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Abstract

Deep learning approaches have demonstrated the ability to design protein sequences
given backbone structures [1, 2, 3, 4, 5]. While these approaches have been applied
in silico to designing antibody complementarity-determining regions (CDRs), they
have yet to be validated in vitro for designing antibody binders, which is the true
measure of success for antibody design. Here we describe IgDesign, a deep learning
method for antibody CDR design, and demonstrate its robustness with successful
binder design for 8 therapeutic antigens. The model is tasked with designing heavy
chain CDR3 (HCDR3) or all three heavy chain CDRs (HCDR123) using native
backbone structures of antibody-antigen complexes, along with the antigen and
antibody framework (FWR) sequences as context. For each of the 8 antigens, we
design 100 HCDR3s and 100 HCDR123s, scaffold them into the native antibody’s
variable region, and screen them for binding against the antigen using surface
plasmon resonance (SPR). As a baseline, we screen 100 HCDR3s taken from
the model’s training set and paired with the native HCDR1 and HCDR2. We
observe that both HCDR3 design and HCDR123 design outperform this HCDR3-
only baseline. IgDesign is the first experimentally validated antibody inverse
folding model. It can design antibody binders to multiple therapeutic antigens
with high success rates and, in some cases, improved affinities over clinically
validated reference antibodies. Antibody inverse folding has applications to both
de novo antibody design and lead optimization, making IgDesign a valuable tool
for accelerating drug development and enabling therapeutic design.

1 Introduction

Protein inverse folding is the problem of predicting sequences that fold into a structure of interest.
Recently, several generative models for this task have been proposed [1, 2, 3, 4, 5]. These models
have broad applications to the protein engineering space. In particular, ProteinMPNN [1] has been
successfully applied to applications including de novo binder design [6], de novo luciferase design [7],
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and design of soluble analogs of membrane proteins [8]. Furthermore, ProteinMPNN has been shown
to be superior to Rosetta at protein binder design [9]. Multiple other protein inverse folding models
have been introduced. ESM-IF1 [2] uses a GVP-GNN architecture [10]. LM-Design [3] combines
ProteinMPNN with the ESM protein language models [11, 12].

Antibodies have become a major class of therapeutics as a result of their attractive drug-like prop-
erties [13]. Antibody design, in particular design of the hypervariable CDRs primarily involved in
antigen binding [14], using generative models is of great interest due to potential drug development
applications. Correspondingly, antibody inverse folding has become a relevant problem. We note that
LM-Design was evaluated in silico on antibody CDRs and Mahajan et. al [4] evaluate the impact of
fine-tuning on antibodies, antibody-antigen interfaces, and general protein interfaces for CDR design.
AbMPNN [5] describes an antibody-specific inverse folding model created by fine-tuning Protein-
MPNN on antibody structures, such as those in the Structural Antibody Database (SAbDab) [15].
AbMPNN is compared in silico to ProteinMPNN and is shown to have higher amino acid recovery
(AAR) on antibody CDRs, however it has not been shown to produce antibody binders in vitro.

Our study introduces IgDesign, a generative antibody inverse folding model based on LM-Design,
and the first such model to be validated in vitro for antibody binder design. We present extensive wet
lab validation of IgDesign’s ability to design binders against 8 therapeutic antigens. Specifically, we
show that IgDesign is able to design both HCDR3 and all three HCDRs (HCDR123) of a reference
antibody2 and preserve binding, as measured by surface plasmon resonance (SPR), to the target
antigen with high success rates. We compare IgDesign to a baseline of HCDR3s sampled from
the model’s training set and observe that for HCDR3 design, the model outperforms on 8 out of 8
antigens. For HCDR123 design, the model outperforms this HCDR3-only baseline on 7 out of 8
antigens. Overall, we demonstrate, with in vitro validation, that inverse folding can be a successful
component of an antibody design pipeline (Figure 1).

2 Methods

IgDesign Model To understand whether the success of ProteinMPNN [1] could be used in the
antibody design field, we devised IgMPNN, a version specifically trained for antibodies. IgMPNN is
similar to AbMPNN [5], however we note two key differences between the models: (1) IgMPNN is
provided antigen sequence and antibody framework (FWR) sequences as context during training. (2)
IgMPNN decodes antibody CDRs in sequential order during training: HCDR1, HCDR2, HCDR3,
LCDR1, LCDR2, LCDR3. During inference, any order of CDRs can be specified. Within each
CDR, the decoding order is random as done in [1]. We include additional details on IgMPNN in the
Appendix.

The CDR design protocol in IgDesign is based on the approach of combining a structure encoder
and sequence decoder as proposed in LM-Design [3]. We first execute a forward pass through
IgMPNN, as described above. This allows us to access the final node embeddings as well as the
model’s logits. We sample the maximum likelihood estimate of those logits in order to obtain a single
tokenized sequence. We provide this sequence as input to the ESM2-3B protein language model [12]3

and extract the embeddings before the final projection head. We then apply a BottleNeck Adapter
layer [17], in which cross-attention is computed by using the final node embeddings from IgMPNN
as keys and the embeddings from ESM2-3B as queries and values. This new set of embeddings is
passed through the final projection head of ESM2-3B and projected out to logits. Finally, these logits
are summed with the logits from IgMPNN.

Data and training IgMPNN is pretrained on proteins from the PDB [18] split at 40% sequence
identity (referred to here as the General PDB dataset). Following pretraining, IgMPNN is fine-tuned
on antibody-antigen complexes from SAbDab [15] and IgDesign is fine-tuned on said antibody-
antigen complexes using IgMPNN (pretrained and fine-tuned) as its structural encoder. For splitting
the antibody data we do an antigen holdout at 40% sequence identity. We remove all structures in
SAbDab from our General PDB dataset to avoid data leakage. We include additional details on data
curation and splitting in the Appendix.

2The term reference antibody refers to the antibody in the antibody-antigen complex used for inverse folding.
3We make an argument for why potential data leakage from ESM is not a concern in the Appendix.
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Figure 1: Overview of in silico (top) and in vitro (bottom) workflow for antibody inverse folding.
(Top) Antibody-antigen complex crystal structures are processed into structure features (antibody
variable-region and antigen coordinates) and sequence features (antigen and antibody framework
sequences). Features are inputted to IgDesign which outputs CDR sequences. CDR loops are colored
in the processed structure (PDB:1N8Z [16]). (Bottom) Libraries of inverse folding antibody designs
are sent to the wet lab for screening. The screening workflow consists of cloning, expression, surface
plasmon resonance (SPR), and sequencing. Designed binders are validated and their affinities are
measured.

For each antigen, we train a new set of IgMPNN and IgDesign models with said antigen held out to
prevent data leakage. We ensure that the HCDR3 of the reference antibody is not in the training set
(Table 1). All models are trained with the Adam optimizer [19] using a learning rate of 10−3.

Antibody library design We selected 8 therapeutic antigens each with a reference antibody binder
and an antibody-antigen complex structure in our curated SAbDab dataset. The 3D backbone
coordinates were used as input to IgDesign, along with the antigen sequence and antibody FWR
sequences. At inference time, we generated sequences in the following order: HCDR3, HCDR1,
HCDR2, LCDR1, LCDR2, LCDR3. For each antigen, we generated 1 million sequences and filtered
to the 100 HCDR3s and 100 HCDR123s with lowest cross-entropy loss for in vitro assessment.

As a baseline, we sampled 100 HCDR3s from the training set (a subset of SAbDab) of each IgDesign
model. SAbDab HCDR3s represent a rigorous baseline since they match the training distribution of
the model and are paired with the native HCDR1 and HCDR2. In total, we designed 8 libraries of
antibodies, one for each target antigen. Each antigen specific library includes 100 IgDesign HCDR3s,
100 IgDesign HCDR123s, and 100 SAbDab HCDR3s as a baseline. For each library, we included
controls to confirm the SPR assay’s ability to accurately label known binders and non-binders.
Additional details, including a discussion of the baseline, are in the Appendix.

In vitro screening Antibodies were screened for binding against their target antigens using SPR.
We give a detailed overview of our wet lab workflow in the Appendix. At a high level, this workflow
involves four steps: (1) Cloning DNA corresponding to the designed antibodies into E. coli plasmids
(2) Expressing the antibodies in the corresponding E. coli (3) SPR: screening the expressed antibodies
for binding against their target antigens (4) Sequencing the antibodies to determine amino acid
identities. After receiving the SPR and sequencing data for each library, we label antibody variants
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that bind in all SPR replicates as binders and otherwise label them as non-binders. We show
sensorgrams for controls and select model-designed sequences in the Appendix.

3 Results

Amino acid recovery (AAR) We compute AAR, the percentage of the designed sequence that
matches the native sequence, for each CDR using IgMPNN, IgDesign, and ProteinMPNN [1] as an in
silico baseline4 We also evaluate “ProteinMPNN (Filtered),” which is ProteinMPNN evaluated on
antibodies not in its training set. We compute both 1-shot AAR, the AAR of one sample from the
model, and 100-shot AAR, the maximum AAR of 100 samples from the model. For each of the 8
antigens, we trained a model with said antigen held out and computed test set AARs. To estimate
model performances, we compare mean test set AARs, that is the mean computed over each model’s
test set. We show the distribution of mean test set 1-shot AARs for HCDRs in Figure 11, for LCDRs in
Figure 12, and for 100-shot AAR in Figures 13, 14. IgMPNN and IgDesign outperform ProteinMPNN
and ProteinMPNN (Filtered) in all cases (Mann-Whitney U test (MWU) [20], p < 2e-4). IgDesign
outperforms IgMPNN (MWU, p < 7e-4) on LCDR1 (100-shot AAR) and LCDR3 (1-shot AAR and
100-shot AAR). We compare test set AARs on the antigen 7 data split in Figures 15, 16, 17, 18.

In vitro binding rates and affinities We assess IgDesign’s ability to generate binders to each
therapeutic antigen by measuring its in vitro binding rate, which is the percentage of designs that
bind as assessed by SPR. As shown in Figure 2 and Tables 2, 3, IgDesign HCDR3s bind statistically
significantly more often than SAbDab baseline HCDR3s for 7 out of 8 antigens (Fisher’s exact
test (FE) [21], p < 3e-3)5. IgDesign HCDR123s bind statistically significantly more often than the
baseline for 4 out of 8 antigens (FE, p < 3e-3). Only a single baseline HCDR3 bound for 2 antigens.
We emphasize the impact of designing HCDR123s with high binding rates as we are comparing to an
HCDR3-only baseline. IgDesign’s significant outperformance vs. the baseline suggests it has learned
to extrapolate from its training set. We report and discuss binding affinities in the Appendix.
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Figure 2: Binding rates across all antigens for IgDesign HCDR3 (red) and HCDR123 (blue) vs.
SAbDab HCDR3 baseline (black). Binding rate is defined as the percentage of sequences that bind
to the target antigen as assessed by SPR. Baseline binding rate is 0% for antigens 2, 4, 5, 6, 7, and 8.
IgDesign significantly outperforms the SAbDab baseline at antibody binder design.

4We include details on the ProteinMPNN in silico baseline in the Appendix.
5We require p < 3e-3 for statistical significance as we are considering α = 0.05 with N = 16 tests.
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4 Discussion

Here we have presented IgDesign, an antibody inverse folding model developed by combining (1)
ideas from protein inverse folding models and language models such as ProteinMPNN, LM-Design,
and ESM2, (2) an antibody-specific framing of the problem with antigen and antibody FWR sequences
provided as context, and (3) fine-tuning on antibody-antigen complexes. We demonstrate IgDesign’s
ability to consistently design binders against multiple target antigens with confirmation using SPR.
We present the first in vitro validation of using inverse folding to design antibody binders to a diverse
set of therapeutic antigens. Demonstrating the success of antibody inverse folding is key to advancing
the field since models such as IgDesign can be broadly applied to antibody development efforts.
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A Modeling Methods

A.1 IgMPNN

IgMPNN takes as input the 3D coordinates of the backbone residues of an antibody-antigen complex.
We define a protein graph as a directed graph where residues are represented as nodes and share
edges with their k nearest neighbors. We use k = 48 in all of our experiments. We initialize the
node features xi and edge features etij in our protein graph using the following features from [1]:
(1) Distances between Cα-Cα atoms, (2) Relative Cα-Cα-Cα frame orientations and rotations, (3)
Backbone dihedral angles, (4) Binary features that determine relative chain positions, and (5) Relative
position encodings. Our featurization differs from [1] in two ways: (1) We do not assume access
to any side chain atoms and thus we do not include any pairwise distance features involving side
chain atoms. (2) We include embedded residue type features for all antigen residues and antibody
framework residues. We replace the antibody CDR residue embeddings with zero vectors.

Our initial features, x0, then get passed into our message passing neural network encoder. Our
network has multiple message passing phases during which the hidden state of each node in the graph
hti and edge etij is updated according to:
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where fθ is our message update function, fφ is our node update function, fψ is our edge update
function, and N(i) is the set of neighboring nodes for a given node i in the graph. We use 128 as our
hidden node dimension throughout the network. IgMPNN utilizes three encoder layers, performing
message passing node updates and edge updates. The output is fed into the decoder, which has
three layers. The decoder performs message passing to update the node representations according

to: mt+1
i =

∑
j∈N(hi)

fγ(e
t
ij , h

t
j ,Mĥtj), where fγ is our decoder message update function. The

ground truth context, ĥtj , which is an embedding of the ground truth residues, is provided as input
only when it is allowed by our causal decoding mask, M. The decoder is masked to prevent the
model from incorporating information from nodes that have yet to be decoded while allowing the
decoder to access information from nodes that have already been decoded. When decoding a given
residue during training time, instead of accessing the embeddings for predicted residues at previously
decoded positions, the decoder accesses embeddings for ground truth residues at previously decoded
positions. The model decodes antibody CDRs in sequential order during training: HCDR1, HCDR2,
HCDR3, LCDR1, LCDR2, LCDR3. During inference, a different order of CDRs can be specified.
Within each CDR, the decoding order is random as done in [1]. We project the final node embeddings
to logits and train the model using cross-entropy loss.

A.2 Discussion of ESM and potential data leakage

Data leakage from ESM [11, 12] is a concern that was originally raised for general protein inverse
folding with LM-Design [3]. The authors presented an argument against this concern6. It has also
been noted that the number of antibody-related sequences ESM has been trained on is in the thousands
compared to the multiple tens of millions of proteins in its training set [22], which suggests it is
less likely to observe leakage for antibody design compared to general protein design. Furthermore,
our in silico results show that IgMPNN, which does not use ESM, achieves comparable HCDR
AARs to IgDesign, implying that information is not being leaked from ESM. Finally, we consider
data leakage for ProteinMPNN [1], noting in our in silico results that despite training on >80% of
the antibody-antigen complexes in the relevant test sets, ProteinMPNN still underperforms both
IgMPNN and IgDesign. While ProteinMPNN and ESM are considerably different models, this
example motivates the fact that models can ignore elements of their training sets.

A.3 ProteinMPNN in silico baseline

We perform an in silico baseline against ProteinMPNN by taking the open source implementation of
the model7 and running inference on the antibody-antigen complexes in the test sets of the IgDesign

6https://github.com/BytedProtein/ByProt/issues/3
7https://github.com/dauparas/ProteinMPNN

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.08.570889doi: bioRxiv preprint 

https://github.com/BytedProtein/ByProt/issues/3
https://github.com/dauparas/ProteinMPNN
https://doi.org/10.1101/2023.12.08.570889
http://creativecommons.org/licenses/by-nc-nd/4.0/


models we trained. Inference is run with default parameters directly from the PDB files8. We generate
100 sequences for each complex. We then parse the CDRs from these sequences and compute AARs,
specifically 1-shot AAR being the AAR of the CDRs in the first sample and 100-shot AAR being the
maximum AAR for each CDR amongst the 100 samples.

We investigated the training set of ProteinMPNN and noted that a significant portion of SAbDab [15]
is in the training set. Indeed, nearly 25,000 non-unique PDB IDs from SAbDab are contained
in ProteinMPNN’s training set. The model is primarily trained on individual chains from these
complexes (i.e., heavy chains, light chains, or antigens treated as monomers). This results in ≈80%
of our test set complexes being contained in ProteinMPNN’s training set. Because of this, we also
compute the “ProteinMPNN (Filtered)” baseline by restricting to antibodies contained in IgDesign’s
test sets that are not contained in ProteinMPNN’s training set as monomers (i.e., if the heavy or light
chain appears in ProteinMPNN’s training set as a monomer it will not be considered in this baseline).

Interestingly, despite this data leakage, IgDesign outperforms ProteinMPNN with statistical signifi-
cance on every CDR. Furthermore, ProteinMPNN and ProteinMPNN (Filtered) perform comparably
to each other.

8https://github.com/dauparas/ProteinMPNN/blob/main/examples/submitexample3.sh
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B Data curation and splitting

The Structural Antibody Database (SAbDab) [15] was retrieved on December 6th, 2022. The
corresponding PDB files were downloaded from RSCB PDB [18]. To generate a high quality dataset
used in training we applied the following filters:

• Drop entries without a heavy antibody chain.

• Drop entries without an antigen.

• Drop entries where the PDB id, heavy, light, and antigen chains are repeated (duplicated).

• Drop entries where one of the heavy CDRs is too short (shorter than 5 amino acids for
HCDR1 and HCDR2, shorter than 7 amino acids for HCDR3).

• Drop entries where one of the heavy CDRs is too long (longer than 26 amino acids for any
of the HCDRs).

• Drop entries where more than 10% of heavy chain residues are missing from the structure.

• Drop entries where more than 25% of antigen residues are missing from the structure.

After filtering there were 6933 entries left in the database. To split the dataset, we use a 40% antigen
sequence identity holdout. Specifically, we applied sequence clustering to the antigen sequences
using mmseqs2 [23] version 13.45111, with the following parameters: min-seq-id=0.4, cov-mode=1,
cluster-mode=2, cluster-reassign=true. We use these cluster annotations when splitting the data into
train, validation, and test folds (assigning an entire cluster to one of the three subsets).

The General PDB dataset is created from a selection of PDB files available in the RSCB PDB [18]
database. We made the selection using the Graphein library (version 1.0) [24], downloading all PDB
structures where each chain is longer than 40 and shorter than 500 amino acids. We further filtered
out any structures containing chains with missing backbone atoms. Finally, we removed all PDBs
contained in SAbDab to avoid leakage. This resulted in a dataset with 74734 entries. We then applied
sequence clustering using mmseqs2 with the same set of parameters used for clustering the SAbDab
dataset (min-seq-id=0.4, cov-mode=1, cluster-mode=2, cluster-reassign=true). As with SAbDab, we
use these cluster annotations when splitting the data into train, validation, and test folds (assigning an
entire cluster to one of the three subsets).

Table 1: Minimum edit distances between HCDRs of reference antibodies and antigen data splits
used for training. Note that the reference antibody’s HCDR3 is never present in the training set.
While HCDR1 and HCDR2 may be contained in the training set this is expected due to these being
lower diversity regions relative to HCDR3. Furthermore, we note that the minimum edit distance
between all three HCDRs is always greater than the sum of the minimum edit distances for each
HCDR.

Antigen Minimum Edit Distance Mean Edit Distance

HCDR1 HCDR2 HCDR3 HCDRs HCDR1 HCDR2 HCDR3 HCDRs

Antigen 1 0 2 2 9 4.2 5.6 10.8 20.5

Antigen 2 1 2 7 13 5.2 5.7 12.7 23.6

Antigen 3 1 0 5 10 4.7 4.8 12.1 21.6

Antigen 4 1 0 6 9 4.7 5.7 13.0 23.4

Antigen 5 0 2 8 13 4.5 5.6 13.3 23.4

Antigen 6 1 1 4 11 4.4 4.6 11.9 20.9

Antigen 7 1 2 2 6 4.6 4.8 10.7 20.1

Antigen 8 0 0 2 7 4.7 5.3 10.5 20.5
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C Additional details on antibody library design

We make note of additional details for antibody library design:

• For each of the 8 target antigens we trained IgDesign with a SAbDab split holding out said
antigen.

• As mentioned in the main text, we generated sequences in the following order: HCDR3,
HCDR1, HCDR2, LCDR1, LCDR2, LCDR3. We selected this order to prevent the model
from conditioning on potentially false CDR predictions when predicting HCDR3. We note
that the model is never provided ground truth CDR sequences at inference time.

• For generating sequences with IgDesign we used weighted random sampling after applying
softmax with a temperature of T = 0.5 to the model’s logits.

• As a baseline, we sampled 100 HCDR3s from the training set (a subset of SAbDab) of each
IgDesign model. We required these HCDR3s to have the same length as the HCDR3 of the
reference antibody. If there were fewer than 100 such HCDR3s, we first took HCDR3s from
the validation set with matching lengths then, if needed, we took HCDR3s 1 residue longer
or shorter from the training set.

• We included controls for the SPR assay to confirm its ability to properly label known binders
and non-binders. In particular, for each experiment we included a monoclonal antibody
(mAb) positive control (except for antigen 1), a fragment antigen-binding (Fab) positive
control and, and a Fab negative control. While we do not disclose the target antigens or the
reference antibodies we do present sensorgrams for the controls, an IgDesign binder, and an
IgDesign non-binder in the Appendix.

Discussion of the in vitro baseline We describe the construction of the baseline above. The
objective of the baseline is to compare to IgDesign’s binding rates and demonstrate that the model
is relying on its input features (antibody-antigen complex structure, antigen sequence, antibody
FWR sequences) and that it has learned to extrapolate from its training set of HCDRs. By sampling
HCDR3s from the model’s training set, we can effectively answer these questions. The success rates
of the baseline are low. In fact, they are 0% for 6 out of 8 antigens and for the remaining 2 each
baseline population contains only 1 binder, which corresponds to a success rate of ≈ 1.5% (Table 2).
Given IgDesign’s outperformance vs. the baseline, we can conclude that the model has learned to
extrapolate by relying on its input features.

We note that there are multiple other baselines of interest. The SAbDab HCDR3 baseline does not
utilize IgDesign’s input features for sampling sequences. As a result, while we can determine that
the model uses these features we cannot determine how effectively it uses these features. A baseline
using a protein inverse folding model such as ProteinMPNN [1] or an antibody inverse folding model
such as AbMPNN [5] would help answer this question. Similarly, baselines using protein language
models such as ESM [11, 12] or antibody language models such as IgLM [25] would help assess
the importance of the structure features. There are, however, some shortcomings of these baselines
compared to our SAbDAb HCDR3 baseline. Firstly, we do not have a guarantee that the CDRs
generated by these models are realistic. Indeed, AbMPNN [5] shows that ProteinMPNN’s CDR
designs have substantially lower designability and accuracy (as measured by AAR) compared to
AbMPNN. We show similar results for AAR with IgDesign outperforming ProteinMPNN. Secondly,
as this study demonstrates the first effort at multi-antigen in vitro validation of antibody inverse
folding, we do not yet have an existing antibody inverse folding model that has been validated to
compare against. Having experimentally validated antibody inverse folding, future work can consider
additional baselines including the models suggested above as well as both our SAbDAb baseline and
our model, IgDesign.
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D Wet lab workflow

D.1 Cloning

Antibody variants are cloned and expressed in fragment antigen-binding (Fab) format. To produce
SPR datasets, DNA variants spanning HCDR1 to HCDR3 are purchased as single-stranded DNA
(ssDNA) oligo pools (Twist Bioscience). For each residue, codons are randomly selected uniformly
from the codons that translate into said residue.

Amplification of the ssDNA oligo pools is carried out by PCR according to Twist Bioscience’s
recommendations, except Q5 high fidelity DNA polymerase (New England Biolabs) is used in place
of KAPA polymerase. Briefly, 25 µL reactions consist of 1x Q5 Mastermix, 0.3 µM each of forward
and reverse primers, and 10 ng oligo pool. Reactions are initially denatured for 3 min at 95◦C,
followed by 13 cycles of: 95◦C for 20 s; 66◦C for 20 s; 72◦C for 15 s; and a final extension of 72◦C
for 1 min. DNA amplification is confirmed by agarose gel electrophoresis, and amplified DNA is
subsequently purified (DNA Clean and Concentrate Kit, Zymo Research).

To generate linearized vector, a two-step PCR is carried out to split our plasmid vector carrying Fab
format antibody into two fragments in a manner that provides cloning overlaps of approximately
25 nucleotides (nt) on the 5’ and 3’ ends of the amplified ssDNA oligo pool libraries, or 40 nt on
the 5’ and 3’ ends of IDT eBlocks. Vector linearization reactions are digested with DpnI (New
England Bioloabs) and purified from a 0.8% agarose gel using the Gel DNA Recovery Kit (Zymo
Research) to eliminate parental vector carry through. Cloning reactions consist of 50 fmol of each
purified vector fragment, either 100 fmol PCR-amplified ssDNA oligo pool or 10 pmol eBlock library
inserts and 1x final concentration NEBuilder HiFi DNA Assembly (New England Biolabs). Reactions
are incubated at 50◦C for 25 min using eBlocks or two hours using PCR-amplified oligo pools.
Assemblies are subsequently purified using the DNA Clean and Concentrate Kit (Zymo Research).
DNA concentrations are measured using a NanoDrop OneC (Thermo Scientific).

For SPR datasets, the E. coli host strain is transformed with the purified assembly reactions and
grown overnight at 30◦C on agar plates containing 50 µg/ml kanamycin and 1 % glucose. Colonies
are picked for QC analysis prior to cultivation for induction.

QC Analysis Quality of antibody variant libraries is assessed by performing rolling circle ampli-
fication (Equiphi29, Thermo Fisher Scientific) on 24 colonies and sequencing using the Illumina
DNA Prep, Tagmentation Kit (Illumina Inc.). Each colony is analyzed for mutations from reference
sequence, presence of multiple variants, misassembly, and matching to a library sequence (Geneious
Prime).

D.2 Antibody Expression in E. coli

After transformation and QC of libraries, individual colonies are picked into deep well plates
containing 400 µL of Teknova LB Broth 50 µg/mL Kanamycin and incubated at 30◦C and 80 %
humidity with 1000 rpm shaking for 24 hours. At the end of the 24 hours, 150 µL samples are
centrifuged (3300 g, 7 min), supernatant decanted from the pre-culture plate, and cell pellets sent for
sequence analysis. 80 µL of the pre-culture is transferred to 400 µL of IBM containing inducers and
supplements as described above. Culture is grown for 16 hours at 26◦C and 80 % humidity with 270
rpm shaking. After 16 hours, 150 µL samples are taken and centrifuged (3300 g, 7 min) into pellets
with supernatant decanting prior to being stored at -80◦C.

D.3 Surface plasmon resonance (SPR)

Sample Preparation Post induction samples are transferred to 96-well plates (Greiner Bio-One),
pelleted and lysed in 50 µL lysis buffer (1X BugBuster protein extraction reagent containing 0.01
KU Benzonase Nuclease and 1X Protease inhibitor cocktail). Plates are incubated for 15-20 min at
30◦C then centrifuged to remove insoluble debris. After lysis, samples are adjusted with 200 µL SPR
running buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.01 % w/v Tween-20, 0.5 mg/mL
BSA) to a final volume of 260 µL and filtered into 96-well plates. Lysed samples are then transferred
from 96-well plates to 384-well plates for high-throughput SPR using a Hamilton STAR automated
liquid handler. Colonies are prepared in two sets of independent replicates prior to lysis and each
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replicate is measured in two separate experimental runs. In some instances, single replicates are used,
as indicated.

SPR High-throughput SPR experiments are conducted on a microfluidic Carterra LSA SPR instru-
ment using SPR running buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.01 % w/v Tween-20,
0.5 mg/mL BSA) and SPR wash buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.01 %
w/v Tween-20). Carterra LSA SAD200M chips are pre-functionalized with 20 µg/mL biotinylated
antibody capture reagent for 600 s prior to conducting experiments. Lysed samples in 384-well blocks
are immobilized onto chip surfaces for 600 s followed by a 60 s washout step for baseline stabilization.
Antigen binding is conducted using the non-regeneration kinetics method with a 300 s association
phase followed by a 900 s dissociation phase. For analyte injections, six leading blanks are introduced
to create a consistent baseline prior to monitoring antigen binding kinetics. After the leading blanks,
five concentrations of antigen extracellular domain antigen (ACRO Biosystems, prepared in three-fold
serial dilution from a starting concentration of 500 nM), are injected into the instrument and the time
series response was recorded. In most experiments, measurements on individual DNA variants are
repeated four times. Typically each experiment run consists of two complete measurement cycles
(ligand immobilization, leading blank injections, analyte injections, chip regeneration) which provide
two duplicate measurement attempts per clone per run. In most experiments, technical replicates
measured in separate runs further double the number of measurement attempts per clone to four.

D.4 Sequencing

To identify the DNA sequence of individual antibody variants evaluated by SPR, duplicate plates
are provided for sequencing. A portion of the pelleted material is transferred into 96 well PCR
(Thermo-Fisher) plate via pinner (Fisher Scientific) which contains reagents for performing an initial
phase PCR of a two-phase PCR for addition of Illumina adapters and sequencing. Reaction volumes
used are 12.5 µl. During the initial PCR phase, partial Illumina adapters are added to the amplicon
via 4 PCR cycles. The second phase PCR adds the remaining portion of the Illumina sequencing
adapter and the Illumina i5 and i7 sample indices. The initial PCR reaction uses 0.45 µM UMI primer
concentration, 6.25 µl Q5 2x master mix (New England Biolabs) and PCR grade H2O. Reactions are
initially denatured at 98◦C for 3 min, followed by 4 cycles of 98◦C for 10 s; 59◦C for 30 s; 72◦C for
30 s; with a final extension of 72◦C for 2 min. Following the initial PCR, 0.5 µM of the secondary
sample index primers are added to each reaction tube. Reactions are then denatured at 98◦C for
3 min, followed by 29 cycles of 98◦C for 10 s; 62◦C for 30 s; 72◦C for 15 s; with a final extension
of 72◦C for 2 min. Reactions are then pooled into a 1.5 mL tube (Eppendorf). Pooled samples are
size selected with a 1x AMPure XP (Beckman Coulter) bead procedure. Resulting DNA samples are
quantified by Qubit fluorometer. Pool size is verified via Tapestation 1000 HS and is sequenced on an
Illumina MiSeq Reagent Kit v3 (2x300 nt) for HCDR1-HCDR3 libraries with 20 % PhiX.

After sequencing, amplicon reads are merged using Fastp [26], trimmed by cutadapt [27] and each
unique sequence enumerated. Next, custom R scripts are applied to calculate sequence frequency
ratios between the most abundant and second-most abundant sequence in each sample. Levenshtein
distance is also calculated between the two sequences. These values are used for downstream filtering
to ensure a clonal population is measured by SPR. The most abundant sequence within each sample
is compared to the designed sequences and discarded if it does not match any expected sequence.
Dominant sequences are then combined with their companion Carterra SPR measurements.
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E Sensorgrams

We present sensorgrams from the SPR runs for each library. A Fab positive and negative control are
shown as well as a mAb positive control (except in the case of antigen 1). An IgDesign binder and
non-binder are shown for each antigen.

Antigen 1

Fab Positive Control IgDesign Binder

Fab Negative Control IgDesign Non-Binder

Figure 3: Sensorgrams for antigen 1. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.

Antigen 2

mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 4: Sensorgrams for antigen 2. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.
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Antigen 3

mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 5: Sensorgrams for antigen 3. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.

Antigen 4

mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 6: Sensorgrams for antigen 4. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.
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Antigen 5

mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 7: Sensorgrams for antigen 5. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.

Antigen 6

mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 8: Sensorgrams for antigen 6. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.
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Antigen 7

mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 9: Sensorgrams for antigen 7. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.

Antigen 8

mAb Positive Control IgDesign Binder

Fab Positive Control IgDesign Non-Binder

Fab Negative Control

Figure 10: Sensorgrams for antigen 8. Positive and negative controls shown behaving as expected.
Sample IgDesign binder and non-binder shown as well.
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F Additional figures and tables

F.1 Amino acid recovery
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Figure 11: Comparison between IgMPNN and IgDesign on mean 1-shot amino acid recovery
(AAR) for heavy chain CDRs (HCDRs). Violin plots comparing distributions of mean 1-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not in its training set (yellow),
IgMPNN (blue), and IgDesign (red) for each HCDR across 8 antigen test sets. Mean 1-shot AAR
is the mean of the 1-shot AARs computed across each test set. The distribution captures the 95%
interval, the white dot represents the median, and the box represents the interquartile range.
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Figure 12: Comparison between IgMPNN and IgDesign on mean 1-shot amino acid recovery
(AAR) for light chain CDRs (LCDRs). Violin plots comparing distributions of mean 1-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not in its training set (yellow),
IgMPNN (blue), and IgDesign (red) for each LCDR across 8 antigen test sets. Mean 1-shot AAR is
the mean of the 1-shot AARs computed on each test set. The distribution captures the 95% interval,
the white dot represents the median, and the box represents the interquartile range.
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Figure 13: Comparison between IgMPNN and IgDesign on mean 100-shot amino acid recovery
(AAR) for heavy chain CDRs (HCDRs). Violin plots comparing distributions of mean 100-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not in its training set (yellow),
IgMPNN (blue), and IgDesign (red) for each HCDR across 8 antigen test sets. Mean 100-shot AAR
is the mean of the 100-shot AARs computed on each test set. The distribution captures the 95%
interval, the white dot represents the median, and the box represents the interquartile range.
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Figure 14: Comparison between IgMPNN and IgDesign on mean 100-shot amino acid recovery
(AAR) for light chain CDRs (LCDRs). Violin plots comparing distributions of mean 100-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not in its training set (yellow),
IgMPNN (blue), and IgDesign (red) for each LCDR across 8 antigen test sets. Mean 100-shot AAR
is the mean of the 100-shot AARs computed on each test set. The distribution captures the 95%
interval, the white dot represents the median, and the box represents the interquartile range.
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Figure 15: Comparison between IgMPNN and IgDesign on 1-shot amino acid recovery (AAR)
for heavy chain CDRS (HCDRs) on antigen 7 test set. Box plots comparing distributions of 1-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not contained in its training set
(yellow), IgMPNN (blue) and IgDesign (red) across the test set (antigen 7 data split of SAbDab) for
each HCDR.
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Figure 16: Comparison between IgMPNN and IgDesign on 1-shot amino acid recovery (AAR)
for light chain CDRS (LCDRs) on antigen 7 test set. Box plots comparing distributions of 1-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not contained in its training set
(yellow), IgMPNN (blue) and IgDesign (red) across the test set (antigen 7 data split of SAbDab) for
each LCDR.
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Figure 17: Comparison between IgMPNN and IgDesign on 100-shot amino acid recovery (AAR)
for heavy chain CDRS (HCDRs) on antigen 7 test set. Box plots comparing distributions of
100-shot AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not contained in its
training set (yellow), IgMPNN (blue) and IgDesign (red) across the test set (antigen 7 data split of
SAbDab) for each HCDR.
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Figure 18: Comparison between IgMPNN and IgDesign on 100-shot amino acid recovery (AAR)
for light chain CDRS (LCDRs) on antigen 7 test set. Box plots comparing distributions of 100-shot
AARs for ProteinMPNN (green), ProteinMPNN filtered to complexes not contained in its training set
(yellow), IgMPNN (blue) and IgDesign (red) across the test set (antigen 7 data split of SAbDab) for
each LCDR.
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F.2 In vitro binding rates

Table 2: Binding rates across antigens for IgDesign on HCDR3 and HCDR123 as well as SAbDab
HCDR3 baseline.

Antigen % Binding Rate (Binders / Observations)

IgDesign (HCDR3) IgDesign (HCDR123) SAbDab (HCDR3)

Antigen 1 30.6% (22 / 72) 6.3% (4 / 64) 1.6% (1 / 64)

Antigen 2 27.9% (17 / 61) 19.6% (11 / 56) 0.0% (0 / 59)

Antigen 3 32.3% (20 / 62) 11.8% (8 / 68) 1.5% (1 / 68)

Antigen 4 96.3% (52 / 54) 92.5% (62 / 67) 0.0% (0 / 54)

Antigen 5 7.9% (5 / 63) 0.0% (0 / 65) 0.0% (0 / 50)

Antigen 6 61.5% (24 / 39) 20.9% (9 / 43) 0.0% (0 / 33)

Antigen 7 13.0% (10 / 77) 5.9% (4 / 68) 0.0% (0 / 66)

Antigen 8 22.4% (15 / 67) 24.4% (13 / 58) 0.0% (0 / 59)

Table 3: Fisher’s exact tests across antigens for IgDesign on HCDR3 and HCDR123 vs. SAbDab
HCDR3 baseline. Significant p-values are bolded. At a significance level of α = 0.05 with N = 16
total tests, we require p < α/N = 0.05/16 = 0.003125 ≈ 3e-3 for a significant result. We note that
IgDesign HCDR3 outperforms the baseline 8 out of 8 times and does so significantly 7 out of 8 times.
IgDesign HCDR123 outperforms the baseline 7 out of 8 times and does so significantly 4 out of 8
times. We note that the baseline is only varying HCDR3 and keeping HCDR1 and HCDR2 fixed to
the native sequence whereas IgDesign HCDR123 designs all three HCDRs.

Antigen IgDesign (HCDR3) IgDesign (HCDR123)

Ratio to Baseline p-value Ratio to Baseline p-value

Antigen 1 19.6 5e-6 4.0 0.37

Antigen 2 Inf 5e-6 Inf 2.5e-4

Antigen 3 21.9 2e-6 8.0 0.033

Antigen 4 Inf 0.0 Inf 0.0

Antigen 5 Inf 0.066 N/A 1.0

Antigen 6 Inf 0.0 Inf 4.3e-3

Antigen 7 Inf 2e-3 Inf 2.6e-3

Antigen 8 Inf 4e-5 Inf 6e-5
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F.3 In vitro binding affinities

We show binding affinities for binders against each antigen from IgDesign as well as the SAbDab
HCDR3 baseline. The reference antibody affinity is shown in each figure by a dashed black line. For
affinities we report − log

10
(KD) (M).

For 5 out of 8 antigens (antigen 1, 2, 6, 7, and 8), IgDesign generates binders with equal or higher
affinities to the reference antibody. For these 5 targets, several designed binders have affinities within
one order of magnitude of the reference antibody’s affinity. This suggests that IgDesign can be used
for lead optimization, in particular affinity maturation, either by designing HCDRs or via an efficient
evolution approach [22] by ranking HCDR mutants conditional on a backbone structure. For the
other 3 out of 8 antigens (antigen 3, 4, and 5), the binders are 2+ orders of magnitude lower affinity
than reference, motivating future work to improve the model.
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Figure 19: Binding affinities against antigen 1.
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Figure 20: Binding affinities against antigen 2.
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Figure 21: Binding affinities against antigen 3.

IgDesign (HCDR3) IgDesign (HCDR123)
6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

lo
g 1

0
(K
D
)(
M

)

Binding Affinities for Binders to Antigen 4

Figure 22: Binding affinities against antigen 4.
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Figure 23: Binding affinities against antigen 5.
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Figure 24: Binding affinities against antigen 6.
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Figure 25: Binding affinities against antigen 7.
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Figure 26: Binding affinities against antigen 8.
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