

1
2 **Prediction of DNA i-Motifs Via Machine Learning**
3

4 Bibo Yang,^{1,†} Dilek Guneri,^{2,†} Haopeng Yu,^{1,†,*} Elisé P. Wright,³ Wenqian Chen,² Zoë A. E. Waller,²
5 * Yiliang Ding^{1,*}

6
7 ¹ Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park,
8 Norwich, NR4 7UH, UK

9 ² School of Pharmacy, University College London, London, WC1N 1AX, UK

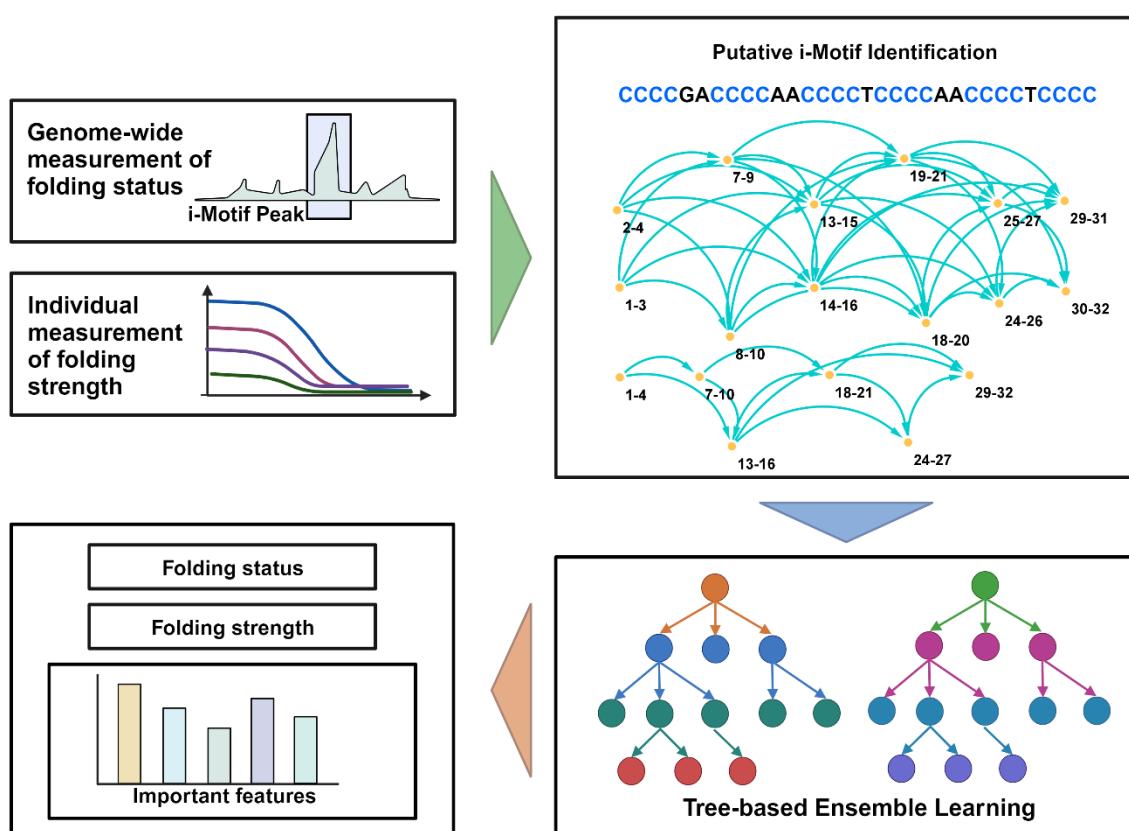
10 ³ Molecular Physiology School of Medicine, and Molecular Medicine Research Group, University
11 of Western Sydney, Campbelltown, NSW 1797, Australia

12 *To whom correspondence should be addressed. Tel: +44 (0)1603 450266; Email:
13 yiliang.ding@jic.ac.uk. Correspondence may also be addressed to haopeng.yu@jic.ac.uk or
14 z.waller@ucl.ac.uk.

15 [†]Joint First Authors.

16

17 **GRAPHICAL ABSTRACT**



18

19 **ABSTRACT**

20 i-Motifs (iMs), are secondary structures formed in cytosine-rich DNA sequences and are
21 involved in multiple functions in the genome. Although putative iM forming sequences are

22 widely distributed in the human genome, the folding status and strength of putative iMs vary
23 dramatically. Much previous research on iM has focused on assessing the iM folding properties
24 using biophysical experiments. However, there are no dedicated computational tools for
25 predicting the folding status and strength of iM structures. Here, we introduce a machine
26 learning pipeline, iM-Seeker, to predict both folding status and structural stability of DNA iMs.
27 The programme iM-Seeker incorporates a Balanced Random Forest classifier trained on
28 genome-wide iMab antibody-based CUT&Tag sequencing data to predict the folding status
29 and an Extreme Gradient Boosting regressor to estimate the folding strength according to
30 both literature biophysical data and our in-house biophysical experiments. iM-Seeker predicts
31 DNA iM folding status with a classification accuracy of 81% and estimates the folding strength
32 with coefficient of determination (R^2) of 0.642 on the test set. Model interpretation confirms
33 that the nucleotide composition of the C-rich sequence significantly affects iM stability, with a
34 positive correlation with sequences containing cytosine and thymine and a negative
35 correlation with guanine and adenine.

36

37 INTRODUCTION

38 Nucleotides are the basic units that form DNA and RNA, two key molecules in the central
39 dogma. DNA encodes genetic information, which is transcribed to mRNA and then translated
40 to protein. In addition to this transfer of information, DNA and RNA can form complex
41 structures, which can play crucial functional roles in organisms. Besides the canonical Watson-
42 Crick double-helical B-form structure, DNA can form non-canonical secondary structures such
43 as G-quadruplexes (G4s) and i-Motifs (iMs). G4s are four-stranded structures formed from G-
44 rich sequences and are stabilised by Hoogsteen hydrogen bonding between guanines (1). iMs
45 are also four-stranded structures, but formed from cytosine C-rich regions that are stabilised
46 by hemi-protonated C-C base pairs ($C^+:C$) (2,3). Complementary G-rich and C-rich sequences
47 can form G4s and iMs interdependently during distinct cellular processes (4). As a non-
48 canonical structure, iMs are indicated to play an important role in the genome. There are an
49 increasing number of *in vitro* and *in cellulo* studies that report evidence that iMs could fold in
50 promotor region of certain genes, telomeres and untranslated regions. They have also been
51 implicated as a regulatory element associated with the cell cycle, transcription, chromatin
52 remodelling, as well as transposable element dynamics (5-7).

53 Commonly, computational analysis of putative iMs is limited to indirect identification by
54 searching for potential complementary G4 sequences in the genome (8). Plenty of G4
55 prediction tools have been developed previously, and these can generally be divided into two
56 categories based on whether or not the models utilised experimentally-derived G4-specific
57 data. Classical computational tools which do not use G4-specific data, are typically constructed
58 from string-matching models based on a specific sequence pattern. Others use a designed
59 scoring system according to pre-defined rules. For example, platforms like Quadparser (9),
60 Quadruplexes (10), and AllQuads (11), used algorithms like regular expression to search
61 G4 forming sequences, whilst QGRS Mapper (12), G4P (13), and G4hunter (14), use scoring
62 models that can estimate the probability or strength of putative G4s (15). These models
63 have potential to be used in iM-forming sequences searching, because the putative iMs have
64 in principle similar sequence patterns and some of the rules will be transferrable to both
65 structures. For example, enrichment of G/C in a C/G-rich sequence disfavours both G4 and iMs.
66 In contrast, there are also platforms guided by G4-specific data (e.g., biophysical properties,
67 G4 ChIP-seq, G4 CUT&Tag, and G4-seq) that can capture additional G4-specific features to
68 improve the G4 prediction performance (16). Software like PQSfinder (17), G4boost (18),
69 Quadron (19), DeepG4 (20), and G4-folding energy estimation module integrated in RNAFold
70 (21) use data from G4-specific experiments to increase the accuracy of predictions. Therefore,
71 the application of these models on iM identification is limited. Out of the existing searching
72 platforms, G4-Hunter is the easiest to use for searching for iMs as it was designed to take into
73 account C with negative values both to disfavour regions rich in alternative G/C and to score
74 both strand of a DNA duplex simultaneously. C-richness and C-skew is obviously important
75 for iM formation (14). Besides, G4-iM Grinder can also be used to predict and evaluate G4 and
76 iM forming sequences (22). Typically, individual C-rich sequences are biophysically assed for
77 their capability to form iMs. UV spectroscopy is typically used to determine the thermodynamic
78 properties such as melting (T_m) and annealing (T_a) temperatures (23). Furthermore, thermal
79 difference spectra (TDS) are typically generated, using the difference in absorbance spectra
80 between folded and unfolded DNA, determining a signature to identify the formed secondary
81 DNA structure (24). UV spectroscopy is often accompanied with circular dichroism (CD)
82 spectroscopy to conform the formation of i-motif structure. The transitional pH (pH_T) is an

83 important measure of the stability of iM structures, determined by assessing the formation of
84 iM across a pH-range (8,25-27).

85 A systematic prediction tool to identify DNA iM folding status and their potential
86 stability is lacking. Recently, the landscape of iM forming sequences in the whole human
87 genome was determined via the novel CUT&Tag sequencing using anti-iM iMab antibodies on
88 living human cells (7). Here we introduce, iM-Seeker, a novel computational pipeline using the
89 genome-wide iM profile (7), iM-stability data from the literature, and our in-house biophysical
90 analysis to predict iM structure formation and stability. iM-Seeker utilised a newly-designed
91 graph-based algorithm to search for putative iM forming sequences within an entered DNA
92 sequence. The Balanced Random Forest script is trained on the iMs identified in the human
93 genome derived from iMab-based CUT&Tag sequencing data (7) and was further developed
94 to predict iM structure folding status within DNA sequences. iM-Seeker also incorporates the
95 Extreme Gradient Boosting (XGBoost) regressor to predict the structure stability, by cross
96 referencing iM forming DNA sequences to their corresponding pH_T values. Furthermore, this
97 computational model has shed new insight into the importance of nucleotide composition in
98 iM stability. A positive correlation was observed for sequences containing cytosine and
99 thymine whilst sequences rich in guanine and adenine were found to have a negative
100 correlation with iM stability. Alongside nucleotide composition, long C-tract lengths
101 accompanied with short loop lengths contribute towards high stability of iM structure.

102

103 MATERIAL AND METHODS

104 Data collection

105 We collected the published CUT&Tag sequencing data in the human genome (7). The data was
106 downloaded from the NCBI GEO database (accession number GSE220882). The BigWig format
107 data included iM forming sequences from both 93T449 (WDLPS) cell line and human
108 embryonic kidney (HEK293T) cell line with three biological replicates for each cell line. The
109 focus was concentrated on HEK293T cell data which was presented with more high-confident
110 iM regions than WDLPS cells (7). The downloaded BigWig files were converted to bedGraph
111 files and iM-peak region were cumulated with SEACR v1.3 set to "0.01 non stringent"

112 parameters (7,28). The intersected iM-peak regions among three biological replicates were
113 defined as the final high-confident iM-peak regions. Literature-derived data of i-Motif forming
114 sequences and their corresponding pH_T values were collected (Supplementary Table S1).

115

116 **Graph-based putative i-motif searching**

117 Putative i-Motifs can be identified based on their sequence pattern (C_{≥3}N₁₋₁₂)₃C_{≥3} where C
118 represents cytosine and N represent any nucleotide (29,30). The classic approach to identify
119 potential putative iM-forming sequences is to search complementary sequences of G4-
120 forming sequences based on sequence pattern matching. This assumption and current
121 approaches limit the identification of iMs with their different variations in C:C(+) formations
122 and topologies compared to G4s (29,30). To overcome this limitation, we designed a general
123 pattern for iM formation searching using directed graph traversal process. For one sequence,
124 the C-tracts can be regarded as nodes, and the loops can be defined as edges. All possible C-
125 tracts (C-tract length ≥ 3) are identified as nodes in the first phase, and if the distance between
126 two nodes (loop length) is between one and twelve nucleotides, a directed edge is added
127 between the two nodes. After constructing the directed graph, all possible iM formations and
128 conformations are identified via the traversal of the directed graph from every node. All
129 possible putative iMs are represented with the sub-population containing the first four nodes
130 and three edges of the traversing paths with at least four nodes. To choose the representative
131 iM structures from all possible iM structures, four strategies were introduced (greedy non-
132 overlapping, greedy overlapping, non-greedy non-overlapping, and non-greedy overlapping)
133 maintaining the nomenclature derived from QuadBase2 (31). Overlapping strategy selects an
134 iM representative structure for each iM starting coordinate while the non-overlapping function
135 has no coinciding iM representatives. The greedy strategy maximises the loop length of iM
136 representatives with longest C-tract. For non-greedy strategies, the iM with the most extended
137 C-tract length and the shortest loop length can be selected. One representative iM forming
138 sequence may have many different iM conformations although they share the same sequence
139 content. Two representative iM formations are chosen for according to their stability: (A) the
140 structure with minimum standard deviation of loop lengths; (B) the structure with minimum
141 length of the two side loops. We called the initial computational pipeline Putative-iM-Searcher
142 (Figure 1A).

143

144 **Dataset construction and feature selection for machine learning**

145 We employed a Putative-iM-Searcher in high-confident iM-peak regions and interval regions
146 in both Watson and Crick strands in the human reference genome (GRCh38). Putative iMs in
147 high confident iM-peak regions were defined as folded iMs, and unfolded C-rich sequences in
148 interval regions. We used a non-overlapping strategy to avoid bias in the performance
149 estimation of the classification model. Four classification datasets were constructed:
150 (Classification dataset 1) non-overlapping, greedy and conformation A; (Classification dataset
151 2) non-overlapping, greedy and conformation B; (Classification dataset 3) non-overlapping,
152 non-greedy and conformation A; (Classification dataset 4) non-overlapping, non-greedy and
153 conformation B.

154

155 We selected the data items with reliable pH_T from literature-derived data. We also generated
156 our in-house biophysical experimental data for developing regression models. The Putative-
157 iM-Searcher was applied to filtered dataset of iM forming sequences with their corresponding
158 pH_T values. The iMs which meet the sequence pattern with corresponding pH_T were used for
159 regression model construction. We also filtered iM items with the same putative iM forming
160 sequence but different pH_T and combined iM items with the same putative iM forming
161 sequence and pH_T to avoid bias. Both our classification model and regression model used
162 thirty-three different features: C-tract length, iM length, loop length, middle loop length,
163 longest side loop length, shortest side loop length, sum of two side loops, longest loop length,
164 shortest loop length, A density in iMs, C density in iMs, G density in iMs, T density in iMs, A
165 density in loops, C density in loops, G density in loops, T density in loops, A density in middle
166 loop, C density in middle loop, G density in middle loop, T density in middle loop, A density in
167 longest side loop, C density in longest side loop, G density in longest side loop, T density in
168 longest side loop, A density in shortest side loop, C density in shortest side loop, G density in
169 shortest side loop, T density in shortest side loop, A density in two side loops, C density in two
170 side loops, G density in two side loops, T density in two side loops. For the regression system,
171 the iM folding strength is defined as the pH_T after standardization and min-max scaling.

172

173 **The imbalanced ensemble learning to predict folded and unfolded i-motifs**

174 A five-fold cross-validation assessment was applied to evaluate the classification performance
175 of the iMs for four datasets via nine classifiers including Decision Trees (32), Random Forest
176 (33), Balanced Random Forest (34), Naive Bayes (35), Linear Discriminant Analysis (36), Easy
177 Ensemble (37), Balanced Bagging (38,39), Random Undersampling Boosting (RUSBoost) (40),
178 and Extreme Gradient Boosting (XGBoost) algorithms (41). The combination of dataset and
179 model which achieve best performance via area under the receiver operating characteristic
180 curve (AUROC) and balanced accuracy, was used for classification. 90% of data in the whole
181 dataset was randomly selected and separated into a training & validation set, and the
182 remaining 10% of data was used as the test set. Five-fold cross-validation and grid searching
183 on training & validation set were employed to search for the best hyperparameters and test
184 set was used to evaluate the model's classification performance on accuracy, recall, specificity,
185 and AUROC.

186

187 **The regression algorithm to measure the strength of i-motif using ensemble learning.**

188 Consistent iM searching and conformation identification strategy with classification dataset
189 was applied in the regression model. A five-fold cross validation assessment was applied to
190 evaluate the regression performance of the iMs based on thirteen regressors including
191 Decision Trees (32), Random Forest (33), Linear Regression (42), Ridge Regression (43), Lasso
192 Regression (44), Elastic Net Linear Regression (45), Linear Support Vector Regression (46),
193 Radial Basis Function Support Vector Regression (47), K-Nearest Neighbors Regression (KNN)
194 (48), Adaptive Boosting (AdaBoost) (49), Gradient Boosting (50), Extreme Gradient Boosting
195 (XGBoost) (41), and Random Sample Consensus (RANSAC) algorithms (51). 80% of data in the
196 whole dataset was separated into training & validation set randomly for hyperparameters
197 adjustment by five-fold cross-validation and grid searching, and 20% of data was used to
198 evaluate the regression performance of the model by coefficient of determination (R^2), root
199 mean squared error (RMSE), and mean absolute error (MAE) (18). The feature importance of
200 the regression model was extracted from the model with 'importance_type=gain'.

201

202 **Implementation**

203 The algorithm was written in Python 3, and machine learning was employed via the Python
204 Scikit-learn package (52), Imbalanced-learn package (53), and XGBoost package (41). The
205 source code and documentation of Putative-iM-Searcher are available at
206 <https://github.com/YANGB1/Putative-iM-Searcher>. Combining the classification model and
207 regression model, we built a computational tool called iM-Seeker, which is available at
208 <https://github.com/YANGB1/iM-Seeker>.

209

210 **Biophysical Characterisation of C-rich DNA sequences**

211 The test oligonucleotides were synthesised and reverse phase HPLC purified by Eurogentec
212 (Belgium) and were resuspended in ultra-pure water. The DNA final concentration was
213 confirmed via Nanodrop. Samples were prepared as 10 μ M DNA in 10 mM sodium cacodylate
214 (NaCaco) and 100 mM KCl buffer with the range of pH 4-8. The DNA samples were annealed
215 prior to biophysical characterisation by denaturing the DNA for 5 mins at 95°C and allowing
216 to reanneal by slowly cooling down to room temperature, overnight.

217 The CD spectra of the annealed C-rich sequences were recorded on a JASCO 1500
218 spectropolarimeter under a constant flow of nitrogen. An accumulation of four CD spectra
219 scans was acquired from 200-320 nm at 20°C with a data pitch of 0.5 nm, scanning speed of
220 200 nm/min with 1 second response time, 1 nm bandwidth, and 200 mdeg sensitivity. The
221 measured DNA samples and buffer at corresponding pH were subtracted before zero
222 correction at 320 nm. The transitional pH (pH_T) was determined by plotting the measured
223 ellipticity at 288 nm and pH range and the resulting inflection point of the Boltzmann
224 sigmoidal or bi-phase sigmoidal fit using Graphpad Prism (Version 10.1.0.316).

225 The CD samples at pH 5.5 were diluted in the same buffer to 2.5 μ M final DNA
226 concentration. These samples were used to perform UV spectroscopy to obtain the thermal
227 difference spectra (TDS) and determine the melting temperature (T_M), annealing temperature
228 (T_A) and their respective hysteresis (T_H). For melting/annealing experiments, the absorbance at
229 295 nm was measured at every 1°C increase/decrease in three cycles of denaturation and
230 reannealing. The cycle begins with 10 mins at 4°C followed by gradual increase of 0.5°C/min
231 to 95°C (melting). Once the final temperature was reached, the samples were kept at 95°C for
232 10 mins before reversing the process (annealing). The melting and annealing temperatures
233 were determined via the first derivative method of for each measured cycle as previously

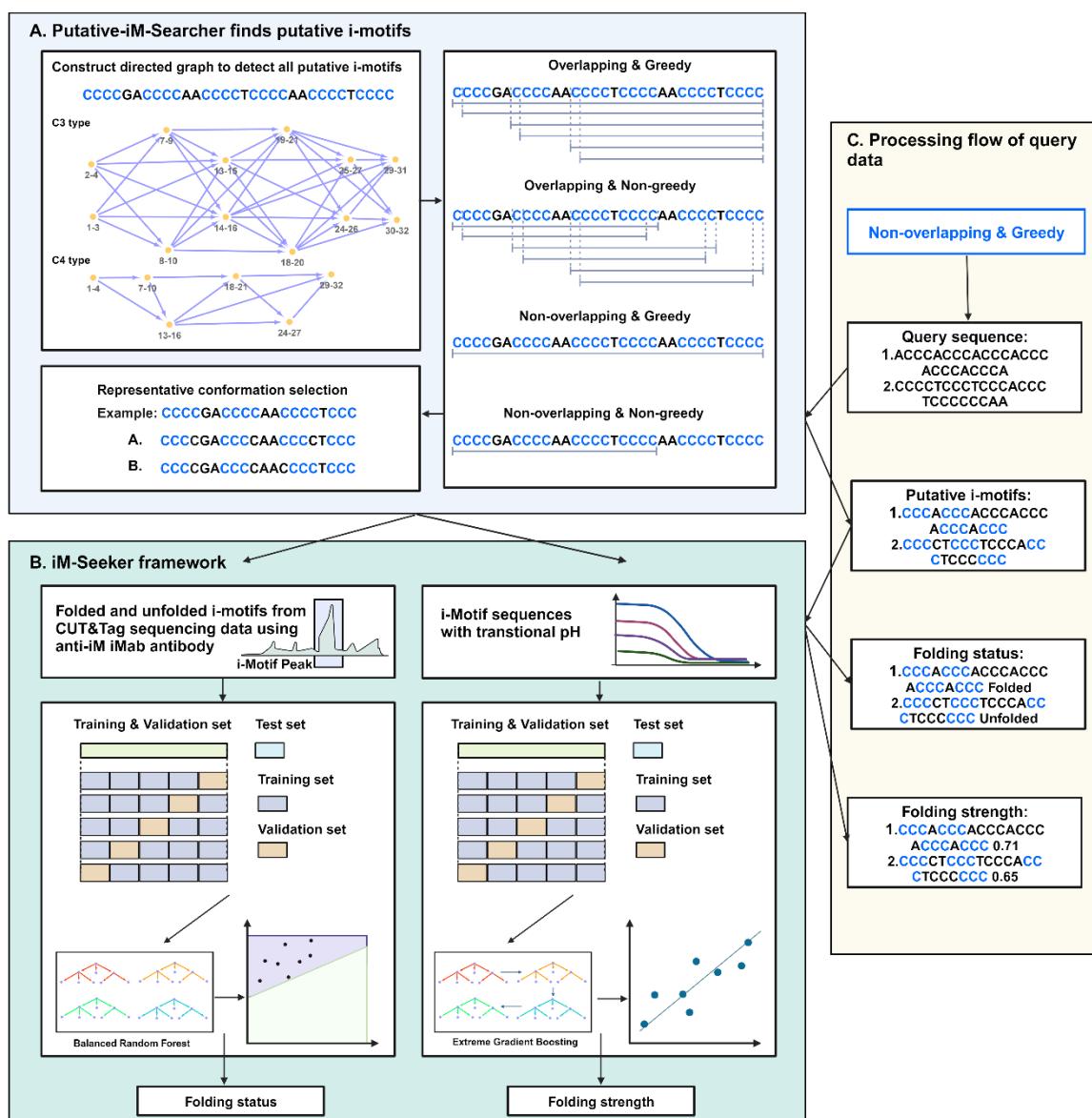
234 described (54). The samples were kept at 4°C after the completion of the final reannealing
235 cycle. For the thermal difference spectra (TDS), these samples were used to obtain the
236 absorbance spectrum (230-320 nm). The samples were kept at 4°C for an additional 10 mins
237 before measuring the absorbance spectrum of potentially folded iMs. This was followed by a
238 second absorbance spectrum after 10 mins at 95°C for the unstructured DNA structure.
239 Individual TDS signatures were determined by subtracting both absorbance spectra (unfolded-
240 folded DNA structure), zero correcting at 320 nm, and finally normalisation to the maximum
241 absorbance to 1 as previously described (24).

242

243 **RESULTS**

244 **Description of the iM-Seeker framework**

245 iM-Seeker is a computational framework using machine learning to predict the folding status
246 and folding strength of iMs. The outline of the whole iM-Seeker structure is shown in Figure
247 1. The Putative-iM-Searcher was developed to discover the putative iM forming sequences
248 (Figure 1A). Putative-iM-Searcher constructs a directed graph model and obtains
249 representative conformation from all DNA structure conformations based on the configuration
250 of overlapping & non-overlapping strategy, greedy & non-greedy strategy, and
251 representative-conformation-selection strategy. The Balanced Random Forest classification
252 model and XGBoost regression model were trained on iMab-based genome-wide iM
253 landscape and biophysical experimental justified iM with pH_T, respectively, for the folding
254 status prediction and folding strength estimation (Figure 1B). The workflow of iM-Seeker after
255 receiving the query sequences is shown in Figure 1C. Putative-iM-Searcher was applied to
256 query sequences to find putative iM forming sequences in the first stage. For each putative iM
257 individual, the Balanced Random Forest classification model will be used to predict the folding
258 status. Next, an estimated folding strength score was calculated by the XGBoost regression
259 model for putative iM individuals.



260

261 **Figure 1.** The outline of the whole iM-Seeker. **(A)** The framework of Putative-iM-Searcher. Putative-iM-
262 Searcher can detect all i-motif conformation and representative conformation based on overlapping &
263 non-overlapping strategy, greedy & non-greedy strategy, and representative-conformation strategy. **(B)**
264 The framework of iM-Seeker. iM-Seeker employs Putative-iM-Searcher to find putative i-motif forming
265 sequences. Balanced Random Forest classification model and XGBoost regression model are developed
266 to predict the folding status and folding strength, respectively. **(C)** The processing flow of query data
267 using iM-Seeker. Created with BioRender.com.

268

269 **iM-Seeker predicts iM structure folding status**

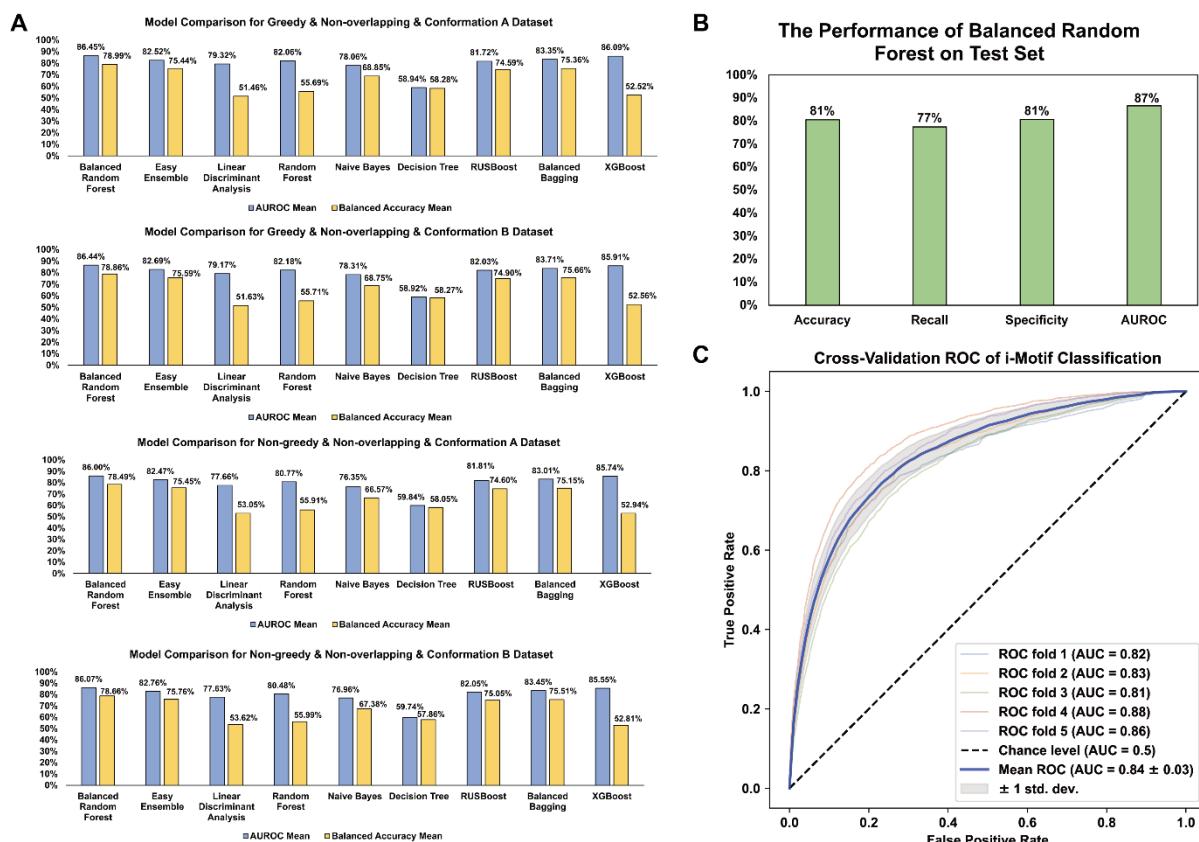
270 Putative iM forming sequences in the intersected high-confident iM-peak regions among
271 three biological replicates from the CUT&Tag sequencing data were defined as folded iMs
272 while unfolded C-rich sequences can be found in interval regions. For greedy and non-
273 overlapped two classification datasets, they both included 8,837 folded iMs and 733,115
274 unfolded C-rich sequences while 9,641 folded iMs and 755,747 unfolded C-rich sequences
275 were in non-greedy and non-overlapped two datasets.

276

277 Thirty-three features from labelled folded and unfolded putative iM sequences were derived.
278 A five-fold cross-validation assessment was applied on nine classifiers on four classification
279 datasets to select the best dataset and model. Considering the mean AUROC score and mean
280 balanced accuracy of five folds, Balanced Random Forest performed best in all four datasets
281 because the balanced learning strategy can better fit our imbalanced datasets. Thus, Balanced
282 Random Forest was selected as the final classifier. Greedy and non-overlapped two datasets
283 outperformed the non-greedy and non-overlapped datasets in terms of the two indicators.
284 Although there is no significant difference between conformation A and B for greedy and non-
285 overlapped datasets, both AUROC and balanced accuracy of conformation A were found to be
286 higher than B (Figure 2A). Thus, we chose conformation A dataset of greedy and non-
287 overlapped strategy as final dataset for classification task.

288

289 The whole dataset was divided into the training & validation set (90%) and test set (10%)
290 because the whole dataset contains ~740,000 data items, test set with ~74,000 (10%) data
291 items is enough to test the model performance. The Balanced Random Forest model was
292 optimised by cross-validation and grid search on training & validation set. We evaluated the
293 model performance on the test set with 81% accuracy, 77% recall, 81% specificity, and 87%
294 AUROC score, which show the model can achieve good performance in both folded iMs and
295 unfolded C-rich sequences (Figure 2B). Besides, we assessed the model's generalisation
296 performance through five-fold cross-validation deployed across the entire dataset on AUROC
297 (Figure 2C). The AUROC scores on all five folds are all higher than 0.8, which shows the excellent
298 generalisation performance.



299

300 **Figure 2.** Model selection and performance estimation of classification model. **(A)** The comparison
301 among nine models (Decision Trees, Random Forest, Balanced Random Forest, Naive Bayes, Linear
302 Discriminant Analysis, Easy Ensemble, Balanced Bagging, RUSBoost, and XGBoost) on four classification
303 datasets. AUROC and balanced accuracy show that Balanced Random Forest on greedy & non-
304 overlapping & conformation B dataset has the best performance. **(B)** The performance of Balanced
305 Random Forest classifier on the test set. Accuracy, recall, specificity, and AUROC can reach 81%, 77%,
306 81%, and 87% respectively. **(C)** The ROC curves for classification performance. The Receiver Operating
307 Characteristic (ROC) for the five-fold cross validation is shown. Each fold coloured separately with the
308 AUC score and the mean ROC curve are coloured blue, and the random probability is shown as black
309 dash lines.

310 **iM-Seeker measures the iM structure stability**

311 The literature-derived data (Supplementary Table S1) and the experimental biophysical data
312 (Supplementary Table S2) were combined to a collection of 206 C-rich DNA sequences with
313 their corresponding pH_T values. The comparison of CD spectroscopy, UV spectroscopy, and
314 TDS between representative iM forming sequence and representative non-iM forming
315 sequence shows the reliability of our experiments (Supplementary Figure S1). However, one
316 study contained 196 different sequences which contained only C and T. To avoid bias, these

317 DNA sequences were excluded to avoid misinterpretation of the importance of different
318 nucleotides in the loops. 171 data items were selected as high-confident iM-containing items
319 from 206 items based on criteria including TDS (Supplementary Data Set 1). After filtering data
320 items with the same putative iM but different pH_T and combining iM items with the same
321 putative iM and equal pH_T from high-confident data items, 120 putative iMs were extracted
322 from the remaining sequence segments using the consistent Putative-iM-Searcher strategies
323 (greedy, non-overlapped, and conformation A) with classification session followed by feature
324 selection (Supplementary Data Set 2). The 120 pH_T values standardized and rescaled to range
325 from 0 to 1 via min-max scaling to define iM folding stability.

326

327 A five-fold cross-validation assessment was applied to thirteen regressors on regression
328 datasets to find the model. Considering the mean of three indicators (R^2 , RMSE, and MAE) on
329 five-folds, XGBoost was selected as the final model because of the best performance (Table 1).
330 The whole dataset was divided into training & validation set with 80% data and test set
331 containing the remaining data. After optimization using cross-validation and grid search on
332 training & validation set, the final XGBoost model was applied to the test set to assess the
333 performance. R^2 , RMSE, and MAE can reach 0.642, 0.104, and 0.08, respectively, which shows
334 the model can achieve good performance in estimating the folding strength (Figure 3). The
335 Pearson Correlation Coefficient (PCC) also reveals a strong correlation between measured and
336 predicted folding strength ($p < 10^{-7}$).

337

338

339

340

341

342

343

344

345

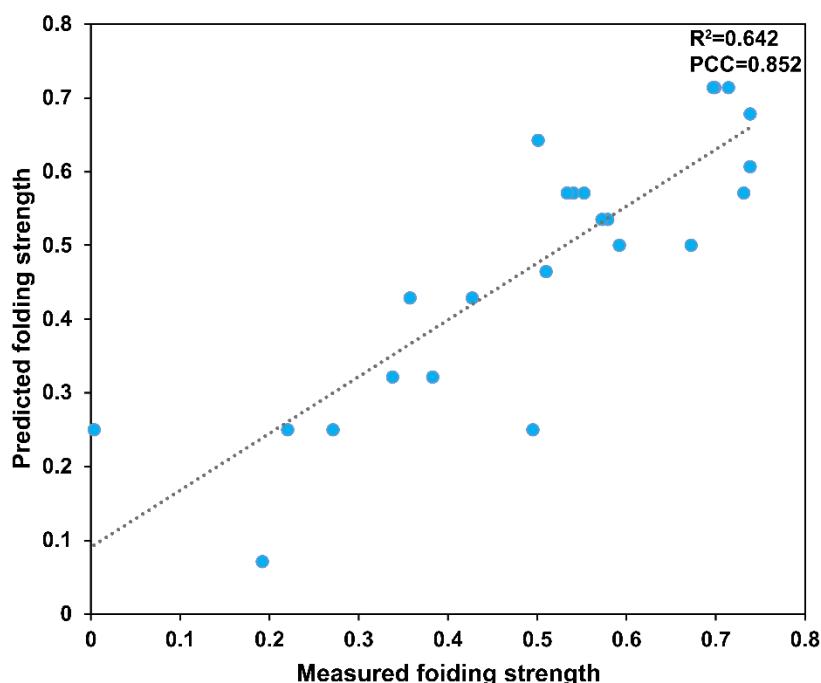
346

347

348 **Table 1.** Model comparison of thirteen regressors.

Index	R² Mean	Root Mean Squared	Mean Absolute Error
		Error Mean	Mean
Linear Regression	-0.158	0.195	0.139
Ridge Regression	-0.012	0.182	0.132
Lasso Regression	-0.027	0.185	0.146
Elastic Net Linear Regression	-0.027	0.185	0.146
Decision Tree	-0.002	0.181	0.134
Random Forest	0.434	0.138	0.105
Support Vector Regression	-0.043	0.185	0.130
Radial Basis Function			
Support Vector Regression	0.187	0.165	0.120
KNN	0.111	0.173	0.128
AdaBoosting	0.355	0.147	0.113
Gradient Boosting	0.379	0.144	0.110
RANSAC	-2.184	0.315	0.222
XGBoost	0.458	0.134	0.103

349



350

351 **Figure 3.** The performance evaluation of the XGBoost regressor on the test set (n=24). The Pearson
352 Correlation Coefficient (PCC, 0.852, $p < 10^{-7}$) and R^2 (0.642) show a positive correlation between
353 measured and predicted iM folding strength.

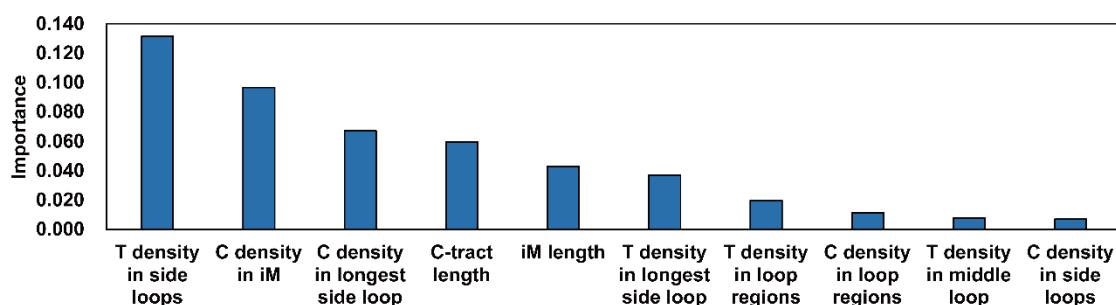
354

355 **Model interpretation provides insights into important features for iM stability**

356 We investigated the relative importance of the iM features extracted from the regression model.
357 Features with high importance contribute more to the construction of the model and may play a more
358 crucial role in iM formation than features with low importance. We divided the features into two groups
359 based on the Pearson Correlation Coefficient (PCC): features with positive PCC were assumed to
360 strengthen iM formation (Supplementary Table S3). In contrast, negative-correlated features were
361 supposed to have a negative effect (Supplementary Table S4). In each group, the top 10 critical features
362 are shown in Figure 4. Nucleotide composition affects the stability of iM structures. Stable iMs prefer to
363 contain more C and T, especially T in side loops (Figure 4A). High G density and A density are associated
364 with unstable iMs, especially these two nucleotides in side loops (Figure 4B). In addition, the C-tract
365 length and loop length are two dominant features in all length-relative features. Long C-tract and short
366 loop length can help with iM stability. Previous studies showed that in the same experimental condition,
367 iMs with long C-tracts tend to be more stable than iMs with short C-tracts (55,56).

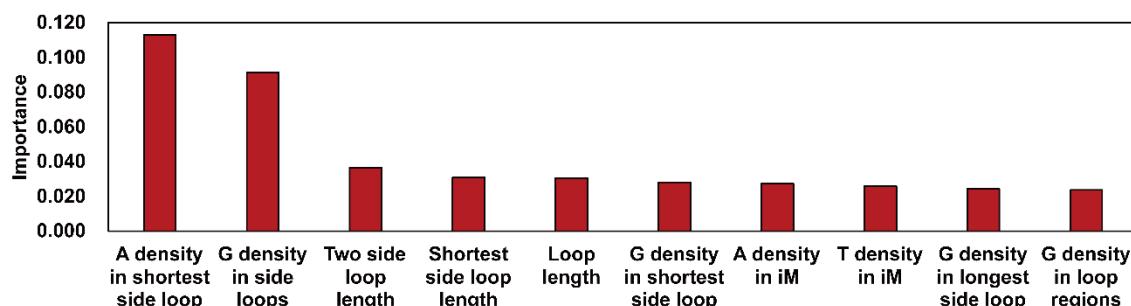
A

Top 10 important features with positive PCC with folding strength



B

Top 10 important features with negative PCC with folding strength



368

369 **Figure 4.** The iM feature importance obtained from the regression model. (A) Top 10 important features
370 with positive Pearson Correlation Coefficient (PCC) with folding stability. (B) Top 10 important features
371 with negative Pearson Correlation Coefficient (PCC) with folding stability.

372

373 DISCUSSION

374 Unlike the computational prediction of G4 structures, iMs are more complex in terms of what
375 makes them stable (8,27,29,57-60) and it has been difficult to make predictions about iMs in
376 the same way as G4s. Although, putative iMs have a similar sequence pattern to G4s, the
377 stability of the structures has been more difficult to predict, as it has been shown that iMs can
378 tolerate changes in sequence more than G4s (29), but are overall less stable in general.
379 Therefore, iM-specific experimental data is critical to construct accurate computational models
380 for iM prediction and stability. To the best of our knowledge, there are no iM-specific
381 computational tools. Due to the similarity in sequence patterns between G4 and iM, some
382 previous software developed for G4 can be used on putative iM searching and can calculate a
383 numeric value to estimate iM (8,14,22) but there was no iM-specific experimental results which
384 were fed into models to help with model design and training. In this paper, we developed both

385 a putative iM-forming sequence searching tool, Putative-iM-Searcher, and a machine learning
386 approach to prediction of DNA iM folding status and folding strength, iM-Seeker. We
387 considered that the identification of putative iM forming sequences, their folding status and
388 folding strength were three significant parts of iM investigation that could benefit from
389 computational predictions. Putative-iM-Searcher can construct directed graphs based on
390 different configurations, can search all putative iM formations and conformations by graph
391 traversal from input DNA sequences. Users can choose to set parameters including C-tract
392 length, the first loop length, the second loop length, and the third loop length. The
393 representative conformations can be obtained based on overlapping & non-overlapping
394 strategy, greedy & non-greedy strategy, and representative-conformation strategy. Users can
395 choose to obtain all putative iM formations and conformations as well. Based on the detected
396 putative iMs by Putative-iM-Searcher, we used genome-wide CUT&Tag sequencing data and
397 experimental data with pH_T from previous studies and our experiments to develop iM-Seeker.
398 This is the first time a machine learning approach has been applied to classification of this
399 specific DNA structure motif and will significantly improve the accuracy of *in silico* iM prediction.
400 The iMab antibody-based CUT&Tag sequencing data presents the folding status of C-rich
401 sequences and iM-Seeker captures the difference between features in both folded iMs and
402 unfolded C-rich sequences and allows for classification. Another regression model was trained
403 on iM sequences derived from biophysical data, corresponding sequence with pH_T to measure
404 the folding strength.

405 iM-Seeker has good performance on both classification and regression tasks. The Balanced
406 Random Forest classifier has higher performance in the imbalanced dataset. The number of
407 folded iMs (8,837 iMs) is much less than unfolded motifs (733,115 iMs), which can mislead the
408 classifier to overfit the unfolded dataset and classify folded iMs into unfolded category
409 incorrectly. However, Balanced Random Forest is a decision-tree-based ensemble learning
410 model that employs an under-sampling strategy to avoid overfitting of unfolded samples.
411 Therefore, both folded samples and unfolded samples have good performance (recall 77%;
412 specificity 81%). XGBoost, another ensemble learning approach which was also used in the G4
413 classification mission (18), is selected for the estimation of folding strength among thirteen
414 regressors. Although the number of data items for the regression model is limited, the
415 regression part of iM-Seeker can also provide a reliable reference to evaluate the iM strength

416 (R² 0.642; RMSE 0.104; MAE 0.08). Previous studies investigated the iM formation features
417 which can influence the iM strength by biophysical characterisation. The length of C-tracts,
418 short loop length and high density of C and T can enhance the formation of iMs because other
419 strong structures can be formed with G and A, which can result in the competition between
420 iM and other structure motifs (8,55,56,61,62). Important features extracted from the regression
421 model revealed a consistent result with previous research, which also justifies the reliability of
422 our model. However, the stabilising effect of additional thymines is now quite well
423 documented and consistent with the results observed here (29,63). Also the competition
424 between guanines and cytosines were previously used in G4-hunter (14) as a scoring factor as
425 having the complementary base within the sequences can skew structure formation towards
426 hairpin (29).

427

428 iM-Seeker offers users the opportunity for a dedicated iM-searching tool, which is based on
429 machine learning from existing datasets. The approach could be applied to other DNA and
430 RNA structures where there is a wide range of data available, for example to further increase
431 the accuracy of prediction of formation of G4 structures.

432 **SUPPLEMENTARY DATA**

433 Supplementary Data are available at NAR online.

434

435 **ACKNOWLEDGEMENT**

436 This research was partly supported by the Norwich Bioscience Institutes Partnership's Computing
437 infrastructure for Science (CiS) group through the provision of a High-Performance Computing Cluster
438 and the John Innes Centre Informatics team.

439

440 **FUNDING**

441 This work was supported by the United Kingdom Biotechnology and Biological Sciences Research
442 Council (BBSRC) [BB/X01102X/1] (BY, HY, YD); [BB/W000962/1] (DG, ZW, YD); BBSRC Norwich Research
443 Park Biosciences Doctoral Training Partnership [2578674] (BY); European Research Council (ERC)
444 [selected by the ERC, funded by BBSRC Horizon Europe Guarantee [EP/Y009886/1] (YD); Human Frontier
445 Science Program Fellowship [LT001077/2021-L] (HY);

446

447 **CONFLICT OF INTEREST**

448 The authors declare no competing financial interest.

449

450

451 **REFERENCES**

452

- 453 1. Lane, A.N., Chaires, J.B., Gray, R.D. and Trent, J.O. (2008) Stability and kinetics of G-quadruplex
454 structures. *Nucleic acids research*, **36**, 5482-5515.
- 455 2. Gehring, K., Leroy, J.-L. and Guéron, M. (1993) A tetrmeric DNA structure with protonated
456 cytosine-cytosine base pairs. *Nature*, **363**, 561-565.
- 457 3. Kang, C., Berger, I., Lockshin, C., Ratliff, R., Moyzis, R. and Rich, A. (1994) Crystal structure of
458 intercalated four-stranded d (C3T) at 1.4 Å resolution. *Proceedings of the National Academy of
459 Sciences*, **91**, 11636-11640.
- 460 4. King, J.J., Irving, K.L., Evans, C.W., Chikhale, R.V., Becker, R., Morris, C.J., Peña Martinez, C.D.,
461 Schofield, P., Christ, D. and Hurley, L.H. (2020) DNA G-quadruplex and i-motif structure
462 formation is interdependent in human cells. *Journal of the American Chemical Society*, **142**,
463 20600-20604.
- 464 5. Zeraati, M., Langley, D.B., Schofield, P., Moye, A.L., Rouet, R., Hughes, W.E., Bryan, T.M., Dinger,
465 M.E. and Christ, D. (2018) I-motif DNA structures are formed in the nuclei of human cells.
466 *Nature chemistry*, **10**, 631-637.
- 467 6. Ma, X., Feng, Y., Yang, Y., Li, X., Shi, Y., Tao, S., Cheng, X., Huang, J., Wang, X.-e. and Chen, C.
468 (2022) Genome-wide characterization of i-motifs and their potential roles in the stability and
469 evolution of transposable elements in rice. *Nucleic Acids Research*, **50**, 3226-3238.
- 470 7. Zanin, I., Ruggiero, E., Nicoletto, G., Lago, S., Maurizio, I., Gallina, I. and Richter, S.N. (2023)
471 Genome-wide mapping of i-motifs reveals their association with transcription regulation in
472 live human cells. *Nucleic Acids Research*, **51**, 8309-8321.
- 473 8. Wright, E.P., Huppert, J.L. and Waller, Z.A. (2017) Identification of multiple genomic DNA
474 sequences which form i-motif structures at neutral pH. *Nucleic acids research*, **45**, 2951-2959.
- 475 9. Huppert, J.L. and Balasubramanian, S. (2005) Prevalence of quadruplexes in the human
476 genome. *Nucleic acids research*, **33**, 2908-2916.
- 477 10. Todd, A.K., Johnston, M. and Neidle, S. (2005) Highly prevalent putative quadruplex sequence
478 motifs in human DNA. *Nucleic acids research*, **33**, 2901-2907.
- 479 11. Kudlicki, A.S. (2016) G-quadruplexes involving both strands of genomic DNA are highly
480 abundant and colocalize with functional sites in the human genome. *PLoS One*, **11**, e0146174.
- 481 12. Kikin, O., D'Antonio, L. and Bagga, P.S. (2006) QGRS Mapper: a web-based server for predicting
482 G-quadruplexes in nucleotide sequences. *Nucleic acids research*, **34**, W676-W682.
- 483 13. Eddy, J. and Maizels, N. (2006) Gene function correlates with potential for G4 DNA formation
484 in the human genome. *Nucleic acids research*, **34**, 3887-3896.
- 485 14. Bedrat, A., Lacroix, L. and Mergny, J.-L. (2016) Re-evaluation of G-quadruplex propensity with
486 G4Hunter. *Nucleic acids research*, **44**, 1746-1759.
- 487 15. Puig Lombardi, E. and Londoño-Vallejo, A. (2020) A guide to computational methods for G-
488 quadruplex prediction. *Nucleic acids research*, **48**, 1-15.
- 489 16. Elimelech-Zohar, K. and Orenstein, Y. (2023) An overview on nucleic-acid G-quadruplex
490 prediction: from rule-based methods to deep neural networks. *Briefings in Bioinformatics*, **24**,
491 bbad252.
- 492 17. Hon, J., Martínek, T., Zendulka, J. and Lexa, M. (2017) pqsfinder: an exhaustive and
493 imperfection-tolerant search tool for potential quadruplex-forming sequences in R.
494 *Bioinformatics*, **33**, 3373-3379.
- 495 18. Cagirici, H.B., Budak, H. and Sen, T.Z. (2022) G4Boost: a machine learning-based tool for
496 quadruplex identification and stability prediction. *BMC bioinformatics*, **23**, 1-18.

497 19. Sahakyan, A.B., Chambers, V.S., Marsico, G., Santner, T., Di Antonio, M. and Balasubramanian, 498 S. (2017) Machine learning model for sequence-driven DNA G-quadruplex formation. *Scientific 499 reports*, **7**, 14535.

500 20. Rocher, V., Genais, M., Nassereddine, E. and Mourad, R. (2021) DeepG4: a deep learning 501 approach to predict cell-type specific active G-quadruplex regions. *PLOS Computational 502 Biology*, **17**, e1009308.

503 21. Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F. and 504 Hofacker, I.L. (2011) ViennaRNA Package 2.0. *Algorithms for molecular biology*, **6**, 1-14.

505 22. Belmonte-Reche, E. and Morales, J.C. (2020) G4-iM Grinder: when size and frequency matter. 506 G-Quadruplex, i-Motif and higher order structure search and analysis tool. *NAR genomics and 507 bioinformatics*, **2**, lqz005.

508 23. Mergny, J.L. and Lacroix, L. (2009) UV melting of G - quadruplexes. *Current protocols in nucleic 509 acid chemistry*, **37**, 17.11. 11-17.11. 15.

510 24. Mergny, J.-L., Li, J., Lacroix, L., Amrane, S. and Chaires, J.B. (2005) Thermal difference spectra: 511 a specific signature for nucleic acid structures. *Nucleic acids research*, **33**, e138-e138.

512 25. Iaccarino, N., Di Porzio, A., Amato, J., Pagano, B., Brancaccio, D., Novellino, E., Leardi, R. and 513 Randazzo, A. (2019) Assessing the influence of pH and cationic strength on i-motif DNA 514 structure. *Analytical and bioanalytical chemistry*, **411**, 7473-7479.

515 26. Nguyen, T., Fraire, C. and Sheardy, R.D. (2017) Linking pH, temperature, and K⁺ concentration 516 for DNA i-Motif formation. *The Journal of Physical Chemistry B*, **121**, 7872-7877.

517 27. Gurung, S.P., Schwarz, C., Hall, J.P., Cardin, C.J. and Brazier, J.A. (2015) The importance of loop 518 length on the stability of i-motif structures. *Chemical Communications*, **51**, 5630-5632.

519 28. Meers, M.P., Tenenbaum, D. and Henikoff, S. (2019) Peak calling by Sparse Enrichment Analysis 520 for CUT&RUN chromatin profiling. *Epigenetics & chromatin*, **12**, 1-11.

521 29. Guneri, D., Alexandrou, E., El Omari, K., Dvorakova, Z., Chikhale, R.V., Pike, D., Waudby, C.A., 522 Morris, C.J., Haider, S. and Parkinson, G.N. (2023) Structural Insights into Regulation of Insulin 523 Expression Involving i-Motif DNA Structures in the Insulin-Linked Polymorphic Region. *bioRxiv*, 524 2023.2006. 2001.543149.

525 30. Williams, S.L., Casas-Delucchi, C.S., Raguseo, F., Guneri, D., Li, Y., Minamino, M., Fletcher, E.E., 526 Yeeles, J.T., Keyser, U.F., Waller, Z.A. *et al.* (2023) Replication-induced DNA secondary structures 527 drive fork uncoupling and breakage. *The EMBO Journal*, **42**, e114334.

528 31. Dhapola, P. and Chowdhury, S. (2016) QuadBase2: web server for multiplexed guanine 529 quadruplex mining and visualization. *Nucleic acids research*, **44**, W277-W283.

530 32. Kingsford, C. and Salzberg, S.L. (2008) What are decision trees? *Nature biotechnology*, **26**, 531 1011-1013.

532 33. Breiman, L. (2001) Random forests. *Machine learning*, **45**, 5-32.

533 34. Chen, C., Liaw, A. and Breiman, L. (2004) Using random forest to learn imbalanced data. 534 *University of California, Berkeley*, **110**, 24.

535 35. Webb, G.I., Keogh, E. and Miikkulainen, R. (2010) Naïve Bayes. *Encyclopedia of machine 536 learning*, **15**, 713-714.

537 36. Balakrishnama, S. and Ganapathiraju, A. (1998) Linear discriminant analysis-a brief tutorial. 538 *Institute for Signal and information Processing*, **18**, 1-8.

539 37. Liu, X.-Y., Wu, J. and Zhou, Z.-H. (2008) Exploratory undersampling for class-imbalance learning. 540 *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, **39**, 539-550.

541 38. Maclin, R. and Opitz, D. (1997) An empirical evaluation of bagging and boosting. *AAAI/IAAI*, 542 **1997**, 546-551.

543 39. Hido, S., Kashima, H. and Takahashi, Y. (2009) Roughly balanced bagging for imbalanced data. 544 *Statistical Analysis and Data Mining: The ASA Data Science Journal*, **2**, 412-426.

545 40. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J. and Napolitano, A. (2009) RUSBoost: A hybrid 546 approach to alleviating class imbalance. *IEEE transactions on systems, man, and cybernetics- 547 part A: systems and humans*, **40**, 185-197.

548 41. Chen, T. and Guestrin, C. (2016) *Proceedings of the 22nd ACM SIGKDD international conference*
549 *on knowledge discovery and data mining*, pp. 785-794.

550 42. Su, X., Yan, X. and Tsai, C.L. (2012) Linear regression. *Wiley Interdisciplinary Reviews: Computational Statistics*, **4**, 275-294.

552 43. McDonald, G.C. (2009) Ridge regression. *Wiley Interdisciplinary Reviews: Computational Statistics*, **1**, 93-100.

554 44. Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, **58**, 267-288.

556 45. Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, **67**, 301-320.

558 46. Awad, M., Khanna, R., Awad, M. and Khanna, R. (2015) Support vector regression. *Efficient learning machines: Theories, concepts, and applications for engineers and system designers*, 67-80.

560 47. Wang, J., Chen, Q. and Chen, Y. (2004) *International symposium on neural networks*. Springer, pp. 512-517.

562 48. Altman, N.S. (1992) An introduction to kernel and nearest-neighbor nonparametric regression. *The American Statistician*, **46**, 175-185.

564 49. Freund, Y. and Schapire, R.E. (1997) A decision-theoretic generalization of on-line learning and an application to boosting. *Journal of computer and system sciences*, **55**, 119-139.

566 50. Friedman, J.H. (2001) Greedy function approximation: a gradient boosting machine. *Annals of statistics*, 1189-1232.

568 51. Fischler, M.A. and Bolles, R.C. (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. *Communications of the ACM*, **24**, 381-395.

570 52. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R. and Dubourg, V. (2011) Scikit-learn: Machine learning in Python. *the Journal of machine Learning research*, **12**, 2825-2830.

572 53. Lemaître, G., Nogueira, F. and Aridas, C.K. (2017) Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. *The Journal of Machine Learning Research*, **18**, 559-563.

574 54. Wright, E.P., Abdelhamid, M.A., Ehiabor, M.O., Grigg, M.C., Irving, K., Smith, N.M. and Waller, Z.A.E. (2020) Epigenetic modification of cytosines fine tunes the stability of i-motif DNA. *Nucleic Acids Research*, **48**, 55-62.

576 55. Fojtík, P. and Vorlíčková, M. (2001) The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH. *Nucleic Acids Research*, **29**, 4684-4690.

578 56. Fleming, A.M., Ding, Y., Rogers, R.A., Zhu, J., Zhu, J., Burton, A.D., Carlisle, C.B. and Burrows, C.J. (2017) 4 n - 1 is a “sweet spot” in DNA i-motif folding of 2' -deoxycytidine homopolymers. *Journal of the American Chemical Society*, **139**, 4682-4689.

580 57. Brazier, J.A., Shah, A. and Brown, G.D. (2012) I-motif formation in gene promoters: unusually stable formation in sequences complementary to known G-quadruplexes. *Chemical Communications*, **48**, 10739-10741.

582 58. Mir, B., Serrano, I., Buitrago, D., Orozco, M., Escaya, N. and González, C. (2017) Prevalent sequences in the human genome can form mini i-motif structures at physiological pH. *Journal of the American Chemical Society*, **139**, 13985-13988.

584 59. Abdelhamid, M.A. and Waller, Z.A. (2020) Tricky topology: persistence of folded human telomeric i-motif DNA at ambient temperature and neutral pH. *Frontiers in Chemistry*, **8**, 40.

586 60. Martella, M., Pichiorri, F., Chikhale, R.V., Abdelhamid, M.A., Waller, Z.A. and Smith, S.S. (2022) i-Motif formation and spontaneous deletions in human cells. *Nucleic Acids Research*, **50**, 3445-3455.

588 61. Brooks, T.A., Kendrick, S. and Hurley, L. (2010) Making sense of G - quadruplex and i - motif functions in oncogene promoters. *The FEBS Journal*, **277**, 3459-3469.

599 62. Abou Assi, H., Garavís, M., González, C. and Damha, M.J. (2018) i-Motif DNA: structural
600 features and significance to cell biology. *Nucleic acids research*, **46**, 8038-8056.
601 63. Yazdani, K., Seshadri, S., Tillo, D., Yang, M., Sibley, C.D., Vinson, C. and Schneekloth Jr, J.S. (2023)
602 Decoding complexity in biomolecular recognition of DNA i-motifs with microarrays. *Nucleic
603 Acids Research*, gkad981.
604