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Abstract

We present Neural Spectral Methods, a technique to solve parametric Partial Differential Equations
(PDEs), grounded in classical spectral methods. Our method uses orthogonal bases to learn PDE so-
lutions as mappings between spectral coefficients. In contrast to current machine learning approaches
which enforce PDE constraints by minimizing the numerical quadrature of the residuals in the spatiotem-
poral domain, we leverage Parseval’s identity and introduce a new training strategy through a spectral
loss. Our spectral loss enables more efficient differentiation through the neural network, and substantially
reduces training complexity. At inference time, the computational cost of our method remains constant,
regardless of the spatiotemporal resolution of the domain. Our experimental results demonstrate that our
method significantly outperforms previous machine learning approaches in terms of speed and accuracy
by one to two orders of magnitude on multiple different problems. When compared to numerical solvers
of the same accuracy, our method demonstrates a 10× increase in performance speed.

1 Introduction

Partial differential equations (PDEs) are fundamental for describing complex systems like turbulent flow
[33], diffusive processes [8], and thermodynamics [35]. Due to their complexity, these systems frequently
lack closed-form analytical solutions, prompting the use of numerical methods. These numerical techniques
discretize the spatiotemporal domain of interest and solve a set of discrete equations to approximate the
system’s behavior.

Spectral methods are one such class of numerical techniques, and are widely recognized for their effec-
tiveness [2, 10]. These methods approximate PDE solutions as a sum of basis functions and transform the
equations into the spectral domain. Spectral methods are known for their fast convergence and computa-
tional efficiency, especially for problems with smooth solutions. They are notably impactful in fields like
computational fluid dynamics [26].

Numerical methods can be computationally expensive because a fine discretization of the physical domain
and a large number of time-stepping iterations are often required to achieve high accuracy. Additionally,
many engineering applications require solving systems under different parameters or initial conditions, ne-
cessitating multiple iterations to repeatedly solve such systems. The aforementioned spectral methods also
rely on time-stepping schemes, and present similar challenges to other numerical methods. These factors
underscore the need for more efficient computational strategies.
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Recent advances in machine learning (ML) highlight neural networks (NNs) as potential alternatives or
enhancements to traditional numerical solvers. Consider PDEs on a regular domain Ω ⊆ Rd:

Fϕ(u(x)) = 0 in Ω,

Bϕ(u(x)) = 0 on ∂Ω,
(1)

where u is the classical solution, Fϕ is the potentially nonlinear differential operator, and Bϕ are the bound-
ary condition(s). Both operators are parameterized by ϕ, which could correspond to initial conditions or
parameters associated with Ω, such as diffusion coefficients. A common ML approach is to train NNs on
datasets of numerical solutions spanning various parameters, and then learn the mapping Gθ : ϕ 7→ uθ from
parameters to solutions. This approach is typically done via supervised learning, where the NN is trained by
minimizing the error between the predicted solution and the numerical solution. At inference time, the goal
is to generalize to previously unseen parameters and directly predict solutions. By amortizing computational
costs during training and having rapid inference, these data-driven approaches have the potential to be more
efficient than traditional numerical solvers.

When there is information about the governing physical laws, another common ML approach is to train the
NN through a loss function that imposes a soft constraint on these laws [28]. In this case, the NN predicts
a solution uθ, and then the corresponding residual function, R(x) = Fϕ(uθ(x)), is minimized on a set of
sampled spatial and/or temporal points. Specifically, an additional loss term is defined as the numerical
quadrature to the residual norm:

LPINN(uθ) :=
1

N

∑
n∈[N ]

R(xn)
2 ≈ ||R(x)||2L2(Ω), xn ∼ i.i.d. U(Ω). (2)

This is often called a Physics-Informed Neural Network (PINN) loss function, which we denote as LPINN(uθ).
In practice, this approach does not require solution data on the interior of the domain, and the NN can be
trained by only satisfying the PDE(s) of interest. This loss function can also be combined with a data
fitting loss and trained together. However, this can often be impractical, as it requires knowing both the
underlying governing physical laws and having solution data (either through a numerical solver or through
observational measurements).

Most current ML methods to solve PDEs [14, 19] are grid-based approaches. To model parametric so-
lutions, these models create a mesh, and perform the parameters-to-solutions mapping through non-local
transformations on function values at points in the mesh. One such example are neural operators [15],
which parameterize the mapping using iterative kernel integrals, and have been applied to a wide range of
engineering problems [40, 17]. Neural operators can be trained through supervised learning procedures (a
loss function that matches solution data), self-supervised methods (such as the aforementioned PINN loss
function), and a combination of both.

Data-fitting and PINN loss approaches both have several limitations:

• Data availability. The effectiveness of data-driven methods generally depends on the availability of
large datasets consisting of PDE parameters and corresponding solutions. For complex problems, so-
lution data can only be generated from expensive solvers (or through observations), and also includes
inherent numerical errors. When solving new systems, new solution data often needs to be generated,
which can be time-consuming.
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• Optimization. Empirical evidence has suggested that minimizing the PINN loss often encounters
convergence issues, particularly for complex problems, resulting in subpar accuracy. This is likely
attributed to the ill-posed nature of the optimization problem that arises from incorporating PDE
constraints into the model [16, 36].

• Computation cost. Computing the PINN loss involves evaluating the differential operator F at sam-
pled points, which requires computing higher-order derivatives of uθ. As the complexity of uθ in-
creases, the computation cost of back-propagation scales significantly. Moreover, accurate estimation
of the residual norm requires a substantial amount of sampled points to enforce the PDE. For neu-
ral operators such as the commonly used Fourier Neural Operator (FNO) [19], the cost of taking
derivatives scales quadratically with the number of points. This is due to the use of the Fourier trans-
form, and this makes it intractable to take exact derivatives for large numbers of sampled points (see
discussions in §B).

To address these issues with accuracy and efficiency, our work explores the incorporation of ML with spec-
tral methods. We focus on a data-constrained setting to learn the solution operator of parameterized PDEs,
where we assume that we have no solution data on the interior of the spatiotemporal domain and only train
our model by minimizing the PDE residual. Given the form of a differential operator Fϕ, the model learns to
map the parameter function ϕ to the corresponding solution uθ. Our key insights are to learn the solution as a
series of orthogonal basis functions, and leverage Parseval’s Identity to obtain a loss function in the spectral
domain. While prior approaches minimize the approximated residual function by computing higher-order
derivatives on the sampled points, our method exploits properties of the spectral representation to obtain the
exact residual via algebraic operations on the prediction.

Our contributions are summarized as follows:

• We propose Neural Spectral Methods (NSM) to learn PDE solutions in the spectral domain. Our
model parameterizes spectral transformations with NNs, and learns by minimizing the norm of the
residual function in the spectral domain. Since solution data can be expensive to generate for every
new problem, we focus on scenarios with no solution data on the interior of the domain.

• We introduce a spectral-based neural operator that can learn transformations in a spectral basis. By
operating on fixed collocation points, our proposed spectral-based neural operator avoids aliasing
error and avoids scaling the computational cost with grid resolution.

• We introduce a spectral loss to train models entirely in the spectral domain. By utilizing the spectral
representation of the prediction and Parseval’s identity, the residual norm is computed by exact oper-
ations on the spectral coefficients. This approach avoids sampling a large number of points and the
numerical quadrature used by the PINN loss, thereby simplifying computation complexity.

• We provide experimental results on three PDEs: Poisson equation §4.1, Reaction-Diffusion equation
§4.2, and Navier-Stokes equations §4.3. Our approach consistently achieves a minimum speedup
of 100× during training and 500× during inference. It also surpasses the accuracy of grid-based
approaches trained with the PINN loss by over 10×. When tested on different grid resolutions, our
method maintains constant computational cost and solution error. In comparison to iterative numerical
solvers that achieve equivalent accuracy, our method is an order of magnitude faster.
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2 Related works

ML methods for solving PDEs. Using NNs to solve PDEs has become an active research focus in sci-
entific computing [12, 28, 21]. He et al. [13], Mitusch et al. [25] explore finite element methods in NNs.
Yu et al. [39], Sirignano and Spiliopoulos [32], Ainsworth and Dong [1], Bruna et al. [4] recast PDEs into
variational forms and apply the Galerkin projection minimization via sampling-based losses. Sharma and
Shankar [30] accelerate discretized PDE residual computation. Wang et al. [37] focus on Fourier features
and eigenvalue problems. In the context of spectral methods, Lange et al. [18] focus on data-fitting; Dresd-
ner et al. [5] learn to correct numerical solvers; Xia et al. [38], Lütjens et al. [22] use spectral representations
in spatial domains; and Meuris et al. [24] extract basis functions from trained NNs for downstream tasks.
These studies differ in problem settings and deviate from our method in both architecture and training.

Neural operators. Neural operators [15, 19, 11] learn mappings between functions, such as PDE param-
eters or initial conditions to the PDE solutions. They are typically trained in a supervised learning manner
on parameter–solution datasets, and aim to learn the functional mappings between them (i.e., the solution
operator). However, the supervised learning setting poses a challenge in data generation for new or complex
problems, especially when the data is scarce or the numerical solvers generating it are inefficient.

One of the most common neural operators is the Fourier Neural Operator (FNO) [19, 17, 40]. The training
process for FNO consists of performing convolutions through Fourier layers and learning in the frequency
domain. The Spectral Neural Operator (SNO) [7] was proposed to reduce aliasing error in general neural
operators by utilizing a feed-forward network to map between spectral coefficients. Similarly, the Transfor-
mOnce (T1) [27] model looks at learning transformations in the frequency domain with an improved model
architecture. However, both models have a number of architecture and training differences from NSM, and
as we will show, have much poorer accuracy. They also only look at the supervised learning setting.

Physics-Informed Neural Networks (PINNs). The physics-informed neural networks (PINNs) frame-
work [28] adds the governing physical laws (i.e., PDE residual function), estimated on sampled points, into
the NN’s loss function. This additional term, which we refer to as a PINN loss (Eq. 2), acts as a soft con-
straint to regularize the model’s prediction of the PDE solution, and can be considered a self-supervised loss
function. This approach can also be used in a operator learning setting across various architectures, where
the base architecture is a neural operator and the PINN loss is used to train the model [20, 34, 29, 9].

However, the PINN approach requires evaluating the PDE residual on a large number of sampled points in
the interior domain. In scenarios with higher-order derivatives in the PDE residual, multiple differentiations
through the NN are required. When using the PINN loss with grid-based neural operators such as FNO,
the Fast Fourier Transform (FFT) in the forward pass escalates to quadratic in batched differentiation with
respect to the number of sampled points, making exact residual computation through auto-differentiation
computationally expensive (see discussions in §B for more details). As we will show, these grid-based
methods are inaccurate and often overfit to the training grid size because of aliasing error.

3 Neural Spectral Methods

We introduce Neural Spectral Methods (NSM), a general class of techniques to incorporate spectral methods
with NNs. NSM learns the mapping from PDE parameters to PDE solutions, i.e., Gθ : ϕ 7→ uθ, and is shown
in Fig. 1. NSM consists of two key components: a base NN architecture (Fig. 1a) that maps the spectral
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representation of the parameters ϕ to that of its solutions uθ, and a spectral training procedure (Fig. 1b) that
minimizes the spectral norm of the PDE residual function.

In §3.2, we describe our core NN architecture, which incorporates spectral methods within a neural operator
framework. In §3.3, we introduce our spectral training procedure. Finally, in §4, we demonstrate the strong
empirical performance of NSM for learning solutions to different PDE classes.

3.1 Background

Notation. A set of functions on Ω is denoted as {fm(x) : x ∈ Ω}m∈I where I is a countable index set.
We denote integer indices by [n] := {1, 2, .., n}. The nth component of a vector x is denoted as xn. Given
a set of basis functions, the spectral coefficients of a function u are denoted as ũ. For an integer k > 0, the
kth order Sobolev space [6] on domain Ω ⊆ Rd is denoted as Hk(Ω).

Orthogonal basis. Orthogonal basis functions are fundamental components of spectral methods. For
completeness, the definition of orthogonality is provided in §A. The choice of the basis functions is problem-
specific and they must have desirable spectral properties. In this paper, we focus on two commonly used
orthogonal bases for periodic and other types of boundary conditions, respectively:

Example 1 (Fourier basis). {sin(mx), cos(mx) :x ∈ 2πT}m∈N w.r.t Lebesgue measure.

Example 2 (Chebyshev polynomials). {Tm(x) :x ∈ [−1, 1]}m∈N w.r.t dµ
dx = 1/

√
1− x2, where

Tm(x) := cos(m cos−1(x)) ≡ (−1)m sin(m sin−1(x)).

For multi-dimensional problems, we can verify that the product of basis in each dimension preserves com-
pleteness and orthogonality (see Proposition 1). Spectral representations are known for their efficiency in
representing smooth functions. Specifically, Fourier and Chebyshev interpolations possess the well-known
spectral decay for sufficiently smooth functions [23]:

Fact 1. For any f ∈ Hp(Td), its Fourier series coefficients |f̃m| = O(1/mp).

Fact 2. For any f ∈ Hp([−1, 1]d), its Chebyshev expansion |f̃m| = O(1/mp).

Neural operators. Neural operators parameterize the mapping Gθ : ϕ 7→ uθ as,

Gθ := Q ◦ σ(W(L) +K(L)) ◦ · · · ◦ σ(W(1) +K(1)) ◦ P, (3)

where σ is a non-linearity. The operator iteratively updates v(l)θ : Ω → Rdl , where dl is the hidden dimension
of layer l. The input layer v(0)θ = P(ϕ) and output layer uθ = Q(v

(L)
θ ) are parameterized by point-wise

NNs. The affine operator W(l) and the kernel integral operator K(l) are defined as,

(W(l)(v))(x) = W (l)v(x) + b(l), (K(l)(v))(x) =

∫
Ω
K(l)(x, y)v(y)dµ(y), (4)

where the input v is in Ω → Rdl−1 and the outputs are in Rdl . The affine operator and kernel integral
operator are used to capture local and non-local transformations, respectively. Given input grid [xi], general
grid-based neural operators parameterize Gθ as a mapping between function values:[

ϕ(x1) ϕ(x2) . . . ϕ(xN )
]
7→

[
uθ(x1) uθ(x2) . . . uθ(xN )

]
. (5)
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Figure 1: Schematic of NSM. We refer to Neural Spectral Methods (NSM) as a general approach to learn PDE
solution mappings in the spectral domain. Our method consists of two components: a) The parameters ϕ are converted
to spectral coefficients, ϕ̃. In each NN layer l, the spectral coefficients ṽ

(l)
θ are transformed by a linear operator K̃,

with the activation σ then applied on collocation points in the physical space. b) The prediction ũθ is transformed
by F̃ϕ, the spectral form of the differential operator, which gives the spectral coefficients R̃ of the residual function.
The exact residual norm is obtained by Parseval’s Identity, giving the spectral loss ||R̃||22. We contrast our method
against the commonly employed grid-based neural operators with a PINN loss. c) General neural operators learn the
PDE solutions as transformations of function values on xi. We consider the kernel integral in a more general sense,
with transformation T not restricted to a Fourier basis. d) Autograd or finite difference methods are used to obtain the
higher-order derivatives. The PINN loss is then obtained by approximating the norm of the residual function on the
sampled points.

3.2 Spectral-based neural operators

In this work, we employ the neural operator architecture to model transformations between spectral coeffi-
cients. By fixing {fm(x) : x ∈ Ω}m∈I as the chosen basis functions, the solution operator is parameterized
as the mapping between the coefficients of the parameter functions ϕ and the predicted solutions uθ. Sup-
pose the series is truncated to M terms, then Gθ is parameterized in the spectral domain as:

ϕ(x) =
∑

m∈[M ]

ϕ̃mfm(x) 7→ uθ(x) =
∑

m∈[M ]

ũθ,mfm(x), (6)

where ϕ̃ and ũθ are the spectral expansion of ϕ and uθ under the basis f . For each layer l, the function v
(l)
θ

and kernel K(l) are also parameterized under the same basis functions,

v
(l)
θ (x) =

∑
m∈[M ]

ṽ
(l)
θ,mfm(x), K(l)(x, y) =

∑
m∈[M ]2

K̃(l)
m fm1(x)fm2(y), (7)

where ṽ(l)θ ∈ RM×dl and K̃(l) ∈ RM×M×dl×dl−1 are coefficients in the spectral domain. Due to orthogonal-
ity, integral transformations K(l) are actually equivalent to tensor contractions ṽ(l−1)

θ,m2i
· K̃(l)

m1m2ij
. Similarly,

affine transformations W(l) are equivalent to ṽ
(l−1)
θ,mi ·W (l)

ij + b
(l)
mj .

Non-linear activation functions. The activation σ is applied on the collocation points. We denote T as
the interpolation of function values at collocation points aligned with the basis, and T −1 as the function
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value evaluation on those collocation points. Then σ̃, the spectral counterpart of the activation function σ,
is given by:

σ̃ = T ◦ σ ◦ T −1. (8)

Aliasing error. General grid-based neural operators are prone to aliasing error. When trained and tested
on different grid resolutions, the interpolation error is inconsistent, leading to an increased error on the
test grids that are a different resolution from the training grid. In contrast, our spectral-based approach
circumvents aliasing error. By operating exclusively on fixed collocation points, the interpolation error
remains consistent across different input resolutions. This also ensures that the model’s computation cost
and predictions are resolution-independent.

Kernel approximation. Within each layer, the computational cost of the kernel integral is quadratic. To
mitigate this cost, the kernel can be confined to a low-rank or simplified form. Here, we employ FNO’s
approach, which simplifies the kernel integral into a convolution through a Fourier transformation. More
broadly, the kernel is restricted to a diagonal form, K̃(l) ∈ RM×dl×dl−1 , and,

K(l)(x, y) =
∑

m∈[M ]

K̃(l)
m fm(x)fm(y). (9)

3.3 Spectral training

After our base NN architecture predicts the solution ũ in Eq. 6, we train our model using a spectral training
procedure. Here, we describe the details of our spectral training procedure.

Spectral form of the residual function. We can derive the exact residual function using the spectral
representation of the prediction, denoted by ũ. The spectral representation has a direct correspondence
between operations performed on function values and on spectral coefficients. Additionally, differentiation
and integration are transformed to algebraic operations on the coefficients. Given the PDE operator Fϕ, we
convert it to its spectral correspondence F̃ϕ : ũθ 7→ R̃, such that,

Fϕ(uθ(x)) =
∑
m∈I

R̃mfm(x), (10)

where R̃ represents the spectral form of the PDE residual function. We describe in more detail how to
obtain F̃ϕ from Fϕ for typical nonlinear operators and bases composed of Fourier series and Chebyshev
polynomials in §A.1.

Spectral loss. After computing the residual function, we aim to minimize our spectral loss, ||R̃||22. This
method involves projecting the residual function onto a subspace spanned by truncated basis functions,
known as the Galerkin projection. The orthogonality of the basis functions is crucial to this procedure.
Leveraging Parseval’s Identity, we can equate the spectral loss to the weighted norm of the residual function,
as outlined below:
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Theorem 1 (Parseval’s Identity). For R(x) =
∑

m∈I R̃mfm(x), we have,∫
Ω
R(x)2dµ(x) =

∑
m∈I

R̃2
m. (11)

Contrast with the PINN loss. As previously discussed, the PINN loss is obtained by sampling a sub-
stantial number of points within the interior domain, followed by employing a numerical quadrature to
approximate the integral of R(x)2. This requires differentiating through the NN, which can be computation-
ally expensive, especially for higher-order derivatives, and when a large number of points are sampled to
ensure accurate quadrature. For the grid-based PINN loss, which commonly uses finite difference methods
to approximate the derivatives, we have provided an error analysis in §B.1. From a theoretical perspective,
we show that as long as the grid spacing is finite, the expected solution error can be non-zero, even if the
grid-based PINN loss is minimized arbitrarily well.

We bypass this process by using the spectral representation of the solution, and apply spectral transforma-
tions to represent the residual function in the same basis. This greatly simplifies the entire optimization
procedure, and as we will demonstrate, significantly reduces training time. Note that even though the spec-
tral loss is a weighted norm, the corresponding PINN loss can also be readily constrained:

Corollary 1. For dx
dµ ∈ L∞(Ω), ||R(x)||L2(Ω) = O(||R̃||22).

This result follows directly by Hölder’s inequality. Both Fourier series and Chebyshev polynomials fulfill
this condition, ensuring that minimizing the spectral loss also minimizes the PINN loss.

4 Experimental results

We compare NSM to different neural operators with diffeerent loss functions (PINN and spectral losses) on
several PDEs: 2D Poission (§4.1), 1D Reaction-Diffusion (§4.2), and 2D Navier-Stokes (§4.3) with both
forced and unforced flow. NSM is consistently the most accurate method, and orders of magnitudes faster
during both training and inference, especially on large grid sizes.

Problem setting. For all experiments, we focus on the data-constrained setting, using no interior domain
solution data during training (i.e., we train only by minimizing the PDE residual). The task is to learn the
mapping from PDE parameters ϕ to solutions u. During training, each model is given Fϕ and the parameters
ϕi, which are independently sampled in every training iteration.

Recall that the PINN loss (Eq. 12) and the spectral loss (Eq. 13) are used on grid-based and spectral-based
models, respectively. For the PINN loss, higher-order derivatives are computed using the finite difference
method on a fixed rectangular grid

[
x1 x2 . . . xN

]
. For our spectral loss, the M -term residual series is

directly transformed from the predicted solution ũθ.

PINN Loss
1

|{ϕi}|
∑
ϕi

1

N

∑
n∈[N ]

Fϕi
(uθ,i(xn),∇uθ,i(xn)...)

2 (12)

Spectral Loss
1

|{ϕi}|
∑
ϕi

∑
m∈[M ]

F̃ϕi
(ũθ,i)

2
m (13)

For each problem, the test set consists of N = 128 PDE parameters, denoted by ϕi. Each ϕi is sampled
from the same distribution used at training time, and ui is the corresponding reference solution. For each
prediction uθ, we evaluate two metrics: L2 relative error ||uθ,i − ui||2/||ui||2 and the PDE residual error
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||Fϕ(uθ,i)||2. Both metrics are computed on the test set resolution, and averaged over the dataset. Additional
details about the experimental setup are provided in §C.

We include the following models for comparison:

• FNO + PINN loss. A grid-based FNO architecture [19], trained with a PINN loss. The model
is trained on different grid sizes, which are indicated by the corresponding labels (e.g., FNO×642

means a grid size of 64× 64 is used to calculate the PINN loss).

• SNO + Spectral loss. Ablation model: A base SNO architecture [7], trained with our spectral loss.

• T1 + PINN loss / Spectral loss. Ablation model: A base TransformOnce architecture [27], trained
with either a PINN loss or our spectral loss.

• CNO + PINN loss (ours). Ablation model: The base architecture is identical to NSM, but trained
with a PINN loss on the largest grid size used by FNO, i.e. 256 on each dimension.

• NSM (ours). Our proposed spectral-based neural operator using Fourier and Chebyshev basis on
periodic and non-periodic dimensions, and it is trained with our spectral loss.

For a fair comparison, the base architecture, number of parameters, and other hyperparameters are kept
exactly the same across neural operator-based models. Detailed parameters are provided in §C.

4.1 Poisson equation

We study the 2D Poisson equation, −∆u(x, y) = s(x, y), x, y ∈ T, with periodic boundary conditions. The
source term s is sampled from a random field with a length scale of 0.2. The task is to learn the mapping
from s to the potential field u. We evaluate the predictions using an L2 relative error with respect to the
analytical solution. Additional details and results for Dirichlet boundary conditions are in §C.1.

Table 1: L2 relative error (%) for the periodic Poission equation.

SNO+Spectral T1×642+PINN T1+Spectral FNO×642+PINN FNO×1282+PINN FNO×2562+PINN NSM (ours)

0.59± 0.12 3.22± 0.49 0.302± 0.071 4.24± 0.13 2.01± 0.03 1.75± 0.02 .057± .012

Results. The results are summarized in Tab. 1. Since the solution operator is an inverse Laplacian, all
models can theoretically express it with one layer (see discussions in C.1), but the FNO + PINN models
exhibits high error, even when trained with large grids and for a longer training time. This simple example
highlights the inherent optimization challenges with the grid-based PINN loss.

4.2 Reaction-Diffusion equation

We study the 1D periodic Reaction-Diffusion system with different diffusion coefficients:

ut − νuxx = ρu(1− u), x ∈ T, t ∈ [0, T ],

u(x, 0) = h(x), x ∈ T,
(14)

where ν is the diffusion coefficient, and h(x) is the initial condition sampled from a random field with a
length scale of 0.2. Given h(x), the model learns to predict u(x, t) up to time T = 1. The initial condition
is enforced by transforming the prediction u(x, t) to u(x, t) · t+ h(x).
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Figure 2: Reaction-Diffusion equation with ν = 0.01. In a) and b), the L2 relative error and PDE residual on the
test set are plotted over training each model. The grid-based methods (FNO trained with a PINN loss) show improved
accuracy as the grid resolution increases, but are significantly slower to train. When tested on different resolutions,
significant aliasing errors occur on test grid resolutions that differ from the training grid resolution. In contrast, NSM
has a much low error and PDE residual, and achieves this lower error 100× faster than the grid-based methods. In
c), when compared with iterative numerical solvers on different resolutions, NSM achieves the same level of accuracy
with a 10× speedup. Notably, both the accuracy and computational cost of NSM remains constant, regardless of grid
resolution.

Table 2: L2 relative error (%) and computation cost (GFLOP) for the Reaction-Diffusion equation.

SNO+Spectral FNO×642+PINN FNO×1282+PINN FNO×2562+PINN CNO+PINN (ours) NSM (ours)

ν = 0.005 4.56± 0.99 2.30± 0.19 0.94± 0.11 0.33± 0.04 0.20± 0.01 .075± .016
ν = 0.01 5.41± 4.43 2.64± 0.97 2.27± 1.19 0.57± 0.19 0.48± 0.16 .086± .019
ν = 0.05 87.76± 52 11.82± 5.4 3.25± 1.29 1.06± 0.28 0.78± 0.01 .083± .006
ν = 0.1 152.8± 58 13.03± 6.4 4.90± 2.40 4.07± 2.00 1.28± 0.42 .077± .005

Train/Test 0.91/0.03 7.30/15.8 31.3/15.8 138.5/15.8 200.3/25.0 15.0/0.32

Results. The main results are summarized in Tab. 2, including the results for TransformOnce [27] in §C.2.
The training curves for the PDE residual and relative error on the test set for diffusion coefficient ν = 0.01
are shown in Fig. 2. The grid-based models using the PINN loss improve in relative error with a higher-
resolution grid, but require significantly longer training time. In contrast, NSM consistently achieves high
accuracy while maintaining a low computation cost. As the diffusion coefficient increases, NSM shows
strong robustness and consistently achieves low solution error, while the other models all increase signifi-
cantly in solution error.

We also compare the ML models to a standard numerical solver [31], as shown in Fig. 2c. During inference
time, the accuracy and computational cost of NSM remains constant, regardless of the spatiotemporal reso-
lution of the domain. NSM exhibits a 10× increase in speed when compared to a numerical solver with a
comparable level of accuracy. Solution error distributions and additional details are in §C.2.
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Figure 3: Navier-Stokes equation with ν = 10−4. In a) and b), the relative error and PDE residual on the test set
are plotted. NSM achieves low L2 error and PDE residual 100× faster than FNO + PINN methods, and is an order
of magnitude more accurate. c) NSM captures fine features of the vorticity evolution accurately, while the grid-based
approach fails to predict the overall shape.

4.3 Navier-Stokes equation

We study the vorticity form of the 2D periodic Navier-Stokes (NS) equations:

∂tw + u · ∇w = ν∆w + f, x ∈ T2, t ∈ [0, T ], where ∇ · u = 0,

w(x, 0) = w0(x), x ∈ T2, ∇× u = w,
(15)

where ν is the viscosity, w is the vorticity field, and f is the forcing term. The initial vorticity w0 is sampled
from a random field with a length scale of 0.8. Given w, the velocity field u is determined by applying the
inverse Laplacian operator. The model is trained to learn the evolution of vorticity.

Table 3: L2 relative error (%) for unforced NS equations.

FNO×643+PINN FNO×963+PINN NSM (ours)

ν = 10−2 8.18± 2.83 7.90± 0.57 0.71± 0.02
ν = 10−3 14.81± 0.67 11.99± 0.86 1.65± 0.26
ν = 10−4 17.88± 2.67 16.20± 0.61 3.53± 0.53

Train 41h 131h 10h

We first consider the unforced flow with dif-
ferent ν values and T = 3s. The solu-
tion is diffusive for large ν, and becomes
more challenging to learn as the viscosity
decreases, due to the sharp features in the
solution. For FNO trained with the PINN
loss, using a grid resolution larger than 96
becomes intractable to train, due to the cost
of compute and memory. The results are summarized in Tab. 3 and the case for ν=10−4 is shown in Fig. 3.
NSM significantly outperforms grid-based FNO with the PINN loss in terms of both error and computational
speed, achieving accurate results 100× faster (see Fig. 3a and Fig. 3b).
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Table 4: L2 relative error (%) for the long tem-
poral transient NS equation.

FNO×963+PINN NSM (ours)

ν = 1/500 55.1± 17.4 13.2± 0.57

Next, we consider the long temporal transient flow under the
forcing term f = 0.1(sin(2π(x+ y)) + cos(2π(x+ y))) and
T = 50s, following the setting in Li et al. [19, 20]. This is a
significantly more challenging task, as it requires propagating
the initial condition over an extended time interval. Neverthe-
less, as summarized in Tab. 4, NSM maintains high accuracy,
while grid-based FNO with the PINN loss collapses in the training and fails entirely. Further details for both
unforced and forced flow can be found in §C.3.

5 Conclusion

We introduce an ML approach for solving PDEs, inspired by spectral methods. By utilizing orthogonal
basis functions and their spectral properties, we demonstrate numerous advantages for learning PDEs in the
spectral domain. Our method is evaluated on different PDEs, and achieves significantly lower error and
increased efficiency when compared to current ML methods.

Acknowledgements. This work was supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing
(SciDAC) program under contract No. DE-AC02-05CH11231. It was also supported in part by the Office
of Naval Research (ONR) under grant N00014-23-1-2587. We also acknowledge generous support from
Google Cloud and AWS Cloud Credit for Research. We thank Rasmus Malik Høegh Lindrup and Sanjeev
Raja for helpful discussions and feedback.

References
[1] Mark Ainsworth and Justin Dong. Galerkin neural networks: A framework for approximating vari-

ational equations with error control. SIAM Journal on Scientific Computing, 43(4):A2474–A2501,
2021.

[2] John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX:
composable transformations of Python+NumPy programs, 2018. URL http://github.com/
google/jax.

[4] Joan Bruna, Benjamin Peherstorfer, and Eric Vanden-Eijnden. Neural galerkin scheme with active
learning for high-dimensional evolution equations. arXiv preprint arXiv:2203.01360, 2022.

[5] Gideon Dresdner, Dmitrii Kochkov, Peter Norgaard, Leonardo Zepeda-Núñez, Jamie A Smith,
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A Orthogonal basis

Definition 1 (Orthogonal basis). A set of real-valued functions {fm(x) :x ∈ Ω}m∈I is said to be orthogonal
w.r.t a probability measure µ : Ω → R+, if for any two indices i, j ∈ I we have,∫

Ω
fi(x)fj(x)dµ(x) = µiδij , (16)

where constants µi ∈ R+ and δij = 1i=j . If µi ≡ 1, they are also orthonormal. Furthermore, when their
finite linear combinations are dense in L2(Ω;µ), they are called an orthogonal basis.

Given that a set of orthogonal basis functions can be easily normalized, we assume their orthonormality
unless otherwise specified in this paper. For multi-dimensional problems, we can use the cross product of
basis functions on each dimension to form another orthogonal basis:

Proposition 1. Given orthogonal basis {f (1)
m (x1) : x1 ∈ Ω1}m∈I1 and {f (2)

m (x2) : x2 ∈ Ω2}m∈I2 in
L2(Ω1;µ1) and L2(Ω2;µ2), the cross product {f (1)

m1 (x1)f
(2)
m2 (x2) :x ∈ Ω1×Ω2}m∈I1×I2 is an orthongonal

basis in the product space L2(Ω1 × Ω2;µ1 × µ2).

A.1 Spectral correspondence

This section details operations in common PDE operators and their spectral correspondence with Fourier
and Chebyshev1 bases. While operations on Fourier bases are well-known, for an in-depth introduction of
Chebyshev polynomials, see Mason and Handscomb [23].

Let u, v be the 1-dimensional function in consideration. Denote ũ, ṽ ∈ RM as their M -term expansion
under a Fourier or Chebyshev basis. We have the following properties in Tab. 5:

Table 5: Spectral correspondence of common operations.

Fourier basis Chebyshev polynomials

f
fm,cos = cos(2πmx)

fm,sin = sin(2πmx)
fm(x) = cos(m cos−1(x))

f = u+v f̃ = ũ+ ṽ f̃ = ũ+ ṽ

f = u · v

f̃m,cos =
∑

n≤m,M

ũn,cosṽm−n,cos−
ũn,sinṽm−n,sin

f̃m,sin =
∑

n≤m,M

ũn,cosṽm−n,sin+

ũn,sinṽm−n,cos

f̃m =
∑

n≤m,M

ũnṽm−n+∑
n≤M−m

ũmṽm+n + ũm+nṽm

f = du
dx

f̃m,cos = 2πmũm,sin

f̃m,sin = −2πmũm,cos

f̃m =
∑

2n≤M−m

2(m+2n+1)ũm+2n+1

1For implementation purposes, we use shifted Chebyshev polynomial on [0, 1] throughout this work, i.e. we consider functions
T ∗
m(x) = Tm(2x− 1), where Tm is the standard Chebyshev polynomial on [−1, 1].
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Note that sums in convolution form
∑

l albk−l can be accelerated by Fast Fourier Transforms (FFT). For
multi-dimensional problems, the above operations can be done on each dimension sequentially.

B Grid-based methods

Complexity of computing residuals. We continue the discussion in our introduction and Li et al. [20],
where we look at the complexity of computing exact derivatives for grid-based neural operators. Consider
differentiating a parameterized kernel K:

v(x) = (Ku)(x) =

∫
Ω
K(x, y)u(y)dµ(y) =

∑
m∈I2

∫
Ω
K̃mfm1(x)fm2(y)u(y)dµ(y). (17)

For a given set of sampled points {xi}Ni=1, suppose both u and v are queried at these points. Then, regardless
of how the integral is implemented or approximated, generally we have ∂v(xi)

∂u(xj)
̸= 0 for every i, j ∈ [N ].

Therefore, the complexity to obtain the exact derivatives is quadratic in N .

B.1 Error analysis for grid-based PINN loss

Grid-based methods estimate residuals on a discretized domain. As grid spacings (e.g., ∆x, ∆t) approach
zero, the estimated residuals tend towards being exact. However, the grid size is limited by the expensive
backpropagation in the training time, causing discretization errors. In this section, we demonstrate this with
an error analysis of the grid-based PINN loss for elliptic PDEs [6].

Problem setting. Consider an operator L on a bounded open subset Ω ⊂ Rd:

Lu = −∇ · (A∇u), (18)

where A(x) ∈ Rd×d are coefficient functions. In order to guarantee the uniqueness of the solution, we
assume A satisfies the following uniformly elliptic condition for almost every x in Ω:

s||ξ||22 ≤ ξTA(x)ξ ≤ S||ξ||22 for all ξ ∈ Rd, (19)

where s, S > 0 are absolute constants. Given ϕ ∈ L2(Ω), consider the Dirichlet problem Luϕ = ϕ for
uϕ ∈ H2(Ω) satisfying uϕ = 0 on ∂Ω. The task is to learn the transformation G : ϕ 7→ uϕ.

Error analysis. Given an input ϕ, denote the model prediction as ūϕ. Consider minimizing the grid-based
PINN loss using finite difference methods with grid spacing h > 0, i.e., the discrete gradient operator ∇h

is used to approximate ∇ in L. Suppose that the grid-based PINN loss is minimized, that is for some small
ϵ, δ > 0, the probability is,

P(||∇h · (A∇hūϕ) + ϕ||L2(Ω) ≤ ϵ) ≥ 1− δ. (20)

Proposition 2. Under the assumptions of Eq. 19 and Eq. 20, the estimation for the expected solution error
holds:

E[||ūϕ − uϕ||L2(Ω)] ≥
s||∇h(uϕ − ūϕ)||2L2(Ω) + s||∇uϕ||2L2(Ω) − S||∇hūϕ||2L2(Ω) − ϵ

||∇h · (A∇huϕ)||L2(Ω)/(1− δ)
. (21)
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Proof. Consider the inner product ⟨∇h · (A∇huϕ), ūϕ − uϕ⟩Ω. By Cauchy-Schwartz:

⟨∇h ·A(∇huϕ), uϕ − ūϕ⟩Ω ≤ ||∇h · (A∇huϕ)||L2(Ω) · ||ūϕ − uϕ||L2(Ω). (22)

We can also use integration by parts, and then this inner product equals:∫
Ω

(ūϕ − uϕ)∇h · (A∇huϕ)dx,

=

∫
Ω

∇h(uϕ − ūϕ) · (A∇h(uϕ − ūϕ)) + (ūϕ − uϕ)∇h · (A∇hūϕ)dx,

=

∫
Ω

∇h(uϕ − ūϕ) · (A∇h(uϕ − ūϕ))dx−
∫
Ω

∇hūϕ · (A∇hūϕ)dx−
∫
Ω

uϕ∇h · (A∇hūϕ)dx.

(23)

By the uniformity condition in Eq. 19, the first two terms can be estimated by:∫
Ω
∇h(uϕ − ūϕ) · (A∇h(uϕ − ūϕ))dx ≥ s||∇h(uϕ − ūϕ)||2L2(Ω),∫

Ω
∇hūϕ · (A∇hūϕ)dx ≤ S||∇hūϕ||2L2(Ω).

(24)

By assumption Eq. 20, the following holds with probability 1− δ:∫
Ω
uϕ∇h · (A∇hūϕ)dx ≤

∫
Ω
uϕ∇ · (A∇uϕ)dx+ ϵ ≤ −s||∇uϕ||2L2(Ω) + ϵ. (25)

Then, with high probability, the inner product in Eq. 22 can be estimated by P(⟨∇h ·(A∇huϕ), ūϕ−uϕ⟩Ω ≥
s||∇h(uϕ − ūϕ)||2L2(Ω) + s||∇uϕ||2L2(Ω) −S||∇hūϕ||2L2(Ω) − ϵ) ≥ 1− δ. Rearranging the terms, the desired
result follows by Markov’s inequality.

Discussion. This analysis implies that when the difference between the exact derivatives ∇uϕ, and the
approximated derivatives ∇huϕ, is sufficiently large, there exists some prediction ūϕ, such that the solution
error for the prediction that minimizes the grid-based PINN loss can also be large. The spectral loss has no
such issue, as it is able to always obtain exact residuals.

C Experiment setup and details

Our code is publicly available at https://github.com/ASK-Berkeley/Neural-Spectral-Methods. All experi-
ments are implemented using the JAX framework [3].

Random fields. We use random fields for the distribution of PDE parameters, such as initial conditions
or coefficient fields. For random fields associated with periodic boundaries, we employ a periodic kernel

k(x, x′) = exp

(
− sin2(π

2
|x−x′|)

l2/2

)
to sample values on a uniform grid and use a Fourier basis for interpo-

lation. Otherwise, we employ a RBF kernel k(x, x′) = exp
(
− |x−x′|2

2l2

)
to sample values on Chebyshev

collocation points and use Chebyshev polynomials for interpolation.

Training. During training, the PDE parameters are sampled online from random fields, as describe above.
We use a batch size of 16. The learning rate is initialized to 10−3, and exponentially decays to 10−6 through
the whole training. Experiments are run with 4 different random seeds, and averaged over the seeds.
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Testing. For each problem, the test set consists of N = 128 parameters sampled from the same distribution
used for training (different from the training samples). The reference solutions are generated as specified in
§C.1, §C.2, and §C.3. Both L2 relative error and PDE residuals are averaged over the whole test set.

Profiling. During training or inference, the wall clock time is measured by the average elapsed time during
16 calls of just-in-time compiled gradient descent step or a forward pass. The computation cost of numerical
solvers in the Reaction-Diffusion problem is measured similarly. The parameter countings for each model
used in each experiment are provided in Tab. 6.

Table 6: Model size (number of trainable parameters) in each experiment.

PDE Poisson equation Reaction-Diffusion equation Navier-Stokes equation Forced NS

Model SNO FNO / NSM SNO CNO FNO / NSM T1 FNO / NSM T1 FNO / NSM

# Param. 7.5M 31.6M 33.6M 67.2M 67.2M 167.8M 236.2M 782.4M 82.7M

Boundary conditions. Similar to classic spectral methods, the imposition of boundary and initial condi-
tions is straightforward. Periodic boundaries can be automatically satisfied by using a Fourier basis, and
other types of boundary conditions can be enforced by applying a mollifier to the coefficients. This proce-
dure can be specific to the problem at hand, and we show examples in §4.

C.1 Poisson equation

Besides the periodic Poisson equation, we also show results for Dirichlet boundary conditions.

Figure 4: (a) Source term (b) Solution of periodic Poisson equation. An additional constraint u(0, 0) = 0 is imposed
to ensure the uniqueness of the solution. (c) Relative error curves during training. NSM converges significantly faster
and to a lower error than the other methods.

Parameters. For periodic boundary conditions, all models use Fourier bases in x and y dimensions. For
Dirichlet boundary conditions, both SNO and NSM use Chebyshev polynomials in both dimensions. For
each model, we use 4 layers with 64 hidden dimensions. In each layer, we use 31 modes in both dimensions.
All models are trained for 30k steps, except for FNO with a grid size of 256, which requires 100k steps to
converge. For the PINN loss, the discrete Laplacian is computed with a 5-point stencil, and with a periodic
wrapping for the periodic boundary case. The analytic solutions are evaluated on resolution 256×256.
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All models use ReLU activations, except those using a PINN loss which totally collapse during the training.
Therefore, we use tanh activations for FNO+PINN and T1+PINN, and report these results.

Table 7: L2 relative error (%) of the 2D Poission equation with Dirichlet boundary conditions.

SNO+Spectral T1×642+PINN T1+Spectral FNO×642+PINN FNO×1282+PINN FNO×2562+PINN NSM (ours)

39.9± 36.6 2.24± 1.61 0.407± 0.068 3.52± 0.29 3.61± 0.27 0.443± 0.032 0.280± 0.017

Results. The L2 relative error for both types of boundaries are summarized in Tab. 1 and Tab. 7, and
the case for periodic boundary conditions is shown in Fig. 4. For the periodic case, the inverse Laplacian
operator is a convolution with g(x) ∝ ||x||2. Therefore, all models can exactly represent the solution with
one layer. However, FNOs with a PINN loss fail to achieve an reasonable level of accuracy. As the grid size
increases, error improves but it requires more training steps to converge.

For Dirichlet boundary conditions, the solution operator is no longer diagonal under either Fourier or Cheby-
shev basis. Nevertheless, NSM still achieves the highest accuracy among each models.

C.2 Reaction-diffusion equation

Parameters. Both CNO and NSM use Chebyshev polynomials in the t dimension, and Fourier bases in the
x dimension. All models use ReLU activations. For each model, we use 4 layers with 64 hidden dimensions.
In each layer, we use 32 modes in the time dimension and 64 modes in the spatial dimension. For ν = 0.005
and ν = 0.01, all models are trained for 30k steps. Due to the increasing problem difficulty as ν becomes
larger, the training steps are increased to 100k for ν = 0.05, and 200k for ν = 0.1, respectively.

The reference solution is generated by a standard operator splitting method [31] with resolution 4096×4096,
and then downsampled to resolution 512× 512.

Figure 5: Solutions of the 1D Reaction-Diffusion equation with different2diffusion coefficients ν. Following Krish-
napriyan et al. [16], we use a reaction coefficient ρ = 5 and four different values for the diffusion coefficient. As ν
increases, the problem becomes progressively harder to solve.

Results. The L2 relative error for all models are summarized in Tab. 2 and Tab. 8, and distributions of
absolution error over the test set are shown in Fig. 6. As ν increases, the error distribution of the grid-based
methods significantly increases, while the error of NSM remains almost identical.

2The domain on the x-axis is taken as [0, 1), unlike Krishnapriyan et al. [16], which considered the interval [0, 2π). Diffusion
coefficients are rescaled accordingly for similar solution behaviors. For diffusion coefficients larger than 0.1, the solution becomes
almost fully diffusive and constant over the domain.
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Table 8: L2 relative error (%) and computation cost (GFLOP) for the Reaction-Diffusion equation, compared to T1 +
Spectral loss and T1 + PINN loss (continued from Tab. 2).

T1+Spectral T1×642+PINN T1×1282+PINN T1×2562+PINN CNO+PINN (ours) NSM (ours)

ν = 0.005 0.68± 0.02 2.30± 0.19 0.94± 0.11 0.32± 0.04 0.20± 0.01 .075± .016
ν = 0.01 0.84± 0.08 2.64± 0.97 2.27± 1.19 0.57± 0.19 0.48± 0.16 .086± .019
ν = 0.05 41.36± 69 60.10± 8.5 81.87± 3.1 90.86± 6.8 0.78± 0.01 .083± .006
ν = 0.1 196.5± 0.6 94.91± 23.7 101.7± 2.5 94.89± 5.4 1.28± 0.42 .077± .005

Train/Test 4.08/0.17 6.64/6.35 16.5/6.35 60.1/6.35 200.3/25.0 15.0/0.32

Both SNO and T1 perform non-linear activations directly on spectral coefficients, a design choice that differs
from FNO’s approach of activating function values. This distinction leads to poor robustness in SNO and T1
for increasing ν values. In contrast, NSM shows a notable robustness to the increasing diffusivity, validating
our decision to apply activations at the collocation points.

Figure 6: Reaction-Diffusion equation: Error distribution on the test set for each value of ν.

C.2.1 Ablation study: Fixed-grid training

An insightful observation in our study is the connection between our spectral training and the practice of
training grid-based FNOs on fixed-resolution grids, followed by interpolation for inference on different grid
sizes. In this section, we provide an ablation study on this fixed-grid training strategy.

Problem setup. We use exactly the same PDE problem settings as in §4.2. The ablation model is trained
on its collocation points, i.e. a fixed-resolution grid with 32 × 64 nodes. During inference time, the model
prediction is interpolated using the Fourier basis, and queried at the test resolution.

Table 9: L2 relative error (%) for fixed-grid training.

ν = 0.005 ν = 0.01 ν = 0.05 ν = 0.1

55.7± 0.01 76.9± 0.02 79.5± 0.04 80.4± 0.23

Results. The L2 relative error for this ablation model
is summarized in Tab. 9. FNO trained with a fixed-
resolution grid fails to converge, showing the important
distinction between our spectral training and the practice
of fixing training resolution and interpolating.
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Figure 7: Visualization of unforced flow at time T = 3 for viscosity ν = 10−4, using various initial vorticity samples.

C.3 Navier-Stokes equation

Parameters for the unforced flow. For each model, we use 10 layers with 32 hidden dimensions. In each
layer, we use 12 modes in the time dimension and 31 modes in both spatial dimensions.

Parameters for the forced flow. For each model, we use 5 layers with 32 hidden dimensions. In each
layer, we use 18 modes in the time dimension and 31 modes in both spatial dimensions.

The reference solution is generated numerically using a time-stepping scheme similar to Li et al. [19], with
a spatial resolution of 256 × 256. The time stepping interval ∆t is set to 10−3 for the unforced flow, and
5× 10−3 for the forced flow. Solution is recorded at a temporal resolution of 64.

NSM uses a Fourier basis in the x, y dimensions and Chebyshev polynomials in the t dimension. All models
use ReLU activations. All models’ learning rate schedulers target 200k steps. For FNO with the PINN loss,
the training is limited to 1 day for grid size 643 and 3 days for 963 respectively, after the loss plateaus.

Table 10: L2 relative error (%) for unforced NS equation, compared to T1 + Spec-
tral loss and T1 + PINN loss (continued from Tab. 3).

FNO×643+PINN T1×643+PINN T1+Spectral NSM (ours)

ν = 10−4 17.88± 2.67 34.6± 0.21 9.22± 0.05 3.53± 0.53

Results. The L2 relative errors for both problems are summarized in Tab. 3, Tab. 4, and Tab. 10, and a
visualization of the predicted vorticity for the unforced flow is shown in Fig. 7. FNO with a PINN loss fails
to predict both the overall shape and the fine features of the vorticity evolution.
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D Discussion: limitations

NSM applies to a wide range of problems, but is not a one-size-fits-all solution. Similar to those in numer-
ical analysis, efficient spectral representations necessitate sufficient regularities of the solution. Therefore,
predicting solutions that involve singularities requires more basis functions. Additionally, NSM is designed
for low-dimensional problems, e.g., problems described in x, y, z (and t) coordinates. Extensions of our
spectral training strategy to high-dimensional problems are left for future research.
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