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Abstract 1 

The liver performs several vital functions such as metabolism, toxin removal and 2 

glucose storage through the coordination of various cell types. The cell type 3 

compositions and cellular states undergo significant changes in abnormal conditions 4 

such as fatty liver, cirrhosis and liver cancer. As the recent breakthrough of the single-5 

cell/single-nucleus RNA-seq (sc/snRNA-seq) techniques, there is a great opportunity 6 

to establish a reference cell map of liver at single cell resolution with transcriptome-7 

wise features. In this study, we build a unified liver cell atlas uniLIVER by integrative 8 

analyzing a large-scale sc/snRNA-seq data collection of normal human liver with 9 

331,125 cells and 79 samples from 6 datasets. Besides the hierarchical cell type 10 

annotations, uniLIVER also proposed a novel data-driven strategy to map any query 11 

dataset to the normal reference map by developing a machine learning based 12 

framework named LiverCT. Applying LiverCT on the datasets from multiple 13 

abnormal conditions (1,867,641 cells and 439 samples from 12 datasets), the 14 

alterations of cell type compositions and cellular states were systematically 15 

investigated in liver cancer. 16 
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Main 1 

The liver is a major metabolic organ, which performs many essential physiological 2 

functions, including toxin removing, albumin and bile production, glucose and amino 3 

acid processing, and vitamin storage, etc. For humans, hepatocytes occupy about 80% 4 

liver volume and cholangiocytes, immune cells and stromal cells consist of the 5 

majority of the remaining part. These cells are organized into hexagonal hepatic 6 

lobules as the basic functional units of liver. As the recent breakthrough of the single-7 

cell/single-nucleus RNA-seq (sc/snRNA-seq) techniques1,2, there is a great 8 

opportunity to establish a reference cell map of liver at single cell resolution with 9 

transcriptome-wise features. Besides, the reference map is very useful for studying the 10 

altered cell type compositions and cellular states under diverse physiological and 11 

pathological conditions in liver, such as acute injury, virus infection, cirrhosis and 12 

cancer. 13 

In this study, we collected 79 normal human liver samples from 6 datasets3-7, and 14 

439 abnormal or disease samples from 12 datasets4,8-18. Based on this collection, we 15 

hierarchically annotated 63 cell types/subtypes and the hepatocytes in 4 different 16 

lobular regions/zones of normal liver, and then constructed an integrated and data-17 

driven human liver cell atlas uniLIVER. Beyond the traditional cell atlases mainly 18 

providing comprehensive cell type annotations, uniLIVER also aims at establishing a 19 

novel data-driven strategy to map any query dataset to the normal reference map. 20 

Analogy to the genome sequence mapping, we proposed a concept for cell type or 21 

cellular state mapping: the query cells are computationally “mapped” to the reference 22 

map based on gene expression features. Those cells whose gene expressions are 23 

dissimilar to any annotated cell subtype in the reference are defined as “variant” state 24 

cells (analogy to nucleotide variants in genome sequence analysis). The “variant” 25 

states are broadly categorized into two types, the “deviated” state and the 26 

“intermediate” state: the “deviated” state means that the gene expressions of the query 27 
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cells are shifted from a single cell type, and the “intermediate” state means that the 1 

gene expressions of the query cells located between any two reference cell types. We 2 

developed LiverCT, a machine learning based liver Cell-Type mapping method using 3 

the annotated reference data, to achieve the task of cellular state mapping in liver. 4 

We applied LiverCT on the collected abnormal liver datasets. Results show that 5 

almost all types of cells are strongly “deviated” from their normal states in 6 

hepatocellular carcinoma (HCC) and the deviated scores of T cells are positively 7 

correlated with the stress response pathway signatures. Interestingly, the results also 8 

show that the hepatic stellate cells and granulocytes (mainly neutrophils) are highly 9 

deviated in adjacent non-tumor tissues. For the “intermediate” state analysis, it was 10 

found that the cancer cells with high intermediate scores have strongly up-regulated 11 

glycolysis and hypoxia pathways. Also, the up-regulated genes of those cells are 12 

significantly overlapped with poor prognosis genes. Another interesting task is to 13 

analyze the zonation tendency of the HCC tumor cells by mapping them to the 14 

hepatocyte states in different lobular zones. We found that the zonation tendency is 15 

highly associated with the expression of multiple malignant signatures and the 16 

composition of multiple immune and stromal cell types.  17 

uniLIVER tends to establish a new framework of cell atlas by introducing 18 

machine learning into the traditional data portal only design. Both the reference cell 19 

map (as three portraits similar to hECA19) and the computationally cellular state 20 

mapping tool LiverCT are freely available via a web-based database. 21 

 22 
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Results 1 

Overview of the human liver cell atlas uniLIVER 2 

We collected scRNA-seq data from 6 datasets, which include 79 samples from 42 3 

donors (Table 1). After stringent quality control, 331,125 cells were integrated and 4 

annotated hierarchically to form the normal reference map. Population and clinical 5 

information, such as age and gender, were also collected if available (Extended Data 6 

Fig. 1a, Supplementary Table 1). Besides, we also curated 1,867,641 cells from 7 

diverse abnormal or disease samples including cirrhosis, hepatocellular carcinoma 8 

(HCC), intrahepatic cholangiocarcinoma (ICC), combined hepatocellular and 9 

intrahepatic cholangiocarcinoma (CHC) and some liver metastases (Table 1). 10 

Then, the atlas tends to “map” the cells from disease samples to the normal 11 

reference map based on gene expression similarities. To find the “variant” state cells 12 

in disease samples, we developed LiverCT, a machine learning based Cell-Type 13 

mapping method that can distinguish “deviated” states and “intermediate” states and 14 

can also classify the abnormal hepatocytes in HCC into P-like (P: Portal/Periportal) 15 

state, M-like (M: Mid) state and C-like (C: Central) state (Fig. 1). One unique aspect 16 

of LiverCT is that it adopts the concept of genomic variant analysis to identify and 17 

analyze the “variant” states of cells based on their expression patterns. Firstly, 18 

LiverCT embedded the cells in the normal reference map into a latent space. In the 19 

latent space, we trained a hierarchical classifier using ensemble learning to predict the 20 

cells’ type labels. This was followed by another one-class classifier to identify the 21 

margin of a normal cell type and a one-vs-one classifier to identify the boundary 22 

between any two cell types. Further, if a cell was predicted as hepatocyte, we utilized 23 

an additional classifier to distinguish its lobular zonation tendency. When applied to 24 

query datasets, LiverCT embedded the query cells into the pre-calculated latent space 25 

of the normal reference by scArches20 to remove the batch effects. After the cell type 26 
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prediction, a “deviated” score was calculated to measure the degree of deviation from 1 

the corresponding normal cell type and an “intermediate” score was calculated to 2 

measure the degree to which the cell was in the middle of top two predicted cell types. 3 

(Methods, Extended Data Fig. 1b). 4 

 5 

Fig. 1| uniLIVER overview. The normal reference by hierarchically annotating the cell types and 6 

zonation tendency via an integrative analysis of multiple sc/snRNA-seq datasets (left). The 7 

machine learning based Cell-Type mapping method named LiverCT can identified the cells with 8 

deviated or intermediate states and calculate the hepatocyte zonation tendency of any query 9 

dataset (middle). LiverCT was applied for liver cancer and other abnormal conditions (rights). 10 
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Hierarchical annotations of the normal liver cells 1 

A unified normal reference map needs in-depth and harmonized annotations. 2 

Currently, there exists some inconsistency in cell type definition across different 3 

studies. To harmonize the cell type labels from different datasets, firstly we built a 4 

unified hierarchical annotation framework (uHAF19) for liver (Fig. 2a). The major cell 5 

type annotations provided by the original references were harmonized into 8 major 6 

cell types (Level 1) in uniLIVER (Supplementary Table 2). In cases where the 7 

annotations were not provided, the datasets were annotated manually. Using the Level 8 

1 annotations as prior knowledge, we fine-tuned scANVI21, a tool that proved to be 9 

one of the top-performing integration methods22, to remove the batch effects between 10 

different studies (Fig. 2b). Under each of these major cell types, we further performed 11 

un-supervised graph-based clustering for in-depth annotations, which generated 17 12 

stable cell types (Level 2) (Fig.2c). 13 

The hepatic lobule is the basic unit for liver function, with a central vein (CV) in 14 

the middle and portal vein in the six corners (PV). The hepatocytes have different 15 

states and functions along the CV to PV axis. The lobule can be roughly divided in 16 

four regions: central, middle, portal and peri-portal zones5 (in a few studies the portal 17 

and peri-portal zones are combined as a single zone23,24). We annotated hepatocyte 18 

zonation utilizing the gene signatures obtained from spatial transcriptomes (Methods, 19 

Fig. 2d, Extended Data Fig. 2a-c, Supplementary Table 3). The annotated zonation 20 

patterns can be validated by the expressions of multiple canonical marker genes: 21 

CYP2E1 and CYP3A4 gradually decreased along the CV-PV axis while HAL and A2M 22 

exhibited an opposite trend, highly consistent with previous studies5,25 (Fig. 2e). 23 

Functional enrichment analysis shows that the up-regulated genes of the hepatocytes 24 

annotated as in central region were enriched in xenobiotic metabolism pathways and 25 

the result of portal region was enriched in amino acid processing (Fig. 2f, Extended 26 

Data Fig. 2d), which was also consistent with the well-established cellular functions 27 
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of the hepatocytes in different zones26. 1 

This large scale of data collection enables us to primarily investigate the impact 2 

of population variables (e.g. gender and age) on the cell type compositions and subtle 3 

gene expression variations in a same cell type. We found no significant difference in 4 

the proportion of cell types between genders (Extended Data Fig. 3a, b). As the age 5 

increases, the proportion of different cell types underwent complex changes 6 

(Extended Data Fig. 3c, d). The effects of these variables on gene expression 7 

variations were also explored using generalized linear mixed models27-29. We found 8 

that the biological processes, including cellular response to ions (MT1A and MT1E), 9 

material transport (for example, cholesterol and sterol transport including APOC2 and 10 

APOM), homeostasis maintenance (such as cholesterol, sterol, and lipid homeostasis 11 

including AKR1C1, APOC2, and APOM) and immune response (C1A, CFHR2, 12 

RARRES2) were significantly downregulated in monocytes within the elder 13 

population (Extended Data Fig. 3e). 14 

 15 

Fig. 2 | Construction of the normal reference map. a, The Level 1 and Level 2 uHAF tree of 16 

liver. b, The UMAP visualization of the normal reference map. c, The UMAP of hepatocytes 17 

(colors are zonation annotations). d, Gene expression of canonical markers CYP2E1, CYP3A4, 18 
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HAL and SBDS across the CV-PV axis. e, The significantly enriched biological process (GO:BP 1 

terms with Benjamini–Hochberg-adjusted P < 0.05) of the genes upregulated in portal and central 2 

regions, respectively. 3 

  4 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.09.570903doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.09.570903
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Deviated state analysis identifies diverse disease-associated 1 

cellular states  2 

Compared to the normal liver, the cells in disease often exhibit certain cellular states 3 

“deviation”, which provide potential targets for treatment. To elucidate the state 4 

deviation extent of the cells under disease conditions, we developed LiverCT with a 5 

supervised and hierarchical ensemble learning framework to calculate a quantitative 6 

deviated score based on the normal reference map. The performance of LiverCT was 7 

firstly validated on predicting the cell type labels in the normal reference map 8 

(Methods, Extended Data Fig. 4a).  9 

The collected disease datasets were mapped to the normal reference by LiverCT 10 

(Fig. 3a). We observed higher deviated scores in the cells from tumor (T) tissues 11 

compared to adjacent non-tumors (NT) in most cell types. In primary tumors, 12 

hepatocytes, cholangiocyte and granulocytes changed significantly, indicating strong 13 

deviation to the normal reference (Fig. 3b, Extended Data Fig. 4b). Hepatocytes and 14 

cholangiocytes were parenchymal cells that were prone to oncogenic transformations, 15 

making them distinct from normal tissues. A recent study also reported that 16 

neutrophils (major cell group of granulocytes) in liver cancer tissues exhibited 17 

significant gene expression changes compared to non-tumor tissues16.  18 

Furthermore, we tested the correctness of the deviated states on a HCC dataset 19 

published recently by Lu et al.9. They found the MMP9+ macrophages to be tumor-20 

associated macrophages. It was observed that these MMP9+ macrophages had high 21 

deviated scores, with almost all of the cells scored positive (Fig. 3c). Also, there was 22 

no proliferative macrophage observed in the normal reference and this group got the 23 

highest deviated score in the HCC dataset. Besides, other known tumor-associated 24 

cell types such as regulatory T cells, pro-metastatic hepatocytes can also be 25 

successfully found with high deviated scores (Extended Data Fig. 4c). Taken together, 26 

above results showed that LiverCT can accurately retrieve the deviated state cells. 27 
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Tumor-infiltrating T cells have paved a novel way for tumor therapy30. We 1 

investigated the correlation between the function of T cells and their deviated scores31. 2 

The deviated scores of CD4 T cells have a positive correlation with the signatures of 3 

glycolysis and stress response. The scores of CD8 T cells show also a positive 4 

correlation with stress response signature, but a negative correlation with cytotoxicity 5 

(Supplementary Table 4, Fig. 3d). A recent pan-cancer study observed a strong 6 

association between the stress response and immunosuppression31, suggesting that the 7 

deviated score of T cells is a possible alternative indicator for immunotherapy 8 

response.  9 

The adjacent non-tumor tissue (NT) presents a unique state between the normal 10 

and tumor32 and may provide additional information of the oncogenic transformation 11 

and recurrence33. Based on the cell type mapping results by LiverCT, we observed 12 

that the granulocytes, hepatocytes, and stellate cells had the highest number of the 13 

cells in deviated states. To unveil the NT’s unique expression features, we conducted 14 

differential expression analyses and focused on the consistently up-regulated genes in 15 

NT’s deviated cells. The up-regulated genes in both granulocytes and stellate cells 16 

were significantly enriched in the TNF-α signaling pathway (Fig. 3e-g, 17 

Supplementary Table 5), consistent with a pan-cancer study that observed NT-specific  18 

TNF-α signaling pathway activation32. Collectively, the deviated state analysis 19 

identified diverse disease-associated cellular states and illustrated the most susceptible 20 

cell types in disease. 21 
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 1 

Fig. 3 | Deviated state analysis reveals the changes in adjacent non-tumor and tumor 2 

samples. a, The UMAP of the disease datasets with deviated scores. b. The deviated score 3 

distribution of each cell type at Level 2 (upper panel) and the entropy of the deviated state cells 4 

(below panel). c, Deviated scores of the macrophages with their original labels in Lu et al. 5 

datasets. d, Regplot of the deviated scores and T cell functional signatures for both CD4 and CD8 6 

T cells. Pearson correlations were used to assess the associations. E, Enriched cancer hallmarks in 7 

the genes consistently upregulated in “deviated” neutrophils (Neu) and hepatic stellate cells (HSC) 8 

in adjacent non-tumor samples (adjusted P-value < 0.05). f,g, Heatmap of the expressions of the 9 

upregulated genes in the enriched hallmarks (Neu, f; HSC, g). 10 
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Intermediate state analysis reveals a population of tumor 1 

cells associated with poor prognosis in HCC 2 

Intermediate or transition cellular states are widely induced in tumors. For instance, in 3 

human melanoma34, a transitional CD8 state is observed, and in peripheral 4 

neuroblastic tumors, an intermediate state is observed between adrenergic and 5 

mesenchymal neuroblasts35. To find the cells with intermediate states, LiverCT can 6 

also calculated an “intermediate” score for query cells (Fig. 4a). In the collected liver 7 

cancer datasets, cells between CD4-CD8, Mono-Macro, HSC-VSMC and LSEC-VEC 8 

exhibited high intermediate states ratio (Fig. 4b).  9 

Also, we observed that many tumor cells have high intermediate scores between 10 

the hepatocyte-cholangiocyte pair. Liver cancers, including HCC, ICC, and CHC, 11 

exhibited significant heterogeneity and can arise from diverse origins36. It has been 12 

reported that ICC could potentially arise from biliary-like cells that undergo trans-13 

differentiation from hepatocytes, as well as from hepatic progenitor cells in addition 14 

to mature cholangiocytes37. So, we then tend to study the characteristics of those 15 

tumor cells with intermediate states. 16 

LiverCT classified the malignant epithelial cells from tumor samples into 17 

hepatocyte, cholangiocyte and intermediate states (Methods, Fig. 4c). Notably, of the 18 

three types of liver cancer, the ratio of intermediate states in CHC was the highest, 19 

followed by HCC. Cholangiocytes exhibited high expression of EPCAM and KAT19, 20 

while hepatocytes expressed CYP3A4 and CYP2E1. The intermediate states, however, 21 

under-expressed both these cell type markers. (Fig. 4d, Extended Data Fig. 5a).  22 

To investigate the cellular features of the intermediate states, we performed a 23 

differential expression analysis, comparing the gene expressions of the tumor cells 24 

with intermediate states to the other tumor cells. We found a set of up-regulated genes 25 

associated with cell growth and development (ALDOA, MDK, ENO1, TKTL1) (Fig. 26 

4e, Extended Data Fig. 5b, Supplementary Table 6). Among them, ALDOA was 27 
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proved to serve as a driver for HCC cell growth under hypoxia38. MDK has been 1 

proposed as a multifunctional protein in HCC development, progression, metastasis, 2 

and recurrence39. The up-regulated genes were also enriched in glycolysis, hypoxia, 3 

and UV_ response_up besides cycling-related pathways (Fig. 4e, Extended Data Fig. 4 

5c).  5 

Subsequently, we explored the association between the intermediate states and 6 

prognosis in HCC using another database HCCDB which integrates multiple large-7 

scale clinical cohorts to examine the gene expression variations in HCC40. Using 8 

Fisher's exact test, we compared the poor prognosis-associated genes listed in 9 

HCCDB with the genes upregulated in the intermediate state tumor cells. Remarkably, 10 

the results demonstrated a significant overlap between these two gene lists, indicating 11 

a potential association between the intermediate states and the poor prognosis in HCC 12 

(Fig. 4f). We further examined the clinical relevance of the differentially expressed 13 

genes in intermediate states in the TCGA cohort41 and found that higher intermediate 14 

gene signature score is significantly associated with worse overall survival (Fig. 4g). 15 

Taken together, the intermediate states analysis revealed a group of tumor cells with 16 

multiple malignant features which located between the hepatocyte and cholangiocyte 17 

states. 18 

Finally, we studied the relationship between the deviated scores and the 19 

intermediate scores. It was observed that MACRO+ macrophages (kuppfer cells) had 20 

low intermediate scores and deviated scores, consistent with its preference in non-21 

tumor tissues. And while, MMP9+ macrophages get high deviated scores and low 22 

intermediate scores, which were also consistent with that MMP9+ macrophages were 23 

in a terminal state in HCC9 (Extended Data Fig. 5d).  24 
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 1 

Fig. 4 | Intermediate state analysis enable the identification of the tumor cells associated poor 2 

prognosis. a, The UMAP visualization of the intermediate scores in the tumor samples. b, The 3 

ratio of the intermediate state cells occupying the proportions of the two “terminal” cell types. c, 4 

The UMAP visualization of the tumor (epithelial) cells annotated as hepatocyte-like, 5 

cholongiocyte-like and intermediate state cells by LiverCT. d, The expressions of selected marker 6 

genes for cholangiocytes and hepatocytes, and also the highly expressed genes in the intermediate 7 

state tumor cells. e, Three cancer hallmarks enriched in the upregulated genes in the intermediate 8 

state tumor cells (adjusted P < 0.05). f, Venn diagram of the genes upregulated in the intermediate 9 

state tumor cells and the unfavorable genes listed in HCCDB. g, The survival analysis of the 10 

TCGA HCC cohort based on the gene signature derived from the tumor cells with intermediate 11 

states (P value was calculated using log-rank test). 12 
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Tumor cell zonation tendency mapping defines novel HCC 1 

subtypes 2 

Hepatocytes in different lobular zones display spatial-ordered functional 3 

heterogeneities. However, in HCC tumor tissues, the lobule-like patterns are usually 4 

lost. It is an interesting question that whether the malignantly transformed hepatocytes 5 

(tumor cells) still have zonation tendency and whether the tendency patterns are 6 

associated with clinical outcome. 7 

Leveraging the second module of LiverCT, the HCC tumor cells were mapped 8 

into three zones as the P (Periportal/Portal) state, the M (Mid) state or the C (Central) 9 

state (Methods). We observed different distributions of tumor cells’ zonation labels in 10 

different patients. Based on the different compositions of the LiverCT annotated 11 

zonation labels of tumor cells, we divided the patients into three groups, namely 12 

HCC_P (dominated by “Periportal+Portal” state cells), HCC_M (dominated by “Mid” 13 

state cells), and HCC_C (dominated by “Central” state cells) (Fig. 6a) (Methods).  14 

To explore the distinctive features of the three HCC subtypes, we calculated the 15 

differentially expressed genes (DEGs) of each of the subtypes by using patient-16 

specific pseudo-bulk data (Fig. 6b, Supplementary Table 7). Results show that in 17 

addition to several well-known zonal marker genes, different subtypes of HCC 18 

patients exhibited unique expression of many other non-zonal genes. Notably, CD24 19 

was among the top DEGs of the HCC_P subtype, suggesting a more malignant 20 

phenotype42. We further performed a survival analysis in TCGA41 bulk data, and 21 

found that higher HCC_P signature scores were significantly associated with poorer 22 

clinical prognosis (Fig. 6c). Multiple independent cohorts in HCCDB40,43 showed the 23 

similar observations (Extended Data Fig. 6a). 24 

By scoring the curated stemness gene sets (ANPEP, CD24, CD44, PROM1, 25 

EPCAM)44 and metastatic gene sets9 on the pseudo-bulk data, we found statistically 26 

significant differences in the distribution of the stemness scores (P = 2e-5, ANOVA 27 
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test) and the metastasis scores (P = 5e-3, ANOVA test) among the three HCC 1 

subtypes. The HCC_P patients showed much higher scores of cancer stemness and 2 

metastasis than the other two subtypes (Fig. 6c). Besides, in tumor cells of HCC_P, 3 

we observed the higher expression of AFP, which is a marker for fetal liver and a 4 

well-known marker for primary liver cancer. Additionally, SPINK1, a marker for 5 

hepatoblasts45 and a tumor-promoting factor46, exhibited up-regulation in tumor cells 6 

of HCC_P (Fig. 6c). These differences were not observed among the cells in different 7 

zones in normal liver, suggesting that these alterations should be associated with 8 

pathological changes (Extended Data Fig. 6b, c). Based on these findings, we 9 

speculated that the HCC_P subtype may correspond to a more poorly differentiated 10 

HCC phenotype. 11 

Then, we investigated the dys-regulated metabolic processes in these HCC 12 

subtypes. Pseudo-bulk of HCC patients and normal donors were scored using a set of 13 

curated metabolic gene modules47. We found that urea cycle, which is normally 14 

conducted in portal and periportal regions48, is most significantly down-regulated in 15 

HCC_P patients. The finding suggested that tumor hepatocytes of HCC_P subtype 16 

presented a higher degree of urea cycle disorder (UCD), which correlated with poor 17 

prognosis47. Conversely, glycolysis was not a normal functional process of portal and 18 

periportal hepatocytes23,49, but we observed a slight upregulation of the glycolytic 19 

modules in tumor cells of HCC_P patients (Extended Data Fig. 6d). 20 

We further conducted a detailed analysis of the characteristics of the tumor 21 

microenvironment (TME) in patients with HCC_P subtype. Utilizing scCancer250, we 22 

transferred TME cell labels from multiple public datasets15,51,52 to our collected data. 23 

Our analysis revealed that HCC_P patients had a higher abundance of SPP1+ tumor-24 

associated macrophages (TAMs) and FOXP3+ CD4 T cells compared to the other 25 

subtypes. In contrast, the proportions of CX3CR1+ CD8 T cells and endothelial cells 26 

were lower in HCC_P patients (Fig. 6e, Extended Data Fig. 6e). We noticed that 27 

SPP1+ TAMs were described as a potentially pro-tumorigenic/pro-metastatic subtype 28 
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in colorectal cancer. Intriguingly, we found that cells annotated as SPP1+ TAMs in 1 

HCC TME displayed high expression levels of markers for MMP9+ macrophages9 2 

(Extended Data Fig. 6f), which had been previously implicated in promoting HCC 3 

progression. These observations suggested that patients classified as HCC_P subtype 4 

might exhibit a relatively immunosuppressive TME. 5 

Taken together, the zonation mapping of tumor cells by LiverCT defines novel 6 

HCC subtypes. Notably, HCC_P patients exhibited the worst overall survivals, 7 

characterized by increased expression of stemness and metastatic factors, along with 8 

the presence of metabolism dysregulation and an immunosuppressive 9 

microenvironment. 10 
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1 

Fig. 5 | The discovery of HCC subtypes by tumor cell zonation mapping. a, The UMAP of the 2 

three HCC subtypes defined based on the distributions of LiverCT mapped tumor cells’ zonation 3 

states. b, The heatmap the differentially expressed genes among the three subtypes using the 4 

patient-level pseudo-bulk data. c, The survival analysis of the TCGA HCC patients based on the 5 

HCC_P pseudo-bulk signature (the P value was calculated by log-rank test). d, The expression of 6 

marker genes for central, peri-portal areas and HCC_P patients (top). The stemness score and 7 
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metastatic score distribution among different patient types (bottom). e, The proportions of the 1 

TME cell subtypes in the three HCC subtypes. 2 

A web-based portal of multidimensional portraits of the 3 

atlas  4 

To facilitate a convenient browsing, we design a web-based portal for the atlas. It 5 

contains two user-friendly tools, namely cell mapping and cell sorting, and four 6 

portraits which are the gene portrait, cell portrait, zonation portrait and disease 7 

portrait, each portrait contains multiple different views (Fig. 6). 8 

Detailed information of genes, cells and zonation of normal reference cell map 9 

can be found in the corresponding portraits. The gene portrait provides the expression 10 

distribution of the selected gene across cell types. The cell portrait portrays the uHAF 11 

tree of uniLIVER as well as the features of the selected cell type quantitively, 12 

including its number and cell-cell interaction. The zonation portrait provides the 13 

expression distribution of the selected gene across zonation and highly expressed 14 

genes (HEGs) of each zone. 15 

For mapping new datasets onto the normal reference map, we developed a cell 16 

mapping tool LiverCT (freely available via uniLIVER website). The method mainly 17 

contains three parts, namely cell type classification, “variant” state identification, 18 

hepatocyte zonation reconstruction. When users input single-cell sequencing data, 19 

LiverCT will provide predicted cell types at Level 1 and Level 2. Additionally, it will 20 

provide two scores: the deviated score and the intermediate score, as well as cells the 21 

recommended thresholds for identifying the cells with deviated states or intermediate 22 

states, respectively.  23 

Using LiverCT, we comprehensively annotated the disease data and constructed 24 

the disease portrait. The disease portrait shows the characteristics of the disease from 25 

two views: (1) molecular view; (2) cellular view. The molecular view presents the 26 
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features of disease states and intermediate states, as well as the characteristics of 1 

disease cell types. The cellular view contains the statistical representation of cell type 2 

number and cell-cell interaction in the selected liver condition and difference 3 

compared with another liver condition.  4 

In addition to the cell mapping tool LiverCT, the portal also embedded a cell 5 

sorting tool which allows users to download data in uniLIVER flexibly53. It is 6 

implemented on the hECA interactive web interface where users just need to input the 7 

filtering conditions to quickly obtain the desired data online and no longer need to 8 

download all the data and then filter it. This greatly saves time and is essential in the 9 

era of increasing data. 10 

 11 
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Fig. 6 | The database content and online tools of uniLIVER. The database consists of four 1 

portraits and two tools: (1) the gene portrait showing the gene expression among different cell 2 

types and subtypes within a lineage; (2) the gell portrait displaying uHAF tree and the cell-cell 3 

interaction within normal data; (3) the zonation portrait showing the gene expression within four 4 

zones in liver lobules; (4) the cell mapping page displaying the cell annotation and variant state 5 

identification as well as zonation reconstruction pipeline of LiverCT; (5) the disease portrait 6 

showing the characteristics of deviated states and intermediated states; (6) The cell sorting 7 

providing a one line tool which allows users to download data in uniLIVER flexibly. 8 

  9 
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Discussion 1 

In this study, analogy to the genome sequence mapping, we have provided a machine 2 

learning based framework for disease “variant” analysis. As a tool for uniLIVER, 3 

LiverCT get several interesting findings by mapping disease datasets to the normal 4 

reference map. It finds that neutrophils and hepatic stellate cells are strongly deviated 5 

in adjacent tumor, and the intermediate-state tumor cells are associated with 6 

unfavorable outcomes in HCC. 7 

The function of hepatocytes along the lobule radial axis is highly heterogeneous, 8 

which in turn results in differences of zonal patterns of drug responses and oncogenic 9 

transformation48. Although hepatocytes’ function is impaired by diseases, we posit 10 

that they still exhibit the characteristics of the CV-PV axis at the global transcriptome 11 

level. These characteristics might be influenced by both the microenvironment and 12 

long-term epigenetic phenomena54,55. Tumor cell zonation tendency mapping defines 13 

novel HCC subtypes. Among them, the HCC_P subtype has worst survival with a 14 

SPP1+ macrophage infiltrated suppressive immune microenvironment. Clinically, the 15 

HCC novel subtypes enable different therapy choices. Further investigation is needed 16 

to elucidate the molecular mechanisms by which tumor cells interacts with immune 17 

cells, ultimately resulting in a poorer prognosis in HCC_P patients.  18 

Defining a comprehensive and refined normal reference map is essential but 19 

challenging, as it requires capturing both cellular and population variations29. LiverCT 20 

presents a promising opportunity to assess the saturation of the atlas. When 21 

incorporating new healthy datasets, we can evaluate whether any novel deviated states 22 

emerge. If no new cell types are discovered, we can consider the atlas to be ready. 23 

However, if new cell types are detected, we can fine-tune the model until the 24 

identification of previously unobserved cellular states ceases. 25 

As data continues to accumulate, there is a recent surge in the development of 26 

large-scale models that have demonstrated state-of-the-art performance across a wide 27 
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range of downstream tasks56-59. These models offer a promising opportunity to create 1 

a more comprehensive atlas. Also, with the development of spatial transcriptomics 2 

technology, it is now possible to further portray the spatial microenvironment of a 3 

cell, which is important to understand the cellular niches of liver. 4 

  5 
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Methods  1 

Data collection and processing 2 

In the current atlas, we archived 18 human liver datasets, including 6 healthy datasets, 3 

1 cirrhosis dataset and 11 liver cancer datasets (Supplementary Table 1). For 17 4 

publicly available datasets provided by dataset generators, we collected the expression 5 

matrix and processed it using Seurat pipline60. Besides the public datasets, we 6 

generated ~30K healthy data and use scCancer61 pipeline to do quality control. The 7 

gene symbols were unified to the list of 43,878 HUGO Gene Nomenclature 8 

Committee (HGNC) approved symbols with the toolkit in hECA53, with withdrawn 9 

and alias symbols converted into HGNC approved symbols.                                                                                                            10 

 In addition, we collected phenotype information at multiple levels including 11 

donor, sample and cell. At the donor level, we gathered gender, age and fibrotic status 12 

if available. At the sample level, we categorized the sample status according to its 13 

location, harmonizing it as normal (N), primary tumor (T), non-tumor (NT), the joint 14 

area between the tumor and adjacent normal tissues (PJ), hepatic lymph node (HLN), 15 

metastatic lymph node (MLN), portal vein tumor thrombus (PVTT), Ascites (ASC), 16 

Blood (BLO) (Supplementary Table 1). At the cell level, we collected the original 17 

annotations and standardized them to the cell type at level 1 in the uHAF tree 18 

(Supplementary Table 2). 19 

Normal data integration and annotation 20 

To visualize the cells in the normal reference map, the neighbor graph was built based 21 

on the 30 latent dimensions that were obtained from the scANVI output with the 22 

default parameter setting of sc.pp.neighbors function. The dimensionality of cells was 23 

further reduced using Uniform Manifold Approximation and Projection (UMAP) with 24 
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sc.tl.umap function based on the neighbor graph built above. To determine the Level 1 1 

label of cells, we used two methods. If the original study provided labels of cells, we 2 

would map those labels to the uHAF to obtain the Level 1 label. If not, marker genes 3 

would be used to identify the cell types.  4 

To further annotate cells of each resulting Level 1 cluster, a new neighbor graph 5 

was built using 30 latent dimensions of scANVI. Clusters were classified into level 2 6 

labels using marker genes. 7 

Normal hepatocyte zonation annotation 8 

We annotated zonation labels for hepatocytes from the uniLIVER normal reference 9 

map. The zonation groups provided by Guilliams et al. (2022) for the human liver 10 

spatial transcriptome were used as the reference5.  11 

For each Visium sample, we conducted Wilcoxon test to find differential 12 

expressed genes between C-spots (“Central”) and P-spots (“Periportal” +” Portal”). 13 

This step is implemented via rank_genes_groups() function in Scanpy62. In order to 14 

mitigate the impact of inter-individual variability, only genes showing significant 15 

zonal differences (pvals_adj < 0.01 for C-markers, and pvals_adj < 0.05 for P-16 

markers) in more than 3 samples were considered. To accommodate scRNA-seq data 17 

characteristics, we filtered out genes with a mean log- normalized expression lower 18 

than 0.1 in hepatocytes from our single-cell data.  19 

A min-max scaler is applied to each gene in the same sample first to preserving 20 

gradient information. Then, a spot’s score can be calculated as:  21 

𝑠𝑐𝑜𝑟𝑒 =
mean

𝑔𝑒𝑛𝑒∈{𝑃−𝑚𝑎𝑟𝑘𝑒𝑟𝑠}
𝐸𝑥𝑝𝑟𝑔𝑒𝑛𝑒

mean
𝑔𝑒𝑛𝑒∈{𝑃−𝑚𝑎𝑟𝑘𝑒𝑟𝑠}

𝐸𝑥𝑝𝑟𝑔𝑒𝑛𝑒 + mean
𝑔𝑒𝑛𝑒∈{𝐶−𝑚𝑎𝑟𝑘𝑒𝑟𝑠}

𝐸𝑥𝑝𝑟𝑔𝑒𝑛𝑒
 22 

We visualized the original group labels and our defined score on Visium spots 23 

(Extended Data Fig. 2a). Furthermore, we plotted the score distribution for the four 24 

zonation labels (Extended Data Fig. 2b). These results demonstrated that the score can 25 

effectively indicate the location along the CV-PV axis in a healthy liver. This score 26 
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can be applied equally to spots in spatial transcriptome, as well as cells in single-cell 1 

transcriptome. 2 

For hepatocytes from uniLIVER normal reference map, we first conducted a 3 

quality control step. We removed non-viable cells with percentage of mitochondrial 4 

gene counts over 30%. Also, cells with an expressed gene number lower than 1000 5 

were excluded from the subsequent annotation and analysis. These specific thresholds 6 

were determined based on the distribution of QC indicators obtained using Scanpy 7 

function calculate_qc_metrics() (Extended Data Fig. 2c). 8 

To address distributional biases between spatial and single-cell transcriptomes, as 9 

well as variations in experimental techniques for single-cell sequencing, we 10 

conducted a correction step. Our hypothesis was that the scores for livers from healthy 11 

donors should exhibit a similar distribution. Therefore, we adjusted the mean and 12 

variance of the score distribution within each batch of single-cell transcriptome data 13 

to align with the corresponding distribution observed in the spatial transcriptome data.  14 

We employed a normal function to fit the score distribution of each zonation 15 

label. The parameters were determined via maximum likelihood estimation: 𝜇𝑙 = 𝑋𝑙̅ , 16 

𝜎𝑙
2 =

𝑛−1

𝑛
𝑆𝑙

2. We transferred the previously fitted distribution to the single-cell data. 17 

Bayesian estimation was utilized to infer the zonation group of each cell, assuming an 18 

equal prior probability for each zonation label: 19 

𝑙𝑎𝑏𝑒𝑙 = argmax
𝑙∈𝐿

𝑝(𝑙)𝑝(𝑠𝑐𝑜𝑟𝑒|𝑙) = argmax
𝑙∈𝐿

𝑁(𝑠𝑐𝑜𝑟𝑒; 𝜇𝑙, 𝜎𝑙
2) 20 

where L represents the set of the four zonation group labels (Central, Mid, Periportal, 21 

Portal). 22 

Modeling the effect of demographic covariates on gene 23 

programs 24 

To model the effect of demographic covariates (gender and age) on gene programs, 25 

we performed the generalized linear mix model (GLMM). We first split cells by level 26 
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2 labels, then filtered out genes that were expressed in fewer than 10 cells. Sample-1 

level pseudo-bulks, which were generated by summing gene counts across cells 2 

within each level 2 label for each sample, were used to fit the model. Pseudo-bulks 3 

were normalized using calcNormFactors function of edgeR with default parameter 4 

settings. Then voom63 was used to fit GLMM for differential expression and perform 5 

hypothesis test on fixed effects. Gene expression was modeled as: 6 

log(𝑛𝑜𝑟𝑚𝑐𝑜𝑢𝑛𝑡) ~ 1 + 𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + (1|𝑑𝑜𝑛𝑜𝑟 𝐼𝐷) 7 

where the donor is treated as a random effect, and age and gender are modeled as 8 

fixed effects. We used the Benjamini-Hochberg procedure to correct the resulting p-9 

values within each covariate. Significant genes (adjusted p-value < 0.05) were 10 

selected for gene set enrichment analysis using the enrichGO function in the 11 

clusterProfiler package64.  12 

LiverCT: a machine learning based cell-type mapping  13 

We developed LiverCT (machine learning based Liver Cell Type mapping), to map 14 

new datasets onto the normal reference map. Two-level cell type labeling was 15 

provided by a hierarchical ensemble learning classifier. On the basis of accurate cell 16 

type prediction, LiverCT identified cells in “variant” states, which can be broadly 17 

categorized into two types: deviated states and intermediate states. Specifically, for 18 

hepatocytes, LiverCT further predicted zonal groups along the CV-PV axis at sub-19 

lobule scale. The workflow of LiverCT is depicted in Extended Data Fig. 1b. 20 

Batch correction. To mitigate batch effects between the query data and the 21 

normal reference, query datasets were projected to the common latent space of then 22 

normal reference map using scArches20, a transfer learning method. The parameter 23 

“encode_covariates” of the scANVI model was set to True to allow us to fine-tune the 24 

weights of newly introduced edges in the input layer. We conducted 20 epochs during 25 

the fine-tuning process of scArches. Subsequent models operated in this latent space.  26 

Hierarchical ensemble learning cell type classification. The manually annotated 27 
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labels served as the reference standard for classification. The process followed a 1 

hierarchical tree structure as shown in Fig. 2a, to improve the resolution of cell type 2 

labeling step by step. The query cells were first divided into 8 major cell types. Then 3 

within each major type, a finer-grained classification was carried out, resulting in 17 4 

labels at the second level. Both layers of the classification were implemented using an 5 

ensemble learning model. It consisted of a Multi-layer Perceptron (MLP) classifier65, 6 

an XGBoost classifier66, a Logistic Regression classifier67 using one-vs-rest strategy 7 

and a Random Forest classifier68. A soft voting strategy was implemented to generate 8 

the predicted probabilities for each cell type. The algorithm was accelerated using 9 

parallel threading managed by the joblib (https://github.com/joblib/joblib) package. 10 

Deviated states identification. We utilized a One-Class Support Vector Machine 11 

(OCSVM) for unsupervised novelty detection69. For each fine-grained label in the 12 

second level, a OCSVM model was trained. By delineating the contour of the feature 13 

space occupied by cells in the normal reference, the OCSVM model effectively 14 

identified cell states that deviated from the normal states. We first used a Radial Basis 15 

Function (RBF) Kernel to transform the initial observations to a non-linear feature 16 

space: 17 

 𝐾(𝒙1, 𝒙2) = exp (−𝛾||𝒙1 − 𝒙2||
2

2
) 18 

The feature map for the RBF kernel was approximated with the Nyestroem 19 

method for acceleration70,71, using sklearn.kernel_approximation.Nystroem(). Then, a 20 

linear OCSVM was performed in the transformed feature space. The OCSVM model 21 

was solved using Stochastic Gradient Descent (SGD). This algorithm was chosen due 22 

to its efficiency in processing large training sets. The optimization problem was 23 

defined as follows: 24 

min
𝑤,𝑏

𝜈

2
||𝑤||

2
+ 𝑏𝜈 +

1

𝑛
∑ max (0, 1 − (〈𝑤, 𝑥𝑖〉 + 𝑏)

𝑛

𝑖=1

) 25 

where 𝑤 and 𝑏 represented the linear coefficient and the intercept to be optimized, 26 

and 𝜈 was a hyperparameter. The hyperparameters of the model were automatically 27 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.09.570903doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.09.570903
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

set based on the distribution of the training data. Specifically, the parameter 𝛾 of the 1 

RBF kernel was set to 1/(𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ 𝑣𝑎𝑟(𝑋)) as suggested by the sklearn library. 2 

The parameter 𝜈 was incrementally increased until 10% of the training data was 3 

detected as outliers. Cells located outside the frontier-delimited subspace were 4 

annotated as under “deviated” states. Euclidean distances between query data 5 

observations to the frontier hypersphere were calculated. These distances were then 6 

normalized by the 80th percentile value for each model. Subsequently, the normalized 7 

distances were negated and truncated between -1 and 1, resulting in the deviated 8 

scores. Higher deviated scores represented larger deviations from the normal 9 

distribution. 10 

Intermediate states identification. We assumed that intermediate states only 11 

existed between cell types under the same major type. A special case is hepatocytes 12 

and cholangiocytes, where an intermediate state between the two has been 13 

demonstrated to exist in certain disease conditions36.Therefore, even though they are 14 

already distinguished at the major cell type level, we have still identified the 15 

intermediate state between them. We employed a one-vs-one SVM model72 to identify 16 

the classification boundaries between the top two classes to which the cell was most 17 

likely to belong. The pipeline consisted of a standard scalar and a linear SVM 18 

optimized using SGD. We calculated Euclidean distances of the samples to the 19 

separating hyperplane, then used a generalized RBF kernel to transform distances to 20 

scores between 0 and 1:  21 

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑠𝑐𝑜𝑟𝑒 = exp(−|𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒|) 22 

The higher intermediate score represented that the cell tended to be more 23 

intermediate between the two types. A threshold was determined as 0.6 manually to 24 

classify cells with scores above it as being in intermediate states. 25 

Tumor hepatocyte zonation states mapping. In the context of disease data, 26 

particularly hepatocellular carcinoma (HCC), the expression of many zonal landmark 27 

genes was found to be absent or exhibited a loss of gradient. As a result, the scoring 28 
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approach that relied on a subset of genes defined in a healthy liver was unsuitable for 1 

analyzing disease data. To overcome this, we employed a supervised learning 2 

classifier trained on our normal reference, and used it to transfer zonation labels to the 3 

disease data.  4 

To address the individual heterogeneity of human hepatocytes, we used donor ID 5 

as batch labels to train a scANVI model. This model generated a 30-dimensional 6 

latent space with batch corrected. For the input features of the scANVI model, we 7 

identified 2000 highly variable genes (HVGs). The selection of HVGs was performed 8 

using the "seurat_v3" flavor provided by the Scanpy pipeline. 9 

We chose the Random Forest algorithm, which employs feature sampling steps to 10 

ensure reliable classifications even when features are missing. This attribute makes it 11 

particularly suitable for analyzing disease state data. We used the low-dimensional 12 

latent vectors as input for training and implemented the algorithm using 13 

sklearn.ensemble.RandomForestClassifier with 100 estimators. 14 

We used manually annotated zonation groups as the reference standard and 15 

implemented a more general categorization approach by using three classification 16 

labels for the training process. Specifically, we combined the Periportal and Portal 17 

regions, leading to three labels: C for Central, M for Mid, and P for Periportal+Portal. 18 

For disease data, we utilized the transfer learning method, scArches, to acquire 19 

latent space representations consistent with the reference. During the scArches 20 

surgery process, 20 epochs of fine-tuning were performed. We then used the trained 21 

Random Forest classifier to predict zonation label for each individual cell. 22 

We built LiverCT on Python (3.9.7), using the following packages: numpy 23 

(1.22.4), scipy (1.8.1), pandas (1.4.3), anndata (0.8.0), scanpy (1.9.1), scArches 24 

(0.5.9), joblib (1.1.0), scikit_learn (1.1.1), xgboost (1.7.6). The code is open-sourced 25 

at Github (https://github.com/fyh18/LiverCT). 26 
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Variant states analysis 1 

We sampled up to 1000 cells from each donor to maintain the balance of patient cell 2 

number. After quality control, 272,464 cells were left to constitute the core disease 3 

data. 4 

In the T cell function analysis section, we use “sc.tl.score_genes” in scanpy to 5 

add module score to each cell. Pearson correlation was employed to assess the 6 

correlation between T cell function and deviation scores. 7 

The intermediate gene signature was derived by filtering genes based on specific 8 

criteria, including a log fold change (FC) greater than 0.5 and an adjusted p-value 9 

(pvals_adj) lower than 0.01. 10 

HCC Classification 11 

We analyzed cells annotated as hepatocytes by LiverCT from the core disease data. 12 

Only samples from HCC primary tumors were included. Samples with less than 50 13 

hepatocyte-like cells were filtered out. We then calculated the proportion of cells with 14 

the three zonal labels (“C”, “M” and “P”) for each patient, resulting in a 𝑛 × 3 15 

matrix where each row represented a donor and each column represented the cell 16 

proportion of a certain zone. We referred to this matrix as “zonal proportion space of 17 

patients”. Subsequentially, we performed a 3-cluster spectral clustering within this 18 

space to classify three HCC subtypes, namely HCC_C, HCC_M and HCC_P.  19 

We summed up the counts of all HCC tumor hepatocytes for each patient, and 20 

then perform log-normalization to acquire pseudo bulk data.  21 

Portraits of uniLIVER 22 

Gene portrait. We provided the expression distribution of the selected gene across cell 23 

types. The ridge plots showed the non-zero expression distributions in different cell 24 
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types. The number at the right of the ridge plots showed the non-zero percentages of 1 

the expression values. 2 

Cell portrait. CellChat73 was employed to infer cell-cell interactions by analyzing the 3 

expression patterns of known ligand-receptor pairs across diverse cell types. We 4 

followed the official workflow with default parameters.  5 

Zonation portrait. We provided the average expression values of the selected gene 6 

across zonation. Besides, differentially expressed genes of different zones can be 7 

visualized by heatmap. 8 

Disease portrait. In Molecular view, we present the features of disease states and 9 

intermediate states, as well as the characteristics of disease cell types. The former two 10 

are compared within a specific disease, while the latter is compared between different 11 

disease conditions. In deviated state section, deviated score distribution in level 2 is 12 

displayed and we can see the most susceptible cell type. By selecting a cell type, 13 

differentially expressed genes in deviated states compared with normal states are shown. 14 

Similarly, in intermediate state section, the ratio of intermediate states between two cell 15 

type is shown and we can see the differentially expressed genes in intermediate states 16 

compared with the other two cell types. The Disease cell type section displays 17 

differentially expressed genes (DEGs) between the selected disease and another 18 

condition in the same cell type. Enrichment analysis is conducted based on the DEGs. 19 

 20 

Data availability 21 

The uniLIVER website is publicly accessible via [https://liver.unifiedcellatlas.org]. 22 

The normal reference map and core disease data (processed as data matrix) are 23 

publicly available through the databrowser section and can be easily downloaded 24 

from download section in the web server. The source codes, trained models and 25 

documents of LiverCT are also provided at the website. 26 
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Table1 | The collected datasets in uniLIVER 1 

Study No. of 

donors 

Gender 

(M:F) 

Age 

(yr) 

Sequencing 

method 

Final 

#cells 

Source 

Aizarani et al. 

20193 

9 n/a n/a mCel-Seq2 9,466  GSE124395 

Ramachandran et 

al. 2019/healthy4 

5 4M:1F n/a 10X 34,601  GSE136103 

Guilliams et al. 

20225 

34 19M:15F 28-77 10X 167,510  GSE192742 

Payen et al. 20216 2 1M:1F 3-39 10X 26,685  GSE158723 

Andrews et al. 

20217 

5 2M:3F 18-60 10X 59,977  GSE185477 

Gu et al. 2022 4 2M:2F 47-66 10X 32,886  In house  

Losic et al. 20208 2 1M:1F 66-67 10X 49,674  GSE112271 

Lu et al. 20229 10 9M:1F 48-65 10X 71,915  GSE149614 

Ma et al. 202110 37 23M:13F 35-81 10X 48,318  GSE116113 

Massalha et al. 

202011 

6 2M:4F 40-74 MARS-seq 4,691  GSE146409 

Sun et al. 202112 18 17M:1F 42-76 MIRALCS 16,498  CNP0000650 

Zhang et al. 201913 10 9M:1F 32-84 10X/SMART

-seq2 

73,261  GSE140228 

Zhang et al. 202014 6 4M;2F n/a 10X 37,814  GSE138709/ 

GSE142784 

Zheng et al. 201715 6 4M;2F 26-64 SMART-seq2 5,063  GSE98638 

Ramachandran et 

al. 2019/cirrhosis4  

5 3M:2F n/a 10X 26,279  GSE136103 

Xue et al. 202216 124 94M:30F 31-88 10X 1,337,82

9  

PRJCA00774

4 

Ma et al. 202217 7 n/a n/a 10X 112,506  GSE189903 

Liu et al. 202318 6 6F 48-64 10X 83,793  skrx2fz79n 
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