

1

2 **Ovothiol is a redundant part of a complex thiol**
3 **network in promastigote *Leishmania mexicana***

4

5 Victoria L. Bolton¹, Clement Regnault², Lesley S. Morrison¹, Supriya Khanra¹, Ryan
6 Ritchie¹, Kerrie E. Hargrave¹, Richard J.S. Burchmore^{1,2}, Megan K.L. MacLeod¹, Michael P.
7 Barrett^{1,2}

8

9 **¹University of Glasgow, School of Infection, Immunity and Inflammation**

10 **²Glasgow Polyomics, University of Glasgow.**

11

12 **Abstract**

13 *A gene encoding OvoA, a key enzyme involved in the biosynthesis of ovothiol, was excised*
14 *from the genome of Leishmania mexicana promastigotes using CRISPR/cas mediated gene*
15 *editing. The role of the enzyme in synthesising ovothiol was confirmed since both ovothiol A*
16 *and ovothiol B were lost from the metabolome of the modified cells. The OvoA knockout line*
17 *had similar growth kinetics to wild-type progenitor cells and, moreover, most of the changes*
18 *in metabolism that accompanied the transition of log stage growth to stationary phase were*
19 *mirrored in the KO line. Significant differences, however, were observed in the ratio of the*
20 *reduced and oxidised forms of the other major low molecular weight thiols, glutathione and*
21 *trypanothione, indicative of a role of these other thiols in maintaining reduced ovothiol and*
22 *demonstrating an interconnected network of low molecular weight thiols in these cells. The*
23 *OvoA knockout cells remained infective to macrophages where promastigotes transformed to*
24 *amastigote forms in a manner similar to wild-type. The knockout line was tested for*
25 *sensitivity to a range of current anti-leishmanial drugs and oxidative and nitrosative stresses.*

26 While generally the absence of ovothiol caused little or no change in sensitivity to these
27 stress-inducing agents, enhanced sensitivity to amphotericin B was noted.

28 **Author summary**

29

30 Ovothiol is a low molecular weight histidine-derived thiol first described in sea urchin eggs,
31 and later found in many organisms, including the protozoa of the order Kinetoplastida, that
32 includes human pathogens such as the *Leishmania* species that cause leishmaniasis. Thiol
33 metabolism in the Kinetoplastidae has been studied in some detail, particularly with regard to
34 an unusual bis-glutathione, spermidine conjugate named trypanothione that takes on many of
35 the roles performed by glutathione in most other organisms. Roles for ovothiol in
36 *Leishmania* have not been previously defined, although potential roles in defence against
37 oxidative stress have been hypothesised. A gene encoding the first enzyme of the pathway
38 involved in ovothiol production, OvoA, was excised from the *Leishmania mexicana* genome.
39 Its role in ovothiol synthesis was confirmed as ovothiol was absent from the mutants. Little
40 changed, however, with respect to the phenotype of these cells, including their proliferation
41 rate, their ability to infect macrophages or their sensitivity to a range of stress inducing
42 agents. These included several leishmanicidal drugs, oxidative and nitrosative stresses. For
43 amphotericin B, however, the Ovothiol lacking cells were more sensitive than wild-type
44 indicating some role in defence against the impact of this drug.

45

46

47 **Introduction**

48 Ovothiol (1-N-methyl-4-mercaptopohistidine), is a low molecular weight thiol, originally found
49 in sea urchin eggs [1-4]. Subsequently, more methyl-mercaptopohistidine based molecules were
50 found in other organisms including in protozoa of the taxonomic grouping known as the
51 Kinetoplastida which were shown to contain ovothiol A (3-methyl-5-sulfanyl-L-histidine) [5-
52 8]. The Kinetoplastidae include important parasitic pathogens of man including the African
53 and American trypanosomes [9] and leishmania species [10]. The role(s) of ovothiol in these
54 organisms has remained elusive, particularly as the parasites also contain another unusual
55 thiol, comprising two glutathione moieties linked by a spermidine creating the well-studied
56 molecule N¹,N⁸-bis-glutathionylspermidine (trypanothione) [11-13]. Ovothiol was shown to
57 be more abundant in promastigote forms of leishmania than amastigotes and its levels
58 increased in cultured cells as proliferative promastigotes transformed to the growth-arrested
59 metacyclic promastigote form [7] which is transmitted from the sandfly vector to their
60 mammalian hosts. Metacyclics are taken up by macrophages and exposed to the oxidative
61 burst including an array of free radicals, indicating a possible role in defence against these
62 potentially toxic molecules [6], with defence against nitric oxide and other nitrosative
63 metabolites considered more likely than scavenging H₂O₂ given the superiority of
64 trypanothione in this latter function [14]. A variety of mechanisms enable the parasites to
65 survive within macrophages [15-17], however ovothiol was reportedly absent from the
66 replicative amastigote form of the parasite [7] leading to a suggestion that any role in survival
67 would precede reaching this part of the life cycle.

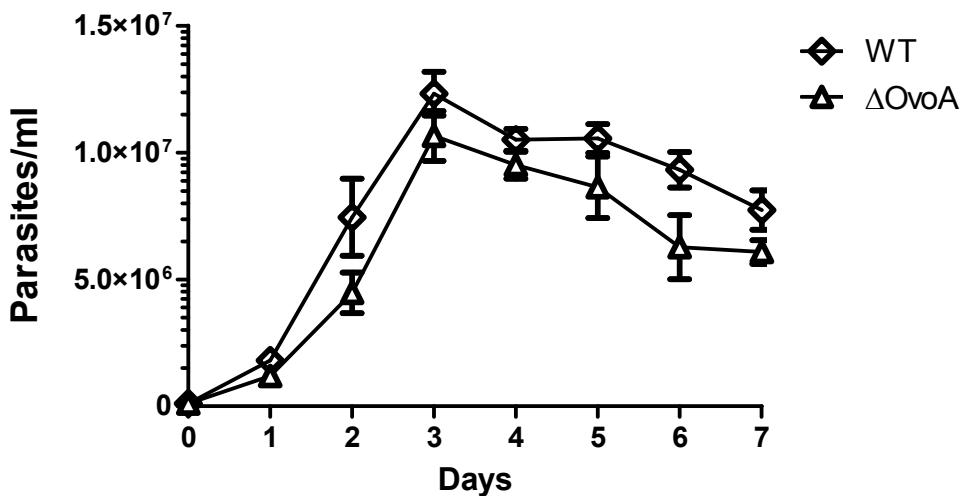
68 Ovothiol is synthesised by the sulfanylation followed by methylation of histidine. A gene
69 encoding the enzyme, termed *OvoA*, was initially discovered in *Erwinia tasmaniensis* and
70 *Trypanosoma cruzi* [18] based on homology to another histidine sulfanylylase, EgtB, from
71 Mycobacteria [19]. OvoA undertakes both the initial sulfanylation and the later methylation
72 reactions, but a C-S lyase reaction that cleaves the sulfoxide intermediate prior to methylation

73 is catalysed by a separate enzyme, OvoB, the identification of which remains elusive within
74 the kinetoplastidae. Genes related to *OvoA*, however, are found in the genomes of organisms
75 known to produce ovothiol, including the trypanosomatids, and absent from organisms that
76 do not synthesise this metabolite. The enzymes were named as 5-histidylcysteine sulfoxide
77 synthases (OvoAs) [18]. Recombinant versions of the OvoA from *Erwinia tasmaniensis* and
78 *Trypanosoma cruzi* were expressed and the enzymes characterised [18].

79 In order to learn more about the *in situ* roles of ovothiol in *Leishmania mexicana* we deleted
80 the gene predicted to encode OvoA using CRISPR/cas9 technology [20] and studied the
81 ability of the parasites to grow as promastigotes and transform between proliferative stage to
82 stationary stage cells in culture, and their sensitivity to anti-leishmanial drugs and other
83 stress-inducing agents. We also investigated the metabolome of the parasites to identify
84 whether loss of *OvoA* did, indeed, correlate to loss of ovothiol in these cells and, moreover, to
85 determine what other changes to metabolism occur as a consequence of losing ovothiol.
86 Finally, we assessed the ability of ovothiol deficient leishmania to invade macrophages and
87 replicate as intracellular amastigotes.

88

89 **Results**


90 **The *OvoA* gene is readily removed from the genome of *L. mexicana* promastigotes, and**
91 **knockout cells have no growth defect.**

92 Constructs containing the Blasticidin-S deaminase (*cBSD*) and Puromycin *N*-
93 acetyltransferase (*PAC*) genes flanked from the 5' flank of the *OvoA* gene and from the 3'
94 flank were transfected into *Leishmania Cas9* [20]. Post-transfection, parasites were selected
95 in blasticidin plus puromycin and the *OvoA* transfected line was found to grow in the double
96 selective medium 11 days post transfection. Individual cells were then cloned using limiting

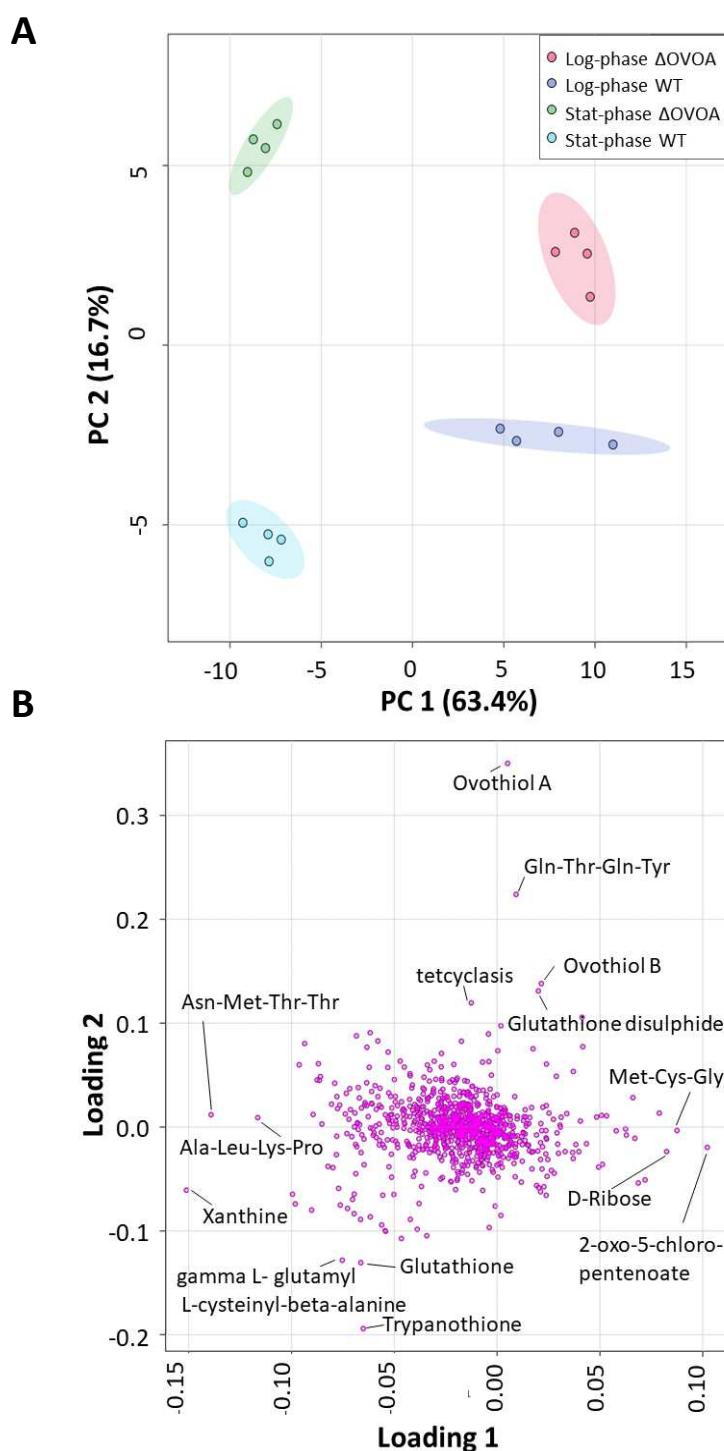
97 dilution and gDNA purified from these parasites amplified using oligonucleotides from
98 within the *OvoA* gene to verify its absence as well as the marker genes to verify their
99 presence. The successful double gene replacement was confirmed (Supplementary Figure 1)
100 indicating that *OvoA* is not essential to *L. mexicana* promastigotes.

101
102 Having established non-essentiality of *OvoA* we determined its impact on the growth kinetics
103 of *L. mexicana*, by comparing the rate of growth of Δ *OvoA* *L. mexicana* in comparison to WT
104 promastigote cultures, counted every 24 hours over 7 days. As demonstrated in Figure 1 only
105 a minor difference in growth kinetics was observed between Δ *OvoA* *L. mexicana* and WT cell
106 cultures. Specifically, Δ *OvoA* *L. mexicana* reached a slightly lower maximum cell density after
107 three days than the WT counterpart. Both Δ *OvoA* and WT *L. mexicana* had a logarithmic phase
108 that lasted for 3 days followed by a stationary phase from 3-7 days, with a slow loss of cell
109 density likely due to cell death (Figure 1).

110
111

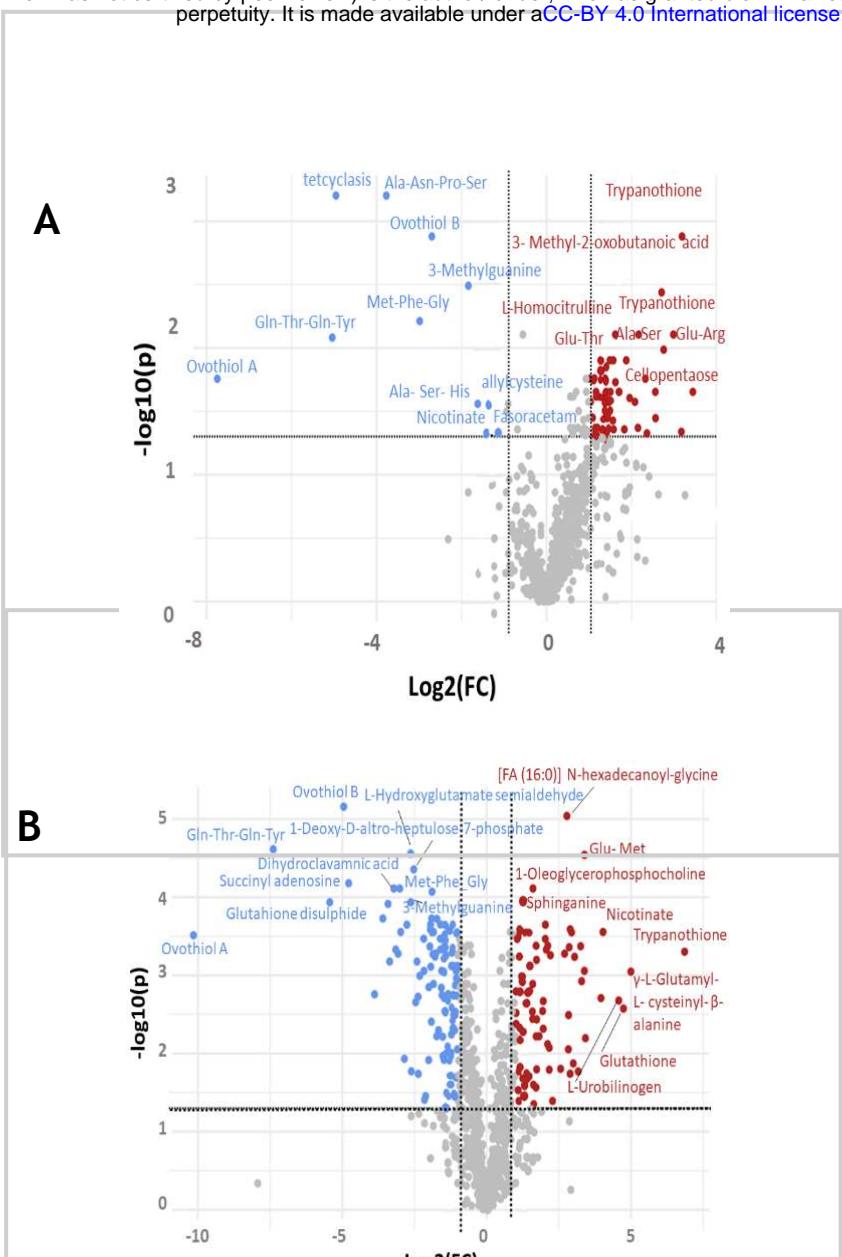
112 Figure 1: Growth kinetics of Wild type *Leishmania mexicana* and *Leishmania mexicana*
113 Ovothiol A Knockout mutant over 7 days (n=6)
114

115 **Comparative metabolomics analysis of WT and *OvoA* knockout parasites**


116 In order to determine whether the deletion of the *OvoA* gene leads to the absence of the
117 Ovothiol A metabolite in the $\Delta OvoA$ *L. mexicana* line, and to ascertain any other changes
118 associated with its loss, metabolomics analysis of metabolite extracts collected from stationary
119 and logarithmic phase $\Delta OvoA$ and wildtype *L. mexicana* promastigotes was performed using
120 LC-MS. A heatmap (supplementary figure 2) reveals the top 100 significantly changed
121 metabolites and supplementary figures 3 and 4 respectively show pathway enrichment analysis
122 in knockout cells at logarithmic and stationary phase respectively.

123 Principal component analysis (PCA) of the detected metabolites, demonstrated clear separation
124 of the $\Delta OvoA$ and wildtype *L. mexicana* metabolome of both stationary and logarithmic
125 samples along the first principal component (Figure 2A). Separation of $\Delta OvoA$ and wildtype
126 *L. mexicana* groups was driven along the second principal component by the following
127 metabolite annotations as shown in the corresponding Loadings plot (Figure 2B): ovothiol A,
128 the peptide Gln-Thr-Gln-Tyr, ovothiol B, tetcyclasis and glutathione disulphide on the one side
129 ($\Delta OvoA$), and glutathione, trypanothione and gamma-L- glutamyl-L-cysteine-beta-alanine on
130 the other side (WT). It is important to note that metabolite identifications are tentative in the
131 absence of orthogonal information beyond mass, e.g. inclusion of chemical standards to match
132 retention time or fragmentation, and in the case of tetcyclasis, which is a plant hormone for
133 which no evidence for its existence in *Leishmania* exists, it is likely that the true identity of this
134 metabolite is different. A strong separation between parasites at logarithmic and stationary-
135 phase irrespective of their genotype was also noted in the PCA (Figure 2A).

136 Separation of groups in the PCA was accompanied by 93 Bonferroni corrected
137 significant changes (adj.p-value (FDR)< 0.05) in the abundance of metabolites between
138 logarithmic phase $\Delta OvoA$ and WT *L. mexicana* and 374 significantly changed metabolites


139 (adj.p-value (FDR)< 0.05) between stationary phase $\Delta OvoA$ and WT *L. mexicana* (Figure 3).
140 From these significant changes, 55 metabolites were identified and 11 metabolites were of
141 significantly decreased abundance or increased abundance, in logarithmic phase $\Delta OvoA$ *L.*
142 *mexicana* (Figure 3A), whereas 105 metabolites were significantly down- and 79 metabolites
143 of increased abundance (threshold $\text{Log}_2\text{FC}>1$) in stationary-phase $\Delta OvoA$ *L. mexicana* (Figure
144 3B).

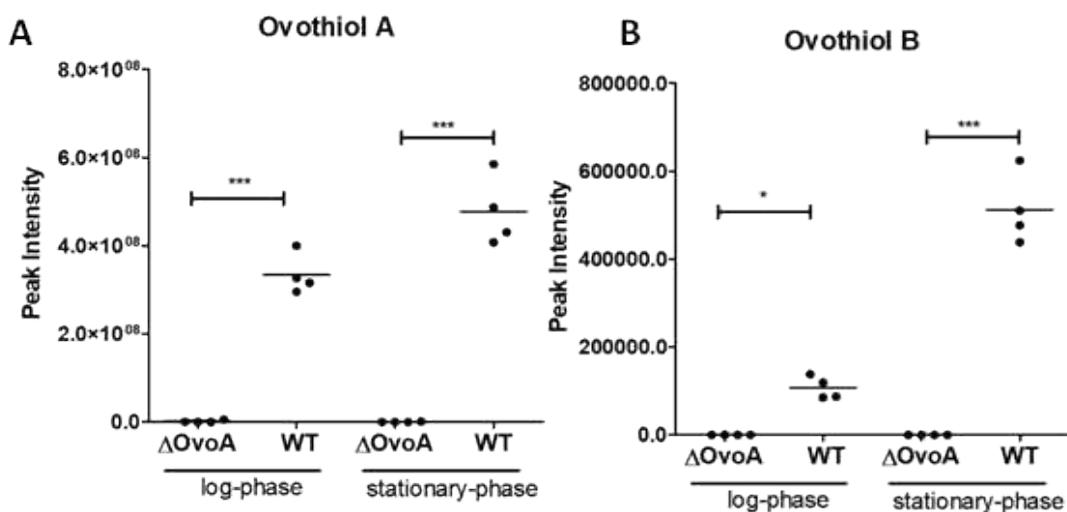
145

146 **Figure 2: Principal Component analysis scores plot (A) and associated loading plot (B) of**
147 **metabolomic samples from log-phase and stationary phase $\Delta OvoA$ and WT *L. mexicana*.**

148 Metabolite extracts were collected from 1×10^8 log-phase or stationary- phase *OvoA* Knockout
149 mutant and WT *L. mexicana* promastigotes. Four samples were collected per condition (n=4)
150 and analysed on a Liquid chromatography Mass spectrometry (LC-MS). Principal Component
151 analysis was performed with Metaboanalyst v5.0. (A) Principal component 1 (PC1) and
152 associated variance of 63.4% is displayed on the X axis and Principal component 2 (PC2) and
153 associated variance of 16.7% is displayed on Y axis. (B) Metabolites (loadings) that strongly
154 influence both components are highlighted. OvoA: Ovothiol A; WT: Wild type.

155

156 **Figure 3: Volcano plot of metabolome from log-phase (A) and stationary-phase (B)**
157 **$\Delta OvoA$ and Wildtype *L. mexicana*.**


158 Volcano plot displays the fold change of each metabolite in log-phase $\Delta OvoA$ and Wildtype *L.*
159 *mexicana* against the adjusted $-\log_{10}$ p-values. Metabolites in red are significantly upregulated.
160 Proteins in blue are significantly downregulated (FDR, $p < 0.05$, $\log_2\text{FC} > 1$). Figure was made
161 with metaboanalyst vs. 5.0.

162

163 Ovothiol A and ovothiol B were absent in both stationary-phase and logarithmic-phase $\Delta OvoA$
164 *L. mexicana* (Figure 3) (note that the Ideom software attributes a notional AUC value of 1,000
165 to absent metabolites in order that a comparison, albeit artificial, is possible between datasets
166 where a metabolite may be included in one but not the other). Figure 4, reveals the absence of

167 both Ovothiol A and B in $\Delta OvoA$ *L. mexicana* as compared to the wildtype parasites which
168 confirms the role of the putative *OvoA* gene in the biosynthesis of ovothiol.

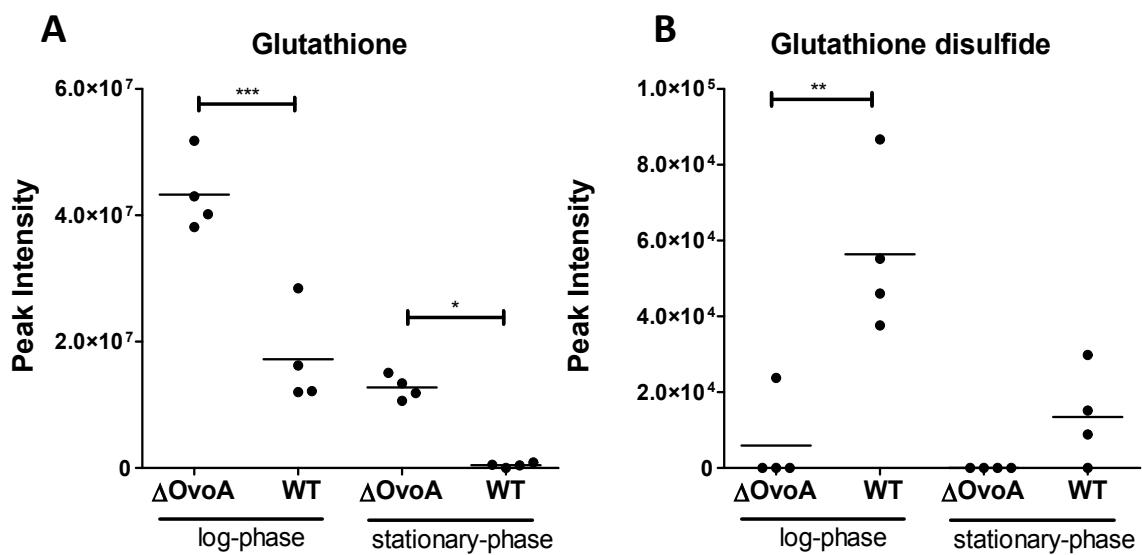
169

Figure 4. Peak intensities of ovothiol A (A) and ovothiol B (B) in logarithmic and stationary phase $\Delta OvoA$ and WT *L. mexicana*.

Each group is composed of four metabolomic samples (n=4). Statistical significance was tested using a one-way ANOVA with Bonferroni's Multiple Comparison Test as a post-hoc test (**p<0.001; *p<0.05).

170

171 Other metabolites that were diminished in abundance in both logarithmic and stationary-phase
172 $\Delta OvoA$ *L. mexicana* were tentatively annotated as 3- methylguanine, tetcyclasis (considered an
173 unlikely annotation as noted above) and peptides such as Gln-Thr-Gln-Tyr and Met-Phe-Gly
174 (Figures 2 & 3). Metabolite enrichment analysis of metabolites of significantly decreased
175 abundance in the $\Delta OvoA$ mutant revealed some pentose phosphate pathway-related metabolites
176 (e.g. deoxy-D-aldo heptulose 7P) and several metabolites associated with the metabolism of
177 alanine, aspartate and glutamine to be lowered in mutant *L. mexicana* in both logarithmic and
178 stationary- phase (Supplementary Figure S3 & S4). Overall, fewer metabolites of significantly
179 lowered abundance were observed in $\Delta OvoA$ in comparison to the WT *L. mexicana* cell line in
180 logarithmic- phase compared to stationary- phase cells (Figure 3).


181 In contrast, pathways such as arginine synthesis, valine, leucine and isoleucine synthesis as
182 well as glutathione biosynthesis were found to be increased in both logarithmic and stationary-
183 phase Δ OVOA *L. mexicana* (Supplementary Figures S3 & S4). Reduced glutathione was
184 significantly enriched in stationary as well as logarithmic-phase Δ OVOA *L. mexicana* (Figure
185 5). By contrast, the oxidised form of this thiol, glutathione disulfide, was found to be
186 diminished in Δ OVOA *L. mexicana* (Figure 5).

187 Of three individual peaks corresponding to the mass of the putative metabolite trypanothione,
188 (Supplementary Figure S6) only that with a retention time of 12.27 matched a trypanothione
189 standard (Supplementary Figure S7), others may be fragmentation products of unidentified
190 trypanothione adducts. The standard matched trypanothione peak significantly increased in
191 logarithmic-phase *OvoA* KO compared to WT *L. mexicana*. A slight, non- significant, increase
192 for this metabolite was also noted in stationary-phase *OvoA* KO, whereas trypanothione was
193 not identified in WT stationary-phase *L. mexicana*. The oxidised form of trypanothione,
194 trypanothione disulfide (T(S)₂, provided a peak with a relatively strong signal that was
195 diminished, albeit not reaching statistical significance, in Δ OvoA *L. mexicana* (Figure 6).

196 This is consistent with a significant proportion of the reduced forms of glutathione and
197 trypanothione usually being used in maintaining ovothiol in a reduced form. Loss of ovothiol
198 then alters the cellular redox balance such that trypanothione and glutathione are required to
199 give up fewer protons than usual in order to sustain this reduced ovothiol, and hence these
200 reduced forms increase in abundance while their oxidised counterparts are diminished.
201 Trypanothione is the central redox thiol and maintained in its reduced form by the enzyme
202 trypanothione reductase. Non-enzymatic reduction of glutathione by trypanothione, and
203 ovothiol by either of these metabolites ensues (Figure 7).

204

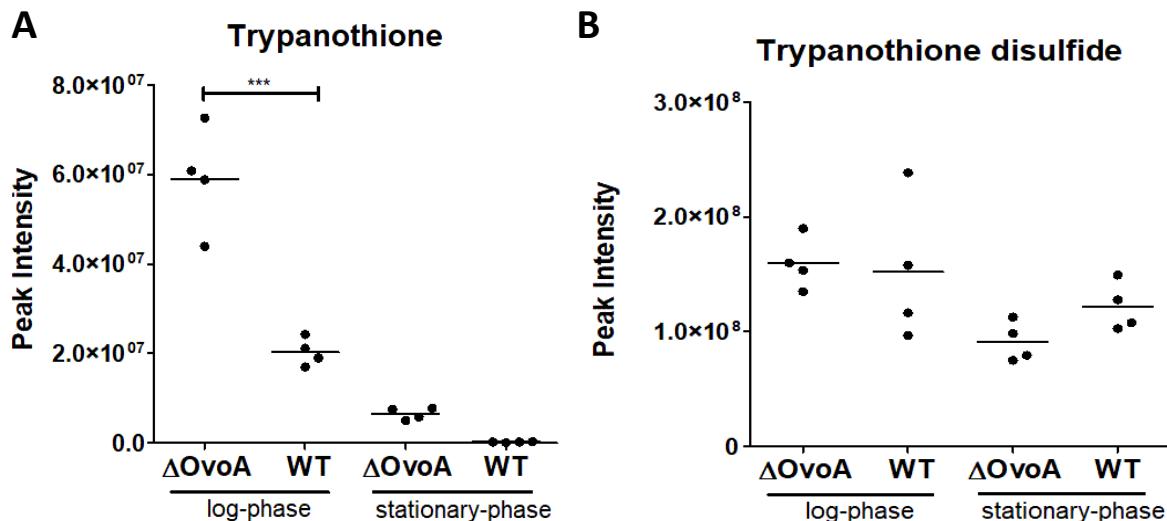

205

Figure 5: Peak intensities of putative Glutathione A (A) and Glutathione disulfide (B) in logarithmic and stationary phase $\Delta OvoA$ and WT *L. mexicana*.

Each group is composed of four metabolomic samples (n=4). Statistical significance was tested using a One-way ANOVA with Bonferroni's Multiple Comparison Test as a post-hoc test (**=p<0.001; **=p<0.01*=p<0.05).

206

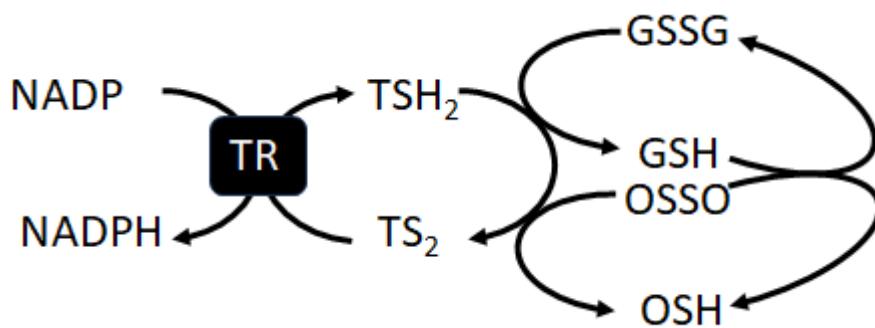


Figure 6: Peak intensity of trypanothione peak matching to a trypanothione authentic standard and (A) and of a putative trypanothione disulfide (B) extracted from ideome in logarithmic and stationary phase $\Delta OvoA$ and WT *L. mexicana*. Each group is composed of four metabolomic samples (n=4). Statistical significance was tested using a One-way ANOVA with Bonferroni's Multiple Comparison Test as a post-hoc test (**=p<0.001; *=p<0.05).

207

208 Other metabolites that were increased in Δ OVA *L. mexicana* were the hexose polymer
209 metabolites labelled as cellopentaose and cellohexose (Figure 3). These likely represent the
210 five and six chain representatives of poly-mannose, part of the key leishmania storage
211 carbohydrate, mannogen [21].

212

213

214 **Figure 7: Scheme of the low molecular weight thiol network in *Leishmania mexicana***
215 The enzyme trypanothione reductase (TR) reduces trypanothione disulfide (TS₂) using
216 protons from NADPH. Reduced trypanothione (TSH₂) can then directly reduce glutathione
217 disulfide (GSSG) to reduced glutathione (GSH). GSH and TSH₂ can non-enzymatically
218 reduce ovothiol disulfide (OSSO) to its reduced form (OSH).
219

220 **Sensitivity of *OvoA* knockouts to anti-leishmanial drugs and inducers of oxidative and
221 nitrosative stress**

222 As the role of ovothiol A as a peroxide scavenger has been proposed [22,23], the sensitivity
223 of *L. mexicana* *OvoA* knockouts to H₂O₂ was tested using a glucose oxidase assay where
224 H₂O₂ and D-glucono- δ -lactone are generated continuously from glucose. The knockout
225 strain did not differ with respect to its sensitivity to this glucose oxidase produced H₂O₂
226 (Table 1).

227
228
229
230

231 **Table 1: IC₅₀ of different *L. mexicana* cell lines from exposure glucose oxidase, which produces**
232 **hydrogen peroxide under glucose-rich conditions.**
233

Compound	IC ₅₀ ± S. Dev (μM) (n=3)		p-value (b)/(a)
	Wild type ^(a)	ΔOvoA ^(b)	
	L. mexicana Cas9		
Glucose oxidase	3.39 ± 0.8	2.91 ± 0.7	1.0 (n.s.)

234 Shown are mean IC₅₀ values and Standard deviation from three independent experiments (n=3). A unpaired
235 Student's t-test comparing mutant and Wild type *L. mexicana* was performed. n.s.= non significant

236

237 Ovothiols have also been proposed as to play a role in the protection against nitric oxide and
238 nitrosothiols rather than H₂O₂ in kinetoplastids given that trypanothione is better adapted
239 electrochemically to reduce H₂O₂ [23] . Nevertheless, *OvoA* mutant promastigotes were not
240 found to be more sensitive to the NO-inducing agents SNAP or DETA/NONOate (Table 2).

241

242

243 **Table 2: IC₅₀ of different *L. mexicana* cell lines from exposure to S- nitrosolthiols**
IC₅₀ ± S. Dev (mM) (n=3) p-value

Compound	IC ₅₀ ± S. Dev (mM) (n=3)		(b)/(a)
	Wild type ^(a)	ΔOvoA ^(b)	
	L. mexicana Cas9		
DETA/NONOate	0.38±0.005	0.35±0.04	0.5 (n.s.)
SNAP	0.13±0.002	0.19±0.004	0.0351

244 Shown are mean IC₅₀ values and Standard deviation from three independent experiments (n=3). A unpaired
245 Student's t-test comparing mutant and Wild type *L. mexicana* was performed. n.s.= non significant

246

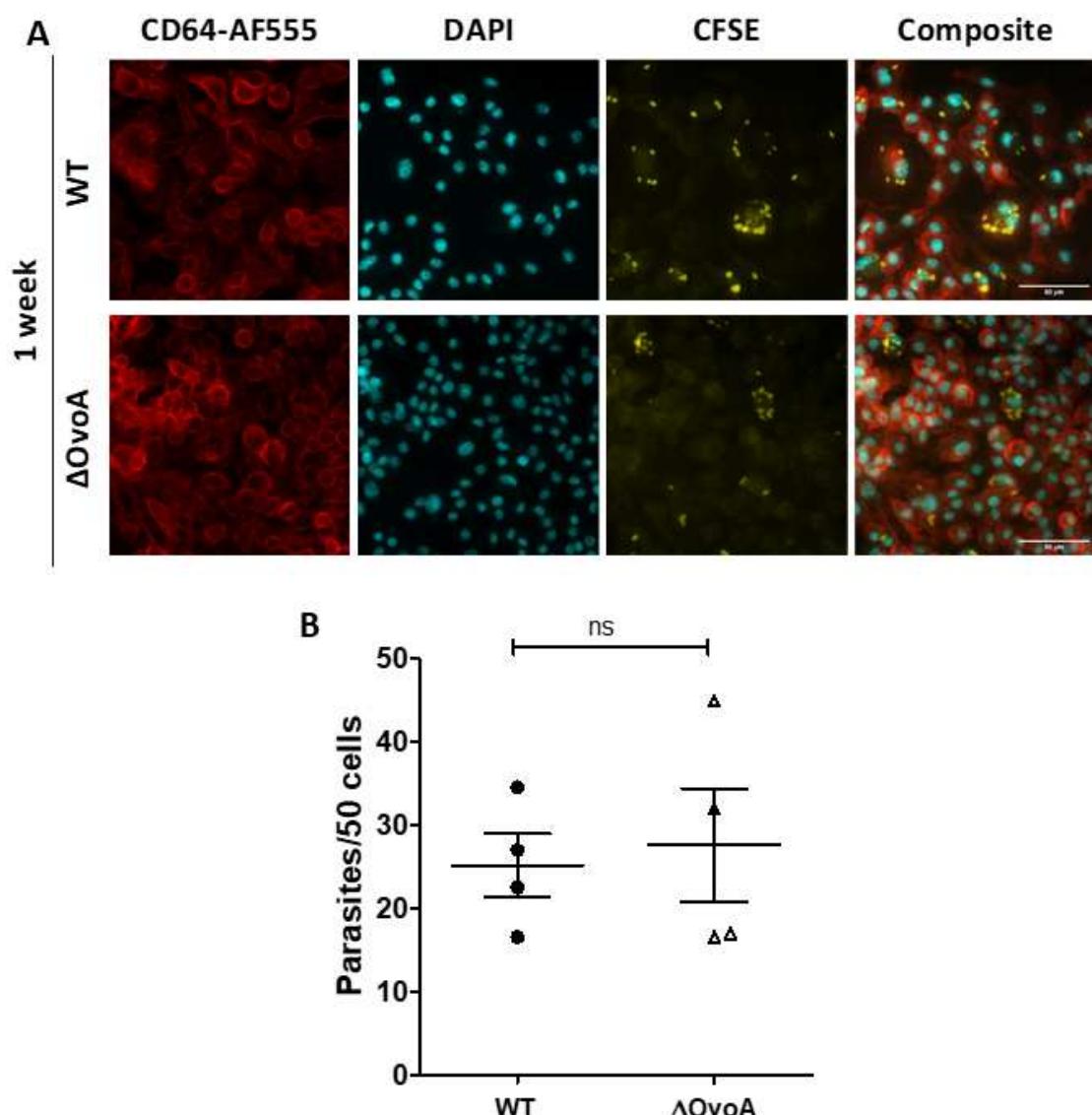
247 We also tested the sensitivity of the knockout cells to a range of anti-leishmanial drugs (Table
248 3). Minor changes (<1.5 fold) were noted with the currently used drugs antimony,
249 paromomycin and miltefosine. The nitroheterocycles fexinidazole, nifurtimox and
250 benznidazole all have anti-leishmanial effects, but in no case was a fold change of >1.4 fold

251 in sensitivity noted in the knockout cells. The only compound tested for which a difference
252 of > 2 fold was seen was amphotericin B where a 2.1 fold reduction in sensitivity was noted
253 (p = 0.0007, Student's t-test)

254

255 **Table 3: IC₅₀ values of different *L. mexicana* lines exposed to antileishmanial drugs**

Drug/ compound	IC ₅₀ ± SD (μM) Wild type ^(a)	Δ OvoA ^(b)	p-value (b)/(a)
L. mexicana Cas9			
PAT	218±3.5	200±0.8	0.0002
Paromomycin	92±1.9	110±2.8	0.0008
Miltefosine	10±1.5	7.2±1.8	0.0503 (n.s.)
Amphotericin B	0.18±0.015	0.082±0.004	0.0007
Fexinidazole	2.2±0.2	2.7±0.15	0.0334
Nifurtimox	8.4±0.4	6.01±0.51	0.0078
Benznidazole	160 ±2.4	149 ±3.8	0.0034


256 Shown are mean IC₅₀ values and Standard deviation from three independent experiments (n=3). A unpaired
257 Student's t-test comparing mutant and Wild type *L. mexicana* was performed. n.s.= non significant

258

259 ***OvoA* cells retain macrophage infectivity and differentiate to amastigotes**

260 Previous studies have shown that ovothiol A is present in metabolite extracts from *L. mexicana*
261 infected macrophages (Clement Regnault, PhD Thesis, University of Glasgow) and ovothiol
262 was also seen in *L. major* amastigotes, albeit not *L. donovani* [7]. It may, hence, be
263 hypothesised that the loss of the *OvoA* gene could affect the ability of *L. mexicana* to infect
264 and proliferate as amastigotes within macrophages. Bone marrow derived macrophages from
265 C57BL/6 mice were infected with stationary -phase Δ*OvoA* and WT *L. mexicana* for 1 week.
266 As seen in Figure 8, intracellular amastigotes were observed in similar numbers in
267 macrophages infected with either the Δ*OvoA* mutant or the WT cell line, suggesting that *OvoA*
268 was non-essential for infection of macrophages, nor for survival and proliferation within these
269 cells.

270

271

Figure 8: Infection of Bone marrow derived macrophages with Wildtype and Δ OvoA *L. mexicana* after 1 week. Representative images of infected macrophages. (B) Quantification of intracellular parasites per 50 macrophages with Fiji Cell counter plugin after 1 week (n=4). (Statistical test: Unpaired t-test. OvoA: Ovothiol A; WT: Wild type)

276

277 Discussion

278 Ovothiol (methyl mercaptohistidine) is a low molecular weight thiol that was originally found
279 in sea urchin eggs [1-4] and later in a variety of other invertebrates including protozoa of the

280 order Kinetoplastida [5-8]. Whilst, in echinoderms, roles in oxidative stress response and also
281 inter-organism communication have been determined, the role of the metabolite in the
282 kinetoplastid parasites has remained elusive, although its low electronegativity and
283 interaction with other thiol-based metabolites, such as trypanothione and glutathione, point to
284 its having roles in cellular redox. More specifically, the fact that it accumulates in metacyclic
285 promastigotes of *Leishmania* as they prepare for entry into the mammalian host and uptake
286 into macrophages [7], where they need to defend against the oxidative and nitrosative defence
287 mechanisms of those cells, has led to the suggestion that it might play a specific role in
288 detoxifying free radicals [14]. As such, its synthesis has been considered a potentially good
289 target for anti-parasite chemotherapy.

290 The discovery of an ovothiol synthase enzyme (*OvoA*) [19] and identification of a
291 leishmanial orthologue of the gene encoding the enzyme enabled us to address the function of
292 ovothiol in *Leishmania* by removing the gene using a CRISPR/cas9 based approach. The
293 knockout cell lines were viable and did not suffer a growth defect as promastigotes when
294 compared to wild type. Moreover, they were able invade and replicate as amastigotes within
295 macrophages. All of this indicates that ovothiol does not play an essential role in the
296 promastigote, or amastigote, form of *L. mexicana* in laboratory conditions.

297 To confirm that *L. mexicana* ovothiol synthase did, indeed, encode the enzyme required for
298 ovothiol synthesis, we characterised the metabolome of the knockout parasites and compared
299 it to wild type. Two peaks identified as ovothiol A (monomethylated) and ovothiol B
300 (dimethylated) were identified and both were missing from the knockout cells, proving that
301 the enzyme is indeed responsible for the production ovothiol. This approach, knocking out
302 genes that are predicted to encode particular enzymes, followed up with metabolomics
303 analysis offers a route to help identify function of a multitude of genes whose function is

304 currently obscure, especially using the untargeted metabolomics approach where, in
305 principle, any metabolite lost through enzyme-depletion could be found.

306 The most pronounced other changes to the metabolome in the KO cells also related to thiol
307 metabolism with substantial increases in the abundance in reduced glutathione in the KO
308 cells, and diminished abundance of oxidised glutathione. Reduced trypanothione was also of
309 increased abundance although changes to the oxidised form were not detected using the mass
310 spectrometry platform employed here. This may be because the relative mass spectral signal
311 for the oxidised form was around 100-fold higher than that for the reduced form, and hence
312 large changes in the latter may impact minimally on the signal of the oxidised form. The
313 pronounced increase in reduced forms of both trypanothione and glutathione in the mutant
314 cells, however, would indicate that a significant component of these reduced thiols is
315 involved in maintaining the pool of reduced ovothiol. In the absence of the latter metabolite,
316 then, the reduced forms of the former metabolites increase. Neither glutathione, nor ovothiol
317 are enzymatically reduced in trypanosomatids, instead trypanothione is the central redox
318 metabolite in the system as it is kept in its reduced form by the enzyme trypanothione
319 reductase [24] which uses NADPH to regenerate dihydrotrypanothione from its oxidised
320 disulfide form (Figure 7).

321 We also compared the metabolome of WT and KO parasites as they progressed through a
322 growth curve from logarithmic to stationary phase. Multiple key metabolic differences
323 accompanied this transformation, for example nucleotides, used in DNA and RNA synthesis
324 were lost in stationary phase while the energy storage polymer, mannogen accumulated.
325 Ovothiol itself accumulates in stationary phase WT *L. mexicana*.

326 Most anti-leishmanial drugs, including those that are known to induce oxidative stresses [25],
327 were of similar efficacy against ovothiol deficient cells as wild-type. Amphotericin B was an

328 exception, the ovothiol deficient cells being twice as susceptible to this drug. Nitro group
329 containing compounds also had little or no additional activity against the knockout cells, and
330 nor did the nitric oxide generating compounds. It would appear, therefore, that under the
331 conditions used for these assays, ovothiol has little or no effect beyond that afforded by
332 trypanothione/glutathione in protecting the parasites against these key stresses, although the
333 significance of the enhanced activity of amphotericin B is currently unknown, but future
334 work to determine whether pharmacological inhibition of ovothiol production could be used
335 to accentuate the activity of this polyene would be of interest, given the drug is somewhat
336 toxic [26] and reduced dosing would be of practical benefit.

337 The assays we have performed have aimed to probe potential roles in protection against
338 substantial xenobiotic mediated stress, as it has been presumed that this is the fundamental
339 role of the metabolite. Having failed to identify such a role in these assays, future work
340 should focus on whether specific, more nuanced roles, such as in cell cycle progression or
341 other differentiation states through the life cycle.

342

343 **Materials & methods**

344 **CRISPR/cas9 knockout of *OvoA* in *Leishmania mexicana***

345 Primers for pT-Plasmid and sgRNA template amplification (see Supplementary Table 1)
346 targeting a putative 5- histidylcysteine sulfoxide synthase gene, *OvoA* (LmxM.08_29.0940)
347 were designed using LeishEDIT primer design tool found at: <http://leishgedit.net/> [20].

348 Primers for Diagnostic PCR (see Supplementary Table 2) were designed to target a specific
349 region within the *OvoA* Open reading frame (ORF), as well as its 3' and 5' untranslated
350 regions (UTR) using the Primer Blast tool and the *Leishmania mexicana*
351 MHOM/GT/2001/U1103 (taxid:929439) reference genome. Output was checked for hairpin

352 loop and primer dimer formation using the OligoAnalyzer Tool (Integrated DNA
353 technologies - www.idtdna.com/). Primers were from Eurofins MWG Synthesis GmbH
354 (Germany).

355 Blasticidin-S deaminase (*cBSD*) or Puromycin *N*-acetyltransferase (*PAC*) resistant cassettes
356 were amplified from the respective pT-plasmids, pTblast or pTPuro (kindly provided by Eva
357 Gluenz), using primers containing 5' and 3' homologous sequences flanking the *OvoA* target
358 gene. The Master mix for amplification of these genes contained 0.2 mM dNTPs (LT-0224,
359 Thermo Scientific), 2 μ M each of gene-specific forward and reverse primers for *OvoA*
360 (*LmxM.08_29.0940*), 30 ng pT-plasmid either carrying the blasticidin or the puromycin
361 resistance marker and 1 unit HIFI Polymerase (Q5 HF DNA Polymerase, M04915, NEB) and
362 1 \times HiFi reaction buffer (05917131103, Roche) supplemented with 1.875 mM MgCl₂ and 3%
363 DMSO (D8418, Sigma). The total volume was 80 μ l. PCR steps were 5 min at 94°C
364 preceding 40 cycles of 30 s at 94°C, 30 s at 65°C, 2 min 15 s at 72°C and a final elongation
365 step for 7 min at 72°C. The product was heat-sterilized at 94°C for 5 min before transfection.

366 Double stranded sgRNA sequences were created (Supplementary Table 1) to interact with
367 the Cas9 complex and facilitate a double- strand break at the target site. In order to amplify
368 sgRNA templates, 0.2 mM dNTPs (LT-0224, Thermo Scientific), 2 μ M of primer G00
369 (sgRNA scaffold [20]), and 1 unit HiFi Polymerase (Q5 HF DNA Polymerase, M04915,
370 NEB) in 1 \times HiFi reaction buffer with MgCl₂ (05917131103, Roche) were mixed with either
371 5' sg RNA or 3' sgRNA forward primer targeting the *OvoA* gene. The total volume was
372 50 μ l. PCR steps were 30s at 98°C preceding 35 cycles of 10 s at 98°C, 30 s at 60°C, 15 s at
373 72°C.

374 *Leishmania Cas9* (derived from WHO *L. mexicana* strain MNYC/BZ/62/M379) [20] were
375 transfected in 1x Tb-BSF Buffer using an Amaxa Nucleofector 2b (Lonza) using a single

376 pulse with the X-001 program. 1x 10⁷ parasites were transfected with the PCR products of
377 two sgRNAs targeting the *Leishmania mexicana* *OvoA* gene and two donor DNA plasmids
378 carrying the blasticidin and puromycin resistance- markers (total combined volume of 100 µl)
379 in an electroporation cuvette in a total volume of 250 µl. After transfection, parasites were
380 transferred into pre-heated HOMEM with 10% FBS and incubated for 16h at 26°C to allow
381 recovery before addition of selection drugs (20 µg/ml puromycin and 5 µg/ml blasticidin).

382 *L. mexicana* *OvoA* KO clones were selected using serial 2- fold dilutions starting from 4,000
383 parasites/well to 0.5 parasites/well were plated on a 96-well plate in HOMEM [27] with 20%
384 FBS and + 20 µg/ml puromycin and 5 µg/ml blasticidin and incubated for up to 14 days at
385 29°C. Parasites originating from wells calculated as 1 or 0.5 parasites/well were transferred to
386 a T25 cell culture flask in HOMEM with 10% FBS and + 20 µg/ml puromycin and 5 µg/ml
387 blasticidin.

388 To validate the loss of the *OvoA* gene in the knock out parasite lines, genomic DNA was
389 extracted from 1x10⁷ parasites 12 days after transfection using the DNeasy Blood & Tissue
390 Kit (Qiagen) with non-transfected Cas9 positive and wild type *L. mexicana* serving as
391 negative controls. 2 mM dNTPs, 100 ng of extracted DNA and 2 µM each of forward primer
392 and reverse primer targeting a sequence flanking the *OvoA* gene (P1 - Supplementary Table
393 2), within the *OvoA* gene (P2 - Supplementary Table 2) or targeting a specific sequence
394 within the puromycin resistant cassette (P3 Supplementary Table 2) were mixed with 1 unit
395 HiFi Polymerase (Q5 HF DNA Polymerase, M04915, NEB) and 1× HiFi reaction buffer with
396 MgCl₂. The total volume was 50 µl. The PCR steps were 30s of 98°C followed by 35 cycles
397 of 15s of 98°C, 20s at 58°C, 30s at 72°C and a final elongation step for 5 min at 72°C. The
398 absence of the *OvoA* gene was validated by gel electrophoresis on a 1% agarose gel.

399 *L. mexicana* Cas9 were propagated in HOMEM (041-94699M, Gibco) with 10% Fetal Bovine
400 Serum (105500, Gibco). Growth medium was supplemented with 2 0 μ g/ml puromycin and 5
401 μ g/ml blastocidin. The parasite count was determined every 24h for 7 days using a
402 haemocytometer.

403

404

405 **Metabolomics analysis of wild type vs *OvoA* knockout *Leishmania mexicana***

406 1x 10⁸ stationary phase or log-phase *OvoA* Knockout or WT *Leishmania mexicana* per sample
407 were harvested. Four replicates were collected per condition. Parasites were quenched by
408 cooling to 10°C in a dry ice- ethanol bath and centrifuged at 1,300g for 10 min at 4°C.
409 Supernatant was removed and the cell pellet was washed in ice cold PBS after centrifugation
410 at 1300g for 5 min at 4°C. This step was repeated twice. Sample was centrifuged at 1200g at
411 4°C for 20 seconds to remove all PBS and the pellet then resuspended in 200 μ l of extraction
412 solvent (HPLC grade Chloroform: Methanol:Water- 1:3:1) and mixed. Pure extraction solvent
413 served as a blank. Samples were shaken at 4°C. for 1h, before centrifugation at 16.000g for 10
414 minutes at 4°C. Supernatant was removed and sealed under argon then stored at -80°C until
415 analysis. A pooled sample was generated by mixing supernatant of all samples. Samples were
416 run on LC-MS at Glasgow Polyomics using standard procedures [28]. Briefly this involved
417 separation of metabolites using a ZIC pHILIC column (150 mm \times 4.6 mm, 5 μ m column,
418 Merck Sequant) before entering an Orbitrap Q-Exactive (Thermo Fisher Scientific) mass
419 spectrometer operating through switching between positive and negative ionization modes.
420 Samples were analysed in four replicates and data were processed picking peaks using
421 mzmatch software [29] then analysed using the Ideom package [30] and Metaboanalyst suite
422 of tools [31]. A cocktail of around 200 metabolites is included in the Glasgow Polyomics

423 workflow in order to provide additional confidence in assigning identities to a number of
424 common metabolites. In the case of trypanothione we obtained a purified sample from
425 Professor Luise Krauth-Seigel (Heidelberg) which was used to provide retention time and mass
426 data to assist in assigning a high level of confidence to trypanothione in the extracted samples
427 (both reduced and oxidised forms were present in the standard).

428 Metabolomics data have been deposited to the EMBL-EBI MetaboLights database with the
429 identifier MTBLS8790. The complete dataset can be accessed here:
430 www.ebi.ac.uk/metabolights/MTBLS8790.

431

432 **Sensitivity of *OvoA* knockout *Leishmania mexicana* to anti-leishmanial drugs and stress
433 inducing agents**

434 Wild type and *OvoA* knockout *L. mexicana* Cas9 parasites were routinely cultured in HOMEM
435 medium (Gibco) supplemented with 10% heat-inactivated fetal bovine serum (Gibco) at 27°C.
436 Antileishmanial drugs (paromomycin, miltefosine, amphotericinB, potassium antimony
437 tartrate, fexinadazole, benznidazole, all from Sigma-Aldrich) were tested against the
438 promastigote stage of wild type and *OvoA* knockout *L. mexicana* Cas9 parasites, measuring
439 IC₅₀ values using the Alamar blue assay [32].

440 In addition, sensitivity to hydrogen peroxide was measured by a glucose oxidase assay [33] (GO from
441 Type VII, Aspergillus Niger, G2133-10KU, solubilised in 1M Potassium phosphate buffer, pH, 6.5),
442 SNAP (N3398, Sigma). Sensitivity to NO-inducing agents S-nitroso-N-acetyl penicillamine (SNAP)
443 (N3398, Sigma) and Z)-1-[2-(2-Aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate
444 (DETA/NONOate) (ALX-430-014-M005, Enzo Life sciences) involved plating cells in 96-well
445 plates at a final density of 1x10⁶ cells/ml, containing two-fold serial dilutions of each
446 compound and DETA/NONOate (ALX-430-014-M005, Enzo Life sciences), in triplicate. After 72 h

447 of incubation at 27°C, 20 µl of a 0.49 mM resazurin (Sigma-Aldrich) solution was added, and
448 the cultures were incubated for another 48 h at 27°C. Finally, fluorescence was measured at
449 $\lambda_{\text{excitation}} = 544$ nm and $\lambda_{\text{emission}} = 590$ nm with FLUOstar Optima Microplate
450 Fluorometer (BMG LABTECH GmbH), and IC₅₀ values were determined by nonlinear
451 regression from the sigmoidal dose-inhibition curve in GraphPad Prism 5 software (version
452 5.03).

453 **Macrophage infection assays**

454 Macrophages were from bone marrow extracts of femurs and tibias from C57BL/6 mice . Bone
455 marrow was removed from bones by flushing with Hank's Buffered Saline (HBSS, 24020-91,
456 Gibco-Life) and broken down into a single cell suspension with a 25- gauge needle and syringe.
457 The cell suspension was centrifuged at 400 x g for 5 min prior to lysing red blood cells with 1
458 ml of red blood cell solution for 2 min (Cat. no. 00-4333, eBiosciences). Cells were
459 immediately washed in 10 ml HBSS and pelleted at 400 x g for 5 min at 4°C, then resuspended
460 in 5 ml of HBSS and counted (using a hemacytometer using Trypan Blue dye exclusion, to
461 determine the viable cell concentration). 6x10⁶ cells were plated onto standard sterile 90 mm
462 petri dishes (Sterilin™, Thermo Fisher Scientific) with 10 ml of complete RMPI with 1%
463 Penicillin and Streptomycin and 10% L929 supernatant for infection assay experiments. Cells
464 were incubated at 37° C in a 5% CO₂ incubator for 8-9 days until cells were fully adhered.
465 Media was changed every 2-3 days. Bone marrow derived macrophages (BMDMs) were
466 harvested, counted and replated at 80,000 cell/well on a 8-well microscope chamber slide
467 (Nunc™ Lab-Tek II ™ Chamber Slide System, Cat# 154534PK ThermoFisher Scientific) to
468 prepare for infection experiments.

469 BMDMs in the monolayer, were infected with stationary phase WT or *OvoA* knock out *L.*
470 *mexicana*. Promastigote cultures were counted using a hemocytometer and resuspended in

471 DPBS after washing twice (also in DPBS) then labelled with carboxyfluorescein succinimidyl
472 ester (CFSE, CellTrace™ CFSE Cell Proliferation Kit, Cat# C34554, Thermofisher
473 Scientific) in DPBS (1:1000). Following staining for 10 minutes at 29°C in the dark,
474 promastigotes were washed with DPBS, pelleted (800g, 10min) and resuspended in complete
475 RMPI with 1% Penicillin/streptomycin (100 units penicillin and 0.1 mg/ml streptomycin)
476 (Penicillin-Streptomycin 100x, Cat#. P4333, Sigma-Aldrich). Subsequently, 1.6×10^5
477 parasites/well (MOI: 2:1) were added to the macrophage cultures and incubated at 34°C with
478 5% CO₂ for 6 h before being washed twice in DPBS to remove extracellular promastigotes and
479 incubated in cRMPI + 10% L929 at 34°C with 5% CO₂ for 1 week until further processing for
480 immunofluorescent staining. Media was replaced every 2-3 days.

481 Media was removed from wells of microscope chambers slides and wells were carefully rinsed
482 with 1% BSA in DPBS. Cells were fixed for 20 minutes with 4% paraformaldehyde, followed
483 by two 5 minute- washes in 1% BSA in PBS on a shaker. Cells were stained with anti-CD64
484 (CD64 Recombinant Rabbit Monoclonal Antibody, Thermofisher, # MA5-29706) at a dilution
485 of 1:400 in 1% BSA in PBS and incubated at 4°C overnight in the dark overnight. The next
486 day, antibodies were removed by two washes as described, followed by staining with secondary
487 anti-Rabbit antibodies (1:500) conjugated to Alexa Fluor 555 (Goat anti-Rabbit IgG,
488 Superclonal Recombinant Secondary Antibody, Alexa Fluor 555, Thermofisher, # A27039) for
489 30 minutes on a shaker at Room temperature. Cells were carefully washed twice in PBS for 5
490 minutes, followed by 10 minute incubation with 5 µg/ml of DAPI in PBS. Cells were washed
491 twice in 1% BSA in PBS before the chamber was carefully removed. Slides were sealed with
492 Vector Shield and a coverslip and stored overnight at 4 °C to dry, then analysed on an Inverted
493 Zeiss SpinningDisk microscope. Parasite counts were obtained using the Cell counter plugin
494 in Fiji Image J.

495

496

497

498

499 **References**

1. Turner E, Klevit R, Hopkins PB, Shapiro BM. Ovothiol: a novel thiohistidine compound from sea urchin eggs that confers NAD(P)H-O₂ oxidoreductase activity on ovoperoxidase. *J Biol Chem.* 1986;261(28):13056-63. doi:10.1016/S0021-9258(18)69270-1
2. Turner E, Klevit R, Hager LJ, Shapiro BM. Ovothiols, a family of redox-active mercaptohistidine compounds from marine invertebrate eggs. *Biochemistry.* 1987;26(13):4028-36. doi: 10.1021/bi00387a043.
3. Castellano I, Seebeck FP. On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential. *Nat Prod Rep.* 2018;35(12):1241-1250. doi: 10.1039/c8np00045j.
4. Cordell GA, Lamahewage SNS. Ergothioneine, Ovothiol A, and selenoneine-histidine-derived, biologically significant, trace global alkaloids. *Molecules.* 2022;27(9):2673. doi: 10.3390/molecules27092673.
5. Steenkamp DJ, Spies HS. Identification of a major low-molecular-mass thiol of the trypanosomatid *Crithidia fasciculata* as ovothiol A. Facile isolation and structural analysis of the bimane derivative. *Eur J Biochem.* 1994;223(1):43-50. doi: 10.1111/j.1432-1033.1994.tb18964.x.
6. Spies HS, Steenkamp DJ. Thiols of intracellular pathogens. Identification of ovothiol A in *Leishmania donovani* and structural analysis of a novel thiol from

519 *Mycobacterium bovis*. *Eur J Biochem*. 1994;224(1):203-13. doi: 10.1111/j.1432-
520 1033.1994.tb20013.x.

521 7. Ariyanayagam MR, Fairlamb AH. Ovothiol and trypanothione as antioxidants in
522 trypanosomatids. *Mol Biochem Parasitol*. 2001;115(2):189-98. doi: 10.1016/s0166-
523 6851(01)00285-7.

524 8. Steenkamp DJ. Trypanosomal antioxidants and emerging aspects of redox regulation
525 in the trypanosomatids. *Antioxid Redox Signal*. 2002;4(1):105-21. doi:
526 10.1089/152308602753625906.

527 9. Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna
528 S. The trypanosomiases. *Lancet*. 2003;362(9394):1469-80. doi: 10.1016/S0140-
529 6736(03)14694-6.

530 10. Burza S, Croft SL, Boelaert M. Leishmaniasis. *Lancet*. 2018;392(10151):951-970.
531 doi: 10.1016/S0140-6736(18)31204-2.

532 11. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A. Trypanothione: a novel
533 bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids.
534 *Science*. 1985;227(4693):1485-7. doi: 10.1126/science.3883489.

535 12. Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the
536 Kinetoplastida. *Annu Rev Microbiol*. 1992;46:695-729. doi:
537 10.1146/annurev.mi.46.100192.003403.

538 13. Leroux AE, Krauth-Siegel RL. Thiol redox biology of trypanosomatids and potential
539 targets for chemotherapy. *Mol Biochem Parasitol*. 2016;206(1-2):67-74. doi:
540 10.1016/j.molbiopara.2015.11.003.

541 14. Vogt RN, Steenkamp DJ. The metabolism of S-nitrosothiols in the trypanosomatids:
542 the role of ovothiol A and trypanothione. *Biochem J*. 2003;371(Pt 1):49-59. doi:
543 10.1042/BJ20021649.

544 15. Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. *Nat Rev Microbiol.* 2011;9(8):604-15. doi: 10.1038/nrmicro2608.

545 16. Desjardins M, Descoteaux A. Survival strategies of Leishmania donovani in
546 mammalian host macrophages. *Res Immunol.* 1998;149(7-8):689-92. doi:
547 10.1016/s0923-2494(99)80040-6.

548 17. Ferreira C, Estaquier J, Silvestre R. Immune-metabolic interactions between
549 Leishmania and macrophage host. *Curr Opin Microbiol.* 2021;63:231-237. doi:
550 10.1016/j.mib.2021.07.012.

551 18. Braunshausen A, Seebeck FP. Identification and characterization of the first ovothiol
552 biosynthetic enzyme. *J Am Chem Soc.* 2011;133(6):1757-9. doi: 10.1021/ja109378e.

553 19. Goncharenko KV, Vit A, Blankenfeldt W, Seebeck FP. Structure of the sulfoxide
554 synthase EgtB from the ergothioneine biosynthetic pathway. *Angew Chem Int Ed Engl.* 2015 Feb 23;54(9):2821-4. doi: 10.1002/anie.201410045.

555 20. Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. CRISPR Cas9 high-
556 throughput genome editing toolkit for kinetoplastids. *R Soc Open Sci.*
557 2017;4(5):170095. doi: 10.1098/rsos.170095.

558 21. Ralton JE, Sernee MF, McConville MJ. Evolution and function of carbohydrate
559 reserve biosynthesis in parasitic protists. *Trends Parasitol.* 2021;37(11):988-1001.
560 doi: 10.1016/j.pt.2021.06.005. PMID: 34266735

561 22. Bailly F, Zoete V, Vamecq J, Catteau JP, Bernier JL. Antioxidant actions of ovothiol-
562 derived 4-mercaptoimidazoles: glutathione peroxidase activity and protection against
563 peroxynitrite-induced damage. *FEBS Lett.* 2000;486(1):19-22. doi: 10.1016/s0014-
564 5793(00)02234-1.

565 23. Osik NA., Zelentsova EA, Tsentalovich YP. Kinetic studies of antioxidant properties
566 of ovothiol A, *Antioxidants. MDPI*, 2021; 10(9). doi:0.3390/ANTIOX10091470/S1.

569 24. Shames SL, Fairlamb AH, Cerami A, Walsh CT. Purification and characterization of
570 trypanothione reductase from *Crithidia fasciculata*, a newly discovered member of
571 the family of disulfide-containing flavoprotein reductases. *Biochemistry* 1986;
572 17;25(12):3519-26. doi: 10.1021/bi00360a007.

573 25. Moreira W, Leprohon P, Ouellette M. Tolerance to drug-induced cell death favours
574 the acquisition of multidrug resistance in Leishmania. *Cell Death Dis.* 011;2(9):e201.
575 doi: 10.1038/cddis.2011.83.

576 26. Cavell G. The Problem with Amphotericin. *Clin Drug Investig.* 2020;40(8):687-693.
577 doi: 10.1007/s40261-020-00924-4.

578 27. Berens RL, Brun R, Krassner SM. A simple monophasic medium for axenic culture
579 of hemoflagellates. *J Parasitol.* 1976;62(3):360-5.

580 28. Kovářová J, Pountain AW, Wildridge D, Weidt S, Bringaud F, Burchmore RJS, et
581 al.. Deletion of transketolase triggers a stringent metabolic response in promastigotes
582 and loss of virulence in amastigotes of Leishmania mexicana. *PLoS Pathog.*
583 2018;14(3):e1006953. doi: 10.1371/journal.ppat.1006953.

584 29. Scheltema RA, Jankevics A, Jansen RC, Swertz MA, Breitling R. PeakML/mzMatch:
585 a file format, Java library, R library, and tool-chain for mass spectrometry data
586 analysis. *Anal Chem.* 2011;83(7):2786-93. doi: 10.1021/ac2000994.

587 30. Creek DJ, Jankevics A, Burgess KE, Breitling R, Barrett MP. Ideom: an Excel
588 interface for analysis of LC-MS-based metabolomics data. *Bioinformatics.*
589 2012;28(7):1048-9. doi:10.1093/bioinformatics/bts069.

590 31. Chong J, Wishart DS, Xia J. sing MetaboAnalyst 4.0 for Comprehensive and
591 Integrative Metabolomics Data Analysis. *Curr Protoc Bioinformatics.*
592 2019;68(1):e86. doi: 10.1002/cpbi.86.

593 32. Mikus J, Steverding D. A simple colorimetric method to screen drug cytotoxicity
594 against Leishmania using the dye Alamar Blue *Parasitol Int.* 2000;48(3):265-9. doi:
595 10.1016/s1383-5769(99)00020-3.

596 33. Channon JY, Blackwell, JM. A study of the sensitivity of Leishmania donovani
597 promastigotes and amastigotes to hydrogen peroxide. I. Differences in sensitivity
598 correlate with parasite-mediated removal of hydrogen peroxide, *Parasitology*. 1985;
599 91 (Pt 2): 197–206. doi: 10.1017/S0031182000057309.

600

601

602 **Supporting information captions**

603

604 Supplementary Table 1: Oligos for CRISPR replacement cassette and sgRNA amplification

605 Supplementary Table 2: Oligos for diagnostic PCRs to validate *OvoA* Knockout

606 Supplementary Table 3: Oligos for diagnostic PCRs to validate *OvoA* Knockout

607

608 **Supplementary Figure S1a: Schematic representation of target gene locus before and**
609 **after successful CRISPR Cas9- mediated Knockout with expected product sizes of**
610 **validation reactions by PCR.**

611

612 **Supplementary Figure S1b: Gel Validation of Crispr Knock out of LmxM.08_29.0940**
613 **(*OvoA*) of three clones (GLG922, GLG923, GLG950) from two independent**

614 **transfections.** Shown are Polymerase chain reaction (PCR) products of Knock out clones
615 GLG922, GLG923, GLG950, Wild type and negative control of PCRs with (A) Primer pair
616 P1 flanking the target gene locus , (B) Primer pair P2 targeting the Puromycin resistance
617 cassette, Primer pair P3 binding specifically within the target gene (C) and a positive control
618 amplifying the PF16 gene (C). GLG922 and GLG923 show successful insertion of
619 puromycin and blasticidin resistance cassettes (A) alongside removal of the OvoA Gene (C).
620 GLG950 demonstrates removal of OvoA Gene via PCR (C) but no insertion of puromycin
621 and blasticidin resistance cassettes (A). Clone GLG923 was used in subsequent experiments.

622

623 **Supplementary S2: Heatmap of top 100 significantly changed metabolites in log-phase**
624 **(A) and stationary phase (B) ΔOVOA and Wildtype *L. mexicana*.** Heatmaps were
625 generated with the metaboanlaysst vs5.0 online tool using the Eucladian (Ward) clustering
626 method, and Scaling method set to Autoscaling by features. OVOA: Ovothiol (red) A; WT:
627 Wildtype (green).

628

629 **Supplementary Figure S3: Metabolome Sets Enrichment analysis of significantly up- (A)**
630 **and downregulated metabolites(B) in logarithmic-phase OVOA and WT *L. mexicana*.**

631 Threshold for significance were p. adj. (FDR)<0.05 and Log₂(FC)>1. Enrichment analysis was
632 performed using the inbuilt Enrichment analysis tool from metaboanalyst vs.5.0. The length of
633 the bars in the barchart, signify the Enrichment ratio. The Colorshading signifies the
634 significance of the Enrichment pathway selection (Red: Most significant< White: Least
635 significant)

636 **Supplementary Figure S4: Metabolome Sets Enrichment analysis of significantly up-**
637 **'A) and downregulated metabolites(B) in stationary-phase OVOA and WT *L.***

638 ***mexicana*.** Threshold for significance were p. adj. (FDR)<0.05 and Log₂(FC)>1. Enrichment
639 analysis was performed using the Enrichment analysis tool from metaboanalyst vs.5.0. The
640 length of the bars in the barchart, signify the Enrichment ratio. The Colorshading signifes the
641 significance of the Enrichment Pathway selection (red: Most sinificant, white: least
642 significant).

643

644 **Supplementary Figure S5: Peak intensities of three different peaks identified as putative**
645 **trypanothione (A, B, C) and of trypanothione disulfide (D) and corresponding peaks**
646 **extracted from Ideom (E,F, G,H) in logarithmic and stationary phase Δ OvoA and WT *L.***
647 ***mexicana*.** Each group is composed of four metabolomic samples (n=4). Statistical
648 significance was tested using a One-way ANOVA with Bonferroni's Multiple Comparison Test
649 as a post-hoc test (***=p<0.001; *=p<0.05). Chromatographs display the retention time (RT)
650 on the X axis and peak intensity on the Y axis.

651

652 **Supplementary Figure S6: Mass, Retention time and Ion mode of putative**
653 **Trypanothione and trypanothione disulfide peaks displayed in Supplementary Figure**
654 **S5.**

655

656 **Supplementary Figure S7: Extracted Iron chromatography in negative ion mode (A) and**
657 **positive ion mode (B) of Trypanothione standard (top) and Test sample OvoA KO**
658 **(bottom).**

659

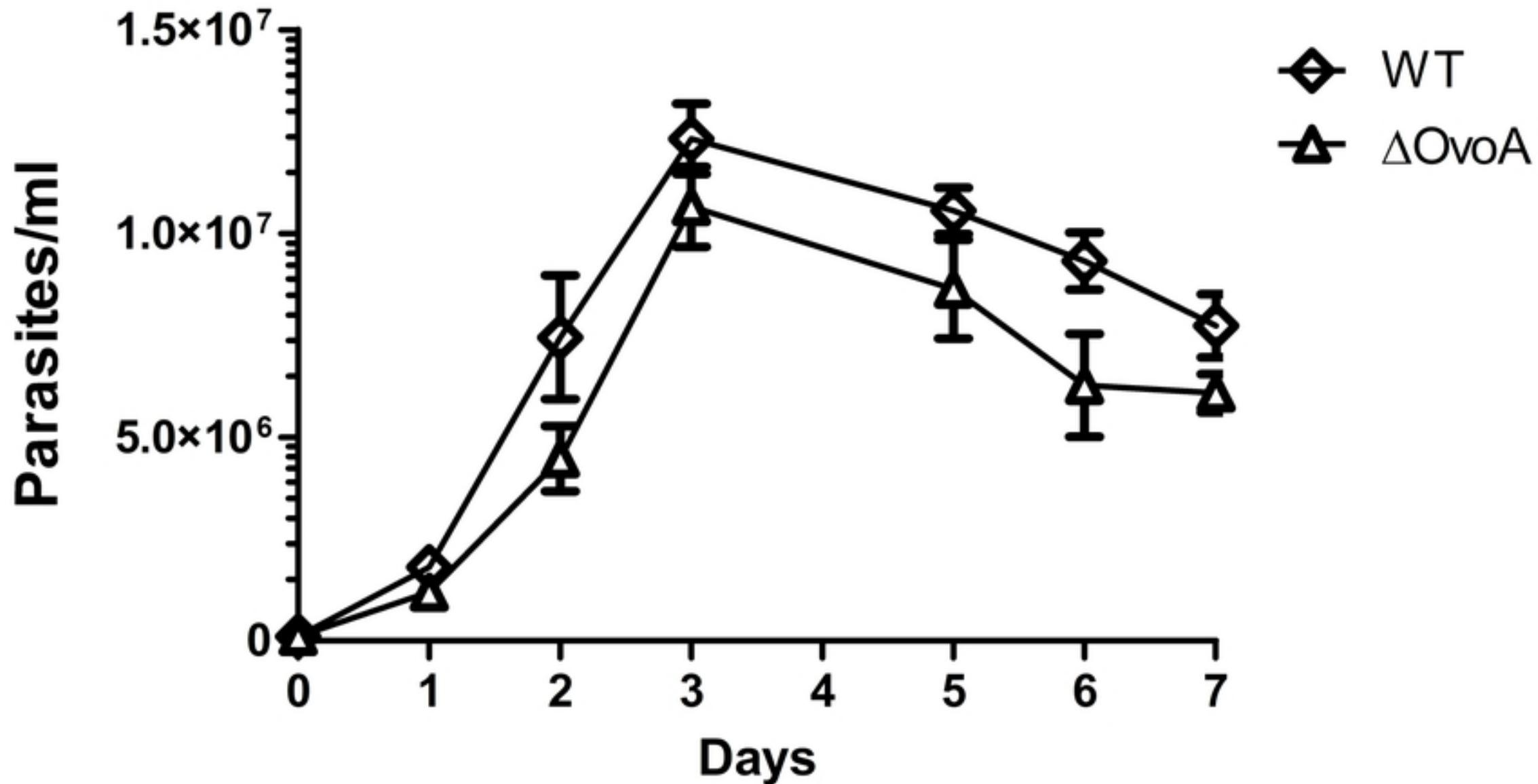


Figure 1

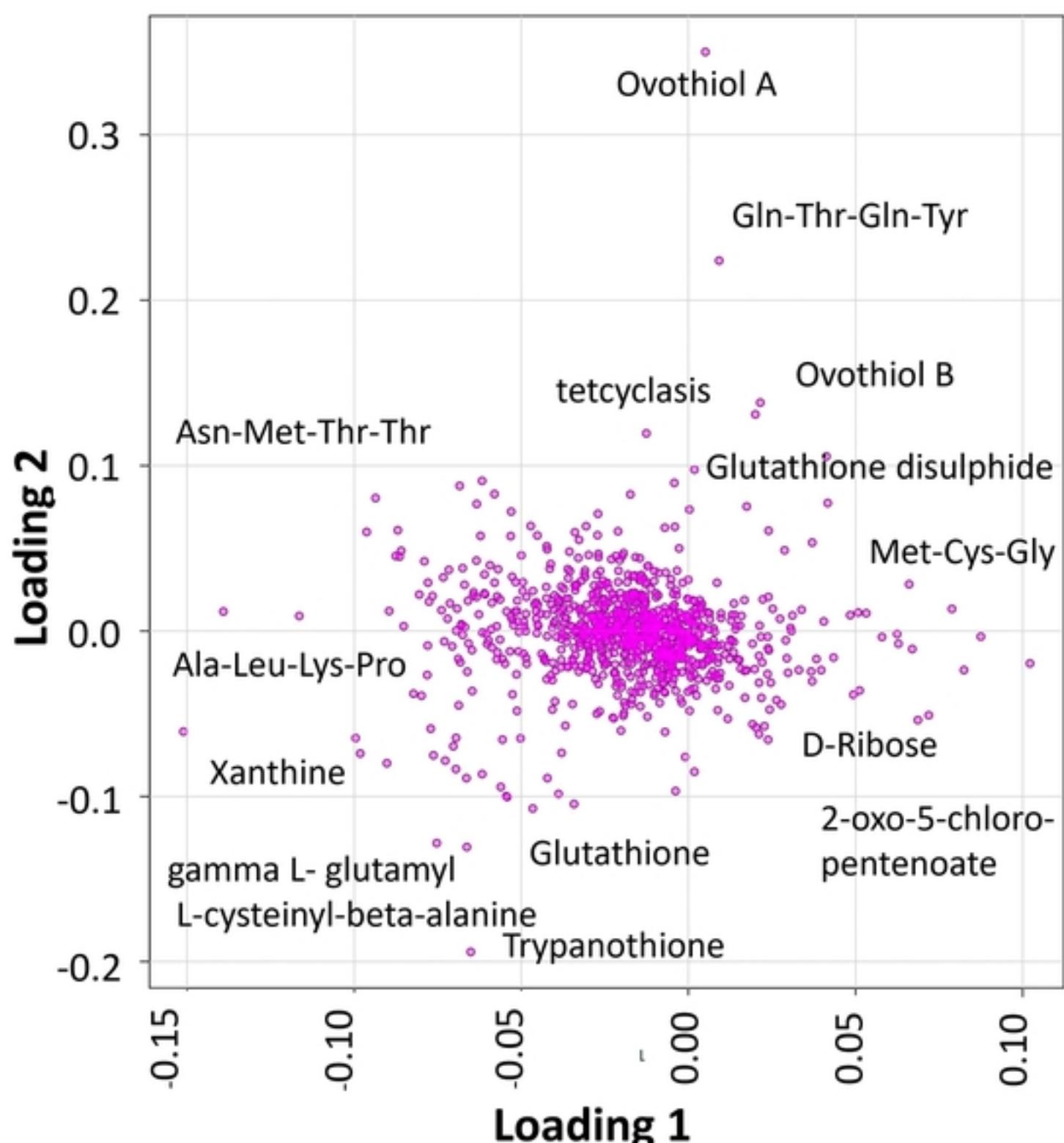
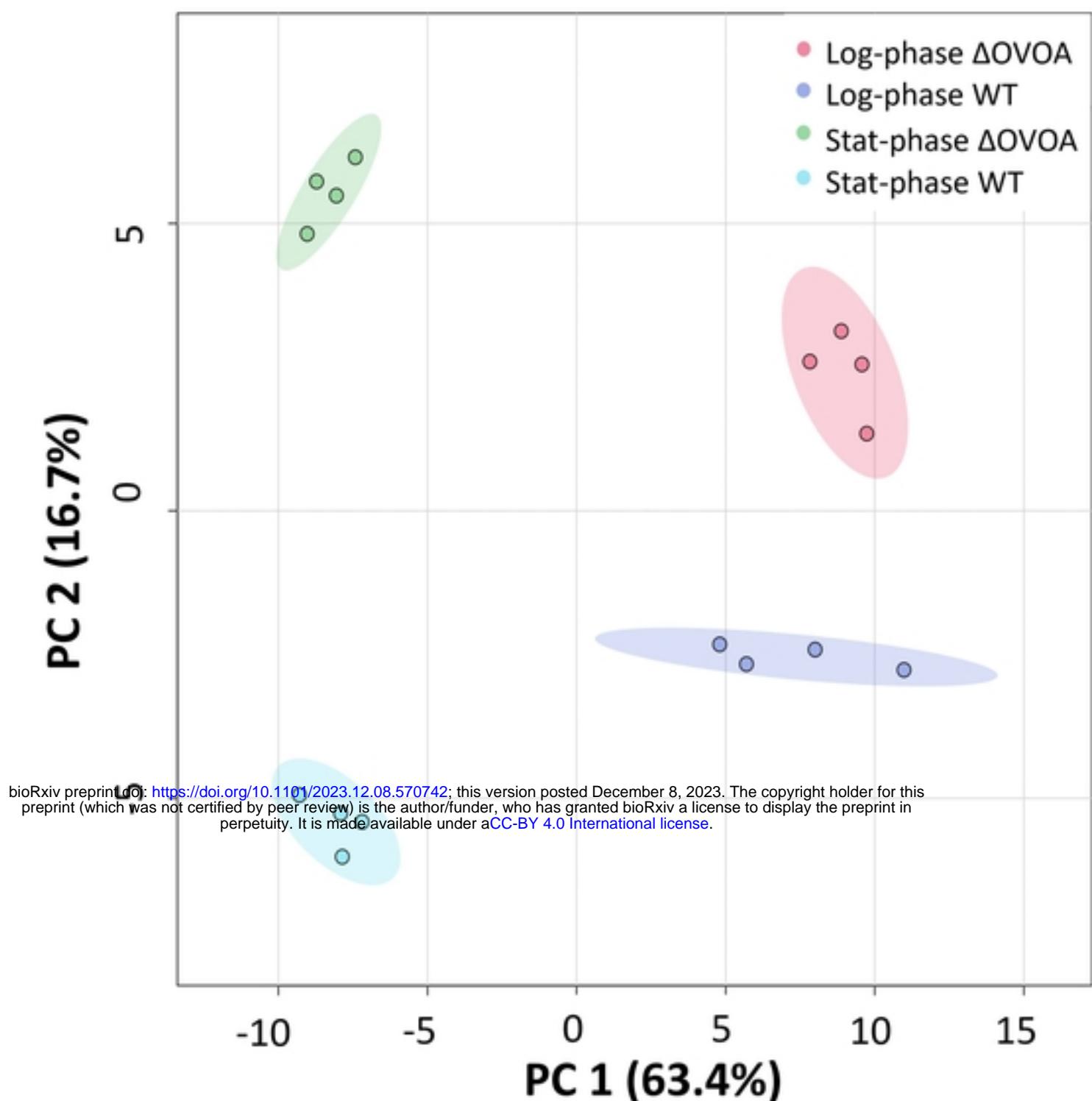
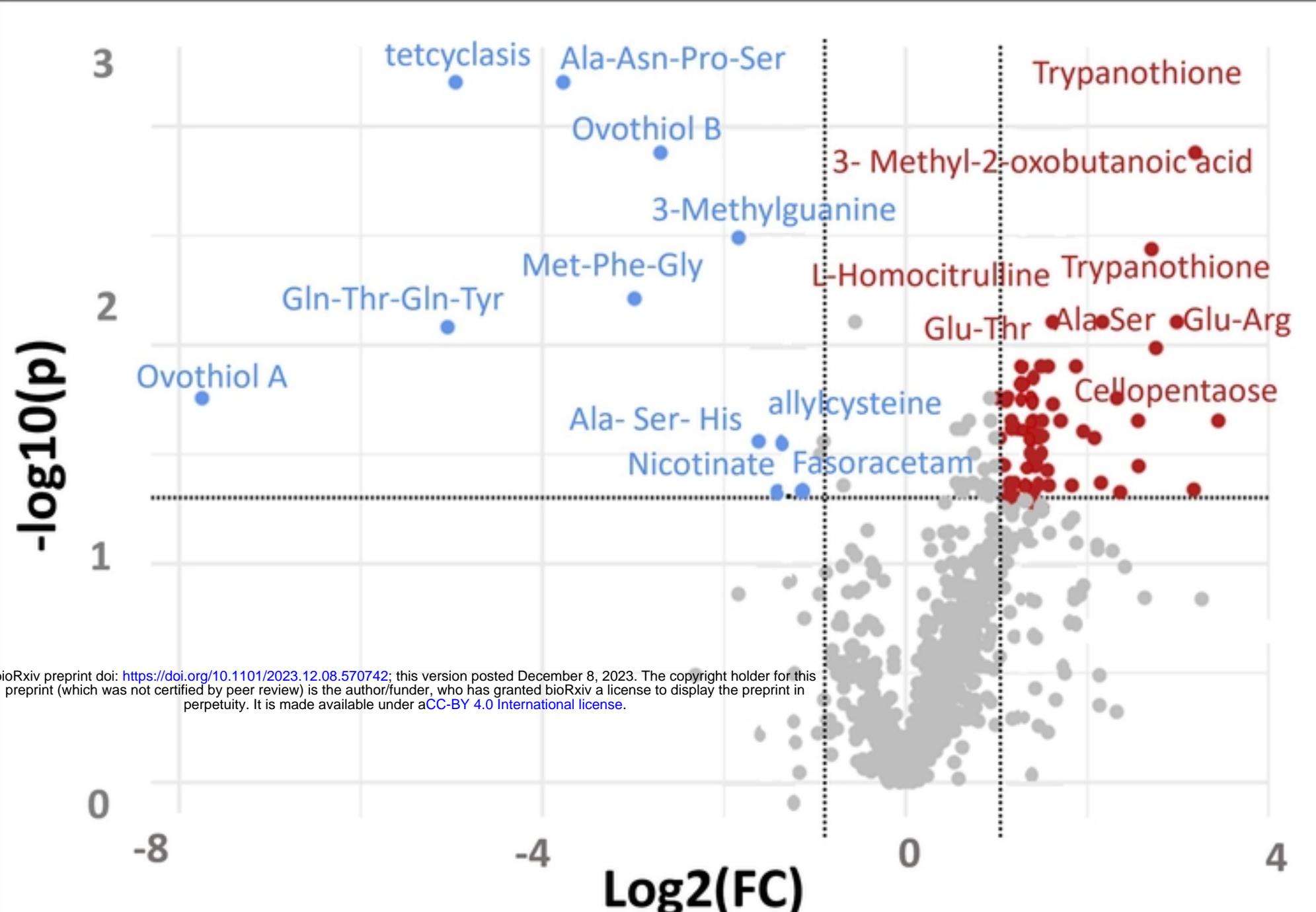
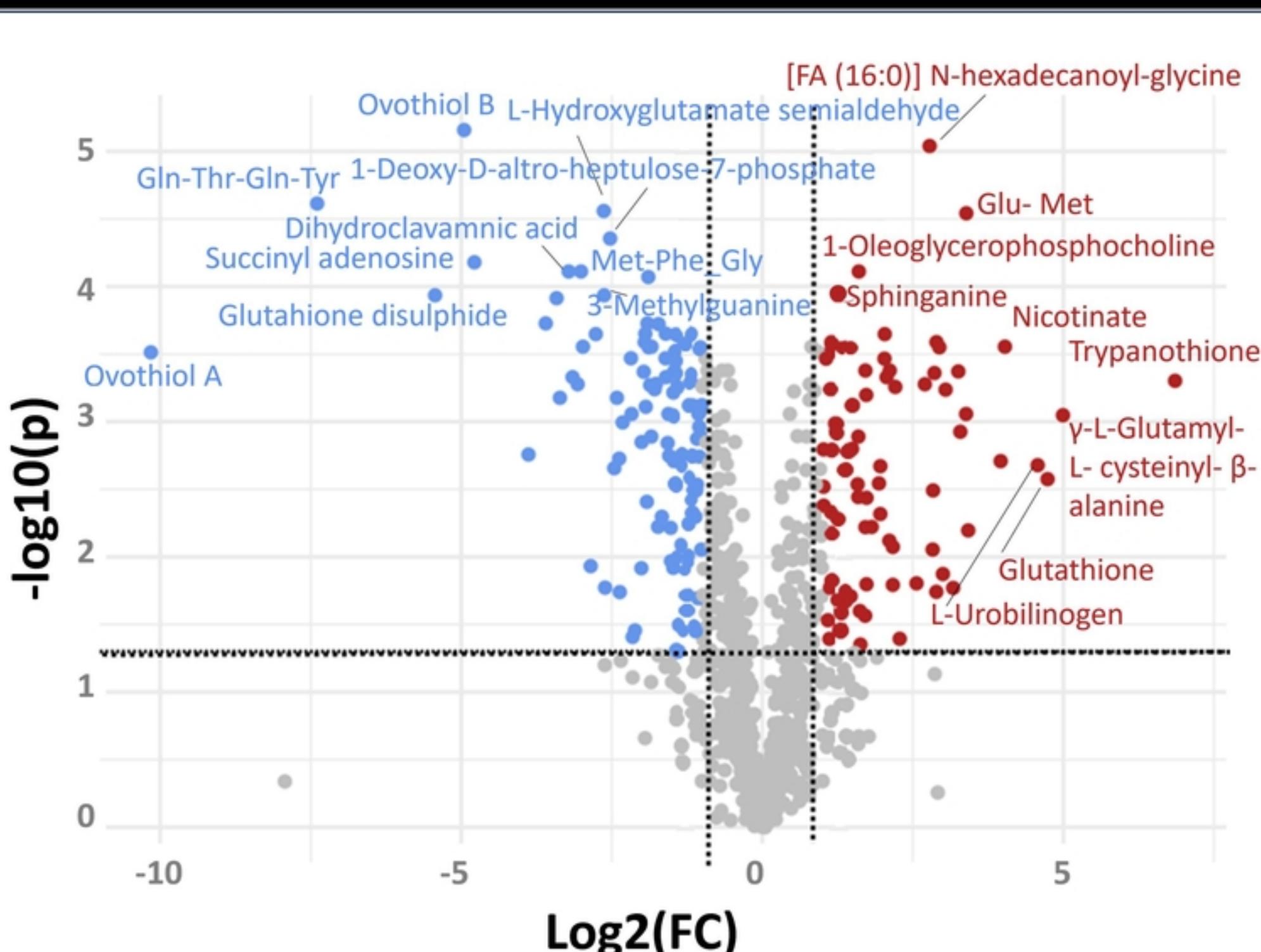





Figure 2

A**B****Figure 3**

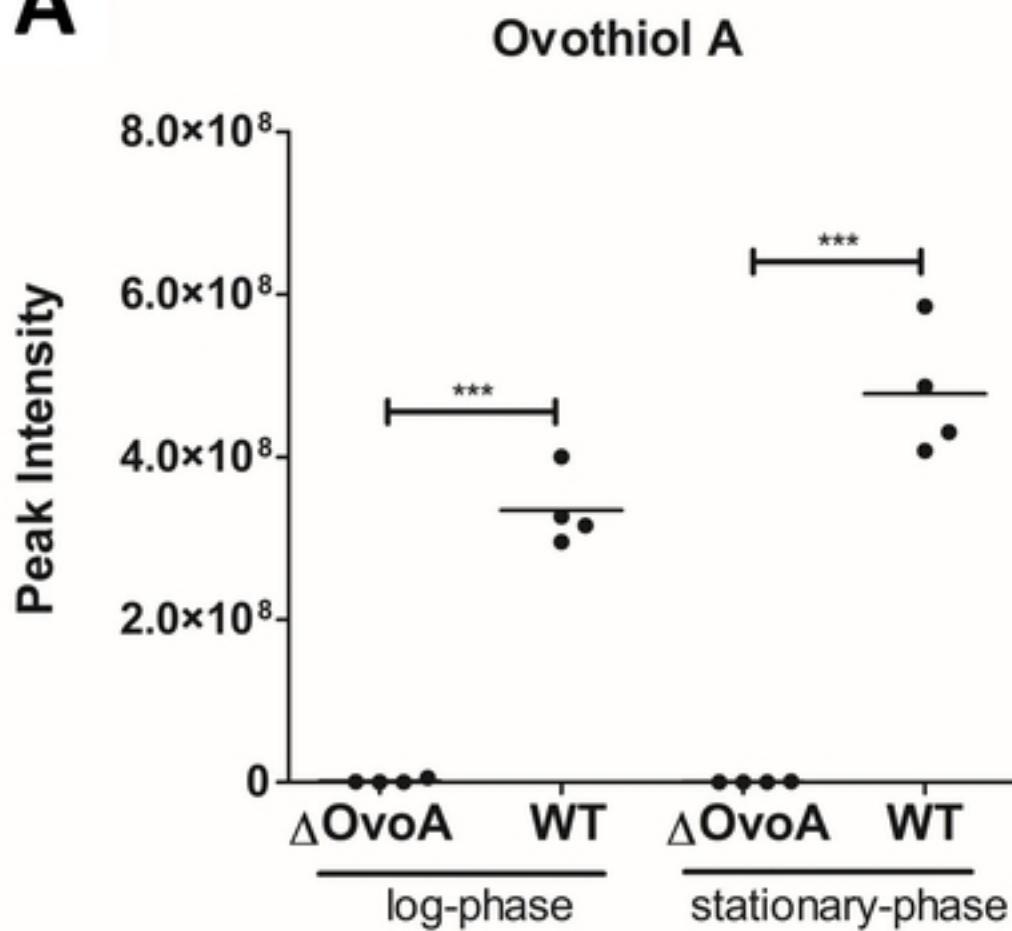
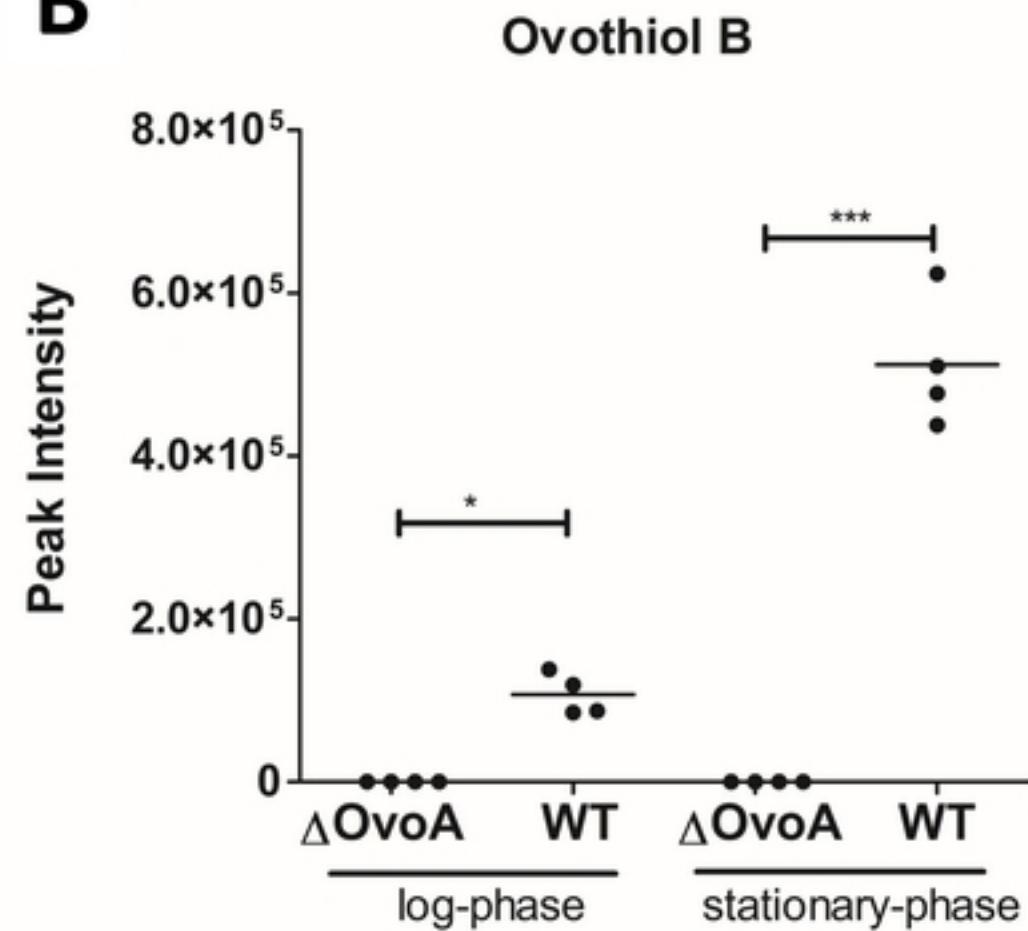


A**B**

Figure 4

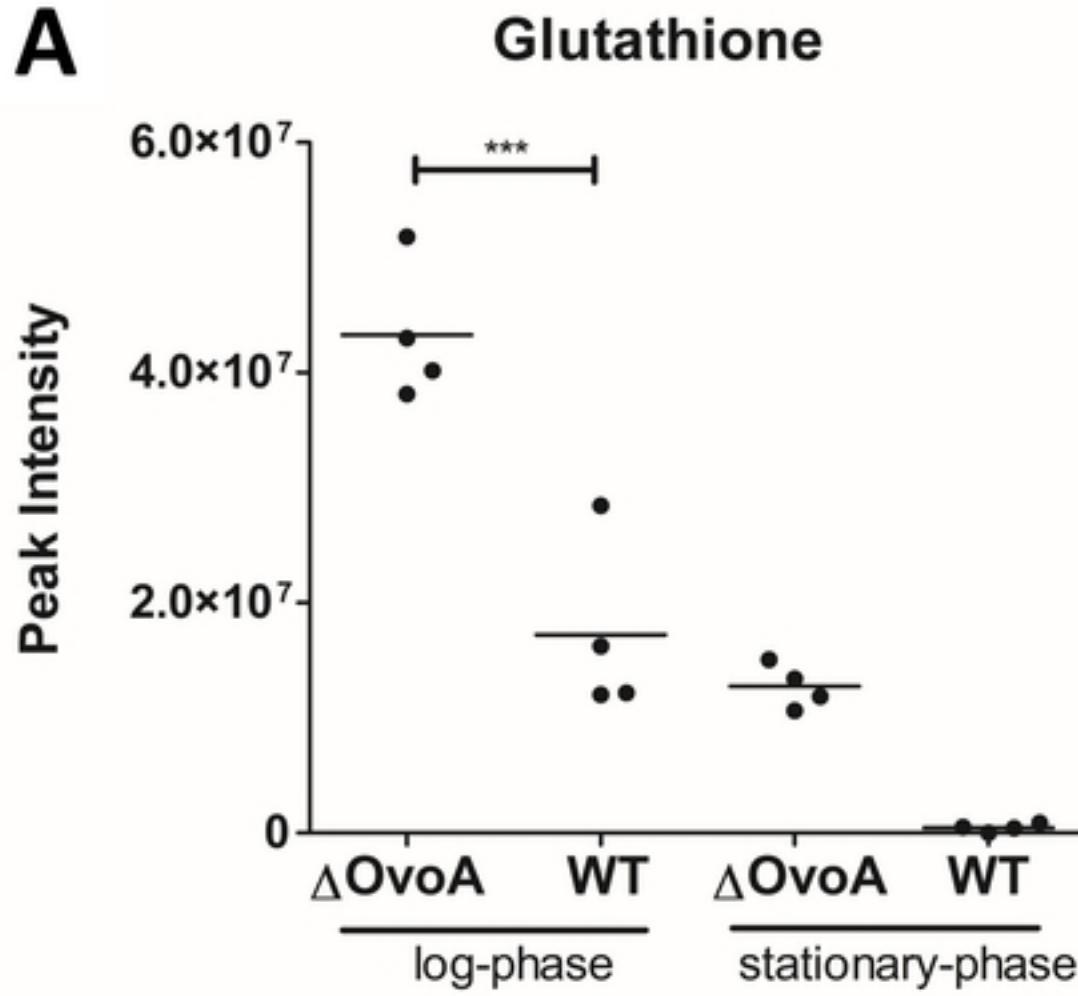
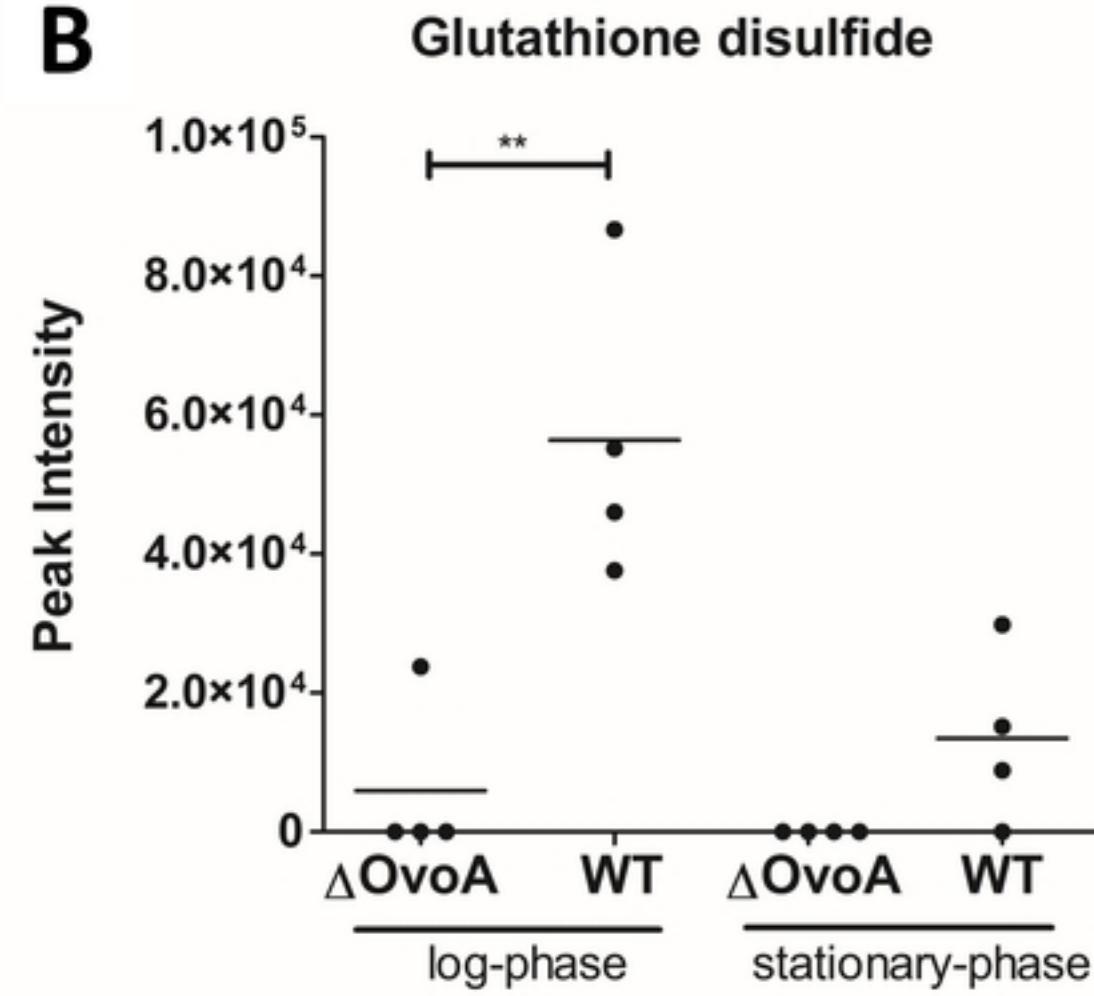
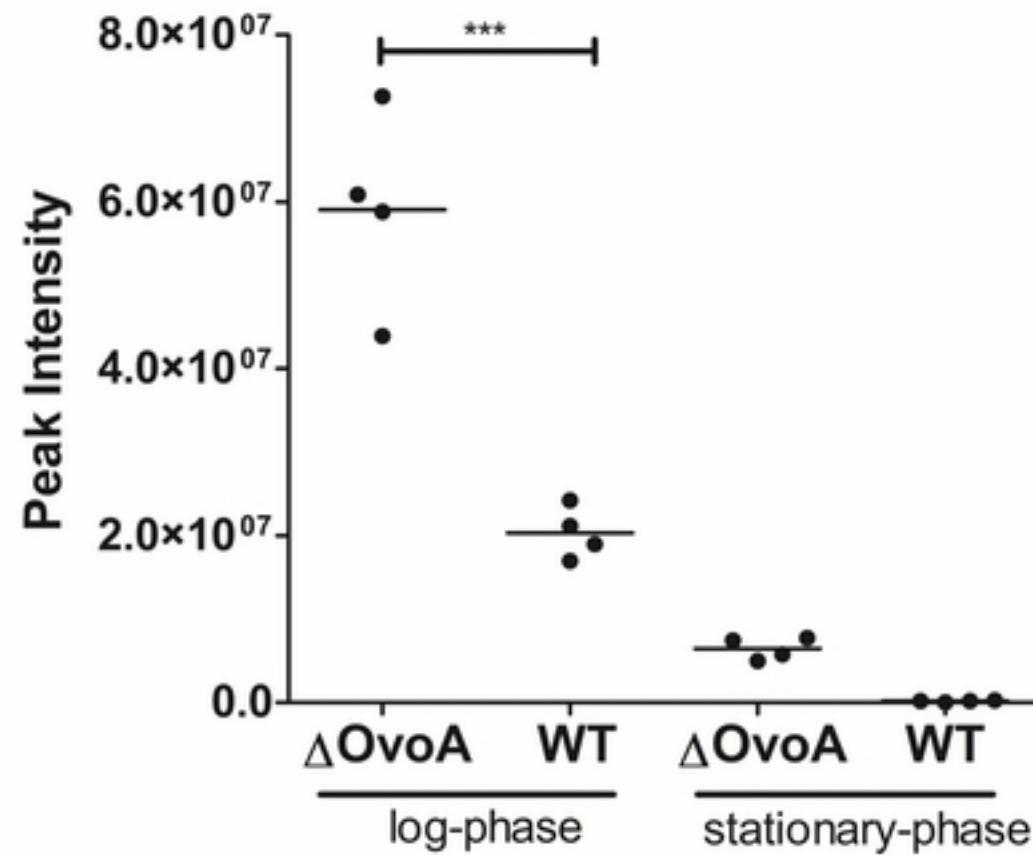
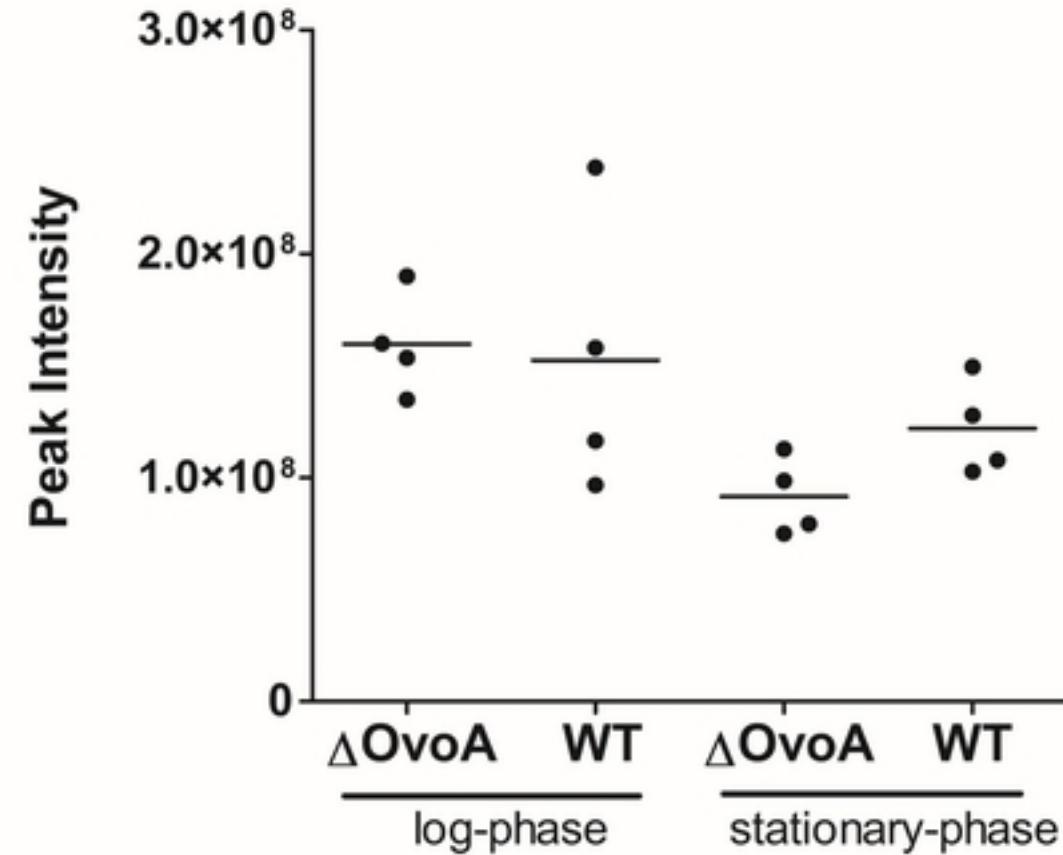




A**B**

Figure 5

A**Trypanothione****B****Trypanothione disulfide****Figure 6**

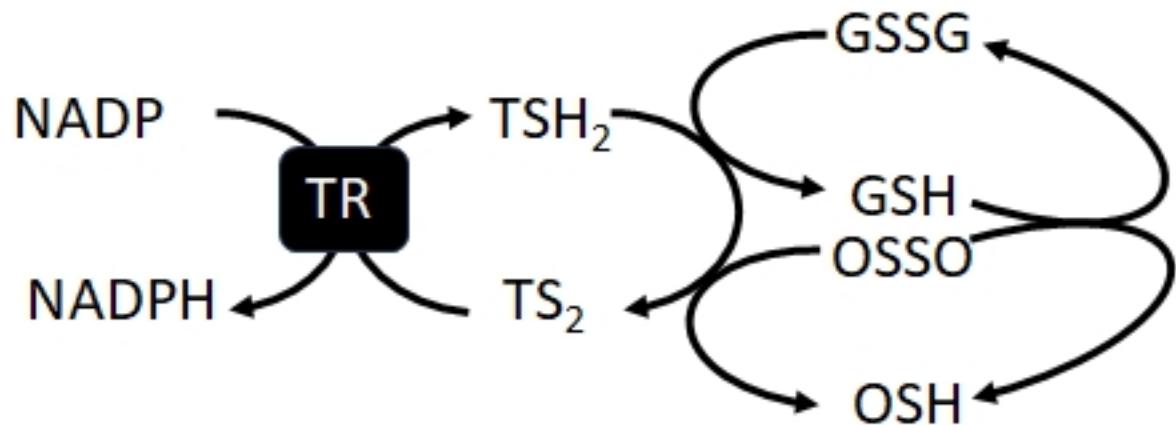


Figure 7

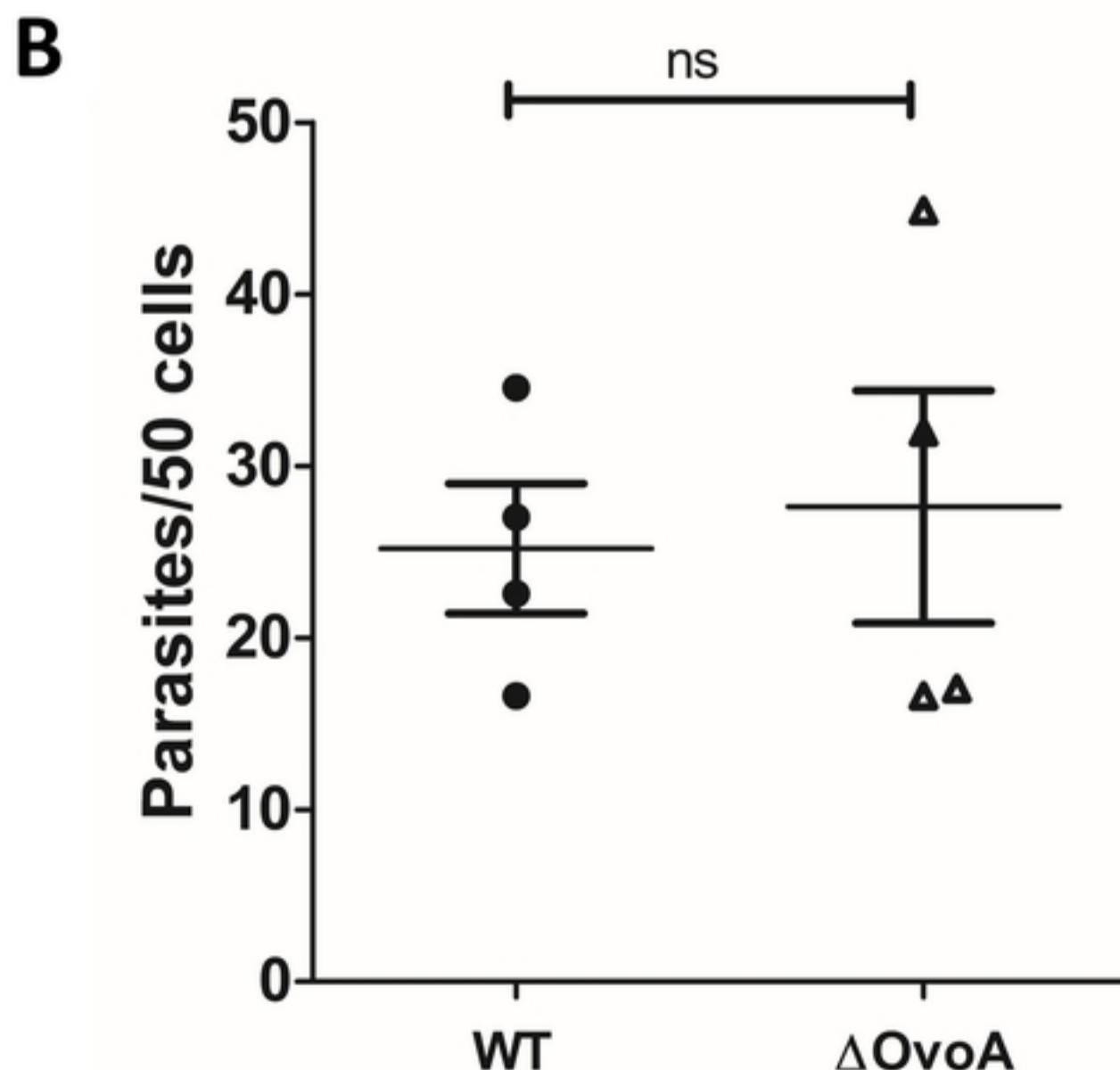
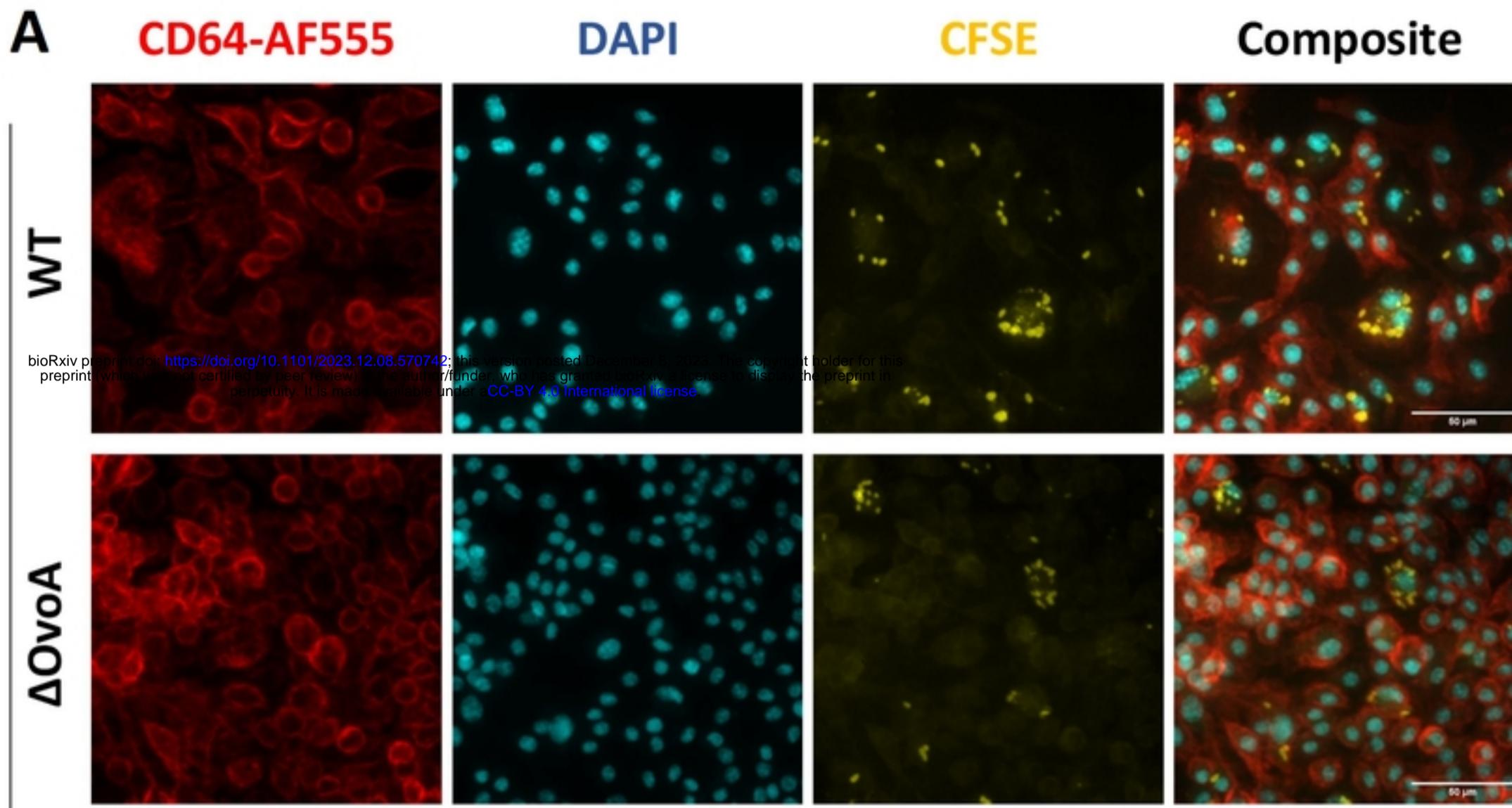



Figure 8