyM DNA in 10 mM sodium cacodylate
214 (NaCaco) and 100 mM KCI buffer with the range of pH 4-8. The DNA samples were annealed
215  prior to biophysical characterisation by denaturing the DNA for 5 mins at 95°C and allowing

216  to reanneal by slowly cooling down to room temperature, overnight.

217 The CD spectra of the annealed C-rich sequences were recorded on a JASCO 1500
218 spectropolarimeter under a constant flow of nitrogen. An accumulation of four CD spectra
219 scans was acquired from 200-320 nm at 20°C with a data pitch of 0.5 nm, scanning speed of
220 200 nm/min with 1 second response time, 1 nm bandwidth, and 200 mdeg sensitivity. The
221 measured DNA samples and buffer at corresponding pH were subtracted before zero
222 correction at 320 nm. The transitional pH (pHr) was determined by plotting the measured
223 ellipticity at 288 nm and pH range and the resulting inflection point of the Boltzmann

224 sigmoidal or bi-phase sigmoidal fit using Graphpad Prism (Version 10.1.0.316).

225 The CD samples at pH 5.5 were diluted in the same buffer to 2.5 uM final DNA
226  concentration. These samples were used to perform UV spectroscopy to obtain the thermal
227  difference spectra (TDS) and determine the melting temperature (Twv), annealing temperature
228  (Ta) and their respective hysteresis (Th). For melting/annealing experiments, the absorbance at
229 295 nm was measured at every 1°C increase/decrease in three cycles of denaturation and
230 reannealing. The cycle begins with 10 mins at 4°C followed by gradual increase of 0.5°C/min
231 to 95°C (melting). Once the final temperature was reached, the samples were kept at 95°C for
232 10 mins before reversing the process (annealing). The melting and annealing temperatures

233  were determined via the first derivative method of for each measured cycle as previously
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234  described (54). The samples were kept at 4°C after the completion of the final reannealing
235 cycle. For the thermal difference spectra (TDS), these samples were used to obtain the
236  absorbance spectrum (230-320 nm). The samples were kept at 4°C for an additional 10 mins
237  before measuring the absorbance spectrum of potentially folded iMs. This was followed by a
238 second absorbance spectrum after 10 mins at 95°C for the unstructured DNA structure.
239  Individual TDS signatures were determined by subtracting both absorbance spectra (unfolded-
240  folded DNA structure), zero correcting at 320 nm, and finally normalisation to the maximum
241 absorbance to 1 as previously described (24).

242

243  RESULTS

244  Description of the iM-Seeker framework

245  iM-Seeker is a computational framework using machine learning to predict the folding status
246  and folding strength of iMs. The outline of the whole iM-Seeker structure is shown in Figure
247 1. The Putative-iM-Searcher was developed to discover the putative iM forming sequences
248  (Figure 1A). Putative-iM-Searcher constructs a directed graph model and obtains
249  representative conformation from all DNA structure conformations based on the configuration
250 of overlapping & non-overlapping strategy, greedy & non-greedy strategy, and
251  representative-conformation-selection strategy. The Balanced Random Forest classification
252  model and XGBoost regression model were trained on iMab-based genome-wide iM
253  landscape and biophysical experimental justified iM with pHr, respectively, for the folding
254  status prediction and folding strength estimation (Figure 1B). The workflow of iM-Seeker after
255  receiving the query sequences is shown in Figure 1C. Putative-iM-Searcher was applied to
256  query sequences to find putative iM forming sequences in the first stage. For each putative iM
257  individual, the Balanced Random Forest classification model will be used to predict the folding
258  status. Next, an estimated folding strength score was calculated by the XGBoost regression

259  model for putative iM individuals.
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A. Putative-iM-Searcher finds putative i-motifs

Construct directed graph to detect all putative i-motifs Overlapping & Greedy
CCCCGACCCCAACCCCTCCCCAACCCCTCCCC CCCCGACCCCAACCCCTCCCCAACCCCTCCCC
C3type
74 702 C. Processing flow of query
data
24 16-1§ 36-2% 29-31
Overlapping & Non-greedy
|
CCCCGACCCCAACCCCTCCCCAACCCCTCCCC
= f4-18 24:26"3032 Non-overlapping & Greedy
Cd type 8-10 18-20
14 7-10 q8-2* Z9-32
Non-overlapping & Greedy v
s e CCCCBACCCCAACCCCTCCCCAACCCCTCCCS Query sequence:
1.ACCCACCCACCCACCC
ACCCACCCA
Representative conformation selection 2.CCCCTCCCTCCCACCC
/ TCCCCCCAA
Example: CCCCGACCCCAACCCCTCCC +—| Non-overlapping & Non-greedy
A. CCCCGACCCCAACCCCTCCC CCCCGACCCCAACCCCTCCCCAACCCCTCCCC
B. CCCCGACCCCAACCCCTCCC
Putative i-motifs:
1.CCCACCCACCCACCC
ACCCACCC
2.CCCCTCCCTCCCACC
B. iM-Seeker framework — T CTCCCCCe

Folded and unfolded i-motifs from
CUT&Tag sequencing data using

N
i-Motif sequences /
with transtional pH
Folding status:

anti-iM iMab antibody .
i-Motif Peak N]  1.cccacceaceeacee
1 1 ACCCACCC Folded
2.CCCCTCCCTCCCACC
Training & Validation set  Test set Training & Validation set  Test set CTCCECCC Unfolded
e VL CT LT Tanngset
[ )y N I I D | Folding strength:
T T T T 1 validationset I I Validation set 1.CCCACCCACCCACCE
[ I () I ACCCACCC 0.71
I:I :I 2.CCCCTCCCTCCCACC
CIT T T 17 N I CTCGCCCC 0.85
T °o c° AT
A P NN
—
Balanced Random Forest —_— Extreme Gradiant Boosting
4
| Folding status | | Folding strength |

Figure 1. The outline of the whole iM-Seeker. (A) The framework of Putative-iM-Searcher. Putative-iM-
Searcher can detect all i-motif conformation and representative conformation based on overlapping &
non-overlapping strategy, greedy & non-greedy strategy, and representative-conformation strategy. (B)
The framework of iM-Seeker. iM-Seeker employs Putative-iM-Searcher to find putative i-motif forming
sequences. Balanced Random Forest classification model and XGBoost regression model are developed
to predict the folding status and folding strength, respectively. (C) The processing flow of query data

using iM-Seeker. Created with BioRender.com.

iM-Seeker predicts iM structure folding status
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270  Putative iM forming sequences in the intersected high-confident iM-peak regions among
271 three biological replicates from the CUT&Tag sequencing data were defined as folded iMs
272  while unfolded C-rich sequences can be found in interval regions. For greedy and non-
273 overlapped two classification datasets, they both included 8,837 folded iMs and 733,115
274  unfolded C-rich sequences while 9,641 folded iMs and 755,747 unfolded C-rich sequences
275  were in non-greedy and non-overlapped two datasets.

276

277  Thirty-three features from labelled folded and unfolded putative iM sequences were derived.
278 A five-fold cross-validation assessment was applied on nine classifiers on four classification
279  datasets to select the best dataset and model. Considering the mean AUROC score and mean
280 balanced accuracy of five folds, Balanced Random Forest performed best in all four datasets
281  because the balanced learning strategy can better fit our imbalanced datasets. Thus, Balanced
282  Random Forest was selected as the final classifier. Greedy and non-overlapped two datasets
283  outperformed the non-greedy and non-overlapped datasets in terms of the two indicators.
284  Although there is no significant difference between conformation A and B for greedy and non-
285  overlapped datasets, both AUROC and balanced accuracy of conformation A were found to be
286  higher than B (Figure 2A). Thus, we chose conformation A dataset of greedy and non-
287  overlapped strategy as final dataset for classification task.

288

289  The whole dataset was divided into the training & validation set (90%) and test set (10%)
290 because the whole dataset contains ~740,000 data items, test set with ~74,000 (10%) data
291  items is enough to test the model performance. The Balanced Random Forest model was
292  optimised by cross-validation and grid search on training & validation set. We evaluated the
293 model performance on the test set with 81% accuracy, 77% recall, 81% specificity, and 87%
294  AUROC score, which show the model can achieve good performance in both folded iMs and
295 unfolded C-rich sequences (Figure 2B). Besides, we assessed the model's generalisation
296  performance through five-fold cross-validation deployed across the entire dataset on AUROC
297  (Figure 2C). The AUROC scores on all five folds are all higher than 0.8, which shows the excellent

298  generalisation performance.
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300 Figure 2. Model selection and performance estimation of classification model. (A) The comparison
301 among nine models (Decision Trees, Random Forest, Balanced Random Forest, Naive Bayes, Linear
302  Discriminant Analysis, Easy Ensemble, Balanced Bagging, RUSBoost, and XGBoost) on four classification
303  datasets. AUROC and balanced accuracy show that Balanced Random Forest on greedy & non-
304  overlapping & conformation B dataset has the best performance. (B) The performance of Balanced
305 Random Forest classifier on the test set. Accuracy, recall, specificity, and AUROC can reach 81%, 77%,
306  81%, and 87% respectively. (C) The ROC curves for classification performance. The Receiver Operating
307 Characteristic (ROC) for the five-fold cross validation is shown. Each fold coloured separately with the
308 AUC score and the mean ROC curve are coloured blue, and the random probability is shown as black

309 dash lines.

310  iM-Seeker measures the iM structure stability

311 The literature-derived data (Supplementary Table S1) and the experimental biophysical data
312  (Supplementary Table S2) were combined to a collection of 206 C-rich DNA sequences with
313  their corresponding pHr values. The comparison of CD spectroscopy, UV spectroscopy, and
314  TDS between representative iM forming sequence and representative non-iM forming
315  sequence shows the reliability of our experiments (Supplementary Figure S1). However, one

316  study contained 196 different sequences which contained only C and T. To avoid bias, these
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317  DNA sequences were excluded to avoid misinterpretation of the importance of different
318  nucleotides in the loops. 171 data items were selected as high-confident iM-containing items
319  from 206 items based on criteria including TDS (Supplementary Data Set 1). After filtering data
320 items with the same putative iM but different pHr and combining iM items with the same
321  putative iM and equal pHr from high-confident data items, 120 putative iMs were extracted
322  from the remaining sequence segments using the consistent Putative-iM-Searcher strategies
323  (greedy, non-overlapped, and conformation A) with classification session followed by feature
324  selection (Supplementary Data Set 2). The 120 pHy values standardized and rescaled to range
325 from 0 to 1 via min-max scaling to define iM folding stability.

326

327 A five-fold cross-validation assessment was applied to thirteen regressors on regression
328  datasets to find the model. Considering the mean of three indicators (R?>, RMSE, and MAE) on
329 five-folds, XGBoost was selected as the final model because of the best performance (Table 1).
330 The whole dataset was divided into training & validation set with 80% data and test set
331  containing the remaining data. After optimization using cross-validation and grid search on
332  training & validation set, the final XGBoost model was applied to the test set to assess the
333 performance. R?, RMSE, and MAE can reach 0.642, 0.104, and 0.08, respectively, which shows
334  the model can achieve good performance in estimating the folding strength (Figure 3). The
335  Pearson Correlation Coefficient (PCC) also reveals a strong correlation between measured and
336  predicted folding strength (p<107).

337
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348  Table 1. Model comparison of thirteen regressors.

Root Mean Squared Mean Absolute Error
Index RZ Mean Error Mean Mean
Linear Regression -0.158 0.195 0.139
Ridge Regression -0.012 0.182 0.132
Lasso Regression -0.027 0.185 0.146
Elastic Net Linear
Regression -0.027 0.185 0.146
Decision Tree -0.002 0.181 0.134
Random Forest 0.434 0.138 0.105
Support Vector
Regression -0.043 0.185 0.130
Radial Basis Function
Support Vector
Regression 0.187 0.165 0.120
KNN 0.111 0.173 0.128
AdaBoosting 0.355 0.147 0.113
Gradient Boosting 0.379 0.144 0.110
RANSAC -2.184 0.315 0.222
XGBoost 0.458 0.134 0.103

349
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Figure 3. The performance evaluation of the XGBoost regressor on the test set (n=24). The Pearson
Correlation Coefficient (PCC, 0.852, p<107) and R? (0.642) show a positive correlation between

measured and predicted iM folding strength.

Model interpretation provides insights into important features for iM stability

We investigated the relative importance of the iM features extracted from the regression model.
Features with high importance contribute more to the construction of the model and may play a more
crucial role in iM formation than features with low importance. We divided the features into two groups
based on the Pearson Correlation Coefficient (PCC): features with positive PCC were assumed to
strengthen iM formation (Supplementary Table S3). In contrast, negative-correlated features were
supposed to have a negative effect (Supplementary Table S4). In each group, the top 10 critical features
are shown in Figure 4. Nucleotide composition affects the stability of iM structures. Stable iMs prefer to
contain more C and T, especially T in side loops (Figure 4A). High G density and A density are associated
with unstable iMs, especially these two nucleotides in side loops (Figure 4B). In addition, the C-tract
length and loop length are two dominant features in all length-relative features. Long C-tract and short
loop length can help with iM stability. Previous studies showed that in the same experimental condition,

iMs with long C-tracts tend to be more stable than iMs with short C-tracts (55,56).
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A Top 10 important features with positive PCC with folding strength
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Figure 4. The iM feature importance obtained from the regression model. (A) Top 10 important features
with positive Pearson Correlation Coefficient (PCC) with folding stability. (B) Top 10 important features

with negative Pearson Correlation Coefficient (PCC) with folding stability.

DISCUSSION

Unlike the computational prediction of G4 structures, iMs are more complex in terms of what
makes them stable (8,27,29,57-60) and it has been difficult to make predictions about iMs in
the same way as G4s. Although, putative iMs have a similar sequence pattern to G4s, the
stability of the structures has been more difficult to predict, as it has been shown that iMs can
tolerate changes in sequence more than G4s (29), but are overall less stable in general.
Therefore, iM-specific experimental data is critical to construct accurate computational models
for iM prediction and stability. To the best of our knowledge, there are no iM-specific
computational tools. Due to the similarity in sequence patterns between G4 and iM, some
previous software developed for G4 can be used on putative iM searching and can calculate a
numeric value to estimate iM (8,14,22) but there was no iM-specific experimental results which

were fed into models to help with model design and training. In this paper, we developed both
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385 a putative iM-forming sequence searching tool, Putative-iM-Searcher, and a machine learning
386 approach to prediction of DNA iM folding status and folding strength, iM-Seeker. We
387 considered that the identification of putative iM forming sequences, their folding status and
388 folding strength were three significant parts of iM investigation that could benefit from
389 computational predictions. Putative-iM-Searcher can construct directed graphs based on
390 different configurations, can search all putative iM formations and conformations by graph
391  traversal from input DNA sequences. Users can choose to set parameters including C-tract
392 length, the first loop length, the second loop length, and the third loop length. The
393  representative conformations can be obtained based on overlapping & non-overlapping
394  strategy, greedy & non-greedy strategy, and representative-conformation strategy. Users can
395 choose to obtain all putative iM formations and conformations as well. Based on the detected
396  putative iMs by Putative-iM-Searcher, we used genome-wide CUT&Tag sequencing data and
397  experimental data with pHr from previous studies and our experiments to develop iM-Seeker.
398 This is the first time a machine learning approach has been applied to classification of this
399  specific DNA structure motif and will significantly improve the accuracy of in silco iM prediction.
400 The iMab antibody-based CUT&Tag sequencing data presents the folding status of C-rich
401  sequences and iM-Seeker captures the difference between features in both folded iMs and
402  unfolded C-rich sequences and allows for classification. Another regression model was trained
403  oniM sequences derived from biophysical data, corresponding sequence with pHr to measure

404  the folding strength.

405 iM-Seeker has good performance on both classification and regression tasks. The Balanced
406  Random Forest classifier has higher performance in the imbalanced dataset. The number of
407  folded iMs (8,837 iMs) is much less than unfolded motifs (733,115 iMs), which can mislead the
408  classifier to overfit the unfolded dataset and classify folded iMs into unfolded category
409 incorrectly. However, Balanced Random Forest is a decision-tree-based ensemble learning
410  model that employs an under-sampling strategy to avoid overfitting of unfolded samples.
411 Therefore, both folded samples and unfolded samples have good performance (recall 77%;
412 specificity 81%). XGBoost, another ensemble learning approach which was also used in the G4
413  classification mission (18), is selected for the estimation of folding strength among thirteen
414  regressors. Although the number of data items for the regression model is limited, the

415  regression part of iM-Seeker can also provide a reliable reference to evaluate the iM strength
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416 (R? 0.642; RMSE 0.104; MAE 0.08). Previous studies investigated the iM formation features
417  which can influence the iM strength by biophysical characterisation. The length of C-tracts,
418  short loop length and high density of C and T can enhance the formation of iMs because other
419  strong structures can be formed with G and A, which can result in the competition between
420  iM and other structure motifs (8,55,56,61,62). Important features extracted from the regression
421  model revealed a consistent result with previous research, which also justifies the reliability of
422  our model. However, the stabilising effect of additional thymines is now quite well
423  documented and consistent with the results observed here (29,63). Also the competition
424  between guanines and cytosines were previously used in G4-hunter (14) as a scoring factor as
425  having the complementary base within the sequences can skew structure formation towards

426 hairpin (29).
427

428  iM-Seeker offers users the opportunity for a dedicated iM-searching tool, which is based on
429  machine learning from existing datasets. The approach could be applied to other DNA and
430 RNA structures where there is a wide range of data available, for example to further increase

431  the accuracy of prediction of formation of G4 structures.
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