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Abstract 24 

Emerging imaging spatial transcriptomics (iST) platforms and coupled analytical 25 

methods can recover cell-to-cell interactions, groups of spatially covarying genes, and gene 26 

signatures associated with pathological features, and are thus particularly well-suited for 27 

applications in formalin fixed paraffin embedded (FFPE) tissues. Here, we benchmarked the 28 

performance of three commercial iST platforms on serial sections from tissue microarrays 29 

(TMAs) containing 23 tumor and normal tissue types for both relative technical and biological 30 

performance. On matched genes, we found that 10X Xenium shows higher transcript counts per 31 

gene without sacrificing specificity, but that all three platforms concord to orthogonal RNA-seq 32 

datasets and can perform spatially resolved cell typing, albeit with different false discovery rates, 33 

cell segmentation error frequencies, and with varying degrees of sub-clustering for downstream 34 

biological analyses. Taken together, our analyses provide a comprehensive benchmark to guide 35 

the choice of iST method as researchers design studies with precious samples in this rapidly 36 

evolving field.   37 
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MAIN 38 

Spatial transcriptomics (ST) tools measure the gene expression profiles of tissues or cells 39 

in situ. These approaches overcome the limitations of single-cell RNA-sequencing (scRNA-seq) 40 

methods by negating the need for cellularization and maintaining both local and global spatial 41 

relationships between cells within a tissue. ST can thus recover cell-cell interactions with high 42 

confidence, groups of spatially covarying genes, groups of cells predictive of cancer survival, and 43 

gene signatures associated with pathological features [1, 2]. These advantages, coupled with rapidly 44 

emerging computational and analytical methods, have led to substantial excitement about 45 

deploying these platforms in fundamental biology studies, and in the clinic for research and 46 

diagnostic purposes [3, 4, 5].   47 

ST tools can be split into two broad categories: sequencing (sST) and imaging (iST) based 48 

modalities. sST methods tag transcripts with an oligonucleotide address indicating spatial location, 49 

most commonly by placing tissue slices on a barcoded substrate; isolating tagged mRNA for next-50 

generation sequencing; and computationally mapping transcript identities to locations [6]. In 51 

contrast, iST methods most commonly use variations of fluorescence in situ hybridization (FISH) 52 

where mRNA molecules are tagged with hybridization probes which are detected in a 53 

combinatorial manner over multiple rounds of staining with fluorescent reporters, imaging, and 54 

de-staining (Fig. 1a) [7]. Computational reconstruction then yields maps of transcript identity with 55 

single-molecule resolution. Compared to sST methods, iST methods are targeted to subsets of the 56 

transcriptome due to their reliance on pre-defined gene panels and they adopt the higher spatial 57 

resolution and sensitivity of FISH, yielding single-cell resolution data [8]. 58 

While the iST methods share some similarities, significant differences arise in primary 59 

signal detection and amplification, sample processing, and the subsequent fluorescent cycling 60 
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chemistry (Fig. 1b) [9,10,11]. The need for amplification of signal is coupled to the sample processing, 61 

namely whether the sample is cleared, gel-embedded, or photobleached to quench 62 

autofluorescence. There are tradeoffs due to differences in sample processing for each iST method. 63 

For example, clearing of the sample increases signal quality but can prevent follow-up H&E 64 

staining and complicate immunostaining, which, in turn, can make cell segmentation more 65 

challenging. Finally, there are tradeoffs between imaging time, molecular plex, and imaging area 66 

covered, which result from the particular combination of the molecular protocol and the imaging 67 

hardware implementation [12]. 68 

A key historic limitation in the widespread use of iST methods with human clinical samples 69 

was the incompatibility of most methods with formalin-fixed, paraffin-embedded (FFPE) tissue 70 

samples [13, 14]. FFPE is the standard format for clinical sample preservation for pathology due to 71 

its ability to maintain tissue morphology and sample stability at room temperature for decades [15]. 72 

The ability to process FFPE samples with iST would enable the use of archival tissue banks for 73 

studies and obviate the need for specialized sample harvesting workflows. However, FFPE 74 

samples tend to suffer from decreased RNA integrity, particularly after having been stored in 75 

archives for extended periods of time [16]. 76 

Three companies recently released the first FFPE compatible commercial iST platforms: 77 

10X9s Xenium, Nanostring9s CosMx, and Vizgen9s MERSCOPE [9,10,11,17]. These three platforms 78 

each use different protocols, probe designs, signal amplification strategies, and computational 79 

processing methods, and therefore may potentially yield different sensitivities and downstream 80 

results. The main chemistry difference lies in transcript amplification: 10X Xenium uses a small 81 

number of padlock probes with rolling circle amplification; CosMx uses a low number of probes 82 

amplified with branch chain hybridization; and MERSCOPE uses direct probe hybridization but 83 
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amplifies by tiling the transcript with many probes (Fig. 1b). However, no head-to-head 84 

performance comparisons on matched samples have been published. Understanding the key 85 

differences across platforms will allow users to make better-informed decisions regarding panel 86 

design, method choice, and sample selection as they design costly experiments, often on precious 87 

samples that have been bio-banked for years [18].  88 

In this study, we compared currently available FFPE-compatible iST platforms on matched 89 

tissue samples. We prepared a set of samples representative of typical archival FFPE tissues, 90 

comprised of 23 different tissue types, and acquired matched data from sequential sections 91 

according to the manufacturer9s best practices at the time of writing, generating a dataset of >3.3M 92 

cells. We analyzed the relative sensitivity and specificity of each method on shared transcripts, 93 

and further quantified the concordance of the iST data across each platform with orthogonal data 94 

sets from The Cancer Genome Atlas (TCGA) program and Genotype-Tissue Expression (GTEx) 95 

databases [19,20]. Then we focused on cell-level comparisons, evaluating the out-of-the-box 96 

segmentation for each platform based on detected genes and transcripts and coexpression patterns 97 

of known disjoint markers. Finally, we cross-compared the ability of each platform to identify cell 98 

type clusters with breast and breast cancer tissues as an example use case. Taken together, our 99 

work provides the first head-to-head comparison of these platforms across multiple archival 100 

healthy and cancerous FFPE tissue types.    101 
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RESULTS 102 

Collection of matched iST data across 23 FFPE tissue types reveals high transcript counts 103 

obtained by Xenium and CosMx.  104 

To test the performance of the latest generation of FFPE-compatible iST tools, we 105 

measured the spatial expression of the same genes on the same samples as much as possible given 106 

current panel configurations. To accomplish this, we used two previously generated multi-tissue 107 

tissue microarrays (TMAs) from clinical discarded tissue (see Methods). We focused on FFPE 108 

tissues as the standard method for sample processing and archival in pathology. One TMA 109 

consisted of one hundred and seventy-three 0.6 mm diameter cores (i.e. sampled regions) from 110 

seven different cancer types, with 3-6 patients per cancer type, and 3-6 cores per patient (Fig. 1c,d, 111 

Supplementary Table 1). A separate TMA consisted of forty-eight 1.2 mm diameter cores 112 

spanning sixteen normal tissue types isolated with each tissue type coming from one patient and 113 

represented in 2-3 cores (Fig. 1c,d, Supplementary Table 2). CosMx and Xenium suggest pre-114 

screening samples based on H&E, while MERSCOPE recommends a DV200 > 60%. Since our goal 115 

was to determine the compatibility of iST platforms under typical workflows for biobanked FFPE 116 

tissues, and since TMAs are challenging to assay by DV200, samples were not prescreened based 117 

on RNA integrity. Samples were screened by H&E in the process of TMA assembly. Both TMAs 118 

were sliced into serial sections for processing by 10X Xenium, Vizgen MERSCOPE, and 119 

Nanostring CosMx, following manufacturer instructions (see Methods). 120 

The three different iST platforms offer different degrees of customizability and panel 121 

compositions. In terms of panel design, MERSCOPE and Xenium offer either fully customizable 122 

panels or standard panels with optional add-on genes, while CosMx offers a standard 1K 123 

(substantially larger plex) panel with optional add-on genes. We opted to run the CosMx 1K panel 124 
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as available commercially, as well as the Xenium human breast, lung, and multi-tissue off-the-125 

shelf panels. We then designed two MERSCOPE panels to match the pre-made Xenium breast and 126 

lung panels, by filtering out any genes which could potentially lead to high expression flags in any 127 

tissue in the Vizgen online portal. This resulted in a total of six panels, with each panel overlapping 128 

the others on >94 genes (Fig. 1e, Supplementary Table 3). Samples were run following 129 

manufacturer instructions over the course of 74 days after slicing (Fig. 1f, Supplementary Table 130 

4), with efforts made to ensure that head-to-head comparisons were available at similar time points 131 

for each pair of platforms. In data review, we noticed that MERSCOPE breast and lung panel were 132 

originally acquired with a 5 µm imaging depth, which was unintentionally thinner than the 133 

manufacturer recommendation of 10 µm, and could thus lead to aberrantly low counts. Thus, a 134 

second round of breast panel acquisition was performed with a 10 µm imaging depth 135 

(Supplementary Table 1a), resulting in a median 3.0-fold increase in expression across all 136 

transcripts. We excluded the 5 µm MERSCOPE breast panel data from all further comparisons but 137 

left the lung panel data in as an illustrative example of an unsuccessful run. However, we 138 

emphasize that MERSCOPE performance should be judged based on the rerun breast panel.  139 

Each data set was processed according to the standard base-calling and segmentation 140 

pipeline provided by each manufacturer. The resulting count matrices and detected transcripts were 141 

then subsampled and aggregated to individual cores of the TMA (Methods). Across all datasets 142 

we generated >190 million transcripts, >3.3 million cells, across 7 tumor types, and 16 normal 143 

tissue types. Overall, we found that the cores from each TMA were generally well adhered to the 144 

tissue and detected transcripts, and we were able to collect data from all three modalities for 217 145 

cores (Supplementary Table 4). The total number of transcripts recovered for each run was 146 

highest for Xenium, followed closely by CosMx, and then MERSCOPE (Supplementary Table 147 
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4). The total number of cells initially reported was highest for Xenium followed by MERSCOPE 148 

and CosMx (Supplementary Table 4). Based on the initially reported number of transcripts, the 149 

tumor TMA appeared to provide more counts than the normal tissue TMA, which we ascribed to 150 

a higher tissue quality in the tumor samples (Supplementary Table 4). We note that the total 151 

number of transcripts from the MERSCOPE normal TMA run was below what would be typically 152 

thought of as a successful run, even when rerunning with the breast panel at 10 µm imaging depth. 153 

Such a sample would normally be excluded from analysis, but we continued the data through to 154 

illustrate how low transcript capture affects downstream results. 155 
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 156 

Figure 1: Experimental design and iST platforms. (a) Overall approach for generating iST data. 157 

(b) Different amplification approaches for Xenium, MERSCOPE, and CosMx. (c) Overview of 158 
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the tissue types and numbers of cores used in this study. BlC = bladder cancer, BrC = breast cancer, 159 

CRC = colorectal cancer, HNSCC = head and neck squamous cell carcinoma, Mel = Melanoma, 160 

NSCLC = non-small cell lung cancer, OvC = ovarian cancer. (d) DAPI images from the Xenium 161 

run of each TMA, including tumors (top) and normal tissues (bottom) (e) The number of common 162 

target genes in each panel used in this study. (f) Overall timeline of the imaging days for each 163 

study. Day = 0 corresponds to the day of slicing.   denotes the MERSCOPE breast and lung panels 164 

acquired with a 5 µm imaging thickness, thinner than manufacturer instructions.  165 

 166 

10X Xenium shows higher transcript counts per gene without sacrificing specificity 167 

We next sought to directly compare the performance of each iST platform on matched 168 

genes. We began with a pseudo-bulk-based approach at the core level since this would not depend 169 

on differences in cell segmentation performance (see Methods) [21].  170 

First, we examined the run-to-run reproducibility within a single platform for Xenium and 171 

MERSCOPE, finding that the total transcript count of all shared genes was highly correlated across 172 

data sets acquired with different panels, regardless of the tissue of origin (Supplementary Fig. 173 

1a). We also examined the pseudo-bulk gene expression correlation for cores from the same patient 174 

in the same dataset and found that correlation was high (Pearson9s r => 0.7) in almost all cases 175 

(Supplementary Fig. 1b-c), indicating good sample-to-sample reproducibility within a given 176 

platform.   177 

To evaluate the relative sensitivity of each platform, we plotted the total transcript counts 178 

of every shared gene between all combinations of platform and panel, summed across all matched 179 

cores. We found generally linear relationships between all pairs of platforms (Fig. 2a-c, 180 

Supplementary Fig. 2). Xenium consistently showed higher expression levels on the same genes 181 

than CosMx in the tumor TMA, with the Xenium breast having 14.6-fold more counts than the 182 

CosMx multi-tissue data sets (Fig. 2a). The Xenium multi-tissue panel data showed a slightly 183 

smaller difference, with 12.3-fold higher expression on the same genes (Fig. 2a), while the lung 184 
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panel, which was acquired closest in time following slicing, also displayed a median of 14.0-fold 185 

higher expression (Fig. 2a). MERSCOPE showed higher expression levels than CosMx when 186 

using the breast (10 µm) panel (median of 5.4-fold higher), and comparable expression levels even 187 

when using the lung (5 µm) panel (median of 1.1-fold) (Fig. 2b). Finally, Xenium showed 2.6-188 

fold higher median expression with the breast panels (10 µm) than MERSCOPE, and 13.6-fold 189 

higher median expression with the lung panels (5 µm) (Fig. 2c). In the normal tissue TMA, we 190 

found that results were generally consistent, except that the MERSCOPE breast panel showed 191 

decreased transcript counts relative to the same panel in the tumor TMA (Supplementary Fig. 2b-192 

c), which is consistent with this TMA being unsuccessful for MERSCOPE. Considering the overall 193 

higher transcripts per cell across platforms for the tumor TMA (Supplementary Table 4), this 194 

suggests that the ability to detect transcripts falls off more strongly with sample quality with 195 

MERSCOPE, altering the performance relative to CosMx but not Xenium. Examining the CosMx 196 

as compared to Xenium data also revealed an upward curve in the lower expression regime 197 

indicative of higher-than-expected calls associated with the low expression regime by CosMx 198 

(Supplementary Fig. 2a).  199 

We next wanted to assess the specificity of each platform. Each of the three platforms 200 

includes negative controls which are used to evaluate sample quality [22, 23]. Xenium and CosMx 201 

include both negative probes (e.g. real probes targeting nucleic acids that are not present in human 202 

tissue) and negative barcodes (e.g. algorithmically allowable barcodes that are not associated with 203 

any probe in the experimental panel). MERSCOPE includes only negative barcodes by default. To 204 

determine specificity, we first calculated the fraction of negative barcodes and probes relative to 205 

the number of transcripts for each tissue type (Fig. 2e). We found that MERSCOPE and Xenium 206 

consistently showed the highest on-target fraction, while CosMx was lower across each tissue type 207 
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(Fig. 2e). However, this measurement is biased because of the relative numbers of controls and 208 

target barcodes. We therefore also adopted a false discovery rate (FDR) calculation which 209 

normalizes for these differences and is calculated against both the negative probes and negative 210 

barcodes (see Methods, Fig. 2f-g). We found that Xenium consistently showed the lowest FDR 211 

while CosMx showed the highest FDR regardless of whether we standardized to negative control 212 

barcodes or probes. This finding is consistent with the upswing in the gene-gene expression plots 213 

in Fig 2a and Supplementary Fig. 2a4as both indicate a higher FDR at the low end of the gene 214 

expression range. These results are consistent when visualized across panel (Fig. 2e-g). 215 

 Finally, we used the negative control barcodes to evaluate the number of genes reliably 216 

detected by each platform in each tissue type.  For each core, we calculated the number of genes 217 

that were detected two standard deviations above the average expression of the negative control 218 

probes. These numbers were then averaged for cores of the same tissue type. Because the CosMx 219 

panel was almost three times larger, it yielded a larger absolute number of detected genes in 14 220 

out of 20 tissue types while the Xenium breast panel was higher in the remaining 6 tissue types 221 

(Fig. 2h, Supplementary Table 5). However, Xenium consistently detected the highest fraction 222 
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of genes in a panel, followed by MERSCOPE and CosMx (Fig. 2i). 223 

 224 
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Figure 2: Technical performance comparison of iST platforms grouped by tissue types. (a) 225 

Scatter plots of summed gene expression levels (natural log transformed) of every shared gene 226 

between Xenium (breast/lung) and CosMx (1k) data, captured from matched tumor TMA cores. 227 

Each data point corresponds to a gene. (b) Same as (a) but between MERSCOPE (breast/lung) and 228 

CosMx(1k). (c) Same as (a) but between Xenium(breast/lung) and MERSCOPE(breast/lung). (d) 229 

Same as (a) but between Xenium(multi-tissue) and CosMx(1k). (e) Bar plot of percentage of all 230 

transcripts corresponding to genes relative to the total number of calls (including negative control 231 

probes and unused barcodes) averaged across cores of the same tissue type. Results are presented 232 

by panel including breast, lung, and multi-tissue panels from Xenium; breast and lung panels from 233 

MERSCOPE; and multi-tissue 1k panel from CosMx. (f) Bar plot of false discovery rate 234 

(FDR) where FDR(%) = (blank barcode calls / total transcript calls) x (Number of panel genes 235 

/Number of blank barcode) x 100. FDR values were log10 transformed to better show the 236 

differences between panels. (g) Same as (f) but using negative control probes to replace blank 237 

barcodes. MERSCOPE is missing in this bar plot as it does not have negative control probe by 238 

design. (h) Bar plot of number of genes detected above noise, estimated as two standard deviations 239 

above average of the negative control probes. (i) Same as (h) but normalized to the number of 240 

genes in a panel.   denotes the MERSCOPE lung panel acquired with a 5 µm imaging thickness. 241 

 242 

iST platforms are all concordant with orthogonal RNA-seq data sets 243 

In the absence of ground truth, it is difficult to evaluate whether a higher number of 244 

expressed genes is representative of increased sensitivity to real biology or increased false positive 245 

rates. We thus evaluated the correlation of iST data to reference RNA-seq data. We first aggregated 246 

pseudo-bulk normal tissue TMA results from all panels of the three platforms and compared them 247 

to data from the TCGA program (see Methods) [11]. We observed similar correlation coefficients 248 

across all gene panels relative to pseudo-bulk RNA-seq expression data (Fig. 3a-b, 249 

Supplementary Table 8). However, notably, the CosMx data showed a characteristic upswing in 250 

the low expression regime, similar to that observed when plotting gene-by-gene expression against 251 

MERSCOPE and Xenium (Fig. 2, Supplementary Fig. 2).  252 

We also compared the pseudo-bulk results from the normal tissue TMA with bulk RNA-253 

seq data obtained from GTEx[12] The Xenium breast, Xenium multi-tissue, and CosMx data sets 254 

showed similar correlations to breast data obtained from GTEx, while the MERSCOPE had 255 
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significantly lower correlation, consistent with a run which doesn9t pass QC (Pearson9s r of 0.36 256 

vs 0.71, 0.68, and 0.69, respectively, Fig. 3c). Similar trends were observed in the lung data, with 257 

MERSCOPE lung (5 µm) showing the lowest correlation while the other three data sets showed 258 

higher correlations to GTEx data (Fig. 3d). These relative trends remained true across most normal 259 

tissue types, though we found that thyroid, pancreas, and lymph nodes showed the lowest 260 

correlations across all panels while prostate, tonsil, and liver showed the highest correlations 261 

(Supplementary Table 9). Overall, our comparison to TCGA and GTEx data suggests that while 262 

some platforms may be more highly correlated to reference datasets in some cases, all are within 263 

a similar correlation regime regardless of tissue type.  264 

We next wanted to determine how the expression of tissue-specific transcript markers 265 

varied across each platform. To accomplish this, we curated tissue markers that are unique to each 266 

tissue type by selecting genes whose expression in a single tissue exceeds 20 times the sum of 267 

other tissues from the GTEx database (see Methods). We found tissue-specific expression patterns 268 

of several of these markers across all selected panels when visualized across each healthy tissue 269 

type (Fig. 3e). MERSCOPE consistently showed expression of tissue-specific markers in multiple 270 

tissue types, consistent with unsuccessful normal TMA data acquisition. However, some canonical 271 

markers were not enriched in certain tissues. For example, we found that ABCC11 was highly 272 

expressed in the breast tissue in the Xenium and MERSCOPE datasets, but not in CosMx. In fact, 273 

although CosMx showed satisfying expression patterns for some tissue markers, many canonical 274 

markers are not enriched in the expected tissues, possibly due to the high false discovery rate (Fig. 275 

3f-g). Across marker genes, Xenium data had a distinct expression pattern in all tissues, whereas 276 

CosMx and MERSCOPE showed a less distinct pattern in many tissue types.   277 
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 278 

Figure 3: Concordance of iST data with reference RNA-seq datasets. (a) Scatter plots of 279 

overlapping genes, showing the averaged expression of a gene across breast cancer cores profiled 280 

by the indicated panel, normalized to 100,000 vs the average FPKM from TCGA for all samples 281 
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of a matched tissue type (BRCA).  (b) Same as (a) but for lung cancer cores plotted vs averaged 282 

LUAD and LUSC samples from TCGA. (c) Same as (a) but showing breast cores vs averaged 283 

nTPM values from GTEx breast samples. (d) Same as (a) but for lung cores and samples.   denotes 284 

the MERSCOPE lung data acquired with a 5-µm imaging depth on FFPE sample. ! denotes the 285 

normal tissue TMA data of MERSCOPE which failed initial QC. (e) Heatmap of Z-scored average 286 

gene expression for several canonical marker genes in the indicated tissue cores for the Xenium 287 

multi-tissue panel (left) and CosMx 1K panel (right).  288 

 289 

Out of the box segmentation and filtration can yield cells with comparable numbers of 290 

detected transcripts and genes from each platform. 291 

Next, we compared the performance of each iST method on a single-cell level. The three 292 

platforms generate cell boundaries based on a DAPI image alone (Xenium) or a DAPI image 293 

combined with a membrane marker (CosMx and MERSCOPE). When we visually examined the 294 

segmentation outputs, Xenium data showed cell boundaries that appeared to include large regions 295 

of non-cellular space, in contrast to MERSCOPE and CosMx which tightly followed the visualized 296 

cell nucleus (Fig. 4a). When transcripts were overlaid with these segmentation boundaries, 297 

Xenium cell boundaries fell between regions of transcripts and thus most transcripts were assigned 298 

to cells. MERSCOPE and CosMx9s tighter nuclei removed more transcripts, though those that 299 

remain appeared more confidently assigned to cells. Overall, when normalized to the imaged tissue 300 

area, Xenium and CosMx identified the most putative cells, followed by MERSCOPE (Fig. 4b, 301 

Supplementary Table 6). In line with the visual inspection, Xenium cells were consistently larger, 302 

regardless of data set or panel, followed by CosMx and finally MERSCOPE (Fig. 4c, 303 

Supplementary Table 7).  304 

 We filtered out empty regions of space and cells without any transcripts for downstream 305 

examination and quantified the fraction of cells containing differing numbers of transcripts per cell 306 

(Fig. 4d). We chose a permissive threshold of removing cells with fewer than 10 transcripts for 307 

Xenium and MERSCOPE, and 20 transcripts for CosMx from downstream analysis. [11, 24, 25]. The 308 
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tumor TMA consistently had a greater fraction of cells passing filtration, with Xenium retaining 309 

the most cells (97.43% breast, 97.10% multi-tissue, 95.08% lung) followed by CosMx (83.41%) 310 

and MERSCOPE (68.46% breast (10 µm), 25.77% lung (5 µm) (Supplementary Table 3). The 311 

normal tissue TMA had overall lower cell retention performance, but the relative performance of 312 

the platforms based on the fractions of cells remained the same. Notably, while CosMx and 313 

Xenium still retained > 77% of the cells, MERSCOPE data of the normal tissue TMA had <3% of 314 

cells retained and was thus not used in downstream analysis. Unsurprisingly, filtration decreased 315 

the number of retained cells per unit area for all platforms, with the smallest decrease coming for 316 

CosMx. The cells retained from CosMx had similar areas, while filtration of the Xenium and 317 

MERSCOPE data sets resulted in a higher average cell area (Fig. 4c).  318 

 After filtration, we compared the number of transcripts and the number of unique genes 319 

per retained cell across all tissues and all panels, focusing only on cores that were sampled by all 320 

three platforms (Fig. 4e-f). Xenium breast panel gave the highest numbers of transcripts per cell 321 

in most tissue types, 17 out of 22. The CosMx data showed the highest numbers of transcripts in 322 

heart, lymph node, spleen, thyroid, and tonsil; and comparable transcript counts in breast cancer, 323 

ovary, and ovarian cancer to the Xenium breast panel. The MERSCOPE data generally had the 324 

lowest number of transcripts per cell, though bladder cancer and breast cancer measured with the 325 

MERSCOPE breast panels approached the results from Xenium, and the bladder cancer and skin 326 

data sets had higher transcripts per cell than CosMx. As expected given its larger panel size, 327 

CosMx found many unique genes per cell, showing the largest numbers in 9 tissue types: breast 328 

cancer, colon, heart, lymph node, ovary, ovarian cancer, spleen, thyroid, and tonsil; while Xenium 329 

breast panel found the most unique genes per cell in 12 tissue types: bladder cancer, bladder, breast, 330 

CRC, HNSCC, kidney, lung, melanoma, NSCLC, pancreas, prostate, and skin (Fig. 4f). If these 331 
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analyses were restricted to only the shared genes across all panels, numbers were much lower, but 332 

Xenium showed higher expression levels and unique numbers of genes than either CosMx or 333 

MERSCOPE (Supplementary Fig 3c-d).   334 

We then wanted to determine how effectively different iST platforms9 segmentation 335 

algorithms perform. We examined the co-expression of CD19, a canonical B-cell marker, and 336 

CD3e, a canonical T-cell marker across all filtered cells; the co-expression of CD8 and CD4, 337 

markers of T-cell subsets; and the co-expression of CD3e and EPCAM, a marker for epithelial 338 

cancer cells [26, 27]. All these marker gene pairs are disjointly expressed, and a well-performing 339 

segmentation algorithm should yield few cells expressing both markers. We pooled all the filtered 340 

cells from matched cores and all available panels of each platform and plotted the expression of 341 

one gene against the other and converted the scatter plot to a heatmap to show cell fractions. We 342 

found that Xenium4despite its less visually accurate cell boundaries4and MERSCOPE, showed 343 

clear patterns of disjoint expression, separating cells from different lineages, while CosMx showed 344 

such a pattern for EPCAM vs CD3e but not for the other two pairs (Fig. 4g). Given the low counts 345 

of the immune genes, it was difficult to determine if these were false positive calls or segmentation 346 

errors. Nevertheless, since the CosMx panel is much higher plex, and retained similar numbers of 347 

transcripts and genes to Xenium, we wondered how these two methods performed in terms of cell 348 

type recovery. 349 
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 350 

Figure 4: Comparison of cell segmentation results from each iST platform. (a) Top row: DAPI 351 

image overlaid with cell segmentation boundaries (subset). Middle row: all the transcripts in green 352 

dots, white lines for the cell boundaries, and EPCAM in blue dots. Bottom row: segmented cell 353 

boundaries before and after filtration. (b) Violin plot of segmented cells per unit area before (left 354 

half) and after filtration (right half) grouped by panel with tumor and normal TMA data combined. 355 

(c) Same as (b) but showing cell areas before and after filtration. (d) Line plot showing remaining 356 

cells in percentage after filtering with various thresholds (transcripts per cell). Dotted lines indicate 357 

selected thresholds: 10 transcripts or above for Xenium and MERSCOPE and 20 for CosMx.  (e) 358 

Heatmap of transcripts per cell after filtration. All available genes are considered here for each 359 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570603doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570603
http://creativecommons.org/licenses/by-nc-nd/4.0/


panel. MERSCOPE lung panel (5 µm) excluded from this heatmap. (f) Same as (e) but showing 360 

unique genes per cell. (g) Co-expression density map for three pairs of disjoint genes (rows) from 361 

all three platforms (columns). All cells across all tissues which include at least one detected 362 

transcript of either of the indicated genes are plotted together, with color indicating the number of 363 

cells at the indicated expression levels of each gene.   364 

 365 

 366 

Clustering analyses reveal differences in cell type recovery across platforms  367 

 In a typical iST workflow, a key step is reducing the dimensionality of the data by 368 

identifying cell types, their unique states, and their expression patterns for further analysis 369 

leveraging spatial information[28]. To compare across platforms, we clustered the data from the 370 

filtered cells from all the cores for each TMA with a focus on breast tissues. The initial clustering 371 

of TMAs from datasets (except MERSCOPE normal tissue) showed expected batch effects caused 372 

by patients and tissue types with broadly similar cluster arrangements around morphological tissue 373 

features (Supplementary Fig. 4a-d). We removed batch effects (see Methods) and then 374 

performed targeted clustering and cell type annotation for breast samples from the CosMx and 375 

Xenium breast datasets; lung samples from the CosMx and Xenium lung datasets; and breast 376 

cancer from the CosMx, MERSCOPE breast, and Xenium breast datasets.  377 

In breast samples, we were able to identify nine cell types, including all known major cell 378 

types, (adipocytes, alveolar cells, B cells, basal cells, fibroblast cells, hormone-sensing cells, 379 

myeloid, T cells, vascular & lymphatic cells) from the Xenium data, using previously established 380 

markers (Fig. 5a, Supplementary Fig. 5) [29,30,31]. In the CosMx data, we were only able to identify 381 

six cell types, including several major cell types, but failed to recognize cell subtypes (B cells, 382 

basal cells, fibroblast, hormone-sensing cells, immune cells, and vascular & lymphatic cells) (Fig. 383 

5a, Supplementary Fig. 5). A high gene-to-gene correlation was found between all overlapping 384 

cell types between Xenium and CosMx (Fig. 5a). Similarly, in the lung samples, we were able to 385 
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identify nine cell types (alveolar epithelial type 1 cell, alveolar epithelial type 2 cell, endothelial 386 

capillary cells, endothelial cells, fibroblasts, immune cells, macrophages, mast cells, and stroma 387 

cells) in the Xenium lung panel, successfully covering all known major cell types (Fig. 5b, 388 

Supplementary Fig. 5) [32,33]. Four of the six major clusters were identified and annotated in the 389 

lung samples from the CosMx data (endothelial cells, epithelial cells, immune cells, and 390 

macrophages), while the other two clusters remained difficult to annotate due to the non-traditional 391 

enriched gene markers (Fig. 5b, Supplementary Fig. 5). Correlation heatmaps show a strong 392 

correlation between the two macrophage clusters identified in Xenium and CosMx (Fig. 5b). The 393 

epithelial cell cluster from CosMx correlates strongly with alveolar epithelial type 1 cell from 394 

Xenium and the endothelial cell cluster from CosMx correlates with endothelial capillary cell 395 

cluster from Xenium (Fig. 5b).  396 

Finally, in breast cancer, after batch effect removal (Supplementary Fig. 5d-f), Xenium 397 

resulted in nine cell types (alveolar cells, B cells, basal cells, fibroblast, hormone-sensing cells, 398 

immune cells, myeloid, T cells, and vascular & lymphatic cells)  (Fig. 5c, Supplementary Fig. 5) 399 

[34,35,36]. On the other hand, CosMx resulted in eight cell types (alveolar cells, basal cells, epithelial 400 

cells, fibroblast cells, hormone-sensing cells, immune cells, myeloid, and vascular & lymphatic 401 

cells). MERSCOPE resulted in six cell types, including alveolar cells, fibroblast cells, hormone-402 

sensing cells, myeloid cells, T cells, and vascular & lymphatic cells. The cell type annotation of 403 

Xenium and CosMx is comparable in terms of both transcriptomic profile and subtype depth, with 404 

CosMx only unable to annotate immune cell subtypes (B cell and T cell). Gene expression of the 405 

same cell type from both platforms correlated well (Fig. 5c, Supplementary 5). The cell type 406 

annotation of CosMx, however, was especially difficult compared to Xenium because of its 407 

atypical gene markers shown for each cluster in the heatmaps (Supplementary Fig. 5) and low 408 
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expression of transcripts from canonical markers (Supplementary Fig. 5g-h). MERSCOPE, on 409 

the other hand, identified most, but not all, the cell types recognized by Xenium and CosMx, 410 

including alveolar cells, fibroblast cells, hormone-sensing cells, myeloid, T cells, and vascular & 411 

lymphatic cells. MERSCOPE and Xenium showed a high correlation for almost all matching 412 

clusters. The correlation map shows a clearer one-to-one mapping between MERSCOPE and 413 

Xenium clusters than Xenium and CosMx clusters.  414 

 415 

 416 
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Figure 5: Cell type recovery performance across technology. (a) Clustering results of breast 417 

samples in normal TMA from Xenium breast (bottom left) and CosMx multi-tissue 1k (top). 418 

Correlation plot showing the correlation between cell types identified (bottom right). (b) 419 

Clustering results of lung samples in normal TMA from Xenium lung (bottom left) and CosMx 420 

multi-tissue 1k (top). Correlation plot showing the correlation between cell types identified 421 

(bottom right). (c) Clustering results of breast cancer samples in tumor TMA from Xenium breast 422 

(bottom left), MERFISH (bottom right) and CosMx multi-tissue 1k (top). Correlation plot showing 423 

the correlation between cell types identified in CosMx and Xenium (left), MERFISH and Xenium 424 

(right). 425 

  426 
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DISCUSSION 427 

In this study, we compared data obtained with three commercially available iST platforms 428 

with archival FFPE tissues to assess overall technical performance and help guide experimental 429 

design with human samples that represent an important use case of these platforms. We focused 430 

our analyses on technical performance as a function of tissue type, including 7 different tumor 431 

types and 16 normal tissue types. Overall, we found that each iST platform presented various 432 

tradeoffs in terms of implementation, panel design and panel options, and resulting total transcript 433 

quantification and downstream analyses, including cell segmentation, cell quality, and biological 434 

interpretation. All these factors must be considered when designing iST experiments.   435 

There are significant workflow differences between the different platforms which factor 436 

into the choice of method. Cutting samples onto MERSCOPE coverslip is more difficult than on 437 

standard microscope slides. The total hands-on time for running a slide on Xenium is 2-3 days 438 

compared to 5-7 days for MERSCOPE and 2 days on CosMx. We found that MERSCOPE and 439 

CosMx are well set up for batch processing in the wet lab, either due to built-in pause points or the 440 

instrument9s ability to run multiple samples. Xenium is limited for batch processing by a need for 441 

a separate thermocycler for each slide pair processed in parallel. After staining, selecting regions 442 

of interest (ROIs) presented a surprising challenge for some systems: the Xenium platform could 443 

readily image the entire slide as a single ROI which easily covered entire TMAs, but the 444 

MERSCOPE ran into a 1cm2 imaging area limit which meant cores in the addressable region were 445 

left unimaged, while the CosMx workflow required a demanding manual selection of ROIs for 446 

each core. These factors are likely to change as each company updates its protocol, but currently, 447 

Xenium offers the shortest and least hands-on workflow.  448 
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From a technical perspective, we analyzed each resulting dataset with a combination of 449 

manufacturer recommended processes for each platform and computational tools that can be 450 

implemented by the user downstream. These pipelines each result in count matrices and detected 451 

transcripts that can be analyzed using a whole suite of emerging tools. For our purposes, when 452 

analyzed at a core level to abrogate the effects of individual cell-segmentation performance, we 453 

found that the total number of transcripts varied substantially across iST platform, with Xenium 454 

yielding the highest number of transcripts captured followed by CosMx. Indeed, this trend held 455 

when normalized for the number of cores imaged and on a per cell basis per area. When this 456 

analysis was also restricted to shared genes, we also found that Xenium consistently had higher 457 

expression levels across each tissue type, with no clear differences between performance on either 458 

tumor or normal tissue.  459 

Using a pseudo-bulk approach, again at the core level, we assessed overall correlation, 460 

reproducibility, and sensitivity of each platform. We found high correlation between replicates of 461 

the same patient, suggesting that there is high reproducibility across technical replicates on each 462 

platform. This is important to consider since cost or input material availability can be prohibitive 463 

to implementing experimental designs that leverage technical replicates4though additional tissue 464 

may still be valuable for powering cell-cell interaction analysis. We additionally found high 465 

correlation on a gene-by-gene basis between MERSCOPE and Xenium platforms. Xenium and 466 

MERSCOPE also showed consistently high specificity across tissue types. CosMx displayed a 467 

characteristic upward curve when compared to MERSCOPE or Xenium on a gene-by-gene basis, 468 

indicating more frequent calls in the lower expression regime. This, coupled with the lower 469 

specificity across several tissues for CosMx and the high false discovery rate, suggest that CosMx 470 

is prone to errors in calling lowly expressed genes.  Finally, Xenium had the highest sensitivity 471 
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across tissues. CosMx and MERSCOPE both detected fewer transcripts than Xenium. 472 

MERSCOPE outperformed CosMx in the higher quality (as judged by relative performance across 473 

all platforms) tumor TMA but underperformed it in lower quality normal tissue TMA. In general, 474 

our analyses also suggest similar performance within a given platform across a vast array of tissue 475 

types assayed here. We note that given the small number of replicates from each tissue, particularly 476 

in the normal tissue, we stop short of making blanket statements about relative performance across 477 

a particular tissue type. The data suggests, instead, that Xenium and MERSCOPE provide more 478 

reliable true-positive signals of lowly expressed genes and that Xenium9s overall performance is 479 

less dependent on sample input quality than the other two platforms. MERSCOPE, especially, 480 

appears to be particularly sensitive to sample input, highlighting the importance of prescreening 481 

RNA integrity according to manufacturer instructions.  482 

When we compared each dataset to existing RNA-seq datasets, we found comparable 483 

correlation of pseudo-bulk data to RNA-seq data from GTEx or the TCGA across each panel and 484 

platform. However, the presence of a characteristic upswing for CosMx, even when comparing to 485 

orthogonal data, further shows that there is a higher false positive rate for lower expression level 486 

genes in CosMx data. This upswing could be explained by the absence of probing genes in a 487 

particular tissue in a larger panel. However, the Xenium multi tissue panel also includes genes not 488 

expressed in breast and lung but does not show a similar upswing. Thus, a more likely 489 

interpretation is that the CosMx is prone to a high FDR at the low expression regime. This could 490 

also suggest that the CosMx transcript counts and detected gene numbers may be slightly inflated 491 

by false discoveries. 492 

From a tissue-specific expression perspective, Xenium showed a distinct expression 493 

pattern of key tissue-markers, whereas CosMx and MERSCOPE did not. Additionally, 494 
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MERSCOPE and CosMx consistently showed expression of known tissue markers in unexpected 495 

tissue types. This could be partly explained by an overall low performance on this particular normal 496 

tissue TMA for MERSCOPE due to RNA quality. This performance difference could be 497 

problematic for studies that are designed to compare tissue-specific factors. For studies whose 498 

main biological variable of interest are within the same tissue, factors like sensitivity, specificity, 499 

and panel availability may be a more important guide for iST experimental design.  500 

A significant advantage of spatial transcriptomics data is the ability to map expression in 501 

single cells. We compared each platform on a cell-level basis by assessing cell identification and 502 

cell clustering. Overall, it appears that the out of the box segmentation from Xenium performs 503 

poorly in terms of drawing cell boundaries specific to a single cell, while MERSCOPE and Xenium 504 

much more closely match cell boundaries. This did not appear to differ on a tissue-by-tissue basis, 505 

thus, is likely inherent to the overall approach used by each platform. After applying an expression 506 

level filter, Xenium overall retained the highest number of cells across various filtering 507 

stringencies. Despite Xenium9s cell boundaries not clearly matching nuclei, both it and 508 

MERSCOPE were able to effectively separate cells from different lineage markers, as judged by 509 

finding minimal coexpression of disjoint markers, while CosMx showed more double positive 510 

cells (out of, it should be noted, fewer cells expressing the target genes overall).  511 

To determine whether clearer identification of lineage markers resulted in improved ability 512 

to identify cell types, we performed clustering analyses specifically in the breast tissue and breast 513 

cancer samples. We note that we used the full panel, not only the shared genes, when performing 514 

these clustering analyses. Xenium allowed for identification of all major cell lineages in the breast 515 

when compared to several reference breast atlases. Both the global and tissue clustering results 516 

show that CosMx is also able to recognize the major cell types, but cannot identify cell subtypes. 517 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570603doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570603
http://creativecommons.org/licenses/by-nc-nd/4.0/


Additionally, since the cluster-enriched genes do not correspond to well-known markers, probably 518 

due to the low expression caused by low sensitivity and specificity, cell type annotation was 519 

particularly difficult. Lastly, despite lower transcript counts and fewer cells, MERFISH still 520 

successfully identified cell groups, capturing the patterns seen in other platforms. These 521 

differences in cell typing, can also be attributed to the differential performance of cell segmentation 522 

pipelines [37,38 39,40]. Since all platforms provide the underlying DAPI stain and morphology images 523 

(in the case of CosMx and MERSCOPE) it is likely that segmentation performance could be 524 

improved on a sample-by-sample or tissue-type-by tissue-type basis.  Future work should seek to 525 

assess cell segmentation tools and their performance across data from each platform to help inform 526 

the choice of analytical method where needed. 527 

Plex is an important factor in ST experiments which we have not explicitly considered. The 528 

kinds of questions that may be answered by a 1,000-plex panel are clearly different than those 529 

answered by a 300-plex panel, offering more opportunities to explore intra- and intercellular 530 

signaling interactions. Thus, we note that for the right question, the higher false positive rates and 531 

lower sensitivities of CosMx relative to Xenium could be tolerated for a broader coverage of the 532 

biology. On the other hand, the fully configurable nature of Xenium and MERSCOPE panels could 533 

be better suited for branches of biology not well sampled by the 1,000 plex CosMx panel.  We 534 

recommend subsampling existing atlas data to determine whether the gene set which can be studied 535 

will be sufficient to cluster the cell types of interest and identify the necessary biological programs. 536 

We note that each of the manufacturers has publicly stated plans to grow their product offerings 537 

to increasing panel sizes.  538 

There are several limitations of our study. While we attempted to match time post slicing, 539 

the unintentional acquisition of MERSCOPE tissues at thinner thicknesses meant that the rerun 540 
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MERSCOPE data had a longer time on slide than other panels. However, the fact that the increase 541 

in counts in the rerun matched the increase in imaging volume, and the fact that Xenium runs 542 

showed stable expression levels over time suggests that this contribution was minimal. 543 

Additionally, our panel design for MERSCOPE required removal of genes so the panel was 544 

compatible with all tissues, lowering the plexity slightly. This could have compromised 545 

MERSCOPE9s ability to identify cell types relative to Xenium.  546 

Most importantly, we only attempted to compare the performance of iST platforms under 547 

typical use cases for clinical samples obtained from archival biobanks. Our results don9t 548 

necessarily extend to non-human samples, frozen samples, and even FFPE samples which have 549 

been extensively validated for high RNA integrity. Indeed, there have been reports that 550 

MERSCOPE, in previous studies of the mouse brain, shows comparable or even superior results 551 

to those reported by 10X Xenium[41]. Given the large change in data quality between the normal 552 

and tumor TMA, we cannot exclude the possibility that in the highest quality samples MERSCOPE 553 

would provide higher transcript numbers, with the associated downstream benefits relative to 554 

Xenium and CosMx. However, the current guidance of DV200
 > 0.6 restricts studies to the upper 555 

regime sample quality and limits archival investigations.  556 

Despite these limitations, our overall interpretation of these results is that amplification of 557 

RNA signal is especially important for recovery of transcript counts by iST in low-quality samples 558 

where RNA may be highly degraded and fewer landing sites are available for probes. Platforms 559 

(such as Xenium) which rely on small numbers of landing sites and are subsequently heavily 560 

amplified are robust to RNA degradation and are thus more broadly compatible with a broad range 561 

of samples. On the other hand, when sample quality is high (as in some of our tumor samples) the 562 
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gap between amplified and unamplified platforms9 performance closes and most platforms can 563 

yield useful data for subsequent downstream spatial analysis.  564 

Methods 565 

Sample choice and TMA construction  566 

Two TMAs were constructed using FFPE clinical discards at Brigham and Women9s 567 

Hospital Pathology Core and were acquired with a waiver of consent for non-sequencing based 568 

readouts under IRB 2014 P 001721. The samples included: 569 

1. A tumor TMA of 170 cores, 0.6 mm in diameter, including a variety of cancer samples 570 

and healthy lymphoid tissue as a positive staining control. The TMA samples were 571 

selected from samples previously characterized by ImmunoProfile and were selected 572 

to encompass both high and low levels of the biomarkers in the ImmunoProfile panel 573 

[CD8, PD-1, PD-L1, Foxp3, tumor marker (Cytokeratin, Sox10, or PAX8)]. 574 

Annotations were performed by KF and SR based on H&E and immunofluorescence 575 

staining. Cores included both tumor and healthy control annotation, though for the 576 

purpose of this study, all were combined under their tumor label. Tumors were also 577 

chosen to be a mixture of PD-L1 high and PD-L1 low, a parameter to be analyzed at a 578 

future date. This TMA had previously been studied by both H&E, and several highly 579 

multiplexed immunostaining approaches, and was known to be of high morphological 580 

integrity. 581 

2. A normal TMA of 45 cores 1.2 mm in diameter representing a broad range of normal 582 

tissues. Samples were sourced from the same patient in either duplicate or triplicate. 583 
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This TMA was chosen for the breadth of tissue lineages included and the relatively 584 

large core size. 585 

All samples were fully de-identified before assembly into TMAs. The breakdown of the number 586 

of samples per tissue and the number of cores per tissue is included in Supplementary Table 1-587 

2. 588 

Preparation of sequential sections 589 

Sequential sections were prepared according to manufacturer instructions (<Tissue 590 

Preparation Guide Demonstrated Protocol CG000578= for Xenium, <91600112 MERSCOPE User 591 

Guide Formalin-Fixed Paraffin-Embedded Tissue Sample Preparation RevB= for Vizgen, and 592 

<MAN-10159-01CosMx SMI Manual Slide Preparation Manual= for CosMx) at the Brigham and 593 

Women9s Hospital Pathology Core. Prior to collecting samples, ~50 µm of each TMA were faced 594 

off to reach deeper into the sample where RNA integrity was likely higher. 5 µm sequential 595 

sections were then collected, floated in a 37ÚC water bath, and adhered to Xenium slides (10X, PN 596 

1000460), Vizgen FFPE coverslips (Vizgen, PN 10500102), or standard Superfrost+ slides for 597 

CosMx (Leica BOND PLUS slides, Leica Biosystems S21.2113.A). TMAs were sliced as close to 598 

the center of the active area as possible for each platform.  Samples were baked at 42ÚC for 3 hours 599 

for Xenium, 55 ÚC for 15 minutes for MERSCOPE, and 60ÚC for 16 hours for CosMx. Sections 600 

were stored according to manufacturer instructions prior to processing, with 10X Xenium stored 601 

in a desicator at room temperature, Vizgen MERSCOPE coverslips stored at -20ÚC, and Nanostring 602 

CosMx slides stored at 4ÚC. Samples for 10X Xenium and Vizgen MERSCOPE were brought to 603 

the Spatial Technology Platform at the Broad Institute for processing, while samples for 604 

Nanostring CosMx were processed at the Wei lab at Brigham and Women9s Hospital.  605 

 606 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570603doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570603
http://creativecommons.org/licenses/by-nc-nd/4.0/


Vizgen MERSCOPE probe selection 607 

Pre-designed probe panels from Vizgen were not available at the time of the experiment. 608 

Therefore, we ordered custom gene panels to match the pre-released gene panels from 10X for the 609 

human breast and human lung panels. Gene lists were uploaded to the Vizgen panel design portal 610 

and were checked against all profiled tissues, removing genes that were overexpressed in any 611 

individual tissue based on Vizgen9s design guidelines (FPKM > 900), and ensuring that the total 612 

panel FPKM did not exceed the allowed limit in any individual sample type. Panels were 613 

manufactured at the 300 gene scale as custom panels BP0892 and BP0893. The final gene lists, for 614 

all three iST modalities are available in Supplementary Table 3. 615 

 616 

Vizgen MERSCOPE data acquisition 617 

MERSCOPE samples were imaged according to manufacturer protocol <9160001 618 

MERSCOPE Instrument User Guide RevF=. Samples were processed in two batches, the first of 619 

four samples, two of each TMA and with each library prepped in parallel; and a follow up sample 620 

of each TMA re-run with the breast panel. Samples were first hybridized with anchoring probes 621 

overnight before being embedded in a polyacrylamide gel. Samples were incubated for two hours 622 

with a digestion solution at 37ÚC and then overnight at 47ÚC overnight in a detergent clearing 623 

solution and proteinase K to remove native proteins while the anchoring probes kept nucleic acids 624 

bound to the gel. After clearing, samples were additionally photobleached using Vizgen9s 625 

MERSCOPE Photobleacher for three hours at room temperature in the clearing solution. Samples 626 

were hybridized with encoding probes and a cell boundary stain (PN 10400118) and then imaged 627 

with imaging kits (PN 10400005). Samples were stored at 37ÚC in clearing solution after 628 

hybridization and before final imaging. After an initial examination of the data, a second batch of 629 
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both TMAs was run a second time with the human breast panel, increasing the set imaging capture 630 

thickness from 5 µm to 10 µm to capture more tissue from cores that had lifted during the gel 631 

embedding process. Data was processed on premises through the standard Vizgen workflow to 632 

generate cell by gene and transcript by location matrices. We segmented the data with a built-in 633 

Cellpose method on the most accurate looking cell boundary stain. 634 

 635 

10X Xenium data acquisition 636 

10X Xenium samples were processed in three batches according to manufacturer protocols 637 

<Probe Hybridization, Ligation & Amplification, User Guide CG0000582= and <Decoding & 638 

Imaging, User Guide CG000584=. Samples were stained utilizing 10X9s predesigned Human 639 

Breast (10X, PN 1000463), Human Multi-Tissue and Cancer (10X, PN 1000626), and Human 640 

Lung panels (10X, PN 1000601), as they became available from the manufacturer. Slides for both 641 

TMAs were processed in pairs according to which probe library they were receiving. Slides were 642 

stained with a Xenium imaging kit according to manufacturer instructions (10X, PN 1000460). 643 

Briefly, padlock probes were incubated overnight before rolling circle amplification and native 644 

protein autofluorescence was reduced with a chemical autofluorescence quencher. Slides were 645 

processed on a 10 Xenium Analyzer, with ROIs selected to cover the entire TMA region. Data was 646 

processed on premises through the standard 10X workflow to generate cell by gene and transcript 647 

by location matrices. 648 

 649 

Nanostring CosMx 650 

Nanostring CosMx samples were prepared with one 1000 plex panel. Samples were 651 

hybridized with probes and stained with cell markers. Samples were loaded onto the CosMx SMI 652 
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at the same time for imaging, during which branched fluorescent probes were hybridized onto the 653 

samples to amplify the signal above the background.  654 

Nanostring CosMx samples were prepared with Human Universal Cell Characterization 655 

1000 Plex Panel (part number 122000157) according to manufacturer protocol <MAN-10159-01 656 

CosMx SMI Manual Slide Preparation Manual=. Firstly, slides were baked at 60# overnight for 657 

better tissue adherence. After baking, slides were treated sequentially with deparaffinization, target 658 

retrieval (15 min at 100#), permeabilization (3µg/mL proteinase K, 15 min at 40#), fiducials 659 

application, post-fixation, NHS-acetate application and then hybridized with denatured probes 660 

from universal panel and default add-on panel. After in situ hybridization (18 hours at 37#), slides 661 

were washed and incubated with DAPI (15 min at RT) and marker stain mix (with PanCK, CD45, 662 

CD68 and cell segmentation marker CD298/B2M). Slides were washed and loaded onto the 663 

CosMx SMI for UV bleaching, imaging, cycling and scanning. Raw images were decoded by 664 

default pipeline on Atomx SIP (cloud-based service). Machine: CosMx_0020. Serial Number: 665 

INS2301H0020 666 

Data preprocessing 667 

After data acquisition, the resulting outputs were uploaded to a Google bucket associated 668 

with a terra.bio Workspace for distribution and follow on analysis. 669 

To facilitate standardized data formatting and subsequent analytical processes, we built a 670 

data ingestion pipeline with the following objectives: a) to grab cell-level and transcript-level 671 

data from diverse platforms and normalize the data structure; b) to tag each cell and transcript 672 

with essential metadata including tissue type, tumor status, PD-L1 status, among others 673 

(Supplementary Fig. 6); and c) to transform the data into various formats tailored to the 674 

requirements of particularized analyses. Specifically, to tag the data, core centers in the TMA 675 
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were manually identified using DAPI images (Xenium) or cell metadata that contains global 676 

coordinates (MERSCOPE and CosMx) using QGIS(version:3.16.10-Hannover). Cells or 677 

transcripts within a specified radius were then labeled with core metadata via spatial joining 678 

(implemented by GeoPandas, version:0.13.0). In instances where cores are in close proximity or 679 

when a uniform radius cannot be applied effectively, we manually generated the core boundary 680 

masks. 681 

 682 

Reproducibility 683 

To evaluate panel to panel reproducibility we summed the expression level of shared 684 

genes between indicated panels (breast vs. multi-tissue and breast vs. lung panels from Xenium 685 

and breast vs. lung panels from MERCOPE) over an individual core and plotted all cores present 686 

in each panel, before calculating a Pearson9s correlation. The format of the data used is shown in 687 

Supplementary Table 10. To evaluate core to core reproducibility, the individual gene counts of 688 

core 1 were plotted against those of core 2 and a Pearson9s r correlation was calculated.  689 
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On target rates and false-discovery measurements 690 

To compare across panels and platforms, we subset all datasets to include only cores 691 

assayed in all runs. The fraction of on-target barcodes was calculated as a percentage of all 692 

transcripts corresponding to genes relative to the total number of calls (including negative 693 

control probes and unused barcodes or blank barcodes). These measurements were performed on 694 

individual cores and averaged across all cores of the same tissue type.  695 

Because the difference in relative numbers of controls and target barcodes across 696 

different platforms, we adopted the false discovery rate (FDR) calculation to evaluate the 697 

specificity in a more normalized way (Fig. 2f-g). We calculated the FDR of platform p panel m 698 

data in tissue t using the following equation and cell level data (see example in Supplementary 699 

Table 11): 700 

���(��������	�������	������)!,#$ = 	���� 7 3 ���%&%3 �'&' + 3 ���%&%

× �
� ×%> , � = {1,& ,�} 701 

Where N is the total number of cores that belong to tissue type t, I is the total number of unique 702 

genes, J is the total number of negative control probes, �'& is the gene expression of gene i in 703 

core n,  ���%&	is the total calls negative control probe j in core.  704 

Since MERSCOPE does not include negative control probes, FDR was recalculated by 705 

substituting negative control with blank barcodes (Fig. 2f) using the following equation: 706 

���(�����	��������)!,#$ = 	����7 3 �����(&(3 �'&' + 3 �����(&(

× �
� ×%> , � = {1,& ,�} 707 

Where N is the total number of cores that belong to tissue type t, I is the total number of unique 708 

genes, L is the total number of unused barcodes or blank barcodes, �'& is the gene expression of 709 

gene i in core n,  �����(&	is the total calls of unused barcode or blank barcode l in core n, 710 

specifically, we used BLANK for Xenium data, Blank for MERSCOPE data, and SystemControl 711 
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for CosMx data. We only used the data from matched cores, so N is same for different platform 712 

p. 713 

 714 

Sensitivity comparison 715 

Sensitivity was measured by the percentage of the total number of unique genes detected 716 

above noise level, where the noise was estimated as two standard deviation above average 717 

expression of the negative control probes.  718 

 719 

Orthogonal RNA-Seq concordance analysis 720 

RNA TCGA cancer sample gene data summarizes 7,932 samples from 17 different cancer 721 

types, and it provides FPKM for each gene documented. We used all samples which were 722 

annotated as BRCA (Breast cancer), BLCA (Bladder cancer), COAD and READ (colorectal 723 

cancer), HNSC (head and neck squamous cell carcinoma), LUAD and LUSC (non-small cell lung 724 

cancer), SKCM (melanoma), and OV (ovarian cancer). For GTEx, we selected the tissue types 725 

matching the annotation in our normal tissue TMA. For each panel, the genes probed by iST were 726 

averaged across all patients with the matching tissue label from the RNA-seq database.  727 

To get pseudo-bulked iST values, the expression level of each gene in each core was normalized 728 

to the sum of all genes in that core and scaled by 100,000. We then averaged these scaled pseudo-729 

bulk expression values across cores and plotted them against the averaged FPKMs from reference 730 

RNA-seq data sets. 731 

 732 

Tissue marker enrichment analysis 733 
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To determine the assay9s ability to specifically identify known lineage markers, we focused 734 

on the normal tissue TMA profiled with multi-tissue panel of Xenium, breast panel of MERSCOPE, 735 

and 1K panel of CosMx. We selected genes with known canonical expression patterns using based 736 

on transcriptomics data from GTEx. If a gene had 20-fold higher expression in a specific tissue 737 

than every other tissue combined, this gene was considered to be a tissue marker and was used for 738 

assessing specificity for each platform. Counts for each gene were normalized to the total counts 739 

within the core, and then the Z-score of this gene across tissue types was plotted in a heatmap Fig. 740 

3e. We calculated average expression of a gene across cores of the same tissue type and normalized 741 

to the total averaged expression of all genes. Z-scores were calculated with the mean and standard 742 

deviation across all averaged genes. 743 

 744 

Evaluation of cell segmentation performance 745 

In the absence of ground truth data, we conducted a comparative analysis of cell counts, 746 

cell areas, coexpression across various platforms and panels, utilizing the segmentation results 747 

supplied by each respective company. To facilitate comparison, cell counts were normalized to a 748 

consistent area of 1000 µm². Both cell count and cell area were then delineated at two distinct 749 

levels of detail: a consolidated assessment encompassing all tissue types (see Fig. 4b-c), as well 750 

as a segregated evaluation by individual tissue types (refer to Supplementary Table 6-7). To 751 

evaluate the biological performance of the segmentation, we plotted coexpression plots of gene 752 

pairs that are mutually exclusive including CD3e vs. CD19, CD4 vs. CD8, and CD3e vs. 753 

EPCAM. We pooled all the filtered cells from matched cores and all available panels of each 754 

platform, dropped cells which do not express either gene, plotted the expression of one gene 755 
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against the other, and converted the scatter plot to a 2D histogram showing cell numbers in each 756 

co-expression bin (Fig. 4g). 757 

 758 

Cells per area quantification 759 

Segmented cells were aggregated by TMA cores. For Xenium and MERSCOPE data, the 760 

estimation of tissue area was performed by calculating the area of a discernible circle, utilizing 761 

respective radius of 0.3 µm and 0.6 µm for tumor and normal TMA samples. Conversely, for the 762 

CosMx dataset, the tissue area estimation was approached differently due to its square-like data 763 

presentation, a result of the FOV selection process. Here, the tissue area was deduced by 764 

multiplying the number of FOVs covered by each core with the area of a single FOV. 765 

Clustering 766 

For cell filtering, cells with less than 10 transcript counts in MERFISH and Xenium 767 

datasets were removed, and cells with less than 20 transcript counts in CosMx datasets were 768 

removed. We followed standard processes to then cluster and annotate cell types across each 769 

dataset using Scanpy[42]. Briefly, data was normalized and scaled, dimensionality reduction was 770 

performed and cell clusters were identified[43, 44]. To identify the cell type for each cluster, we used 771 

a t-test to find the markers for each Leiden cluster and annotated them according to previous 772 

literature[29-36]. These are some of the example markers used for cell type annotation: in breast 773 

samples, PIGR and KIT for alveolar cells, for B cells, KRT5, DST, and MYLK for basal cells, 774 

LUM, MMP2 and CXCL12 for fibroblast, etc. Heatmaps of the top 3 markers for each cluster are 775 

drawn for each dataset from all three panels (refer to Supplementary Figure 5a-c).  For datasets 776 

that showed batch effect with patients, Harmony was used to remove this variance[45]. Correlation 777 
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heatmaps were generated over overlapping genes that exist in both datasets, and the Pearson 778 

correlation coefficient was calculated.  779 
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Supplementary Figure 1: Reproducibility across different panels and cores from same patient. 
(a) Scatter plots of cumulative gene expression levels (natural log transformed) of shared genes between two 
panels within each platforms, captured from matched tissue cores. Column 1: Xenium breast vs. Xenium lung; 
Column 2: Xenium breast vs. Xenium multi-tissue; Column 3: MERSCOPE breast round 1(5 µm) vs. 
MERSCOPE breast round 2(10 µm). Each data point corresponds to a TMA core. (b) Scatter plots of gene 
expression levels (natural log transformed) of every shared gene between two cores of the same tissue type 
from the same patient. In this example, cores are from breast cancer tissue. Each data point corresponds to a 
gene. (c) Heatmap of correlation coefficient expressed as Pearson’s r values, indicating good core-to-core or 
sample-to-sample reproducibility. Core pairs are selected from same tissue/tumor type from the same patients.
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Supplementary Figure 2: Gene by gene plots of iST results by panel and by tissue microarray. 
(a) Scatter plots of summed gene expression levels (natural log transformed) of every shared gene between 
Xenium (breast/lung) and CosMx (1k) data, captured from matched normal tissue TMA cores. Each data point 
corresponds to a gene. (b) Same as (a) but between MERSCOPE (breast/lung) and CosMx(1k). (c) Same as 
(a) but between Xenium(breast/lung) and MERSCOPE(breast/lung). (d) Same as (a) but between 
Xenium(multi-tissue) and CosMx(1k). † denotes the MERSCOPE lung panel acquired with a 5 µm imaging 
thickness.
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Supplementary Figure 3: Tissue marker analyses and cell level measurements.
(a) Heatmap of Z-scored gene expression showing CosMx’s ability to specifically identify known lineage 
markers. We focused on the normal tissue TMA profiled with multi-tissue panel and selected genes with 
canonical expression patterns for this analysis. (b) Same as (a) but for MERSCOPE (breast panel). (c) 
Heatmap of transcripts per cell after filtration. Only shared genes (40) are considered here for each panel. 
(d) Same as (c) but showing unique transcripts from the same gene set.
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Supplementary Fig: 4 Global clustering analyses
(a) Global Clustering results of tumor TMA from Xenium breast 
panel (top), Xenium lung panel (middle), and Xenium panhuman 
panel (bottom). (b) Global Clustering results of tumor TMA from 
MERFISH breast panel (top), MERSCOPE lung panel (middle), 
and CosMx multitissue panel (bottom).
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Supplementary Fig: 4 Global clustering analyses
(c) Global Clustering results of normal TMA from Xenium breast panel (top), Xenium lung panel (middle), and 
Xenium panhuman panel (bottom). (d) Global Clustering results of normal TMA from MERSCOPE breast panel 
(top), MERSCOPE lung panel (middle), and CosMx multitissue panel (bottom). 
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Supplementary Fig: 5. Cell type recovery and UMAPs
(a) Heatmap showing the top gene markers for cell types annotated in breast samples of normal TMA from Xenium 
breast (left) and Cosmx multitissue (right). (b) Heatmap showing the top gene markers for cell types annotated in lung 
samples of normal TMA from Xenium lung (left) and Cosmx multitissue (right). (c) Heatmap showing the top gene 
markers for cell types annotated in breast cancer samples of tumor TMA from Xenium breast (left), Cosmx multitissue 
(middle),  NERSCOPE breast (right). 
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Supplementary Fig: 5. Cell type recovery and UMAPs
(d) UMAP of breast cancer samples of tumor TMA from Xenium breast panel pre (left) and post (right) batch effect 
removal. (e) UMAP of breast cancer samples of tumor TMA from Cosmx multitissue panel pre (left) and post (right) 
batch effect removal. (f) UMAP of breast cancer samples of tumor TMA from MERFISH breast panel pre (left) and 
post (right) batch effect removal
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Supplementary Fig: 5. Cell type recovery and UMAPs
(g) UMAP plot of well-known gene markers for BrC, in breast cancer samples of tumor TMA from CosMx 
multitissue panel. (h) UMAP plot of well-known gene markers for BrC, in breast cancer samples of tumor TMA 
from Xenium multitissue panel.
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Supplementary Figure 6: Workflow for tagging imaging spatial transcriptomics data
(a) To facilitate standardized data formatting and subsequent analytical processes, we built this data ingestion 
pipeline with the following objectives: 1) to grab cell-level and transcript-level data from diverse platforms and 
normalize the data structure; 2) to tag each cell and transcript with essential metadata including tissue type, tumor 
status, PD-L1 status, among others; and 3) to transform the data into various formats tailored to the requirements 
of particularized analyses. Specifically, to tag the data, core centers in the TMA were pinpointed using DAPI 
images (Xenium) or cell metadata that contains global coordinates (MERSCOPE and CosMx) using 
QGIS(version:3.16.10-Hannover). Cells or transcripts within a specified radius were then labeled with core 
metadata via spatial joining (implemented by GeoPandas, version:0.13.0). In instances where the cores are in 
close proximity or when a uniform radius cannot be applied effectively, we manually generated the core boundary 
masks.
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