

1 **KatG inactivation generates vulnerabilities in isoniazid resistant strains of**
2 ***Mycobacterium tuberculosis***

3

4

5 XinYue Wang¹, William J Jowsey¹, Chen-Yi Cheung¹, Noon E Seeto¹, Natalie JE
6 Waller¹, Michael T Chrisp¹, Amanda L Peterson⁵, Brunda Nijagal⁵, Peter C
7 Fineran^{1,2,3,4}, Gregory M Cook^{1,2}, Simon A Jackson^{1,2}, Matthew B McNeil^{1,2#}.

8

9 1: Department of Microbiology and Immunology, University of Otago, Dunedin, New
10 Zealand.

11 2: Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland,
12 Auckland, New Zealand.

13 3: Genetics Otago, University of Otago, Dunedin, New Zealand

14 4: Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand.

15 5: Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne,
16 Australia

17 # Corresponding author: matthew.mcneil@otago.ac.nz

18

19

20 **Abstract**

21

22 Drug-resistant strains of *Mycobacterium tuberculosis* are a major global health
23 problem. Resistance to the front-line antibiotic isoniazid is often associated with
24 mutations in the *katG* encoded bifunctional catalase-peroxidase. We hypothesised
25 that perturbed KatG activity would generate collateral vulnerabilities in INH-resistant
26 *katG* mutants, providing new pathways to combat isoniazid resistance. Here, we used
27 whole genome CRISPRi screens, transcriptomics, and metabolomics to generate a
28 genome-wide map of cellular vulnerabilities in a *M. tuberculosis* *katG* mutant. We
29 discovered that metabolic and transcriptional remodelling compensates for the loss of
30 KatG but in doing so generates vulnerabilities in ribosome biogenesis, and nucleotide
31 and amino acid metabolism. These vulnerabilities were more sensitive to inhibition in
32 an isoniazid-resistant *katG* mutant under *in vitro* and host-relevant conditions and
33 translated to clinical populations. These findings provide an experimental framework
34 for developing novel strategies to combat antimicrobial resistance in *M. tuberculosis*
35 and other bacterial pathogens.

36

37

38 **Introduction**

39 *Mycobacterium tuberculosis* is the primary causative agent of Tuberculosis (TB) and
40 a leading cause of infectious disease morbidity and mortality. Whilst drug-susceptible
41 (DS) strains of *M. tuberculosis* can be treated with a combination of four drugs for six
42 months, drug-resistant (DR) strains require longer treatment regimens with reduced
43 cure rates (1,2). Novel antibiotics and drug combinations that can rapidly sterilise DR-
44 strains and limit the emergence of drug resistance are urgently needed.

45

46 The mycobacterial KatG protein is a bifunctional catalase-peroxidase involved in
47 detoxifying reactive oxygen species (ROS) (3–5). Whilst not required for mycobacterial
48 growth *in vitro*, KatG is required in response to ROS and within a murine infection
49 model (6,7). The prodrug isoniazid (INH) is a critical component of front-line anti-
50 tubercular therapy and requires KatG to form the active INH-NAD adduct (8,9).
51 Mutations in KatG that prevent activation of INH are the primary route to INH-
52 resistance (INH^R), with >70% of INH^R clinical isolates having a mutation in *katG* (10).
53 To mitigate fitness costs associated with mutations that enable drug resistance,
54 specific cellular pathways become more important for the growth of DR-strains and
55 consequently more vulnerable to inhibition relative to a drug-susceptible parent (11–
56 15). Prior efforts to identify these collateral vulnerabilities have relied on the systematic
57 screening of antibiotics against DR-strains (16–22). Whilst these studies have
58 identified antibiotics that have increased activity against DR-strains, they have been
59 limited to the use of antibiotics that inhibit only a small number of druggable targets.
60 High-throughput approaches are needed to better define collateral vulnerabilities at a
61 genome-wide level and to identify novel drug targets to prioritise in future drug
62 development programmes.

63

64 CRISPR interference (CRISPRi) uses guide RNA (gRNA) sequences and nuclease-
65 deficient Cas9 (dCas9) to transcriptionally silence target genes (23). Whole genome
66 CRISPRi (WG-CRISPRi) offers many advantages as it provides a quantifiable
67 measure of fitness cost or vulnerability associated with target inhibition and allows for
68 the assessment of both non-essential and essential genes (24–28). Here, by
69 combining WG-CRISPRi screens with transcriptional and metabolomic analysis we
70 have generated a genome-wide map of vulnerabilities in an INH-resistant *katG* mutant
71 of *M. tuberculosis*. This experimental framework should accelerate the discovery of

72 new therapeutic approaches for combating DR in *M. tuberculosis* as well as other
73 pathogens.

74 **Results**

75 **Whole-genome CRISPRi screening to identify genetic vulnerabilities in *M.***

76 ***tuberculosis*:** We hypothesised that WG-CRISPRi could be used to identify genes of

77 increased vulnerability in an INH-resistant *katG* mutant of *M. tuberculosis*

78 (*KatG*^{L458QfsX27}, here after referred to as INH^R-*katG*). To investigate this, we

79 constructed a WG-CRISPRi plasmid library to transcriptionally repress the majority of

80 annotated genes in *M. tuberculosis* (Fig. 1a and Supplementary Table S1). The

81 CRISPRi plasmid pLJR965 encodes a *S. thermophilus* dCas9 mutant (Sth1dCas9)

82 and a gRNA-scaffold sequence, both of which are induced by anhydrotetracycline

83 (ATc) (23,29,30). In total, 22,996 gRNAs were selected to target 3,991 unique protein-

84 coding genes (Supplementary Table S1). Most genes were targeted by 6 individual

85 gRNAs with variation in the predicted PAM strength, gRNA length and predicted gRNA

86 strength (Extended Data Fig.1) (23,25). The WG-CRISPRi library screen was

87 performed in the drug-susceptible (DS)-parent *M. tuberculosis* strain mc²6206 by

88 culturing pooled populations for a total of 14 days, with back-dilutions into fresh media

89 with ATc on days 5 and 10 (Fig. 1a). We controlled the level of CRISPRi knockdown

90 by adding different concentrations of the ATc: high, medium, or low, using 300, 30 or

91 3 ng/ml ATc, respectively. Genomic DNA was harvested on days 5, 10 and 14 and

92 used to generate amplicon libraries for deep sequencing. Amplicon sequencing results

93 demonstrated the number of gRNAs depleted by $\geq 1\text{-log}_2$ reduction (i.e. two-fold

94 reduction) in abundance relative to no ATc increased over time with 2,969 gRNAs

95 depleted on at least one of the sampled time points or ATc concentrations (Fig. 1b and

96 Extended Data Fig. 2a). Next, we classified genes as “essential” if ≥ 2 of their targeting

97 gRNAs had $\geq 1\text{-log}_2$ reduction in abundance in the day 14 + ATc-300 sampling

98 condition relative to the uninduced (ATc-0) sample. For the DS-parent mc²6206, 540

99 genes meet our essentiality criteria (Fig. 1c). Consistent with prior work showing

100 variations in the time taken to observe a fitness cost when using CRISPRi, the number

101 of genes that had ≥ 2 gRNAs with $\geq 1\text{-log}_2$ reduction increased over time (Fig. 1c) (28).

102

103 Comparison of our WG-CRISPRi screen to a prior *M. tuberculosis* WG-CRISPRi

104 screen (hereafter referred to as CRISPRi-Bosch) revealed 93.3% agreement in gene

105 essentiality calls, with disagreements for 212 essential and 54 non-essential genes

106 (Extended Data Fig. 2b and Table S2) (25). Of these, most of the 212 disagreed

107 essential genes had previously been defined as low vulnerability in CRISPRi-Bosch
108 (i.e. a vulnerability index (VI) > -5) (Extended Data Fig. 2c-d) (25). Experimental
109 inspection of disagreed genes that we called non-essential but Bosch called essential
110 (i.e. *blaR* and *menE*) demonstrated that they failed to impair the growth of *M.*
111 *tuberculosis* when grown under conditions comparable to our WG-CRISPRi screen
112 (Extended Data Fig. 2e). The *menE* targeting gRNA did eventually impair growth, but
113 only over a prolonged time course (Extended Data Fig. 2e). Differences in
114 experimental design, including growth media (i.e. OADC vs OADC + Glycerol in
115 CRISPRi-Bosch), the magnitude of gRNA depletion and the timing of essentiality calls
116 (Day 14 vs Day 24 in CRISPRi-Bosch) are likely contributors to the differences in gene
117 essentiality calls. In conclusion, we have developed a WG-CRISPRi platform for *M.*
118 *tuberculosis* that can reproducibly identify relative differences in the fitness costs
119 associated with targeted gene inhibition.

120

121

122 **WG-CRISPRi identifies genes of increased vulnerability in INH^R-*katG*:** We next
123 used WG-CRISPRi to identify pathways more vulnerable to inhibition in INH^R-*katG*
124 than the DS-parent strain. We hypothesised that gRNAs targeting pathways of
125 increased vulnerability would manifest as either (i) increased depletion in INH^R-*katG*
126 at day 14 and/or (ii) be depleted from INH^R-*katG* earlier in the WG-CRISPRi screen
127 (Fig. 1a). WG-CRISPRi screening identified 3,820 depleted gRNAs and 631 essential
128 genes in INH^R-*katG* (Fig. 1d-e and Extended Data Fig. 2f). We defined genes as more
129 vulnerable to inhibition in INH^R-*katG* when (i) they were essential for growth in INH^R-
130 *katG* and (ii) had ≥ 2 gRNAs that were depleted by >1 -log₂ fold change than observed
131 in the DS-parent (Fig. 1f -g and Extended Data Fig. 2g). Of the 631 essential genes,
132 we defined 388 genes as "more vulnerable" in INH^R-*katG* and further classified 168
133 genes as "synthetic lethal" as they were "essential" in INH^R-*katG* but "non-essential"
134 in the DS-parent (Fig. 1g).

135

136 We hypothesised that gRNAs targeting highly vulnerable essential genes would be
137 maximally depleted at day 14 in the DS-parent and be unable to discern differences in
138 vulnerability. Consistent with this, we identified 38 genes (e.g. *rv0123*, *rplC*, and *rplW*)
139 that meet our criteria of being more vulnerable in INH^R-*katG* at ≥ 3 sampling conditions
140 (i.e. earlier time points/lower ATc concentrations) but not at day 14 with ATc-300
141 (Extended Data Fig. 2h-i). Furthermore, there was no correlation between differential
142 gene expression and altered vulnerability, with only three genes of increased
143 vulnerability being differentially expressed in INH^R-*katG* (Extended Data Fig. 2j and
144 Table S3). In conclusion, WG-CRISPRi essentiality screens can identify genes that
145 are of increased vulnerability to inhibition in INH^R-*katG* that cannot otherwise be
146 predicted from changes in gene expression.

147 **Diverse pathways are more vulnerable to inhibition in INH^R-katG:** Having
148 identified more vulnerable genes at a genome-wide level, we sought to identify
149 biological pathways that were enriched for genes of increased vulnerability in INH^R-
150 katG. Pathway enrichment analysis demonstrated that nucleotide metabolism, protein
151 synthesis, respiration and amino acid metabolism were the most enriched functional
152 classes (Fig 2a and Table S4). Although the cell envelope and DNA processing
153 classes were not highly enriched, >20% of genes in the cell wall synthesis and DNA
154 replication subclasses were more vulnerable to inhibition (Extended Data Fig. 3 and
155 Table S4). We hypothesised that gRNAs identified as targeting genes of increased
156 vulnerability in WG-CRISPRi would require less CRISPRi repression (i.e. ATc) to
157 cause a growth impairment in INH^R-katG compared to the DS-parent. To validate the
158 accuracy of our screen we selected 30 gRNAs targeting genes from diverse functional
159 classes for experimental validation. In ATc dose response assays 18 selected gRNAs,
160 including gRNAs targeting *gyrB*, *atpD*, *atpF*, *rpoB*, *hadA*, *kasA* and *mmpL3*, required
161 less ATc to inhibit the growth of INH^R-katG compared to the DS-parent, (Fig. 2b-d and
162 Extended Data Fig. 4a-d). The gRNAs targeting *clpC1* and *iscS* did not reduce the
163 ATc MIC but altered the shape of the dose response curve (Fig. 2e and Extended Data
164 Fig. 4e). Most gRNAs that required less CRISPRi repression to impair growth also had
165 improved killing against INH^R-katG (Fig. 2f and Extended Data Fig. 4f-m). Although
166 the magnitude of improved killing varied, gRNAs targeting *atpD* and *kasA* were static
167 against the DS-parent yet killed INH^R-katG (Fig. 2f and Extended Data Fig. 4f).

168
169 We hypothesised that if these results translated to a host-relevant model, then gRNAs
170 would have a greater effect on the intracellular survival of INH^R-katG within a THP-1
171 infection model. Consistent with this, gRNAs targeting *gyrB*, *clpC1* or *rpoB* caused a
172 greater reduction in viable colonies of INH^R-katG compared to the DS-parent (Fig. 2g
173 and Extended Data Fig. 4n) (31). The gRNA targeting *iscS* impaired the intracellular
174 growth of INH^R-katG, whilst the gRNA targeting *atpD* had no effect on the intracellular
175 survival of INH^R-katG (Fig. 2g and Extended Data Fig. 4n). We next hypothesised that
176 if genes of increased vulnerability could serve as collateral drug vulnerabilities, then
177 INH^R-katG would have increased sensitivity to killing by antibiotics that targeted our
178 identified genetic vulnerabilities. Indeed, INH^R-katG was more sensitive to killing by
179 levofloxacin (GyrB targeting), SQ109 and CPD1 (MmpL3 targeting), bortezomib
180 (putative Clp targeting), thiocarlide (HadAB targeting) and BB16F (ATP synthase

181 targeting) (Fig. 2h-i and Extended Data Fig. 5a-d). Except for borezomib, all chemical
182 inhibitors reduced INH^R-*katG* to the lower limit of detection for all concentrations at or
183 above the DS-parent MIC (Fig 2h-i and Extended Data Fig. 5a-d). Despite the
184 increased vulnerability of *rpoB*, INH^R-*katG* was not more sensitive to killing by the RNA
185 polymerase inhibitor rifampicin (Extended Data Fig. 5e). In conclusion, INH^R-*katG*
186 produces collateral vulnerabilities in diverse biological pathways that are more
187 sensitive to inhibition under *in vitro* and host-relevant conditions.

188 **Alternative redox homeostasis pathways are more vulnerable to inhibition in**
189 **INH^R-katG** : The KatG catalase/peroxidase plays a crucial role in detoxifying hydrogen
190 peroxide (H₂O₂) limiting the accumulation of hydroxyl-radicals and subsequent
191 intracellular damage. Consistent with this, INH^R-katG was (i) more sensitive to
192 inhibition and killing by exogenous redox modulators H₂O₂, menadione, plumbagin,
193 and ascorbic acid (Fig. 3a-b and Extended Data Fig. 6a-f); and (ii) had a reduced ability
194 to detoxify reactive intermediates following exposure to H₂O₂ (Fig. 3c and Extended
195 Data Fig. 6c-d) (32–34). We hypothesised that *M. tuberculosis* would adapt to the loss
196 of KatG catalase/peroxidase by (i) upregulating compensatory detoxification
197 mechanisms or (ii) if compensatory pathways were not upregulated, they would be
198 more vulnerable to inhibition. The majority (~88%) of genes within the stress response
199 functional subclass were not differentially regulated; with only the universal stress
200 response proteins TB31.7 (*rv2623*), *rv2624c*, *rv2005c*, *rv2028c*, *HspX* (*rv2031*), a
201 putative rubredoxin Rv3251c (*rubA*), and the thioredoxin *trxb1* being upregulated,
202 none of which were more vulnerable to CRISPRi (Fig. 3d). The *furA-katG-rv1907c*
203 operon were the most highly upregulated genes, demonstrating INH^R-katG is able to
204 detect increases in oxidative stress (Fig. 3d) (35). Several well-characterized stress-
205 response genes were more vulnerable to inhibition, including *sodA* and *trxB2* yet were
206 not upregulated (Fig. 3d). INH^R-katG was also more sensitive to auranofin a chemical
207 inhibitor of the *trxB2* encoded thioredoxin reductase (Extended Data Fig. 6g-h) (36).
208

209 Interactions between intracellular iron and H₂O₂ lead to the formation of hydroxyl
210 radicals (34,37–39). Given the reduced ability of INH^R-katG to detoxify H₂O₂ we
211 hypothesised that genes involved in iron storage would be more vulnerable to
212 inhibition. Indeed, our WG-CRISPRi screen identified *ideR*, a transcriptional regulator
213 that regulates intracellular iron storage (25,40,41), as synthetic lethal in INH^R-katG
214 (Fig 3e). Unique gRNAs targeting *ideR* required lower levels of ATc to impair the
215 growth of INH^R-katG in ATc dose response assays, reduced the intracellular survival
216 of INH^R-katG in macrophages and INH^R-katG was more sensitive to killing by
217 exogenous FeCl₃ compared to the DS-parent (Fig. 3f-h and Extended Data Fig. 6i-j).
218 We further hypothesized that the increased vulnerability of *ideR* would reduce the time
219 needed to observe a fitness cost when using CRISPRi. By back-diluting cultures every
220 5-days into fresh media + ATc and measuring the maximum growth that was reached,

221 the CRISPRi targeting of *ideR* had an earlier growth inhibitory effect on INH^R-*katG*
222 compared to the DS-parent. Specifically, growth of INH^R-*katG* was inhibited by day 10,
223 whilst the DS-parent had only a small fitness cost (Fig. 3i).

224

225 In line with a recent transcriptional study of a *M. tuberculosis* *katG* mutant, we
226 observed an upregulation of DosR and 33 genes (i.e. 65%) in the DosR regulon in
227 INH^R-*katG* (Table S3) (42). As DosR regulates survival under oxidative stress and
228 hypoxia (43–48), we hypothesised that INH^R-*katG* would also have an altered ability
229 to survive a hypoxic environment. Despite INH^R-*katG* consuming oxygen at a
230 comparable rate to the DS-parent and having no reduced viability during adaptation to
231 hypoxia (Fig. 3j), INH^R-*katG* had a reduced ability to survive under hypoxia compared
232 to the DS-Parent (Fig. 3k). This reduced survivability is consistent with TnSeq
233 experiments and suggests, that similar to mitochondria, hypoxic conditions generate
234 transient bursts in oxidative stress within *M. tuberculosis* (6,49–52). In conclusion,
235 WG-CRISPRi screening reveals that pathways which detoxify or limit the production
236 of DNA damaging hydroxyl radicals become more vulnerable to inhibition in *M.*
237 *tuberculosis* in the absence of the KatG catalase peroxidase.

238

239 **Alterations in amino acid metabolism compensate for perturbed KatG activity.**
240 WG-CRISPRi screening revealed that amino acid and nucleotide metabolism were
241 two of the most enriched functional classes for more vulnerable genes in INH^R-*katG*
242 (Fig. 2a and 4a). We hypothesised that these vulnerabilities were the result of
243 metabolic adaptations to compensate for perturbed KatG activity. Using semi-targeted
244 LC/MS to investigate these adaptations, we identified 127 metabolite peaks, 17 of
245 which were ≥ 1.5 -fold differentially abundant in INH^R-*katG* (Fig 4b-d and Table S5).
246 Interestingly, the only altered amino acids were those involved in aspartate
247 metabolism (i.e. aspartate, lysine, threonine and methionine), which correlated with
248 genes involved in aspartate metabolism being more vulnerable to inhibition (Fig. 4c-
249 d). Although there was no change in the abundance of aromatic amino acids, genes
250 involved in the chorismate (*aroA, B, G, K, F*) and tryptophan synthesis (*trpA, B, C and*
251 *E*) were more vulnerable to inhibition in INH^R-*katG* (Fig. 4d). Aspartate is a precursor
252 to pyrimidine biosynthesis and consistent with this we observed a reduction in N-
253 carbomoyl-L-aspartate, the first committed step in pyrimidine biosynthesis, an
254 increased accumulation of downstream pyrimidine (CMP) intermediates and genes
255 involved in early steps of de novo pyrimidine biosynthesis were more vulnerable to
256 inhibition (Fig. 4c). This suggests that altered aspartate metabolism in INH^R-*katG* in
257 part is needed to maintain an increased demand for nucleotides. The increased
258 accumulation of malate and aspartate, the depletion of oxoglutarate and the increased
259 vulnerability of key steps in the glyoxylate shunt (i.e. *glcB*) suggest that INH^R-*katG* also
260 reroutes metabolism through the glyoxylate shunt (Fig 4c). These alterations parallel
261 bedaquiline treatment and hypoxia-induced metabolic remodelling in *M. tuberculosis*
262 to bypass the oxidative arm of the TCA cycle, limiting NADH production to reduce
263 electron flow through the electron transport chain and ROS production (53,54).
264
265 To confirm the increased vulnerability amino acid metabolism, gRNAs targeting
266 methionine (*metA* and *metC*), lysine (*lysA*, and *dapE*), or shikimate synthesis (*aroK*
267 and *aroA*) required less CRISPRi repression (i.e. ATc) to inhibit the growth of INH^R-
268 *katG* and had an earlier growth inhibitory phenotype against INH^R-*katG* (Fig 4e-i and
269 Extended Data Fig. 7). The gRNAs targeting *aroK* and *aroG* had improved killing
270 against INH^R-*katG*, whilst all other gRNAs were static against both strains (Fig. 4h and
271 Extended Data Fig. 8a-i). The gRNAs targeting *aroB* and *aroG* had an earlier inhibitory

272 effect on growth that wasnt observed in ATc dose response assays (Extended Data
273 Fig. 7h-i). Inhibition of *aroK* also impaired the intracellular survival of INH^R-*katG* in
274 THP-1 infected macrophages (Fig. 4j). Consistent with aspartate and chorismate
275 metabolism compensating for perturbed KatG activity, the depletion of *lysA*, *metA* and
276 *aroK* from the DS-parent increased susceptibility to killing by the redox modulators
277 ascorbic acid and plumbagin (Fig. 4k-l). In conclusion, metabolic remodelling
278 strategies that compensate for perturbed KatG activity in INH^R-*katG* produce collateral
279 vulnerabilities in amino acid metabolism.

280 **Ribosome biogenesis is more vulnerable to inhibition in an INH^R-*katG* mutant:**
281 The inhibition of protein synthesis increases oxidative stress and cell death due to
282 disruptions in translational fidelity and increases in misfolded protein levels (55).
283 Consistent with the increased sensitivity of INH^R-*katG* to oxidative stress WG-
284 CRISPRi screening revealed that >30% of the genes involved in ribosome biogenesis
285 had increased vulnerability in INH^R-*katG* (Fig. 5a). Confirming the increased
286 vulnerabilities, gRNA sequences targeting *rplC* and *rpsP* required less ATc to inhibit
287 the growth of INH^R-*katG*, had an earlier growth inhibitory phenotype, and had
288 improved killing against INH^R-*katG* under *in vitro* conditions and within infected THP-
289 1 macrophages (Fig 5b-e and Extended Data Fig. 9a-b). We hypothesised that if the
290 increased vulnerability of protein synthesis could serve as collateral drug vulnerability,
291 then INH^R-*katG* would have increased sensitivity to antibiotics that target protein
292 synthesis. Consistent with this, the protein synthesis inhibitors linezolid
293 (oxazolidinone), kanamycin (aminoglycoside) and nitrofurantoin had improved killing
294 against INH^R-*katG* (Fig. 5f and Extended Data Fig. 9c-d). Linezolid had improved
295 killing against INH^R-*katG* under *in vitro* conditions, in time-kill assays and within
296 infected THP-1 macrophages (Fig. 5g-h). When used in combination with INH,
297 subinhibitory concentrations of linezolid could also exploit this collateral vulnerability
298 and suppress the emergence of INH resistance (Fig. 5i).

299
300 Linezolid was FDA approved for the treatment of MDR-TB as part of a new
301 combination therapy (i.e. BPaL) including bedaquiline and pretomanid. Our data
302 suggests that the excellent efficacy of the BPaL regimen could be attributable to the
303 hyper-susceptibility of INH-resistant (INH^R) isolates to linezolid, in addition to prior
304 reports of hyper susceptibility to bedaquiline and pretomanid (19,42). To investigate
305 this, we surveyed the CRyPTIC data compendium of ~12,000 *M. tuberculosis* clinical
306 isolates for altered linezolid susceptibility. Filtering out low quality MIC calls and
307 linezolid resistant phenotypes highlighted that a greater proportion of INH^R isolates
308 had a lower linezolid MIC compared to the INH susceptible population (Fig. 5j), with a
309 low yet negative correlation between INH and linezolid susceptibility (Pearson
310 correlation of $r = -0.121$, p value = 9.89e-26). In conclusion, INH^R-*katG* is more
311 vulnerable to the inhibition of protein synthesis under *in vitro* and host-relevant
312 conditions, can be exploited by linezolid to suppress INH resistance, and extends into
313 clinical isolates.

314 **Discussion**

315 Therapeutic strategies that exploit the biological costs of drug resistance have the
316 potential to rapidly sterilize and prevent the emergence of drug resistant pathogens.
317 By applying WG-CRISPRi screens with transcriptional and metabolomic approaches
318 we have built on prior work to generate a genome-wide map of collateral vulnerabilities
319 in an INH resistant *katG* mutant strain of *M. tuberculosis*. This work defines the
320 importance of redox homeostasis in mycobacterial physiology, uncovers how
321 metabolic remodelling compensates for perturbed KatG activity, and describes how
322 newly approved TB combination therapies maybe inadvertently targeting collateral
323 vulnerabilities in DR strains.

324

325 This work identified hundreds of genes from diverse biological pathways that are more
326 vulnerable to transcriptional inhibition in an INH resistant *katG* mutant. The enrichment
327 of vulnerable genes to pathways that are known to generate oxidative stress when
328 inhibited is consistent with an increased vulnerability to dysregulated redox
329 homeostasis. Importantly, vulnerabilities identified in our WG-CRISPRi screen were
330 experimentally validated under *in vitro* and host-relevant conditions and could be
331 targeted as collateral drug vulnerabilities. In many instances, the INH^R-*katG* mutant
332 was more susceptible to killing by gRNAs that targeted more vulnerable genes and
333 was sterilized by chemical inhibitors that otherwise had dose dependent or
334 bacteriostatic killing mechanisms against *M. tuberculosis*. These findings also support
335 prior suggestions that oxidative stress is a critical driver of lethality for many
336 functionally unique antibiotics and highlights the potential of inhibiting redox
337 homeostasis to potentiate antibiotic lethality (56–61).

338

339 This work made key functional insights into how changes in the physiology of drug
340 resistant strains generates collateral vulnerabilities. Firstly, disruption of *katG* activity
341 resulted in an increased reliance on alternative ROS detoxification pathways and
342 intracellular iron storage to maintain redox homeostasis. Secondly, metabolic
343 remodelling compensates for perturbed *katG* activity. This included upregulated levels
344 of aspartate to produce increased levels of lysine and maintain methionine production,
345 with each playing a crucial role protecting *M. tuberculosis* against oxidative stress. In
346 *Saccharomyces* species the decarboxylation of lysine into the polyamine cadaverine
347 allows for uncommitted NADPH to be channelled into glutathione metabolism as an

348 antioxidant strategy (62). Consistent with this, increases in cadaverine synthesis have
349 been observed in *M. tuberculosis* INH^R mutants using gas chromatography-time of
350 flight mass spectrometry (GS-MS) (63). Whilst we were unable to identify polyamine
351 peaks in our metabolic spectra this may be due to our use of negative mode LC-MS
352 rather than GC-MS (63). Additionally, the increased vulnerability of chorismate
353 metabolism is consistent with recent work showing reduced metabolic flux through this
354 pathway in the absence of KatG (42). Combined, this work reinforces the fundamental
355 role of amino acids in the redox homeostasis (7,64–70). A complementary metabolic
356 strategy is also used to favour the use of the glyoxylate shunt as a strategy to bypass
357 the oxidative arm of the TCA cycle, limit the production of NADH and reduce the flow
358 of electrons through the electron transport chain, thereby limiting ROS byproducts
359 (53,54). Finally, protein synthesis and nucleotide metabolism had the greatest
360 proportion of genes that were more vulnerable to inhibition in INH^R-*katG*. Both protein
361 synthesis and nucleotide metabolism have known roles in contributing to or disrupting
362 redox homeostasis and have previously been shown to be highly vulnerable genes in
363 *M. tuberculosis* (25). This work extends these findings, highlighting their increased
364 vulnerability in the context of drug resistant strains of *M. tuberculosis* that are
365 experiencing dysregulated cellular physiology and redox homeostasis.

366

367 The clinical implications of our findings may be limited by (i) our use of a *katG*
368 frameshift mutant, rather than the KatG^{S315T} mutation that is observed in >70% of INH-
369 resistant clinical isolates and (ii) our use of a *M. tuberculosis* strain that is derived from
370 a single geographic lineage. However, recent reports have extended prior findings of
371 bedaquiline hyper-susceptibility in a *katG* mutant and shown that this (i) translates to
372 a population-level reduction in bedaquiline MIC and (ii) that INH^R clinical isolates of *M.*
373 *tuberculosis* with KatG^{S315T} reproduced the hyper susceptibility of a *katG* deletion
374 mutant against bedaquiline (42). Whilst the population-level reductions against
375 linezolid were small, our results warrant further investigations into how diverse clinical
376 isolates, both susceptible and resistant, respond to killing by linezolid. These
377 combined findings also suggest that the excellent efficacy of the BPaL regimen may
378 be a result of the individual drugs inadvertently targeting collateral vulnerabilities in DR
379 strains of *M. tuberculosis*.

380

381 Here we have (i) defined the mechanisms that allow *M. tuberculosis* to adapt to
382 inactivation of *katG* and acquisition of INH-resistance and (ii) defined genes and
383 cellular pathways that as a consequence are more vulnerable to inhibition. Importantly
384 this genetic data translated to existing chemical inhibitors, *ex vivo* models and clinical
385 isolates. In our WG-CRISPRi screen, many of the more vulnerable genes were
386 essential genes and were not detected by transcriptional or metabolic approaches.
387 This highlights the power of WG-CRISPRi in driving novel insights into mycobacterial
388 biology and the identification of highly vulnerable drug targets. The development of
389 portable CRISPRi platforms for diverse pathogens should allow these approaches to
390 be applied to other bacterial pathogens (71–73).

391

392 **Materials and Methods**

393

394 **Bacterial strains and growth conditions:** The *M. tuberculosis* strain mc²6206
395 (H37Rv Δ panCD, Δ leuCD) is an avirulent derivative of H37Rv (74). The isoniazid-
396 resistant katG mutant (KatG^{L458QfsX27}) used in this study was previously isolated as a
397 spontaneous isoniazid resistant mutant in *M. tuberculosis* strain mc²6206 where it was
398 named INH-1 (19). Here, INH-1 is renamed INH^R-katG. *M. tuberculosis* strain mc²6206
399 drug-susceptible parent and INH^R-katG were grown at 37°C in Middlebrook 7H9 liquid
400 medium or on 7H11 solid medium supplemented with OADC (0.005% oleic acid, 0.5%
401 BSA (sigma A-7906), 0.2% dextrose, 0.085% catalase), pantothenic acid (25 µg/ml),
402 leucine (50 µg/ml) and when required kanamycin (20 µg/ml). Liquid cultures were
403 supplemented with 0.05% tyloxapol (Sigma). Throughout the manuscript, 7H9 refers
404 to fully supplemented 7H9 media, whilst 7H9-K refers to 7H9 supplemented media
405 with kanamycin. *Escherichia coli* strain MC1061 was used for the cloning of CRISPRi
406 plasmids. *E. coli* MC1061 was grown at 37°C in LB or on LB-agar supplemented with
407 Functional1.5% agar supplemented with kanamycin at 50 µg/ml.

408

409 **Design of *M. tuberculosis* pooled-CRISPRi library:** The pooled-CRISPRi library
410 used in this study was designed by sub-setting a published *M. tuberculosis* CRISPRi
411 library that contained 96K gRNAs, targeting 98.2% of *M. tuberculosis* ORFs (25). We
412 selected (i) only gRNAs that target the non-template strand of each ORF and (ii) a
413 maximum of six gRNAs with the strongest PAM scores were selected per gene. In
414 total this CRISPRi library contained 22,996 gRNAs that targeted 3,991 genes. Ten
415 non-targeting gRNA sequences were included as controls. The pooled-CRISPRi
416 library was synthesized and cloned into pJLR965 by Twist Bioscience. Information
417 related to each gRNA in the plasmid pool including gRNA sequence, gene target,
418 abundance in original Twist library, predicted PAM strength, predicted gRNA strength
419 (if available), vulnerability index of target gene based on CRISPRi-Bosch (25),
420 essentiality from prior WG-CRISPRi and TnSeq screens (25,75), product of each gene
421 if known, strand to which the gRNA binds, position of gRNA along the *M. tuberculosis*
422 mc²6206 genome and gRNA-ID number in the pool is available in Table S1.

423

424 **Transformation and selection of pooled-CRISPRi library into *M. tuberculosis***
425 **mc²6206:** The constructed pooled-CRISPRi library was transformed into the *M.*

426 *tuberculosis* DS-parent and INH^R-*katG* as follows. From a glycerol stock, 100 μ l of
427 each *M. tuberculosis* strain was used to inoculate 10 ml 7H9 media and grown in a
428 T25 flask until confluent. 100 μ l of the outgrowth culture was subcultured into 10 ml
429 7H9 media and grown until an OD₆₀₀ of 0.4. This was repeated for 12 individual T25
430 flasks, giving 120 ml of culture for transformation. At an OD₆₀₀ of 0.4, 1 ml of 2 M
431 glycine was added to each T25 and grown overnight. The 120 ml of culture was
432 harvested in three equal volumes, each washed in 10 ml and again in 5 ml of room
433 temperature 10% glycerol. Pellets were resuspended in a combined volume of 10 ml
434 of 10% glycerol. 200 μ l of resuspended culture were used to electroporate 5 μ l of the
435 constructed pooled-CRISPRi library at a concentration of 50 ng/ μ l, as previously
436 described (76). Electroporation's were recovered in 10 ml 7H9 media and grown
437 overnight at 37°C. A minimum of ten transformations were performed to generate a
438 single *M. tuberculosis* CRISPRi library. All recovered transformations were harvested
439 and resuspended to an OD₆₀₀ of 0.4 in 7H9-K media. A 200 μ l sample from each
440 transformation was used to determine the efficiency of transformation via serial dilution
441 and plating. From the remaining culture, 2.5 ml was inoculated into 50 ml of 7H9-K in
442 a T-75 flask, giving a starting OD₆₀₀ of approximately 0.02. Cultures were grown at
443 37°C until they reached an OD of approximately 0.5. The proportion of Kan resistant
444 (transformed) cells in the population was determined at the start and end of the
445 outgrowth and compared to a negative control (untransformed *M. tuberculosis*). At an
446 OD₆₀₀ of 0.5, cultures were harvested, individually resuspended in 5 ml volumes,
447 combined, then the entire library was adjusted to an OD₆₀₀ of 1.0. Cell stocks (1 ml) of
448 the adjusted library were made and frozen at -80°C until required. The total number of
449 Kan-resistant colonies (i.e. transformed) in each library was determined by thawing a
450 single cell stock, performing a tenfold dilution series and plating onto 7H11-K.
451

452 **WG-CRISPRi screens:** WG-CRISPRi screens were performed in T-25 tissue culture
453 flasks. The screen was initiated by thawing seven 1 ml aliquots of the *M. tuberculosis*
454 pooled-CRISPRi library. The 7 ml of thawed stocks were combined with 7 ml of 7H9-
455 K media, to give an OD₆₀₀ of approximately 0.5. To determine the viability of the
456 thawed library, four separate volumes of 100 μ l were removed, diluted and plated for
457 CFUs. To outgrow and expand the *M. tuberculosis* pooled-CRISPRi library, 1 ml of the
458 remaining culture was added to 10 ml 7H9-K media in T-25 tissue flasks and grown

459 for four days to an OD₆₀₀ of approximately 1. Library expansion was repeated in 12
460 individual T25 flasks. After four days expansion, cultures were combined, harvested
461 and adjusted to an OD₆₀₀ of 1 in 7H9-K. To determine the effects of CRISPRi-mediated
462 gene repression in the pooled-CRISPRi population, 500 μ l of OD₆₀₀ 1 adjusted library
463 was added to 10 ml of 7H9-K media in T25 tissue culture flasks with either 0, 3, 30 or
464 300 ng/ml anhydrotetracycline (ATc) to induce CRISPRi. Five replicate cultures were
465 started for each ATc condition, with this initial inoculation referred to as the day 0
466 culture. The remaining OD₆₀₀ 1 culture was spun down in two equal volumes,
467 supernatant removed and the cell pellets frozen at -20°C for future gDNA extraction.
468 All T25 flasks were grown at 37°C without shaking for 14 days. To maintain log-phase
469 growth, cultures were back diluted using a 1 in 20 dilution on day 5 and again on day
470 10 into new 7H9-K media with fresh ATc at the same concentration. Cell pellets with
471 the remaining culture were harvested on day 5, day 10, and day 14 via centrifugation
472 at 4000 rpm for 10 min. The cell pellets were stored at -20°C for gDNA extraction.

473

474 **DNA extraction, amplicon library construction and sequencing:** Genomic DNA
475 was extracted from the frozen cell pellets using ZymoBIOMICS DNA Miniprep Kits
476 (Zymo Research, #D4300) following the manufacturer's instructions with the following
477 modifications. Briefly, cell pellets resuspended in 750 μ l of ZymoBIOMICS lysis
478 solution were lysed by bead beating for five rounds of 1 min in SPEX SamplePrep
479 MiniG 1600 tissue homogenizer (SPEX, Metuchen, New Jersey, USA) at 1,500 rpm.
480 Samples were eluted with 50 μ l of nuclease-free water that was preheated to 60°C.
481 Isolated gDNA was quantified using the Invitrogen Quibit 4 Fluorometer with the Broad
482 Range Qubit kit following the manufacturer's guidelines (Invitrogen, Carlsbad, CA,
483 USA). The integrity of gDNA was determined by running 5 μ l of each gDNA sample
484 on a 1 % agarose gel.

485

486 To amplify the gRNA sequence extracted gDNA was diluted to 25 ng/ μ l and used as
487 a template for PCR amplification. For each sample, 100 ng of gDNA template was
488 used in 50 μ l of PCR reaction solution. Master mix was made with Q5 High-Fidelity
489 DNA Polymerase (BioLabs # M0493L) following the manufacturer's instructions. For
490 each strain 60 individual PCR amplifications were performed (5 replicates of 4 ATc
491 concentration across 3 days). Each PCR reaction contained (i) one of five forward
492 primers that were offset from each other by a single base to dephase the sequencing

493 library and (ii) a reverse primer with no dephasing. We used a dual indexing strategy
494 with ten forward indexes and 12 reverse indexes. Primer sequences are listed in Table
495 S6. PCR conditions were as follows (i) initial denaturation for 2 min at 98°C, (ii) 20
496 cycles of 98°C for 10 sec, 62°C for 30 sec, and 70°C for 20 sec and (iii) final extension
497 for 2 min at 72°C. PCR products confirmed on a 2% agarose gel, were purified using
498 a GFX PCR DNA and Gel Band Purification Kit (Cytiva, # 28903471) and quantified
499 using the Invitrogen Qubit 4 Fluorometer with the High Sensitivity Qubit kit following
500 the manufacturer's guidelines (Invitrogen, Carlsbad, CA, USA). Each of the 60 purified
501 PCR products per strain were normalized, pooled, then size-selected (245–255 bp)
502 using a Pippin Prep (Sage Science) with 2% agarose dye-free gel cassette
503 (#CEF2010, Sage science, Beverly, USA). The resulting libraries were quantified by
504 Qubit 4 fluorometer (Invitrogen, Carlsbad, CA, USA), then sequenced (100 bp single-
505 end; Illumina NextSeq 2000 at SeqCenter (<https://www.seqcenter.com/>)).

506

507 **Deep sequencing data analyses and hit calling:** Demultiplexed fastq files were
508 converted to tabular format using SeqKit (77). Sequence features (promoter, gRNA
509 and scaffold sequences) were identified using stepwise fuzzy string matching
510 regardless of the sequencing quality scores (since the expected promoter and gRNA
511 sequences are known, low-quality base calls do not negatively impact downstream
512 analyses). First, only reads with identified promoter regions (upstream of the expected
513 gRNA sequence) were included in subsequent analyses (typically > 99% of raw
514 reads). To account for variable gRNA sequence lengths in the CRISPRi pool, we then
515 used the 34 nt starting from the +1 site as a unique sequence 'tag' to match with the
516 expected gRNA sequence pool (Table S1). Only tags with perfect matches to the
517 expected gRNA pool were progressed to generate gRNA count tables for subsequent
518 analyses. Differential abundance tests were performed via the edgeR (v3.42.4)
519 package (classic exact test) to analyse the foldchange of gRNA abundance at each
520 timepoint relative to the corresponding ATc-0 samples (78).

521

522 Essential genes were defined when at least 2 gRNAs targeting the same gene of
523 interest had at least a two-fold change in gRNA abundance (Benjamini-Hochberg
524 adjusted p-value < 0.01) relative to the ATc-0 control day 14 with ATc-300. Genes
525 were identified as being more vulnerable to inhibition in INH^R-katG when the gene of
526 interest was (i) classified as essential in INH^R-katG and (ii) had ≥2 gRNAs that were

527 depleted in INH^R-*katG* by >1-log₂ fold relative to the depletion of the same gRNA in
528 the DS-parent at day 14 with ATc-300. All data processing scripts are available from
529 GitHub (https://github.com/Cecilia-Wang/2023_CRISPR)

530

531 Functional classification of each target gene was conducted using the PATRIC
532 database from the bacterial and viral bioinformatics resource center (79) . Class and
533 subclass information of each gene was obtained via the subsystems table of the H37rv
534 PATRIC database. In cases where functional classification was missing for a gene,
535 manual classification was applied based on its end products and biological processes.

536

537 **Construction and transformation of CRISPRi plasmids that target genes of**
538 **interest:** For validation studies, gRNA sequences of interest from the pooled-CRISPRi
539 library were cloned as individual CRISPRi plasmids, as previously described
540 (29,30,76,80). Briefly, the gRNA sequence and a complementary sequence were
541 ordered with GGGA and AAAC overhangs. Oligos were annealed and cloned into the
542 CRISRPi plasmid pLJR965 using BsmB1 and confirmed using sanger sequencing as
543 previously described (76). All ordered oligos and constructed CRISPRi plasmids are
544 listed in Table S7. CRISPRi plasmids were transformed into *M. tuberculosis* DS-parent
545 or INH^R-*katG* as previously described (76).

546

547 **CRISPRi phenotypic assessment of essentiality and viability in 96 well plates:**
548 To determine the consequences of targeted gene repression on bacterial growth and
549 viability, phenotypic assays were performed as previously described (30,76). Briefly,
550 ATc dose response assays were performed in 96 well plates. *M. tuberculosis* mc²6206
551 strains containing CRISPRi plasmids grown in 7H9-K and diluted to an OD₆₀₀ of 0.01
552 in 7H9-K in a deep well 96 well plate. 96 well assay plates were prepared with a 3-fold
553 dilution of ATc along the Y-axis starting at 300 ng/ml of ATc in row H with a starting
554 inoculum of OD₆₀₀ 0.005. This was achieved by adding 75 μ l of 7H9-K to all wells of
555 columns 3–10 except row H. 113 μ l of 7H9-K containing the starting concentration of
556 ATc (i.e., 600 ng/ml ATc) was added to row H of columns 3–10. ATc was diluted along
557 the vertical axis, transferring 37.5 μ l between columns, up to row B. Row A was used
558 as a no ATc control. Columns 1, 2, 11 and 12 contained 150 μ l of 7H9-K as
559 contamination and background controls. Seventy five μ l of OD₆₀₀ adjusted culture was
560 added to each well to achieve a starting OD₆₀₀ of 0.005. Each column represents the

561 ATc dilution gradient for a single *M. tuberculosis* strain containing a unique CRISPRi
562 plasmid. All experiments included a nontargeting sgRNA (i.e., pLJR965) as a negative
563 control. To assess the fitness costs of gRNAs on growth, duplicate plates were grown
564 at 37°C without shaking for 10 days. OD₆₀₀ was measured using a Varioskan-LUX
565 microplate reader. OD₆₀₀ reads from duplicate plates relative to the growth of the no-
566 ATc control were analysed using a nonlinear fitting of data to the Gompertz equation
567 (29).

568

569 To assess the effects of gRNAs that targeted more vulnerable genes on bacterial
570 viability, duplicate 96 well assay plates were set up as described above. Viability at
571 day 0 was determined using a 4-point ten-fold dilution of the 0.01 diluted culture, with
572 5 µl of each dilution spotted onto to 7H11-K agar plates. At Day 5, culture from rows
573 A and D-H were transferred to a new 96 well plate to be diluted. A 4-point ten-fold
574 dilution gradient was performed and 5 µl of each dilution was spotted onto to 7H11-K
575 agar plates. Plates were incubated at 37°C for 4–5 weeks and colonies were counted.

576

577 **CRISPRi phenotypic assessment of essentiality under continuous log phase**
578 **growth:** The increased vulnerability of target genes were also assessed using growth
579 curves in which culture was back-diluted to maintain a continuous log phase growth.
580 Experiments were performed by diluting *M. tuberculosis* mc²6206 strains containing
581 CRISPRi plasmids in 7H9-K to an OD₆₀₀ of 0.5. 1 ml of culture was added to 10 ml of
582 7H9-K in a T25-flasks with ATc-300 to a starting OD₆₀₀ of 0.05. Cultures were grown
583 without shaking at 37°C. At day 5, the OD₆₀₀ of culture was determined and 0.5 ml of
584 culture was back-diluted into 9.5 ml of 7H9-K in a T25-flasks with ATc-300 and grown
585 without shaking at 37°C. This was repeated on day 10, with the final OD₆₀₀ being
586 determined on day 15.

587

588 **Compound susceptibility and viability assays:** The susceptibility of the DS-parent
589 or INH^R-*katG* to different compounds was determined using Minimum inhibitory
590 concentration (MIC) assays as previously described (19,81). Briefly, inner wells (rows
591 B–G, columns 3–11) of a 96-well flat-bottomed microtiter plate (ThermoFisher
592 Scientific) were filled with 75 µl 7H9 media. Outer wells were filled with 150 µl 7H9
593 media and left as media only controls. 113 µl of 7H9 media containing compound of
594 interest at the required starting concentration was added to column 2 of row B-G.

595 Compound was diluted 3-fold, by transferring 37.5 μ l between wells, down to column
596 10. Column 11 was kept as solvent only. Strains were diluted to an OD₆₀₀ of 0.01.
597 Seventy-five μ l of diluted culture was added to inner wells of the 96-well flat-bottomed
598 microtiter plate containing compound to achieve a starting OD₆₀₀ of 0.005 in a final
599 volume of 150 μ l. Plates were incubated at 37°C for 10 days without shaking. After 10
600 days, plates were covered with plate seals, shaken for 1 min and the OD₆₀₀ was
601 determined using a Varioskan Flash microplate reader (ThermoFisher Scientific).
602 OD₆₀₀ reads from duplicate plates were corrected for background, and values relative
603 to the growth of the no-ATc control were analysed using a nonlinear fitting of data to
604 the Gompertz equation. Assays to determine bacterial viability in response to
605 compound exposure were set up as described above, with viability determined on days
606 on days 0 and 10. Viability at day 0 was determined using a 4-point ten-fold dilution of
607 the 0.01 diluted culture, with 5 μ l of each dilution spotted onto to 7H11 agar plates. At
608 Day 10, culture was removed from appropriate wells and transferred to a new 96 well
609 plate to be diluted. A 4-point ten-fold dilution gradient was performed and 5 μ l of each
610 dilution was spotted onto to 7H11 agar plates. Plates were incubated at 37°C for 4–5
611 weeks and colonies were counted.

612

613 **Time kill experiments:** Time kill experiments were performed using previously
614 established protocols (19,82). Briefly, cultures were diluted to an OD₆₀₀ of 0.1 in 7H9
615 media, with 500 μ l added to 9.5 ml 7H9-supplemented media in a T25 flask. 50 μ l of
616 diluted compounds were added, with DMSO at a final concentration of 0.5%. In co-
617 treatment experiments, antibiotics were added so the final concentration of DMSO was
618 ≤1%. Culture was removed on stated days, diluted, and spotted as described above
619 for MBC assays to determine the number of viable colonies.

620

621 **Compound susceptibility and viability assays against *M. tuberculosis* strains**
622 **pre-depleted for genetic targets:** *M. tuberculosis* strains depleted for genes of
623 interest using CRISRPi were prepared by diluting log phase culture to an OD₆₀₀ of
624 0.005 in 10ml 7H9-K with 300 ng/ml ATc. Cultures were grown without shaking for 5-
625 days at 37°C to pre-deplete target genes. After 5-days *M. tuberculosis* expressing a
626 non-targeting control gRNA was diluted 1/10 into 2 ml of 7H9-K+ATc in a deep well 96
627 well plate to a theoretical OD₆₀₀ of 0.01. As the transcriptional inhibition of *metA*, *lysA*
628 and *aroK* in this study inhibits bacterial growth, 2 ml of undiluted culture was added

629 directly to a deep well 96 well plate at theoretical OD₆₀₀ of 0.01. Assay plates for
630 susceptibility assays were prepared as described above in 7H9-K+ATc. Seventy-five
631 µl of culture from the deep well plate was added to assay plates as described above.
632 Viable colonies were determined on day 0 and 10 as described above. Plates were
633 incubated at 37°C for 4–5 weeks and colonies were counted. Data is present as the
634 change in CFU/ml relative to the inoculum.

635

636 **Hypoxia survival experiments:** Oxygen sensing spots (PreSens, Germany) were
637 adhered to the inside of 100 ml glass vials and sterilized before use (83). Vials were
638 inoculated with 1 ml *M. tuberculosis* adjusted to an OD₆₀₀ of 1 into 29 ml 7H9 for a
639 starting concentration of OD₆₀₀ ~0.03. Glass vials were stopped with a rubber stopper
640 to prevent gaseous exchange. Cultures were incubated at 37°C with shaking (200
641 rpm). The oxygen concentration was measured following the manufacturers guidelines
642 by reading the sensor spot through the outside of the flask using a fibre optic cable
643 connected to a Fibox 4 oxygen meter (PreSens). CFU samples were taken using a
644 hypodermic needle that was inserted through the rubber stopper to remove 500 µl
645 culture. Samples were diluted along a four point ten-fold dilution series, spotted onto
646 7H11-K and incubated at 37°C. Colonies were counted once visible growth was
647 detected, i.e. approximately 4 weeks

648

649 **CellROX measurements of oxidative stress:** CellROX measurements were
650 performed following published protocols (84). Briefly, mid-log phase cultures of *M.*
651 *tuberculosis* mc²6206 DS-parent or INH^R-*katG* were harvested by centrifugation (4000
652 rpm, 10 minutes), washed, resuspended in sterile phosphate buffered saline and
653 diluted to an OD₆₀₀ of 1.0. 100 µL of diluted culture was added to black, clear bottom
654 96-well microtiter plates (Thermofisher #165305). Culture was then treated with 1 mM
655 of hydrogen peroxide (H₂O₂), dithiothreitol or the solvent control DMSO. Plates were
656 incubated at 37°C for 1 h. CellROX Green reagent (Thermofisher #C10444) was
657 added to the desired wells at a final concentration of 5 µM and was returned to the
658 incubator in the dark for 30 min. OD₆₀₀ and fluorescence (λEx 485 nm/λEm 520 nm)
659 was measured using a Varioskan Flash microplate reader (ThermoFisher
660 Scientific).

661

662 **Macrophage infection assays:** THP-1 macrophage infection studies were performed
663 using previously described protocols (31). Briefly, the human monocytic cell line THP-
664 1 (ATCC Cat# TIB-202) was cultured in standard RPMI 1640 macrophage medium
665 supplemented with 10% inactivated fetal bovine serum and 1 mM sodium pyruvate at
666 37°C with 5% CO₂. THP-1 monocytes (5 × 10⁵ cells/well) were differentiated overnight
667 using 100 ng/ml phorbol myristate acetate (PMA) and seeded in a 24 well-plate.
668 Differentiated macrophages were infected with a mid-logarithmic phase culture of *M.*
669 *tuberculosis* with or without a CRISPRi plasmid (OD 0.4–0.8) at a multiplicity of
670 infection (MOI) of 10:1 (10 bacteria/1 cell). Infection was allowed to proceed for 1 h.
671 Cells were then washed 3 times with pre-warmed complete RPMI to remove
672 extracellular bacilli. RPMI media containing supplements (pantothenic acid 25 µg/ml
673 and leucine 50 µg/ml), 0.1% BSA and either antibiotic or ATc at varying concentrations
674 were added to the infected cells and incubated at 37°C with 5% CO₂. After 3 days,
675 infected cells were lysed in distilled water containing 0.1% tyloxapol for 5 min at room
676 temperature to determine the number of CFU/ml on 7H11 agar. For strains with
677 CRISPRi plasmids 7H11 was supplemented with Kan. The percentage of cell viability
678 was determined by normalizing CFU/ml counts at day 3 following compound treatment
679 relative to inoculum as determined on day 0.

680

681 **Metabolite extraction, mass spectrometry, and semi-targeted analyses:**
682 Metabolites were extracted from cultures of both DS-parent and INH^R-*katG* as follows.
683 From glycerol stocks, 150 µl of each strain was used to inoculate 10 ml of 7H9 and
684 were grown in T25 flasks at 37°C without shaking until confluent. One hundred µl of
685 these cultures were then used to inoculate T25 flasks containing 10 ml of fresh 7H9
686 medium. Once confluent (approximately 2 weeks), these cultures were used to
687 inoculate 6 ml of fresh 7H9 to a density of OD₆₀₀ 0.25 and grown for a further ~48 h
688 (OD₆₀₀ of 0.5-1.2) in T25 flasks at 37°C without shaking. Culture volumes equivalent
689 to 5 ml of culture at an OD₆₀₀ of 1 were filtered through 0.22 µm filters (Millipore, #
690 GVWP02500) via vacuum filtration. Cell-laden filters were suspended in 2-ml bead
691 beater tubes (SSIbio, # 21276) containing 1 ml of fresh metabolite extraction solvent
692 (2:2:1 ratio of acetonitrile (Sigma-Aldrich, # 900667), methanol (>99.8%), distilled and
693 deionised water (18.2 Ω)) and ~200 µl of 0.1 mm silica beads (dnature, # 11079101z),
694 and cells were lysed by bead beating at 4000 rpm three times for 30 s. Samples were
695 rested for 30 s on dry ice (solid CO₂) between each bead beating run. Cell lysates

696 were centrifuged at 13000 ×g for 10 min at 4°C, then ~400 µl of the soluble fraction
697 were transferred to 0.2 µm Spin-X filter columns (Costar, # 8196) and centrifuged at
698 13000 ×g for 3 min at 4°C. Filtered lysates were transferred to fresh, pre-chilled
699 microcentrifuge tubes before storage at -80°C. Replicates of the DS-parent and INH^R-
700 *katG* were prepared in parallel. Five replicates were prepared in total, with each
701 replicate prepared on separate days. Samples were shipped on dry-ice to
702 Metabolomics Australia (University of Melbourne, Victoria, Australia) for Mass
703 Spectrometry (MS) analysis of the metabolite. Samples were run alongside an in-
704 house standard library containing 550 polar metabolites that were used as references
705 for the assignment of DS-parent and INH^R-*katG* sample metabolite peaks, resulting in
706 a semi-targeted approach. Metabolites were separated and detected using a Vanquish
707 Horizon UHPLC system (Thermo Scientific) coupled to an Orbitrap ID-X Tribrid mass
708 spectrometer (Thermo Scientific). Chromatography conditions were performed as
709 previously reported (85) with modifications. Briefly, separation was performed using a
710 SeQuant zic-pHILIC column (150 mm × 4.6 mm, 5 µm particle size; Merck) at 25°C,
711 with a binary gradient of solvent A (20 mM ammonium carbonate (pH 9.0; Sigma-
712 Aldrich) and solvent B (100% acetonitrile (Merck, # 100029). The gradient of A/B
713 solvents was run at a flow rate of 300 µl/min as follows: 0.0 min, 80% B; 0.5 min, 80%
714 B; 15.5 min, 50% B; 17.5 min, 30% B; 18.5 min, 5%; 21 min, 5% B; 23–33 min, 80%
715 A. For metabolite detection, the Orbitrap ID-X Tribrid Mass Spectrometer was coupled
716 to a heated electrospray ionisation source and performed as follows: sheath gas flow
717 40 arbitrary units, auxiliary gas flow 10 arbitrary units, sweep gas flow 1 arbitrary units,
718 ion transfer tube temperature 275°C, and vaporizer temperature 320°C. The radio
719 frequency lens value was 35%. Data was acquired in negative polarity with spray
720 voltages of 3500 V. Samples were run in a random order, and the quality of data
721 produced was assessed by the peak variation of pooled samples (all samples
722 combined equally) and four internal standards (¹³C₅,¹⁵N₁ Valine, ¹³C₆ Sorbitol, ¹³C,¹⁵N-
723 UMP, ¹³C,¹⁵N-AMP) that were added to each sample. The data was collected using
724 Thermo Tracefinder (V 4.1) (General Quan Browser). Metabolites were assigned to
725 sample peaks in EI-Maven v.0.12.1 by comparison to the peaks in the standard library.
726 WT and INH^R-*katG* peaks that were also observed in metabolite extraction solvent-
727 only samples (at >20% of the WT) were excluded. Identified metabolites of the DS and
728 INH^R-*katG* samples were provided as raw values from the area under the curve. Raw
729 data were processed and analysed using the MetaboAnalyst v5.0 web server

730 (<https://www.metaboanalyst.ca/docs/About.xhtml>) as follows (86). Peak intensities of
731 all identified metabolites in a combined dataset of DS-parent and INH^R-katG were
732 processed using the Statistical Analysis [one factor] pipeline. Here, the dataset was
733 median normalised and log₁₀ transformed. Metabolites with fold changes >1.5×
734 (p<0.1) between the DS and INH^R-katG groups were considered to be altered in
735 relative abundance.

736

737 **RNA extraction and analysis of RNA sequencing:** Five replicate cultures (of both
738 DS-parent and INH^R-katG) were inoculated into 7H9 media at a starting OD₆₀₀ of 0.1
739 in T25 tissue culture flasks, grown for 3 days at 37°C without shaking, then harvested
740 and RNA extracted as previously described (76). Briefly, the volume of culture
741 harvested was determined as follows (OD₆₀₀ x volume of culture(ml) = 2.5). Harvested
742 pellets were resuspended in 1 ml TRIzol, bead beaten in a 2 ml tube with 200 µl of 0.1
743 mm Zirconia/silicon beads for 3 cycles of 30 sec at 4800 rpm followed by 30 secs on
744 ice and frozen overnight at -20°C. Frozen samples were thawed, mixed with 0.2 ml
745 chloroform and centrifuged in Invitrogen PhaseMaker tubes (Cat No: A33248) for 15
746 minutes at 12,000 g. The clear, upper aqueous phase was transferred to a clean 1.5
747 ml Eppendorf tube and mixed with an equal volume of ethanol. RNA was extracted
748 using Zymo-RNA Clean and Concentrator (Cat No: R1019) and DNase treated using
749 Invitrogen Turbo DNA-free kit (Cat No: AM1907). Removal of DNA was confirmed by
750 PCR using 1 µl of extracted RNA as a template with the primer combination of
751 MMO200+MMO201. Extracted RNA was quantified and quality controlled using the
752 Aligent 2100 Bioanalysis system following the manufacturer guidelines. RNA was
753 prepared using GenTegra RNA tubes (#GTR5025-S) and shipped at room
754 temperature to SeqCenter for RNA sequencing (PRJNA1041353).

755

756 Each replicate was sequenced using the 12M Paired End rRNA depletion RNA
757 sequencing service. Library preparation was performed with Illumina's Stranded Total
758 RNA Prep Ligation with Ribo-Zero Plus kit and 10bp IDT for Illumina indices.
759 Sequencing was done on a NextSeq2000 giving 2 x 51bp reads. Demultiplexing,
760 quality control, and adapter trimming was performed with bcl-convert (v3.9.3). Adaptor
761 removal and quality trimming were conducted with bbduk (a part of the BBTools suite
762 <https://sourceforge.net/projects/bbmap/>). In all cases, low-quality reads with a Phred
763 quality score <10 were removed. Contaminant removal was then carried out to filter

764 out all reads that have a 31-mer match to PhiX (a common Illumina spikein) allowing
765 one mismatch. After pre-processing, 13,719,397 read pairs on average per sample
766 were used for downstream analyses.

767

768 The cleaned paired-end transcriptomic FASTQ files were then aligned to the
769 *Mycobacterium tuberculosis* mc²6206 complete genome (NCBI Accession number:
770 PRJNA914416) with Bowtie2 using the default settings (v2.4.5) (87). The output
771 alignments were saved as SAM files, converted to sorted BAM files, and produced
772 index BAI files with SAMtools (v1.16.1) (88). The resulting alignment files (i.e. BAM
773 and BAI files) were loaded in R (v4.3.0) with the package Rsamtools (v2.16.0) (89,90).
774 Gene counts were calculated using packages GenomicFeatures (v1.52.0) and
775 GenomicAlignments (v1.36.0). Differential expression of each gene was calculated
776 with DESeq2 (v1.40.1) between DS-parent and INH^R-*katG* strains. Gene expression
777 with at least 2-fold difference (Benjamini-Hochberg adjusted p-value <0.05) between
778 DS and INH^R-*katG* were considered to be differentially expressed. Scripts of all data
779 processing are accessible from GitHub.

780

781 **Analysis of CRyPTIC Consortium data:** The CRyPTIC consortium list of 12,288
782 strains and associated MIC against 13 antibiotics
783 (CRyPTIC_reuse_table_20221019.csv) was obtained from the CRyPTIC consortium
784 (91) (http://ftp.ebi.ac.uk/pub/databases/cryptic/release_june2022/reuse/). Data were
785 filtered to remove strains with either a “LOW” or “NA” quality INH or linezolid
786 phenotype. MIC data that were listed as being greater than a specific value (e.g. “>2”)
787 were rounded up to the next value on a two-fold dilution curve (i.e. MIC of >2 becomes
788 4). MIC data specified as “<=” were treated as having an MIC of the specified value
789 (i.e. MIC of <=0.025 becomes 0.025). INH-resistant (INH^R) strains were designated as
790 those having a CRyPTIC consortium resistant (R) phenotype. INH^R were further
791 filtered into high level INH-resistant strains with an MIC >= 0.8 µg/ml, to remove
792 potentially low level non *katG* mediated resistance mechanisms. INH-susceptible
793 (INH^S) strains were taken as having a CRyPTIC consortium susceptible (S)
794 phenotype. As linezolid is only approved for the treatment of MDR strains of *M.*
795 *tuberculosis* and to avoid this confounding the identification of differences in linezolid
796 susceptibility we removed linezolid resistant strains (MIC >= 2 mg/ml) from both

797 populations. Correlation between the INH and LZD MIC of the combined INH^R and
798 INH^S population dataset was determined using a Pearson Correlation.

799 **Acknowledgments**

800 This research was supported by the Health Research Council of New Zealand via
801 project grant 20/459 and Sir Charles Hercus Health Research Fellowships to MM and
802 SAJ (grants 22/156 and 23/228, respectively). NJW was supported by a University of
803 Otago Doctoral Scholarship. We thank members of the Department of Microbiology
804 and Immunology 6th floor for helpful discussions.

805

806 **Author Contributions**

807 MBM and SAJ conceived the project. XW, NJW, WJ, CYC, MC, NS, SAJ and MBM
808 performed the experiments. XW, WJ, GMC, PCF, SAJ and MBM interpreted the data.
809 XW and MBM wrote the manuscript with input from all other authors.

810

811 **Declaration of interests**

812 We have no conflicts of interest to declare
813
814

815

816 **References**

817

1. World Health Organization. WHO TB Report-2022.
2. Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. *New England Journal of Medicine*. 2020 Mar 5;382(10):893–902.
3. Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the virulence of *Mycobacterium tuberculosis* and the implication for transmission in humans. *Infect Immun*. 2002;70(9):4955–60.
4. Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris L, Iii CEB, et al. Compensatory ahpC Gene Expression in Isoniazid-Resistant *Mycobacterium tuberculosis*. *Science* (1979). 1996;272(5268):1641–3.
5. Zhang Y, Heym B, Allen B, Young D, Cole ST. The catalase-peroxidase gene and isoniazid resistance of *Mycobacterium tuberculosis*. *Nature*. 1992;358:591–3.
6. Rittershaus ESC, Baek SH, Krieger I V., Nelson SJ, Cheng YS, Nambi S, et al. A Lysine Acetyltransferase Contributes to the Metabolic Adaptation to Hypoxia in *Mycobacterium tuberculosis*. *Cell Chem Biol*. 2018 Dec 20;25(12):1495–1505.e3.
7. Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, et al. Tryptophan biosynthesis protects mycobacteria from CD4 T-Cell-mediated Killing. *Cell*. 2013;155(6):1296–308.
8. Parikh SL, Xiao G, Tonge PJ. Inhibition of InhA, the enoyl reductase from *Mycobacterium tuberculosis*, by triclosan and isoniazid. *Biochemistry*. 2000;39(26):7645–50.
9. Xia Y, Zhou Y, Carter DS, Mcneil MB, Choi W, Halladay J, et al. Discovery of a cofactor-independent inhibitor of *Mycobacterium tuberculosis* InhA. 2018;1(3):1–12.
10. Crook DW, Peto TEA, Hoosdally SJ, Cruz ALG, Walker AS, Walker TM, et al. A data compendium associating the genomes of 12,289 *Mycobacterium tuberculosis* isolates with quantitative resistance phenotypes to 13 antibiotics. *PLoS Biol*. 2022 Aug 1;20(8):e3001721.
11. Lou K, Steri V, Ge AY, Hwang YC, Yogodzinski CH, Shkedli AR, et al. KRASG12C inhibition produces a driver-limited state revealing collateral dependencies. *Sci Signal*. 2019;12(583).
12. Wang C, Vegna S, Jin H, Benedict B, Lieftink C, Ramirez C, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. *Nature*. 2019;574:268–72.
13. Wang L, Bernards R. Taking advantage of drug resistance, a new approach in the war on cancer. *Front Med*. 2018;12(4):490–5.
14. Brandis G, Wrande M, Liljas L, Hughes D. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. *Mol Microbiol*. 2012;85(1):142–51.
15. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJM. The Competitive Cost of Antibiotic Resistance in *Mycobacterium tuberculosis*. *Science* (1979). 2015;312(5782):1944–6.
16. Gonzales PR, Pesesky MW, Bouley R, Ballard A, Biddy BA, Suckow MA, et al. Synergistic, collaterally sensitive β -lactam combinations suppress resistance in MRSA. *Nat Chem Biol*. 2015;11(11):855–64.
17. Barbosa C, Trebosc V, Kemmer C, Rosenstiel P, Beardmore R, Schulenburg H, et al. Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects. *Mol Biol Evol*. 2017;1–16.
18. Munck C, Gumpert HK, Wallin AI, Wang HH, Sommer MO. Prediction of resistance development against drug combinations by collateral responses to component drugs. *Sci Transl Med*. 2014;6(262):262ra156.
19. Waller NJE, Cheung CY, Cook GM, McNeil MB. The evolution of antibiotic resistance is associated with collateral drug phenotypes in *Mycobacterium tuberculosis*. *Nat Commun*. 2023 Mar 18;14(1):1517.

868

869 20.Rodriguez De Evgrafov M, Gumpert H, Munck C, Thomsen TT, Sommer MOA.
870 Collateral resistance and sensitivity modulate evolution of high-level resistance to
871 drug combination treatment in *staphylococcus aureus*. *Mol Biol Evol*.
872 2015;32(5):1175–85.

873 21.Imamovic L, Sommer MOA. Use of Collateral Sensitivity Networks to Design Drug
874 Cycling Protocols That Avoid Resistance Development. *Sci Transl Med*. 2013;5(204).

875 22.Imamovic L, Mostafa M, Ellabaan H, Manuel A, Machado D, Molin S, et al. Drug-
876 Driven Phenotypic Convergence Supports Rational Treatment Strategies of Chronic
877 Infections. *Cell*. 2018;172:121–34.

878 23.Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, Gerrick ER, et al. Programmable
879 transcriptional repression in mycobacteria using an orthogonal
880 CRISPR interference platform. *Nat Microbiol*. 2017;2(February):1–9.

881 24.Rock J. Tuberculosis drug discovery in the CRISPR era. 2019;1–10.

882 25.Bosch B, Dejesus MA, Poulton NC, Zhang W, Engelhart CA, Zaveri A, et al. Genome-
883 wide gene expression tuning reveals diverse vulnerabilities of *M. tuberculosis*. *Cell*.
884 2021;184(17):4579–92.

885 26.Jost M, Santos DA, Saunders RA, Horlbeck MA, Hawkins JS, Scaria SM, et al. Titrating gene expression using libraries of systematically attenuated CRISPR guide
886 RNAs. *Nat Biotechnol*. 2020 Mar 1;38(3):355–64.

887 27.JS H. Mismatch-CRISPRi Reveals the Co-varying Expression-Fitness Relationships
888 of Essential Genes in *Escherichia coli* and *Bacillus subtilis*. 2020.

889 28.Donati S, Kuntz M, Pahl V, Randau L, Wang C ying, Link H, et al. Multi-omics Analysis
890 of CRISPRi-Knockdowns Identifies Mechanisms that Buffer Decreases of Enzymes in
891 *E. coli* Metabolism. *Cell Syst*. 2021;12(1):56–67.

892 29.McNeil MB, Keighley LM, Cook JR, Cheung CY, Cook GM. CRISPR interference
893 identifies vulnerable cellular pathways with bactericidal phenotypes in *Mycobacterium*
894 *tuberculosis*. *Mol Microbiol*. 2021 Oct 1;116(4):1033–43.

895 30.Mcneil MB, Ryburn HWK, Harold LK, Tirados JF, Cook GM. Transcriptional Inhibition
896 of the F 1 F 0-Type ATP Synthase Has Bactericidal Consequences on the Viability of
897 Mycobacteria. *Antimicrob Agents Chemother*. 2020;64(8).

898 31.Cheung CY, McNeil MB, Cook GM. Utilization of CRISPR interference to investigate
899 the contribution of genes to pathogenesis in a macrophage model of *Mycobacterium*
900 *tuberculosis* infection. *Journal of Antimicrobial Chemotherapy*. 2022 Mar 1;77(3):615–
901 9.

902 32.Sies H, Belousov V V., Chandel NS, Davies MJ, Jones DP, Mann GE, et al. Defining
903 roles of specific reactive oxygen species (ROS) in cell biology and physiology. *Nat
904 Rev Mol Cell Biol*. 2022 Jul 1;23(7):499–515.

905 33.Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, et al. Guidelines
906 for measuring reactive oxygen species and oxidative damage in cells and in vivo. *Nat
907 Metab*. 2022 Jun 1;4(6):651–62.

908 34.Vilchèze C, Hartman T, Weinrick B, Jacobs WR. *Mycobacterium tuberculosis* is
909 extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. *Nat
910 Commun*. 2013;4.

911 35.Vilchèze C, Hartman T, Weinrick B, Jain P, Weisbrod TR, Leung LW, et al. Enhanced
912 respiration prevents drug tolerance and drug resistance in *Mycobacterium*
913 *tuberculosis*. *Proceedings of the National Academy of Sciences*. 2017;114(17):4495–
914 500.

915 36.Lin K, Brien KMO, Trujillo C, Wang R, Wallach JB. *Mycobacterium tuberculosis*
916 Thioredoxin Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor
917 Role in Antioxidant Defense. 2016;1–20.

918 37.Reddy PV, Puri RV, Khera A, Tyagi AK. Iron Storage Proteins Are Essential for the
919 Survival and Pathogenesis of *Mycobacterium tuberculosis* in THP-1 Macrophages
920 and the Guinea Pig Model of Infection. 2012;567–75.

921

922 38.Dragset MS, loerger TR, Zhang YJ, Mærk M, Ginbot Z, Sacchettini JC, et al. Genome-
923 wide Phenotypic Profiling Identifies and Categorizes Genes Required for
924 Mycobacterial Low Iron Fitness. *Sci Rep.* 2019 Dec 1;9(1).

925 39.Theriault ME, Pisu D, Wilburn KM, Lê-Bury G, MacNamara CW, Michael Petrassi H,
926 et al. Iron limitation in *M. tuberculosis* has broad impact on central carbon metabolism.
927 *Commun Biol.* 2022 Dec 1;5(1).

928 40.Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I. *ideR* , an Essential Gene
929 in *Mycobacterium tuberculosis* : Role of IdeR in Iron-Dependent Gene Expression ,
930 Iron Metabolism , and Oxidative Stress Response. *Infect Immun.* 2002;70(7):3371–
931 81.

932 41.Pandey R, Rodriguez GM. IdeR is required for iron homeostasis and virulence in
933 *Mycobacterium tuberculosis*. *Mol Microbiol.* 2014 Jan;91(1):98–109.

934 42.Ofori-Anyinam N, Hamblin M, Coldren M, Li B, Mereddy G, Shaikh M, et al. KatG
935 catalase deficiency confers bedaquiline hyper-susceptibility to isoniazid resistant
936 *Mycobacterium tuberculosis*. *bioRxiv.* 2023 Oct 17;

937 43.Trauner A, Lougheed KEA, Bennett MH, Hingley-Wilson SM, Williams HD. The
938 dormancy regulator DosR controls ribosome stability in hypoxic mycobacteria. *Journal*
939 *of Biological Chemistry.* 2012;287(28):24053–63.

940 44.Mehra S, Foreman TW, Didier PJ, Ahsan MH, Hudock T a, Kissee R, et al. The DosR
941 Regulon Modulates Adaptive Immunity and is Essential for *M. tuberculosis*
942 Persistence. *Am J Respir Crit Care Med.* 2015;191(10):1185–96.

943 45.He H, Bretl DJ, Penoske RM, Anderson DM, Zahrt TC. Components of the Rv0081-
944 Rv0088 Locus, which encodes a predicted formate hydrogenlyase complex, are
945 coregulated by Rv0081, MprA, and DosR in *Mycobacterium tuberculosis*. *J Bacteriol.*
946 2011 Oct;193(19):5105–18.

947 46.Roberts DM, Liao RP, Wisedchaisri G, Hol WGJ, Sherman DR. Two sensor kinases
948 contribute to the hypoxic response of *Mycobacterium tuberculosis*. *Journal of*
949 *Biological Chemistry.* 2004;279(22):23082–7.

950 47.Kumar A, Toledo JC, Patel RP, Lancaster JR, Steyn AJC, Designed AJCS, et al.
951 *Mycobacterium tuberculosis* DosS is a redox sensor and DosT is a hypoxia sensor.
952 Vol. 104. 2007.

953 48.Zheng H, Colvin CJ, Johnson BK, Kirchhoff PD, Wilson M, Jorgensen-Muga K, et al.
954 Inhibitors of *Mycobacterium tuberculosis* DosRST signaling and persistence. *Nat*
955 *Chem Biol.* 2017 Feb 1;13(2):218–25.

956 49.Kung-Chun Chiu D, Pui-Wah Tse A, Law CT, Ming-Jing Xu I, Lee D, Chen M, et al.
957 Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through
958 HIF/HEY1/PINK1 pathway. *Cell Death Dis.* 2019 Dec 1;10(12).

959 50.Coimbra-Costa D, Alva N, Duran M, Carbonell T, Rama R. Oxidative stress and
960 apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. *Redox Biol.*
961 2017 Aug 1;12:216–25.

962 51.Turrens JF. Mitochondrial formation of reactive oxygen species. Vol. 552, *Journal of*
963 *Physiology.* 2003. p. 335–44.

964 52.Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT.
965 Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. *PNAS.*
966 1998;95(20):11715–20.

967 53.Mackenzie JS, Lamprecht DA, Asmal R, Adamson JH, Borah K, Beste DJ V, et al.
968 Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in
969 *Mycobacterium tuberculosis*. 2020;

970 54.Eoh H, Rhee KY. Multifunctional essentiality of succinate metabolism in adaptation to
971 hypoxia in *Mycobacterium tuberculosis*. *Proc Natl Acad Sci U S A.* 2013 Apr
972 16;110(16):6554–9.

973 55.Ling J, Söll D. Severe oxidative stress induces protein mistranslation through
974 impairment of an aminoacyl-tRNA synthetase editing site. *Proc Natl Acad Sci U S A.*
975 2010 Mar 2;107(9):4028–33.

976 56.Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A Common Mechanism
977 of Cellular Death Induced by Bactericidal Antibiotics. *Cell*. 2007 Sep 7;130(5):797–
978 810.

979 57.Dwyer DJ, Kohanski MA, Collins JJ. Role of reactive oxygen species in antibiotic
980 action and resistance. *Curr Opin Microbiol*. 2009;12(5):482–9.

981 58.Dwyer DJ, Collins JJ, Walker GC. Unraveling the Physiological Complexities of
982 Antibiotic Lethality. *Annu Rev Pharmacol Toxicol*. 2015;55(1):313–32.

983 59.Belenky P, Ye JD, Porter CBM, Cohen NR, Lobritz MA, Ferrante T, et al. Bactericidal
984 Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage. *Cell*
985 Rep. 2015;13(5):968–80.

986 60.Hong Y, Zeng J, Wang X, Drlica K, Zhao X. Post-stress bacterial cell death mediated
987 by reactive oxygen species. *Proc Natl Acad Sci U S A*. 2019;116(20):10064–71.

988 61.Wang X, Zhao X. Contribution of oxidative damage to antimicrobial lethality.
989 *Antimicrob Agents Chemother*. 2009 Apr;53(4):1395–402.

990 62.Olin-Sandoval V, Yu JSL, Miller-Fleming L, Alam MT, Kamrad S, Correia-Melo C, et
991 al. Lysine harvesting is an antioxidant strategy and triggers underground polyamine
992 metabolism. *Nature*. 2019 Aug 8;572(7768):249–53.

993 63.Loots DT. An altered *Mycobacterium tuberculosis* metabolome induced by katG
994 mutations resulting in isoniazid resistance. *Antimicrob Agents Chemother*.
995 2014;58(4):2144–9.

996 64.Hasenoehrl EJ, Rae Sajorda D, Berney-Meyer L, Johnson S, Tufariello JAM, Fuhrer
997 T, et al. Derailing the aspartate pathway of *Mycobacterium tuberculosis* to eradicate
998 persistent infection. *Nat Commun*. 2019 Dec 1;10(1).

999 65.Berney M, Berney-Meyer L. *Mycobacterium tuberculosis* in the Face of Host-Imposed
1000 Nutrient Limitation. *Microbiol Spectr*. 2017;5(3):1–17.

1001 66.Berney M, Berney-Meyer L, Wong KW, Chen B, Chen M, Kim J, et al. Essential roles
1002 of methionine and S-adenosylmethionine in the autarkic lifestyle of *Mycobacterium*
1003 tuberculosis. *Proceedings of the National Academy of Sciences*.
1004 2015;112(32):10008–13.

1005 67.Tiwari S, Van Tonder AJ, Vilchèze C, Mendes V, Thomas SE, Malek A, et al. Arginine-
1006 deprivation-induced oxidative damage sterilizes *Mycobacterium tuberculosis*. *Proc
1007 Natl Acad Sci U S A*. 2018;115(39):9779–84.

1008 68.Kumar A, Farhana A, Guidry L, Saini V, Hondalus M, Steyn AJC. Redox homeostasis
1009 in mycobacteria: the key to tuberculosis control? *Expert Rev Mol Med*.
1010 2011;13(December):1–25.

1011 69.Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, et al.
1012 *Mycobacterium tuberculosis* WhiB3 Maintains redox homeostasis by regulating
1013 virulence lipid anabolism to modulate macrophage response. *PLoS Pathog*. 2009
1014 Aug;5(8).

1015 70.Saini V, Cumming BM, Guidry L, Lamprecht DA, Adamson JH, Reddy VP, et al.
1016 Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug
1017 Susceptibility and Virulence of *Mycobacterium tuberculosis*. *Cell* Rep.
1018 2016;14(3):572–85.

1019 71.Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, et al. A Comprehensive,
1020 CRISPR-based Functional Analysis of Essential Genes in Bacteria. *Cell*.
1021 2016;165(6):1493–506.

1022 72.Qu J, Prasad NK, Yu MA, Chen S, Lyden A, Herrera N, et al. Modulating Pathogenesis
1023 with Mobile-CRISPRi. *J Bacteriol*. 2019;201(22):00304–19.

1024 73.Peters JM, Koo BM, Patino R, Heussler GE, Hearne CC, Qu J, et al. Enabling genetic
1025 analysis of diverse bacteria with Mobile-CRISPRi. Vol. 4, *Nature Microbiology*. Nature
1026 Publishing Group; 2019. p. 244–50.

1027 74.Jain P, Hsu T, Arai M, Biermann K, Thaler DS, Nguyen A, et al. Specialized
1028 Transduction Designed for Precise High-Throughput Unmarked Deletions in
1029 *Mycobacterium tuberculosis*. 2014;5(3):1–9.

1030 75.DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, et al. Comprehensive
1031 Essentiality Analysis of the *Mycobacterium tuberculosis* Genome via. *mBio*.
1032 2017;8(1):1–17.

1033 76.McNeil MB, Cook GM. Utilization of CRISPR interference to validate MmpL3 as a drug
1034 target in *mycobacterium tuberculosis*. *Antimicrob Agents Chemother*. 2019;63(8).

1035 77.Shen W, Le S, Li Y, Hu F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q
1036 file manipulation. *PLoS One*. 2016 Oct 1;11(10).

1037 78.Chen Y, Lun ATL, Smyth GK. From reads to genes to pathways: differential
1038 expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-
1039 likelihood pipeline. *F1000Res*. 2016 Jun 20;5:1438.

1040 79.Gillespie JJ, Wattam AR, Cammer SA, Gabbard JL, Shukla MP, Dalay O, et al. Patric:
1041 The comprehensive bacterial bioinformatics resource with a focus on human
1042 pathogenic species. *Infect Immun*. 2011 Nov;79(11):4286–98.

1043 80.McNeil MB, Ryburn HW, Tirados J, Cheung CY, Cook GM. Multiplexed transcriptional
1044 repression identifies a network of bactericidal interactions between mycobacterial
1045 respiratory complexes. *iScience*. 2022 Jan 21;25(1).

1046 81.Hards K, Cheung CY, Waller N, Adolph C, Keighley L, Tee ZS, et al. An amiloride
1047 derivative is active against the F1Fo-ATP synthase and cytochrome bd oxidase of
1048 *Mycobacterium tuberculosis*. *Commun Biol*. 2022 Dec 1;5(1).

1049 82.McNeil MB, Dennison DD, Shelton CD, Parish T. In vitro isolation and characterization
1050 of oxazolidinone-resistant *Mycobacterium tuberculosis*. *Antimicrob Agents
1051 Chemother*. 2017;61(10).

1052 83.Kalia NP, Singh S, Hards K, Cheung CY, Sviriaeva E, Banaei-Esfahani A, et al. *M. tuberculosis*
1053 relies on trace oxygen to maintain energy homeostasis and survive in
1054 hypoxic environments. *Cell Rep*. 2023 May 30;42(5).

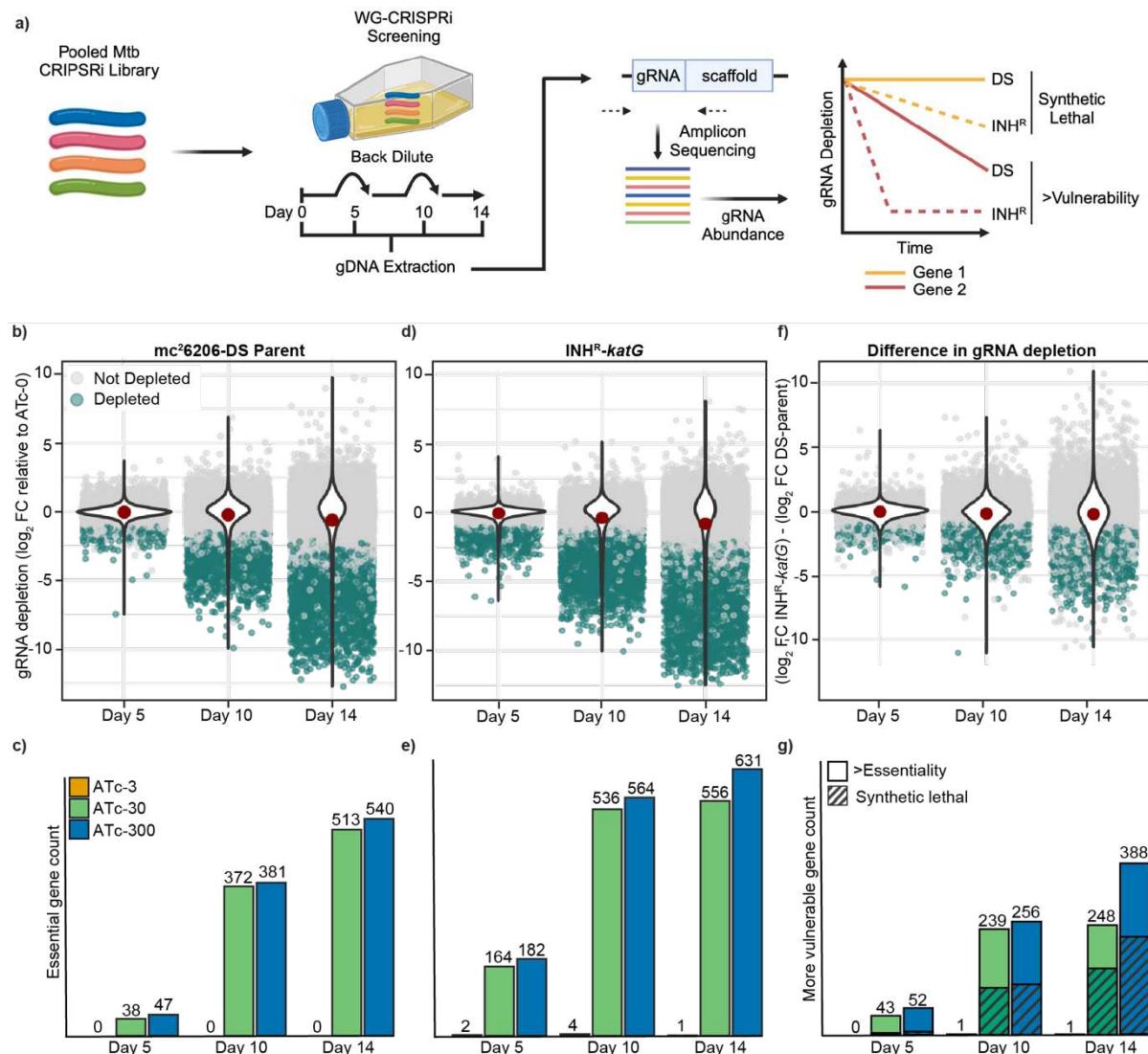
1055 84.Fridianto KT, Li M, Hards K, Negatu DA, Cook GM, Dick T, et al. Functionalized
1056 Dioxonaphthoimidazoliums: A Redox Cycling Chemotype with Potent Bactericidal
1057 Activities against *Mycobacterium tuberculosis*. *J Med Chem*. 2021 Nov
1058 11;64(21):15991–6007.

1059 85.Masukagami Y, Nijagal B, Mahdizadeh S, Tseng CW, Dayalan S, Tivendale KA, et al.
1060 A combined metabolomic and bioinformatic approach to investigate the function of
1061 transport proteins of the important pathogen *Mycoplasma bovis*. *Vet Microbiol*. 2019
1062 Jul 1;234:8–16.

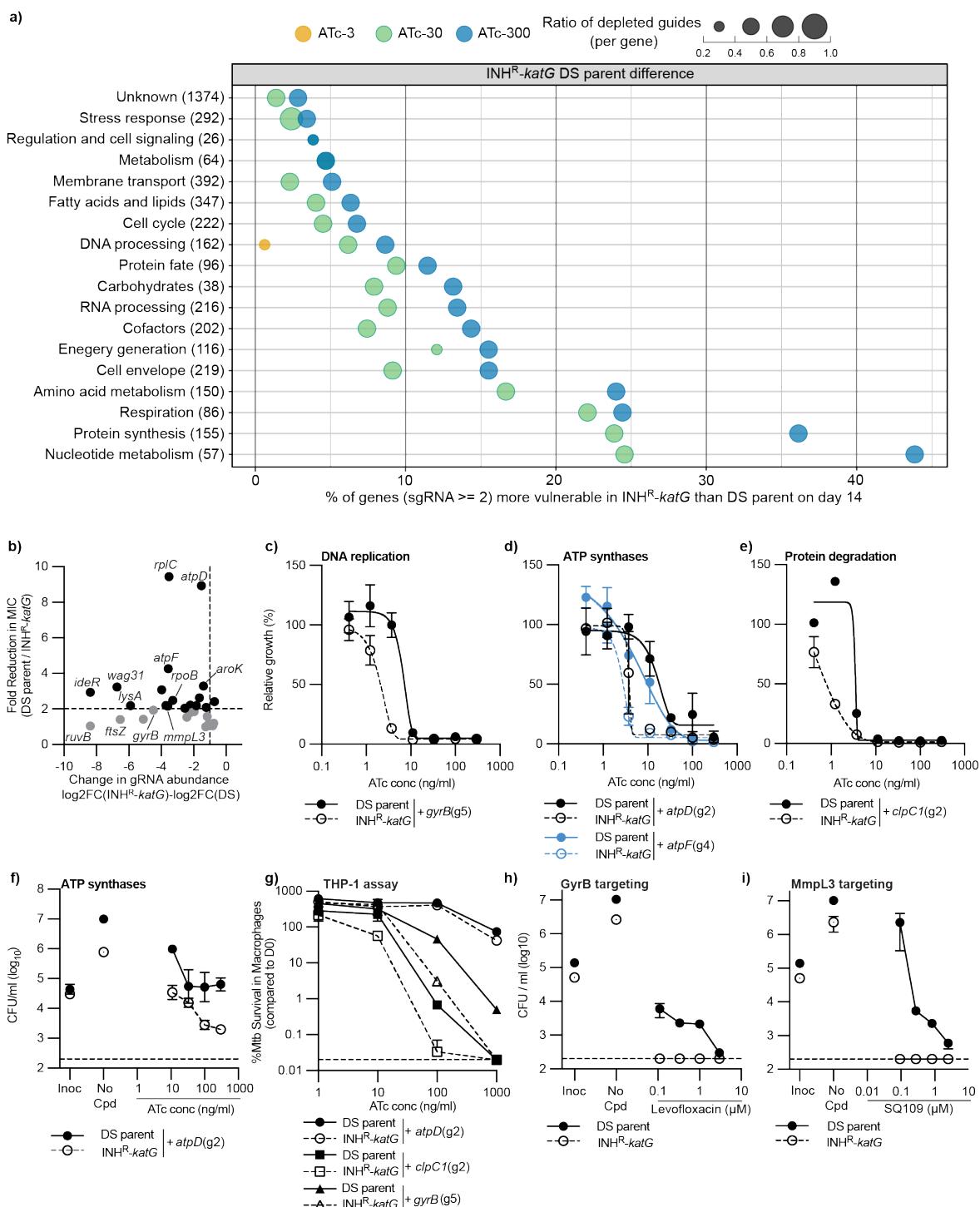
1063 86.Pang Z, Chong J, Zhou G, De Lima Morais DA, Chang L, Barrette M, et al.
1064 MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights.
1065 *Nucleic Acids Res*. 2021 Jul 2;49(W1):W388–96.

1066 87.Bushnell B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Lawrence Berkeley
1067 National Laboratory. In 2014.

1068 88.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
1069 Alignment/Map format and SAMtools. *Bioinformatics*. 2009 Aug;25(16):2078–9.

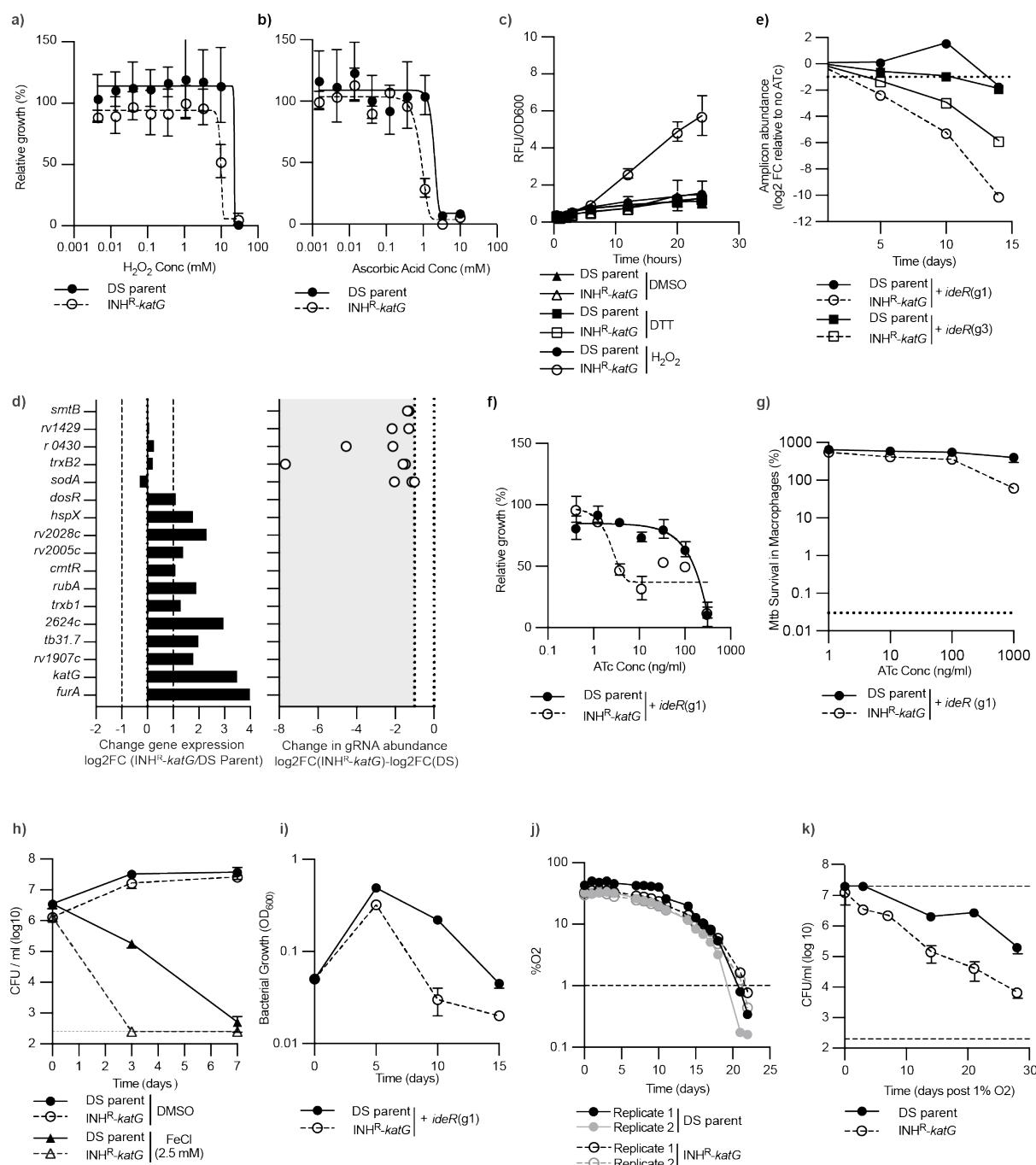

1070 89.Morgan M, Pagès H, Obenchain V, Hayden N. Rsamtools: Binary alignment (BAM),
1071 FASTA, variant call (BCF), and tabix file import. R package version 2.16.0. 2023.

1072 90.Lawrence M, Huber W, Pagès H, Aboyoum P, Carlson M, Gentleman R, et al. Software
1073 for Computing and Annotating Genomic Ranges. *PLoS Comput Biol*. 2013;9(8).

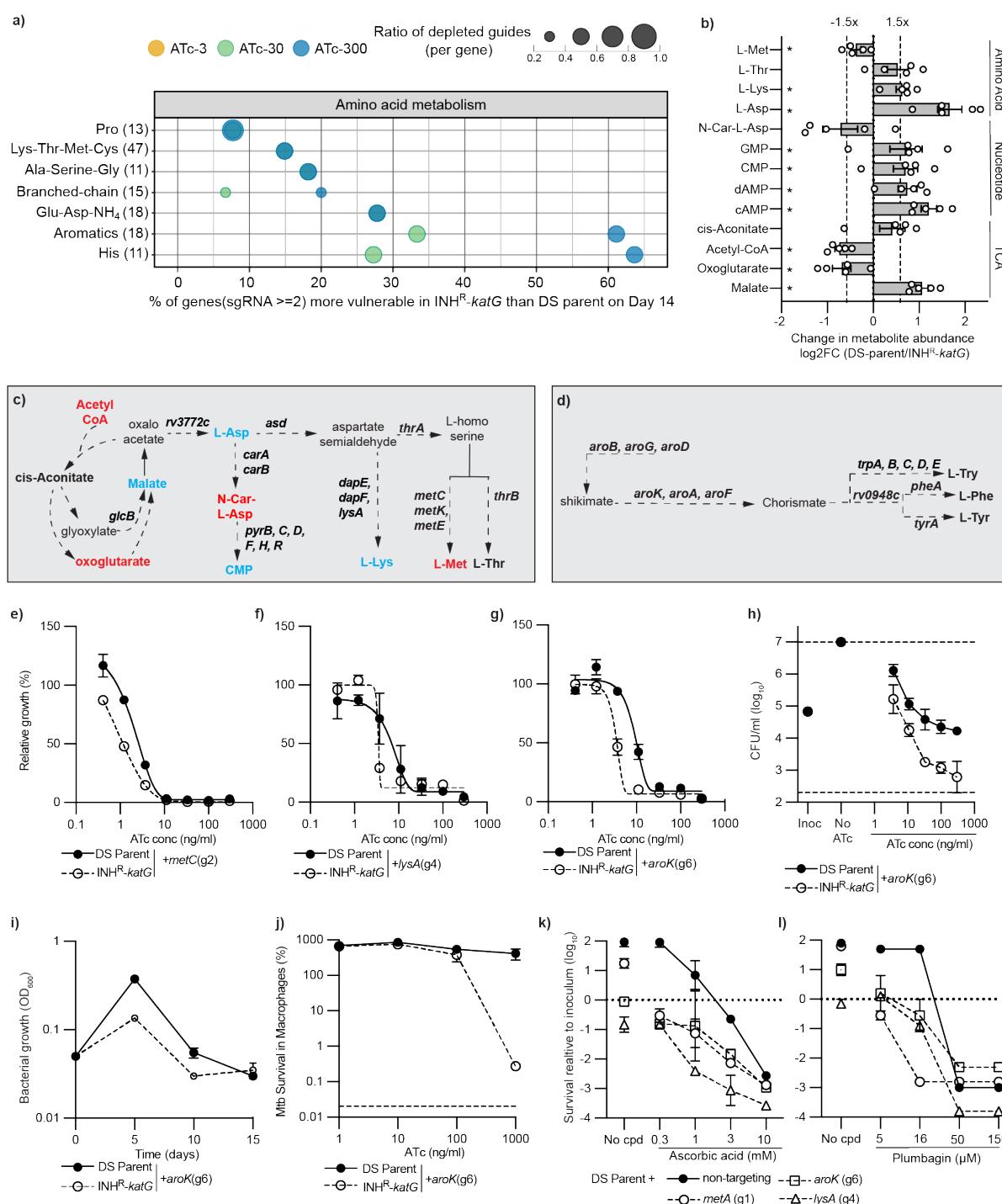

1074 91.The CRyPTIC Consortium. A data compendium associating the genomes of 12,289
1075 *Mycobacterium tuberculosis* isolates with quantitative resistance phenotypes to 13
1076 antibiotics. *PLoS Biol*. 2022 Aug 1;20(8):e3001721.

1077

1078

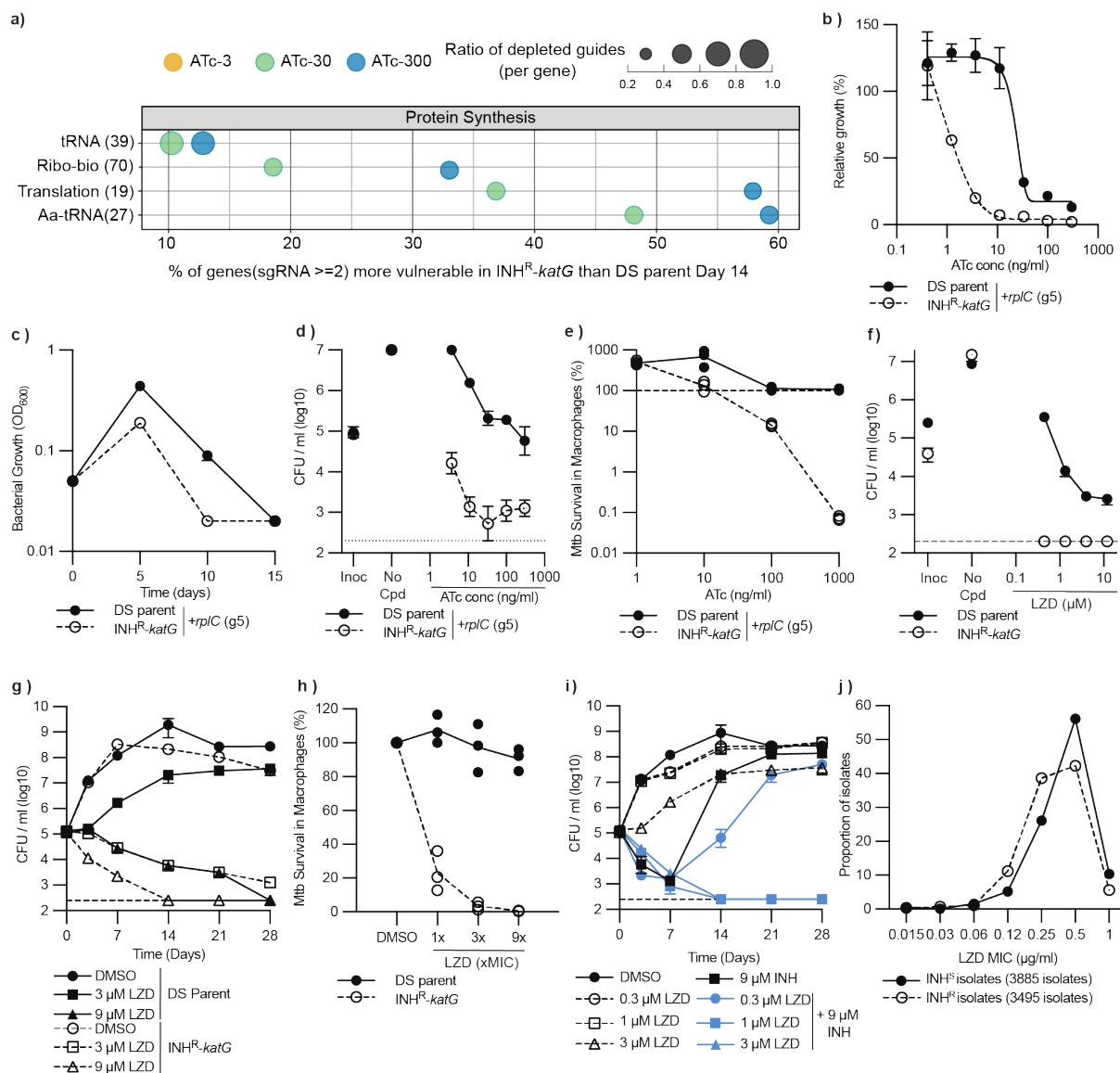

1079
1080 **Figure 1| WG-CRISPRi screening in *M. tuberculosis* strain mc²6206: (a)**
1081 Experimental design for WG-CRISPRi essentiality screening. The pooled CRISPRi
1082 plasmid library is transformed into appropriate *M. tuberculosis* strains. WG-CRISPRi
1083 screens were performed for 14 days, with varying concentrations of ATC and at day 5
1084 and 10 back diluted (1/20) into fresh media + ATC to maintain log phase growth. gDNA
1085 was extracted, gRNA amplified and sequenced from samples collected on days 5, 10
1086 and 14. The proportion of each gRNA at each ATC concentration within the pooled
1087 population was quantified relative to ATC-0 for each sampled time point and plotted on
1088 a log2-fold scale as a reduction in gRNA abundance. Increased depletion of gRNA
1089 was used to identify genes that are either synthetic lethal or have increased in INH^R-
1090 katG. (b-g) Summary of gRNA abundance at ATC-300 in the *M. tuberculosis* strain (b)
1091 mc²6206 DS-parent, (d) INH^R-katG, and (f) the depletion difference between the DS-
1092 parent and INH^R-katG. gRNA abundance is relative to the ATC-0 control at each time
1093 point. Unchanged gRNAs are coloured grey, whilst gRNA with significant > 2-fold
1094 depletion (Benjamini-Hochberg adjusted p-value <0.01) are coloured green. The red
1095 dot within each violin plot denotes the mean gRNA depletion. The total number of
1096 essential genes identified in the (c) DS-parent, (e) INH^R-katG, and (g) genes identified
1097 as being more vulnerable to inhibition in INH^R-katG.

1099


1100 **Figure 2| Pathway enrichment analysis defines diverse pathways that are more**
 1101 **vulnerable to inhibition in INH^R-katG: (a)** Pathway enrichment analysis of genes
 1102 that are of more vulnerable to inhibition in INH^R-katG (i.e. have at least two gRNAs
 1103 that are significantly depleted) (i.e. Fig 1g). Bubble plot represents data from day 14.
 1104 Functional classes are described using classifications from the PATRIC database.
 1105 Within each functional class the size of the bubble indicates the average ratio of
 1106 gRNAs targeting each gene that is more depleted in INH^R-katG. The colour denotes
 1107 the ATC concentration from which the amplicon sequencing was performed. The
 1108 number of genes in each functional class is labelled on the y-axis in brackets. **(b)**
 1109 Scatter plot for each of the 30 gRNAs that were experimentally validated. Data is

1110 plotted as the difference in gRNA abundance between INH^R-*katG* and the DS-parent
1111 from WG-CRISPRi screens (Day14+ATc-300) (x-axis) against the fold change in ATc
1112 MIC between INH^R-*katG* and the DS-parent from ATc dose response assays (y-axis).
1113 The vertical dotted line indicates the cut-off for a gRNA to be significantly depleted,
1114 whilst the horizontal dotted indicates a two-fold change in ATc MIC. **(c-e)** Growth of
1115 *M. tuberculosis* DS-parent and INH^R-*katG* expressing for gRNA targeting (c) *gyrB*, (d)
1116 *atpD* and *atpF* and (e) *clpC1* in ATc dose response assays (mean \pm range of two
1117 biological replicates, $n \geq 3$). The (gx) after each gRNA denotes the specific gRNA
1118 targeting each gene. **(f)** Viability plots of *M. tuberculosis* DS-parent and INH^R-*katG*
1119 expressing for gRNA targeting *atpD*. CFU/ml was determined from 96 well plates used
1120 in (d). Inoc denotes the starting CFU/ml and no-cpd denotes the detected CFU/ml in
1121 the absence of ATc (mean \pm range of two biological replicates, $n \geq 3$). **(g)** THP-1
1122 macrophage cells were infected with *M. tuberculosis* DS-parent and INH^R-*katG* cells
1123 expressing the stated gRNA. CRISPRi was induced with ATc and intracellular survival
1124 was determined as described in the materials in methods (mean \pm SD of three
1125 biological replicates, $n=2$). **(h-i)** MBC assays were used to determine the susceptibility
1126 of *M. tuberculosis* DS-parent and INH^R-*katG* to increasing concentrations of (h)
1127 levofloxacin and (i) SQ109. Inoc denotes the starting CFU/ml and no-cpd denotes the
1128 detected CFU/ml in the absence of compound (mean \pm range of two biological
1129 replicates, $n \geq 3$). Dashed line represents the lower limit of detection.
1130

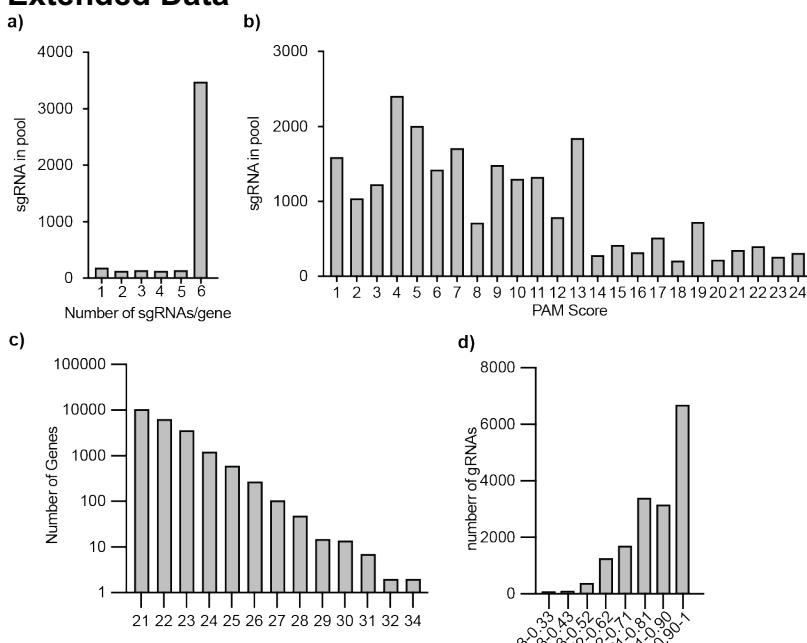
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144


1145 WG-CRISPRi screen as detected by amplicon sequencing. Data is presented for
1146 cultures exposed to ATc-300. (f) Growth of *M. tuberculosis* DS-parent and INH^R-*katG*
1147 expressing gRNA targeting *ideR* (mean \pm range of two biological replicates, n \geq 3). The
1148 (gx) after each gRNA denotes the specific gRNA targeting *ideR*. (g) Intracellular
1149 survival of *M. tuberculosis* DS-parent and INH^R-*katG* expressing gRNA targeting *ideR*
1150 (mean \pm SD of three biological replicates, n=2).. (h) Susceptibility of *M. tuberculosis*
1151 DS-parent and INH^R-*katG* to 2.5 mM FeCl as determined by CFU/ml (mean \pm SD of
1152 three biological replicates, n=2). (i) The ability of *M. tuberculosis* DS-parent and INH^R-
1153 *katG* to deplete oxygen during the transition to hypoxia was detected using PreSens
1154 oxygen sensing spots. Data represents the individual oxygen consumption curves of
1155 two biological replicates from a representative experiment. (j) The viability of *M.*
1156 *tuberculosis* DS-parent and INH^R-*katG* once the concentration of dissolved oxygen
1157 was less than 1% was detected by plating for viable colonies.

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168

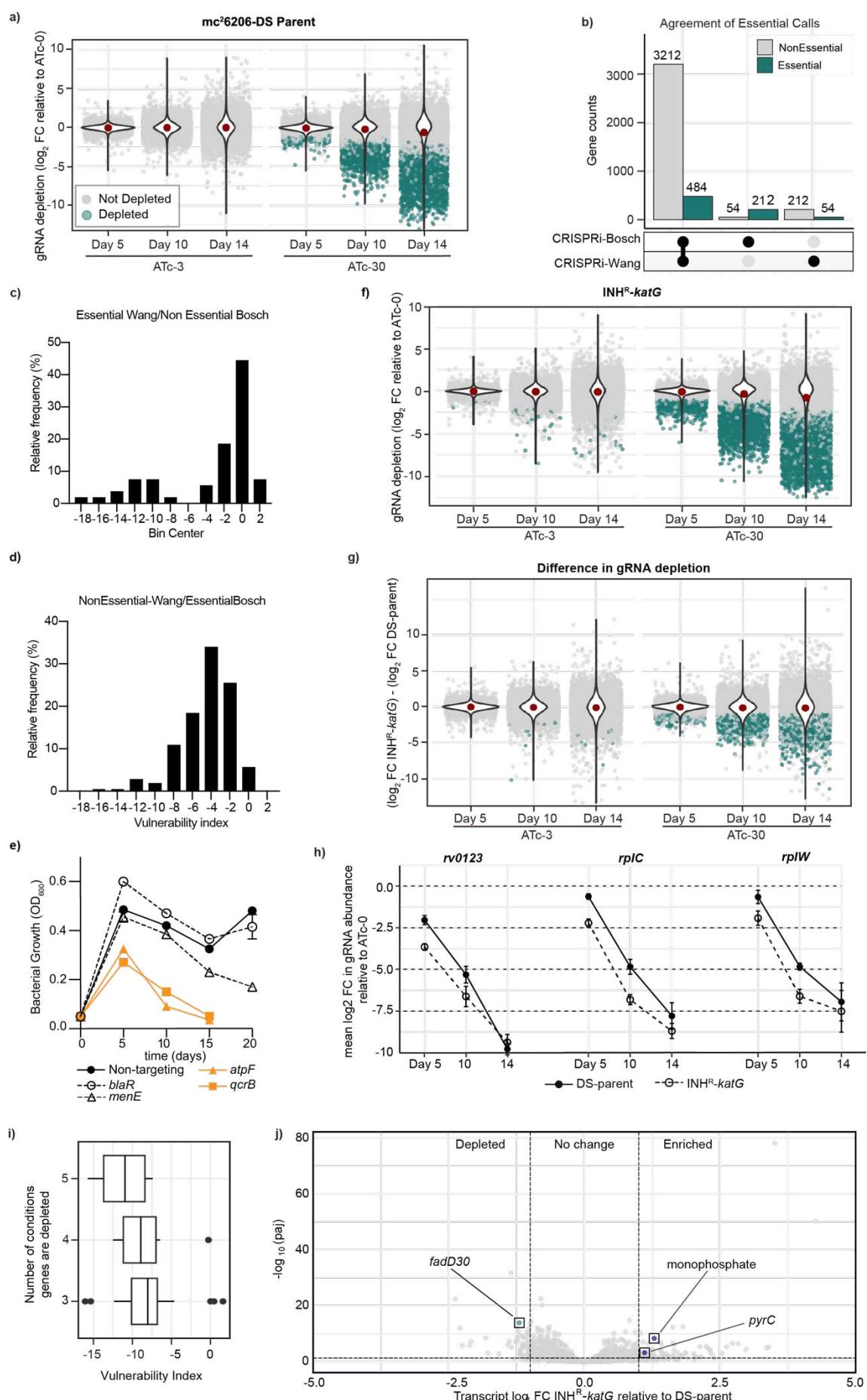
Figure 4| Amino acid metabolism is altered to compensate for the loss of a functional *katG* in *M. tuberculosis*. (a) Pathway enrichment analysis of more vulnerable genes as defined by subclasses within the amino-acid class. Subclasses are described using classifications from the PATRIC database. The bubble plot represents data from the day 14. Features of the bubble are as described in figure 2a. Aromatics: Aromatic amino acid metabolism. His: histidine metabolism. (b) Changes in the relative abundance of metabolites as determined from five replicates. Metabolites with an asterisk ** are those that are significantly depleted (i.e. p-value <0.05 as determined by t-test). (c-d) Schematics of (c) the metabolic pathways linking aspartate metabolism with the TCA cycle and nucleotide metabolism and (d) aromatic

1169 amino acid metabolism. Bolded metabolites highlight those that were detected. Blue,
1170 red and black colouring denotes metabolites that are increased, decreased or no-
1171 change in INH^R-*katG*. Bolded genes highlight those that are more vulnerable. **(e-g)**
1172 Growth of *M. tuberculosis* DS-parent and INH^R-*katG* expressing gRNAs that target (e)
1173 *metC*, (f) *lysA* and (g) *aroK* in ATc dose response assays (mean \pm range of two
1174 biological replicates, $n \geq 3$). The (gx) denotes the specific gRNA targeting each gene.
1175 **(h)** Viability plots of *M. tuberculosis* DS-parent and INH^R-*katG* expressing for gRNA
1176 targeting *aroK*. Inoc denotes the starting CFU/ml and no-cpd denotes the detected
1177 CFU/ml in the absence of ATc (mean \pm range of two biological replicates, $n \geq 3$).
1178 Dashed line represents the lower limit of detection. **(i)** Growth kinetics of *M.*
1179 *tuberculosis* DS-parent and INH^R-*katG* expressing a gRNA targeting *aroK*. Bacterial
1180 growth was measured by OD₆₀₀ and back diluted 1/20 into fresh media on days 5 and
1181 10. All strains were grown in 7H9 media with ATC-300 (mean \pm SD of three biological
1182 replicates, $n=2$). **(j)** THP-1 macrophage cells were infected with *M. tuberculosis* DS-
1183 parent and INH^R-*katG* cells expressing an *aroK* targeting gRNA. CRISPRi was
1184 induced with the stated concentrations of ATc and intracellular survival was
1185 determined by plating for viable colonies as described in the materials in methods
1186 (mean \pm SD of three biological replicates, $n=2$). **(k-l)** The DS-parent of *M. tuberculosis*
1187 mc²6206 was pre-depleted for *metA*, *aroK* and *lysA* for 5 days, prior to exposure to
1188 (m) ascorbic acid or (n) plumbagin at the stated concentrations. No-cpd represents the
1189 viability of the pre depleted strains in the absence of compound but in the presence of
1190 300 ng/ml ATc. Data is expressed as the reduction in viable colonies on day 10,
1191 relative to the starting inoculum on day 0. A non-targeting gRNA is included as a
1192 negative control.
1193



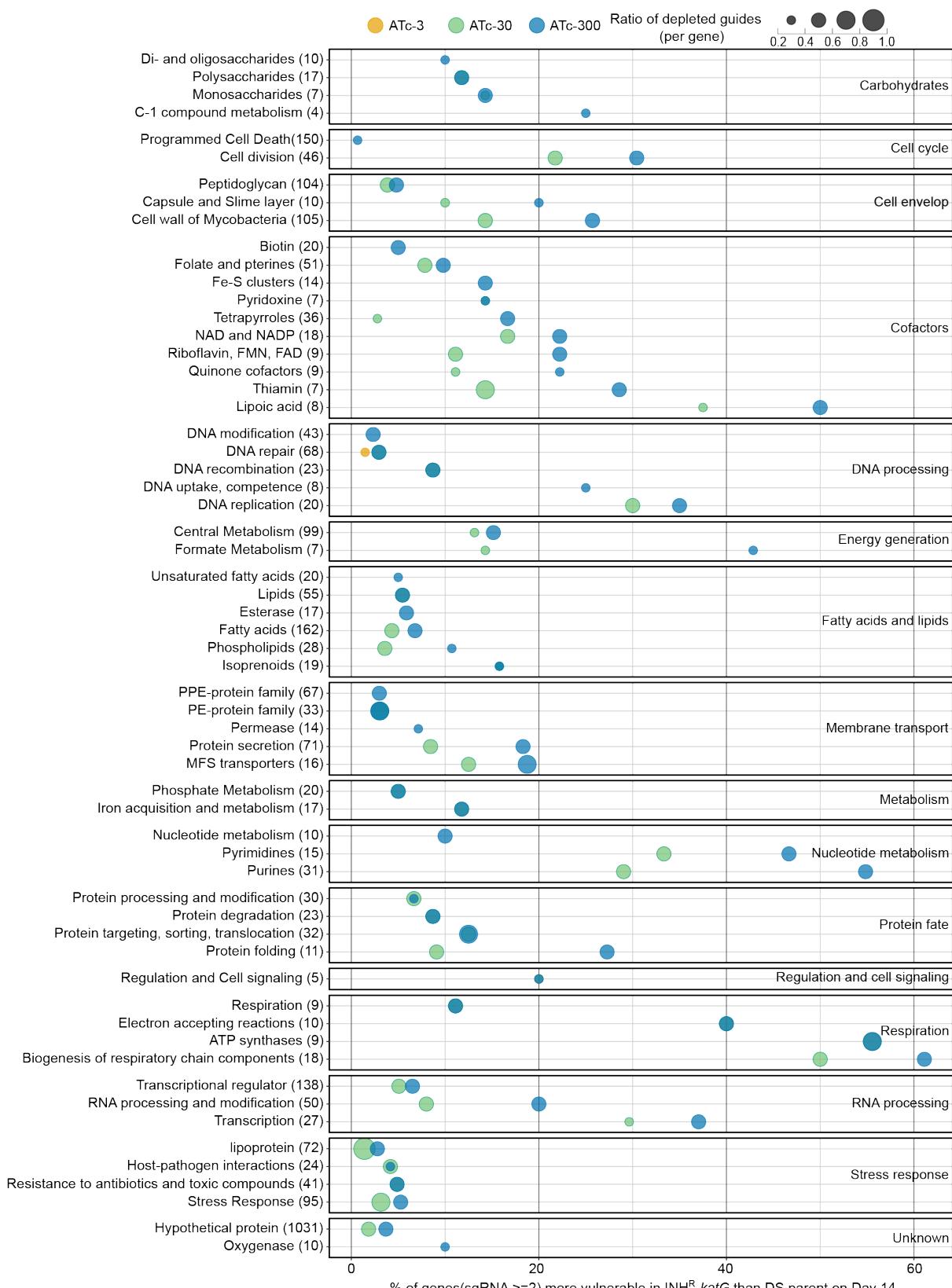
1194

1195 **Figure 5| Ribosome biogenesis is more vulnerable to inhibition in an $\text{INH}^R\text{-katG}$ mutant:** (a) Pathway enrichment analysis of more vulnerable genes in $\text{INH}^R\text{-katG}$ as defined by subclasses within the protein synthesis class. Subclasses are described using classifications from the PATRIC database. The bubble plot represents data from the day 14. Features of the bubble are as described in figure 2a. Ribo-bio: Ribosome biogenesis. (b) Growth of *M. tuberculosis* DS-parent and $\text{INH}^R\text{-katG}$ expressing gRNAs targeting *rpIC* in ATC dose response assays (mean \pm range of two biological replicates, $n \geq 3$). The (gx) after each gRNA denotes the specific gRNA targeting each gene. (c-d) *M. tuberculosis* DS-parent and $\text{INH}^R\text{-katG}$ expressing a gRNA targeting *rpIC* and assessed (c) in continuous log phase growth in 7H9 media with ATC-300, (d) for viability in ATC dose response assays and (e) for intracellular survival within THP-1 macrophage cells (mean \pm SD of three biological replicates, $n=2$). Data presentation is consistent with Figure 4 and experiments were performed as described in material and methods. (f-h) Susceptibility of *M. tuberculosis* DS-parent and $\text{INH}^R\text{-katG}$ to increasing concentrations of linezolid (LZD) as assessed (f) in 96 well plates, (g) in time kill assays and (h) against intracellular *M. tuberculosis* within THP-1 infected macrophages. For (f) Inoc denotes the starting CFU/ml and no-cpd denotes the detected CFU/ml in the absence of compound (mean \pm SD of three biological replicates, $n=2$). Dashed line represents the lower limit of detection. (i) Susceptibility


1214 of *M. tuberculosis* DS-parent to LZD or LZD+INH added at the stated concentrations.
1215 Dashed line represents the lower limit of detection. (j) LZD susceptibility of INH-
1216 susceptible (INH^S) and INH^R clinical isolates from the CRyPTIC consortium. Data is
1217 expressed as the proportion of isolates that have a specific LZD MIC.
1218
1219

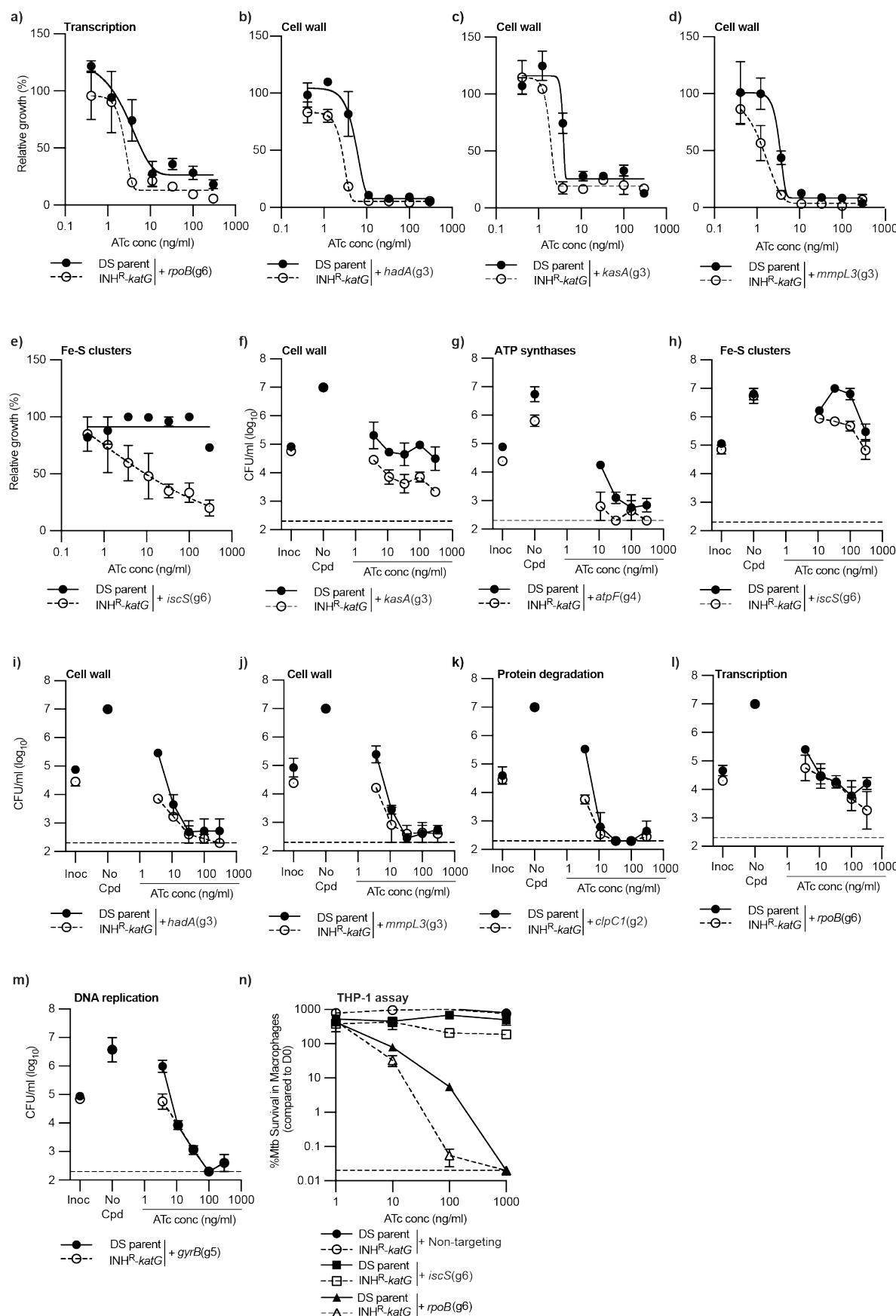
1220 **Extended Data**

1221
1222
1223
1224
1225
1226

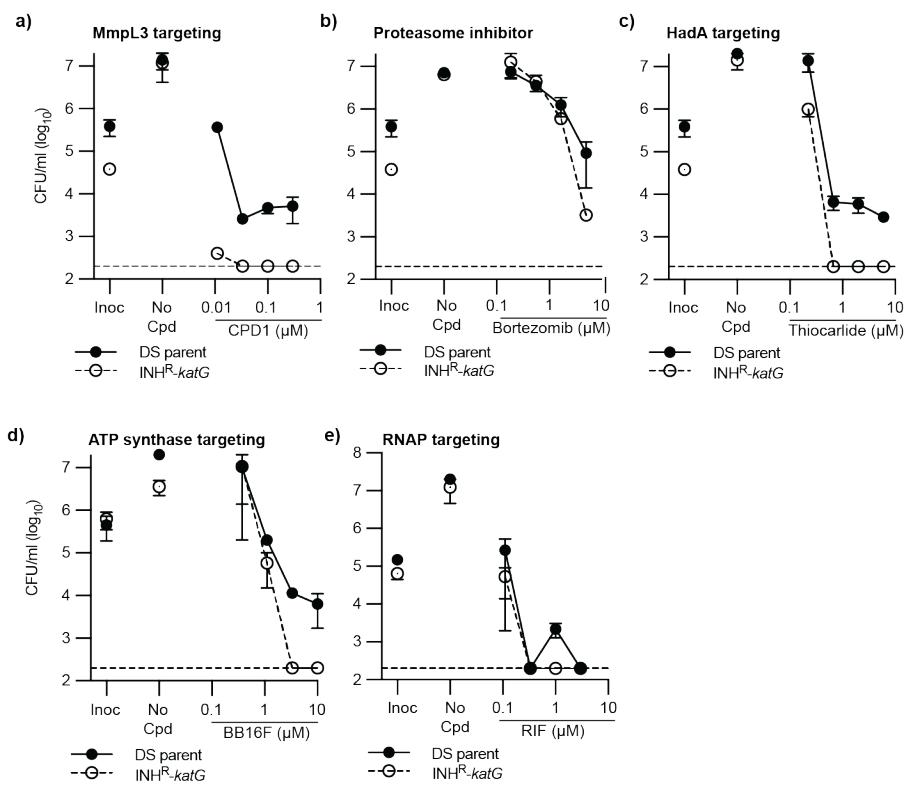

Extended Data Fig. 1| Characteristics of the constructed WG-CRISPRi library:
Distribution of **(a)** the number of gRNAs targeting each gene, **(b)** the predicted PAM score of each gRNA based on Rock et al 2017, **(c)** the length of gRNAs and **(d)** the predicted gRNA strength based on Bosch et al 2021.

1228

1229 **Extended Data Fig. 2| Validation of WG-CRISPRi screening to identify genetic**
1230 **vulnerability in *M. tuberculosis*** **(a)** The summary of gRNA abundance at ATc-3 and
1231 ATc-30 in the *M. tuberculosis* strain mc²6206 DS-parent. **(b)** The overlap in gene
1232 essentiality calls between CRISPRi-Bosch and our WG-CRISPRi study (CRISPRi-
1233 Wang). **(c-d)** Distribution of VI of target genes with disagreed essentiality calls
1234 between CRISPRi-Bosch and CRISPRi-Wang. Genes frequencies were shown in
1235 percentage format (c) VI of disagreed target genes that we called essential but Bosch
1236 called non-essential (n = 212) (d) VI of disagreed target genes that we called non-
1237 essential but Bosch called essential (54) **(e)** Growth kinetics of *M. tuberculosis* DS-
1238 parent expressing gRNAs that target *menE* and *blaR*, i.e. genes identified as essential
1239 in CRISPRi-Bosch, but non-essential in CRISPRi-Wang. A non-targeting gRNA is
1240 included as a negative control, whilst gRNA targeting *atpF* and *qcrB* are included as
1241 essential genes. Bacterial growth was measured by OD₆₀₀ and back diluted 1/20 into
1242 fresh media on days 5, 10, 15 and 20. All strains were grown in 7H9-K with ATc-300.
1243 **(f-g)** The summary of gRNA abundance at ATc-3 and ATc-30 in the *M. tuberculosis*
1244 strain (f) INH^R-*katG*, and (g) the depletion difference between the DS-parent and INH^R-
1245 *katG*. **(h)** Mean gRNA abundance targeting genes (Rv0123, *rplC* and *rplW*) that were
1246 significantly depleted under no less than 3 conditions but not on day 14 ATc-300. Data
1247 were plotted as the changes in gRNA abundance relative to its ATc-0 along time
1248 points. **(i)** Summary of genes (n =38) that were more depleted under >= 3 conditions
1249 but not on day 14+ATc-300. Genes are grouped by the number of depleted conditions
1250 and vulnerability index of each gene from CRISPRi-Bosch is plotted on the x-axis. **(j)**
1251 Differentially expressed genes in INH^R-*katG*. Each dot represents a single gene. Only
1252 the differentially expressed and more vulnerable genes in INH^R-*katG* are coloured and
1253 labelled.


1254

1255


1256 **Extended Data Fig. 3| Pathway enrichment analysis of more vulnerable genes in**
 1257 **in INH^R-katG as defined by PATRIC functional subclass.** Pathway enrichment
 1258 analysis of genes that are of more vulnerable to inhibition in INH^R-katG according to
 1259 functional subclass. Each panel represents a PATRIC functional class (shown as the
 1260 annotated text within each panel) broken down into functional subclass classification.

1261 Bubble plot represents data from day 14. Within each functional subclass the size of
1262 the bubble indicates the average ratio of gRNAs targeting each gene that is more
1263 depleted in INH^R-*katG*. The colour denotes the ATc concentration from which the
1264 amplicon sequencing was performed. The number of genes in each functional class
1265 is labelled on the y-axis in brackets. Data for amino acids and derivatives, and protein
1266 synthesis functional subclasses is presented in Figures 4 and 5 respectively.
1267

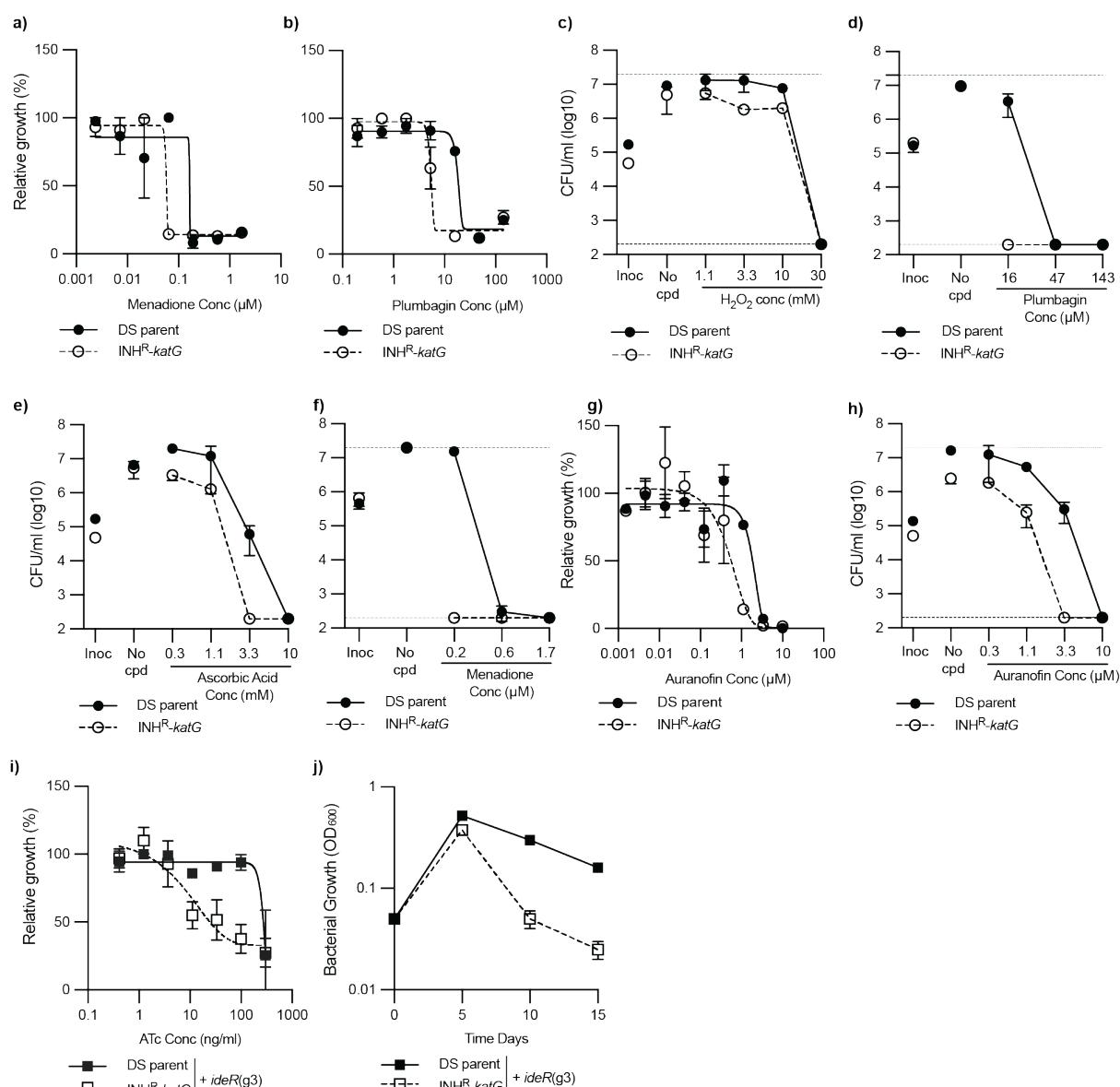
1271 DS-parent and INH^R-*katG* expressing gRNAs that target (a) *rpoB*, (b) *hadA*, (c) *kasA*,
1272 (d) *mmpL3* and (e) *iscS* in ATc dose response assays (mean \pm range of two biological
1273 replicates, $n \geq 3$). The (gx) after each gRNA denotes the specific gRNA targeting each
1274 gene. (f-m) Viability plots of *M. tuberculosis* DS-parent and INH^R-*katG* expressing for
1275 gRNA targeting (f) *kasA*, (g) *atpF*, (h) *iscS*, (i) *hadA*, (j) *mmpL3*, (k) *clpC1*, (l) *rpoB*, and
1276 (m) *gyrB*. CFU/ml were determined from 96 well plates at the stated ATc
1277 concentrations. Inoc denotes the starting CFU/ml and no-cpd denotes the detected
1278 CFU/ml in the absence of ATc (mean \pm range of two biological replicates, $n \geq 3$).
1279 Dashed line represents the lower limit of detection. (n) THP-1 macrophage cells were
1280 infected with *M. tuberculosis* DS-parent and INH^R-*katG* cells expressing gRNAs
1281 targeting *iscS*, *rpoB* or with a non-targeting control. CRISPRi was induced with the
1282 stated concentrations of ATc and intracellular survival was determined by plating for
1283 viable colonies (mean \pm SD of three biological replicates, $n=2$).

1284

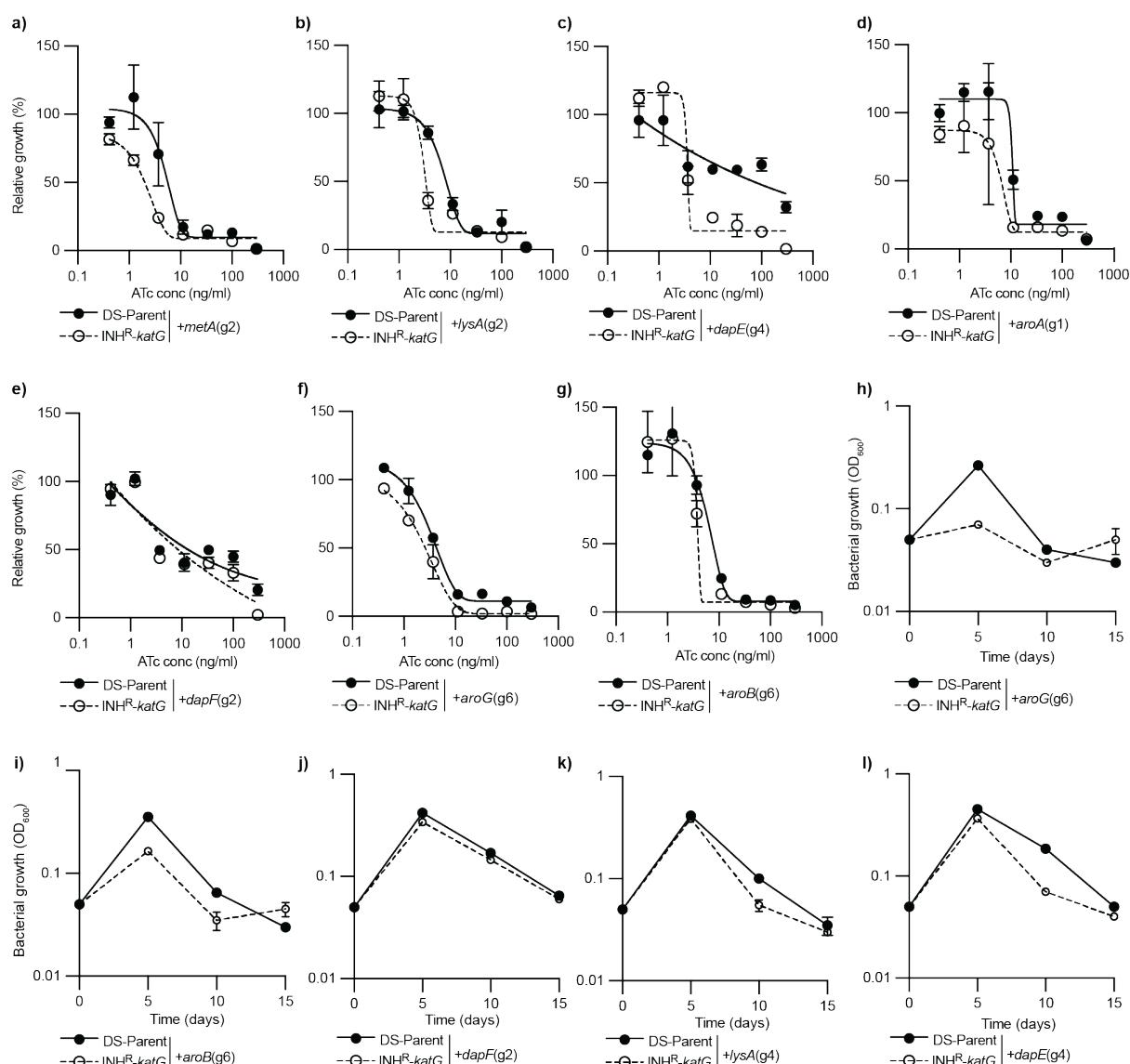
1285

1286 **Extended Data Fig. 5| Diverse pathways are more vulnerable to chemical**
1287 **inhibition in *INH*^R-*katG*:** (a-e) MBC assays were used to determine the susceptibility

1288 of *M. tuberculosis* DS-parent and *INH*^R-*katG* to increasing concentrations of (a) CPD1,

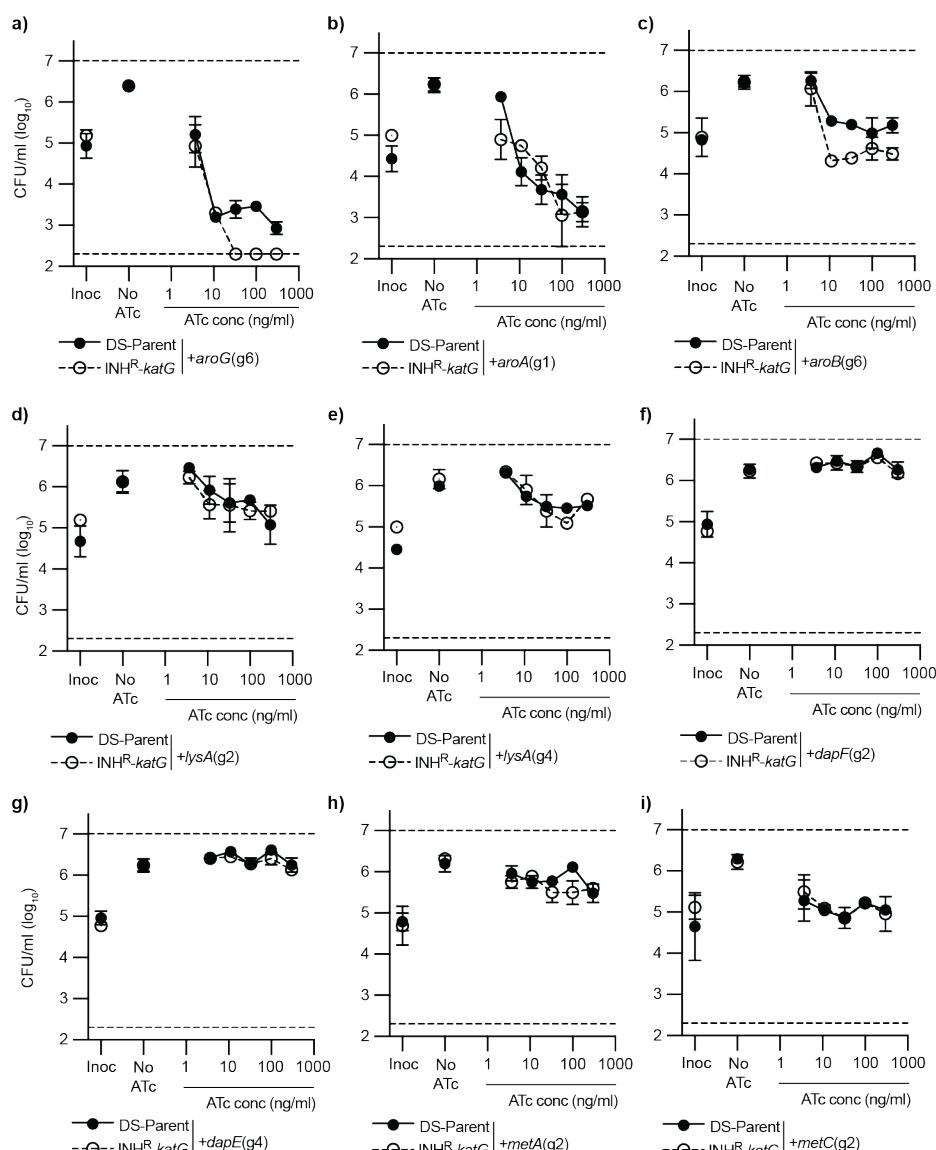

1289 (b) Bortezomib, (c) thiocarlide, (d) BB16F and (e) rifampicin. Inoc denotes the starting

1290 CFU/ml and no-cpd denotes the detected CFU/ml in the absence of compound (mean

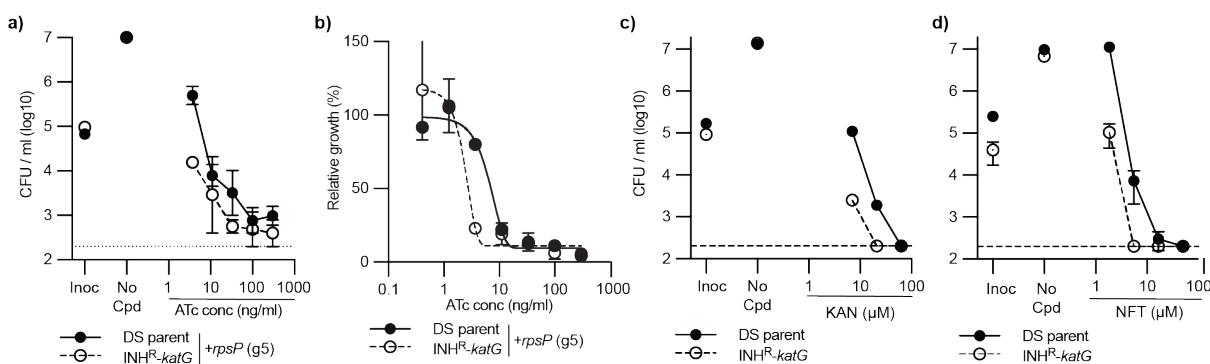

1291 ± range of two biological replicates, n≥3). Dashed line represents the lower limit of

1292 detection.

1293



1294
1295 **Extended Data Fig. 6| INH^R-katG utilizes alternative redox detoxification**
1296 **pathways to compensate for the loss of katG:** (a-b) Susceptibility of *M. tuberculosis*
1297 DS-parent and INH^R-katG to growth inhibition by (a) menadione and (b) plumbagin.
1298 (c-f). Susceptibility of *M. tuberculosis* DS-parent and INH^R-katG to killing by (c) H₂O₂,
1299 (d) plumbagin, (e) ascorbic acid, and (f) menadione. (g-h) Susceptibility of *M.*
1300 *tuberculosis* DS-parent and INH^R-katG to auronofin in 96 well plate dose response
1301 assays as detected by (g) growth inhibition and (h) killing (mean \pm range of two
1302 biological replicates, $n \geq 3$). Inoc denotes the starting CFU/ml and no-cpd denotes the
1303 detected CFU/ml in the absence of compound. Dashed line represents the lower limit
1304 of detection. (i-j) Growth of *M. tuberculosis* DS-parent and INH^R-katG expressing
1305 gRNAs that target *ideR* as detected using (i) 96 well plate ATC dose response assays
1306 and (j) by maintaining continuous log-phase growth by back diluting 1/20 into fresh
1307 media on days 5, 10, 15. All strains were grown in 7H9-K with ATC-300 and growth
1308 was determined by measuring OD₆₀₀.



1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Extended Data Fig. 7| Amino acid metabolism is altered to compensate for the loss of a functional katG in *M. tuberculosis* (a-g) Growth of *M. tuberculosis* DS-parent and INH^R-katG expressing gRNA targeting (a) *metA*, (b) *lysA*, (c) *dapE*, (d) *aroA*, (e) *dapF*, (f) *aroG*, and (g) *aroB* in ATC dose response assays (mean \pm range of two biological replicates, $n \geq 3$). The (gx) after each gRNA denotes the specific gRNA targeting each gene. **(h-l)** Growth kinetics of *M. tuberculosis* DS-parent and INH^R-katG expressing a gRNA targeting (h) *aroG*, (i) *aroB*, (j) *dapF*, (k) *lysA*, and (l) *dapE*. Bacterial growth was measured by OD₆₀₀ and back diluted 1/20 into fresh media on days 5, 10, 15. All strains were grown in 7H9-K ATC-300.

1320
1321 **Extended Data Fig. 8| Amino acid metabolism is altered to compensate for the**
1322 **loss of a functional katG in *M. tuberculosis* (a-i)** Viability plots of *M. tuberculosis*
1323 DS-parent and INH^R-katG expressing for gRNA targeting (a) aroG, (b) aroA, (c) aroB,
1324 (d-e) lysA, (f) dapF, (g) dapE, (h) metA, and (i) metC. CFU/ml was determined from
1325 96 well plates. Inoc denotes the starting CFU/ml and no-cpd denotes the detected
1326 CFU/ml in the absence of ATC (mean \pm range of two biological replicates, $n \geq 3$).
1327 Dashed line represents the lower limit of detection.
1328
1329
1330

1331
1332 **Extended Data Fig. 9| Ribosome biogenesis is more vulnerable to inhibition in**
1333 **an INH^R-katG mutant:** (a) Viability plots of *M. tuberculosis* DS-parent and INH^R-katG
1334 expressing for gRNA targeting *rpsP*. CFU/ml were determined from 96 well plates at
1335 the stated ATC concentrations.(b) Growth of *M. tuberculosis* DS-parent and INH^R-katG
1336 expressing gRNAs targeting *rpsP* in ATC dose response assays (mean \pm range of two
1337 biological replicates, $n \geq 3$). The (gx) after each gRNA denotes the specific gRNA
1338 targeting each gene. (c-d) MBC assays were used to determine the susceptibility of
1339 *M. tuberculosis* DS-parent and INH^R-katG to increasing concentrations of (b)
1340 Kanamycin and (c) nitrofurantoin. For a-c Inoc denotes the starting CFU/ml and no-
1341 cpd denotes the detected CFU/ml in the absence of compound or ATC (mean \pm range
1342 of two biological replicates, $n \geq 3$). Dashed line represents the lower limit of detection.
1343