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Abstract

The liver performs several vital functions such as metabolism, toxin removal and
glucose storage through the coordination of various cell types. The cell type
compositions and cellular states undergo significant changes in abnormal conditions
such as fatty liver, cirrhosis and liver cancer. As the recent breakthrough of the single-
cell/single-nucleus RNA-seq (sc/snRNA-seq) techniques, there is a great opportunity
to establish a reference cell map of liver at single cell resolution with transcriptome-
wise features. In this study, we build a unified liver cell atlas uniLIVER by integrative
analyzing a large-scale sc/snRNA-seq data collection of normal human liver with
331,125 cells and 79 samples from 6 datasets. Besides the hierarchical cell type
annotations, uniLIVER also proposed a novel data-driven strategy to map any query
dataset to the normal reference map by developing a machine learning based
framework named LiverCT. Applying LiverCT on the datasets from multiple
abnormal conditions (1,867,641 cells and 439 samples from 12 datasets), the
alterations of cell type compositions and cellular states were systematically

investigated in liver cancer.
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Main

The liver is a major metabolic organ, which performs many essential physiological
functions, including toxin removing, albumin and bile production, glucose and amino
acid processing, and vitamin storage, etc. For humans, hepatocytes occupy about 80%
liver volume and cholangiocytes, immune cells and stromal cells consist of the
majority of the remaining part. These cells are organized into hexagonal hepatic
lobules as the basic functional units of liver. As the recent breakthrough of the single-
cell/single-nucleus RNA-seq (sc/snRNA-seq) techniques'-?, there is a great
opportunity to establish a reference cell map of liver at single cell resolution with
transcriptome-wise features. Besides, the reference map is very useful for studying the
altered cell type compositions and cellular states under diverse physiological and
pathological conditions in liver, such as acute injury, virus infection, cirrhosis and
cancer.

In this study, we collected 79 normal human liver samples from 6 datasets®”, and
439 abnormal or disease samples from 12 datasets**!%. Based on this collection, we
hierarchically annotated 63 cell types/subtypes and the hepatocytes in 4 different
lobular regions/zones of normal liver, and then constructed an integrated and data-
driven human liver cell atlas uniLIVER. Beyond the traditional cell atlases mainly
providing comprehensive cell type annotations, uniLIVER also aims at establishing a
novel data-driven strategy to map any query dataset to the normal reference map.
Analogy to the genome sequence mapping, we proposed a concept for cell type or
cellular state mapping: the query cells are computationally “mapped” to the reference
map based on gene expression features. Those cells whose gene expressions are
dissimilar to any annotated cell subtype in the reference are defined as “variant” state
cells (analogy to nucleotide variants in genome sequence analysis). The “variant”
states are broadly categorized into two types, the “deviated” state and the

“intermediate” state: the “deviated” state means that the gene expressions of the query
3
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cells are shifted from a single cell type, and the “intermediate” state means that the
gene expressions of the query cells located between any two reference cell types. We
developed LiverCT, a machine learning based liver Cell-Type mapping method using
the annotated reference data, to achieve the task of cellular state mapping in liver.

We applied LiverCT on the collected abnormal liver datasets. Results show that
almost all types of cells are strongly “deviated” from their normal states in
hepatocellular carcinoma (HCC) and the deviated scores of T cells are positively
correlated with the stress response pathway signatures. Interestingly, the results also
show that the hepatic stellate cells and granulocytes (mainly neutrophils) are highly
deviated in adjacent non-tumor tissues. For the “intermediate” state analysis, it was
found that the cancer cells with high intermediate scores have strongly up-regulated
glycolysis and hypoxia pathways. Also, the up-regulated genes of those cells are
significantly overlapped with poor prognosis genes. Another interesting task is to
analyze the zonation tendency of the HCC tumor cells by mapping them to the
hepatocyte states in different lobular zones. We found that the zonation tendency is
highly associated with the expression of multiple malignant signatures and the
composition of multiple immune and stromal cell types.

uniLIVER tends to establish a new framework of cell atlas by introducing
machine learning into the traditional data portal only design. Both the reference cell
map (as three portraits similar to hECA'®) and the computationally cellular state

mapping tool LiverCT are freely available via a web-based database.
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Results

Overview of the human liver cell atlas uniLIVER

We collected scRNA-seq data from 6 datasets, which include 79 samples from 42
donors (Table 1). After stringent quality control, 331,125 cells were integrated and
annotated hierarchically to form the normal reference map. Population and clinical
information, such as age and gender, were also collected if available (Extended Data
Fig. la, Supplementary Table 1). Besides, we also curated 1,867,641 cells from
diverse abnormal or disease samples including cirrhosis, hepatocellular carcinoma
(HCC), intrahepatic cholangiocarcinoma (ICC), combined hepatocellular and
intrahepatic cholangiocarcinoma (CHC) and some liver metastases (Table 1).

Then, the atlas tends to “map” the cells from disease samples to the normal
reference map based on gene expression similarities. To find the “variant” state cells
in disease samples, we developed LiverCT, a machine learning based Cell-Type
mapping method that can distinguish “deviated” states and “intermediate” states and
can also classify the abnormal hepatocytes in HCC into P-like (P: Portal/Periportal)
state, M-like (M: Mid) state and C-like (C: Central) state (Fig. 1). One unique aspect
of LiverCT is that it adopts the concept of genomic variant analysis to identify and
analyze the “variant” states of cells based on their expression patterns. Firstly,
LiverCT embedded the cells in the normal reference map into a latent space. In the
latent space, we trained a hierarchical classifier using ensemble learning to predict the
cells’ type labels. This was followed by another one-class classifier to identify the
margin of a normal cell type and a one-vs-one classifier to identify the boundary
between any two cell types. Further, if a cell was predicted as hepatocyte, we utilized
an additional classifier to distinguish its lobular zonation tendency. When applied to
query datasets, LiverCT embedded the query cells into the pre-calculated latent space

of the normal reference by scArches? to remove the batch effects. After the cell type
5


https://doi.org/10.1101/2023.12.09.570903
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.09.570903; this version posted December 9, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1  prediction, a “deviated” score was calculated to measure the degree of deviation from

2  the corresponding normal cell type and an “intermediate” score was calculated to
3 measure the degree to which the cell was in the middle of top two predicted cell types.
4 (Methods, Extended Data Fig. 1b).
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6  Fig. 1| uniLIVER overview. The normal reference by hierarchically annotating the cell types and
7  zonation tendency via an integrative analysis of multiple sc/snRNA-seq datasets (left). The
8  machine learning based Cell-Type mapping method named LiverCT can identified the cells with
9  deviated or intermediate states and calculate the hepatocyte zonation tendency of any query

10  dataset (middle). LiverCT was applied for liver cancer and other abnormal conditions (rights).
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Hierarchical annotations of the normal liver cells

A unified normal reference map needs in-depth and harmonized annotations.
Currently, there exists some inconsistency in cell type definition across different
studies. To harmonize the cell type labels from different datasets, firstly we built a
unified hierarchical annotation framework (UHAF'®) for liver (Fig. 2a). The major cell
type annotations provided by the original references were harmonized into 8 major
cell types (Level 1) in uniLIVER (Supplementary Table 2). In cases where the
annotations were not provided, the datasets were annotated manually. Using the Level
1 annotations as prior knowledge, we fine-tuned scANVI?!, a tool that proved to be
one of the top-performing integration methods??, to remove the batch effects between
different studies (Fig. 2b). Under each of these major cell types, we further performed
un-supervised graph-based clustering for in-depth annotations, which generated 17
stable cell types (Level 2) (Fig.2c).

The hepatic lobule is the basic unit for liver function, with a central vein (CV) in
the middle and portal vein in the six corners (PV). The hepatocytes have different
states and functions along the CV to PV axis. The lobule can be roughly divided in
four regions: central, middle, portal and peri-portal zones® (in a few studies the portal
and peri-portal zones are combined as a single zone?***). We annotated hepatocyte
zonation utilizing the gene signatures obtained from spatial transcriptomes (Methods,
Fig. 2d, Extended Data Fig. 2a-c, Supplementary Table 3). The annotated zonation
patterns can be validated by the expressions of multiple canonical marker genes:
CYP2EI and CYP3A4 gradually decreased along the CV-PV axis while HAL and A2M
exhibited an opposite trend, highly consistent with previous studies>* (Fig. 2e).
Functional enrichment analysis shows that the up-regulated genes of the hepatocytes
annotated as in central region were enriched in xenobiotic metabolism pathways and
the result of portal region was enriched in amino acid processing (Fig. 2f, Extended
Data Fig. 2d), which was also consistent with the well-established cellular functions

7
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of the hepatocytes in different zones®®.

This large scale of data collection enables us to primarily investigate the impact
of population variables (e.g. gender and age) on the cell type compositions and subtle
gene expression variations in a same cell type. We found no significant difference in
the proportion of cell types between genders (Extended Data Fig. 3a, b). As the age
increases, the proportion of different cell types underwent complex changes
(Extended Data Fig. 3c, d). The effects of these variables on gene expression
variations were also explored using generalized linear mixed models®’°. We found
that the biological processes, including cellular response to ions (M714 and MTIE),
material transport (for example, cholesterol and sterol transport including APOC2 and
APOM), homeostasis maintenance (such as cholesterol, sterol, and lipid homeostasis
including AKRIC1, APOC2, and APOM) and immune response (C/A4, CFHR?2,
RARRES?) were significantly downregulated in monocytes within the elder

population (Extended Data Fig. 3e).
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1  HAL and SBDS across the CV-PV axis. e, The significantly enriched biological process (GO:BP
2  terms with Benjamini-Hochberg-adjusted P < 0.05) of the genes upregulated in portal and central

3 regions, respectively.
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Deviated state analysis identifies diverse disease-associated

cellular states

Compared to the normal liver, the cells in disease often exhibit certain cellular states
“deviation”, which provide potential targets for treatment. To elucidate the state
deviation extent of the cells under disease conditions, we developed LiverCT with a
supervised and hierarchical ensemble learning framework to calculate a quantitative
deviated score based on the normal reference map. The performance of LiverCT was
firstly validated on predicting the cell type labels in the normal reference map
(Methods, Extended Data Fig. 4a).

The collected disease datasets were mapped to the normal reference by LiverCT
(Fig. 3a). We observed higher deviated scores in the cells from tumor (T) tissues
compared to adjacent non-tumors (NT) in most cell types. In primary tumors,
hepatocytes, cholangiocyte and granulocytes changed significantly, indicating strong
deviation to the normal reference (Fig. 3b, Extended Data Fig. 4b). Hepatocytes and
cholangiocytes were parenchymal cells that were prone to oncogenic transformations,
making them distinct from normal tissues. A recent study also reported that
neutrophils (major cell group of granulocytes) in liver cancer tissues exhibited
significant gene expression changes compared to non-tumor tissues'®.

Furthermore, we tested the correctness of the deviated states on a HCC dataset
published recently by Lu et al.’. They found the MMP9+ macrophages to be tumor-
associated macrophages. It was observed that these MMP9+ macrophages had high
deviated scores, with almost all of the cells scored positive (Fig. 3c). Also, there was
no proliferative macrophage observed in the normal reference and this group got the
highest deviated score in the HCC dataset. Besides, other known tumor-associated
cell types such as regulatory T cells, pro-metastatic hepatocytes can also be
successfully found with high deviated scores (Extended Data Fig. 4c). Taken together,

above results showed that LiverCT can accurately retrieve the deviated state cells.
10
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Tumor-infiltrating T cells have paved a novel way for tumor therapy°. We
investigated the correlation between the function of T cells and their deviated scores>!.
The deviated scores of CD4 T cells have a positive correlation with the signatures of
glycolysis and stress response. The scores of CD8 T cells show also a positive
correlation with stress response signature, but a negative correlation with cytotoxicity
(Supplementary Table 4, Fig. 3d). A recent pan-cancer study observed a strong
association between the stress response and immunosuppression’!, suggesting that the
deviated score of T cells is a possible alternative indicator for immunotherapy
response.

The adjacent non-tumor tissue (NT) presents a unique state between the normal
and tumor®? and may provide additional information of the oncogenic transformation
and recurrence®. Based on the cell type mapping results by LiverCT, we observed
that the granulocytes, hepatocytes, and stellate cells had the highest number of the
cells in deviated states. To unveil the NT’s unique expression features, we conducted
differential expression analyses and focused on the consistently up-regulated genes in
NT’s deviated cells. The up-regulated genes in both granulocytes and stellate cells
were significantly enriched in the TNF-a signaling pathway (Fig. 3e-g,
Supplementary Table 5), consistent with a pan-cancer study that observed NT-specific
TNF-a signaling pathway activation®. Collectively, the deviated state analysis
identified diverse disease-associated cellular states and illustrated the most susceptible

cell types in disease.
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Intermediate state analysis reveals a population of tumor

cells associated with poor prognosis in HCC

Intermediate or transition cellular states are widely induced in tumors. For instance, in
human melanoma®, a transitional CDS state is observed, and in peripheral
neuroblastic tumors, an intermediate state is observed between adrenergic and
mesenchymal neuroblasts®>. To find the cells with intermediate states, LiverCT can
also calculated an “intermediate” score for query cells (Fig. 4a). In the collected liver
cancer datasets, cells between CD4-CD8, Mono-Macro, HSC-VSMC and LSEC-VEC
exhibited high intermediate states ratio (Fig. 4b).

Also, we observed that many tumor cells have high intermediate scores between
the hepatocyte-cholangiocyte pair. Liver cancers, including HCC, ICC, and CHC,
exhibited significant heterogeneity and can arise from diverse origins’¢. It has been
reported that ICC could potentially arise from biliary-like cells that undergo trans-
differentiation from hepatocytes, as well as from hepatic progenitor cells in addition
to mature cholangiocytes®’. So, we then tend to study the characteristics of those
tumor cells with intermediate states.

LiverCT classified the malignant epithelial cells from tumor samples into
hepatocyte, cholangiocyte and intermediate states (Methods, Fig. 4c). Notably, of the
three types of liver cancer, the ratio of intermediate states in CHC was the highest,
followed by HCC. Cholangiocytes exhibited high expression of EPCAM and KAT19,
while hepatocytes expressed CYP344 and CYP2E]. The intermediate states, however,
under-expressed both these cell type markers. (Fig. 4d, Extended Data Fig. 5a).

To investigate the cellular features of the intermediate states, we performed a
differential expression analysis, comparing the gene expressions of the tumor cells
with intermediate states to the other tumor cells. We found a set of up-regulated genes
associated with cell growth and development (ALDOA, MDK, ENOI, TKTLI) (Fig.

4e, Extended Data Fig. 5b, Supplementary Table 6). Among them, ALDOA was
13
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proved to serve as a driver for HCC cell growth under hypoxia®®. MDK has been
proposed as a multifunctional protein in HCC development, progression, metastasis,
and recurrence’®. The up-regulated genes were also enriched in glycolysis, hypoxia,
and UV _ response up besides cycling-related pathways (Fig. 4e, Extended Data Fig.
S5¢).

Subsequently, we explored the association between the intermediate states and
prognosis in HCC using another database HCCDB which integrates multiple large-
scale clinical cohorts to examine the gene expression variations in HCC*. Using
Fisher's exact test, we compared the poor prognosis-associated genes listed in
HCCDB with the genes upregulated in the intermediate state tumor cells. Remarkably,
the results demonstrated a significant overlap between these two gene lists, indicating
a potential association between the intermediate states and the poor prognosis in HCC
(Fig. 41). We further examined the clinical relevance of the differentially expressed
genes in intermediate states in the TCGA cohort*! and found that higher intermediate
gene signature score is significantly associated with worse overall survival (Fig. 4g).
Taken together, the intermediate states analysis revealed a group of tumor cells with
multiple malignant features which located between the hepatocyte and cholangiocyte
states.

Finally, we studied the relationship between the deviated scores and the
intermediate scores. It was observed that MACRO+ macrophages (kuppfer cells) had
low intermediate scores and deviated scores, consistent with its preference in non-
tumor tissues. And while, MMP9+ macrophages get high deviated scores and low
intermediate scores, which were also consistent with that MMP9+ macrophages were

in a terminal state in HCC? (Extended Data Fig. 5d).

14


https://doi.org/10.1101/2023.12.09.570903
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.09.570903; this version posted December 9, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A W DN PP

© o0 ~N o O

10
11
12
13

a
Intermediate score
0.8
N 0.6 N
g g
5 04 z
0.2
0.0
C
N
Qo
<
=
=
e

UV RESPONSE UP

HYPOXIA

GLYCOLYSIS

UMAP1

® Bcell

e CDAT

e CD8T

® Cholangiocyte

@ cDC1

@ cDC2

» Granulocyte
Hepatocyte

® Macro
Mast cell

Disease

Mig.cDC
Mono
NK cell
VSMC

» Plasma B cell
LSEC
Stellate cell
VEC

e pDC

UMAP2

e CHC
e HCC
eiCC

UMAP1

HCCDB_Unfavorable

Intermediate

5

ENO1, ALDOA, GAPDH,
LDHA, TUBA1B, SEC61G

Fisher.test: P < 2.2e-16

Survival probability

Strata

Cholangiocyte | @ @
Hepatocyte
Intermediate | © ©

[ N B
0 ° 00

°c: - 00@ -

= 9 € - £ X = «

I c3ugodg
o z

égﬁ%;ﬁwg

o 0O

Fraction of cells Mean expression

in group (%) in group
200
20 40 60 80 05 00 05

Stiata = type=High == type=Low

P=00022

0 10 20 30 40 50 60
Time

Number at risk

‘ 138 100 62 40 30 20
ypeslow{139 121 70 46 39 32
50

3i8a

0 10 20 30 40
Time

Fig. 4 | Intermediate state analysis enable the identification of the tumor cells associated poor

prognosis. a, The UMAP visualization of the intermediate scores in the tumor samples. b, The
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The UMAP visualization of the tumor (epithelial) cells annotated as hepatocyte-like,

cholongiocyte-like and intermediate state cells by LiverCT. d, The expressions of selected marker
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state tumor cells and the unfavorable genes listed in HCCDB. g, The survival analysis of the

TCGA HCC cohort based on the gene signature derived from the tumor cells with intermediate

states (P value was calculated using log-rank test).
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Tumor cell zonation tendency mapping defines novel HCC

subtypes

Hepatocytes in different lobular zones display spatial-ordered functional
heterogeneities. However, in HCC tumor tissues, the lobule-like patterns are usually
lost. It is an interesting question that whether the malignantly transformed hepatocytes
(tumor cells) still have zonation tendency and whether the tendency patterns are
associated with clinical outcome.

Leveraging the second module of LiverCT, the HCC tumor cells were mapped
into three zones as the P (Periportal/Portal) state, the M (Mid) state or the C (Central)
state (Methods). We observed different distributions of tumor cells’ zonation labels in
different patients. Based on the different compositions of the LiverCT annotated
zonation labels of tumor cells, we divided the patients into three groups, namely
HCC_P (dominated by “Periportal+Portal” state cells), HCC M (dominated by “Mid”
state cells), and HCC _C (dominated by “Central” state cells) (Fig. 6a) (Methods).

To explore the distinctive features of the three HCC subtypes, we calculated the
differentially expressed genes (DEGs) of each of the subtypes by using patient-
specific pseudo-bulk data (Fig. 6b, Supplementary Table 7). Results show that in
addition to several well-known zonal marker genes, different subtypes of HCC
patients exhibited unique expression of many other non-zonal genes. Notably, CD24
was among the top DEGs of the HCC_P subtype, suggesting a more malignant
phenotype*?. We further performed a survival analysis in TCGA*! bulk data, and
found that higher HCC P signature scores were significantly associated with poorer
clinical prognosis (Fig. 6¢). Multiple independent cohorts in HCCDB**** showed the
similar observations (Extended Data Fig. 6a).

By scoring the curated stemness gene sets (ANPEP, CD24, CD44, PROMI1,
EPCAM)* and metastatic gene sets® on the pseudo-bulk data, we found statistically

significant differences in the distribution of the stemness scores (P = 2e-5, ANOVA
16
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test) and the metastasis scores (P = 5e-3, ANOVA test) among the three HCC
subtypes. The HCC_P patients showed much higher scores of cancer stemness and
metastasis than the other two subtypes (Fig. 6¢). Besides, in tumor cells of HCC P,
we observed the higher expression of AFP, which is a marker for fetal liver and a
well-known marker for primary liver cancer. Additionally, SPINK 1, a marker for
hepatoblasts* and a tumor-promoting factor*®, exhibited up-regulation in tumor cells
of HCC_P (Fig. 6¢). These differences were not observed among the cells in different
zones in normal liver, suggesting that these alterations should be associated with
pathological changes (Extended Data Fig. 6b, c). Based on these findings, we
speculated that the HCC P subtype may correspond to a more poorly differentiated
HCC phenotype.

Then, we investigated the dys-regulated metabolic processes in these HCC
subtypes. Pseudo-bulk of HCC patients and normal donors were scored using a set of
curated metabolic gene modules*’. We found that urea cycle, which is normally
conducted in portal and periportal regions*®, is most significantly down-regulated in
HCC_P patients. The finding suggested that tumor hepatocytes of HCC P subtype
presented a higher degree of urea cycle disorder (UCD), which correlated with poor
prognosis*’. Conversely, glycolysis was not a normal functional process of portal and
periportal hepatocytes®>*°, but we observed a slight upregulation of the glycolytic
modules in tumor cells of HCC_P patients (Extended Data Fig. 6d).

We further conducted a detailed analysis of the characteristics of the tumor
microenvironment (TME) in patients with HCC_P subtype. Utilizing scCancer2>’, we
transferred TME cell labels from multiple public datasets'>>!*? to our collected data.
Our analysis revealed that HCC P patients had a higher abundance of SPP1+ tumor-
associated macrophages (TAMs) and FOXP3+ CD4 T cells compared to the other
subtypes. In contrast, the proportions of CX3CR1+ CD8 T cells and endothelial cells
were lower in HCC_P patients (Fig. 6e, Extended Data Fig. 6e). We noticed that

SPP1+ TAMs were described as a potentially pro-tumorigenic/pro-metastatic subtype
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in colorectal cancer. Intriguingly, we found that cells annotated as SPP1+ TAMs in
HCC TME displayed high expression levels of markers for MMP9+ macrophages’
(Extended Data Fig. 6f), which had been previously implicated in promoting HCC
progression. These observations suggested that patients classified as HCC P subtype
might exhibit a relatively immunosuppressive TME.

Taken together, the zonation mapping of tumor cells by LiverCT defines novel
HCC subtypes. Notably, HCC P patients exhibited the worst overall survivals,
characterized by increased expression of stemness and metastatic factors, along with
the presence of metabolism dysregulation and an immunosuppressive

microenvironment.
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metastatic score distribution among different patient types (bottom). e, The proportions of the

TME cell subtypes in the three HCC subtypes.

A web-based portal of multidimensional portraits of the

atlas

To facilitate a convenient browsing, we design a web-based portal for the atlas. It
contains two user-friendly tools, namely cell mapping and cell sorting, and four
portraits which are the gene portrait, cell portrait, zonation portrait and disease
portrait, each portrait contains multiple different views (Fig. 6).

Detailed information of genes, cells and zonation of normal reference cell map
can be found in the corresponding portraits. The gene portrait provides the expression
distribution of the selected gene across cell types. The cell portrait portrays the uHAF
tree of uniLIVER as well as the features of the selected cell type quantitively,
including its number and cell-cell interaction. The zonation portrait provides the
expression distribution of the selected gene across zonation and highly expressed
genes (HEGs) of each zone.

For mapping new datasets onto the normal reference map, we developed a cell
mapping tool LiverCT (freely available via uniLIVER website). The method mainly
contains three parts, namely cell type classification, “variant” state identification,
hepatocyte zonation reconstruction. When users input single-cell sequencing data,
LiverCT will provide predicted cell types at Level 1 and Level 2. Additionally, it will
provide two scores: the deviated score and the intermediate score, as well as cells the
recommended thresholds for identifying the cells with deviated states or intermediate
states, respectively.

Using LiverCT, we comprehensively annotated the disease data and constructed
the disease portrait. The disease portrait shows the characteristics of the disease from

two views: (1) molecular view; (2) cellular view. The molecular view presents the
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1 features of disease states and intermediate states, as well as the characteristics of
2  disease cell types. The cellular view contains the statistical representation of cell type
3 number and cell-cell interaction in the selected liver condition and difference
4 compared with another liver condition.
5 In addition to the cell mapping tool LiverCT, the portal also embedded a cell
6  sorting tool which allows users to download data in uniLIVER flexibly. It is
7  implemented on the hECA interactive web interface where users just need to input the
8 filtering conditions to quickly obtain the desired data online and no longer need to
9  download all the data and then filter it. This greatly saves time and is essential in the
10  era of increasing data.
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Fig. 6 | The database content and online tools of uniLIVER. The database consists of four
portraits and two tools: (1) the gene portrait showing the gene expression among different cell
types and subtypes within a lineage; (2) the gell portrait displaying uHAF tree and the cell-cell
interaction within normal data; (3) the zonation portrait showing the gene expression within four
zones in liver lobules; (4) the cell mapping page displaying the cell annotation and variant state
identification as well as zonation reconstruction pipeline of LiverCT; (5) the disease portrait
showing the characteristics of deviated states and intermediated states; (6) The cell sorting

providing a one line tool which allows users to download data in uniLIVER flexibly.
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Discussion

In this study, analogy to the genome sequence mapping, we have provided a machine
learning based framework for disease “variant” analysis. As a tool for uniLIVER,
LiverCT get several interesting findings by mapping disease datasets to the normal
reference map. It finds that neutrophils and hepatic stellate cells are strongly deviated
in adjacent tumor, and the intermediate-state tumor cells are associated with
unfavorable outcomes in HCC.

The function of hepatocytes along the lobule radial axis is highly heterogeneous,
which in turn results in differences of zonal patterns of drug responses and oncogenic
transformation*®. Although hepatocytes’ function is impaired by diseases, we posit
that they still exhibit the characteristics of the CV-PV axis at the global transcriptome
level. These characteristics might be influenced by both the microenvironment and
long-term epigenetic phenomena®*>>. Tumor cell zonation tendency mapping defines
novel HCC subtypes. Among them, the HCC_P subtype has worst survival with a
SPP1+ macrophage infiltrated suppressive immune microenvironment. Clinically, the
HCC novel subtypes enable different therapy choices. Further investigation is needed
to elucidate the molecular mechanisms by which tumor cells interacts with immune
cells, ultimately resulting in a poorer prognosis in HCC P patients.

Defining a comprehensive and refined normal reference map is essential but
challenging, as it requires capturing both cellular and population variations®. LiverCT
presents a promising opportunity to assess the saturation of the atlas. When
incorporating new healthy datasets, we can evaluate whether any novel deviated states
emerge. If no new cell types are discovered, we can consider the atlas to be ready.
However, if new cell types are detected, we can fine-tune the model until the
identification of previously unobserved cellular states ceases.

As data continues to accumulate, there is a recent surge in the development of

large-scale models that have demonstrated state-of-the-art performance across a wide
23
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range of downstream tasks®¢>°. These models offer a promising opportunity to create
a more comprehensive atlas. Also, with the development of spatial transcriptomics
technology, it is now possible to further portray the spatial microenvironment of a

cell, which is important to understand the cellular niches of liver.
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Methods

Data collection and processing

In the current atlas, we archived 18 human liver datasets, including 6 healthy datasets,
1 cirrhosis dataset and 11 liver cancer datasets (Supplementary Table 1). For 17
publicly available datasets provided by dataset generators, we collected the expression
matrix and processed it using Seurat pipline®. Besides the public datasets, we
generated ~30K healthy data and use scCancer®! pipeline to do quality control. The
gene symbols were unified to the list of 43,878 HUGO Gene Nomenclature
Committee (HGNC) approved symbols with the toolkit in hECAS2, with withdrawn
and alias symbols converted into HGNC approved symbols.

In addition, we collected phenotype information at multiple levels including
donor, sample and cell. At the donor level, we gathered gender, age and fibrotic status
if available. At the sample level, we categorized the sample status according to its
location, harmonizing it as normal (N), primary tumor (T), non-tumor (NT), the joint
area between the tumor and adjacent normal tissues (PJ), hepatic lymph node (HLN),
metastatic lymph node (MLN), portal vein tumor thrombus (PVTT), Ascites (ASC),
Blood (BLO) (Supplementary Table 1). At the cell level, we collected the original
annotations and standardized them to the cell type at level 1 in the uUHAF tree

(Supplementary Table 2).

Normal data integration and annotation

To visualize the cells in the normal reference map, the neighbor graph was built based
on the 30 latent dimensions that were obtained from the SCANVI output with the
default parameter setting of sc.pp.neighbors function. The dimensionality of cells was

further reduced using Uniform Manifold Approximation and Projection (UMAP) with
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sc.tl.umap function based on the neighbor graph built above. To determine the Level 1
label of cells, we used two methods. If the original study provided labels of cells, we
would map those labels to the uUHAF to obtain the Level 1 label. If not, marker genes
would be used to identify the cell types.

To further annotate cells of each resulting Level 1 cluster, a new neighbor graph
was built using 30 latent dimensions of SCANVI. Clusters were classified into level 2

labels using marker genes.

Normal hepatocyte zonation annotation

We annotated zonation labels for hepatocytes from the uniLIVER normal reference
map. The zonation groups provided by Guilliams et al. (2022) for the human liver
spatial transcriptome were used as the reference’.

For each Visium sample, we conducted Wilcoxon test to find differential
expressed genes between C-spots (“Central”’) and P-spots (“Periportal” + Portal”).
This step is implemented via rank_genes_groups() function in Scanpy®. In order to
mitigate the impact of inter-individual variability, only genes showing significant
zonal differences (pvals_adj < 0.01 for C-markers, and pvals_adj < 0.05 for P-
markers) in more than 3 samples were considered. To accommodate SCRNA-seq data
characteristics, we filtered out genes with a mean log- normalized expression lower
than 0.1 in hepatocytes from our single-cell data.

A min-max scaler is applied to each gene in the same sample first to preserving

gradient information. Then, a spot’s score can be calculated as:

mean Expr,
score = genece{P—markers} Plgene
mean Expryene + mean Expryene

genece{P—markers} genec{C—markers}

We visualized the original group labels and our defined score on Visium spots
(Extended Data Fig. 2a). Furthermore, we plotted the score distribution for the four
zonation labels (Extended Data Fig. 2b). These results demonstrated that the score can

effectively indicate the location along the CV-PV axis in a healthy liver. This score
26
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can be applied equally to spots in spatial transcriptome, as well as cells in single-cell
transcriptome.

For hepatocytes from uniLIVER normal reference map, we first conducted a
quality control step. We removed non-viable cells with percentage of mitochondrial
gene counts over 30%. Also, cells with an expressed gene number lower than 1000
were excluded from the subsequent annotation and analysis. These specific thresholds
were determined based on the distribution of QC indicators obtained using Scanpy
function calculate_gc_metrics() (Extended Data Fig. 2c).

To address distributional biases between spatial and single-cell transcriptomes, as
well as variations in experimental techniques for single-cell sequencing, we
conducted a correction step. Our hypothesis was that the scores for livers from healthy
donors should exhibit a similar distribution. Therefore, we adjusted the mean and
variance of the score distribution within each batch of single-cell transcriptome data
to align with the corresponding distribution observed in the spatial transcriptome data.

We employed a normal function to fit the score distribution of each zonation

label. The parameters were determined via maximum likelihood estimation: y; = X,
of = nT_l S7. We transferred the previously fitted distribution to the single-cell data.

Bayesian estimation was utilized to infer the zonation group of each cell, assuming an
equal prior probability for each zonation label:

label = argmax p(l)p(score|l) = argmax N (score; w;, of)
leL leL

where L represents the set of the four zonation group labels (Central, Mid, Periportal,
Portal).

Modeling the effect of demographic covariates on gene
programs

To model the effect of demographic covariates (gender and age) on gene programs,

we performed the generalized linear mix model (GLMM). We first split cells by level
27
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2 labels, then filtered out genes that were expressed in fewer than 10 cells. Sample-
level pseudo-bulks, which were generated by summing gene counts across cells

within each level 2 label for each sample, were used to fit the model. Pseudo-bulks
were normalized using calcNormFactors function of edgeR with default parameter

settings. Then voom®*

was used to fit GLMM for differential expression and perform
hypothesis test on fixed effects. Gene expression was modeled as:

log(normcount) ~ 1+ age + gender + (1|donor ID)
where the donor is treated as a random effect, and age and gender are modeled as
fixed effects. We used the Benjamini-Hochberg procedure to correct the resulting p-
values within each covariate. Significant genes (adjusted p-value < 0.05) were

selected for gene set enrichment analysis using the enrichGO function in the

clusterProfiler package®*.

LiverCT: a machine learning based cell-type mapping

We developed LiverCT (machine learning based Liver Cell Type mapping), to map
new datasets onto the normal reference map. Two-level cell type labeling was
provided by a hierarchical ensemble learning classifier. On the basis of accurate cell
type prediction, LiverCT identified cells in “variant” states, which can be broadly
categorized into two types: deviated states and intermediate states. Specifically, for
hepatocytes, LiverCT further predicted zonal groups along the CV-PV axis at sub-
lobule scale. The workflow of LiverCT is depicted in Extended Data Fig. 1b.

Batch correction. To mitigate batch effects between the query data and the
normal reference, query datasets were projected to the common latent space of then
normal reference map using scArches®’, a transfer learning method. The parameter
“encode covariates” of the sScANVI model was set to True to allow us to fine-tune the
weights of newly introduced edges in the input layer. We conducted 20 epochs during
the fine-tuning process of scArches. Subsequent models operated in this latent space.

Hierarchical ensemble learning cell type classification. The manually annotated
28
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labels served as the reference standard for classification. The process followed a
hierarchical tree structure as shown in Fig. 2a, to improve the resolution of cell type
labeling step by step. The query cells were first divided into 8 major cell types. Then
within each major type, a finer-grained classification was carried out, resulting in 17
labels at the second level. Both layers of the classification were implemented using an
ensemble learning model. It consisted of a Multi-layer Perceptron (MLP) classifier®,
an XGBoost classifier®®, a Logistic Regression classifier’” using one-vs-rest strategy
and a Random Forest classifier®®. A soft voting strategy was implemented to generate
the predicted probabilities for each cell type. The algorithm was accelerated using
parallel threading managed by the joblib (https://github.com/joblib/joblib) package.
Deviated states identification. We utilized a One-Class Support Vector Machine
(OCSVM) for unsupervised novelty detection®. For each fine-grained label in the
second level, a OCSVM model was trained. By delineating the contour of the feature
space occupied by cells in the normal reference, the OCSVM model effectively
identified cell states that deviated from the normal states. We first used a Radial Basis
Function (RBF) Kernel to transform the initial observations to a non-linear feature

space:

2
K(x1,x;) = exp (_Yl lxy — lelz)
The feature map for the RBF kernel was approximated with the Nyestroem

method for acceleration’®”!

, using sklearn.kernel approximation.Nystroem(). Then, a
linear OCSVM was performed in the transformed feature space. The OCSVM model
was solved using Stochastic Gradient Descent (SGD). This algorithm was chosen due

to its efficiency in processing large training sets. The optimization problem was

defined as follows:
n
v 2 1
min— ||w|| + bv + —Z max(0,1 — ({w, x;) + b))
wpb 2 n4s
i=1

where w and b represented the linear coefficient and the intercept to be optimized,

and v was a hyperparameter. The hyperparameters of the model were automatically
29
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set based on the distribution of the training data. Specifically, the parameter y of the
RBF kernel was set to 1/(n_features * var(X)) as suggested by the sklearn library.
The parameter v was incrementally increased until 10% of the training data was
detected as outliers. Cells located outside the frontier-delimited subspace were
annotated as under “deviated” states. Euclidean distances between query data
observations to the frontier hypersphere were calculated. These distances were then
normalized by the 80th percentile value for each model. Subsequently, the normalized
distances were negated and truncated between -1 and 1, resulting in the deviated
scores. Higher deviated scores represented larger deviations from the normal
distribution.

Intermediate states identification. We assumed that intermediate states only
existed between cell types under the same major type. A special case is hepatocytes
and cholangiocytes, where an intermediate state between the two has been
demonstrated to exist in certain disease conditions®. Therefore, even though they are
already distinguished at the major cell type level, we have still identified the
intermediate state between them. We employed a one-vs-one SVM model’? to identify
the classification boundaries between the top two classes to which the cell was most
likely to belong. The pipeline consisted of a standard scalar and a linear SVM
optimized using SGD. We calculated Euclidean distances of the samples to the
separating hyperplane, then used a generalized RBF kernel to transform distances to
scores between 0 and 1:

intermediate score = exp(—|distance|)

The higher intermediate score represented that the cell tended to be more
intermediate between the two types. A threshold was determined as 0.6 manually to
classify cells with scores above it as being in intermediate states.

Tumor hepatocyte zonation states mapping. In the context of disease data,
particularly hepatocellular carcinoma (HCC), the expression of many zonal landmark

genes was found to be absent or exhibited a loss of gradient. As a result, the scoring
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approach that relied on a subset of genes defined in a healthy liver was unsuitable for
analyzing disease data. To overcome this, we employed a supervised learning
classifier trained on our normal reference, and used it to transfer zonation labels to the
disease data.

To address the individual heterogeneity of human hepatocytes, we used donor ID
as batch labels to train a SCANVI model. This model generated a 30-dimensional
latent space with batch corrected. For the input features of the SSANVI model, we
identified 2000 highly variable genes (HVGs). The selection of HVGs was performed
using the "seurat_v3" flavor provided by the Scanpy pipeline.

We chose the Random Forest algorithm, which employs feature sampling steps to
ensure reliable classifications even when features are missing. This attribute makes it
particularly suitable for analyzing disease state data. We used the low-dimensional
latent vectors as input for training and implemented the algorithm using
sklearn.ensemble.RandomForestClassifier with 100 estimators.

We used manually annotated zonation groups as the reference standard and
implemented a more general categorization approach by using three classification
labels for the training process. Specifically, we combined the Periportal and Portal
regions, leading to three labels: C for Central, M for Mid, and P for Periportal+Portal.

For disease data, we utilized the transfer learning method, scArches, to acquire
latent space representations consistent with the reference. During the scArches
surgery process, 20 epochs of fine-tuning were performed. We then used the trained
Random Forest classifier to predict zonation label for each individual cell.

We built LiverCT on Python (3.9.7), using the following packages: numpy
(1.22.4), scipy (1.8.1), pandas (1.4.3), anndata (0.8.0), scanpy (1.9.1), scArches
(0.5.9), joblib (1.1.0), scikit_learn (1.1.1), xgboost (1.7.6). The code is open-sourced
at Github (https://github.com/fyh18/LiverCT).
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Variant states analysis

We sampled up to 1000 cells from each donor to maintain the balance of patient cell
number. After quality control, 272,464 cells were left to constitute the core disease
data.

In the T cell function analysis section, we use “sc.tl.score _genes” in scanpy to
add module score to each cell. Pearson correlation was employed to assess the
correlation between T cell function and deviation scores.

The intermediate gene signature was derived by filtering genes based on specific
criteria, including a log fold change (FC) greater than 0.5 and an adjusted p-value

(pvals_adj) lower than 0.01.

HCC Classification

We analyzed cells annotated as hepatocytes by LiverCT from the core disease data.
Only samples from HCC primary tumors were included. Samples with less than 50
hepatocyte-like cells were filtered out. We then calculated the proportion of cells with
the three zonal labels (“C”, “M” and “P”) for each patient, resultingina n X 3
matrix where each row represented a donor and each column represented the cell
proportion of a certain zone. We referred to this matrix as “zonal proportion space of
patients”. Subsequentially, we performed a 3-cluster spectral clustering within this
space to classify three HCC subtypes, namely HCC_C, HCC_M and HCC_P.

We summed up the counts of all HCC tumor hepatocytes for each patient, and

then perform log-normalization to acquire pseudo bulk data.

Portraits of uniLIVER

Gene portrait. We provided the expression distribution of the selected gene across cell

types. The ridge plots showed the non-zero expression distributions in different cell
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types. The number at the right of the ridge plots showed the non-zero percentages of
the expression values.

Cell portrait. CellChat” was employed to infer cell-cell interactions by analyzing the
expression patterns of known ligand-receptor pairs across diverse cell types. We
followed the official workflow with default parameters.

Zonation portrait. We provided the average expression values of the selected gene
across zonation. Besides, differentially expressed genes of different zones can be
visualized by heatmap.

Disease portrait. In Molecular view, we present the features of disease states and
intermediate states, as well as the characteristics of disease cell types. The former two
are compared within a specific disease, while the latter is compared between different
disease conditions. In deviated state section, deviated score distribution in level 2 is
displayed and we can see the most susceptible cell type. By selecting a cell type,
differentially expressed genes in deviated states compared with normal states are shown.
Similarly, in intermediate state section, the ratio of intermediate states between two cell
type is shown and we can see the differentially expressed genes in intermediate states
compared with the other two cell types. The Disease cell type section displays
differentially expressed genes (DEGs) between the selected disease and another

condition in the same cell type. Enrichment analysis is conducted based on the DEGs.

Data availability

The uniLIVER website is publicly accessible via [https://liver.unifiedcellatlas.org].
The normal reference map and core disease data (processed as data matrix) are
publicly available through the databrowser section and can be easily downloaded
from download section in the web server. The source codes, trained models and
documents of LiverCT are also provided at the website.
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Tablel | The collected datasets in uniLIVER

Study No.of  Gender Age Sequencing Final Source
donors (M:F) (yr) method #cells

Aizarani et al. 9 n/a n/a mCel-Seq2 9,466 GSE124395

2019°

Ramachandranet 5 4M:1F n/a 10X 34,601 GSE136103

al. 2019/healthy*

Guilliams et al. 34 I9M:15F  28-77 10X 167,510 GSE192742

20228

Payen et al. 2021 2 IM:1F 3-39 10X 26,685 GSE158723

Andrews et al. 5 2M:3F 18-60 10X 59,977 GSE185477

20217

Gu et al. 2022 4 2M:2F 47-66 10X 32,886 In house

Losic et al. 20208 2 IM:1F 66-67 10X 49,674 GSE112271

Lu et al. 2022° 10 OM:1F 48-65 10X 71,915 GSE149614

Ma et al. 2021"° 37 23M:13F  35-81 10X 48,318 GSEl116113

Massalha et al. 6 2M:4F 40-74  MARS-seq 4,691 GSE146409

20201

Sun et al. 2021"2 18 17M:1F 42-76  MIRALCS 16,498 CNP0000650

Zhang et al. 2019 10 OM:1F 32-84 10X/SMART 73,261 GSE140228

-seq2

Zhang et al. 2020 6 4M;2F n/a 10X 37,814 GSE138709/
GSE142784

Zheng et al. 20175 6 4M;2F 26-64 SMART-seq2 5,063 GSE98638

Ramachandranet 5 3M:2F n/a 10X 26,279 GSE136103

al. 2019/cirrhosis*

Xue et al. 202216 124 94M:30F  31-88 10X 1,337,82  PRJCA00774

9 4
Ma et al. 20227 7 n/a n/a 10X 112,506 GSE189903
Liu et al. 20238 6 6F 48-64 10X 83,793 skrx2fz79n

40


https://doi.org/10.1101/2023.12.09.570903
http://creativecommons.org/licenses/by-nc-nd/4.0/

