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ABSTRACT

The "innate-like" T cell compartment, known as Tin, represents a diverse group of T cells that
straddle the boundary between innate and adaptive immunity, having the ability to mount rapid
responses following activation. In mice, this ability is acquired during thymic development. We
explored the transcriptional landscape of Tinn compared to conventional T cells (Tcony) in the
human thymus and blood using single cell RNA sequencing and flow cytometry. We reveal that
in human blood, the majority of Tinn cells, including iINKT, MAIT, and V82*Vy9* T cells, share an
effector program characterized by the expression of unique chemokine and cytokine receptors,
and cytotoxic molecules. This program is driven by specific transcription factors, distinct from
those governing Teonv Cells. Conversely, only a fraction of thymic Ti cells displays an effector
phenotype, while others share transcriptional features with developing Tconv cells, indicating
potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not
differentiate into multiple effector subsets but develop a mixed type l/type Il effector potential. To
conduct a comprehensive cross-species analysis, we constructed a murine Tinn developmental
atlas and uncovered additional species-specific distinctions, including the absence of type Il Tinn
cells in humans, which implies distinct immune regulatory mechanisms across species. The study
provides insights into the development and functionality of Tin cells, emphasizing their role in

immune responses and their potential as targets for therapeutic interventions.
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Introduction

The immune system is a complex network that offers protection against pathogens through two
primary classifications: "innate" and "adaptive" immunity. Innate immunity involves pre-
established reactions driven by fixed, germline-encoded immune receptors, while adaptive
immunity relies on the rearrangement and alteration of germline DNA to produce unique T and B

cell antigen receptors which detect molecules derived from pathogens.

Conventional CD4" and CD8" T cells (Tconv) play a crucial role in the adaptive immune response.
They express T cell antigen receptors (TCRs) that recognize linear peptide fragments presented
by major histocompatibility complex class | or Il (HLA class | or HLA class Il) proteins. Upon
encountering their cognate antigens, these T cells undergo significant transcriptional and
epigenetic changes, leading to the secretion of pro-inflammatory cytokines, chemokines and
acquisition of cytotoxic capability that promote pathogen clearance. This process results in the
formation of memory T cells, which are primed to respond rapidly upon reencountering the
pathogen. Thus, Tnv cells within the circulation are heterogeneous and surface markers such as
CCRY7, CD45RA, and CD62L are commonly used to classify them into naive (T,), central memory
(Tem), effector memory (Tem), and terminally differentiated effector memory (Temra) Subsets
(Jameson and Masopust, 2018; Kaech and Cui, 2012; Sallusto et al., 1999).

Recent studies have challenged the idea that somatic recombination is exclusively linked to
adaptive immunity. Over the last 20 years, T-cell populations with TCRs that remain consistent
among individuals and develop effector functions without prior pathogen exposure were
discovered (Godfrey et al., 2015; Mayassi et al., 2021). These "innate-like" T-cell populations
(Tinn), such as invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells,
and vé T cells, account for a significant portion of human T cells, estimated to be between 10 and
20% (Godfrey et al., 2015). They serve vital roles in host defense and immune homeostasis
(Chandra and Kronenberg, 2015; Godfrey et al., 2019; Hayday, 2019).

Tinn cells originate from the same thymic progenitor cells as adaptive T cells but possess several
distinguishing features that set them apart from Tcony cells. Firstly, they do not recognize peptides
presented by HLA class | or class II. INKT cells express semi-invariant af TCRs characterized in
humans by a TRAV10-TRAJ18 Va chain coupled with a limited VB repertoire (TRVB25) and
recognize self- and foreign-lipid antigens presented by the non-polymorphic HLA-like molecule,
CD1D (Matsuda et al., 2008). They are specifically detected using CD1D tetramers loaded with
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the cognate lipid antigen a-galactosylceramide (aGC) (Benlagha et al., 2000; Matsuda et al.,
2000). MAIT cells are similarly characterized through the usage of a semi-invariant TCR o chain
associating TRAV1-2 with TRAJ33 (or TRAJ20, or TRAJ12) that is paired with a limited number
of TRBV chains (Legoux et al., 2017). The TCRs formed by these combinations can be detected
with tetramers of the MAIT restricing molecule, MR1, when loaded with 5-(2-
oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), a derivative of the microbial vitamin B2
precursor 5-Amino-6-(D-ribitylamino)uracil (5-A-RU) (Reantragoon et al., 2013). y& T cells
express TCRs encoded by TRGV and TRDV gene segments but the specific antigen-presenting
elements responsible for their development or activation remain unknown. A major yd T-cell
population bearing V62-Vy9 TCRs is activated by self- and foreign phosphoantigens in conjunction
with transmembrane butyrophilin-family receptors BTN2A1-BTN3A1-BTN3A2 complex (Harly et
al., 2012; Karunakaran et al., 2020; Rigau et al., 2020). The antigens recognized by other human
vd T-cell populations remain unclear (Deseke and Prinz, 2020). In summary, Tinn expand the
spectrum of antigens detectable by T cells, enhancing the immune system's ability to recognize

and respond to a diverse array of threats.

The conservation of Tinn cells throughout mammalian evolution indicates a crucial and
nonredundant role for these subsets in the immune system (Harly et al., 2022). This importance
may be attributed to their innate characteristics displayed during inflammation and infection, such
as rapid activation kinetics without prior pathogen exposure and the ability for antigen receptor-
independent activation. Inflammatory cytokines, including IL-12, IL-18, and type | interferons, can
activate Tinn cells even in the absence of simultaneous signaling through their TCRs (Leite-De-
Moraes et al., 1999; Ussher et al., 2014).

In mice, the rapid effector capacity of Ti cells is due to a unique transcriptional program formed
during their development in the thymus, distinguishing them from conventional T cells (Baranek
et al., 2022; Krovi et al., 2022). Analogous to CD4 Tconv cells, which can be polarized by cytokines
into T helper (Th) phenotypes such as Th1, Th2, and Th17 that secrete IFNy, IL-4, and IL-17
respectively, mouse T cells diverge into distinct, terminally differentiated, subsets that can be
readily identified based on the expression of specific transcription factors like PLZF, GATA3, T-
bet, and RORyt (Lee et al., 2013). Additionally, mouse iNKT subsets produce cytokines at steady
state, directly affecting surrounding cells in the microenvironment and the development and
polarization of Teonv cells (Breed et al., 2022; Cui et al., 2022; Lee et al., 2013). This implies that

Tinn cells may function as gatekeepers, ensuring proper T cell development and maturation.
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While studies in mice have delineated the developmental trajectories of Tinn and analyses of
distinct subsets of peripheral human Tin cells have shed light on the developmental stages of
human V62-Vy9 (Perriman et al., 2023), and functional subtypes of human MAIT cells (Chandra
et al., 2023; Garner et al., 2023), a comprehensive picture spanning development and peripheral
function across Tinn and Teony is lacking. In this study, we utilized the unbiased potential of single-
cell genomics combined with flow cytometry to assess the range of phenotypic states Tconv and
Tinn cells can adopt in vivo in the human thymus and blood. We uncovered that the majority of
postnatal human thymic Tinn cells exhibit a transcriptome akin to that of naive CD4"* or CD8" Tcony
cells. Only a fraction of thymic Tin, cells show a transcriptional signature indicative of an "effector”
state. Conversely, most adult blood Tin cells display an effector transcriptome. While Tconv cells
exhibit a continuum of transcriptional states, spanning from naive to central and effector memory
T cells, Tinn cells express a distinct transcriptional program shared among iNKT, MAIT and V52Vy9
T cells. However, unlike the mouse, human Tin cells do not differentiate into functionally distinct
subsets; instead, they develop an effector program with mixed type 1/type 3 effector potential.
Notably, our study demonstrates that the major transcription factors governing the human Tin,
program are also expressed in mouse Tinn cells, although species-specific differences were also
apparent. Finally, our study highlights differences in the pattern of CD1D expression in the thymus
between the two species, which could potentially impact the maturation process of iNKT cells in

humans.
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Results

Single-Cell RNA Sequencing Analysis of T Cell Maturation and Post-Maturation Stages in
Humans. To comprehensively explore the transcriptional profile of Tinn and Teonv throughout their
maturation and post-maturation stages in humans, we conducted single-cell RNA sequencing on
tetramer-sorted iNKT cells (PBS57-CD1d tetramer®, TRAV10*), MAIT (5-OP-RU-MR1 tetramer®,
TRAV1-2%), and total y8 T cells, in addition to single positive (SP) CD4 and CD8 Tcony cells derived
from four pediatric thymus and twelve adult blood samples. Tetramer-based sorting of INKT and
MAIT cells was used to enrich these rare cell populations and labeling by DNA-barcoded
antibodies (“hashtags”) allowed us to confidently assign cell identities based on TCR specificity
(Supplementary Fig 1). The sorted cell populations were then pooled across batches and loaded
onto a BD Rhapsody cartridge, which allowed for single-cell capture and library construction. A
subset of samples was also subjected to VDJ sequencing (Fig 1A, Supplementary Table I). A total
of 78,607 cells (37,369 cells from pediatric thymus and 41,238 cells from adult blood) passed
quality control (see methods) and were integrated into a combined reference dataset that
minimized batch-associated variation while preserving tissue-specific differences (Fig. 1B, C and
Supplementary Fig 2A, B). To identify and characterize subpopulation structures, we used
unsupervised graph-based clustering, which led to the assignment of 18 distinct and stable
clusters (Fig 1C), as assessed by repeated sampling and reassignment of the cells to clusters
(Supplementary Fig 2C). Distinct niches were identified, primarily separating into thymus (clusters
0 through 9) or blood-associated regions (clusters 12 through 17), with a transitioning niche
exhibiting an equal proportion of cells from both thymus and blood tissues (clusters 10 and 11)
(Fig 1D & E). Cells in this space represent naive T cells that are prepared to leave the thymus
and/or just populated the blood, in agreement with their overrepresentation of an 'egress' gene

signature (Sanchez Sanchez et al., 2022) (Fig 1F, Supplementary Table IlI).

The cell identities and/or transcriptional states of the clusters were determined using reference
signature genes lists (Park et al., 2020), and the top five genes that characterize each cluster
(Supplementary Fig 3A, B, Table Il). Additionally, we used neighbor voting (Crow et al., 2018)
with the cells from the human thymus atlas (Park et al., 2020) to assess the replicability of cell
types and validate the assigned cell identities of the clusters that exhibited high similarity
(Supplementary Fig 4). Starting at the beginning of T cell development, immature single positive
(ISP) cells with a quiescent (cluster 0, from here on c0 and accordingly for other clusters) and

cycling cell population (c1) were identified, along with double positive (CD4°CD8*, DP)
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thymocytes (c2). In humans, ISP cells, which precede the DP stage of development, express the
CD4 molecule and were inadvertently sorted together with SP CD4 T cells. From DPs, thymocytes
mature into CD4 single-positive (SP) and CD8 SP cells. Early stages of SP are characterized by
the expression of the chemokine receptor CCR9 (¢3 for CD4 SP and c9 for CD8 SP), which is
lost in later stages, concomitant with the expression of CCR7 (c11 for CD4 SP, ¢10 for CD8 SP;
Supplementary Fig 5A). Differential gene expression analysis comparing CD4 SP cells (¢3 and
c11) to CD8 SP cells (c9 and c10) further confirms these annotations, based on the overlap of
the differentially expressed genes (DEGs) and previously defined signatures that distinguish CD4
SP from CD8 SP cells (Chopp et al., 2020) (Supplementary Fig 5B). Specialized lineages were
detected in distinct regions in the two-dimensional UMAP space, including CD8aa cells with their
distinct gene signature including expression of GNG4 and NUCB2, thymic yd T cells and
regulatory T cells (Tregs) With high expression of FOXP3 (c5, c6 and c¢7, respectively). Other
signaling states included cells with high levels of transcripts encoding transcription factors
associated with TCR signaling (c4), such as NR4A1, EGR1, EGR3, and NFKBID, and were
named "agonist", cells with high expression of type | interferon signaling genes (/FI6, MX1, and
IFI44L in ¢8), AP-1 transcription factors (JUN, FOS, JUNB in ¢12), and effector-encoding genes
(GZMK, GZMH, GZMB, PRF1, and CCLY5), suggesting involvement in effector functions of these
cells (c13 through c17) were also found. Altogether, the clusters and their low-dimensional
embedding displayed distinct transcriptional profiles, representing unique cell types (CD8aq,

Tregs) as well as various stages of T cell development and maturation.

Identification of the Gene Expression Programs that Characterize T cell populations in
Thymus and Blood. Deciphering scRNA-seq data can be challenging due to the intricate nature
of each cell's gene expression pattern, which may encapsulate both its inherent identity and its
present activity or role. To tackle this complexity, we applied consensus non-negative matrix
factorization (cNMF) to project the high-dimensional data into lower-dimensional factors, enabling
the identification of gene modules with similar biological functions that exhibit high correlations
(Kotliar et al., 2019). We identified 12 distinct gene expression programs (GEPs; Fig 1K,
Supplementary Table IV). To assess the contribution of each cell type to these GEPs, we
separated each sample by cell type and tissue using the identifying tag (Fig 1G) and observed
that some of these GEPs define activity programs shared across different cell types, while others
are unique to specific cell clusters (Fig 1K). Specifically, GEPs 7 to 11 were associated with thymic
vd T cells, Tregs, thymic CD8aa T cells, quiescent ISP and proliferating ISP, respectively. We
excluded GEP 12 from further analysis as it was driven by a batch effect (Supplementary Fig 6).
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GEP 1 and GEP 2, characterized by the presence of CCR9 and CCRY7, respectively, exhibited
heightened activity in early and late developing thymic T cells. GEP3 was prominently expressed
by naive T cells. Among the remaining GEPs, three gene modules showed distinct distributions
that overlapped with previously defined “effectorness” signatures, which are both exhibited in Tcony
and Tinn (Fig 1G, H): GEP 4 showed high activity in cluster 12, GEP 5 exhibited high activity in
clusters 13 and 14, while GEP 6 displayed the highest activity in clusters 15, 16, and 17 (Fig 1K).
Leveraging insights from these gene modules, as detailed in the subsequent sections, we
conducted an in-depth analysis of thymic and blood T cell populations, providing an integrated

understanding of T cell differentiation and function.

Unbiased Transcriptomic Analysis of Human Ti., Differentiation. To assess the distribution
of each sorted T cell population across the 18 transcriptionally distinct clusters and GEPs, we
separated each sample by cell type and tissue using the identifying tag (Fig 1G). Consistent with
the gene signatures of each cluster, CD4" thymic cells were predominantly found in clusters 0, 1,
2,3,4,7,8,and 11, while CD8" thymic cells were primarily located in clusters 2, 5, 6, 7, 8, 9, and
10. Notably, the proportion of cells in each cluster was consistent across the four independent
samples analyzed, with approximately 1% (1.1% + 0.4%) of the cells populating clusters exhibiting
an effector signature (Fig 1G, H & I). Unexpectedly, a substantial proportion of thymic iNKT cells
were distributed across the same clusters as conventional CD4" cells, while thymic MAIT cells
predominantly shared clusters with conventional CD8" cells (Fig 1G). Interestingly, thymic y5 T
cells were transcriptionally distinct from all other cell types, with most of the cells occupying cluster
6 and GEP7 (Fig 1 G, K).

To delve further into the transcriptional heterogeneity of human thymic Ti., cells, we re-analyzed
the iINKT and MAIT cell populations individually (Fig 2). We found seven stable clusters for both
cell types (Fig 2A, E), and the proportion of cells in each cluster was consistent across donors
(Fig 2B, F). We identified five major cell signatures that were shared across Tconv, INKT and MAIT
cells (Supplementary Figure 3C, D). First, we observed a distinctive gene signature associated
with CD8aa T cells (captured by GEP9, as illustrated in Fig 1K and Supplementary Fig 7, Tables
V and VI). This signature was characterized by the heightened expression of genes including
NUCB2, MINDY?2, and HIVEP3 (Supplementary Fig 3C, D), and intriguingly, it was observed in
both iINKT and MAIT cells (termed NKT_cO0 and MAIT_c1) (as shown in Fig 2C and G). Notably,
this specific subset of thymic CD8" iNKT cells, which also exhibited some PLZF expression while
lacking CD161, EOMES, and GZMK expression (Fig 2M), could be readily identified using flow

cytometry (Supplementary Fig 8). These findings imply the potential existence of a unique
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selection process for certain Tinn cells, possibly linked to their colonization of the gut epithelium.
Second, we identified a similar pattern of expression for the CCR9 and CCR7 chemokine
receptors, which serve as markers for early and late SP stages in Tconv Cells, as well as in iNKT
and MAIT cells (Fig 2M and Supplementary Fig 7). Initially, iINKT and MAIT cells exhibited an
upregulation of CCR9 in conjunction with TOX and SATB1 (Supplementary Fig 3C, D), resembling
the developmental program seen in early developing CD4 SP and CD8 SP cells, respectively.
Subsequently, the elevated expression of CCR7 marked cells that appeared to be at a more
advanced developmental stage (termed NKT_c2 and MAIT _c4). These sequential waves of
chemokine receptor expression align with gene modules GEP1 and GEP2 (Supplementary Fig
7), suggesting that they might be induced sequentially during the development of CD4, CD8, iNKT,
and MAIT cells. These findings lend support to the notion that the human thymus harbors iNKT
and MAIT cells with a transcriptome resembling that of developing naive Tcon Cells. The existence
of such naive populations (CD161"EOMES™ GZMK") of iINKT and MAIT cells in the human thymus
were confirmed by flow cytometry (Supplementary Fig 8). Third, we discovered iNKT and MAIT
cells characterized by upregulation of genes associated with type | interferon signaling such as
MX1 and IFI6 (NKT_c3 and MAIT_c5, Supplementary Fig 3C, D), similar to CD4 and CD8 SP
cells. Fourth, we detected SP-corresponding TCR signaling/AP-1 signatures. In iNKT cells, the
upregulation of genes encoding AP-1 family transcription factors FOS and JUN correlated with
expression of genes typically associated with this cell type, such as ZBTB16 and KLRB1. These
cells also expressed CD4 transcripts but not CD8A (NKT_c5, Supplementary Fig 3C). The TCR
signature was more pronounced in MAIT cells, where a small subset showed clear upregulation
of genes involved in TCR signaling (NR4A1, NFKBID, REL; MAIT_c3, Supplementary Fig 3D).
Fifth, unlike Tcony, in the thymus we discovered a proportion of both iINKT and MAIT cells having
an effector signature. We found a cluster of iNKT cells (NKT_c6) expressing classically iNKT-
associated genes along with upregulation of effector genes usually associated with type |
immunity, such as EOMES and GZMK (Fig 2M, Supplementary Fig 3C). Some of these cells
expressed CDB8A transcripts, suggesting that CD4* and CD8" iNKT cells might develop into
transcriptionally distinct subsets, with CD8" iNKT cells having a more effector-associated
signature. For MAIT cells, we found a similar pattern, with cells expressing genes previously
associated with MAIT cells (KLRB1, SLC4A10, IL23R) (Dusseaux et al., 2011; Park et al., 2019)
also displaying an effector transcriptome signature (MAIT_c6, Supplementary Fig 3D). This was
evidenced by the upregulation of genes encoding for granzymes (GZMA and GZMK), chemokines
(CCLb), chemokine receptors (CCR6), and transcription factors usually associated with type |

(EOMES) or type 3 (RORA) immunity (Fig 2M and Supplementary 8). In our integrative analysis
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from both the thymus and blood, we identified a shared utilization of these effector programs by
iNKT, MAIT and yd T cells. Specifically, approximately 28.7% + 22.3% of thymic T cells
displayed an effector signature, as depicted in Fig 1G, | (clusters 12-17). To delve deeper into
whether these effector Tinn cells in the thymus are cells that initially acquired an effector signature
in the blood and subsequently recirculated back to the thymus, we conducted a comparative
examination of gene expression profiles between effector INKT and MAIT cells in the thymus and
blood (Supplementary Fig 5C). Our results revealed distinctive tissue-specific gene expression
profiles for both cell types. Thymic cells exhibited higher expression levels of genes such as CCR?7,
TOX, TOX2, and SOX4. Conversely, blood-derived cells demonstrated elevated expression of
genes including DUSPZ2 and BCL2. These findings strongly suggest that thymic T, cells found in
the effector clusters possess a unique transcriptome when compared to their blood counterparts.
Therefore, it is unlikely that these effector Tin cells are derived from recirculating cells originating
in the blood.

Finally, we also re-analyzed post-natal thymic human yé T cells separately and identified
8 transcriptionally distinct clusters (Fig 2| and Supplementary Fig 3E, Table VII), with findings
largely replicating a recent report on pediatric y6 thymocytes (Sanchez Sanchez et al., 2022). We
found immature populations observed in GD_cO0, 1, and 2, cells with TCR activation/co-stimulation
profiles (GD_c3), type | interferon response signature (GD_c6) and effector y3 T cells displaying
an Egress gene signature and a mixed type 1/type 3 effector potential (GD_c7). We also observed
cells with a cycling gene signature (GD_c4), which was notably absent in iINKT and MAIT cells.
Overall, our findings demonstrate that only a small proportion of Tin cells in the thymus exhibit a
transcriptional signature associated with an effector program, and that this effector program has

a distinct mixed type 1/type 3 effector potential.

Effect of clonal selection on iINKT, MAIT and yd T cells effector states. To investigate whether
the Tinn cells exhibiting an effector transcriptome possessed a distinct TCR repertoire compared
to the naive Tinn cells identified in the human thymus, we conducted paired VDJ sequencing (Fig
3). This allowed us to link the different cell states to their corresponding TCR sequences, providing
insights into the diversity and specificity of the TCR repertoire within these distinct Tinn cell
populations. As a measure for TCR diversity, we used the Shannon index comparing naive-like
cells to effector-like cells, as determined by the cluster assignment on the re-analyzed cell types
described above. For iNKT cells, we found that most of the VDJ sequenced cells used the
TRAV10 gene segment rearranged with TRAJ18 (Fig 3A, B), resulting in a CDR3 size of 14 amino

acids with a canonical sequence (Fig 3C), emphasizing the importance of the CDR3a for antigen

10
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recognition by iINKT cells (Scott-Browne et al., 2007). This invariant TCRa. chain was paired with
diverse TCRp rearrangements involving primarily the TBV25 chain (Fig 3D), which was evenly
used across all clusters (Fig 3E). We did not observe any shared TCR clonotypes between the
naive- and effector-like cells. Additionally, the Shannon indexes for TCR clonotypes were found
to be identical across both naive- and effector-like cells, suggesting the absence of clonal
selection associated with the development of an effector transcriptome.

Thymic MAIT cells largely used the TRAV1-2 gene segment rearranged primarily with
TRAJ33, TRAJ20 and TRAJ12 (Fig 3G, H), as previously reported (Reantragoon et al., 2013).
These rearrangements were largely of the same CDR3 size with limited sequence diversity and
notably, contained the conserved Y95 residue within the CDR3a loop (Fig 3I), which is crucial to
MAIT cell activation (Reantragoon et al., 2012; Young et al., 2013). These TCRa chains were
paired with a diverse repertoire of TCRp chains (Fig 3J), dominated by the usage of the TRBVG6,
TRBVZ20 and TRBV4 gene segments (Reantragoon et al., 2013; Tilloy et al., 1999). Similar to our
observations with iINKT cells, we found no sharing of TCR clonotypes and no evidence of clonal
selection among MAIT cells with an effector transcriptome (MAIT_c6) compared to naive-like cells
(MAIT_c2-4) based on the Shannon index of TCR clonotypes (Fig 3K). In contrast, effector y6 T
cells (GD_c7) were enriched for cells expressing the TRDV2 and TRGV9 gene segments, while
cells expressing TRDV1 and TRDV3 gene segments were excluded from this cluster (Fig 3L).
However, some TRDV2" or TRGV9" cells could also be found in the non-effector clusters,
suggesting a potential role for these gene segments in the development of effector y& T cells in
the post-natal human thymus. Supporting this hypothesis, we observed that the rearrangements
of both the V42 chains and associated Vy9 chains differed largely between cells in the effector
versus non-effector clusters (Fig 3N). Specifically, the Vy9 chains of effector cells were found to
be preferentially rearranged with the TRGJP gene segment and enriched for the public CDR3
sequence typically found amongst V62Vy9 yd T cells in the adult blood (Davey et al., 2018) (Fig
30), whereas V32" cells in the non-effector clusters showed more diverse Vy gene usage and
rearrangements (Fig 3N). In summary, the acquisition of the effector programs in iNKT and MAIT
cells is not associated with changes in TCR diversity, while the rearrangements of V562 and Vy9

chains in yd T cells suggest predisposition towards the effector program.
Gene Expression Programs that Characterize T cell Effector Functions. Our detailed

analysis of thymic T cell populations and gene expression modules revealed shared

developmental patterns between iNKT, MAIT, and Tcn cells. To further characterize the
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functionality of Tinn and Teonv Cells in the blood, we initially examined the distribution of these cell
types across transcriptional clusters. In the blood, conventional CD4" T cells were primarily
located in cluster 11 (representing naive CD4 T cells) and 7 (comprising Tregs). However, a
variable proportion of CD4" T cells was also observed in effector clusters, particularly clusters 12
and 16, and this proportion varied among donors, ranging from 18.4% to 93.7% of cells (Fig 1G
& J). Blood CD8" T cells were predominantly found in cluster 10, representing naive CD8 T cells,
although varying proportions of CD8" T cells were present in effector clusters. This variability may
reflect differences in the immunological history of each donor, with proportions ranging from 16.5%
to 94% of cells (Fig 1J). In striking contrast, the majority of blood Tinn cells (approximately 94.3%
1 6.7%) were distributed across effector clusters 12 to 17, irrespective of the donor (Fig 1J).

We next investigated the transcriptional states in blood T cell populations using the cell
hashtags to reanalyze blood iNKT, MAIT, v3 T cells and Teonv CD4* and CD8" T cells individually
(Fig 4A, B). Our analysis, utilizing the previously identified naive and effector gene modules
(GEP3-6; Fig 1K, Supplementary Tables VIII-XII), indicated that each of the investigated cell types
could be found within these identified gene programs, albeit with varying proportions for each cell
type (Fig 4C, D). To provide further context and understanding of these gene modules, we
computed overlap scores and statistically assessed their enrichment with literature-derived
signatures (Cano-Gamez et al., 2020; Poon et al., 2023; Rose et al., 2023; Terekhova et al., 2023).
Subsequently, we scored the joint signature-GEP interactions in our dataset (Supplementary Fig
9). GEP3 was found to be closely associated with signatures of naive T cell characteristics. In
contrast, GEP4 displayed similarities with central memory T cells (Tcm), effector memory (Tem) Or
literature-derived signatures classified as a mix thereof (Tcm/Tem), While GEPG exhibited
characteristics akin to terminally differentiated effector memory cells (Temra). GEP5, on the other
hand, shared elements with Tem cells and previously identified CD8 MAIT signatures
(Supplementary Fig 9A). When examining blood iNKT cells, we noticed that they predominantly
fell into two categories, expressing either the GEP3 or GEP5 programs (Fig 4D). However, there
was also a subset of INKT cells that exhibited either the GEP4 or GEP6 programs. Interestingly,
the distribution of these programs varied significantly among different donors (Fig 4B). Notably,
iNKT cells characterized by the GEP4 program expressed CD4 transcripts, whereas those using
GEPS5 or GEP6 had lost CD4 expression (Supplementary Fig 10A). To validate this observation,
we examined the cellular phenotype of blood iNKT cells. We found that blood CD4" iNKT cells
were mostly PLZF- CD161° EOMES™ GZMK™ but CCR7", suggesting that they likely belonged to
the naive GEP3 program (Supplementary Fig 10). In contrast, CD8" and DN iNKT cells were
mostly PLZF* CD161" and displayed an effector phenotype (EOMES* GZMK* CCR7- CD62L",
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Supplementary Fig 10). These findings are in line with previous data indicating that CD4-negative
iINKT cells become more prevalent in the blood with age, eventually becoming the dominant
population in the adult blood iINKT cell compartment (Berzins et al., 2005; Sandberg et al., 2004).
This suggests that CD4-negative iNKT cells may originate from CD4" iNKT cells that undergo a
loss of CD4 expression (and potentially gain CD8 expression in some cases) as they transition
toward a more effector-like state. Conversely, when examining MAIT cells in the blood, we
observed that the majority of them exhibited the GEP5 program, with only a minor fraction utilizing
the GEP6 program (Figure 4D). This GEP phenotype was further confirmed by flow cytometry,
revealing that most MAIT cells were CD8", and interestingly, all MAIT cells displayed a uniform
effector state (characterized by PLZF* CD161" EOMES® GZMK"* CCR7- CD62L"), regardless of
CD8 expression (Supplementary Figure 11). These findings indicate that MAIT cells in the
bloodstream primarily exist in a single cell state, aligning with recent data demonstrating minimal
transcriptional heterogeneity among blood and liver-resident MAIT cells (Garner et al., 2023), and
no significant transcriptional distinctions between CD8" and DN MAIT cells.

Blood yo T cells were stratified into five distinct clusters, with one cluster corresponding to
naive cells (c0, GEP3) and another cluster (c4, GEP11) representing cycling cells. The majority
of cells in clusters c1-c3 were categorized into either the GEP5 or GEP6 program (Figure 4C, D),
and this division in GEP utilization closely mirrored the specific TCR usage among these cells.
Specifically, TRDV2/TRGV9-expressing cells were predominantly associated with the GEP5
program, whereas cells expressing TRDV1" or TRDV3" were enriched in clusters expressing
GEPG6 (Supplementary Fig 12A-C). These GEP phenotypes were further validated through flow
cytometry, revealing that Vy9*Vd2* T cells primarily expressed PLZF and GZMK, while V&2" T
cells were PLZF" but instead GZMB™ (Supplementary Figure 12D, E). In light of this, it appears
that the GEP5 program represents an effector gene module exclusively expressed by innate T
cells, suggesting that human Ti., cells share a common transcriptional state. This observation
parallels the way mouse iINKT and MAIT cells share type 1 or type 3 immunity effector states
(Krovi et al., 2022). Regarding the distribution of CD4 and CD8 Tcon cells in the blood, it revealed
two primary patterns. Some Tcony Cells were found within clusters containing naive cells (clusters
0 and 1), characterized by high expression of GEP3. In contrast, others were dispersed across
clusters of cells displaying a gradient of the GEP6 program, with intermediary cells expressing
GEP4 (Supplementary Figure 13). The proportions of cells in these clusters exhibited variations
among donors (Fig 4B). In summary, these findings underscore the distinct associations between
different T cell types and effector programs. In the blood, iINKT, MAIT, and Vy9*V52* v6 T cells

predominantly employ the GEP5 program, a program also shared by effector Tinn cells in the
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thymus (Supplementary Fig 7). Conversely, conventional CD4* and CD8" T cells transition into
effector cells along a gradient defined by the GEP6 program. Notably, this GEP6 program is also
shared by V53" and V517 y5 T cells.

Next, we aimed to identify genes specific to each T cell lineage in human blood. We
conducted pairwise DEG analyses between the lineages using a pseudo-bulk method in
conjunction with the Likelihood Ratio Test after accounting for batch effects. As a result, we
uncovered a total of 167 genes that exhibited significant differential expression (padj < 0.01) in at
least two of the comparisons we conducted (Figure 4E). These distinct patterns of differential
expression provided insights into changes linked to the transition from a "naive" state to an
"effector" state across various cell types. Furthermore, we identified genes that were commonly
expressed by two distinct cell types when compared to the others. Nevertheless, we did not readily
discern any gene expression patterns specific to a particular cell type. However, intriguingly,
among these, a group of 104 genes appeared to be capable of distinguishing y5, MAIT, and iINKT
cells from Teonv CD4 and CD8 T cells. It is noteworthy that 63% of these genes overlap with the
previously identified GEP5 program. Given that only Vy9*/V62" T cells share the GEP5 program
with INKT and MAIT cells, while V62" T cells exhibit greater similarity to Tconv cells as they share
the GEP6 program (Supplementary Fig 12), we explored whether we could identify cell-type-
specific gene signatures specifically among GEP5-expressing cells, using the same analytical
approach. Surprisingly, the results demonstrated that the only genes expressed at significantly
different levels across iNKT, MAIT, and yo T cells when employing the GEPS program (Fig 4F)
were genes encoding the constant regions of the TCR genes (TRGC1, TRAC), the CD8
coreceptor (CD8A, CD8B), and the CD94 receptor (encoded by KLRDT). These findings
collectively suggest that in the human blood, Tin cells, which encompass iINKT, MAIT, and
Vy9*/V82" cells, distinguish themselves from Teony cells by employing a specific gene program, but

there is minimal transcriptional difference among Tin cells themselves.

The effector GEPs exhibit distinct migration, cytokine, chemokine and integrin
characteristics established by distinct Gene Regulatory Networks. The differentiation states
of T cells are intricately tied to their phenotypic, functional, and migratory attributes, rendering the
characterization of these states highly relevant from a clinical perspective. In fact, our findings
underscore that each GEP is aligned with the preferential expression of distinct sets of chemokine
and cytokine receptors, as well as chemokines, cytokines, cytotoxicity-related molecules, NK
receptors, and integrins (Fig 5A). To exemplify, the GEP4 program, shared notably by both
Tem/Tem (Supplementary Fig 9) and, to some extent, iINKT cells depending on the donor (Fig 4B-
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D), demonstrates heightened transcription levels of genes coding for the chemokine receptors
CXCR3 and CCR4, the Sphingosine-1-Phosphate Receptor 4, and the oxysterol receptor
GPR183. The latter has been documented to offer survival and migratory signals to thymocytes
and CD4 T follicular helper cells(Li et al., 2016). Furthermore, the GEP4 program showcases
heightened expression levels of IL2RA, IL6R, IL-4R, and the integrin ITGB1, while conspicuously
lacking transcripts linked to cytotoxic molecules. Conversely, the GEP5 program, closely linked
to the majority of cells from Tinn cell subsets (iNKT, MAIT, V82y9* v3 T cells) across most donors
(Fig 4B-D), demonstrates elevated expression of diverse chemokine receptors, including CCR1,
CCR2, CCR5, CCR6, as well as CXCR6 and of cytokine receptors such as IL18R1, IL18RAP,
IL12RB1, IL12RB2, IL23R, and IFNGR1 (Fig 5A). This distinct gene expression pattern is further
marked by the presence of granzymes A and K transcripts, while granzymes B and H are notably
absent (Fig 5A and Supplementary Fig 5A). Another noteworthy hallmark of the GEP5 program
is the expression of the NK receptor KLRB1. These findings closely align with previously identified
markers associated with human MAIT and V52y9* v3 T cells (Davey et al., 2018; Meermeier et al.,
2022; Park et al., 2019) and are consistent with the demonstrated ability of Ti cells to respond
to inflammatory cytokines like IL-12, IL-18, and IL-23, even without TCR engagement. On the
other hand, the GEP6 program, primarily associated with Tem/emra Cells (Supplementary Fig 9) and
V31" and V83" v3 T cells across the majority of donors (Fig 4B, C and Supplementary Figure 12),
is characterized by increased expression of CX3CR1 (Supplementary Figure 13). The graded
expression of CX3CR1 correlates with the differentiation of both CD4 and CD8 T cells towards an
effector state (Zwijnenburg et al., 2023). Additionally, the GEP6 program exhibits heightened
expression of transcripts encoding IFNG, CCL4, CCL5, KLRD1, as well as several integrins
(ITGAL, ITGB2, ITGAM). 1t also includes genes associated with cytotoxicity, such as granzymes
B, H, and granulysin (GNLY). Interestingly, transcripts for granzyme K are significantly reduced
in GEP6 compared to GEP5. These results are in line with recent findings indicating that GZMK*
and GZMB™ cells delineate Tcm and Tem/Temra T cell populations (Duquette et al., 2023; Jonsson
et al., 2022).

To predict gene regulatory networks associated with these gene programs, we used
Single-Cell Regulatory Network Inference and Clustering to identify enriched TFs with their direct
downstream targets and scored the activity of these so-called regulons in single cells (Aibar et al.,
2017). We identified a total of 149 regulons that were expressed in at least 20% of the cells within
a specific cluster and displayed associations with different clusters (Fig 5B). Notably, 11 regulons
exhibited more pronounced activity in Tin cells compared to Teonv cells (Fig 5B). These regulons
were governed by TFs such as ELK3, MBD2, CREM, NFE2L2, NR1D2, XBP1, MYBL1, RORA,
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MAF, CEBPD, and FOSL2. Curated analysis of their predicted target genes indicates that these
transcription factors may play a central role in shaping the unique transcriptional profile observed
in Tinn cells during steady-state conditions. This role potentially encompasses the regulation of
chemokine and cytokine receptors, as well as other genes associated with Tinn cells, including
ZBTB16 (which encodes PLZF), the master regulator of the Tin, cell lineage (Fig 5C). Interestingly,
previous data established CEBPD as a regulator of CCR6 expression in human MAIT cells(Lee
et al., 2018). Furthermore, FOSL2 (encoding Fra2) has been implicated in the normal
development of mouse iNKT cells(Lawson et al., 2009), and c-Maf has been recognized as a key
player in the differentiation of IL-17-producing mouse iNKT cells (Yu et al., 2017). Additionally,
RORA has been described as an auxiliary transcription factor for Th17 cells (Ciofani et al., 2012),
and there is evidence of CREM, XBP-1 and NR1D family of TFs involvement in the regulation of
Th17 cells as well (Chang et al., 2019; Yoshida et al., 2016). The remaining transcription factors
in this list, to the best of our knowledge, have not been extensively studied in the context of Tinn
cell development and/or function. In addition to this set of regulons, another group of regulons
exhibited enriched activity within effector Tconv cells, although some shared activity with Tinn cells
(including EOMES, RUNX3, PRDM1, and FLI1; Fig 5B). These findings are consistent with
previous results showing that EOMES and RUNX3 collaborate to promote the formation of the
transcriptional program through epigenetic programming of innate memory CD8 T cells in mice
(Istaces et al., 2019). This suggests that similar mechanisms might be at play in human Ti., cells.
As Teonv cells differentiate into Tememra Cells, there is an increased activity of regulons driven by
TBET, KLF, and NFAT family transcription factors (Fig 5B and D), in agreement with their
functions in regulating the cytolytic activity of CD8 T cells (Intlekofer et al., 2005; Klein-Hessling
et al., 2017; Nah and Seong, 2022). Taken together, our data unveil novel candidate regulators
of Tinn and Teonv effector programs, along with their predicted target genes, which warrant further

experimental validation.

Cross-species analysis of thymic Tinn cells development. Our analysis of human Tinn and Teony
cells across thymus and bloodstream revealed common transcriptional patterns during their
development. Interestingly, in the thymus, only a minority of Tin cells displayed an effector
phenotype, marked by a unique gene expression program that we named GEPS5. This differs from
the predominant effector association of Tinn cells in mouse thymus, where distinct effector subsets
that closely resemble CD4 T helper cells and innate lymphoid cells develop and reside (Krovi et
al., 2022; Lee et al., 2020; Legoux et al., 2019). To explore the similarities in the transcriptional

signatures of mouse and human Ti., cells, we first constructed a reference mouse Tinn dataset,
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comprising data from nine different studies (Baranek et al., 2020; Chandra et al., 2023; Harsha
Krovi et al., 2020; Koay et al., 2019; Lee et al., 2020; Legoux et al., 2019; Li et al., 2022; Maas-
Bauer et al., 2021; Wang et al., 2023). This merged dataset revealed 13 transcriptionally distinct
clusters, where iINKT, MAIT, and v T cells coexisted, with variable proportions (Fig 6A and
Supplementary Fig 14, Table Xllil). In addition, there are also lineage-specific clusters, like
clusters 1 and 2 unique to y8 T cells, representing immature Cd24a* Gzma® cells (Lee et al., 2020;
Li et al., 2022). Other clusters represented signaling cells committing to innate T cell lineage (in
clusters 3 and 4), cycling cells (in cluster 5), type | cells in clusters 8 and 9, type Il cells in clusters
6 and 7 and type Il cells in clusters 10 and 11. Cluster O expressing Sell (encoding for Cd62l),
Kif2, Ccr7, Foxo1 and S1pr1 and associated with post-selection/naive T cells likely represents
Tinn cells positively selected on thymic epithelial cells (TECs), bypassing the "innate" pathway
(Krovi et al., 2022; Salou et al., 2021). Altogether, this analysis enabled us to establish the
fundamental signatures of mouse Tin, subsets and to perform a cross-species comparison of cell
identities. Using a meta-analysis approach that compares similarities between cell clusters, we
assessed the pairwise correspondence between these murine Tinn signatures and our human
iNKT, MAIT, and y5 T cell clusters (Fig 6B). Among the human iNKT cells residing in cluster O
(NKT _c0) and exhibiting a CD8aa T cell gene signature, we observed the strongest resemblance
to the signaling cells (Fig 6B). This similarity is likely due to the shared expression of numerous
genes associated with TCR activation. Conversely, cells with an effector profile (NKT_c5 and
NKT_c6) showed the closest relationship to mouse type | and type Il cells (Fig 6B). Importantly,
we did not find human clusters corresponding uniquely to specific mouse subsets, confirming that
human iNKT cells do not differentiate into distinct subsets but rather acquire a mixed type l/type
Il transcriptome. We also did not detect any human iNKT cell clusters that matched with the
mouse type Il subset with a high degree of confidence (AUROC > 0.65; Fig 6B), suggesting that
type Il INKT cells are likely absent in the human thymus. Corroborating this finding, we did not
detect any expression of IL-4 or IL-13-encoding transcripts in human thymic iNKT cells, which are
typically associated with mouse type Il thymic iINKT cells. Similar patterns were observed for MAIT
and yd T cells in the human thymus, with effector cells resembling mouse type | and type llI
effector cells (Fig 6B) indicating that a limited subset of Tinn cells in humans follows a distinctive
path, displaying mixed effector potential, unlike the mouse model where multiple effector subsets
are identified. We next assessed whether the TFs responsible for driving the characteristic
regulons of human Tinn cells (Fig 5A) are also expressed in mouse Tin cells (Fig 6C). Our analysis
revealed that most of these TFs are indeed expressed in mouse Tin, cells as well, although their

distribution of expression across clusters varies. These results suggest that each TF may have a
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unique role in shaping the distinct subsets of mouse Tin cells. They also raise the possibility of
some similarities in transcriptional regulation between the two species during the development of
Tinn cells' effector functions in the thymus. However, there are exceptions. Notably, while CEBPD,
EOMES, and MYBL1 are highly expressed in human Tinn cells (Supplementary Fig 5A), their
expression in mouse Tinn cells is barely detectable (Fig 6C). On the other hand, mouse type | Tinn
cells exhibit high levels of Thet (encoded by Thx21, Fig 6C), whereas human Ti. cells have low
Tbhet expression (Supplementary Fig 5A). These findings highlight some species-specific
differences in TF expression that could play a role in modulating Tinn cell development and

functions.

CD1D expression in the mouse and human thymus. The existence of Tin, cells displaying a
transcriptome akin to developing Teonv cells in the human thymus raises questions about their
origin. In mice, a subset of MAIT cells can be positively selected by radiation-resistant TECs
(Chandra et al., 2023; Legoux et al., 2019). In such instances, MAIT cells do not follow the usual
path of acquiring a memory or effector phenotype, which happens when they are positively
selected by DP thymocytes (Krovi et al., 2022). This is because TECs lack the expression of
SLAM receptors, which serve as crucial secondary signals for Tinn commitment (Griewank et al.,
2007). Although such naive cells are more common among MAIT cells, a small subset of thymic
mouse iINKT cells exhibit a similar transcriptome (Krovi et al., 2022). We hypothesized that the
presence of naive Tinn cells in humans might be attributed to a similar process involving TEC-
mediated selection. Given that MR1-encoding transcripts are broadly expressed and surface MR1
expression can be challenging to detect, we opted to investigate the expression of CD1D protein
in the thymus instead. Mouse TECs were previously reported to express CD1d on their surface
(Forestier et al., 2003). Analysis of transcripts encoding Cd1d1 from the mouse thymus single-
cell RNA sequencing atlas (Park et al., 2020) confirmed expression across various cell types,
including all thymocyte populations as well as cortical and medullary thymic epithelial cells (Fig
7A, B). These findings were further corroborated through flow cytometry analyses (Fig 7C, D). In
contrast, analyses using data from the human thymus single-cell RNA sequencing atlas(Park et
al., 2020) revealed a more limited pattern of CD1D expression (Fig 7E, F). Consistent with the
mouse data, human DP thymocytes express transcripts encoding CD1D and have CD1D
molecules on their surface, but this expression is lost in mature single-positive thymocytes.
Additionally, while human cortical thymic epithelial cells (cTECs) express transcripts encoding
CD1D and have CD1D protein on their cell surface, medullary thymic epithelial cells (ImTECs) do

not exhibit this expression (Fig 7G, H). Interestingly, the crucial role of mTECs in the intra-thymic
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development of murine iINKT cells has been established (Cui et al., 2022; White et al., 2014),

suggesting that this interspecies difference in CD1D expression may affect iINKT cell development.

Discussion

In this study, we employed multi-modal single-cell transcriptomics to explore the diverse
phenotypic states that Tinn cells can manifest within the human thymus and blood. Through a
comprehensive analysis, we juxtaposed these states with those of conventional T cells, providing
novel insights into human T cell biology and a comprehensive resource for further studies of health
and disease. Tinn cells have garnered substantial attention recently because of their distinctive
developmental pathway and functional characteristics, which are increasingly being explored for
potential applications in immunotherapies (Delfanti et al., 2022; Dogan et al., 2022; Lee et al.,
2023).

Our study demonstrated that in human blood, the majority of Tinn cells exhibit a distinct
transcriptional program that is shared by most iINKT, MAIT, and V562Vy9 T cells under steady-
state conditions. This program implies a blended type I/type Il transcriptional pattern, driven by
specific transcription factors that enable the expression of distinct chemokine and cytokine
receptors, NK receptors, and cytotoxic molecules. This program equips Tin cells with the ability
to swiftly respond to cytokines like IL-12, IL-18, and IL-23, independently of TCR signaling
(Philippot et al., 2023; Ussher et al., 2014). Notably, we and others (Duquette et al., 2023; Kurioka
et al., 2015) showed that human Tin, cells constitutively express granzyme K but lack granzyme
B, while also expressing cathepsins, which are necessary for activating granzymes (D'Angelo et
al., 2010). This indicates that Ti.n cells are poised to release active granzyme K upon stimulation
(Kurioka et al., 2015). Granzyme K possesses a range of immunomodulatory functions. It can
induce the production of pro-inflammatory cytokines such as IL-6 and IL-8 from epithelial cells
(Kaiserman et al., 2022) and of IL-6, CCL5, and CCL2 from fibroblasts (Jonsson et al., 2022).
Mouse granzyme K can trigger the maturation and secretion of pro-inflammatory interleukin-1b,
particularly in LPS-sensitized peritoneal macrophages (Wensink et al., 2014). Additionally,
granzyme K may activate a novel complement pathway independently of the classical, alternative,
and lectin pathways (Jonsson et al., 2023), implying its involvement in immune regulation and
inflammatory responses. Given this overarching role of granzyme K in immune regulation, it
appears that the initial role of human Tin cells upon activation may indeed be the release of
granzyme K, which likely happens concomitantly or before cytokine secretion or cytotoxic activity.
In contrast, mouse Tin cells do not express granzyme K transcripts but unlike human Ti., cells

already possess pre-formed cytokine-encoding transcripts even before any stimulation occurs,
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allowing for an immediate response (Govindarajan et al., 2018; Matsuda et al., 2003). This
suggests that despite their evolutionary conservation, Tinn cells may have evolved species-specific
mechanisms to provide early signaling and amplification of the adaptive immune response.

We identified a set of transcription factors and their predicted target genes that exhibited
increased transcriptional activity in human Tin cells when compared to naive and effector Teonv
cells. Several of these transcription factors have previously been associated with the development
and function of mouse Tin, cells, and we found that the expression of some of them is shared
between species. Notably, several of these transcription factors are associated with the
differentiation and production of IFNy, cytotoxicity (Intlekofer et al., 2005; Istaces et al., 2019;
Klein-Hessling et al., 2017; Nah and Seong, 2022) as well as the production of the cytokine IL-17
(Chang et al., 2019; Ciofani et al., 2012; Yu et al., 2017). These connections are consistent with
the type l/type lll transcriptional program observed in Tin cells. In mice, the well-established
Th1/Th17 paradigm identifies IL-12 as a cytokine that induces IFNy production, while IL-23 is
known for inducing IL-17 production. This is in line with the varied expression of IL-12R and IL-
23R receptors observed on mouse type | and type Il Tinn cell subsets, which correlates with their
respective cytokine production profiles. By contrast activating human MAIT cells either through
their TCR or with a combination of IL-12 and IL-18, as well as stimulating Tinn cells with IL-23, all
result in the production of IFNy (Garner et al., 2023; Philippot et al., 2023). Yet, only a subset of
these cells produces IL-17 in the same conditions, a phenomenon thought to be influenced by
epigenetic modifications at the IL-17 gene loci (Garner et al., 2023). Underlining the importance
of understanding the regulation of IL-17 production in Ti. cells, there has been an increase in IL-
17 production observed in human MAIT cells in cases including severe asthma, community-
acquired pneumonia in children (Lezmi et al., 2019; Lu et al., 2020) and colorectal cancer patients
(Borras et al., 2023). Interestingly, we found NR1D family transcription factors, which have been
previously associated with regulation of Th17 cells (Chang et al., 2019; Yu et al., 2013), are driving
regulons in human Tin, cells. NR1D TFs are regulated by the body's circadian clock, suggesting
that the circadian rhythm might affect how Tinn cells produce IL-17, a hypothesis that warrants
further investigation. While many of the TFs essential for establishing the human Ti,» program
were also expressed in mouse Tinn cells, there were notable exceptions. For example, CEBPD,
EOMES, and MYBL1 were found to be highly expressed in human Ti. cells under steady-state
conditions, yet we did not detect transcripts for these TFs in the mouse Tin, reference dataset.
CEBPD has previously been implicated in regulating the expression of CCR6 in human MAIT
cells(Lee et al., 2018). However, its predicted targets, including ZBTB16, suggest that it may play

a crucial role in regulating the human Tinn program. MYBL1's preferential expression in Tinn cells
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has been previously observed (Gutierrez-Arcelus et al., 2019), but its specific function in these
cells remains to be defined. EOMES has been reported to play a role in the development of mouse
iNKT cells, although its expression level is very low under steady-state conditions (Shimizu et al.,
2019; Townsend et al., 2004). By contrast, Tbet is highly expressed in type | mouse Tinn cells and
is essential for their development and functions (Matsuda et al., 2006; Townsend et al., 2004).
However, human effector Tinn cells, which are most similar to mouse type | Tinn cells, express
relatively low levels of Tbet. Instead, Tbet's expression and activity were correlated with the
acquisition of the GEP6 program by Tconv cells in humans. These findings suggest the possibility
of species-specific transcriptional regulation of Tinn cells, which could be relevant for future
therapeutic applications involving these cells. Curiously, high confidence regulons like PLZF and
Roryt were not identified in the gene regulatory network of human Tin, cells, possibly due to the
relatively low gene detection in this context.

In the post-natal thymus, we observed iINKT and MAIT cells that displayed a transcriptional
profile similar to developing conventional CD4" and CD8" T cells, respectively. This finding raises
several possible interpretations. One plausible scenario is that these naive Tinn cells could
potentially serve as precursors to effector Tinn cells. This implies that Tinn cells likely undergo a
maturation process, which could occur either within the thymus or in peripheral tissues, facilitating
the acquisition of effector functions. Notably, in human cord blood, iINKT and MAIT cells with a
naive phenotype are more prevalent, and there is a gradual increase in the proportion of effector
Tinn cells with age. If this hypothesis is accurate, it would suggest that Tinn cells initially experience
positive selection in @ manner akin to conventional Tcony cells or that their mode of selection might
not provide the necessary signals for complete maturation. They would then subsequently receive
distinct signals that would propel them to acquire effector functionalities. This concept finds
support in recent studies involving Vy9Va2* T cells. In this context, immature naive-like CD4"
CD161" cells were observed to undergo a transition toward an effector transcriptome (Perriman
et al., 2023). During this transition, there was an upregulation of genes encoding various cytotoxic
molecules, chemokines, chemokine receptors, as well as different cell surface markers (Perriman
et al., 2023). This maturation could be recapitulated in vitro by culturing naive Vy9V&2* T cells
with OP-9 cells in the presence of IL-2, IL-7, and IL-15 cytokines. Our analysis of human thymic
vd T cells highlighted the presence of transcriptionally transitional cells, reinforcing the notion of a
sequential developmental trajectory. Although this scenario could potentially extend to human
iNKT and MAIT cells, another intriguing possibility could be envisioned. In addition to the pool of
naive Tinn cells, a minority of cells in the human thymus expressed genes linked to effector

functions or genes typically associated with Tinn cells. Notably, these effector cells formed distinct
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transcriptional clusters and despite analysis of several thousand cells, we did not identify
transitional cells bridging the gap between the naive and effector populations. This leads us to
speculate that naive thymic Ti., cells may not necessarily serve as precursors to effector Tinn cells.
Instead, these distinct populations could potentially represent the results of two separate selection
pathways for Tinn cells. Supporting this idea, naive MAIT cells (and some naive iNKT cells) have
been identified in the mouse thymus (Chandra et al., 2023; Krovi et al., 2022; Legoux et al., 2019).
These cells are thought to be Tinn cells that have undergone positive selection on TECs, which do
not express the SLAM family receptors necessary for the acquisition of the effector program.
Indeed, we showed that both human and mouse cTECs express CD1d molecules on their cell
surface. Interestingly, we also observed species-specific differences, notably the lack of CD1d
expression in human mTECs compared to mouse mTECs. This distinction could contribute to
variations in the maturation of iNKT cells between humans and mice. In the absence of IL-15
cross-presentation by mTECs, mouse iNKT cells do not fully mature (Cui et al., 2022; White et al.,
2014). CD1d crosslinking has been shown to stimulate the production of IL-15 in epithelial cells
from the reproductive tracts (Kawana et al., 2008). Taken together, the absence of CD1d on
human mTECs might explain why mouse iNKT cells can mature when they interact with CD1d
expressed on mTECs, while this maturation process cannot occur in humans. These findings
underscore the intricate nature of Ti., cell development and maturation, suggesting the existence
of multiple potential pathways and mechanisms, some of which may be species-specific and
require further experimental investigation.

Finally, our study highlights a distinct path taken by T, cells with an effector program in
the human postnatal thymus, characterized by a mixed type l/type Il effector potential. This
contrasts with mice, where Tin, cells tend to split into multiple effector subsets. Interestingly, we
observed a cluster of proliferating cells among human y& T cells in the thymus, but a similar
proliferative cluster was absent for human iNKT and MAIT cells. This also contrasts with mice,
where clusters of thymic iNKT and MAIT cells undergoing cell division are readily identifiable
(Baranek et al., 2020; Harsha Krovi et al., 2020; Legoux et al., 2019), reflecting the proliferative
burst following positive selection(Benlagha et al., 2002), crucial for establishing a substantial pool
of Tinn cells. Consequently, while Tinn cells constitute around 1-2% of thymocytes in mice, their
proportion is at least one order of magnitude lower in pediatric humans. Moreover, our analysis
did not reveal any Tin, cells with a type Il transcriptome in humans, unlike in mice. In mice, thymus-
resident INKT2 cells serve as a major source of IL-4 (Lee et al., 2013), significantly impacting the
thymic environment. This IL-4 influence includes effects on thymocyte emigration(White et al.,
2017), induction of memory-like traits in CD8" T cells (Lee et al., 2013; Weinreich et al., 2010),
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and activation of specific dendritic cells to produce chemokines that promote clonal deletion, all
while sparing regulatory T cells (Breed et al., 2022). Additionally, iINKT2 cells in mice contribute
to the formation of the thymus medulla through RANK signaling (White et al., 2014). The scarcity
of type Il Tinn cells in the human thymus suggests that these phenomena may be species-specific
or regulated by different cell types in humans.

Taken together, our findings hold significance in elucidating the diverse functional

attributes of Tinn cells and their potential applications in immunotherapeutic contexts.
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Material and Methods

Mice. The Cd1d1d2" mice backcrossed to the C57BL/6 background have been described
previously(Chen et al., 1997). C57BL/6 were purchased from Jackson Laboratories. All mice were
used between 6 to 15 weeks and were age matched for each experiment. Mice were raised in a
specific pathogen-free environment at the Office of Laboratory Animal Research at the University
of Colorado Anschutz Medical campus or the Animal Core Facility at Cold Spring Harbor
Laboratory. Animal procedures were approved by the UCD (00065) Institutional Animal Care and
Use Committees and the Cold Spring Harbor Laboratory IACUC (23-1); all procedures were

carried out in accordance with the approved guidelines.

Mouse samples. To isolate thymocytes, thymus tissue was immersed in RPMI 1640 media
(Corning, #10-040-CV) and gently pressed through a 40um cell strainer using the plunger of a 1
mL syringe. For TEC isolation, the thymus tissue was cut into small fragments and submerged in
RPMI 1640 media without phenol red (Gibco, #11835030), supplemented with 20mM HEPES
(Gibco, #15630080), 1.3 U/mL Liberase TH (Sigma-Aldrich #5401135001), and 100 U/mL DNase
| (Roche, #11284932001). These tissue fragments were incubated for 5 minutes on ice followed
by an additional 20 minutes at 37°C. After the digestion period, the solution was repeatedly mixed
with a micropipette to ensure complete tissue disintegration. To stop the digestion process, cells
were suspended in HBSS, 4% heat-inactivated FBS (HI-FBS, FBS from Corning, #35-010-CV,
preheated for 20 minutes at 56°C), 20mM HEPES, and 10U/mL DNase I. To remove immune
cells, the cells were incubated with rat anti-mouse CD90.2 (clone 53-2.1, Biolegend #140302),
anti-mouse CD45 (clone 30-F11, Invitrogen #14-0451-85), and anti-mouse CD45-BV605 (clone
30-F11, Biolegend #103139) antibodies for 30 minutes at 4°C. Subsequently, the cells were
placed on panning plates coated with goat anti-rat IgG (Vector Laboratories, #BA-9400) for 20
minutes at room temperature. Unattached cells were then transferred to new panning plates for
a second round of depletion. The remaining cells, following this depletion process, were prepared

for flow cytometry analysis.

Human samples. De-identified Peripheral blood samples from healthy donors were obtained
through the University of Colorado Clinical and Translation Research Centers (CTRC), which is
a part of the Colorado Clinical and Translation Sciences Institute (CCTSI). These samples were
collected using sodium heparin tubes, and peripheral blood mononuclear cells (PBMCs) were

isolated using a Ficoll gradient provided by Cytiva. Additional samples were acquired from
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plateletpheresis leukoreduction filter chambers (LRS) obtained from the Vitalant Blood Center
located in Denver, Colorado, USA. For pediatric thymus tissues, which were extracted from
infants undergoing corrective surgeries for congenital heart disease, the processing was initiated
within one hour of extraction. These tissue samples were procured from various sources,
including Children's Hospital Colorado, the Mount Sinai, and the Northwell Health Biorepository,
following ethical approval (IRB 20-0150, NHBR2101). Pediatric thymus samples for scRNAseq
came from individuals between 10 and 20 weeks old (Supplementary Table 1), and samples used
for flow cytometry experiments came from individuals between 4 days and 5 months old. To
extract thymocytes for both single-cell RNA sequencing (scRNAseq) and flow cytometry, the
thymus tissue was placed in complete RPMI 1640 media (Gibco, #22400-071) (10% heat-
inactivated fetal bovine serum (FBS, Sigma-Aldrich), 1% non-essential amino acids (Sigma-
Aldrich), 1% Sodium Pyruvate (Sigma-Aldrich), 1X GlutaMAX (Gibco), 1% Penicillin/Streptomycin
(Gibco), and 1X 2-mercaptoethanol (BME, Sigma-Aldrich)), cut into small pieces, and gently
pressed with the back of a 10 ml syringe to release thymocytes. The resulting suspension was
passed through a 70 um filter. Thymocytes and PBMCs were isolated using a Ficoll-Paque density
gradient provided by Cytiva. PBMCs were cryopreserved in FBS with 10% DMSO from Sigma-
Aldrich and stored in liquid nitrogen. Tetramer staining for MAIT and iNKT cells was performed
on freshly isolated thymocytes. For tetramer staining of MAIT and iNKT cells, freshly isolated
thymocytes were used. To enrich TECs for flow cytometry, thymus tissue was cut into small pieces
and placed in RPMI 1640 media without phenol red, 5% heat-inactivated FBS, 1%
Penicillin/Streptomycin, 10mM HEPES (Gibco, #15630080), and 0.55mM 2-mercaptoethanol
(Gibco, #21985023). The thymus tissue in this media was stirred on a magnetic plate for 40
minutes. The supernatant was removed and replaced with fresh media every 10 minutes to
remove released thymocytes. The remaining tissue chunks were placed in a digestion buffer
consisting of RPMI 1640 media without phenol red, 2% HI-FBS, 20mM HEPES, 80 U/mL DNase
I (Roche, #11284932001), 1.6 U/mL Dispase | (Roche, #04942086001), and 0.3mg/mL
Collagenase IV (StemCell Technologies, #07427) for digestion at 37°C with gentle shaking. This
digestion process was conducted in two sessions of 25 minutes each, with the supernatant being
extracted and replaced with fresh digestion buffer in between. At the end of the digestion, the
tissue chunks had nearly entirely disintegrated, and the digestion was halted by resuspending
cells in the same buffer used for thymocyte release. The combined supernatants were further
incubated in TrypLE Express Enzyme (Gibco, #12604-013), TmM MgClz, 2mM CaCl,, 100U/mL
DNase | for 5 minutes at 37°C to obtain a single-cell suspension. The digestion was stopped by

resuspending cells in the previously described buffer. To remove immune cells and erythrocytes,
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cells were incubated with mouse anti-human CD3 (clone UCHT1, Biolegend #300402), anti-
human CD4 (clone RPA-T4, Biolegend #300570), anti-human CD8 (clone RPA-T8, Biolegend
#301002), anti-human CD45 (clone HI30, Biolegend #304002) and anti-human CD235a (clone
HI264, Biolegend #349102) antibodies in HBSS (Gibco, #14175079), 4%HI-FBS and 20U/mL
DNase I, for 30mins at 4°C. Cells were then placed on panning plates coated with goat anti-mouse
IgG (Vector Laboratories, #Al-9200-1.5) for 20 minutes at room temperature, and the unadhered
cells were transferred to new panning plates for a second round of depletion. The remaining cells
following depletion were then stained for flow cytometry. Overview of sample metadata is provided

in Supplementary Table I.

Magnetic-bead enrichment of iINKT and MAIT cells. To enrich for thymic MAIT and
thymic/blood iNKT cells, up to 2x10° cells were incubated with MR1-5-OP-RU-PE-Tet or CD1d-
PBS57-PE respectively in MACS buffer (0.5% BSA, 2mM ETDA, PBS), for 25 mins at room
temperature. Cells were washed twice and incubated with anti-PE microbeads (Miltenyi), followed
by separation using an autoMACS Pro Separator (Miltenyi) according to manufacturer’s
instructions. PE-microbead-labelled cells in the enriched fraction were stained with the specified

panel of antibodies listed below.

Fluorescence-activated cell sorting. Single cell suspensions were stained with efluor780
viability dye (ThermoFisher) for 10 mins at room temperature and washed once prior to cell
surface staining. Enriched MAIT and iNKT from thymus, enriched iNKT from PBMC, unenriched
¥8 T ,CD4" and CD8" from thymus, and unenriched MAIT, yd T , CD4" and CD8" T cells from
PBMC were stained with the following cell surface markers in MACS buffer at room temperature
for 20 mins: CD3-AF488 (clone OKT3, Biolegend), CD14-eFluor450 (clone 61D3, ThermoFisher),
CD19-eFluor450 (clone H1B19, ThermoFisher), Va7.2-BV785 (clone 3C10, Biolegend), Va24-
PerCP-Cy5.5 (clone C15, Biolegend), CD4-AF710 (clone OKT4, Tonbo), CD8a-PE-Cy7 (clone
SK1, Tonbo), TCRy3-BV650 (clone 11F2, BD Biosciences), FcyR block (Miltenyi). Cells were
washed twice and resuspended in MACS buffer prior to cell sorting on the Aria 3 (BD Biosciences).
Purified cell populations were sorted into MACS buffer. To confirm gene expression from
scRNAseq analysis, MAIT and iNKT cells were enriched from the human thymus as described
above, as were iINKT cells from human blood. y5 T cells were stained directly from the human
thymus as were blood MAIT and y& T cells. Single cell suspensions were stained as above with
efluor780 viability dye prior to incubation at 37C for 10 min with CCR7-APC-Fire810 (clone

G043H7, Biolegend) and FcyR block. A combination of the following cell surface markers were
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subsequently added and cells were stained at room temperature for 15 min: CD3-BUV496 (clone
UCHT1, BD Biosciences), CD14-PE-Cy5 (clone 61D3, ThermoFisher), CD19-PE Cy5 (clone
H1B19, ThermoFisher), Va7.2-BV785 (clone 3C10, Biolegend), Va24-PerCP-Cy5.5 9clone C15,
Biolegend), CD4-BV570 (clone RPA-T4, Biolegend), CD8a-BUV395 (clone RPA-T8, BD
Biosciences), TCRy3-BV650 (clone 11F2, BD Biosciences), V61-PerCP-Vio700 (clone REA173,
Miltenyi), V&2-FITC (clone 123R3, Miltenyi), Vy9-PE (clone B3, BD Biosciences), CD161-BUV805
(clone HP-3G10, BD Biosciences), CD62L-BV650 (clone DREG-56, Biolegend). Cells were then
washed twice with MACS buffer prior to fixation and intracellular staining performed with BD
Transcription Factor Buffer Set according to the manufacturer's specification. The following
antibodies were used to stain for intracellular proteins: PLZF_PE-CF594 (clone R17-809), Eomes-
BUV737 (clone X4-83), Tbet-BV605 (clone 4B10, Biolegend), GZMK-AF660 (clone G3HG69,
InVitrogen), GZMB-AF700 (clone GB11, BD Biosciences). Phenotypic analyses and validation of
the cell sorting panel was performed on the Cytek Aurora flow cytometry system using SpectroFlo

software (v3.0). Data were analyzed using FlowJo software v10.7.1 (BD Biosciences).

Flow cytometry analysis of CD1d expression. For the mouse experiments, thymocytes were
resuspended in PBS, 5% FBS (Corning, #35-010-CV), 4mM EDTA and stained for 30mins at 4°C
with: Fc blocker CD16/32 (clone 93, Invitrogen #14-0161-85), CD4-AF488 (clone GK1.5,
Biolegend #100423), CD8a-APC (clone 53-6.7, Biolegend #100711), CD1d-PE (clone 1B1,
Biolegend #123509). For the murine thymus samples that were depleted of immune cells, the
single cell suspension was resuspended in HBSS, 4% HI-FBS, 20mM HEPES, 10U/mL DNasel,
2.5mM EDTA, and stained for 30mins at 4°C with: Fc blocker CD16/32 (clone 93, Invitrogen #14-
0161-85), Epcam-BV421 (clone G8.8, Biolegend #118225), CD45-BV605 (clone 30-F11,
Biolegend #103139), UEA1-FITC (Vector Laboratories, #FL-1061-2), Ly-51-AF647 (clone 6C3,
Biolegend #108312), and CD1d-PE (clone 1B1, Biolegend #123509). For the flow cytometry
experiments on human samples, thymocytes were resuspended in PBS, 2% FBS, and stained for
30mins at 4°C with: TruStain FcX (Biolegend #422302), CD45-BV421 (clone HI30, Biolegend
#304032), CD4-AF488 (clone OKT4, Invitrogen #53-0048-42), CD8-APC (clone RPA-TS,
Invitrogen #17-0088-42), CD1d-PE (clone 51.1, Biolegend #350305). For the human samples that
were depleted of immune cells and erythrocytes, cells were resuspended in PBS, 2% FBS, and
stained for 30mins at 4°C with: TruStain FcX (Biolegend #422302), CD45-AF647 (clone QA17A19,
Biolegend #393406), EPCAM-BV421 (clone 9C4, Biolegend #324220), CDR2-AF488 (pure
CDR2 antibody kindly provided by Dr. Sheena Pinto, conjugated with the AF488 antibody labeling
kit by Invitrogen, #A20181), HLADR-BV711 (clone L243, Biolegend #307643), CD1d-PE (clone
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51.1, Biolegend #350305). In all experiments, to measure viability cells were stained with the
live/dead Fixable Near-R dead cell stain kit (Invitrogen #.10119). Flow cytometry was performed
on a BD LSR Fortessa Cell Analyzer.

Single-cell RNA-sequencing. Single cell whole transcriptomes and TCR sequencing libraries
were prepared using the BD Rhapsody Single-Cell Analysis System (BD Biosciences) according
to the manufacturer's specifications. Prior to cell sorting on the Aria 3 (BD Biosciences) and during
cell surface antibody staining, up to 2 x10° enriched or unenriched cells were labeled with an
oligonucleotide-tagged antibody sample tag (BD Biosciences). From infant thymus and PBMC
donors up to 5 populations were sorted after doublet, viability, B cell (CD19°CD3") and monocyte
(CD14*CD3") discrimination: 1. MAIT cells (MR1-5-OP-RU-Tet'Va7.2°CD3"), 2. iNKT cells
(CD1d-PBS57-Tet'Va24*CD3"), 3. v T cells (CD3'TCRy5"), 4. CD4" T cells (CD4"'CD8CD3")
and CD8" T cells (CD8"CD4°CD3"). Cell subsets sorted for the different donors are listed in
Supplementary Table | and the gating strategy is shown in Supplementary Fig. 15. Prior to cDNA
library preparation for the WTA and VDJ libraries, all cell subsets from the different donors were
pooled, with up to 12 unique sample tags combined per library. Libraries were quantified and
pooled according to equivalent molar concentrations and sequenced on the NovaSeq sequencing
platform at the University of Colorado Genomics Core with the following read lengths: read 1 —

150 cycles; read 2 — 150 cycles; and i7 index - 8 cycles.

Single-cell RNA-seq data analysis. The quality of sequencing reads was evaluated using
FastQC and MultiQC. Sequencing reads (FASTQ) were mapped and sample Tag deconvoluted
with The BD Rhapsody™ WTA Analysis Pipeline on the GRCh38 genome sequence. This
pipeline produced a gene expression matrix for each sample, which records the number of UMIs
for each gene associated with each cell barcode. Aggregated data were then imported into the R
environment and analyzed with Seurat (4.3.0). Low-quality cells were filtered using the cutoffs
nFeature_RNA >= 500 & nFeature_RNA < 3000. Cells with a high mitochondrial content were
removed using a batch-dependent threshold with the isOutlier function from the Scater package
(McCarthy et al., 2017). Genes expressed in less than 20 cells were ignored. This resulted in
78,607 cells with 17,204 genes for downstream analyses. The NormalizeData function of Seurat
was performed using default parameters to remove the differences in sequencing depth across
cells. Dimensionality reduction was performed prior to integration for visualization purposes
(Supplementary Fig 2A), by selecting 2000 highly variable genes for principal component analysis

(PCA) and uniform manifold approximation and projection (UMAP). To integrate the data and
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remove batch-effects from the PCA subspaces based on the correct cell alignment, we used
Harmony (Korsunsky et al., 2019) following PCA to project cells into a shared embedding in which
cells group by cell type rather than dataset-specific conditions. We then applied the RunUMAP
function on 20 dimensions of the harmony embedding to obtain bidimensional coordinates for
each cell. We determined the k-nearest neighbors of each cell using the FindNeighbors function
and used this knn graph to cluster cells using the Louvain algorithm from FindClusters based on
the same harmony dimensions as the RunUMAP function (20 dimensions, resolution 1.2). This
dataset was subsequently split up into 5 cell types from 2 different tissues based on cell hashing
tags/barcodes. Each cell type from each tissue was re-analyzed individually using the same steps
to obtain UMAPs and clusters in Figures 2 and 4. Plots displaying cells on UMAPs were generated

using the SCpubR package (v1.1.2) (Blanco-Carmona, 2022).

LISI metric and analysis of cluster stability. The local inverse Simpson's index (LISI) was used
to assess the degree of mixing during batch correction and dataset integration in scRNA-seq
analysis (Korsunsky et al., 2019). This approach helps evaluate the effectiveness of data
integration methods by quantifying how well datasets are merged without introducing artificial
batch effects. To assess the integration process, we employed the integration LISI (iLISI) score.
iLISI measures the effective number of datasets within a neighborhood and provides an indication
of how effectively the individual datasets have been harmoniously integrated into a unified whole
during the analysis. In addition, we used the "cell-type" LISI (cLISI) score to evaluate the accuracy
of cell-type assignments in the integrated dataset. cLISI is a modified version of the LISI score,
but instead of assessing dataset labels, it focuses on the accuracy of cell type assignments within
the integrated data. As the specific identities of individual cells were not known beforehand, we
assigned mock cell identities based on anticipated gene expression patterns. These mock
identities were determined using prior knowledge of gene expression markers associated with
distinct cell types. For instance, we identified DN thymocytes as cells expressing PTCRA > 1, B
cells as cells expressing CD19 > 1 and IGKC > 1, Tregs as cells expressing FOXP3 > 1, MAIT cells
as cells expressing SLC4A10 > 1 and FOXP3 <1, CD4 T cells as cells expressing CD4 > 1, CD8A
<1, SLC4A10 <1, FOXP3 < 1, and CCR7 > 1, DP thymocytes as cells expressing RAG1 > 1 and
CD1C > 1, and CD8aa. thymocytes as cells expressing CD8A > 1 and GNG4 > 1. These mock
identities were used as initial cell type assignments and served as the basis for assessing the
success of integration, as indicated by increased iLISI scores and the maintenance of a cLISI
score of 1. Only cells with assigned mock identities were included in the cLISI analysis. To

evaluate the stability of clusters, we conducted a bootstrapping procedure in which cells from
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each predefined cluster were repeatedly sampled and then subjected to re-clustering. Cluster
stability was assessed by examining co-assignment probabilities (CP), where higher CP values
indicated greater cluster stability. In essence, a high CP suggests that the cells within a cluster
consistently grouped together across multiple iterations, reinforcing the reliability and robustness

of that cluster's identity.

TCR analysis. V(D)J single cell sequencing data were mapped and quantified using the BD
Rhapsody™ WTA Analysis Pipeline and the GRCh38 genome sequence. To connect the VDJ
data with transcripts data for each cell, we established links based on cell indexes extracted from
the consensus annotation files (VDJ_percell.csv) and MolsPerCell.csv files from each
demultiplexed sample. Only TCR paired sequences were retained for subsequent analyses. TCR
data from each VDJ-sequenced sample were combined together and added to the metadata of
the Seurat object. Clonotypes were defined based on unique TCR VJ usage and complementary-
determining region (CDR3) motifs. Basic TCR statistics, such as the distribution of length and
counts were computed using the tidyverse package (v1.3.2). The assessment of clonotype
diversity was conducted using the mean value of the Shannon index, computed through the
diversity function of the vegan R package (v2.6-4) after 100 iterations. Prior to the diversity
calculation, the data was subjected to rarefaction to match the lowest sequence count found within
the studied groups. Chord diagrams were generated using the circlize package (v0.4.15) (Gu et
al., 2014) and CDR3 motif logos using the ggseqglogo package (v0.1) (Wagih, 2017). The stacked
letters' cumulative height at each position signifies the degree of sequence conservation,
portraying the relative abundance of amino acids, which is further depicted by the varying heights

of individual letters within the stack.

Identification of differentially expressed genes between clusters. We identified cluster-
enriched genes by using the FindAlIMarkers function in Seurat with test.use = wilcox. This function
identified differentially expressed genes for each cluster by comparing the gene expression for
cells belonging to a cluster versus cells belonging to all other clusters. Only those genes that
passed an adjusted p value (Benjamini-Hochberg) cutoff of 0.05, log fold change > 0.4 and min.pct

= 0.3 were included in the downstream analyses.
Characterizing the replicability of cell types defined by scRNA-seq between studies and

between species. We assessed the consistency of cell clusters in our integrated thymic data by

comparing them with the human thymus atlas from the Park et al. dataset (Park et al., 2020). To
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do this, we focused exclusively on thymocytes, totaling 37,369 cells in our dataset. We also
acquired the annotated AnnData object from the Park et al. dataset, which specifically contained
T cells. To enable a meaningful comparison, we combined the two raw count matrices,
concentrating on the top 2000 highly variable genes shared across both datasets. This resulted
in a matrix containing 3,106 genes and 114,363 cells. To evaluate the consistency of cell types
between these datasets, we employed the pyMN package to perform unsupervised MetaNeighbor
analysis (Crow et al., 2018). MetaNeighbor assesses the similarity of cell types by constructing a
network of cells based on the correlation of their gene expression profiles. It then predicts cell
type labels, hiding them from one dataset while using the other. The result is expressed as a
mean Area Under the Receiver Operator Characteristic (AUROC) score, which measures the
probability of correctly identifying a cell's type based on its gene expression profile. We used the
ggplot2 package to visualize the AUROC scores obtained from pyMN, comparing our integrated
clusters with the thymocyte clusters defined in the Park et al. dataset. For assessing the
replicability of cell clusters across species, we utilized the reference scRNAseq murine Tinn
dataset and our human thymic iNKT, MAIT, and y3T individual seurat objects from Figure 2. To
ensure an appropriate comparison, we obtained orthologous genes between mouse and human
using the biomaRt package (Durinck et al., 2005; Durinck et al., 2009). We filtered the murine
count matrix to retain only genes with known 1:1 orthologs in humans. Then, we performed
unsupervised MetaNeighbor analysis with pyMN on the combined set of highly variable genes
from both human and mouse datasets. Finally, we used ggplot2 to create visualizations of the
AUROC scores returned by pyMN, including clusters that contained at least 1% of the cells in

each species to ensure greater confidence in assessing the replicability of clusters across species.

Identification of Gene Expression Programs. The count matrix was used for conducting non-
negative matrix factorization (NMF) through the cNMF method (Kotliar et al., 2019). This process
enabled us to infer both identity and activity programs, along with their respective contributions in
each cell. The usage of each program for each cell was added to the metadata of the Seurat
object and displayed as a featurePlot. To determine the genes associated with each program, we
plotted the gene ranks (ranging from most associated to least associated) against the
gene_spectra_score output from the cNMF analysis. The plotted gene ranks were fitted to a
sigmoid curve and the slope at the first elbow point was calculated as the minimum threshold for
genes to be retained in a given GEP. The same slope was applied to every GEP to prevent bias
in ranked gene selection, as the gene rankings between GEPs are not comparable and are

relative to each GEP (as depicted in Supplementary Figure 16). Cells from the blood sample were
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assigned to the GEP with the highest usage (as provided by cNMF), to display an alluvial plot with
ggalluvial (v0.12.5) (Brunson, 2020).

Scoring of Gene Signatures. Gene signatures were scored on our Seurat object, or on other
dataset’s Seurat or AnnData objects using either the function AddModuleScore in Seurat, or
scanpy.tl.score_genes in scanpy. In both cases, the score is computed as the average expression
of all genes contained in the gene list, and subtracting the average expression of 100 control
genes (randomly chosen to match the expression bins of the gene list). Gene signatures used

throughout this manuscript and their source can be found in supplementary Table 2.

Gene regulatory network inference. To deduce gene regulatory networks, we employed
pySCENIC from a pre-built singularity container, aertslab/pyscenic:0.12.1, a tool utilizing cis-
regulatory motif analysis to identify potential transcription factors (TFs) that might govern a cluster
of co-expressed genes within individual cells (Aibar et al., 2017). pySCENIC was run using the —
mask-dropouts flag and a normalized enrichment score threshold of 2 to help mitigate the effects
of the varying degrees of sparsity across the data sets we generated. The initial step involved
generating modules composed of transcription factors and co-expressed genes using GRNboost2
(Ref (Moerman et al., 2019)). These modules were pruned to remove indirect targets that lacked
significant enrichment for the corresponding TF motif within £10 Kb from the transcription starting
site of the putative target (cisTarget). This process yielded a collection of transcription factor
regulons. Considering the inherent stochasticity in gene regulatory network inference using
GRNBoost2, each run of pySCENIC may yield different quantities of regulons, along with distinct
target genes associated with each TF. To mitigate this variability, we performed 100 pySCENIC
runs and retained regulons present in 100% of the runs. We also removed regulons that did not
have at least 5 target genes defining the regulon activity. Due to the high degree of noise in target
genes, we retained target genes that appeared within a regulon in at least 95% of the runs.
Furthermore, each target gene also had to overlap with the union of all possible retained ranked
gene expression targets across all GEPs generated from cNMF. To identify regulons that were
specific to the underlying biology of our cell types and GEPs, we calculated the AUC scores using
the R package AUCell, located in the pySCENIC container, for each regulon based on the pruned
target gene list. A regulon was deemed specific to a defined cell population if at least 20% of the
cells within the annotated population scored in the 90" percentile of the overall AUC score for all

cells.
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Comparison of Gene Expression Programs with gene signatures from the literature. We
obtained gene signatures identified from (1) differential expression (DE) analysis from bulk
RNAseq between sorted naive, Tcm, Tem CD4™ and CD8" T cell populations by Rose et al. (Rose
et al., 2023); (2) DE genes between cell clusters defined from scRNAseq of naive and memory
CD4" T cells isolated from PBMCs by Cano-Gamez et al. (Cano-Gamez et al., 2020); (3) DE
genes between cell clusters defined from scRNAseq of blood immune cells by Terekhova et al.
(Terekhova et al., 2023) (4) DE genes between cell clusters defined from scRNAseq of T cells
across nine human tissues by Poon et al. (Poon et al., 2023). In the Rose dataset, we kept genes
that defined their Figure 2 E, H (adjusted p-value < 0.05). In the Cano-Gamez and Poon datasets,
we kept DE genes with a minimum log fold-change of 0.25 (adjusted p-value threshold < 0.05 or
0.01, respectively). In the Terekhova dataset, we used the top 100 differentially expressed genes
shared in their supplementary Table S5. We computed the Jaccard Index (JI) between the gene
lists derived from our GEPs and those from the Rose, Cano-Gamez, Terekhova and Poon
datasets. Since the gene lists varied in length, we weighted the JI to make it comparable across
pairwise comparisons. This was achieved by dividing the JI by the maximal theoretical JI for each
pairwise comparison, which is the ratio of the length of the smaller list to the length of the larger
list. To assess the significance of the observed JI, we performed a permutation analysis. We
generated 1000 random gene lists A' and B', matching in length and expression pattern to the
original lists A and B. We computed the weighted JI between these random lists and defined an
empirical p-value by counting how many of these weighted Jls were greater than the observed
weighted JI divided by the number of permutations. To account for multiple comparisons, we
applied a Bonferroni correction to the empirical p-values. For the co-expression analysis of GEPs
and gene lists from other datasets, we scored the gene lists on the entire integrated dataset. This
was done using functions like Seurat's AddModuleScore with the blend=TRUE parameter.
Additionally, GEP4, GEP5, and GEP6 were scored on the Poon et al. dataset using scanpy's
tl.score_genes function, and their scores in specific cell clusters of interest were displayed in

Supplementary Figure 9B.

Pseudo-bulk differential expression analysis. To investigate for cell lineage-specific gene
signatures in PBMCs, we grouped cells by batch, cluster and lineage, restricting our analysis to
only batches E, F and | where at least 3 or more cell lineages were sorted and sequenced within
the same batch. We then used DESeq2 (v1.40.2) (Love et al., 2014) to perform pseudo-bulk DE
analysis with a likelihood-ratio test (LRT), where the full model included batch + cluster + lineage,

and the reduced model included batch + cluster, in order to detect genes whose expression can
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be explained by lineage. We used the LRT test by computing pairwise comparisons, contrasting
all lineages against each other (CD4vsCD8, CD4vsiNKT, etc.), for each comparison keeping DE
genes with an adjusted p-value of 0.01. Then, to extract lineage-specific genes, for each lineage
we kept genes that were commonly upregulated in at least 3 or more contrasts. We normalized
the raw counts with the rlog function from DESeq2 and batch-corrected them with
removeBatchEffect from the limma package (v3.56.2) (Ritchie et al., 2015), before displaying the
final list of DE genes on a heatmap with the pheatmap package (v1.0.12).

Creation of a reference sc-RNAseq mouse Tin dataset. SCRNA-seq data from mouse thymic
iNKT, MAIT and v5 T cells (Baranek et al., 2020; Chandra et al., 2023; Harsha Krovi et al., 2020;
Koay et al., 2019; Lee et al., 2020; Legoux et al., 2019; Li et al., 2022; Maas-Bauer et al., 2021;
Wang et al., 2023) were downloaded from Gene Expression Omnibus repository with the
accession numbers GSE137350, GSE172169, GSE179422, GSE130184, GSE152786, the SRA
database under the accession code PRJNA549112 or the European Bioinformatics Institute
(EMBL-EBI) under the accession number E-MTAB-7704. Data were analyzed using the Seurat
package. Analyzed cells were selected to express more than 800 but less than 4200 genes per
cell, with less than 5% of mitochondrial reads. Datasets were merged and integrated using the
FastMNN algorithm (Haghverdi et al., 2018), using 5000 variable features, k=20 and
auto.merge=TRUE. Cell clustering was carried out with a resolution parameter set at 0.5, and
potential doublets were detected using scDblFinder (Germain et al., 2021) and subsequently
eliminated. To discern differential gene expression between clusters, the FindAllMarkers function
was employed, utilizing the MAST algorithm. The analysis considered latent features, specifically

the number of genes per cell, and the sample identity, with a log2 fold change threshold of 0.3.

Interactive data exploration tool. The data from this study is displayed as a ShinyCell

application at http://xspeciestcells.chsl.edu. The code for the browser application can be found at

https://qgithub.com/meyer-lab-cshl/xspeciestcells-shiny.

Data availability. Data that support the findings of this study have been deposited in NCBI GEO

with the accession code xxx.

Code availability. Custom analysis code was written in either R (version 24.0.3) or python

(version 23.8). The analysis code is freely available on GitHub: https://github.com/meyer-lab-

cshl/xspeciestcells-shiny. The code for the browser application can be found at

https://qgithub.com/meyer-lab-cshl/xspeciestcells-shiny.
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Figure Legends:

Figure 1: Integrative view on Tinn and Tconv development and peripheral function. A.
Experimental set-up specifying donor type (postnatal/adult), tissue and sorted cell types. B.
Harmony batch-corrected and integrated dataset across donors, tissues and cell types. C. Stable
Louvain-derived cell clusters distributed across D. both blood and thymus-derived cells and E.
their respective frequencies in these clusters. F. ‘Egress’ score on thymus and blood derived cells.
G. Cells color-coded by cluster (as in C) and visualized by their hashtag-sorted cell type (columns)
and the tissue they originated from (rows). H. Projection of naive and effector scores and the
proportion of |. thymic and J. blood cell types per donor classified based on these scores (bottom
row); top row shows analogous proportions by cell cluster (as in C). K. Gene expression programs
(GEPs) in thymus and blood identified using cNMF. Sample numbers for all panels as depicted in

A. Score defining genes as described in text.

Figure 2: Human Innate T cell development. Clustering of hashtag-separated thymic iNKT (A),
MAIT (E) and yo T cells (l) and the respective proportion of cells per cluster and donor (B, F, J),
the projection of the CD8aa signature (C, G, K) and egress score (D, H, L). M. Characteristic
gene expression in thymic iINKT, MAIT and yd cells. n=4 postnatal human thymus samples for all

panels.

Figure 3: Innate T cell TCR diversity during development. Cells with VDJ sequencing and
their cell-type specific characteristic chain arrangement for thymic iNKT (A), MAIT (G) and y& T
cells (L). For each cell type, the respective proportions of gene segment usage in each chain (B,
D; H, J; M, N) are shown together with their CDR3 length and sequence logo (C, I, O) and their
cluster-specific usage (E, with clusters as in Fig 2A). Shannon Index as an estimation of TCR
diversity in the naive-like and effector-like iINKT (F) and MAIT (K) cells, based on clusters in Figure

2A and E, respectively. n= 1 human thymus sample for panels A-O.

Figure 4: Gene expression programs in Tinn and Tconv. A. Clustering of hashtag-separated
blood iNKT, MAIT, v5 T cells, CD4 and CD8 T cells, B. the respective proportion of cells per cluster
and donor and C. the effector Gene expression program (GEP) signature scores (as in Fig 1K)
per cell type and cluster. D. GEP usage for each cell type, based on cNMF-derived usage matrix.

E. Pseudo-bulk, pair-wise differential gene expression between cell-types (upper panel). Tin
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specific signature genes in GEP5 (lower panel). For both panels, genes with p < 0.01 are depicted.
n=4,4,9,4,9 for iINKT, MAIT, y3, CD4 and CDS8 cells respectively.

Figure 5: Effector gene expression programs in Tinn and Teonv. A. Key genes categorized by
function and depicted by their level (z-score color scale) and percentage of expression in cells
belonging to the indicated GEPs. B. Single-Cell Regulatory Network Inference and Clustering of
transcription factors (TFs) and their expression strength per cell (as row-scaled z-scores), ordered
by cluster (as in Fig 1C), with tissue of origin and GEP assignement based on cNMF usage
indicated by color bar. Two row clusters are marked which are preferentially enriched in Tin, (upper
bracket) and Tconv (lower bracket) C./D. TFs with pronounced activity in (C) Tinn and (D) Tconv
(corresponding to brackets in B) and their targets. Green indicates TF (y-axis) that have other TFs
as their target (x-axis), where purple labels TFs that can interact in either direction. The marginal
bar chart shows the number of TFs per target, color-coded by their functional categorization (as
in A).

Figure 6: Cross-species comparison of mouse and human Ti.,» development. A. Mouse Tinn
reference atlas with 7 characteristic cell states highlighted that are found across lineages (as in
Supplementary Figure 14). B. Meta-neighbour analyses showing pairwise correspondence
(AUROC scores) between murine Tinn (as in A) and human iNKT, MAIT and yé T cell clusters (as
in Figure 2). Marginal bar charts indicate number of cells in the corresponding clusters. C.
Expression of human regulon-driving transcription factors (as in Figure 5) together with murine
TFs of importance in Tinn development (Rorc, Tbx21) projected on mouse Tinn reference atlas (as
inA.)

Figure 7: CD1D gene and protein expression in mouse and human thymus. A/E: Clustering
of thymic cell populations and their expression of Cd1d1 (mouse)/CD1D (human) derived from
the mouse and human thymus cell atlas, respectively (Ref (Park et al., 2020)). B/F: Normalized
expression of Cd1d1/CD1D and Slam/SLAM transcripts across thymic cell populations. Flow

cytometry of mouse and human TECs (C/G) and thymocyte subsets (D/H).

Supplementary Figure 1: Cell sorting strategy for single-cell sequencing. Non-myeloid
(CD14°), non-B-cell (CD19"), live cells (viability dye efluor780) from both thymus and blood were
sorted into CD4, CD8 and v3 T cells based on CD4*CD8", CD8*CD4  and CD3"TCRy&" marker
expression, respectively. INKT and MAIT cells were pre-enriched via CD1d-PBS57 and MR1-
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50PRU magnetic beads and sorted based on binding to tetramer and TRAV10 or TRAV1-2 stain

respectively.

Supplementary Figure 2: Batch integration and quality control. A. UMAP projection before
and after integration with Harmony, colored by method (RNAseq, RNAseq+VDJseq), donor (1-
13), batch (A-1), clusters (1-18) and tissue (thymus and blood). B. Degree of mixing during batch
correction and dataset integration measured as the local inverse Simpson’s index (LISI). The top
and middle panels show the integration LISI (iLISI), which measures the effective number of
datasets within a neighborhood, for thymic and PBMC-derived cells, respectively. Mixing was
assessed on batch, donor and method used (as in depicted in A); the lower panel depicts the cell-
type LISI (cLISI), to evaluate the accuracy of cell-type assignment. Blue curves indicate LISI
before integration, red after integration. C. Cell co-assignment probabilities within (diagonal) and
across clusters (off diagonal) assessed by cell bootstrapping and re-cluster. High co-assignment

probabilities indicate cluster stability.

Supplementary Figure 3. Marker gene expression across cell clusters. A. Reference
signature gene expression for clusters in Figure 1C and B. the top five genes that characterize
these clusters in this dataset. Top five marker genes for C. iNKT, D. MAIT and E. y5 T cells

corresponding to the clusters in Figure 2A, E and I, respectively.

Supplementary Figure 4. Reproducibility of thymocyte data with human thymus atlas. A.
UMAP representation of our integrated thymocyte data (top) and the Park et al. thymocyte data
(bottom). Cells are colored by cluster. B. Bubbleplot showing the MetaNeighbor AUROC score
for pairwise similarities of our thymocyte clusters with the Park et al. (Ref (Park et al., 2020))
annotated thymocyte clusters. AUROC scores above 0.9 are written in white text. Marginal bar

plots represent the number of cells present in each cluster.

Supplementary Figure 5: Characteristics of gene expression on integrated dataset. A. Gene
expression projection of signature genes. B. Genes differentially expressed between thymic CD4

and CD8 SP T cells corresponding to clusters c3/c11 and c9/c10 in Figure 1C, respectively.

Supplementary Figure 6: Projection of GEP12 onto integrated Tinn and Tconv Object. Each

panel shows cells from a given batch, color-coded by the cNMF usage of GEP12. There is a clear
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separation of batches A-C, E, | and E, F-H, which align with the sequencing method used,

RNAseq only or RNAseq+VDJ, respectively (see Supp Table 1).

Supplementary Figure 7: Gene expression programs (GEP) in thymic T cell types. Cells are
color-coded based on their respective GEP usage (rows) and cell types (columns). GEP usage

derived from cNMF usage file.

Supplementary Figure 8: Effector phenotyping of thymic INKT and MAIT cells by flow
cytometry. Thymic iNKT (TRAV10" CD1d-PBS57") and MAIT (TRAV1-2* MR1-50PRU") cells
from postnatal thymus were analyzed by flow cytometry for the expression of co-receptors CD4
and CD8; transcription factor PLZF; and effector markers CD161, EOMES, GZMK. iNKT and
MAIT cells were pre-enriched via CD1d-PBS57 and MR1-50PRU magnetic beads.

Supplementary Figure 9: Effector gene expression programs (GEPs) are consistent across
datasets and human tissues. A. Proportion of genes in each peripheral GEP (3-6)
corresponding to genes in public signature gene lists (Poon et al. (Poon et al., 2023)), Rose et al.
(Rose et al., 2023)), Cano-Gamez et al. (Cano-Gamez et al., 2020), Terekhova et al. (Terekhova
et al., 2023) measured by weighted Jaccard Index. For each GEP, the top gene lists with the
highest overlap are shown. Tick marks represent the overlap expected from an empirical null
distribution (see methods). B. Co-expression of effector GEPs (GEP4-6) and signature gene lists
represented on integrated UMAP. For each GEP the co-expression with the gene list
corresponding to the highest weighted Jaccard Index (from A) are shown. For the Poon dataset,
violin plots on the right represent the effector GEPs scored in cells from the CD4 Tcmim, CD8 MAIT,
or CD8 Tememra Clusters, across tissues; the horizontal dashed line is the median score across all

clusters and all tissues from the Poon dataset.

Supplementary Figure 10: Naive and effector gene and protein expression of adult
peripheral blood iNKT cells. A. Cluster assignment (as in Fig. 4A) and projection of naive-like
(GEP3) and effector (GEP4-6) on adult peripheral blood iNKT cells (identified by cell hashtag). B.
Gene expression projection of co-receptors (CD4, CD8), transcription factors ZBTB16 (encoding
PLZF) and TBX21 (encoding TBET), naive T cell marker CCR7 and effector markers KLRB1
(encoding CD161), EOMES, and granzymes GZMA, GZMK; C: Flow cytometry of adult peripheral
blood iNKT cells (TRAV10* CD1d-PBS57") for a characteristic subset of markers in B.
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Supplementary Figure 11: Naive and effector gene and protein expression of adult
peripheral blood MAIT cells. A. Cluster assignment (as in Fig. 4A) and projection of naive-like
(GEP3) and effector (GEP4-6) on adult peripheral blood MAIT cells (identified by cell hashtag). B.
Gene expression projection of co-receptors (CD4, CD8), transcription factors ZBTB16 (encoding
PLZF) and TBX21 (encoding TBET), naive T cell marker CCR7 and effector markers KLRB1
(encoding CD161), EOMES, and granzymes GZMA, GZMK; C: Flow cytometry of adult peripheral
blood MAIT cells (TRAV1-2" MR1-50PRU") for a characteristic subset of markers in B.

Supplementary Figure 12: Gene and protein expression of adult peripheral blood y5 T cells.
A. Cluster assignment (as in Fig. 4A). B. y and & variable segment usage (D-V1-3, G-V9), and C.
projection of naive-like (GEP3) and effector (GEP4-6) on adult peripheral blood y3 T cells
(identified by cell hashtag). D. Gene expression projection of transcription factors ZBTB16
(encoding PLZF), naive T cell marker CCR7 and granzymes GZMB, GZMK; E: Flow cytometry of
adult peripheral blood y8 T cells. y6 T cells were separated by y and & chain usage, either as
V82*Vy9*, V817, or non-V31* non-Va2" cells and analyzed for their expression of the granzymes
in D.

Supplementary Figure 13. Characteristic gene and protein expression of adult peripheral
CD4 and CD8 T cells. A./C. Cluster assignment (as in Fig. 4A) and projection of naive-like (GEP3)
and effector (GEP4-6) on adult peripheral blood CD4 and CD8 T cells (identified by cell hashtag),
respectively. B./D. Gene expression projection of transcription factors TBX21 (encoding TBET),
FOXP3, naive T cell marker CCR7 and effector marker EOMES, chemokine receptor CXC3CR1
and granzymes GZMA, GZMB, GZMK.

Supplementary Figure 14. Reference mouse Ti., dataset. A. Integration of single-cell RNAseq
data from flow-sorted mouse iINKT, MAIT, or y6 T cells combined from nine independent studies
(Refs (Baranek et al., 2020; Chandra et al., 2023; Harsha Krovi et al., 2020; Koay et al., 2019;
Lee et al., 2020; Legoux et al., 2019; Li et al., 2022; Maas-Bauer et al., 2021; Wang et al., 2023))
and B. their annotation into 13 clusters, C. spanning across studies and cell lineages. D. Bubble

plot of key genes characterizing the 13 clusters.

Supplementary Figure 15. Gating strategies implemented to identify the various T cell

populations for analyses and sorting. The target (red gate) cell population in each panel is
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indicated above each panel. INKT and MAIT cells were pre-enriched by CD1d-PBS57 and MR1-

50PRU tetramers and magnetic beads, respectively.

Supplementary Figure 16. Determining genes associated with cNMF derived Gene
Expression Programs (GEPs). Gene ranks (sorted most to least associated, x-axis) are
displayed against their gene_spectra_score output from the cNMF analysis (y-axis) as black dots.
The slope at the first elbow point in the fitted sigmoid curve (red line) was calculated as the
minimum threshold for genes to be retained in the a given GEP. The same slope (grey dashed
line) was applied to every GEP to prevent bias in ranked gene selection, as the gene ranking

between GEPs are not comparable and relative to each GEP.

Supplementary Table I. Sample overview. Overview of cell populations collected in this study,

their tissue, donor characteristics (Donor, Sex, Age) and analyses methods (Batch, VDJseq).

Supplementary Table Il. A list of genes that are differentially expressed in each of the 18
clusters distributed across both blood and thymus-derived cells. Cluster-enriched genes by
using the FindAllIMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and

min.pct = 0.3.

Supplementary Table Ill. Gene Signatures used throughout the manuscript.

Supplementary Table IV. Ranked gene lists that compose each of the Gene Expression
Programs (GEP) determined by cNMF.

Supplementary Table V. A list of genes that are differentially expressed in each of the 7
clusters distributed across thymus-derived iNKT cells. Cluster-enriched genes by using the
FindAllIMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct =
0.3.

Supplementary Table VI. A list of genes that are differentially expressed in each of the 7
clusters distributed across thymus-derived MAIT cells. Cluster-enriched genes by using the
FindAlIMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct =
0.3.
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Supplementary Table VII. A list of genes that are differentially expressed in each of the 8
clusters distributed across thymus-derived y3 T cells. Cluster-enriched genes by using the
FindAlIMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct =
0.3.

Supplementary Table VIIl. A list of genes that are differentially expressed in each of the 4
clusters distributed across blood-derived iNKT T cells. Cluster-enriched genes by using the
FindAlIMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct =
0.3.

Supplementary Table IX. A list of genes that are differentially expressed in each of the 4
clusters distributed across blood-derived MAIT cells. Cluster-enriched genes by using the
FindAlIMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct =
0.3.

Supplementary Table X. A list of genes that are differentially expressed in each of the 5
clusters distributed across blood-derived yd T cells. Cluster-enriched genes by using the
FindAlIMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct =
0.3.

Supplementary Table XI. A list of genes that are differentially expressed in each of the 6
clusters distributed across blood-derived CD4 T cells. Cluster-enriched genes by using the
FindAlIMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct =
0.3.

Supplementary Table XII. A list of genes that are differentially expressed in each of the 6
clusters distributed across blood-derived CD8 T cells. Cluster-enriched genes by using the
FindAlIMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct =
0.3.

Supplementary Table XIlI. A list of genes that are differentially expressed in each of the 13
clusters distributed across thymus-derived mouse Tinn cells. Cluster-enriched genes by
using the FindAlIMarkers function in Seurat with test.use = MAST with latent.vars = "orig.ident"

and log fold change > 0.3.
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