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ABSTRACT 
 

The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that 

straddle the boundary between innate and adaptive immunity, having the ability to mount rapid 

responses following activation. In mice, this ability is acquired during thymic development. We 

explored the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the 

human thymus and blood using single cell RNA sequencing and flow cytometry. We reveal that 

in human blood, the majority of Tinn cells, including iNKT, MAIT, and Vd2+Vg9+ T cells, share an 

effector program characterized by the expression of unique chemokine and cytokine receptors, 

and cytotoxic molecules. This program is driven by specific transcription factors, distinct from 

those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector 

phenotype, while others share transcriptional features with developing Tconv cells, indicating 

potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not 

differentiate into multiple effector subsets but develop a mixed type I/type III effector potential. To 

conduct a comprehensive cross-species analysis, we constructed a murine Tinn developmental 

atlas and uncovered additional species-specific distinctions, including the absence of type II Tinn 

cells in humans, which implies distinct immune regulatory mechanisms across species. The study 

provides insights into the development and functionality of Tinn cells, emphasizing their role in 

immune responses and their potential as targets for therapeutic interventions. 
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Introduction 
 
The immune system is a complex network that offers protection against pathogens through two 

primary classifications: "innate" and "adaptive" immunity. Innate immunity involves pre-

established reactions driven by fixed, germline-encoded immune receptors, while adaptive 

immunity relies on the rearrangement and alteration of germline DNA to produce unique T and B 

cell antigen receptors which detect molecules derived from pathogens. 

 

Conventional CD4+ and CD8+ T cells (Tconv) play a crucial role in the adaptive immune response. 

They express T cell antigen receptors (TCRs) that recognize linear peptide fragments presented 

by major histocompatibility complex class I or II (HLA class I or HLA class II) proteins. Upon 

encountering their cognate antigens, these T cells undergo significant transcriptional and 

epigenetic changes, leading to the secretion of pro-inflammatory cytokines, chemokines and 

acquisition of cytotoxic capability that promote pathogen clearance. This process results in the 

formation of memory T cells, which are primed to respond rapidly upon reencountering the 

pathogen. Thus, Tconv cells within the circulation are heterogeneous and surface markers such as 

CCR7, CD45RA, and CD62L are commonly used to classify them into naïve (Tn), central memory 

(Tcm), effector memory (Tem), and terminally differentiated effector memory (Temra) subsets 

(Jameson and Masopust, 2018; Kaech and Cui, 2012; Sallusto et al., 1999). 

 

Recent studies have challenged the idea that somatic recombination is exclusively linked to 

adaptive immunity. Over the last 20 years, T-cell populations with TCRs that remain consistent 

among individuals and develop effector functions without prior pathogen exposure were 

discovered (Godfrey et al., 2015; Mayassi et al., 2021). These "innate-like" T-cell populations 

(Tinn), such as invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells, 

and gd T cells, account for a significant portion of human T cells, estimated to be between 10 and 

20% (Godfrey et al., 2015). They serve vital roles in host defense and immune homeostasis 

(Chandra and Kronenberg, 2015; Godfrey et al., 2019; Hayday, 2019). 

Tinn cells originate from the same thymic progenitor cells as adaptive T cells but possess several 

distinguishing features that set them apart from Tconv cells. Firstly, they do not recognize peptides 

presented by HLA class I or class II. iNKT cells express semi-invariant ab TCRs characterized in 

humans by a TRAV10-TRAJ18 Va chain coupled with a limited Vb repertoire (TRVB25) and 

recognize self- and foreign-lipid antigens presented by the non-polymorphic HLA-like molecule, 

CD1D (Matsuda et al., 2008). They are specifically detected using CD1D tetramers loaded with 
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the cognate lipid antigen a-galactosylceramide (aGC) (Benlagha et al., 2000; Matsuda et al., 

2000). MAIT cells are similarly characterized through the usage of a semi-invariant TCR a chain 

associating TRAV1-2 with TRAJ33 (or TRAJ20, or TRAJ12) that is paired with a limited number 

of TRBV chains (Legoux et al., 2017). The TCRs formed by these combinations can be detected 

with tetramers of the MAIT restricting molecule, MR1, when loaded with 5-(2-

oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), a derivative of the microbial vitamin B2 

precursor 5-Amino-6-(D-ribitylamino)uracil (5-A-RU) (Reantragoon et al., 2013). gd T cells 

express TCRs encoded by TRGV and TRDV gene segments but the specific antigen-presenting 

elements responsible for their development or activation remain unknown. A major gd T-cell 

population bearing Vd2-Vg9 TCRs is activated by self- and foreign phosphoantigens in conjunction 

with transmembrane butyrophilin-family receptors BTN2A1-BTN3A1-BTN3A2 complex (Harly et 

al., 2012; Karunakaran et al., 2020; Rigau et al., 2020). The antigens recognized by other human 

gd T-cell populations remain unclear (Deseke and Prinz, 2020). In summary, Tinn expand the 

spectrum of antigens detectable by T cells, enhancing the immune system's ability to recognize 

and respond to a diverse array of threats. 

The conservation of Tinn cells throughout mammalian evolution indicates a crucial and 

nonredundant role for these subsets in the immune system (Harly et al., 2022). This importance 

may be attributed to their innate characteristics displayed during inflammation and infection, such 

as rapid activation kinetics without prior pathogen exposure and the ability for antigen receptor-

independent activation. Inflammatory cytokines, including IL-12, IL-18, and type I interferons, can 

activate Tinn cells even in the absence of simultaneous signaling through their TCRs (Leite-De-

Moraes et al., 1999; Ussher et al., 2014). 

In mice, the rapid effector capacity of Tinn cells is due to a unique transcriptional program formed 

during their development in the thymus, distinguishing them from conventional T cells (Baranek 

et al., 2022; Krovi et al., 2022). Analogous to CD4 Tconv cells, which can be polarized by cytokines 

into T helper (Th) phenotypes such as Th1, Th2, and Th17 that secrete IFNg, IL-4, and IL-17 

respectively, mouse Tinn cells diverge into distinct, terminally differentiated, subsets that can be 

readily identified based on the expression of specific transcription factors like PLZF, GATA3, T-

bet, and RORgt (Lee et al., 2013). Additionally, mouse iNKT subsets produce cytokines at steady 

state, directly affecting surrounding cells in the microenvironment and the development and 

polarization of Tconv cells (Breed et al., 2022; Cui et al., 2022; Lee et al., 2013). This implies that 

Tinn cells may function as gatekeepers, ensuring proper T cell development and maturation. 
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While studies in mice have delineated the developmental trajectories of Tinn and analyses of 

distinct subsets of peripheral human Tinn cells have shed light on the developmental stages of 

human Vd2-Vg9 (Perriman et al., 2023), and functional subtypes of human MAIT cells (Chandra 

et al., 2023; Garner et al., 2023), a comprehensive picture spanning development and peripheral 

function across Tinn and Tconv is lacking. In this study, we utilized the unbiased potential of single-

cell genomics combined with flow cytometry to assess the range of phenotypic states Tconv and 

Tinn cells can adopt in vivo in the human thymus and blood. We uncovered that the majority of 

postnatal human thymic Tinn cells exhibit a transcriptome akin to that of naive CD4+ or CD8+ Tconv 

cells. Only a fraction of thymic Tinn cells show a transcriptional signature indicative of an "effector" 

state. Conversely, most adult blood Tinn cells display an effector transcriptome. While Tconv cells 

exhibit a continuum of transcriptional states, spanning from naive to central and effector memory 

T cells, Tinn cells express a distinct transcriptional program shared among iNKT, MAIT and Vd2Vg9 

T cells. However, unlike the mouse, human Tinn cells do not differentiate into functionally distinct 

subsets; instead, they develop an effector program with mixed type 1/type 3 effector potential. 

Notably, our study demonstrates that the major transcription factors governing the human Tinn 

program are also expressed in mouse Tinn cells, although species-specific differences were also 

apparent. Finally, our study highlights differences in the pattern of CD1D expression in the thymus 

between the two species, which could potentially impact the maturation process of iNKT cells in 

humans.  
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Results 

 

Single-Cell RNA Sequencing Analysis of T Cell Maturation and Post-Maturation Stages in 

Humans. To comprehensively explore the transcriptional profile of Tinn and Tconv throughout their 

maturation and post-maturation stages in humans, we conducted single-cell RNA sequencing on 

tetramer-sorted iNKT cells (PBS57-CD1d tetramer+, TRAV10+), MAIT (5-OP-RU-MR1 tetramer+, 

TRAV1-2+), and total gd T cells, in addition to single positive (SP) CD4 and CD8 Tconv cells derived 

from four pediatric thymus and twelve adult blood samples. Tetramer-based sorting of iNKT and 

MAIT cells was used to enrich these rare cell populations and labeling by DNA-barcoded 

antibodies (<hashtags=) allowed us to confidently assign cell identities based on TCR specificity 

(Supplementary Fig 1). The sorted cell populations were then pooled across batches and loaded 

onto a BD Rhapsody cartridge, which allowed for single-cell capture and library construction. A 

subset of samples was also subjected to VDJ sequencing (Fig 1A, Supplementary Table I). A total 

of 78,607 cells (37,369 cells from pediatric thymus and 41,238 cells from adult blood) passed 

quality control (see methods) and were integrated into a combined reference dataset that 

minimized batch-associated variation while preserving tissue-specific differences (Fig. 1B, C and 

Supplementary Fig 2A, B). To identify and characterize subpopulation structures, we used 

unsupervised graph-based clustering, which led to the assignment of 18 distinct and stable 

clusters (Fig 1C), as assessed by repeated sampling and reassignment of the cells to clusters 

(Supplementary Fig 2C). Distinct niches were identified, primarily separating into thymus (clusters 

0 through 9) or blood-associated regions (clusters 12 through 17), with a transitioning niche 

exhibiting an equal proportion of cells from both thymus and blood tissues (clusters 10 and 11) 

(Fig 1D & E). Cells in this space represent naïve T cells that are prepared to leave the thymus 

and/or just populated the blood, in agreement with their overrepresentation of an 'egress' gene 

signature (Sanchez Sanchez et al., 2022) (Fig 1F, Supplementary Table III).  

 

The cell identities and/or transcriptional states of the clusters were determined using reference 

signature genes lists (Park et al., 2020), and the top five genes that characterize each cluster 

(Supplementary Fig 3A, B, Table II). Additionally, we used neighbor voting (Crow et al., 2018) 

with the cells from the human thymus atlas (Park et al., 2020) to assess the replicability of cell 

types and validate the assigned cell identities of the clusters that exhibited high similarity 

(Supplementary Fig 4). Starting at the beginning of T cell development, immature single positive 

(ISP) cells with a quiescent (cluster 0, from here on c0 and accordingly for other clusters) and 

cycling cell population (c1) were identified, along with double positive (CD4+CD8+, DP) 
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thymocytes (c2). In humans, ISP cells, which precede the DP stage of development, express the 

CD4 molecule and were inadvertently sorted together with SP CD4 T cells. From DPs, thymocytes 

mature into CD4 single-positive (SP) and CD8 SP cells. Early stages of SP are characterized by 

the expression of the chemokine receptor CCR9 (c3 for CD4 SP and c9 for CD8 SP), which is 

lost in later stages, concomitant with the expression of CCR7 (c11 for CD4 SP, c10 for CD8 SP; 

Supplementary Fig 5A). Differential gene expression analysis comparing CD4 SP cells (c3 and 

c11) to CD8 SP cells (c9 and c10) further confirms these annotations, based on the overlap of 

the differentially expressed genes (DEGs) and previously defined signatures that distinguish CD4 

SP from CD8 SP cells (Chopp et al., 2020) (Supplementary Fig 5B). Specialized lineages were 

detected in distinct regions in the two-dimensional UMAP space, including CD8aa cells with their 

distinct gene signature including expression of GNG4 and NUCB2, thymic gd T cells and 

regulatory T cells (Tregs) with high expression of FOXP3 (c5, c6 and c7, respectively). Other 

signaling states included cells with high levels of transcripts encoding transcription factors 

associated with TCR signaling (c4), such as NR4A1, EGR1, EGR3, and NFKBID, and were 

named "agonist", cells with high expression of type I interferon signaling genes (IFI6, MX1, and 

IFI44L in c8), AP-1 transcription factors (JUN, FOS, JUNB in c12), and effector-encoding genes 

(GZMK, GZMH, GZMB, PRF1, and CCL5), suggesting involvement in effector functions of these 

cells (c13 through c17) were also found. Altogether, the clusters and their low-dimensional 

embedding displayed distinct transcriptional profiles, representing unique cell types (CD8aa, 

Tregs) as well as various stages of T cell development and maturation.  

 

Identification of the Gene Expression Programs that Characterize T cell populations in 

Thymus and Blood. Deciphering scRNA-seq data can be challenging due to the intricate nature 

of each cell's gene expression pattern, which may encapsulate both its inherent identity and its 

present activity or role. To tackle this complexity, we applied consensus non-negative matrix 

factorization (cNMF) to project the high-dimensional data into lower-dimensional factors, enabling 

the identification of gene modules with similar biological functions that exhibit high correlations 

(Kotliar et al., 2019). We identified 12 distinct gene expression programs (GEPs; Fig 1K, 

Supplementary Table IV). To assess the contribution of each cell type to these GEPs, we 

separated each sample by cell type and tissue using the identifying tag (Fig 1G) and observed 

that some of these GEPs define activity programs shared across different cell types, while others 

are unique to specific cell clusters (Fig 1K). Specifically, GEPs 7 to 11 were associated with thymic 

gd T cells, Tregs, thymic CD8aa T cells, quiescent ISP and proliferating ISP, respectively. We 

excluded GEP 12 from further analysis as it was driven by a batch effect (Supplementary Fig 6). 
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GEP 1 and GEP 2, characterized by the presence of CCR9 and CCR7, respectively, exhibited 

heightened activity in early and late developing thymic T cells. GEP3 was prominently expressed 

by naïve T cells. Among the remaining GEPs, three gene modules showed distinct distributions 

that overlapped with previously defined <effectorness= signatures, which are both exhibited in Tconv 

and Tinn (Fig 1G, H): GEP 4 showed high activity in cluster 12, GEP 5 exhibited high activity in 

clusters 13 and 14, while GEP 6 displayed the highest activity in clusters 15, 16, and 17 (Fig 1K). 

Leveraging insights from these gene modules, as detailed in the subsequent sections, we 

conducted an in-depth analysis of thymic and blood T cell populations, providing an integrated 

understanding of T cell differentiation and function. 

 

Unbiased Transcriptomic Analysis of Human Tinn Differentiation. To assess the distribution 

of each sorted T cell population across the 18 transcriptionally distinct clusters and GEPs, we 

separated each sample by cell type and tissue using the identifying tag (Fig 1G). Consistent with 

the gene signatures of each cluster, CD4+ thymic cells were predominantly found in clusters 0, 1, 

2, 3, 4, 7, 8, and 11, while CD8+ thymic cells were primarily located in clusters 2, 5, 6, 7, 8, 9, and 

10. Notably, the proportion of cells in each cluster was consistent across the four independent 

samples analyzed, with approximately 1% (1.1% ± 0.4%) of the cells populating clusters exhibiting 

an effector signature (Fig 1G, H & I). Unexpectedly, a substantial proportion of thymic iNKT cells 

were distributed across the same clusters as conventional CD4+ cells, while thymic MAIT cells 

predominantly shared clusters with conventional CD8+ cells (Fig 1G). Interestingly, thymic gd T 

cells were transcriptionally distinct from all other cell types, with most of the cells occupying cluster 

6 and GEP7 (Fig 1 G, K).  

To delve further into the transcriptional heterogeneity of human thymic Tinn cells, we re-analyzed 

the iNKT and MAIT cell populations individually (Fig 2). We found seven stable clusters for both 

cell types (Fig 2A, E), and the proportion of cells in each cluster was consistent across donors 

(Fig 2B, F). We identified five major cell signatures that were shared across Tconv, iNKT and MAIT 

cells (Supplementary Figure 3C, D). First, we observed a distinctive gene signature associated 

with CD8aa T cells (captured by GEP9, as illustrated in Fig 1K and Supplementary Fig 7, Tables 

V and VI). This signature was characterized by the heightened expression of genes including 

NUCB2, MINDY2, and HIVEP3 (Supplementary Fig 3C, D), and intriguingly, it was observed in 

both iNKT and MAIT cells (termed NKT_c0 and MAIT_c1) (as shown in Fig 2C and G). Notably, 

this specific subset of thymic CD8+ iNKT cells, which also exhibited some PLZF expression while 

lacking CD161, EOMES, and GZMK expression (Fig 2M), could be readily identified using flow 

cytometry (Supplementary Fig 8). These findings imply the potential existence of a unique 
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selection process for certain Tinn cells, possibly linked to their colonization of the gut epithelium. 

Second, we identified a similar pattern of expression for the CCR9 and CCR7 chemokine 

receptors, which serve as markers for early and late SP stages in Tconv cells, as well as in iNKT 

and MAIT cells (Fig 2M and Supplementary Fig 7). Initially, iNKT and MAIT cells exhibited an 

upregulation of CCR9 in conjunction with TOX and SATB1 (Supplementary Fig 3C, D), resembling 

the developmental program seen in early developing CD4 SP and CD8 SP cells, respectively. 

Subsequently, the elevated expression of CCR7 marked cells that appeared to be at a more 

advanced developmental stage (termed NKT_c2 and MAIT_c4). These sequential waves of 

chemokine receptor expression align with gene modules GEP1 and GEP2 (Supplementary Fig 

7), suggesting that they might be induced sequentially during the development of CD4, CD8, iNKT, 

and MAIT cells. These findings lend support to the notion that the human thymus harbors iNKT 

and MAIT cells with a transcriptome resembling that of developing naïve Tconv cells. The existence 

of such naïve populations (CD161- EOMES- GZMK-) of iNKT and MAIT cells in the human thymus 

were confirmed by flow cytometry (Supplementary Fig 8). Third, we discovered iNKT and MAIT 

cells characterized by upregulation of genes associated with type I interferon signaling such as 

MX1 and IFI6 (NKT_c3 and MAIT_c5, Supplementary Fig 3C, D), similar to CD4 and CD8 SP 

cells. Fourth, we detected SP-corresponding TCR signaling/AP-1 signatures. In iNKT cells, the 

upregulation of genes encoding AP-1 family transcription factors FOS and JUN correlated with 

expression of genes typically associated with this cell type, such as ZBTB16 and KLRB1. These 

cells also expressed CD4 transcripts but not CD8A (NKT_c5, Supplementary Fig 3C). The TCR 

signature was more pronounced in MAIT cells, where a small subset showed clear upregulation 

of genes involved in TCR signaling (NR4A1, NFKBID, REL; MAIT_c3, Supplementary Fig 3D). 

Fifth, unlike Tconv, in the thymus we discovered a proportion of both iNKT and MAIT cells having 

an effector signature. We found a cluster of iNKT cells (NKT_c6) expressing classically iNKT-

associated genes along with upregulation of effector genes usually associated with type I 

immunity, such as EOMES and GZMK (Fig 2M, Supplementary Fig 3C). Some of these cells 

expressed CD8A transcripts, suggesting that CD4+ and CD8+ iNKT cells might develop into 

transcriptionally distinct subsets, with CD8+ iNKT cells having a more effector-associated 

signature. For MAIT cells, we found a similar pattern, with cells expressing genes previously 

associated with MAIT cells (KLRB1, SLC4A10, IL23R) (Dusseaux et al., 2011; Park et al., 2019) 

also displaying an effector transcriptome signature (MAIT_c6, Supplementary Fig 3D). This was 

evidenced by the upregulation of genes encoding for granzymes (GZMA and GZMK), chemokines 

(CCL5), chemokine receptors (CCR6), and transcription factors usually associated with type I 

(EOMES) or type 3 (RORA) immunity (Fig 2M and Supplementary 8). In our integrative analysis 
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from both the thymus and blood, we identified a shared utilization of these effector programs by 

iNKT, MAIT and gd T cells. Specifically, approximately 28.7% ± 22.3% of thymic Tinn cells 

displayed an effector signature, as depicted in Fig 1G, I (clusters 12-17). To delve deeper into 

whether these effector Tinn cells in the thymus are cells that initially acquired an effector signature 

in the blood and subsequently recirculated back to the thymus, we conducted a comparative 

examination of gene expression profiles between effector iNKT and MAIT cells in the thymus and 

blood (Supplementary Fig 5C). Our results revealed distinctive tissue-specific gene expression 

profiles for both cell types. Thymic cells exhibited higher expression levels of genes such as CCR7, 

TOX, TOX2, and SOX4. Conversely, blood-derived cells demonstrated elevated expression of 

genes including DUSP2 and BCL2. These findings strongly suggest that thymic Tinn cells found in 

the effector clusters possess a unique transcriptome when compared to their blood counterparts. 

Therefore, it is unlikely that these effector Tinn cells are derived from recirculating cells originating 

in the blood. 

Finally, we also re-analyzed post-natal thymic human gd T cells separately and identified 

8 transcriptionally distinct clusters (Fig 2I and Supplementary Fig 3E, Table VII), with findings 

largely replicating a recent report on pediatric gd thymocytes (Sanchez Sanchez et al., 2022). We 

found immature populations observed in GD_c0, 1, and 2, cells with TCR activation/co-stimulation 

profiles (GD_c3), type I interferon response signature (GD_c6) and effector gd T cells displaying 

an Egress gene signature and a mixed type 1/type 3 effector potential (GD_c7). We also observed 

cells with a cycling gene signature (GD_c4), which was notably absent in iNKT and MAIT cells. 

Overall, our findings demonstrate that only a small proportion of Tinn cells in the thymus exhibit a 

transcriptional signature associated with an effector program, and that this effector program has 

a distinct mixed type 1/type 3 effector potential. 

 

Effect of clonal selection on iNKT, MAIT and gd T cells effector states. To investigate whether 

the Tinn cells exhibiting an effector transcriptome possessed a distinct TCR repertoire compared 

to the naïve Tinn cells identified in the human thymus, we conducted paired VDJ sequencing (Fig 

3). This allowed us to link the different cell states to their corresponding TCR sequences, providing 

insights into the diversity and specificity of the TCR repertoire within these distinct Tinn cell 

populations. As a measure for TCR diversity, we used the Shannon index comparing naïve-like 

cells to effector-like cells, as determined by the cluster assignment on the re-analyzed cell types 

described above. For iNKT cells, we found that most of the VDJ sequenced cells used the 

TRAV10 gene segment rearranged with TRAJ18 (Fig 3A, B), resulting in a CDR3 size of 14 amino 

acids with a canonical sequence (Fig 3C), emphasizing the importance of the CDR3a for antigen 
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recognition by iNKT cells (Scott-Browne et al., 2007). This invariant TCRa chain was paired with 

diverse TCRb rearrangements involving primarily the TBV25 chain (Fig 3D), which was evenly 

used across all clusters (Fig 3E). We did not observe any shared TCR clonotypes between the 

naive- and effector-like cells. Additionally, the Shannon indexes for TCR clonotypes were found 

to be identical across both naïve- and effector-like cells, suggesting the absence of clonal 

selection associated with the development of an effector transcriptome.  

Thymic MAIT cells largely used the TRAV1-2 gene segment rearranged primarily with 

TRAJ33, TRAJ20 and TRAJ12 (Fig 3G, H), as previously reported (Reantragoon et al., 2013). 

These rearrangements were largely of the same CDR3 size with limited sequence diversity and 

notably, contained the conserved Y95 residue within the CDR3a loop (Fig 3I), which is crucial to 

MAIT cell activation (Reantragoon et al., 2012; Young et al., 2013). These TCRa chains were 

paired with a diverse repertoire of TCRb chains (Fig 3J), dominated by the usage of the TRBV6, 

TRBV20 and TRBV4 gene segments (Reantragoon et al., 2013; Tilloy et al., 1999). Similar to our 

observations with iNKT cells, we found no sharing of TCR clonotypes and no evidence of clonal 

selection among MAIT cells with an effector transcriptome (MAIT_c6) compared to naïve-like cells 

(MAIT_c2-4) based on the Shannon index of TCR clonotypes (Fig 3K). In contrast, effector gd T 

cells (GD_c7) were enriched for cells expressing the TRDV2 and TRGV9 gene segments, while 

cells expressing TRDV1 and TRDV3 gene segments were excluded from this cluster (Fig 3L). 

However, some TRDV2+ or TRGV9+ cells could also be found in the non-effector clusters, 

suggesting a potential role for these gene segments in the development of effector gd T cells in 

the post-natal human thymus. Supporting this hypothesis, we observed that the rearrangements 

of both the Vd2 chains and associated Vg9 chains differed largely between cells in the effector 

versus non-effector clusters (Fig 3N). Specifically, the Vg9 chains of effector cells were found to 

be preferentially rearranged with the TRGJP gene segment and enriched for the public CDR3 

sequence typically found amongst Vd2Vg9 gd T cells in the adult blood (Davey et al., 2018) (Fig 

3O), whereas Vd2+ cells in the non-effector clusters showed more diverse Vg gene usage and 

rearrangements (Fig 3N). In summary, the acquisition of the effector programs in iNKT and MAIT 

cells is not associated with changes in TCR diversity, while the rearrangements of Vd2 and Vg9 

chains in gd T cells suggest predisposition towards the effector program. 

 

Gene Expression Programs that Characterize T cell Effector Functions. Our detailed 

analysis of thymic T cell populations and gene expression modules revealed shared 

developmental patterns between iNKT, MAIT, and Tconv cells. To further characterize the 
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functionality of Tinn and Tconv cells in the blood, we initially examined the distribution of these cell 

types across transcriptional clusters. In the blood, conventional CD4+ T cells were primarily 

located in cluster 11 (representing naïve CD4 T cells) and 7 (comprising Tregs). However, a 

variable proportion of CD4+ T cells was also observed in effector clusters, particularly clusters 12 

and 16, and this proportion varied among donors, ranging from 18.4% to 93.7% of cells (Fig 1G 

& J). Blood CD8+ T cells were predominantly found in cluster 10, representing naïve CD8 T cells, 

although varying proportions of CD8+ T cells were present in effector clusters. This variability may 

reflect differences in the immunological history of each donor, with proportions ranging from 16.5% 

to 94% of cells (Fig 1J). In striking contrast, the majority of blood Tinn cells (approximately 94.3% 

± 6.7%) were distributed across effector clusters 12 to 17, irrespective of the donor (Fig 1J).  

 We next investigated the transcriptional states in blood T cell populations using the cell 

hashtags to reanalyze blood iNKT, MAIT, gd T cells and Tconv CD4+ and CD8+ T cells individually 

(Fig 4A, B). Our analysis, utilizing the previously identified naïve and effector gene modules 

(GEP3-6; Fig 1K, Supplementary Tables VIII-XII), indicated that each of the investigated cell types 

could be found within these identified gene programs, albeit with varying proportions for each cell 

type (Fig 4C, D). To provide further context and understanding of these gene modules, we 

computed overlap scores and statistically assessed their enrichment with literature-derived 

signatures (Cano-Gamez et al., 2020; Poon et al., 2023; Rose et al., 2023; Terekhova et al., 2023). 

Subsequently, we scored the joint signature-GEP interactions in our dataset (Supplementary Fig 

9). GEP3 was found to be closely associated with signatures of naïve T cell characteristics. In 

contrast, GEP4 displayed similarities with central memory T cells (Tcm), effector memory (Tem) or 

literature-derived signatures classified as a mix thereof (Tcm/Tem), while GEP6 exhibited 

characteristics akin to terminally differentiated effector memory cells (Temra). GEP5, on the other 

hand, shared elements with Tem cells and previously identified CD8 MAIT signatures 

(Supplementary Fig 9A). When examining blood iNKT cells, we noticed that they predominantly 

fell into two categories, expressing either the GEP3 or GEP5 programs (Fig 4D). However, there 

was also a subset of iNKT cells that exhibited either the GEP4 or GEP6 programs. Interestingly, 

the distribution of these programs varied significantly among different donors (Fig 4B). Notably, 

iNKT cells characterized by the GEP4 program expressed CD4 transcripts, whereas those using 

GEP5 or GEP6 had lost CD4 expression (Supplementary Fig 10A). To validate this observation, 

we examined the cellular phenotype of blood iNKT cells. We found that blood CD4+ iNKT cells 

were mostly PLZF- CD161- EOMES- GZMK- but CCR7+, suggesting that they likely belonged to 

the naïve GEP3 program (Supplementary Fig 10). In contrast, CD8+ and DN iNKT cells were 

mostly PLZF+ CD161+ and displayed an effector phenotype (EOMES+ GZMK+ CCR7- CD62L-, 
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Supplementary Fig 10). These findings are in line with previous data indicating that CD4-negative 

iNKT cells become more prevalent in the blood with age, eventually becoming the dominant 

population in the adult blood iNKT cell compartment (Berzins et al., 2005; Sandberg et al., 2004). 

This suggests that CD4-negative iNKT cells may originate from CD4+ iNKT cells that undergo a 

loss of CD4 expression (and potentially gain CD8 expression in some cases) as they transition 

toward a more effector-like state. Conversely, when examining MAIT cells in the blood, we 

observed that the majority of them exhibited the GEP5 program, with only a minor fraction utilizing 

the GEP6 program (Figure 4D). This GEP phenotype was further confirmed by flow cytometry, 

revealing that most MAIT cells were CD8+, and interestingly, all MAIT cells displayed a uniform 

effector state (characterized by PLZF+ CD161+ EOMES+ GZMK+ CCR7- CD62L-), regardless of 

CD8 expression (Supplementary Figure 11). These findings indicate that MAIT cells in the 

bloodstream primarily exist in a single cell state, aligning with recent data demonstrating minimal 

transcriptional heterogeneity among blood and liver-resident MAIT cells (Garner et al., 2023), and 

no significant transcriptional distinctions between CD8+ and DN MAIT cells. 

 Blood gd T cells were stratified into five distinct clusters, with one cluster corresponding to 

naïve cells (c0, GEP3) and another cluster (c4, GEP11) representing cycling cells. The majority 

of cells in clusters c1-c3 were categorized into either the GEP5 or GEP6 program (Figure 4C, D), 

and this division in GEP utilization closely mirrored the specific TCR usage among these cells. 

Specifically, TRDV2/TRGV9-expressing cells were predominantly associated with the GEP5 

program, whereas cells expressing TRDV1+ or TRDV3+ were enriched in clusters expressing 

GEP6 (Supplementary Fig 12A-C). These GEP phenotypes were further validated through flow 

cytometry, revealing that Vg9+Vd2+ T cells primarily expressed PLZF and GZMK, while Vd2- T 

cells were PLZF- but instead GZMB+ (Supplementary Figure 12D, E). In light of this, it appears 

that the GEP5 program represents an effector gene module exclusively expressed by innate T 

cells, suggesting that human Tinn cells share a common transcriptional state. This observation 

parallels the way mouse iNKT and MAIT cells share type 1 or type 3 immunity effector states 

(Krovi et al., 2022). Regarding the distribution of CD4 and CD8 Tconv cells in the blood, it revealed 

two primary patterns. Some Tconv cells were found within clusters containing naïve cells (clusters 

0 and 1), characterized by high expression of GEP3. In contrast, others were dispersed across 

clusters of cells displaying a gradient of the GEP6 program, with intermediary cells expressing 

GEP4 (Supplementary Figure 13). The proportions of cells in these clusters exhibited variations 

among donors (Fig 4B). In summary, these findings underscore the distinct associations between 

different T cell types and effector programs. In the blood, iNKT, MAIT, and Vg9+Vd2+ gd T cells 

predominantly employ the GEP5 program, a program also shared by effector Tinn cells in the 
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thymus (Supplementary Fig 7). Conversely, conventional CD4+ and CD8+ T cells transition into 

effector cells along a gradient defined by the GEP6 program. Notably, this GEP6 program is also 

shared by Vd3+ and Vd1+ gd T cells. 

 Next, we aimed to identify genes specific to each T cell lineage in human blood. We 

conducted pairwise DEG analyses between the lineages using a pseudo-bulk method in 

conjunction with the Likelihood Ratio Test after accounting for batch effects. As a result, we 

uncovered a total of 167 genes that exhibited significant differential expression (padj < 0.01) in at 

least two of the comparisons we conducted (Figure 4E). These distinct patterns of differential 

expression provided insights into changes linked to the transition from a "naive" state to an 

"effector" state across various cell types. Furthermore, we identified genes that were commonly 

expressed by two distinct cell types when compared to the others. Nevertheless, we did not readily 

discern any gene expression patterns specific to a particular cell type. However, intriguingly, 

among these, a group of 104 genes appeared to be capable of distinguishing gd, MAIT, and iNKT 

cells from Tconv CD4 and CD8 T cells. It is noteworthy that 63% of these genes overlap with the 

previously identified GEP5 program. Given that only Vg9+/Vd2+ T cells share the GEP5 program 

with iNKT and MAIT cells, while Vd2- T cells exhibit greater similarity to Tconv cells as they share 

the GEP6 program (Supplementary Fig 12), we explored whether we could identify cell-type-

specific gene signatures specifically among GEP5-expressing cells, using the same analytical 

approach. Surprisingly, the results demonstrated that the only genes expressed at significantly 

different levels across iNKT, MAIT, and gd T cells when employing the GEP5 program (Fig 4F) 

were genes encoding the constant regions of the TCR genes (TRGC1, TRAC), the CD8 

coreceptor (CD8A, CD8B), and the CD94 receptor (encoded by KLRD1). These findings 

collectively suggest that in the human blood, Tinn cells, which encompass iNKT, MAIT, and 

Vg9+/Vd2+ cells, distinguish themselves from Tconv cells by employing a specific gene program, but 

there is minimal transcriptional difference among Tinn cells themselves. 

 

The effector GEPs exhibit distinct migration, cytokine, chemokine and integrin 

characteristics established by distinct Gene Regulatory Networks. The differentiation states 

of T cells are intricately tied to their phenotypic, functional, and migratory attributes, rendering the 

characterization of these states highly relevant from a clinical perspective. In fact, our findings 

underscore that each GEP is aligned with the preferential expression of distinct sets of chemokine 

and cytokine receptors, as well as chemokines, cytokines, cytotoxicity-related molecules, NK 

receptors, and integrins (Fig 5A). To exemplify, the GEP4 program, shared notably by both 

Tcm/Tem (Supplementary Fig 9) and, to some extent, iNKT cells depending on the donor (Fig 4B-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

D), demonstrates heightened transcription levels of genes coding for the chemokine receptors 

CXCR3 and CCR4, the Sphingosine-1-Phosphate Receptor 4, and the oxysterol receptor 

GPR183. The latter has been documented to offer survival and migratory signals to thymocytes 

and CD4 T follicular helper cells(Li et al., 2016). Furthermore, the GEP4 program showcases 

heightened expression levels of IL2RA, IL6R, IL-4R, and the integrin ITGB1, while conspicuously 

lacking transcripts linked to cytotoxic molecules. Conversely, the GEP5 program, closely linked 

to the majority of cells from Tinn cell subsets (iNKT, MAIT, Vd2g9+ gd T cells) across most donors 

(Fig 4B-D), demonstrates elevated expression of diverse chemokine receptors, including CCR1, 

CCR2, CCR5, CCR6, as well as CXCR6 and of cytokine receptors such as IL18R1, IL18RAP, 

IL12RB1, IL12RB2, IL23R, and IFNGR1 (Fig 5A). This distinct gene expression pattern is further 

marked by the presence of granzymes A and K transcripts, while granzymes B and H are notably 

absent (Fig 5A and Supplementary Fig 5A). Another noteworthy hallmark of the GEP5 program 

is the expression of the NK receptor KLRB1. These findings closely align with previously identified 

markers associated with human MAIT and Vd2g9+ gd T cells (Davey et al., 2018; Meermeier et al., 

2022; Park et al., 2019) and are consistent with the demonstrated ability of Tinn cells to respond 

to inflammatory cytokines like IL-12, IL-18, and IL-23, even without TCR engagement. On the 

other hand, the GEP6 program, primarily associated with Tem/emra cells (Supplementary Fig 9) and 

Vd1+ and Vd3+ gd T cells across the majority of donors (Fig 4B, C and Supplementary Figure 12), 

is characterized by increased expression of CX3CR1 (Supplementary Figure 13). The graded 

expression of CX3CR1 correlates with the differentiation of both CD4 and CD8 T cells towards an 

effector state (Zwijnenburg et al., 2023). Additionally, the GEP6 program exhibits heightened 

expression of transcripts encoding IFNG, CCL4, CCL5, KLRD1, as well as several integrins 

(ITGAL, ITGB2, ITGAM). It also includes genes associated with cytotoxicity, such as granzymes 

B, H, and granulysin (GNLY). Interestingly, transcripts for granzyme K are significantly reduced 

in GEP6 compared to GEP5. These results are in line with recent findings indicating that GZMK+ 

and GZMB+ cells delineate Tcm and Tem/Temra T cell populations (Duquette et al., 2023; Jonsson 

et al., 2022). 

To predict gene regulatory networks associated with these gene programs, we used 

Single-Cell Regulatory Network Inference and Clustering to identify enriched TFs with their direct 

downstream targets and scored the activity of these so-called regulons in single cells (Aibar et al., 

2017). We identified a total of 149 regulons that were expressed in at least 20% of the cells within 

a specific cluster and displayed associations with different clusters (Fig 5B). Notably, 11 regulons 

exhibited more pronounced activity in Tinn cells compared to Tconv cells (Fig 5B). These regulons 

were governed by TFs such as ELK3, MBD2, CREM, NFE2L2, NR1D2, XBP1, MYBL1, RORA, 
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MAF, CEBPD, and FOSL2. Curated analysis of their predicted target genes indicates that these 

transcription factors may play a central role in shaping the unique transcriptional profile observed 

in Tinn cells during steady-state conditions. This role potentially encompasses the regulation of 

chemokine and cytokine receptors, as well as other genes associated with Tinn cells, including 

ZBTB16 (which encodes PLZF), the master regulator of the Tinn cell lineage (Fig 5C). Interestingly, 

previous data established CEBPD as a regulator of CCR6 expression in human MAIT cells(Lee 

et al., 2018). Furthermore, FOSL2 (encoding Fra2) has been implicated in the normal 

development of mouse iNKT cells(Lawson et al., 2009), and c-Maf has been recognized as a key 

player in the differentiation of IL-17-producing mouse iNKT cells (Yu et al., 2017). Additionally, 

RORA has been described as an auxiliary transcription factor for Th17 cells (Ciofani et al., 2012), 

and there is evidence of CREM, XBP-1 and NR1D family of TFs involvement in the regulation of 

Th17 cells as well (Chang et al., 2019; Yoshida et al., 2016). The remaining transcription factors 

in this list, to the best of our knowledge, have not been extensively studied in the context of Tinn 

cell development and/or function. In addition to this set of regulons, another group of regulons 

exhibited enriched activity within effector Tconv cells, although some shared activity with Tinn cells 

(including EOMES, RUNX3, PRDM1, and FLI1; Fig 5B). These findings are consistent with 

previous results showing that EOMES and RUNX3 collaborate to promote the formation of the 

transcriptional program through epigenetic programming of innate memory CD8 T cells in mice 

(Istaces et al., 2019). This suggests that similar mechanisms might be at play in human Tinn cells. 

As Tconv cells differentiate into Tem/emra cells, there is an increased activity of regulons driven by 

TBET, KLF, and NFAT family transcription factors (Fig 5B and D), in agreement with their 

functions in regulating the cytolytic activity of CD8 T cells (Intlekofer et al., 2005; Klein-Hessling 

et al., 2017; Nah and Seong, 2022). Taken together, our data unveil novel candidate regulators 

of Tinn and Tconv effector programs, along with their predicted target genes, which warrant further 

experimental validation. 

 

Cross-species analysis of thymic Tinn cells development. Our analysis of human Tinn and Tconv 

cells across thymus and bloodstream revealed common transcriptional patterns during their 

development. Interestingly, in the thymus, only a minority of Tinn cells displayed an effector 

phenotype, marked by a unique gene expression program that we named GEP5. This differs from 

the predominant effector association of Tinn cells in mouse thymus, where distinct effector subsets 

that closely resemble CD4 T helper cells and innate lymphoid cells develop and reside (Krovi et 

al., 2022; Lee et al., 2020; Legoux et al., 2019). To explore the similarities in the transcriptional 

signatures of mouse and human Tinn cells, we first constructed a reference mouse Tinn dataset, 
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comprising data from nine different studies (Baranek et al., 2020; Chandra et al., 2023; Harsha 

Krovi et al., 2020; Koay et al., 2019; Lee et al., 2020; Legoux et al., 2019; Li et al., 2022; Maas-

Bauer et al., 2021; Wang et al., 2023). This merged dataset revealed 13 transcriptionally distinct 

clusters, where iNKT, MAIT, and gd T cells coexisted, with variable proportions (Fig 6A and 

Supplementary Fig 14, Table XIII). In addition, there are also lineage-specific clusters, like 

clusters 1 and 2 unique to gd T cells, representing immature Cd24a+ Gzma+ cells (Lee et al., 2020; 

Li et al., 2022). Other clusters represented signaling cells committing to innate T cell lineage (in 

clusters 3 and 4), cycling cells (in cluster 5), type I cells in clusters 8 and 9, type II cells in clusters 

6 and 7 and type III cells in clusters 10 and 11. Cluster 0 expressing Sell (encoding for Cd62l), 

Klf2, Ccr7, Foxo1 and S1pr1 and associated with post-selection/naive T cells likely represents 

Tinn cells positively selected on thymic epithelial cells (TECs), bypassing the "innate" pathway 

(Krovi et al., 2022; Salou et al., 2021). Altogether, this analysis enabled us to establish the 

fundamental signatures of mouse Tinn subsets and to perform a cross-species comparison of cell 

identities. Using a meta-analysis approach that compares similarities between cell clusters, we 

assessed the pairwise correspondence between these murine Tinn signatures and our human 

iNKT, MAIT, and gd T cell clusters (Fig 6B). Among the human iNKT cells residing in cluster 0 

(NKT_c0) and exhibiting a CD8aa T cell gene signature, we observed the strongest resemblance 

to the signaling cells (Fig 6B). This similarity is likely due to the shared expression of numerous 

genes associated with TCR activation. Conversely, cells with an effector profile (NKT_c5 and 

NKT_c6) showed the closest relationship to mouse type I and type III cells (Fig 6B). Importantly, 

we did not find human clusters corresponding uniquely to specific mouse subsets, confirming that 

human iNKT cells do not differentiate into distinct subsets but rather acquire a mixed type I/type 

III transcriptome. We also did not detect any human iNKT cell clusters that matched with the 

mouse type II subset with a high degree of confidence (AUROC > 0.65; Fig 6B), suggesting that 

type II iNKT cells are likely absent in the human thymus. Corroborating this finding, we did not 

detect any expression of IL-4 or IL-13-encoding transcripts in human thymic iNKT cells, which are 

typically associated with mouse type II thymic iNKT cells. Similar patterns were observed for MAIT 

and gd T cells in the human thymus, with effector cells resembling mouse type I and type III 

effector cells (Fig 6B) indicating that a limited subset of Tinn cells in humans follows a distinctive 

path, displaying mixed effector potential, unlike the mouse model where multiple effector subsets 

are identified. We next assessed whether the TFs responsible for driving the characteristic 

regulons of human Tinn cells (Fig 5A) are also expressed in mouse Tinn cells (Fig 6C). Our analysis 

revealed that most of these TFs are indeed expressed in mouse Tinn cells as well, although their 

distribution of expression across clusters varies. These results suggest that each TF may have a 
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unique role in shaping the distinct subsets of mouse Tinn cells. They also raise the possibility of 

some similarities in transcriptional regulation between the two species during the development of 

Tinn cells' effector functions in the thymus. However, there are exceptions. Notably, while CEBPD, 

EOMES, and MYBL1 are highly expressed in human Tinn cells (Supplementary Fig 5A), their 

expression in mouse Tinn cells is barely detectable (Fig 6C). On the other hand, mouse type I Tinn 

cells exhibit high levels of Tbet (encoded by Tbx21, Fig 6C), whereas human Tinn cells have low 

Tbet expression (Supplementary Fig 5A). These findings highlight some species-specific 

differences in TF expression that could play a role in modulating Tinn cell development and 

functions. 

 

CD1D expression in the mouse and human thymus. The existence of Tinn cells displaying a 

transcriptome akin to developing Tconv cells in the human thymus raises questions about their 

origin. In mice, a subset of MAIT cells can be positively selected by radiation-resistant TECs 

(Chandra et al., 2023; Legoux et al., 2019). In such instances, MAIT cells do not follow the usual 

path of acquiring a memory or effector phenotype, which happens when they are positively 

selected by DP thymocytes (Krovi et al., 2022). This is because TECs lack the expression of 

SLAM receptors, which serve as crucial secondary signals for Tinn commitment (Griewank et al., 

2007). Although such naïve cells are more common among MAIT cells, a small subset of thymic 

mouse iNKT cells exhibit a similar transcriptome (Krovi et al., 2022). We hypothesized that the 

presence of naïve Tinn cells in humans might be attributed to a similar process involving TEC-

mediated selection. Given that MR1-encoding transcripts are broadly expressed and surface MR1 

expression can be challenging to detect, we opted to investigate the expression of CD1D protein 

in the thymus instead. Mouse TECs were previously reported to express CD1d on their surface 

(Forestier et al., 2003). Analysis of transcripts encoding Cd1d1 from the mouse thymus single-

cell RNA sequencing atlas (Park et al., 2020) confirmed expression across various cell types, 

including all thymocyte populations as well as cortical and medullary thymic epithelial cells (Fig 

7A, B). These findings were further corroborated through flow cytometry analyses (Fig 7C, D). In 

contrast, analyses using data from the human thymus single-cell RNA sequencing atlas(Park et 

al., 2020) revealed a more limited pattern of CD1D expression (Fig 7E, F). Consistent with the 

mouse data, human DP thymocytes express transcripts encoding CD1D and have CD1D 

molecules on their surface, but this expression is lost in mature single-positive thymocytes. 

Additionally, while human cortical thymic epithelial cells (cTECs) express transcripts encoding 

CD1D and have CD1D protein on their cell surface, medullary thymic epithelial cells (mTECs) do 

not exhibit this expression (Fig 7G, H). Interestingly, the crucial role of mTECs in the intra-thymic 
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development of murine iNKT cells has been established (Cui et al., 2022; White et al., 2014), 

suggesting that this interspecies difference in CD1D expression may affect iNKT cell development.  

 

Discussion 
 

In this study, we employed multi-modal single-cell transcriptomics to explore the diverse 

phenotypic states that Tinn cells can manifest within the human thymus and blood. Through a 

comprehensive analysis, we juxtaposed these states with those of conventional T cells, providing 

novel insights into human T cell biology and a comprehensive resource for further studies of health 

and disease. Tinn cells have garnered substantial attention recently because of their distinctive 

developmental pathway and functional characteristics, which are increasingly being explored for 

potential applications in immunotherapies (Delfanti et al., 2022; Dogan et al., 2022; Lee et al., 

2023).  

Our study demonstrated that in human blood, the majority of Tinn cells exhibit a distinct 

transcriptional program that is shared by most iNKT, MAIT, and Vd2Vg9 T cells under steady-

state conditions. This program implies a blended type I/type III transcriptional pattern, driven by 

specific transcription factors that enable the expression of distinct chemokine and cytokine 

receptors, NK receptors, and cytotoxic molecules. This program equips Tinn cells with the ability 

to swiftly respond to cytokines like IL-12, IL-18, and IL-23, independently of TCR signaling 

(Philippot et al., 2023; Ussher et al., 2014). Notably, we and others (Duquette et al., 2023; Kurioka 

et al., 2015) showed that human Tinn cells constitutively express granzyme K but lack granzyme 

B, while also expressing cathepsins, which are necessary for activating granzymes (D'Angelo et 

al., 2010). This indicates that Tinn cells are poised to release active granzyme K upon stimulation 

(Kurioka et al., 2015). Granzyme K possesses a range of immunomodulatory functions. It can 

induce the production of pro-inflammatory cytokines such as IL-6 and IL-8 from epithelial cells 

(Kaiserman et al., 2022) and of IL-6, CCL5, and CCL2 from fibroblasts (Jonsson et al., 2022). 

Mouse granzyme K can trigger the maturation and secretion of pro-inflammatory interleukin-1b, 

particularly in LPS-sensitized peritoneal macrophages (Wensink et al., 2014). Additionally, 

granzyme K may activate a novel complement pathway independently of the classical, alternative, 

and lectin pathways (Jonsson et al., 2023), implying its involvement in immune regulation and 

inflammatory responses. Given this overarching role of granzyme K in immune regulation, it 

appears that the initial role of human Tinn cells upon activation may indeed be the release of 

granzyme K, which likely happens concomitantly or before cytokine secretion or cytotoxic activity. 

In contrast, mouse Tinn cells do not express granzyme K transcripts but unlike human Tinn cells 

already possess pre-formed cytokine-encoding transcripts even before any stimulation occurs, 
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allowing for an immediate response (Govindarajan et al., 2018; Matsuda et al., 2003). This 

suggests that despite their evolutionary conservation, Tinn cells may have evolved species-specific 

mechanisms to provide early signaling and amplification of the adaptive immune response.  

 We identified a set of transcription factors and their predicted target genes that exhibited 

increased transcriptional activity in human Tinn cells when compared to naive and effector Tconv 

cells. Several of these transcription factors have previously been associated with the development 

and function of mouse Tinn cells, and we found that the expression of some of them is shared 

between species. Notably, several of these transcription factors are associated with the 

differentiation and production of IFNg, cytotoxicity (Intlekofer et al., 2005; Istaces et al., 2019; 

Klein-Hessling et al., 2017; Nah and Seong, 2022) as well as the production of the cytokine IL-17 

(Chang et al., 2019; Ciofani et al., 2012; Yu et al., 2017). These connections are consistent with 

the type I/type III transcriptional program observed in Tinn cells. In mice, the well-established 

Th1/Th17 paradigm identifies IL-12 as a cytokine that induces IFNg production, while IL-23 is 

known for inducing IL-17 production. This is in line with the varied expression of IL-12R and IL-

23R receptors observed on mouse type I and type III Tinn cell subsets, which correlates with their 

respective cytokine production profiles. By contrast activating human MAIT cells either through 

their TCR or with a combination of IL-12 and IL-18, as well as stimulating Tinn cells with IL-23, all 

result in the production of IFNg (Garner et al., 2023; Philippot et al., 2023). Yet, only a subset of 

these cells produces IL-17 in the same conditions, a phenomenon thought to be influenced by 

epigenetic modifications at the IL-17 gene loci (Garner et al., 2023). Underlining the importance 

of understanding the regulation of IL-17 production in Tinn cells, there has been an increase in IL-

17 production observed in human MAIT cells in cases including severe asthma, community-

acquired pneumonia in children (Lezmi et al., 2019; Lu et al., 2020) and colorectal cancer patients 

(Borras et al., 2023). Interestingly, we found NR1D family transcription factors, which have been 

previously associated with regulation of Th17 cells (Chang et al., 2019; Yu et al., 2013), are driving 

regulons in human Tinn cells. NR1D TFs are regulated by the body's circadian clock, suggesting 

that the circadian rhythm might affect how Tinn cells produce IL-17, a hypothesis that warrants 

further investigation. While many of the TFs essential for establishing the human Tinn program 

were also expressed in mouse Tinn cells, there were notable exceptions. For example, CEBPD, 

EOMES, and MYBL1 were found to be highly expressed in human Tinn cells under steady-state 

conditions, yet we did not detect transcripts for these TFs in the mouse Tinn reference dataset. 

CEBPD has previously been implicated in regulating the expression of CCR6 in human MAIT 

cells(Lee et al., 2018). However, its predicted targets, including ZBTB16, suggest that it may play 

a crucial role in regulating the human Tinn program. MYBL1's preferential expression in Tinn cells 
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has been previously observed (Gutierrez-Arcelus et al., 2019), but its specific function in these 

cells remains to be defined. EOMES has been reported to play a role in the development of mouse 

iNKT cells, although its expression level is very low under steady-state conditions (Shimizu et al., 

2019; Townsend et al., 2004). By contrast, Tbet is highly expressed in type I mouse Tinn cells and 

is essential for their development and functions (Matsuda et al., 2006; Townsend et al., 2004). 

However, human effector Tinn cells, which are most similar to mouse type I Tinn cells, express 

relatively low levels of Tbet. Instead, Tbet's expression and activity were correlated with the 

acquisition of the GEP6 program by Tconv cells in humans. These findings suggest the possibility 

of species-specific transcriptional regulation of Tinn cells, which could be relevant for future 

therapeutic applications involving these cells. Curiously, high confidence regulons like PLZF and 

Rorgt were not identified in the gene regulatory network of human Tinn cells, possibly due to the 

relatively low gene detection in this context. 

In the post-natal thymus, we observed iNKT and MAIT cells that displayed a transcriptional 

profile similar to developing conventional CD4+ and CD8+ T cells, respectively. This finding raises 

several possible interpretations. One plausible scenario is that these naïve Tinn cells could 

potentially serve as precursors to effector Tinn cells. This implies that Tinn cells likely undergo a 

maturation process, which could occur either within the thymus or in peripheral tissues, facilitating 

the acquisition of effector functions. Notably, in human cord blood, iNKT and MAIT cells with a 

naïve phenotype are more prevalent, and there is a gradual increase in the proportion of effector 

Tinn cells with age. If this hypothesis is accurate, it would suggest that Tinn cells initially experience 

positive selection in a manner akin to conventional Tconv cells or that their mode of selection might 

not provide the necessary signals for complete maturation. They would then subsequently receive 

distinct signals that would propel them to acquire effector functionalities. This concept finds 

support in recent studies involving Vg9Vd2+ T cells. In this context, immature naïve-like CD4+ 

CD161- cells were observed to undergo a transition toward an effector transcriptome (Perriman 

et al., 2023). During this transition, there was an upregulation of genes encoding various cytotoxic 

molecules, chemokines, chemokine receptors, as well as different cell surface markers (Perriman 

et al., 2023). This maturation could be recapitulated in vitro by culturing naïve Vg9Vd2+ T cells 

with OP-9 cells in the presence of IL-2, IL-7, and IL-15 cytokines. Our analysis of human thymic 

gd T cells highlighted the presence of transcriptionally transitional cells, reinforcing the notion of a 

sequential developmental trajectory. Although this scenario could potentially extend to human 

iNKT and MAIT cells, another intriguing possibility could be envisioned. In addition to the pool of 

naïve Tinn cells, a minority of cells in the human thymus expressed genes linked to effector 

functions or genes typically associated with Tinn cells. Notably, these effector cells formed distinct 
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transcriptional clusters and despite analysis of several thousand cells, we did not identify 

transitional cells bridging the gap between the naïve and effector populations. This leads us to 

speculate that naïve thymic Tinn cells may not necessarily serve as precursors to effector Tinn cells. 

Instead, these distinct populations could potentially represent the results of two separate selection 

pathways for Tinn cells. Supporting this idea, naïve MAIT cells (and some naïve iNKT cells) have 

been identified in the mouse thymus (Chandra et al., 2023; Krovi et al., 2022; Legoux et al., 2019). 

These cells are thought to be Tinn cells that have undergone positive selection on TECs, which do 

not express the SLAM family receptors necessary for the acquisition of the effector program. 

Indeed, we showed that both human and mouse cTECs express CD1d molecules on their cell 

surface. Interestingly, we also observed species-specific differences, notably the lack of CD1d 

expression in human mTECs compared to mouse mTECs. This distinction could contribute to 

variations in the maturation of iNKT cells between humans and mice. In the absence of IL-15 

cross-presentation by mTECs, mouse iNKT cells do not fully mature (Cui et al., 2022; White et al., 

2014). CD1d crosslinking has been shown to stimulate the production of IL-15 in epithelial cells 

from the reproductive tracts (Kawana et al., 2008). Taken together, the absence of CD1d on 

human mTECs might explain why mouse iNKT cells can mature when they interact with CD1d 

expressed on mTECs, while this maturation process cannot occur in humans. These findings 

underscore the intricate nature of Tinn cell development and maturation, suggesting the existence 

of multiple potential pathways and mechanisms, some of which may be species-specific and 

require further experimental investigation. 

Finally, our study highlights a distinct path taken by Tinn cells with an effector program in 

the human postnatal thymus, characterized by a mixed type I/type III effector potential. This 

contrasts with mice, where Tinn cells tend to split into multiple effector subsets. Interestingly, we 

observed a cluster of proliferating cells among human gd T cells in the thymus, but a similar 

proliferative cluster was absent for human iNKT and MAIT cells. This also contrasts with mice, 

where clusters of thymic iNKT and MAIT cells undergoing cell division are readily identifiable 

(Baranek et al., 2020; Harsha Krovi et al., 2020; Legoux et al., 2019), reflecting the proliferative 

burst following positive selection(Benlagha et al., 2002), crucial for establishing a substantial pool 

of Tinn cells. Consequently, while Tinn cells constitute around 1-2% of thymocytes in mice, their 

proportion is at least one order of magnitude lower in pediatric humans. Moreover, our analysis 

did not reveal any Tinn cells with a type II transcriptome in humans, unlike in mice. In mice, thymus-

resident iNKT2 cells serve as a major source of IL-4 (Lee et al., 2013), significantly impacting the 

thymic environment. This IL-4 influence includes effects on thymocyte emigration(White et al., 

2017), induction of memory-like traits in CD8+ T cells (Lee et al., 2013; Weinreich et al., 2010), 
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and activation of specific dendritic cells to produce chemokines that promote clonal deletion, all 

while sparing regulatory T cells (Breed et al., 2022). Additionally, iNKT2 cells in mice contribute 

to the formation of the thymus medulla through RANK signaling (White et al., 2014). The scarcity 

of type II Tinn cells in the human thymus suggests that these phenomena may be species-specific 

or regulated by different cell types in humans. 

Taken together, our findings hold significance in elucidating the diverse functional 

attributes of Tinn cells and their potential applications in immunotherapeutic contexts. 
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Material and Methods 

 

Mice. The Cd1d1d2-/- mice backcrossed to the C57BL/6 background have been described 

previously(Chen et al., 1997). C57BL/6 were purchased from Jackson Laboratories. All mice were 

used between 6 to 15 weeks and were age matched for each experiment. Mice were raised in a 

specific pathogen-free environment at the Office of Laboratory Animal Research at the University 

of Colorado Anschutz Medical campus or the Animal Core Facility at Cold Spring Harbor 

Laboratory. Animal procedures were approved by the UCD (00065) Institutional Animal Care and 

Use Committees and the Cold Spring Harbor Laboratory IACUC (23-1); all procedures were 

carried out in accordance with the approved guidelines. 

 

Mouse samples. To isolate thymocytes, thymus tissue was immersed in RPMI 1640 media 

(Corning, #10-040-CV) and gently pressed through a 40µm cell strainer using the plunger of a 1 

mL syringe. For TEC isolation, the thymus tissue was cut into small fragments and submerged in 

RPMI 1640 media without phenol red (Gibco, #11835030), supplemented with 20mM HEPES 

(Gibco, #15630080), 1.3 U/mL Liberase TH (Sigma-Aldrich #5401135001), and 100 U/mL DNase 

I (Roche, #11284932001). These tissue fragments were incubated for 5 minutes on ice followed 

by an additional 20 minutes at 37°C. After the digestion period, the solution was repeatedly mixed 

with a micropipette to ensure complete tissue disintegration. To stop the digestion process, cells 

were suspended in HBSS, 4% heat-inactivated FBS (HI-FBS, FBS from Corning, #35-010-CV, 

preheated for 20 minutes at 56°C), 20mM HEPES, and 10U/mL DNase I. To remove immune 

cells, the cells were incubated with rat anti-mouse CD90.2 (clone 53-2.1, Biolegend #140302), 

anti-mouse CD45 (clone 30-F11, Invitrogen #14-0451-85), and anti-mouse CD45-BV605 (clone 

30-F11, Biolegend #103139) antibodies for 30 minutes at 4°C. Subsequently, the cells were 

placed on panning plates coated with goat anti-rat IgG (Vector Laboratories, #BA-9400) for 20 

minutes at room temperature. Unattached cells were then transferred to new panning plates for 

a second round of depletion. The remaining cells, following this depletion process, were prepared 

for flow cytometry analysis. 

 

Human samples. De-identified Peripheral blood samples from healthy donors were obtained 

through the University of Colorado Clinical and Translation Research Centers (CTRC), which is 

a part of the Colorado Clinical and Translation Sciences Institute (CCTSI). These samples were 

collected using sodium heparin tubes, and peripheral blood mononuclear cells (PBMCs) were 

isolated using a Ficoll gradient provided by Cytiva. Additional samples were acquired from 
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plateletpheresis leukoreduction filter chambers (LRS) obtained from the Vitalant Blood Center 

located in Denver, Colorado, USA. For pediatric thymus tissues, which were extracted from 

infants undergoing corrective surgeries for congenital heart disease, the processing was initiated 

within one hour of extraction. These tissue samples were procured from various sources, 

including Children's Hospital Colorado, the Mount Sinai, and the Northwell Health Biorepository, 

following ethical approval (IRB 20-0150, NHBR2101). Pediatric thymus samples for scRNAseq 

came from individuals between 10 and 20 weeks old (Supplementary Table 1), and samples used 

for flow cytometry experiments came from individuals between 4 days and 5 months old. To 

extract thymocytes for both single-cell RNA sequencing (scRNAseq) and flow cytometry, the 

thymus tissue was placed in complete RPMI 1640 media (Gibco, #22400-071) (10% heat-

inactivated fetal bovine serum (FBS, Sigma-Aldrich), 1% non-essential amino acids (Sigma-

Aldrich), 1% Sodium Pyruvate (Sigma-Aldrich), 1X GlutaMAX (Gibco), 1% Penicillin/Streptomycin 

(Gibco), and 1X 2-mercaptoethanol (BME, Sigma-Aldrich)), cut into small pieces, and gently 

pressed with the back of a 10 ml syringe to release thymocytes. The resulting suspension was 

passed through a 70 µm filter. Thymocytes and PBMCs were isolated using a Ficoll-Paque density 

gradient provided by Cytiva. PBMCs were cryopreserved in FBS with 10% DMSO from Sigma-

Aldrich and stored in liquid nitrogen. Tetramer staining for MAIT and iNKT cells was performed 

on freshly isolated thymocytes. For tetramer staining of MAIT and iNKT cells, freshly isolated 

thymocytes were used. To enrich TECs for flow cytometry, thymus tissue was cut into small pieces 

and placed in RPMI 1640 media without phenol red, 5% heat-inactivated FBS, 1% 

Penicillin/Streptomycin, 10mM HEPES (Gibco, #15630080), and 0.55mM 2-mercaptoethanol 

(Gibco, #21985023). The thymus tissue in this media was stirred on a magnetic plate for 40 

minutes. The supernatant was removed and replaced with fresh media every 10 minutes to 

remove released thymocytes. The remaining tissue chunks were placed in a digestion buffer 

consisting of RPMI 1640 media without phenol red, 2% HI-FBS, 20mM HEPES, 80 U/mL DNase 

I (Roche, #11284932001), 1.6 U/mL Dispase I (Roche, #04942086001), and 0.3mg/mL 

Collagenase IV (StemCell Technologies, #07427) for digestion at 37°C with gentle shaking. This 

digestion process was conducted in two sessions of 25 minutes each, with the supernatant being 

extracted and replaced with fresh digestion buffer in between. At the end of the digestion, the 

tissue chunks had nearly entirely disintegrated, and the digestion was halted by resuspending 

cells in the same buffer used for thymocyte release. The combined supernatants were further 

incubated in TrypLE Express Enzyme (Gibco, #12604-013), 1mM MgCl2, 2mM CaCl2, 100U/mL 

DNase I for 5 minutes at 37°C to obtain a single-cell suspension. The digestion was stopped by 

resuspending cells in the previously described buffer. To remove immune cells and erythrocytes, 
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cells were incubated with mouse anti-human CD3 (clone UCHT1, Biolegend #300402), anti-

human CD4 (clone RPA-T4, Biolegend #300570), anti-human CD8 (clone RPA-T8, Biolegend 

#301002), anti-human CD45 (clone HI30, Biolegend #304002) and anti-human CD235a (clone 

HI264, Biolegend #349102) antibodies in HBSS (Gibco, #14175079), 4%HI-FBS and 20U/mL 

DNase I, for 30mins at 4°C. Cells were then placed on panning plates coated with goat anti-mouse 

IgG (Vector Laboratories, #AI-9200-1.5) for 20 minutes at room temperature, and the unadhered 

cells were transferred to new panning plates for a second round of depletion. The remaining cells 

following depletion were then stained for flow cytometry. Overview of sample metadata is provided 

in Supplementary Table I. 

 

Magnetic-bead enrichment of iNKT and MAIT cells. To enrich for thymic MAIT and 

thymic/blood iNKT cells, up to 2x109 cells were incubated with MR1-5-OP-RU-PE-Tet or CD1d-

PBS57-PE respectively in MACS buffer (0.5% BSA, 2mM ETDA, PBS), for 25 mins at room 

temperature. Cells were washed twice and incubated with anti-PE microbeads (Miltenyi), followed 

by separation using an autoMACS Pro Separator (Miltenyi) according to manufacturer9s 

instructions. PE-microbead-labelled cells in the enriched fraction were stained with the specified 

panel of antibodies listed below. 

 

Fluorescence-activated cell sorting. Single cell suspensions were stained with efluor780 

viability dye (ThermoFisher) for 10 mins at room temperature and washed once prior to cell 

surface staining. Enriched MAIT and iNKT from thymus, enriched iNKT from PBMC, unenriched 

gd T ,CD4+ and CD8+ from thymus, and unenriched MAIT, gd T , CD4+ and CD8+ T cells from 

PBMC were stained with the following cell surface markers in MACS buffer at room temperature 

for 20 mins: CD3-AF488 (clone OKT3, Biolegend), CD14-eFluor450 (clone 61D3, ThermoFisher), 

CD19-eFluor450 (clone H1B19, ThermoFisher), Va7.2-BV785 (clone 3C10, Biolegend), Va24-

PerCP-Cy5.5 (clone C15, Biolegend), CD4-AF710 (clone OKT4, Tonbo), CD8a-PE-Cy7 (clone 

SK1, Tonbo), TCRgd-BV650 (clone 11F2, BD Biosciences), FcgR block (Miltenyi). Cells were 

washed twice and resuspended in MACS buffer prior to cell sorting on the Aria 3 (BD Biosciences). 

Purified cell populations were sorted into MACS buffer. To confirm gene expression from 

scRNAseq analysis, MAIT and iNKT cells were enriched from the human thymus as described 

above, as were iNKT cells from human blood. gd T cells were stained directly from the human 

thymus as were blood MAIT and gd T cells. Single cell suspensions were stained as above with 

efluor780 viability dye prior to incubation at 37C for 10 min with CCR7-APC-Fire810 (clone 

G043H7, Biolegend) and FcgR block. A combination of the following cell surface markers were 
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subsequently added and cells were stained at room temperature for 15 min: CD3-BUV496 (clone 

UCHT1, BD Biosciences), CD14-PE-Cy5 (clone 61D3, ThermoFisher), CD19-PE Cy5 (clone 

H1B19, ThermoFisher), Va7.2-BV785 (clone 3C10, Biolegend), Va24-PerCP-Cy5.5 9clone C15, 

Biolegend), CD4-BV570 (clone RPA-T4, Biolegend), CD8a-BUV395 (clone RPA-T8, BD 

Biosciences), TCRgd-BV650 (clone 11F2, BD Biosciences), Vd1-PerCP-Vio700 (clone REA173, 

Miltenyi), Vd2-FITC (clone 123R3, Miltenyi), Vg9-PE (clone B3, BD Biosciences), CD161-BUV805 

(clone HP-3G10, BD Biosciences), CD62L-BV650 (clone DREG-56, Biolegend). Cells were then 

washed twice with MACS buffer prior to fixation and intracellular staining performed with BD 

Transcription Factor Buffer Set according to the manufacturer9s specification. The following 

antibodies were used to stain for intracellular proteins: PLZF_PE-CF594 (clone R17-809), Eomes-

BUV737 (clone X4-83), Tbet-BV605 (clone 4B10, Biolegend), GZMK-AF660 (clone G3H69, 

InVitrogen), GZMB-AF700 (clone GB11, BD Biosciences). Phenotypic analyses and validation of 

the cell sorting panel was performed on the Cytek Aurora flow cytometry system using SpectroFlo 

software (v3.0). Data were analyzed using FlowJo software v10.7.1 (BD Biosciences). 

 

Flow cytometry analysis of CD1d expression. For the mouse experiments, thymocytes were 

resuspended in PBS, 5% FBS (Corning, #35-010-CV), 4mM EDTA and stained for 30mins at 4°C 

with: Fc blocker CD16/32 (clone 93, Invitrogen #14-0161-85), CD4-AF488 (clone GK1.5, 

Biolegend #100423), CD8a-APC (clone 53-6.7, Biolegend #100711), CD1d-PE (clone 1B1, 

Biolegend #123509). For the murine thymus samples that were depleted of immune cells, the 

single cell suspension was resuspended in HBSS, 4% HI-FBS, 20mM HEPES, 10U/mL DNaseI, 

2.5mM EDTA, and stained for 30mins at 4°C with: Fc blocker CD16/32 (clone 93, Invitrogen #14-

0161-85), Epcam-BV421 (clone G8.8, Biolegend #118225), CD45-BV605 (clone 30-F11, 

Biolegend #103139), UEA1-FITC (Vector Laboratories, #FL-1061-2), Ly-51-AF647 (clone 6C3, 

Biolegend #108312), and CD1d-PE (clone 1B1, Biolegend #123509). For the flow cytometry 

experiments on human samples, thymocytes were resuspended in PBS, 2% FBS, and stained for 

30mins at 4°C with: TruStain FcX (Biolegend #422302), CD45-BV421 (clone HI30, Biolegend 

#304032), CD4-AF488 (clone OKT4, Invitrogen #53-0048-42), CD8-APC (clone RPA-T8, 

Invitrogen #17-0088-42), CD1d-PE (clone 51.1, Biolegend #350305). For the human samples that 

were depleted of immune cells and erythrocytes, cells were resuspended in PBS, 2% FBS, and 

stained for 30mins at 4°C with: TruStain FcX (Biolegend #422302), CD45-AF647 (clone QA17A19, 

Biolegend #393406), EPCAM-BV421 (clone 9C4, Biolegend #324220), CDR2-AF488 (pure 

CDR2 antibody kindly provided by Dr. Sheena Pinto, conjugated with the AF488 antibody labeling 

kit by Invitrogen, #A20181), HLADR-BV711 (clone L243, Biolegend #307643), CD1d-PE (clone 
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51.1, Biolegend #350305). In all experiments, to measure viability cells were stained with the 

live/dead Fixable Near-R dead cell stain kit (Invitrogen #L10119). Flow cytometry was performed 

on a BD LSR Fortessa Cell Analyzer. 

 

Single-cell RNA-sequencing. Single cell whole transcriptomes and TCR sequencing libraries 

were prepared using the BD Rhapsody Single-Cell Analysis System (BD Biosciences) according 

to the manufacturer's specifications. Prior to cell sorting on the Aria 3 (BD Biosciences) and during 

cell surface antibody staining, up to 2 x106 enriched or unenriched cells were labeled with an 

oligonucleotide-tagged antibody sample tag (BD Biosciences). From infant thymus and PBMC 

donors up to 5 populations were sorted after doublet, viability, B cell (CD19+CD3-) and monocyte 

(CD14+CD3-) discrimination: 1. MAIT cells (MR1-5-OP-RU-Tet+Va7.2+CD3+), 2. iNKT cells 

(CD1d-PBS57-Tet+Va24+CD3+), 3. gd T cells (CD3+TCRgd+), 4. CD4+ T cells (CD4+CD8-CD3+) 

and CD8+ T cells (CD8+CD4-CD3+). Cell subsets sorted for the different donors are listed in 

Supplementary Table I and the gating strategy is shown in Supplementary Fig. 15. Prior to cDNA 

library preparation for the WTA and VDJ libraries, all cell subsets from the different donors were 

pooled, with up to 12 unique sample tags combined per library. Libraries were quantified and 

pooled according to equivalent molar concentrations and sequenced on the NovaSeq sequencing 

platform at the University of Colorado Genomics Core with the following read lengths: read 1 3 

150 cycles; read 2 3 150 cycles; and i7 index - 8 cycles. 

 

Single-cell RNA-seq data analysis. The quality of sequencing reads was evaluated using 

FastQC and MultiQC. Sequencing reads (FASTQ) were mapped and sample Tag deconvoluted 

with The BD Rhapsody# WTA Analysis Pipeline on the GRCh38 genome sequence. This 

pipeline produced a gene expression matrix for each sample, which records the number of UMIs 

for each gene associated with each cell barcode. Aggregated data were then imported into the R 

environment and analyzed with Seurat (4.3.0). Low-quality cells were filtered using the cutoffs 

nFeature_RNA >= 500 & nFeature_RNA < 3000. Cells with a high mitochondrial content were 

removed using a batch-dependent threshold with the isOutlier function from the Scater package 

(McCarthy et al., 2017). Genes expressed in less than 20 cells were ignored. This resulted in 

78,607 cells with 17,204 genes for downstream analyses. The NormalizeData function of Seurat 

was performed using default parameters to remove the differences in sequencing depth across 

cells. Dimensionality reduction was performed prior to integration for visualization purposes 

(Supplementary Fig 2A), by selecting 2000 highly variable genes for principal component analysis 

(PCA) and uniform manifold approximation and projection (UMAP). To integrate the data and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

remove batch-effects from the PCA subspaces based on the correct cell alignment, we used 

Harmony (Korsunsky et al., 2019) following PCA to project cells into a shared embedding in which 

cells group by cell type rather than dataset-specific conditions. We then applied the RunUMAP 

function on 20 dimensions of the harmony embedding to obtain bidimensional coordinates for 

each cell. We determined the k-nearest neighbors of each cell using the FindNeighbors function 

and used this knn graph to cluster cells using the Louvain algorithm from FindClusters based on 

the same harmony dimensions as the RunUMAP function (20 dimensions, resolution 1.2). This 

dataset was subsequently split up into 5 cell types from 2 different tissues based on cell hashing 

tags/barcodes. Each cell type from each tissue was re-analyzed individually using the same steps 

to obtain UMAPs and clusters in Figures 2 and 4. Plots displaying cells on UMAPs were generated 

using the SCpubR package (v1.1.2) (Blanco-Carmona, 2022).  

 

LISI metric and analysis of cluster stability. The local inverse Simpson's index (LISI) was used 

to assess the degree of mixing during batch correction and dataset integration in scRNA-seq 

analysis (Korsunsky et al., 2019). This approach helps evaluate the effectiveness of data 

integration methods by quantifying how well datasets are merged without introducing artificial 

batch effects. To assess the integration process, we employed the integration LISI (iLISI) score. 

iLISI measures the effective number of datasets within a neighborhood and provides an indication 

of how effectively the individual datasets have been harmoniously integrated into a unified whole 

during the analysis. In addition, we used the "cell-type" LISI (cLISI) score to evaluate the accuracy 

of cell-type assignments in the integrated dataset. cLISI is a modified version of the LISI score, 

but instead of assessing dataset labels, it focuses on the accuracy of cell type assignments within 

the integrated data. As the specific identities of individual cells were not known beforehand, we 

assigned mock cell identities based on anticipated gene expression patterns. These mock 

identities were determined using prior knowledge of gene expression markers associated with 

distinct cell types. For instance, we identified DN thymocytes as cells expressing PTCRA > 1, B 

cells as cells expressing CD19 > 1 and IGKC > 1, Tregs as cells expressing FOXP3 > 1, MAIT cells 

as cells expressing SLC4A10 > 1 and FOXP3 < 1, CD4 T cells as cells expressing CD4 > 1, CD8A 

< 1, SLC4A10 < 1, FOXP3 < 1, and CCR7 > 1, DP thymocytes as cells expressing RAG1 > 1 and 

CD1C > 1, and CD8aa thymocytes as cells expressing CD8A > 1 and GNG4 > 1. These mock 

identities were used as initial cell type assignments and served as the basis for assessing the 

success of integration, as indicated by increased iLISI scores and the maintenance of a cLISI 

score of 1. Only cells with assigned mock identities were included in the cLISI analysis. To 

evaluate the stability of clusters, we conducted a bootstrapping procedure in which cells from 
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each predefined cluster were repeatedly sampled and then subjected to re-clustering. Cluster 

stability was assessed by examining co-assignment probabilities (CP), where higher CP values 

indicated greater cluster stability. In essence, a high CP suggests that the cells within a cluster 

consistently grouped together across multiple iterations, reinforcing the reliability and robustness 

of that cluster's identity. 

 

TCR analysis. V(D)J single cell sequencing data were mapped and quantified using the BD 

Rhapsody# WTA Analysis Pipeline and the GRCh38 genome sequence. To connect the VDJ 

data with transcripts data for each cell, we established links based on cell indexes extracted from 

the consensus annotation files (VDJ_percell.csv) and MolsPerCell.csv files from each 

demultiplexed sample. Only TCR paired sequences were retained for subsequent analyses. TCR 

data from each VDJ-sequenced sample were combined together and added to the metadata of 

the Seurat object. Clonotypes were defined based on unique TCR VJ usage and complementary-

determining region (CDR3) motifs. Basic TCR statistics, such as the distribution of length and 

counts were computed using the tidyverse package (v1.3.2). The assessment of clonotype 

diversity was conducted using the mean value of the Shannon index, computed through the 

diversity function of the vegan R package (v2.6-4) after 100 iterations. Prior to the diversity 

calculation, the data was subjected to rarefaction to match the lowest sequence count found within 

the studied groups. Chord diagrams were generated using the circlize package (v0.4.15) (Gu et 

al., 2014) and CDR3 motif logos using the ggseqlogo package (v0.1) (Wagih, 2017). The stacked 

letters' cumulative height at each position signifies the degree of sequence conservation, 

portraying the relative abundance of amino acids, which is further depicted by the varying heights 

of individual letters within the stack. 

 

Identification of differentially expressed genes between clusters. We identified cluster-

enriched genes by using the FindAllMarkers function in Seurat with test.use = wilcox. This function 

identified differentially expressed genes for each cluster by comparing the gene expression for 

cells belonging to a cluster versus cells belonging to all other clusters. Only those genes that 

passed an adjusted p value (Benjamini-Hochberg) cutoff of 0.05, log fold change > 0.4 and min.pct 

= 0.3 were included in the downstream analyses. 

 

Characterizing the replicability of cell types defined by scRNA-seq between studies and 

between species. We assessed the consistency of cell clusters in our integrated thymic data by 

comparing them with the human thymus atlas from the Park et al. dataset (Park et al., 2020). To 
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do this, we focused exclusively on thymocytes, totaling 37,369 cells in our dataset. We also 

acquired the annotated AnnData object from the Park et al. dataset, which specifically contained 

T cells. To enable a meaningful comparison, we combined the two raw count matrices, 

concentrating on the top 2000 highly variable genes shared across both datasets. This resulted 

in a matrix containing 3,106 genes and 114,363 cells. To evaluate the consistency of cell types 

between these datasets, we employed the pyMN package to perform unsupervised MetaNeighbor 

analysis (Crow et al., 2018). MetaNeighbor assesses the similarity of cell types by constructing a 

network of cells based on the correlation of their gene expression profiles. It then predicts cell 

type labels, hiding them from one dataset while using the other. The result is expressed as a 

mean Area Under the Receiver Operator Characteristic (AUROC) score, which measures the 

probability of correctly identifying a cell's type based on its gene expression profile. We used the 

ggplot2 package to visualize the AUROC scores obtained from pyMN, comparing our integrated 

clusters with the thymocyte clusters defined in the Park et al. dataset. For assessing the 

replicability of cell clusters across species, we utilized the reference scRNAseq murine Tinn 

dataset and our human thymic iNKT, MAIT, and gdT individual seurat objects from Figure 2. To 

ensure an appropriate comparison, we obtained orthologous genes between mouse and human 

using the biomaRt package (Durinck et al., 2005; Durinck et al., 2009). We filtered the murine 

count matrix to retain only genes with known 1:1 orthologs in humans. Then, we performed 

unsupervised MetaNeighbor analysis with pyMN on the combined set of highly variable genes 

from both human and mouse datasets. Finally, we used ggplot2 to create visualizations of the 

AUROC scores returned by pyMN, including clusters that contained at least 1% of the cells in 

each species to ensure greater confidence in assessing the replicability of clusters across species. 

Identification of Gene Expression Programs. The count matrix was used for conducting non-

negative matrix factorization (NMF) through the cNMF method (Kotliar et al., 2019). This process 

enabled us to infer both identity and activity programs, along with their respective contributions in 

each cell. The usage of each program for each cell was added to the metadata of the Seurat 

object and displayed as a featurePlot. To determine the genes associated with each program, we 

plotted the gene ranks (ranging from most associated to least associated) against the 

gene_spectra_score output from the cNMF analysis. The plotted gene ranks were fitted to a 

sigmoid curve and the slope at the first elbow point was calculated as the minimum threshold for 

genes to be retained in a given GEP. The same slope was applied to every GEP to prevent bias 

in ranked gene selection, as the gene rankings between GEPs are not comparable and are 

relative to each GEP (as depicted in Supplementary Figure 16). Cells from the blood sample were 
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assigned to the GEP with the highest usage (as provided by cNMF), to display an alluvial plot with 

ggalluvial (v0.12.5) (Brunson, 2020). 

Scoring of Gene Signatures. Gene signatures were scored on our Seurat object, or on other 

dataset9s Seurat or AnnData objects using either the function AddModuleScore in Seurat, or 

scanpy.tl.score_genes in scanpy. In both cases, the score is computed as the average expression 

of all genes contained in the gene list, and subtracting the average expression of 100 control 

genes (randomly chosen to match the expression bins of the gene list). Gene signatures used 

throughout this manuscript and their source can be found in supplementary Table 2. 

Gene regulatory network inference. To deduce gene regulatory networks, we employed 

pySCENIC from a pre-built singularity container, aertslab/pyscenic:0.12.1, a tool utilizing cis-

regulatory motif analysis to identify potential transcription factors (TFs) that might govern a cluster 

of co-expressed genes within individual cells (Aibar et al., 2017). pySCENIC was run using the 3

mask-dropouts flag and a normalized enrichment score threshold of 2 to help mitigate the effects 

of the varying degrees of sparsity across the data sets we generated. The initial step involved 

generating modules composed of transcription factors and co-expressed genes using GRNboost2 

(Ref (Moerman et al., 2019)). These modules were pruned to remove indirect targets that lacked 

significant enrichment for the corresponding TF motif within ±10 Kb from the transcription starting 

site of the putative target (cisTarget). This process yielded a collection of transcription factor 

regulons. Considering the inherent stochasticity in gene regulatory network inference using 

GRNBoost2, each run of pySCENIC may yield different quantities of regulons, along with distinct 

target genes associated with each TF. To mitigate this variability, we performed 100 pySCENIC 

runs and retained regulons present in 100% of the runs. We also removed regulons that did not 

have at least 5 target genes defining the regulon activity. Due to the high degree of noise in target 

genes, we retained target genes that appeared within a regulon in at least 95% of the runs. 

Furthermore, each target gene also had to overlap with the union of all possible retained ranked 

gene expression targets across all GEPs generated from cNMF. To identify regulons that were 

specific to the underlying biology of our cell types and GEPs, we calculated the AUC scores using 

the R package AUCell, located in the pySCENIC container, for each regulon based on the pruned 

target gene list. A regulon was deemed specific to a defined cell population if at least 20% of the 

cells within the annotated population scored in the 90th percentile of the overall AUC score for all 

cells.  
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Comparison of Gene Expression Programs with gene signatures from the literature. We 

obtained gene signatures identified from (1) differential expression (DE) analysis from bulk 

RNAseq between sorted naïve, Tcm, Tem CD4+ and CD8+ T cell populations by Rose et al. (Rose 

et al., 2023); (2) DE genes between cell clusters defined from scRNAseq of naïve and memory 

CD4+ T cells isolated from PBMCs by Cano-Gamez et al. (Cano-Gamez et al., 2020); (3) DE 

genes between cell clusters defined from scRNAseq of blood immune cells by Terekhova et al. 

(Terekhova et al., 2023) (4) DE genes between cell clusters defined from scRNAseq of T cells 

across nine human tissues by Poon et al. (Poon et al., 2023). In the Rose dataset, we kept genes 

that defined their Figure 2 E, H (adjusted p-value f 0.05). In the Cano-Gamez and Poon datasets, 

we kept DE genes with a minimum log fold-change of 0.25 (adjusted p-value threshold f 0.05 or 

0.01, respectively). In the Terekhova dataset, we used the top 100 differentially expressed genes 

shared in their supplementary Table S5. We computed the Jaccard Index (JI) between the gene 

lists derived from our GEPs and those from the Rose, Cano-Gamez, Terekhova and Poon 

datasets. Since the gene lists varied in length, we weighted the JI to make it comparable across 

pairwise comparisons. This was achieved by dividing the JI by the maximal theoretical JI for each 

pairwise comparison, which is the ratio of the length of the smaller list to the length of the larger 

list. To assess the significance of the observed JI, we performed a permutation analysis. We 

generated 1000 random gene lists A' and B', matching in length and expression pattern to the 

original lists A and B. We computed the weighted JI between these random lists and defined an 

empirical p-value by counting how many of these weighted JIs were greater than the observed 

weighted JI divided by the number of permutations. To account for multiple comparisons, we 

applied a Bonferroni correction to the empirical p-values. For the co-expression analysis of GEPs 

and gene lists from other datasets, we scored the gene lists on the entire integrated dataset. This 

was done using functions like Seurat's AddModuleScore with the blend=TRUE parameter. 

Additionally, GEP4, GEP5, and GEP6 were scored on the Poon et al. dataset using scanpy's 

tl.score_genes function, and their scores in specific cell clusters of interest were displayed in 

Supplementary Figure 9B. 

 

Pseudo-bulk differential expression analysis. To investigate for cell lineage-specific gene 

signatures in PBMCs, we grouped cells by batch, cluster and lineage, restricting our analysis to 

only batches E, F and I where at least 3 or more cell lineages were sorted and sequenced within 

the same batch. We then used DESeq2 (v1.40.2) (Love et al., 2014) to perform pseudo-bulk DE 

analysis with a likelihood-ratio test (LRT), where the full model included batch + cluster + lineage, 

and the reduced model included batch + cluster, in order to detect genes whose expression can 
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be explained by lineage. We used the LRT test by computing pairwise comparisons, contrasting 

all lineages against each other (CD4vsCD8, CD4vsiNKT, etc.), for each comparison keeping DE 

genes with an adjusted p-value of 0.01. Then, to extract lineage-specific genes, for each lineage 

we kept genes that were commonly upregulated in at least 3 or more contrasts. We normalized 

the raw counts with the rlog function from DESeq2 and batch-corrected them with 

removeBatchEffect from the limma package (v3.56.2) (Ritchie et al., 2015), before displaying the 

final list of DE genes on a heatmap with the pheatmap package (v1.0.12).  

Creation of a reference sc-RNAseq mouse Tinn dataset. ScRNA-seq data from mouse thymic 

iNKT, MAIT and gd T cells (Baranek et al., 2020; Chandra et al., 2023; Harsha Krovi et al., 2020; 

Koay et al., 2019; Lee et al., 2020; Legoux et al., 2019; Li et al., 2022; Maas-Bauer et al., 2021; 

Wang et al., 2023) were downloaded from Gene Expression Omnibus repository with the 

accession numbers GSE137350, GSE172169, GSE179422, GSE130184, GSE152786, the SRA 

database under the accession code PRJNA549112 or the European Bioinformatics Institute 

(EMBL-EBI) under the accession number E-MTAB-7704. Data were analyzed using the Seurat 

package. Analyzed cells were selected to express more than 800 but less than 4200 genes per 

cell, with less than 5% of mitochondrial reads. Datasets were merged and integrated using the 

FastMNN algorithm (Haghverdi et al., 2018), using 5000 variable features, k=20 and 

auto.merge=TRUE. Cell clustering was carried out with a resolution parameter set at 0.5, and 

potential doublets were detected using scDblFinder (Germain et al., 2021) and subsequently 

eliminated. To discern differential gene expression between clusters, the FindAllMarkers function 

was employed, utilizing the MAST algorithm. The analysis considered latent features, specifically 

the number of genes per cell, and the sample identity, with a log2 fold change threshold of 0.3. 

Interactive data exploration tool. The data from this study is displayed as a ShinyCell 

application at http://xspeciestcells.chsl.edu. The code for the browser application can be found at 

https://github.com/meyer-lab-cshl/xspeciestcells-shiny.  

Data availability. Data that support the findings of this study have been deposited in NCBI GEO 

with the accession code xxx.  

Code availability. Custom analysis code was written in either R (version g4.0.3) or python 

(version g3.8). The analysis code is freely available on GitHub: https://github.com/meyer-lab-

cshl/xspeciestcells-shiny. The code for the browser application can be found at 

https://github.com/meyer-lab-cshl/xspeciestcells-shiny.  
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Figure Legends: 

 

Figure 1: Integrative view on Tinn and Tconv development and peripheral function. A. 

Experimental set-up specifying donor type (postnatal/adult), tissue and sorted cell types. B. 

Harmony batch-corrected and integrated dataset across donors, tissues and cell types. C. Stable 

Louvain-derived cell clusters distributed across D. both blood and thymus-derived cells and E. 

their respective frequencies in these clusters. F. 8Egress9 score on thymus and blood derived cells. 

G. Cells color-coded by cluster (as in C) and visualized by their hashtag-sorted cell type (columns) 

and the tissue they originated from (rows). H. Projection of naive and effector scores and the 

proportion of I. thymic and J. blood cell types per donor classified based on these scores (bottom 

row); top row shows analogous proportions by cell cluster (as in C). K. Gene expression programs 

(GEPs) in thymus and blood identified using cNMF. Sample numbers for all panels as depicted in 

A. Score defining genes as described in text.   

 

Figure 2: Human Innate T cell development. Clustering of hashtag-separated thymic iNKT (A), 

MAIT (E) and gd T cells (I) and the respective proportion of cells per cluster and donor (B, F, J), 

the projection of the CD8aa signature (C, G, K) and egress score (D, H, L). M. Characteristic 

gene expression in thymic iNKT, MAIT and gd cells. n=4 postnatal human thymus samples for all 

panels. 

 

Figure 3: Innate T cell TCR diversity during development. Cells with VDJ sequencing and 

their cell-type specific characteristic chain arrangement for thymic iNKT (A), MAIT (G) and gd T 

cells (L). For each cell type, the respective proportions of gene segment usage in each chain (B, 

D; H, J; M, N) are shown together with their CDR3 length and sequence logo (C, I, O) and their 

cluster-specific usage (E, with clusters as in Fig 2A). Shannon Index as an estimation of TCR 

diversity in the naive-like and effector-like iNKT (F) and MAIT (K) cells, based on clusters in Figure 

2A and E, respectively. n= 1 human thymus sample for panels A-O. 

 

Figure 4: Gene expression programs in Tinn and Tconv. A. Clustering of hashtag-separated 

blood iNKT, MAIT, gd T cells, CD4 and CD8 T cells, B. the respective proportion of cells per cluster 

and donor and C. the effector Gene expression program (GEP) signature scores (as in Fig 1K) 

per cell type and cluster. D. GEP usage for each cell type, based on cNMF-derived usage matrix. 

E. Pseudo-bulk, pair-wise differential gene expression between cell-types (upper panel). Tinn 
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specific signature genes in GEP5 (lower panel). For both panels, genes with p < 0.01 are depicted. 

n=4,4,9,4,9 for iNKT, MAIT, gd, CD4 and CD8 cells respectively.  

 

Figure 5: Effector gene expression programs in Tinn and Tconv. A. Key genes categorized by 

function and depicted by their level (z-score color scale) and percentage of expression in cells 

belonging to the indicated GEPs. B. Single-Cell Regulatory Network Inference and Clustering of 

transcription factors (TFs) and their expression strength per cell (as row-scaled z-scores), ordered 

by cluster (as in Fig 1C), with tissue of origin and GEP assignement based on cNMF usage 

indicated by color bar. Two row clusters are marked which are preferentially enriched in Tinn (upper 

bracket) and Tconv (lower bracket) C./D. TFs with pronounced activity in (C) Tinn and (D) Tconv 

(corresponding to brackets in B) and their targets. Green indicates TF (y-axis) that have other TFs 

as their target (x-axis), where purple labels TFs that can interact in either direction. The marginal 

bar chart shows the number of TFs per target, color-coded by their functional categorization (as 

in A). 

 
Figure 6: Cross-species comparison of mouse and human Tinn development. A. Mouse Tinn 

reference atlas with 7 characteristic cell states highlighted that are found across lineages (as in 

Supplementary Figure 14). B. Meta-neighbour analyses showing pairwise correspondence 

(AUROC scores) between murine Tinn (as in A) and human iNKT, MAIT and gd T cell clusters (as 

in Figure 2). Marginal bar charts indicate number of cells in the corresponding clusters. C. 

Expression of human regulon-driving transcription factors (as in Figure 5) together with murine 

TFs of importance in Tinn development (Rorc, Tbx21) projected on mouse Tinn reference atlas (as 

in A.) 

 
Figure 7: CD1D gene and protein expression in mouse and human thymus. A/E: Clustering 

of thymic cell populations and their expression of Cd1d1 (mouse)/CD1D (human) derived from 

the mouse and human thymus cell atlas, respectively (Ref (Park et al., 2020)). B/F: Normalized 

expression of Cd1d1/CD1D and Slam/SLAM transcripts across thymic cell populations. Flow 

cytometry of mouse and human TECs (C/G) and thymocyte subsets (D/H).  

 

Supplementary Figure 1: Cell sorting strategy for single-cell sequencing. Non-myeloid 

(CD14-), non-B-cell (CD19-), live cells (viability dye efluor780) from both thymus and blood were 

sorted into CD4, CD8 and gd T cells based on CD4+CD8-, CD8+CD4- and CD3+TCRgd+ marker 

expression, respectively. iNKT and MAIT cells were pre-enriched via CD1d-PBS57 and MR1-
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5OPRU magnetic beads and sorted based on binding to tetramer and TRAV10 or TRAV1-2 stain 

respectively.  

 

Supplementary Figure 2: Batch integration and quality control. A. UMAP projection before 

and after integration with Harmony, colored by method (RNAseq, RNAseq+VDJseq), donor (1-

13), batch (A-I), clusters (1-18) and tissue (thymus and blood). B. Degree of mixing during batch 

correction and dataset integration measured as the local inverse Simpson9s index (LISI). The top 

and middle panels show the integration LISI (iLISI), which measures the effective number of 

datasets within a neighborhood, for thymic and PBMC-derived cells, respectively. Mixing was 

assessed on batch, donor and method used (as in depicted in A); the lower panel depicts the cell-

type LISI (cLISI), to evaluate the accuracy of cell-type assignment.  Blue curves indicate LISI 

before integration, red after integration. C. Cell co-assignment probabilities within (diagonal) and 

across clusters (off diagonal) assessed by cell bootstrapping and re-cluster. High co-assignment 

probabilities indicate cluster stability.   

 

Supplementary Figure 3. Marker gene expression across cell clusters. A. Reference 

signature gene expression for clusters in Figure 1C and B. the top five genes that characterize 

these clusters in this dataset. Top five marker genes for C. iNKT, D. MAIT and E. gd T cells 

corresponding to the clusters in Figure 2A, E and I, respectively.  

 
Supplementary Figure 4. Reproducibility of thymocyte data with human thymus atlas. A. 

UMAP representation of our integrated thymocyte data (top) and the Park et al. thymocyte data 

(bottom). Cells are colored by cluster. B. Bubbleplot showing the MetaNeighbor AUROC score 

for pairwise similarities of our thymocyte clusters with the Park et al. (Ref (Park et al., 2020)) 

annotated thymocyte clusters. AUROC scores above 0.9 are written in white text. Marginal bar 

plots represent the number of cells present in each cluster. 

 

Supplementary Figure 5: Characteristics of gene expression on integrated dataset. A. Gene 

expression projection of signature genes. B. Genes differentially expressed between thymic CD4 

and CD8 SP T cells corresponding to clusters c3/c11 and c9/c10 in Figure 1C, respectively.  

 

Supplementary Figure 6: Projection of GEP12 onto integrated Tinn and Tconv object. Each 

panel shows cells from a given batch, color-coded by the cNMF usage of GEP12. There is a clear 
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separation of batches A-C, E, I and E, F-H, which align with the sequencing method used, 

RNAseq only or RNAseq+VDJ, respectively (see Supp Table 1). 

 

Supplementary Figure 7: Gene expression programs (GEP) in thymic T cell types. Cells are 

color-coded based on their respective GEP usage (rows) and cell types (columns). GEP usage 

derived from cNMF usage file.  

 

Supplementary Figure 8: Effector phenotyping of thymic iNKT and MAIT cells by flow 

cytometry. Thymic iNKT (TRAV10+ CD1d-PBS57+) and MAIT (TRAV1-2+ MR1-5OPRU+) cells 

from postnatal thymus were analyzed by flow cytometry for the expression of co-receptors CD4 

and CD8; transcription factor PLZF; and effector markers CD161, EOMES, GZMK. iNKT and 

MAIT cells were pre-enriched via CD1d-PBS57 and MR1-5OPRU magnetic beads. 

 
Supplementary Figure 9: Effector gene expression programs (GEPs) are consistent across 

datasets and human tissues. A. Proportion of genes in each peripheral GEP (3-6) 

corresponding to genes in public signature gene lists (Poon et al. (Poon et al., 2023)), Rose et al. 

(Rose et al., 2023)), Cano-Gamez et al. (Cano-Gamez et al., 2020), Terekhova et al. (Terekhova 

et al., 2023) measured by weighted Jaccard Index. For each GEP, the top gene lists with the 

highest overlap are shown. Tick marks represent the overlap expected from an empirical null 

distribution (see methods). B. Co-expression of effector GEPs (GEP4-6) and signature gene lists 

represented on integrated UMAP. For each GEP the co-expression with the gene list 

corresponding to the highest weighted Jaccard Index (from A) are shown. For the Poon dataset, 

violin plots on the right represent the effector GEPs scored in cells from the CD4 Tcm/fh, CD8 MAIT, 

or CD8 Tem/emra clusters, across tissues; the horizontal dashed line is the median score across all 

clusters and all tissues from the Poon dataset. 

 

Supplementary Figure 10: Naïve and effector gene and protein expression of adult 

peripheral blood iNKT cells. A. Cluster assignment (as in Fig. 4A) and projection of naive-like 

(GEP3) and effector (GEP4-6) on adult peripheral blood iNKT cells (identified by cell hashtag). B. 

Gene expression projection of co-receptors (CD4, CD8), transcription factors ZBTB16 (encoding 

PLZF) and TBX21 (encoding TBET), naïve T cell marker CCR7 and effector markers KLRB1 

(encoding CD161), EOMES, and granzymes GZMA, GZMK; C: Flow cytometry of adult peripheral 

blood iNKT cells (TRAV10+ CD1d-PBS57+) for a characteristic subset of markers in B.  
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Supplementary Figure 11: Naïve and effector gene and protein expression of adult 

peripheral blood MAIT cells. A. Cluster assignment (as in Fig. 4A) and projection of naive-like 

(GEP3) and effector (GEP4-6) on adult peripheral blood MAIT cells (identified by cell hashtag). B. 

Gene expression projection of co-receptors (CD4, CD8), transcription factors ZBTB16 (encoding 

PLZF) and TBX21 (encoding TBET), naïve T cell marker CCR7 and effector markers KLRB1 

(encoding CD161), EOMES, and granzymes GZMA, GZMK; C: Flow cytometry of adult peripheral 

blood MAIT cells (TRAV1-2+ MR1-5OPRU+) for a characteristic subset of markers in B.  

 

Supplementary Figure 12: Gene and protein expression of adult peripheral blood gd T cells. 

A. Cluster assignment (as in Fig. 4A).  B. g and d variable segment usage (D-V1-3, G-V9), and C. 

projection of naive-like (GEP3) and effector (GEP4-6) on adult peripheral blood gd T cells 

(identified by cell hashtag). D. Gene expression projection of transcription factors ZBTB16 

(encoding PLZF), naïve T cell marker CCR7 and granzymes GZMB, GZMK; E: Flow cytometry of 

adult peripheral blood gd T cells. gd T cells were separated by g and d chain usage, either as 

Vd2+Vg9+, Vd1+, or non-Vd1+ non-Vd2+ cells and analyzed for their expression of the granzymes 

in D. 

 

Supplementary Figure 13. Characteristic gene and protein expression of adult peripheral 

CD4 and CD8 T cells. A./C. Cluster assignment (as in Fig. 4A) and projection of naive-like (GEP3) 

and effector (GEP4-6) on adult peripheral blood CD4 and CD8 T cells (identified by cell hashtag), 

respectively. B./D. Gene expression projection of transcription factors TBX21 (encoding TBET), 

FOXP3, naïve T cell marker CCR7 and effector marker EOMES, chemokine receptor CXC3CR1 

and granzymes GZMA, GZMB, GZMK. 

 

Supplementary Figure 14. Reference mouse Tinn dataset. A. Integration of single-cell RNAseq 

data from flow-sorted mouse iNKT, MAIT, or gd T cells combined from nine independent studies 

(Refs (Baranek et al., 2020; Chandra et al., 2023; Harsha Krovi et al., 2020; Koay et al., 2019; 

Lee et al., 2020; Legoux et al., 2019; Li et al., 2022; Maas-Bauer et al., 2021; Wang et al., 2023)) 

and B. their annotation into 13 clusters, C. spanning across studies and cell lineages. D. Bubble 

plot of key genes characterizing the 13 clusters.  

 

Supplementary Figure 15. Gating strategies implemented to identify the various T cell 

populations for analyses and sorting. The target (red gate) cell population in each panel is 
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indicated above each panel. iNKT and MAIT cells were pre-enriched by CD1d-PBS57 and MR1-

5OPRU tetramers and magnetic beads, respectively.  

 
Supplementary Figure 16. Determining genes associated with cNMF derived Gene 

Expression Programs (GEPs). Gene ranks (sorted most to least associated, x-axis) are 

displayed against their gene_spectra_score output from the cNMF analysis (y-axis) as black dots. 

The slope at the first elbow point in the fitted sigmoid curve (red line) was calculated as the 

minimum threshold for genes to be retained in the a given GEP. The same slope (grey dashed 

line) was applied to every GEP to prevent bias in ranked gene selection, as the gene ranking 

between GEPs are not comparable and relative to each GEP.  

 

Supplementary Table I. Sample overview. Overview of cell populations collected in this study, 

their tissue, donor characteristics (Donor, Sex, Age) and analyses methods (Batch, VDJseq).  

 

Supplementary Table II. A list of genes that are differentially expressed in each of the 18 

clusters distributed across both blood and thymus-derived cells. Cluster-enriched genes by 

using the FindAllMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and 

min.pct = 0.3. 

 

Supplementary Table III. Gene Signatures used throughout the manuscript. 

 

Supplementary Table IV. Ranked gene lists that compose each of the Gene Expression 

Programs (GEP) determined by cNMF. 

 

Supplementary Table V. A list of genes that are differentially expressed in each of the 7 

clusters distributed across thymus-derived iNKT cells. Cluster-enriched genes by using the 

FindAllMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct = 

0.3. 

 

Supplementary Table VI. A list of genes that are differentially expressed in each of the 7 

clusters distributed across thymus-derived MAIT cells. Cluster-enriched genes by using the 

FindAllMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct = 

0.3. 
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Supplementary Table VII. A list of genes that are differentially expressed in each of the 8 

clusters distributed across thymus-derived gd T cells. Cluster-enriched genes by using the 

FindAllMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct = 

0.3. 

 

Supplementary Table VIII. A list of genes that are differentially expressed in each of the 4 

clusters distributed across blood-derived iNKT T cells. Cluster-enriched genes by using the 

FindAllMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct = 

0.3. 

 

Supplementary Table IX. A list of genes that are differentially expressed in each of the 4 

clusters distributed across blood-derived MAIT cells. Cluster-enriched genes by using the 

FindAllMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct = 

0.3. 

 

Supplementary Table X. A list of genes that are differentially expressed in each of the 5 

clusters distributed across blood-derived gd T cells. Cluster-enriched genes by using the 

FindAllMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct = 

0.3. 

 

Supplementary Table XI. A list of genes that are differentially expressed in each of the 6 

clusters distributed across blood-derived CD4 T cells. Cluster-enriched genes by using the 

FindAllMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct = 

0.3. 

 

Supplementary Table XII. A list of genes that are differentially expressed in each of the 6 

clusters distributed across blood-derived CD8 T cells. Cluster-enriched genes by using the 

FindAllMarkers function in Seurat with test.use = wilcox with log fold change > 0.4 and min.pct = 

0.3. 

 

Supplementary Table XIII. A list of genes that are differentially expressed in each of the 13 

clusters distributed across thymus-derived mouse Tinn cells. Cluster-enriched genes by 

using the FindAllMarkers function in Seurat with test.use = MAST with latent.vars = "orig.ident" 

and log fold change > 0.3. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44 

References 
 

Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G., 

Rambow, F., Marine, J.C., Geurts, P., Aerts, J., et al. (2017). SCENIC: single-cell regulatory 

network inference and clustering. Nat Methods 14, 1083-1086. 10.1038/nmeth.4463 

Baranek, T., de Amat Herbozo, C., Mallevaey, T., and Paget, C. (2022). Deconstructing iNKT cell 

development at single-cell resolution. Trends Immunol 43, 503-512. 10.1016/j.it.2022.04.012 

Baranek, T., Lebrigand, K., de Amat Herbozo, C., Gonzalez, L., Bogard, G., Dietrich, C., Magnone, 

V., Boisseau, C., Jouan, Y., Trottein, F., et al. (2020). High Dimensional Single-Cell Analysis 

Reveals iNKT Cell Developmental Trajectories and Effector Fate Decision. Cell Rep 32, 108116. 

10.1016/j.celrep.2020.108116 

Benlagha, K., Kyin, T., Beavis, A., Teyton, L., and Bendelac, A. (2002). A thymic precursor to the 

NK T cell lineage. Science 296, 553-555. 10.1126/science.1069017 

Benlagha, K., Weiss, A., Beavis, A., Teyton, L., and Bendelac, A. (2000). In vivo identification of 

glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191, 1895-1903. 

10.1084/jem.191.11.1895 

Berzins, S.P., Cochrane, A.D., Pellicci, D.G., Smyth, M.J., and Godfrey, D.I. (2005). Limited 

correlation between human thymus and blood NKT cell content revealed by an ontogeny study of 

paired tissue samples. Eur J Immunol 35, 1399-1407. 10.1002/eji.200425958 

Blanco-Carmona, E. (2022). Generating publication ready visualizations for Single Cell 

transcriptomics using SCpubr. bioRxiv, 2022.2002.2028.482303. 10.1101/2022.02.28.482303 

Borras, D.M., Verbandt, S., Ausserhofer, M., Sturm, G., Lim, J., Verge, G.A., Vanmeerbeek, I., 

Laureano, R.S., Govaerts, J., Sprooten, J., et al. (2023). Single cell dynamics of tumor specificity 

vs bystander activity in CD8(+) T cells define the diverse immune landscapes in colorectal cancer. 

Cell Discov 9, 114. 10.1038/s41421-023-00605-4 

Breed, E.R., Voboril, M., Ashby, K.M., Martinez, R.J., Qian, L., Wang, H., Salgado, O.C., O'Connor, 

C.H., and Hogquist, K.A. (2022). Type 2 cytokines in the thymus activate Sirpalpha(+) dendritic 

cells to promote clonal deletion. Nat Immunol 23, 1042-1051. 10.1038/s41590-022-01218-x 

Brunson, J.C. (2020). ggalluvial: Layered Grammar for Alluvial Plots. J Open Source Softw 5. 

10.21105/joss.02017 

Cano-Gamez, E., Soskic, B., Roumeliotis, T.I., So, E., Smyth, D.J., Baldrighi, M., Wille, D., Nakic, 

N., Esparza-Gordillo, J., Larminie, C.G.C., et al. (2020). Single-cell transcriptomics identifies an 

effectorness gradient shaping the response of CD4(+) T cells to cytokines. Nat Commun 11, 1801. 

10.1038/s41467-020-15543-y 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45 

Chandra, S., Ascui, G., Riffelmacher, T., Chawla, A., Ramirez-Suastegui, C., Castelan, V.C., 

Seumois, G., Simon, H., Murray, M.P., Seo, G.Y., et al. (2023). Transcriptomes and metabolism 

define mouse and human MAIT cell populations. Sci Immunol 8, eabn8531. 

10.1126/sciimmunol.abn8531 

Chandra, S., and Kronenberg, M. (2015). Activation and Function of iNKT and MAIT Cells. Adv 

Immunol 127, 145-201. 10.1016/bs.ai.2015.03.003 

Chang, C., Loo, C.S., Zhao, X., Solt, L.A., Liang, Y., Bapat, S.P., Cho, H., Kamenecka, T.M., 

Leblanc, M., Atkins, A.R., et al. (2019). The nuclear receptor REV-ERBalpha modulates Th17 cell-

mediated autoimmune disease. Proc Natl Acad Sci U S A 116, 18528-18536. 

10.1073/pnas.1907563116 

Chen, Y.H., Chiu, N.M., Mandal, M., Wang, N., and Wang, C.R. (1997). Impaired NK1+ T cell 

development and early IL-4 production in CD1-deficient mice. Immunity 6, 459-467. 

10.1016/s1074-7613(00)80289-7 

Chopp, L.B., Gopalan, V., Ciucci, T., Ruchinskas, A., Rae, Z., Lagarde, M., Gao, Y., Li, C., 

Bosticardo, M., Pala, F., et al. (2020). An Integrated Epigenomic and Transcriptomic Map of 

Mouse and Human alphabeta T Cell Development. Immunity 53, 1182-1201 e1188. 

10.1016/j.immuni.2020.10.024 

Ciofani, M., Madar, A., Galan, C., Sellars, M., Mace, K., Pauli, F., Agarwal, A., Huang, W., 

Parkhurst, C.N., Muratet, M., et al. (2012). A validated regulatory network for Th17 cell 

specification. Cell 151, 289-303. 10.1016/j.cell.2012.09.016 

Crow, M., Paul, A., Ballouz, S., Huang, Z.J., and Gillis, J. (2018). Characterizing the replicability 

of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nat Commun 9, 

884. 10.1038/s41467-018-03282-0 

Cui, G., Shimba, A., Jin, J., Ogawa, T., Muramoto, Y., Miyachi, H., Abe, S., Asahi, T., Tani-Ichi, S., 

Dijkstra, J.M., et al. (2022). A circulating subset of iNKT cells mediates antitumor and antiviral 

immunity. Sci Immunol 7, eabj8760. 10.1126/sciimmunol.abj8760 

D'Angelo, M.E., Bird, P.I., Peters, C., Reinheckel, T., Trapani, J.A., and Sutton, V.R. (2010). 

Cathepsin H is an additional convertase of pro-granzyme B. J Biol Chem 285, 20514-20519. 

10.1074/jbc.M109.094573 

Davey, M.S., Willcox, C.R., Hunter, S., Kasatskaya, S.A., Remmerswaal, E.B.M., Salim, M., 

Mohammed, F., Bemelman, F.J., Chudakov, D.M., Oo, Y.H., and Willcox, B.E. (2018). The human 

Vdelta2(+) T-cell compartment comprises distinct innate-like Vgamma9(+) and adaptive 

Vgamma9(-) subsets. Nat Commun 9, 1760. 10.1038/s41467-018-04076-0 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46 

Delfanti, G., Cortesi, F., Perini, A., Antonini, G., Azzimonti, L., de Lalla, C., Garavaglia, C., 

Squadrito, M.L., Fedeli, M., Consonni, M., et al. (2022). TCR-engineered iNKT cells induce robust 

antitumor response by dual targeting cancer and suppressive myeloid cells. Sci Immunol 7, 

eabn6563. 10.1126/sciimmunol.abn6563 

Deseke, M., and Prinz, I. (2020). Ligand recognition by the gammadelta TCR and discrimination 

between homeostasis and stress conditions. Cell Mol Immunol 17, 914-924. 10.1038/s41423-

020-0503-y 

Dogan, M., Karhan, E., Kozhaya, L., Placek, L., Chen, X., Yigit, M., and Unutmaz, D. (2022). 

Engineering Human MAIT Cells with Chimeric Antigen Receptors for Cancer Immunotherapy. J 

Immunol 209, 1523-1531. 10.4049/jimmunol.2100856 

Duquette, D., Harmon, C., Zaborowski, A., Michelet, X., O'Farrelly, C., Winter, D., Koay, H.F., and 

Lynch, L. (2023). Human Granzyme K Is a Feature of Innate T Cells in Blood, Tissues, and Tumors, 

Responding to Cytokines Rather than TCR Stimulation. J Immunol 211, 633-647. 

10.4049/jimmunol.2300083 

Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., and Huber, W. (2005). 

BioMart and Bioconductor: a powerful link between biological databases and microarray data 

analysis. Bioinformatics 21, 3439-3440. 10.1093/bioinformatics/bti525 

Durinck, S., Spellman, P.T., Birney, E., and Huber, W. (2009). Mapping identifiers for the 

integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols 4, 

1184-1191. 10.1038/nprot.2009.97 

Dusseaux, M., Martin, E., Serriari, N., Peguillet, I., Premel, V., Louis, D., Milder, M., Le Bourhis, 

L., Soudais, C., Treiner, E., and Lantz, O. (2011). Human MAIT cells are xenobiotic-resistant, 

tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250-1259. 10.1182/blood-2010-08-

303339 

Forestier, C., Park, S.H., Wei, D., Benlagha, K., Teyton, L., and Bendelac, A. (2003). T cell 

development in mice expressing CD1d directed by a classical MHC class II promoter. J Immunol 

171, 4096-4104. 10.4049/jimmunol.171.8.4096 

Garner, L.C., Amini, A., FitzPatrick, M.E.B., Lett, M.J., Hess, G.F., Filipowicz Sinnreich, M., 

Provine, N.M., and Klenerman, P. (2023). Single-cell analysis of human MAIT cell transcriptional, 

functional and clonal diversity. Nat Immunol 24, 1565-1578. 10.1038/s41590-023-01575-1 

Germain, P.L., Lun, A., Garcia Meixide, C., Macnair, W., and Robinson, M.D. (2021). Doublet 

identification in single-cell sequencing data using scDblFinder. F1000Res 10, 979. 

10.12688/f1000research.73600.2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 47 

Godfrey, D.I., Koay, H.F., McCluskey, J., and Gherardin, N.A. (2019). The biology and functional 

importance of MAIT cells. Nat Immunol 20, 1110-1128. 10.1038/s41590-019-0444-8 

Godfrey, D.I., Uldrich, A.P., McCluskey, J., Rossjohn, J., and Moody, D.B. (2015). The burgeoning 

family of unconventional T cells. Nat Immunol 16, 1114-1123. 10.1038/ni.3298 

Govindarajan, S., Gaublomme, D., Van der Cruyssen, R., Verheugen, E., Van Gassen, S., Saeys, 

Y., Tavernier, S., Iwawaki, T., Bloch, Y., Savvides, S.N., et al. (2018). Stabilization of cytokine 

mRNAs in iNKT cells requires the serine-threonine kinase IRE1alpha. Nat Commun 9, 5340. 

10.1038/s41467-018-07758-x 

Griewank, K., Borowski, C., Rietdijk, S., Wang, N., Julien, A., Wei, D.G., Mamchak, A.A., Terhorst, 

C., and Bendelac, A. (2007). Homotypic interactions mediated by Slamf1 and Slamf6 receptors 

control NKT cell lineage development. Immunity 27, 751-762. 10.1016/j.immuni.2007.08.020 

Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). circlize Implements and enhances 

circular visualization in R. Bioinformatics 30, 2811-2812. 10.1093/bioinformatics/btu393 

Gutierrez-Arcelus, M., Teslovich, N., Mola, A.R., Polidoro, R.B., Nathan, A., Kim, H., Hannes, S., 

Slowikowski, K., Watts, G.F.M., Korsunsky, I., et al. (2019). Lymphocyte innateness defined by 

transcriptional states reflects a balance between proliferation and effector functions. Nat Commun 

10, 687. 10.1038/s41467-019-08604-4 

Haghverdi, L., Lun, A.T.L., Morgan, M.D., and Marioni, J.C. (2018). Batch effects in single-cell 

RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 36, 

421-427. 10.1038/nbt.4091 

Harly, C., Guillaume, Y., Nedellec, S., Peigne, C.M., Monkkonen, H., Monkkonen, J., Li, J., Kuball, 

J., Adams, E.J., Netzer, S., et al. (2012). Key implication of CD277/butyrophilin-3 (BTN3A) in 

cellular stress sensing by a major human gammadelta T-cell subset. Blood 120, 2269-2279. 

10.1182/blood-2012-05-430470 

Harly, C., Robert, J., Legoux, F., and Lantz, O. (2022). gammadelta T, NKT, and MAIT Cells During 

Evolution: Redundancy or Specialized Functions? J Immunol 209, 217-225. 

10.4049/jimmunol.2200105 

Harsha Krovi, S., Zhang, J., Michaels-Foster, M.J., Brunetti, T., Loh, L., Scott-Browne, J., and 

Gapin, L. (2020). Thymic iNKT single cell analyses unmask the common developmental program 

of mouse innate T cells. Nat Commun 11, 6238. 10.1038/s41467-020-20073-8 

Hayday, A.C. (2019). gammadelta T Cell Update: Adaptate Orchestrators of Immune Surveillance. 

J Immunol 203, 311-320. 10.4049/jimmunol.1800934 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 48 

Intlekofer, A.M., Takemoto, N., Wherry, E.J., Longworth, S.A., Northrup, J.T., Palanivel, V.R., 

Mullen, A.C., Gasink, C.R., Kaech, S.M., Miller, J.D., et al. (2005). Effector and memory CD8+ T 

cell fate coupled by T-bet and eomesodermin. Nat Immunol 6, 1236-1244. 10.1038/ni1268 

Istaces, N., Splittgerber, M., Lima Silva, V., Nguyen, M., Thomas, S., Le, A., Achouri, Y., Calonne, 

E., Defrance, M., Fuks, F., et al. (2019). EOMES interacts with RUNX3 and BRG1 to promote 

innate memory cell formation through epigenetic reprogramming. Nat Commun 10, 3306. 

10.1038/s41467-019-11233-6 

Jameson, S.C., and Masopust, D. (2018). Understanding Subset Diversity in T Cell Memory. 

Immunity 48, 214-226. 10.1016/j.immuni.2018.02.010 

Jonsson, A., Donado, C., Theisen, E., Jones, D., Nathan, A., Zhang, F., Medicines Partnership 

(AMP): RA/SLE A, Raychaudhuri, S., and Brenner, M. (2023). Granzyme K Elicits a New Pathway 

for Complement Activation in RA Synovium [abstract]. Arthritis Rheumatol. 75 ((suppl 9)).  

Jonsson, A.H., Zhang, F., Dunlap, G., Gomez-Rivas, E., Watts, G.F.M., Faust, H.J., Rupani, K.V., 

Mears, J.R., Meednu, N., Wang, R., et al. (2022). Granzyme K(+) CD8 T cells form a core 

population in inflamed human tissue. Sci Transl Med 14, eabo0686. 

10.1126/scitranslmed.abo0686 

Kaech, S.M., and Cui, W. (2012). Transcriptional control of effector and memory CD8+ T cell 

differentiation. Nat Rev Immunol 12, 749-761. 10.1038/nri3307 

Kaiserman, D., Zhao, P., Rowe, C.L., Leong, A., Barlow, N., Joeckel, L.T., Hitchen, C., Stewart, 

S.E., Hollenberg, M.D., Bunnett, N., et al. (2022). Granzyme K initiates IL-6 and IL-8 release from 

epithelial cells by activating protease-activated receptor 2. PLoS One 17, e0270584. 

10.1371/journal.pone.0270584 

Karunakaran, M.M., Willcox, C.R., Salim, M., Paletta, D., Fichtner, A.S., Noll, A., Starick, L., 

Nohren, A., Begley, C.R., Berwick, K.A., et al. (2020). Butyrophilin-2A1 Directly Binds Germline-

Encoded Regions of the Vgamma9Vdelta2 TCR and Is Essential for Phosphoantigen Sensing. 

Immunity 52, 487-498 e486. 10.1016/j.immuni.2020.02.014 

Kawana, K., Matsumoto, J., Miura, S., Shen, L., Kawana, Y., Nagamatsu, T., Yasugi, T., Fujii, T., 

Yang, H., Quayle, A.J., et al. (2008). Expression of CD1d and ligand-induced cytokine production 

are tissue specific in mucosal epithelia of the human lower reproductive tract. Infect Immun 76, 

3011-3018. 10.1128/IAI.01672-07 

Klein-Hessling, S., Muhammad, K., Klein, M., Pusch, T., Rudolf, R., Floter, J., Qureischi, M., 

Beilhack, A., Vaeth, M., Kummerow, C., et al. (2017). NFATc1 controls the cytotoxicity of CD8(+) 

T cells. Nat Commun 8, 511. 10.1038/s41467-017-00612-6 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 49 

Koay, H.F., Su, S., Amann-Zalcenstein, D., Daley, S.R., Comerford, I., Miosge, L., Whyte, C.E., 

Konstantinov, I.E., d'Udekem, Y., Baldwin, T., et al. (2019). A divergent transcriptional landscape 

underpins the development and functional branching of MAIT cells. Sci Immunol 4. 

10.1126/sciimmunol.aay6039 

Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., 

Loh, P.R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell 

data with Harmony. Nat Methods 16, 1289-1296. 10.1038/s41592-019-0619-0 

Kotliar, D., Veres, A., Nagy, M.A., Tabrizi, S., Hodis, E., Melton, D.A., and Sabeti, P.C. (2019). 

Identifying gene expression programs of cell-type identity and cellular activity with single-cell 

RNA-Seq. Elife 8. 10.7554/eLife.43803 

Krovi, S.H., Loh, L., Spengler, A., Brunetti, T., and Gapin, L. (2022). Current insights in mouse 

iNKT and MAIT cell development using single cell transcriptomics data. Seminars in Immunology 

60, 101658. 10.1016/j.smim.2022.101658 

Kurioka, A., Ussher, J.E., Cosgrove, C., Clough, C., Fergusson, J.R., Smith, K., Kang, Y.H., Walker, 

L.J., Hansen, T.H., Willberg, C.B., and Klenerman, P. (2015). MAIT cells are licensed through 

granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 8, 429-440. 

10.1038/mi.2014.81 

Lawson, V.J., Maurice, D., Silk, J.D., Cerundolo, V., and Weston, K. (2009). Aberrant selection 

and function of invariant NKT cells in the absence of AP-1 transcription factor Fra-2. J Immunol 

183, 2575-2584. 10.4049/jimmunol.0803577 

Lee, C.H., Zhang, H.H., Singh, S.P., Koo, L., Kabat, J., Tsang, H., Singh, T.P., and Farber, J.M. 

(2018). C/EBPdelta drives interactions between human MAIT cells and endothelial cells that are 

important for extravasation. Elife 7. 10.7554/eLife.32532 

Lee, D., Dunn, Z.S., Guo, W., Rosenthal, C.J., Penn, N.E., Yu, Y., Zhou, K., Li, Z., Ma, F., Li, M., 

et al. (2023). Unlocking the potential of allogeneic Vdelta2 T cells for ovarian cancer therapy 

through CD16 biomarker selection and CAR/IL-15 engineering. Nat Commun 14, 6942. 

10.1038/s41467-023-42619-2 

Lee, M., Lee, E., Han, S.K., Choi, Y.H., Kwon, D.I., Choi, H., Lee, K., Park, E.S., Rha, M.S., Joo, 

D.J., et al. (2020). Single-cell RNA sequencing identifies shared differentiation paths of mouse 

thymic innate T cells. Nat Commun 11, 4367. 10.1038/s41467-020-18155-8 

Lee, Y.J., Holzapfel, K.L., Zhu, J., Jameson, S.C., and Hogquist, K.A. (2013). Steady-state 

production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of 

iNKT cells. Nat Immunol 14, 1146-1154. 10.1038/ni.2731 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 50 

Legoux, F., Gilet, J., Procopio, E., Echasserieau, K., Bernardeau, K., and Lantz, O. (2019). 

Molecular mechanisms of lineage decisions in metabolite-specific T cells. Nat Immunol 20, 1244-

1255. 10.1038/s41590-019-0465-3 

Legoux, F., Salou, M., and Lantz, O. (2017). Unconventional or Preset alphabeta T Cells: 

Evolutionarily Conserved Tissue-Resident T Cells Recognizing Nonpeptidic Ligands. Annu Rev 

Cell Dev Biol 33, 511-535. 10.1146/annurev-cellbio-100616-060725 

Leite-De-Moraes, M.C., Hameg, A., Arnould, A., Machavoine, F., Koezuka, Y., Schneider, E., 

Herbelin, A., and Dy, M. (1999). A distinct IL-18-induced pathway to fully activate NK T 

lymphocytes independently from TCR engagement. J Immunol 163, 5871-5876.  

Lezmi, G., Abou-Taam, R., Garcelon, N., Dietrich, C., Machavoine, F., Delacourt, C., Adel-Patient, 

K., and Leite-de-Moraes, M. (2019). Evidence for a MAIT-17-high phenotype in children with 

severe asthma. J Allergy Clin Immunol 144, 1714-1716 e1716. 10.1016/j.jaci.2019.08.003 

Li, J., Lu, E., Yi, T., and Cyster, J.G. (2016). EBI2 augments Tfh cell fate by promoting interaction 

with IL-2-quenching dendritic cells. Nature 533, 110-114. 10.1038/nature17947 

Li, Z., Yang, Q., Tang, X., Chen, Y., Wang, S., Qi, X., Zhang, Y., Liu, Z., Luo, J., Liu, H., et al. 

(2022). Single-cell RNA-seq and chromatin accessibility profiling decipher the heterogeneity of 

mouse gammadelta T cells. Sci Bull (Beijing) 67, 408-426. 10.1016/j.scib.2021.11.013 

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biol 15, 550. 10.1186/s13059-014-0550-8 

Lu, B., Liu, M., Wang, J., Fan, H., Yang, D., Zhang, L., Gu, X., Nie, J., Chen, Z., Corbett, A.J., et 

al. (2020). IL-17 production by tissue-resident MAIT cells is locally induced in children with 

pneumonia. Mucosal Immunol 13, 824-835. 10.1038/s41385-020-0273-y 

Maas-Bauer, K., Lohmeyer, J.K., Hirai, T., Ramos, T.L., Fazal, F.M., Litzenburger, U.M., Yost, K.E., 

Ribado, J.V., Kambham, N., Wenokur, A.S., et al. (2021). Invariant natural killer T-cell subsets 

have diverse graft-versus-host-disease-preventing and antitumor effects. Blood 138, 858-870. 

10.1182/blood.2021010887 

Matsuda, J.L., Gapin, L., Baron, J.L., Sidobre, S., Stetson, D.B., Mohrs, M., Locksley, R.M., and 

Kronenberg, M. (2003). Mouse V alpha 14i natural killer T cells are resistant to cytokine 

polarization in vivo. Proc Natl Acad Sci U S A 100, 8395-8400. 10.1073/pnas.1332805100 

Matsuda, J.L., Mallevaey, T., Scott-Browne, J., and Gapin, L. (2008). CD1d-restricted iNKT cells, 

the 'Swiss-Army knife' of the immune system. Curr Opin Immunol 20, 358-368. 

10.1016/j.coi.2008.03.018 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 51 

Matsuda, J.L., Naidenko, O.V., Gapin, L., Nakayama, T., Taniguchi, M., Wang, C.R., Koezuka, Y., 

and Kronenberg, M. (2000). Tracking the response of natural killer T cells to a glycolipid antigen 

using CD1d tetramers. J Exp Med 192, 741-754. 10.1084/jem.192.5.741 

Matsuda, J.L., Zhang, Q., Ndonye, R., Richardson, S.K., Howell, A.R., and Gapin, L. (2006). T-

bet concomitantly controls migration, survival, and effector functions during the development of 

Valpha14i NKT cells. Blood 107, 2797-2805. 10.1182/blood-2005-08-3103 

Mayassi, T., Barreiro, L.B., Rossjohn, J., and Jabri, B. (2021). A multilayered immune system 

through the lens of unconventional T cells. Nature 595, 501-510. 10.1038/s41586-021-03578-0 

McCarthy, D.J., Campbell, K.R., Lun, A.T., and Wills, Q.F. (2017). Scater: pre-processing, quality 

control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179-

1186. 10.1093/bioinformatics/btw777 

Meermeier, E.W., Zheng, C.L., Tran, J.G., Soma, S., Worley, A.H., Weiss, D.I., Modlin, R.L., 

Swarbrick, G., Karamooz, E., Khuzwayo, S., et al. (2022). Human lung-resident mucosal-

associated invariant T cells are abundant, express antimicrobial proteins, and are cytokine 

responsive. Commun Biol 5, 942. 10.1038/s42003-022-03823-w 

Moerman, T., Aibar Santos, S., Bravo Gonzalez-Blas, C., Simm, J., Moreau, Y., Aerts, J., and 

Aerts, S. (2019). GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory 

networks. Bioinformatics 35, 2159-2161. 10.1093/bioinformatics/bty916 

Nah, J., and Seong, R.H. (2022). Kruppel-like factor 4 regulates the cytolytic effector function of 

exhausted CD8 T cells. Sci Adv 8, eadc9346. 10.1126/sciadv.adc9346 

Park, D., Kim, H.G., Kim, M., Park, T., Ha, H.H., Lee, D.H., Park, K.S., Park, S.J., Lim, H.J., and 

Lee, C.H. (2019). Differences in the molecular signatures of mucosal-associated invariant T cells 

and conventional T cells. Sci Rep 9, 7094. 10.1038/s41598-019-43578-9 

Park, J.E., Botting, R.A., Dominguez Conde, C., Popescu, D.M., Lavaert, M., Kunz, D.J., Goh, I., 

Stephenson, E., Ragazzini, R., Tuck, E., et al. (2020). A cell atlas of human thymic development 

defines T cell repertoire formation. Science 367. 10.1126/science.aay3224 

Perriman, L., Tavakolinia, N., Jalali, S., Li, S., Hickey, P.F., Amann-Zalcenstein, D., Ho, W.W.H., 

Baldwin, T.M., Piers, A.T., Konstantinov, I.E., et al. (2023). A three-stage developmental pathway 

for human Vgamma9Vdelta2 T cells within the postnatal thymus. Sci Immunol 8, eabo4365. 

10.1126/sciimmunol.abo4365 

Philippot, Q., Ogishi, M., Bohlen, J., Puchan, J., Arias, A.A., Nguyen, T., Martin-Fernandez, M., 

Conil, C., Rinchai, D., Momenilandi, M., et al. (2023). Human IL-23 is essential for IFN-gamma-

dependent immunity to mycobacteria. Sci Immunol 8, eabq5204. 10.1126/sciimmunol.abq5204 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 52 

Poon, M.M.L., Caron, D.P., Wang, Z., Wells, S.B., Chen, D., Meng, W., Szabo, P.A., Lam, N., 

Kubota, M., Matsumoto, R., et al. (2023). Tissue adaptation and clonal segregation of human 

memory T cells in barrier sites. Nat Immunol 24, 309-319. 10.1038/s41590-022-01395-9 

Reantragoon, R., Corbett, A.J., Sakala, I.G., Gherardin, N.A., Furness, J.B., Chen, Z., Eckle, S.B., 

Uldrich, A.P., Birkinshaw, R.W., Patel, O., et al. (2013). Antigen-loaded MR1 tetramers define T 

cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med 210, 2305-2320. 

10.1084/jem.20130958 

Reantragoon, R., Kjer-Nielsen, L., Patel, O., Chen, Z., Illing, P.T., Bhati, M., Kostenko, L., 

Bharadwaj, M., Meehan, B., Hansen, T.H., et al. (2012). Structural insight into MR1-mediated 

recognition of the mucosal associated invariant T cell receptor. J Exp Med 209, 761-774. 

10.1084/jem.20112095 

Rigau, M., Ostrouska, S., Fulford, T.S., Johnson, D.N., Woods, K., Ruan, Z., McWilliam, H.E.G., 

Hudson, C., Tutuka, C., Wheatley, A.K., et al. (2020). Butyrophilin 2A1 is essential for 

phosphoantigen reactivity by gammadelta T cells. Science 367. 10.1126/science.aay5516 

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma 

powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic 

Acids Res 43, e47. 10.1093/nar/gkv007 

Rose, J.R., Akdogan-Ozdilek, B., Rahmberg, A.R., Powell, M.D., Hicks, S.L., Scharer, C.D., and 

Boss, J.M. (2023). Distinct transcriptomic and epigenomic modalities underpin human memory T 

cell subsets and their activation potential. Commun Biol 6, 363. 10.1038/s42003-023-04747-9 

Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of memory 

T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708-712. 

10.1038/44385 

Salou, M., Legoux, F., and Lantz, O. (2021). MAIT cell development in mice and humans. Mol 

Immunol 130, 31-36. 10.1016/j.molimm.2020.12.003 

Sanchez Sanchez, G., Papadopoulou, M., Azouz, A., Tafesse, Y., Mishra, A., Chan, J.K.Y., Fan, 

Y., Verdebout, I., Porco, S., Libert, F., et al. (2022). Identification of distinct functional thymic 

programming of fetal and pediatric human gammadelta thymocytes via single-cell analysis. Nat 

Commun 13, 5842. 10.1038/s41467-022-33488-2 

Sandberg, J.K., Stoddart, C.A., Brilot, F., Jordan, K.A., and Nixon, D.F. (2004). Development of 

innate CD4+ alpha-chain variable gene segment 24 (Valpha24) natural killer T cells in the early 

human fetal thymus is regulated by IL-7. Proc Natl Acad Sci U S A 101, 7058-7063. 

10.1073/pnas.0305986101 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 53 

Scott-Browne, J.P., Matsuda, J.L., Mallevaey, T., White, J., Borg, N.A., McCluskey, J., Rossjohn, 

J., Kappler, J., Marrack, P., and Gapin, L. (2007). Germline-encoded recognition of diverse 

glycolipids by natural killer T cells. Nat Immunol 8, 1105-1113. 10.1038/ni1510 

Shimizu, K., Sato, Y., Kawamura, M., Nakazato, H., Watanabe, T., Ohara, O., and Fujii, S.I. (2019). 

Eomes transcription factor is required for the development and differentiation of invariant NKT 

cells. Commun Biol 2, 150. 10.1038/s42003-019-0389-3 

Terekhova, M., Swain, A., Bohacova, P., Aladyeva, E., Arthur, L., Laha, A., Mogilenko, D.A., 

Burdess, S., Sukhov, V., Kleverov, D., et al. (2023). Single-cell atlas of healthy human blood 

unveils age-related loss of NKG2C(+)GZMB(-)CD8(+) memory T cells and accumulation of type 

2 memory T cells. Immunity. 10.1016/j.immuni.2023.10.013 

Tilloy, F., Treiner, E., Park, S.H., Garcia, C., Lemonnier, F., de la Salle, H., Bendelac, A., Bonneville, 

M., and Lantz, O. (1999). An invariant T cell receptor alpha chain defines a novel TAP-independent 

major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. 

J Exp Med 189, 1907-1921. 10.1084/jem.189.12.1907 

Townsend, M.J., Weinmann, A.S., Matsuda, J.L., Salomon, R., Farnham, P.J., Biron, C.A., Gapin, 

L., and Glimcher, L.H. (2004). T-bet Regulates the Terminal Maturation and Homeostasis of NK 

and V³14i NKT Cells. Immunity 20, 477-494. 10.1016/s1074-7613(04)00076-7 

Ussher, J.E., Bilton, M., Attwod, E., Shadwell, J., Richardson, R., de Lara, C., Mettke, E., Kurioka, 

A., Hansen, T.H., Klenerman, P., and Willberg, C.B. (2014). CD161++ CD8+ T cells, including the 

MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur J 

Immunol 44, 195-203. 10.1002/eji.201343509 

Wagih, O. (2017). ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics 

33, 3645-3647. 10.1093/bioinformatics/btx469 

Wang, J., Adrianto, I., Subedi, K., Liu, T., Wu, X., Yi, Q., Loveless, I., Yin, C., Datta, I., Sant'Angelo, 

D.B., et al. (2023). Integrative scATAC-seq and scRNA-seq analyses map thymic iNKT cell 

development and identify Cbfbeta for its commitment. Cell Discov 9, 61. 10.1038/s41421-023-

00547-x 

Weinreich, M.A., Odumade, O.A., Jameson, S.C., and Hogquist, K.A. (2010). T cells expressing 

the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat Immunol 

11, 709-716. 10.1038/ni.1898 

Wensink, A.C., Kemp, V., Fermie, J., Garcia Laorden, M.I., van der Poll, T., Hack, C.E., and 

Bovenschen, N. (2014). Granzyme K synergistically potentiates LPS-induced cytokine responses 

in human monocytes. Proc Natl Acad Sci U S A 111, 5974-5979. 10.1073/pnas.1317347111 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


 54 

White, A.J., Baik, S., Parnell, S.M., Holland, A.M., Brombacher, F., Jenkinson, W.E., and Anderson, 

G. (2017). A type 2 cytokine axis for thymus emigration. J Exp Med 214, 2205-2216. 

10.1084/jem.20170271 

White, A.J., Jenkinson, W.E., Cowan, J.E., Parnell, S.M., Bacon, A., Jones, N.D., Jenkinson, E.J., 

and Anderson, G. (2014). An essential role for medullary thymic epithelial cells during the 

intrathymic development of invariant NKT cells. J Immunol 192, 2659-2666. 

10.4049/jimmunol.1303057 

Yoshida, N., Comte, D., Mizui, M., Otomo, K., Rosetti, F., Mayadas, T.N., Crispin, J.C., Bradley, 

S.J., Koga, T., Kono, M., et al. (2016). ICER is requisite for Th17 differentiation. Nat Commun 7, 

12993. 10.1038/ncomms12993 

Young, M.H., U'Ren, L., Huang, S., Mallevaey, T., Scott-Browne, J., Crawford, F., Lantz, O., 

Hansen, T.H., Kappler, J., Marrack, P., and Gapin, L. (2013). MAIT cell recognition of MR1 on 

bacterially infected and uninfected cells. PLoS One 8, e53789. 10.1371/journal.pone.0053789 

Yu, J.S., Hamada, M., Ohtsuka, S., Yoh, K., Takahashi, S., and Miaw, S.C. (2017). Differentiation 

of IL-17-Producing Invariant Natural Killer T Cells Requires Expression of the Transcription Factor 

c-Maf. Front Immunol 8, 1399. 10.3389/fimmu.2017.01399 

Yu, X., Rollins, D., Ruhn, K.A., Stubblefield, J.J., Green, C.B., Kashiwada, M., Rothman, P.B., 

Takahashi, J.S., and Hooper, L.V. (2013). TH17 cell differentiation is regulated by the circadian 

clock. Science 342, 727-730. 10.1126/science.1243884 

Zwijnenburg, A.J., Pokharel, J., Varnaite, R., Zheng, W., Hoffer, E., Shryki, I., Comet, N.R., 

Ehrstrom, M., Gredmark-Russ, S., Eidsmo, L., and Gerlach, C. (2023). Graded expression of the 

chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and 

enables cross-species interpretation. Immunity 56, 1955-1974 e1910. 

10.1016/j.immuni.2023.06.025 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570707doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

1

2
3

4
5

6

7 8

9
10

11

12

13
1415

1617

Blood
Thymus

Unified Clustering

Clusters

Thymus or Blood Sort

CD4 SP (x4)
CD8 SP (x4)
³´ T cells (x2)
MAIT cells (x3)
iNKT cells (x3)

CD4 SP (x4)
CD8 SP (x9)
³´ T cells (x9)
MAIT cells (x4)
iNKT cells (x4)

Rhapsody
Whole Transcriptome analysis

&
Cell hashing

&
VDJ TCR repertoire analysis

A B

C Tissue Identity E

Clusters
0 1 2 3 4 5 6 7 8 9 10111213 14

0

25

50

75

100

151617

D F

Egress Score

Thymus Blood

Tissue
Blood

Thymus

CD4+ cells CD8+ cells iNKT cells MAIT cells ³´ T cells

Thymus

Blood

Umap1

Naiveness

Effectorness

Umap1

G H

Donors

J

5 6 7 115 6 7 11 5 6 7 118 910 1213 5 6 7 11 5 6 7 118 910 1213
0

25

50

100

75

0
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

Clusters

Naive

0

25

50

75

100
CD4 CD8 iNKT MAIT ³´

1 2 3 4 1 2 3 4 3 42 3 4 2 3 4

Donors

0

25

50

75

100

0

25

50

100

75

CD4 CD8 iNKT MAIT ³´

Effector

I

Umap1 Umap1

Umap1

GEP1 GEP2

GEP3 GEP4

GEP5 GEP6

GEP7 GEP8

GEP9 GEP10

GEP11 GEP12

K

Gene Expression Programs

Umap1

1

2

3

4

5

6

7

8

9

10

11

12

13

Donors

Loh et al. Figure 1

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


Donors
2 3 4

0

50

100
BThymic iNKT cells

umap1

NKT_c0

NKT_c1

NKT_c2

NKT_c3

NKT_c4

NKT_c5

NKT_c6

A

umap1

CD8³³ signature

umap1

Egress score

umap1

umap1

CD8³³ signature

umap1

Egress score

umap1

umap1

CD8³³ signature

umap1

Egress score

DC

MAIT_c0

MAIT_c1

MAIT_c2

MAIT_c3

MAIT_c4

MAIT_c5

MAIT_c6

Donors
2 3 4

0

50

100
FE

HG

JI

LK
3 4

0

50

100

umap1

iNKT cells MAIT cells ³´ T cells

GD_c0

GD_c1

GD_c2

GD_c3

GD_c4

GD_c5

GD_c6

GD_c7

M

0

0.5

1

1.5

2

Thymic MAIT cells

Thymic ³´ T cells

Loh et al. Figure 2

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


TRAV10+ cells

0

100

200

300

10 1814

TRBV27

TRBV25

TRBV23

TRBV21

TRBV19

TRBV12

TRBV7

TRBV6

TRBV5

TRBV4

Clusters

0 1 2 3 4 5

100

0

50

6

Clusters
1,2,3

Cluster
5

3.2

3

Cluster
6

3.1

A B C

D E

F

TRAV1+ cells 1 2 3 4 5 6 7 8 9 10 11

0

100

200

300

TRAV1-2-TRAJ33

0

10

20

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

8 1411
0

15

30

TRAV1-2-TRAJ20

TRAV1-2-TRAJ12

G H I

J

K

Clusters

2/3/4

Cluster

6

5

3

4

TRDV1 TRDV2

TRDV3 TRGV9

TRDV2TRDV1
GD_c7GD_c0-6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

5

10

15

11 13
0

10

20

30

15 17 19

TRDV2-TRDJ3

TRGV9-TRGJP

L M N O

Loh et al. Figure 3

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


BloodCD4 T cells

5 6 7 11

100

50

0

Clusters

0
1
2
3
4
5

Blood ³´ T cells

5 6 7 118 910 1213

100

50

0

0
1
2
3

Clusters

4

Blood MAIT cells

5 6 7 11

100

50

0

0
1
2
3

Clusters

Blood iNKT cells
GEP4

Clusters

GEP5GEP3

Umap1
Donors

5 6 7 11

Blood CD8T cells

5 6 7 118 910 1213

100

50

0

0
1
2
3

Clusters

100

50

0

Clusters

0
1
2
3
4

E

A GEP6

0 1 2 3

0 1 2 3

40 1 2 3 40 1 2 3 40 1 2 3 4

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1.0

1.0

1.0

1.0

1.0

0.5

0

0.5

0

0.5

0

0

0
0

0.5 0.5 0.5

0

0
0

0.5 0.5 0.5

0
0 0

0.5 0.5 0.5

0

0 0

0.5 0.5 0.5

PBMC: DEgenesbtwall lineages, adj pval<0.01

DBN1
FAM43A

CXXC5
NCR3
GPR65

SYTL2
IL1 8R1
TNFSF14
TRGC1

TRGC2
HSPA5
PIP4K2A

KLF6
MAF
PDCD1

LPCAT4
PTPRM
PIM2

MYC
RPLP0
SPOCK2

JAML
AQP3
DUSP16

NRIP1
TMIGD2
CXCR6

CCR1
CEBPD
TLE1

SPTSSB
COLQ
ME1

CPNE2
ZBTB16
COL5A3

FSD1
CYP2E1
SPON1

B3GALT2
ADAM12
IL1 7RE

DAB2I P
PLD1
RAB18

P2RY14
TRIQK
TSPAN15

ELOVL4
RORC
LTK

SLC4A10
FLT4
SCRN1

ERN1
KLRB1
PHACTR2

CERK
SESN1
GDI1

PNP
CLINT1
ODF2L

RAB11FIP1
SPATS2L
CTSH
LGALS3

PRNP
RORA
PRR5

ZFP36L1
RBMS1
ERO1A

TOB1
VSIR
GLRX

ARL14EP
HPGD
TNFSF13B

WDFY2
BCAS1
BLK

CAMTA1
PLEKHA7
LST1

KIF5C
SCART1
KDSR

CCR6
ELK3
NR1D1

RARG
AC245014.3
SIPA1L1

NR1D2
MPZL3
CTSA

RPS6KA3

APBA2
SELL
FYB1

TBC1D4
EPHB6
ADD3

IL6ST
GSTK1
COTL1

EVI2B
TRBC1
CD5

ITM2A
CD40LG
RNASET2

CD4
CTSB
CD6

TRAC
EFHC2
P2RX5

TMEM173
AKR1C3
CTBP2
KLRD1

RUNX3
AOAH
TPST2

RHOB
PATL2
IFNG

HLA.DRB1
FCRL6
CD2

TIGIT
HMGB2
FOS

FOSB
JUN
CSRNP1

DUSP1
ZFP36
IER5

NFKBIA
CD8B2
CD8A

CD8B
MYLIP
NR4A2

TRA2B
DNAJA1
SRSF7

AC044849.1
DNAJB1
PNRC1

SCML4
JUNB
JUND

TSC22D3
TUBA1A
RTKN2

HDGFL3
TRDC
CD7

RSRP1
STK17A
LINC02446

CRTAM
PECAM1

lineage_id
batchdonor_id
cluster_id cluster_id

3

6

7

9

10

11

12

13

14

15

16

17

batchdonor_id

E5

I11

I6

I7

F6

F7

lineage_id

CD4

CD8

GD

MAIT

NKT

-3

-2

-1

0

1

2

3

PBMC: DEgenesbtwGEP5, adj pval< 0.01

KLRD1

TRGC1

TRAC

CD8A

CD8B

lineage_id

batchdonor_id

cluster_id

F

B C D

Loh et al. Figure 4

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


Migration
Cytokine
receptors Cytotoxicity

Cytokines and
Chemokines NK receptors Integrins

GEP6

20

40

60

-1.0 0 1.0

% Expressed

-1.0 0 1.0 -1.0 0 1.0 -1.0 0 1.0 -1.0 0 1.0 -1.0 0 1.0

GEP5
GEP4
GEP3

-4

-2

0

2

4

Thymus

Blood

A

B C

D

0
2
4
6
8
10
12

KLF3
ZBTB44
NFATC3
TBX21
NFATC2
ZBTB7A

ELF4
ZBTB20
IKZF3
KLF12
FLI1

PRDM1
RUNX3
KLF6
KLF2
IRF1

EOMES

Targets

type Other TF 2 bidirectional TF 2 unidirectional Loh et al. Figure 5

0
2
4
6
8

10

FOSL2

CEBPD

MAF

RORA

MYBL1

XBP1

NR1D2

NFE2L2

CREM

MBD2

ELK3

Targets

GEP1

GEP2

GEP3

GEP4

GEP5

GEP6

GEP7

GEP8

GEP9

GEP10

GEP11

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


Elk3 Mbd2 Crem Nfe2l2 Nr1d2 Xbp1

Mybl1 RoraMaf Cebpd Fosl2 Eomes

Type I

Type II

Type III

cycling

signaling

transition

post-selection/
naive

0

1

2

3

4

5

6

7

8

9

10

11

12

Umap1

Clusters
A B

C Rorc

Tbx21

Loh et al. Figure 6

0

1

2

3

0

1

2

0

1

2

3

0

1

2

0

1

2

0

1

2

3

0

1

2

3

4

0

1

2

3

0

1

2

0

1

2

0

1

2

3

0

1

2

3

0

1

2

0

1

2

3

AUROC

0.0 0.2 0.4 0.6 0.8 1.0

0

500

1000

1500

0.88 0.71 0.75 0.71

0.88 0.92 0.7 0.69 0.81 0.67 0.7

0.76 0.96 0.93 0.99 0.84 0.72 0.73

0.83 0.89 0.99 0.68 0.75 0.78

0.77 0.91 0.88 0.76 0.87 0.81

0.8 0.89 0.94 0.66 0.7 0.66 0.75

0.94 0.86 0.94 0.94

0.72

0.67 0.65 0.69 0.67typeIII

typeII

typeI

transit ion

cycling

signaling

2_Gzma

1_Gzma

0

Humanclusters

typeIII

typeII

typeI

transition

cycling

signaling

2_Gzma

1_Gzma

0

#cells

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/


CDR2-AF488 CD1D-PE

cTECs

mTECs

cTECs
19.2%

mTECs
75.3%

UEA-1-FITC CD1D-PE CD4-AF488 CD1D-PE

DN

DP

CD4 SP

CD8 SP

CD4-AF488 CD1D-PE

DN

DP

CD4 SP

CD8 SP
DN

DP

CD4 SP

CD8 SP

A B

C D

E F

G H

mTECs
64.7%

cTECs
25.4%

cTECs

mTECs

0

1

2

3

4

5

Cd1d1 expression

0

1

2

3

4

5

CD1D expression

Umap1

Umap1

DN
DP

SP
³́ T

cTEC
mTEC
TEC_Other
innate_lymphoid

B
Myeloid
Mesenchymal

Loh et al. Figure 7

SLAMF6

SLAMF1

CD1D

0.0

0.5

1.0

1.5

2.0

2.5
Average Expression

Percent Expressed

10

20

30

Slamf6

Slamf1

Cd1d1

0.0

0.5

1.0

1.5

Average Expression

Percent Expressed

0

10

20

30

40

DN
DP

SP
³́ T

cTEC
mTEC
TEC_Other
innate_lymphoid

B
Myeloid
Mesenchymal

https://doi.org/10.1101/2023.12.07.570707
http://creativecommons.org/licenses/by-nc-nd/4.0/

