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Abstract

Emerging imaging spatial transcriptomics (iST) platforms and coupled analytical
methods can recover cell-to-cell interactions, groups of spatially covarying genes, and gene
signatures associated with pathological features, and are thus particularly well-suited for
applications in formalin fixed paraffin embedded (FFPE) tissues. Here, we benchmarked the
performance of three commercial iST platforms on serial sections from tissue microarrays
(TMAs) containing 23 tumor and normal tissue types for both relative technical and biological
performance. On matched genes, we found that 10X Xenium shows higher transcript counts per
gene without sacrificing specificity, but that all three platforms concord to orthogonal RNA-seq
datasets and can perform spatially resolved cell typing, albeit with different false discovery rates,
cell segmentation error frequencies, and with varying degrees of sub-clustering for downstream
biological analyses. Taken together, our analyses provide a comprehensive benchmark to guide
the choice of iST method as researchers design studies with precious samples in this rapidly

evolving field.
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MAIN

Spatial transcriptomics (ST) tools measure the gene expression profiles of tissues or cells
in situ. These approaches overcome the limitations of single-cell RNA-sequencing (scRNA-seq)
methods by negating the need for cellularization and maintaining both local and global spatial
relationships between cells within a tissue. ST can thus recover cell-cell interactions with high
confidence, groups of spatially covarying genes, groups of cells predictive of cancer survival, and
gene signatures associated with pathological features [!-2l. These advantages, coupled with rapidly
emerging computational and analytical methods, have led to substantial excitement about
deploying these platforms in fundamental biology studies, and in the clinic for research and
diagnostic purposes [* %31,

ST tools can be split into two broad categories: sequencing (sST) and imaging (iST) based
modalities. sST methods tag transcripts with an oligonucleotide address indicating spatial location,
most commonly by placing tissue slices on a barcoded substrate; isolating tagged mRNA for next-
generation sequencing; and computationally mapping transcript identities to locations [6l. In
contrast, iST methods most commonly use variations of fluorescence in situ hybridization (FISH)
where mRNA molecules are tagged with hybridization probes which are detected in a
combinatorial manner over multiple rounds of staining with fluorescent reporters, imaging, and
de-staining (Fig. 1a) "l. Computational reconstruction then yields maps of transcript identity with
single-molecule resolution. Compared to sST methods, iST methods are targeted to subsets of the
transcriptome due to their reliance on pre-defined gene panels and they adopt the higher spatial
resolution and sensitivity of FISH, yielding single-cell resolution data [,

While the iST methods share some similarities, significant differences arise in primary

signal detection and amplification, sample processing, and the subsequent fluorescent cycling
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chemistry (Fig. 1b) [>!%!1] The need for amplification of signal is coupled to the sample processing,
namely whether the sample is cleared, gel-embedded, or photobleached to quench
autofluorescence. There are tradeoffs due to differences in sample processing for each iST method.
For example, clearing of the sample increases signal quality but can prevent follow-up H&E
staining and complicate immunostaining, which, in turn, can make cell segmentation more
challenging. Finally, there are tradeoffs between imaging time, molecular plex, and imaging area
covered, which result from the particular combination of the molecular protocol and the imaging
hardware implementation [21,

A key historic limitation in the widespread use of iST methods with human clinical samples
was the incompatibility of most methods with formalin-fixed, paraffin-embedded (FFPE) tissue
samples [1% 14 FFPE is the standard format for clinical sample preservation for pathology due to
its ability to maintain tissue morphology and sample stability at room temperature for decades ['°],
The ability to process FFPE samples with iST would enable the use of archival tissue banks for
studies and obviate the need for specialized sample harvesting workflows. However, FFPE
samples tend to suffer from decreased RNA integrity, particularly after having been stored in
archives for extended periods of time [16],

Three companies recently released the first FFPE compatible commercial iST platforms:
10X’s Xenium, Nanostring’s CosMx, and Vizgen’s MERSCOPE 1011171 These three platforms
each use different protocols, probe designs, signal amplification strategies, and computational
processing methods, and therefore may potentially yield different sensitivities and downstream
results. The main chemistry difference lies in transcript amplification: 10X Xenium uses a small

number of padlock probes with rolling circle amplification; CosMx uses a low number of probes

amplified with branch chain hybridization; and MERSCOPE uses direct probe hybridization but
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84  amplifies by tiling the transcript with many probes (Fig. 1b). However, no head-to-head
85  performance comparisons on matched samples have been published. Understanding the key
86  differences across platforms will allow users to make better-informed decisions regarding panel
87  design, method choice, and sample selection as they design costly experiments, often on precious
88  samples that have been bio-banked for years 131,

89 In this study, we compared currently available FFPE-compatible iST platforms on matched
90 tissue samples. We prepared a set of samples representative of typical archival FFPE tissues,
91  comprised of 23 different tissue types, and acquired matched data from sequential sections
92  according to the manufacturer’s best practices at the time of writing, generating a dataset of >3.3M
93  cells. We analyzed the relative sensitivity and specificity of each method on shared transcripts,
94  and further quantified the concordance of the iST data across each platform with orthogonal data
95  sets from The Cancer Genome Atlas (TCGA) program and Genotype-Tissue Expression (GTEx)
96  databases 1”2, Then we focused on cell-level comparisons, evaluating the out-of-the-box
97  segmentation for each platform based on detected genes and transcripts and coexpression patterns
98  of known disjoint markers. Finally, we cross-compared the ability of each platform to identify cell
99 type clusters with breast and breast cancer tissues as an example use case. Taken together, our

100  work provides the first head-to-head comparison of these platforms across multiple archival

101  healthy and cancerous FFPE tissue types.
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102 RESULTS

103  Collection of matched iST data across 23 FFPE tissue types reveals high transcript counts
104  obtained by Xenium and CosMx.

105 To test the performance of the latest generation of FFPE-compatible iST tools, we
106  measured the spatial expression of the same genes on the same samples as much as possible given
107  current panel configurations. To accomplish this, we used two previously generated multi-tissue
108 tissue microarrays (TMAs) from clinical discarded tissue (see Methods). We focused on FFPE
109  tissues as the standard method for sample processing and archival in pathology. One TMA
110  consisted of one hundred and seventy-three 0.6 mm diameter cores (i.e. sampled regions) from
111 seven different cancer types, with 3-6 patients per cancer type, and 3-6 cores per patient (Fig. 1¢,d,
112  Supplementary Table 1). A separate TMA consisted of forty-eight 1.2 mm diameter cores
113  spanning sixteen normal tissue types isolated with each tissue type coming from one patient and
114  represented in 2-3 cores (Fig. 1c,d, Supplementary Table 2). CosMx and Xenium suggest pre-
115  screening samples based on H&E, while MERSCOPE recommends a DV200 > 60%. Since our goal
116  was to determine the compatibility of iST platforms under typical workflows for biobanked FFPE
117  tissues, and since TMAs are challenging to assay by DV2g0, samples were not prescreened based
118  on RNA integrity. Samples were screened by H&E in the process of TMA assembly. Both TMAs
119  were sliced into serial sections for processing by 10X Xenium, Vizgen MERSCOPE, and
120  Nanostring CosMx, following manufacturer instructions (see Methods).

121 The three different iST platforms offer different degrees of customizability and panel
122 compositions. In terms of panel design, MERSCOPE and Xenium offer either fully customizable
123  panels or standard panels with optional add-on genes, while CosMx offers a standard 1K

124  (substantially larger plex) panel with optional add-on genes. We opted to run the CosMx 1K panel
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125  as available commercially, as well as the Xenium human breast, lung, and multi-tissue off-the-
126  shelf panels. We then designed two MERSCOPE panels to match the pre-made Xenium breast and
127  lung panels, by filtering out any genes which could potentially lead to high expression flags in any
128  tissue in the Vizgen online portal. This resulted in a total of six panels, with each panel overlapping
129  the others on >94 genes (Fig. le, Supplementary Table 3). Samples were run following
130  manufacturer instructions over the course of 74 days after slicing (Fig. 1f, Supplementary Table
131 4), with efforts made to ensure that head-to-head comparisons were available at similar time points
132 for each pair of platforms. In data review, we noticed that MERSCOPE breast and lung panel were
133  originally acquired with a 5 pm imaging depth, which was unintentionally thinner than the
134  manufacturer recommendation of 10 um, and could thus lead to aberrantly low counts. Thus, a
135 second round of breast panel acquisition was performed with a 10 pm imaging depth
136  (Supplementary Table 1a), resulting in a median 3.0-fold increase in expression across all
137  transcripts. We excluded the 5 um MERSCOPE breast panel data from all further comparisons but
138  left the lung panel data in as an illustrative example of an unsuccessful run. However, we
139  emphasize that MERSCOPE performance should be judged based on the rerun breast panel.

140 Each data set was processed according to the standard base-calling and segmentation
141  pipeline provided by each manufacturer. The resulting count matrices and detected transcripts were
142  then subsampled and aggregated to individual cores of the TMA (Methods). Across all datasets
143  we generated >190 million transcripts, >3.3 million cells, across 7 tumor types, and 16 normal
144  tissue types. Overall, we found that the cores from each TMA were generally well adhered to the
145  tissue and detected transcripts, and we were able to collect data from all three modalities for 217
146  cores (Supplementary Table 4). The total number of transcripts recovered for each run was

147  highest for Xenium, followed closely by CosMx, and then MERSCOPE (Supplementary Table
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4). The total number of cells initially reported was highest for Xenium followed by MERSCOPE
and CosMx (Supplementary Table 4). Based on the initially reported number of transcripts, the
tumor TMA appeared to provide more counts than the normal tissue TMA, which we ascribed to
a higher tissue quality in the tumor samples (Supplementary Table 4). We note that the total
number of transcripts from the MERSCOPE normal TMA run was below what would be typically
thought of as a successful run, even when rerunning with the breast panel at 10 pm imaging depth.
Such a sample would normally be excluded from analysis, but we continued the data through to

illustrate how low transcript capture affects downstream results.
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157  Figure 1: Experimental design and iST platforms. (a) Overall approach for generating iST data.

158  (b) Different amplification approaches for Xenium, MERSCOPE, and CosMx. (¢) Overview of
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159 the tissue types and numbers of cores used in this study. BIC = bladder cancer, BrC = breast cancer,
160  CRC = colorectal cancer, HNSCC = head and neck squamous cell carcinoma, Mel = Melanoma,
161  NSCLC = non-small cell lung cancer, OvC = ovarian cancer. (d) DAPI images from the Xenium
162  run of each TMA, including tumors (top) and normal tissues (bottom) (e) The number of common
163  target genes in each panel used in this study. (f) Overall timeline of the imaging days for each
164  study. Day = 0 corresponds to the day of slicing. T denotes the MERSCOPE breast and lung panels
165  acquired with a 5 pm imaging thickness, thinner than manufacturer instructions.

166

167 10X Xenium shows higher transcript counts per gene without sacrificing specificity

168 We next sought to directly compare the performance of each iST platform on matched
169  genes. We began with a pseudo-bulk-based approach at the core level since this would not depend
170  on differences in cell segmentation performance (see Methods) (2],

171 First, we examined the run-to-run reproducibility within a single platform for Xenium and
172  MERSCOPE, finding that the total transcript count of all shared genes was highly correlated across
173  data sets acquired with different panels, regardless of the tissue of origin (Supplementary Fig.
174  1a). We also examined the pseudo-bulk gene expression correlation for cores from the same patient
175  in the same dataset and found that correlation was high (Pearson’s r => 0.7) in almost all cases
176  (Supplementary Fig. 1b-c), indicating good sample-to-sample reproducibility within a given
177  platform.

178 To evaluate the relative sensitivity of each platform, we plotted the total transcript counts
179  of every shared gene between all combinations of platform and panel, summed across all matched
180 cores. We found generally linear relationships between all pairs of platforms (Fig. 2a-c,
181  Supplementary Fig. 2). Xenium consistently showed higher expression levels on the same genes
182  than CosMx in the tumor TMA, with the Xenium breast having 14.6-fold more counts than the
183  CosMx multi-tissue data sets (Fig. 2a). The Xenium multi-tissue panel data showed a slightly

184  smaller difference, with 12.3-fold higher expression on the same genes (Fig. 2a), while the lung
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185  panel, which was acquired closest in time following slicing, also displayed a median of 14.0-fold
186  higher expression (Fig. 2a). MERSCOPE showed higher expression levels than CosMx when
187  using the breast (10 um) panel (median of 5.4-fold higher), and comparable expression levels even
188  when using the lung (5 um) panel (median of 1.1-fold) (Fig. 2b). Finally, Xenium showed 2.6-
189  fold higher median expression with the breast panels (10 um) than MERSCOPE, and 13.6-fold
190  higher median expression with the lung panels (5 um) (Fig. 2¢). In the normal tissue TMA, we
191  found that results were generally consistent, except that the MERSCOPE breast panel showed
192  decreased transcript counts relative to the same panel in the tumor TMA (Supplementary Fig. 2b-
193  c¢), which is consistent with this TMA being unsuccessful for MERSCOPE. Considering the overall
194  higher transcripts per cell across platforms for the tumor TMA (Supplementary Table 4), this
195  suggests that the ability to detect transcripts falls off more strongly with sample quality with
196  MERSCOPE, altering the performance relative to CosMx but not Xenium. Examining the CosMx
197  as compared to Xenium data also revealed an upward curve in the lower expression regime
198 indicative of higher-than-expected calls associated with the low expression regime by CosMx
199  (Supplementary Fig. 2a).

200 We next wanted to assess the specificity of each platform. Each of the three platforms
201  includes negative controls which are used to evaluate sample quality 1?2 23], Xenium and CosMx
202 include both negative probes (e.g. real probes targeting nucleic acids that are not present in human
203  tissue) and negative barcodes (e.g. algorithmically allowable barcodes that are not associated with
204  any probe in the experimental panel). MERSCOPE includes only negative barcodes by default. To
205  determine specificity, we first calculated the fraction of negative barcodes and probes relative to
206  the number of transcripts for each tissue type (Fig. 2e). We found that MERSCOPE and Xenium

207  consistently showed the highest on-target fraction, while CosMx was lower across each tissue type
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208 (Fig. 2e). However, this measurement is biased because of the relative numbers of controls and
209 target barcodes. We therefore also adopted a false discovery rate (FDR) calculation which
210 normalizes for these differences and is calculated against both the negative probes and negative
211 barcodes (see Methods, Fig. 2f-g). We found that Xenium consistently showed the lowest FDR
212 while CosMx showed the highest FDR regardless of whether we standardized to negative control
213  barcodes or probes. This finding is consistent with the upswing in the gene-gene expression plots
214  in Fig 2a and Supplementary Fig. 2a—as both indicate a higher FDR at the low end of the gene
215  expression range. These results are consistent when visualized across panel (Fig. 2e-g).

216 Finally, we used the negative control barcodes to evaluate the number of genes reliably
217  detected by each platform in each tissue type. For each core, we calculated the number of genes
218  that were detected two standard deviations above the average expression of the negative control
219  probes. These numbers were then averaged for cores of the same tissue type. Because the CosMx
220  panel was almost three times larger, it yielded a larger absolute number of detected genes in 14
221  out of 20 tissue types while the Xenium breast panel was higher in the remaining 6 tissue types

222  (Fig. 2h, Supplementary Table 5). However, Xenium consistently detected the highest fraction
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223  of genes in a panel, followed by MERSCOPE and CosMx (Fig. 2i).
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225  Figure 2: Technical performance comparison of iST platforms grouped by tissue types. (a)
226  Scatter plots of summed gene expression levels (natural log transformed) of every shared gene
227  between Xenium (breast/lung) and CosMx (1k) data, captured from matched tumor TMA cores.
228  Each data point corresponds to a gene. (b) Same as (a) but between MERSCOPE (breast/lung) and
229  CosMx(1k). (¢) Same as (a) but between Xenium(breast/lung) and MERSCOPE(breast/lung). (d)
230  Same as (a) but between Xenium(multi-tissue) and CosMx(1k). (e) Bar plot of percentage of all
231  transcripts corresponding to genes relative to the total number of calls (including negative control
232  probes and unused barcodes) averaged across cores of the same tissue type. Results are presented
233 by panel including breast, lung, and multi-tissue panels from Xenium; breast and lung panels from
234 MERSCOPE; and multi-tissue lk panel from CosMx. (f) Bar plot of false discovery rate
235 (FDR) where FDR(%) = (blank barcode calls / total transcript calls) x (Number of panel genes
236  /Number of blank barcode) x 100. FDR values were logio transformed to better show the
237  differences between panels. (g) Same as (f) but using negative control probes to replace blank
238  barcodes. MERSCOPE is missing in this bar plot as it does not have negative control probe by
239  design. (h) Bar plot of number of genes detected above noise, estimated as two standard deviations
240 above average of the negative control probes. (i) Same as (h) but normalized to the number of
241 genes in a panel. T denotes the MERSCOPE lung panel acquired with a 5 pm imaging thickness.
242

243  iST platforms are all concordant with orthogonal RNA-seq data sets

244 In the absence of ground truth, it is difficult to evaluate whether a higher number of
245  expressed genes is representative of increased sensitivity to real biology or increased false positive
246  rates. We thus evaluated the correlation of iST data to reference RNA-seq data. We first aggregated
247  pseudo-bulk normal tissue TMA results from all panels of the three platforms and compared them
248  to data from the TCGA program (see Methods) [!!l. We observed similar correlation coefficients
249  across all gene panels relative to pseudo-bulk RNA-seq expression data (Fig. 3a-b,
250  Supplementary Table 8). However, notably, the CosMx data showed a characteristic upswing in
251  the low expression regime, similar to that observed when plotting gene-by-gene expression against
252  MERSCOPE and Xenium (Fig. 2, Supplementary Fig. 2).

253 We also compared the pseudo-bulk results from the normal tissue TMA with bulk RNA-
254  seq data obtained from GTEx['?) The Xenium breast, Xenium multi-tissue, and CosMx data sets

255  showed similar correlations to breast data obtained from GTEx, while the MERSCOPE had
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256  significantly lower correlation, consistent with a run which doesn’t pass QC (Pearson’s r of 0.36
257  vs0.71, 0.68, and 0.69, respectively, Fig. 3¢). Similar trends were observed in the lung data, with
258 MERSCORPE lung (5 pm) showing the lowest correlation while the other three data sets showed
259  higher correlations to GTEx data (Fig. 3d). These relative trends remained true across most normal
260 tissue types, though we found that thyroid, pancreas, and lymph nodes showed the lowest
261  correlations across all panels while prostate, tonsil, and liver showed the highest correlations
262  (Supplementary Table 9). Overall, our comparison to TCGA and GTEx data suggests that while
263  some platforms may be more highly correlated to reference datasets in some cases, all are within
264  asimilar correlation regime regardless of tissue type.

265 We next wanted to determine how the expression of tissue-specific transcript markers
266  varied across each platform. To accomplish this, we curated tissue markers that are unique to each
267  tissue type by selecting genes whose expression in a single tissue exceeds 20 times the sum of
268  other tissues from the GTEx database (see Methods). We found tissue-specific expression patterns
269  of several of these markers across all selected panels when visualized across each healthy tissue
270  type (Fig. 3e). MERSCOPE consistently showed expression of tissue-specific markers in multiple
271  tissue types, consistent with unsuccessful normal TMA data acquisition. However, some canonical
272  markers were not enriched in certain tissues. For example, we found that ABCC11 was highly
273  expressed in the breast tissue in the Xenium and MERSCOPE datasets, but not in CosMx. In fact,
274  although CosMx showed satisfying expression patterns for some tissue markers, many canonical
275  markers are not enriched in the expected tissues, possibly due to the high false discovery rate (Fig.
276  3f-g). Across marker genes, Xenium data had a distinct expression pattern in all tissues, whereas

277  CosMx and MERSCOPE showed a less distinct pattern in many tissue types.
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278

279  Figure 3: Concordance of iST data with reference RNA-seq datasets. (a) Scatter plots of
280  overlapping genes, showing the averaged expression of a gene across breast cancer cores profiled
281 by the indicated panel, normalized to 100,000 vs the average FPKM from TCGA for all samples
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282  of a matched tissue type (BRCA). (b) Same as (a) but for lung cancer cores plotted vs averaged
283 LUAD and LUSC samples from TCGA. (¢) Same as (a) but showing breast cores vs averaged
284  nTPM values from GTEx breast samples. (d) Same as (a) but for lung cores and samples. | denotes
285  the MERSCOPE lung data acquired with a 5-um imaging depth on FFPE sample. { denotes the
286  normal tissue TMA data of MERSCOPE which failed initial QC. (e) Heatmap of Z-scored average
287  gene expression for several canonical marker genes in the indicated tissue cores for the Xenium
288  multi-tissue panel (left) and CosMx 1K panel (right).

289

290  Out of the box segmentation and filtration can yield cells with comparable numbers of
291  detected transcripts and genes from each platform.

292 Next, we compared the performance of each iST method on a single-cell level. The three
293  platforms generate cell boundaries based on a DAPI image alone (Xenium) or a DAPI image
294  combined with a membrane marker (CosMx and MERSCOPE). When we visually examined the
295  segmentation outputs, Xenium data showed cell boundaries that appeared to include large regions
296  of'non-cellular space, in contrast to MERSCOPE and CosMx which tightly followed the visualized
297  cell nucleus (Fig. 4a). When transcripts were overlaid with these segmentation boundaries,
298  Xenium cell boundaries fell between regions of transcripts and thus most transcripts were assigned
299  to cells. MERSCOPE and CosMXx’s tighter nuclei removed more transcripts, though those that
300 remain appeared more confidently assigned to cells. Overall, when normalized to the imaged tissue
301 area, Xenium and CosMx identified the most putative cells, followed by MERSCOPE (Fig. 4b,
302  Supplementary Table 6). In line with the visual inspection, Xenium cells were consistently larger,
303 regardless of data set or panel, followed by CosMx and finally MERSCOPE (Fig. 4c,
304  Supplementary Table 7).

305 We filtered out empty regions of space and cells without any transcripts for downstream
306  examination and quantified the fraction of cells containing differing numbers of transcripts per cell

307  (Fig. 4d). We chose a permissive threshold of removing cells with fewer than 10 transcripts for

308  Xenium and MERSCOPE, and 20 transcripts for CosMx from downstream analysis. [!!:24 23], The
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309 tumor TMA consistently had a greater fraction of cells passing filtration, with Xenium retaining
310  the most cells (97.43% breast, 97.10% multi-tissue, 95.08% lung) followed by CosMx (83.41%)
311 and MERSCOPE (68.46% breast (10 pm), 25.77% lung (5 pm) (Supplementary Table 3). The
312  normal tissue TMA had overall lower cell retention performance, but the relative performance of
313  the platforms based on the fractions of cells remained the same. Notably, while CosMx and
314  Xenium still retained > 77% of the cells, MERSCOPE data of the normal tissue TMA had <3% of
315  cells retained and was thus not used in downstream analysis. Unsurprisingly, filtration decreased
316  the number of retained cells per unit area for all platforms, with the smallest decrease coming for
317  CosMx. The cells retained from CosMx had similar areas, while filtration of the Xenium and
318  MERSCORPE data sets resulted in a higher average cell area (Fig. 4c¢).

319 After filtration, we compared the number of transcripts and the number of unique genes
320  per retained cell across all tissues and all panels, focusing only on cores that were sampled by all
321  three platforms (Fig. 4e-f). Xenium breast panel gave the highest numbers of transcripts per cell
322  in most tissue types, 17 out of 22. The CosMx data showed the highest numbers of transcripts in
323  heart, lymph node, spleen, thyroid, and tonsil; and comparable transcript counts in breast cancer,
324  ovary, and ovarian cancer to the Xenium breast panel. The MERSCOPE data generally had the
325  lowest number of transcripts per cell, though bladder cancer and breast cancer measured with the
326 MERSCOPE breast panels approached the results from Xenium, and the bladder cancer and skin
327  data sets had higher transcripts per cell than CosMx. As expected given its larger panel size,
328 CosMx found many unique genes per cell, showing the largest numbers in 9 tissue types: breast
329  cancer, colon, heart, lymph node, ovary, ovarian cancer, spleen, thyroid, and tonsil; while Xenium
330  breast panel found the most unique genes per cell in 12 tissue types: bladder cancer, bladder, breast,

331  CRC, HNSCC, kidney, lung, melanoma, NSCLC, pancreas, prostate, and skin (Fig. 4f). If these
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332  analyses were restricted to only the shared genes across all panels, numbers were much lower, but
333  Xenium showed higher expression levels and unique numbers of genes than either CosMx or
334 MERSCOPE (Supplementary Fig 3c-d).

335 We then wanted to determine how effectively different iST platforms’ segmentation
336  algorithms perform. We examined the co-expression of CD/9, a canonical B-cell marker, and
337 (CD3e, a canonical T-cell marker across all filtered cells; the co-expression of CD§ and CD4,
338  markers of T-cell subsets; and the co-expression of CD3e and EPCAM, a marker for epithelial
339  cancer cells 2% 271 All these marker gene pairs are disjointly expressed, and a well-performing
340  segmentation algorithm should yield few cells expressing both markers. We pooled all the filtered
341  cells from matched cores and all available panels of each platform and plotted the expression of
342  one gene against the other and converted the scatter plot to a heatmap to show cell fractions. We
343  found that Xenium—despite its less visually accurate cell boundaries—and MERSCOPE, showed
344  clear patterns of disjoint expression, separating cells from different lineages, while CosMx showed
345  such a pattern for EPCAM vs CD3e but not for the other two pairs (Fig. 4g). Given the low counts
346  of'the immune genes, it was difficult to determine if these were false positive calls or segmentation
347  errors. Nevertheless, since the CosMx panel is much higher plex, and retained similar numbers of
348  transcripts and genes to Xenium, we wondered how these two methods performed in terms of cell

349  type recovery.
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Figure 4: Comparison of cell segmentation results from each iST platform. (a) Top row: DAPI
image overlaid with cell segmentation boundaries (subset). Middle row: all the transcripts in green
dots, white lines for the cell boundaries, and EPCAM in blue dots. Bottom row: segmented cell
boundaries before and after filtration. (b) Violin plot of segmented cells per unit area before (left
half) and after filtration (right half) grouped by panel with tumor and normal TMA data combined.
(c) Same as (b) but showing cell areas before and after filtration. (d) Line plot showing remaining
cells in percentage after filtering with various thresholds (transcripts per cell). Dotted lines indicate
selected thresholds: 10 transcripts or above for Xenium and MERSCOPE and 20 for CosMx. (e)
Heatmap of transcripts per cell after filtration. All available genes are considered here for each
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360 panel. MERSCOPE lung panel (5 um) excluded from this heatmap. (f) Same as (e) but showing
361  unique genes per cell. (g) Co-expression density map for three pairs of disjoint genes (rows) from
362  all three platforms (columns). All cells across all tissues which include at least one detected
363 transcript of either of the indicated genes are plotted together, with color indicating the number of
364  cells at the indicated expression levels of each gene.

365

366

367  Clustering analyses reveal differences in cell type recovery across platforms

368 In a typical iST workflow, a key step is reducing the dimensionality of the data by
369 identifying cell types, their unique states, and their expression patterns for further analysis
370 leveraging spatial information!?®!. To compare across platforms, we clustered the data from the
371 filtered cells from all the cores for each TMA with a focus on breast tissues. The initial clustering
372  of TMAs from datasets (except MERSCOPE normal tissue) showed expected batch effects caused
373 by patients and tissue types with broadly similar cluster arrangements around morphological tissue
374  features (Supplementary Fig. 4a-d). We removed batch effects (see Methods) and then
375  performed targeted clustering and cell type annotation for breast samples from the CosMx and
376  Xenium breast datasets; lung samples from the CosMx and Xenium lung datasets; and breast
377  cancer from the CosMx, MERSCOPE breast, and Xenium breast datasets.

378 In breast samples, we were able to identify nine cell types, including all known major cell
379  types, (adipocytes, alveolar cells, B cells, basal cells, fibroblast cells, hormone-sensing cells,
380 myeloid, T cells, vascular & lymphatic cells) from the Xenium data, using previously established
381  markers (Fig. 5a, Supplementary Fig. 5) (293931 Tn the CosMx data, we were only able to identify
382  six cell types, including several major cell types, but failed to recognize cell subtypes (B cells,
383  basal cells, fibroblast, hormone-sensing cells, immune cells, and vascular & lymphatic cells) (Fig.

384  5a, Supplementary Fig. 5). A high gene-to-gene correlation was found between all overlapping

385 cell types between Xenium and CosMx (Fig. 5a). Similarly, in the lung samples, we were able to
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386 identify nine cell types (alveolar epithelial type 1 cell, alveolar epithelial type 2 cell, endothelial
387  capillary cells, endothelial cells, fibroblasts, immune cells, macrophages, mast cells, and stroma
388 cells) in the Xenium lung panel, successfully covering all known major cell types (Fig. 5b,
389  Supplementary Fig. 5) 32331, Four of the six major clusters were identified and annotated in the
390 lung samples from the CosMx data (endothelial cells, epithelial cells, immune cells, and
391  macrophages), while the other two clusters remained difficult to annotate due to the non-traditional
392  enriched gene markers (Fig. Sb, Supplementary Fig. 5). Correlation heatmaps show a strong
393  correlation between the two macrophage clusters identified in Xenium and CosMx (Fig. Sb). The
394  epithelial cell cluster from CosMx correlates strongly with alveolar epithelial type 1 cell from
395 Xenium and the endothelial cell cluster from CosMx correlates with endothelial capillary cell
396  cluster from Xenium (Fig. 5b).

397 Finally, in breast cancer, after batch effect removal (Supplementary Fig. 5d-f), Xenium
398 resulted in nine cell types (alveolar cells, B cells, basal cells, fibroblast, hormone-sensing cells,
399  immune cells, myeloid, T cells, and vascular & lymphatic cells) (Fig. 5¢, Supplementary Fig. 5)
400  B43336) On the other hand, CosMXx resulted in eight cell types (alveolar cells, basal cells, epithelial
401  cells, fibroblast cells, hormone-sensing cells, immune cells, myeloid, and vascular & lymphatic
402  cells). MERSCOPE resulted in six cell types, including alveolar cells, fibroblast cells, hormone-
403  sensing cells, myeloid cells, T cells, and vascular & lymphatic cells. The cell type annotation of
404  Xenium and CosMx is comparable in terms of both transcriptomic profile and subtype depth, with
405  CosMx only unable to annotate immune cell subtypes (B cell and T cell). Gene expression of the
406  same cell type from both platforms correlated well (Fig. S¢, Supplementary S). The cell type
407  annotation of CosMx, however, was especially difficult compared to Xenium because of its

408  atypical gene markers shown for each cluster in the heatmaps (Supplementary Fig. 5) and low
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409  expression of transcripts from canonical markers (Supplementary Fig. Sg-h). MERSCOPE, on
410  the other hand, identified most, but not all, the cell types recognized by Xenium and CosMx,
411  including alveolar cells, fibroblast cells, hormone-sensing cells, myeloid, T cells, and vascular &
412  lymphatic cells. MERSCOPE and Xenium showed a high correlation for almost all matching
413  clusters. The correlation map shows a clearer one-to-one mapping between MERSCOPE and

414  Xenium clusters than Xenium and CosMx clusters.
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Figure 5: Cell type recovery performance across technology. (a) Clustering results of breast
samples in normal TMA from Xenium breast (bottom left) and CosMx multi-tissue 1k (top).
Correlation plot showing the correlation between cell types identified (bottom right). (b)
Clustering results of lung samples in normal TMA from Xenium lung (bottom left) and CosMx
multi-tissue 1k (top). Correlation plot showing the correlation between cell types identified
(bottom right). (¢) Clustering results of breast cancer samples in tumor TMA from Xenium breast
(bottom left), MERFISH (bottom right) and CosMx multi-tissue 1k (top). Correlation plot showing
the correlation between cell types identified in CosMx and Xenium (left), MERFISH and Xenium

(right).
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427  DISCUSSION

428 In this study, we compared data obtained with three commercially available iST platforms
429  with archival FFPE tissues to assess overall technical performance and help guide experimental
430  design with human samples that represent an important use case of these platforms. We focused
431  our analyses on technical performance as a function of tissue type, including 7 different tumor
432  types and 16 normal tissue types. Overall, we found that each iST platform presented various
433  tradeoffs in terms of implementation, panel design and panel options, and resulting total transcript
434  quantification and downstream analyses, including cell segmentation, cell quality, and biological
435 interpretation. All these factors must be considered when designing iST experiments.

436 There are significant workflow differences between the different platforms which factor
437  into the choice of method. Cutting samples onto MERSCOPE coverslip is more difficult than on
438  standard microscope slides. The total hands-on time for running a slide on Xenium is 2-3 days
439  compared to 5-7 days for MERSCOPE and 2 days on CosMx. We found that MERSCOPE and
440  CosMx are well set up for batch processing in the wet lab, either due to built-in pause points or the
441  instrument’s ability to run multiple samples. Xenium is limited for batch processing by a need for
442  a separate thermocycler for each slide pair processed in parallel. After staining, selecting regions
443  of interest (ROIs) presented a surprising challenge for some systems: the Xenium platform could
444  readily image the entire slide as a single ROI which easily covered entire TMAs, but the
445  MERSCOPE ran into a 1¢m? imaging area limit which meant cores in the addressable region were
446  left unimaged, while the CosMx workflow required a demanding manual selection of ROIs for
447  each core. These factors are likely to change as each company updates its protocol, but currently,

448  Xenium offers the shortest and least hands-on workflow.
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449 From a technical perspective, we analyzed each resulting dataset with a combination of
450  manufacturer recommended processes for each platform and computational tools that can be
451  implemented by the user downstream. These pipelines each result in count matrices and detected
452  transcripts that can be analyzed using a whole suite of emerging tools. For our purposes, when
453  analyzed at a core level to abrogate the effects of individual cell-segmentation performance, we
454  found that the total number of transcripts varied substantially across iST platform, with Xenium
455  vyielding the highest number of transcripts captured followed by CosMx. Indeed, this trend held
456  when normalized for the number of cores imaged and on a per cell basis per area. When this
457  analysis was also restricted to shared genes, we also found that Xenium consistently had higher
458  expression levels across each tissue type, with no clear differences between performance on either
459  tumor or normal tissue.

460 Using a pseudo-bulk approach, again at the core level, we assessed overall correlation,
461  reproducibility, and sensitivity of each platform. We found high correlation between replicates of
462  the same patient, suggesting that there is high reproducibility across technical replicates on each
463  platform. This is important to consider since cost or input material availability can be prohibitive
464  to implementing experimental designs that leverage technical replicates—though additional tissue
465 may still be valuable for powering cell-cell interaction analysis. We additionally found high
466  correlation on a gene-by-gene basis between MERSCOPE and Xenium platforms. Xenium and
467 MERSCOPE also showed consistently high specificity across tissue types. CosMx displayed a
468  characteristic upward curve when compared to MERSCOPE or Xenium on a gene-by-gene basis,
469 indicating more frequent calls in the lower expression regime. This, coupled with the lower
470  specificity across several tissues for CosMx and the high false discovery rate, suggest that CosMx

471  is prone to errors in calling lowly expressed genes. Finally, Xenium had the highest sensitivity
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472  across tissues. CosMx and MERSCOPE both detected fewer transcripts than Xenium.
473  MERSCOPE outperformed CosMx in the higher quality (as judged by relative performance across
474  all platforms) tumor TMA but underperformed it in lower quality normal tissue TMA. In general,
475  our analyses also suggest similar performance within a given platform across a vast array of tissue
476  types assayed here. We note that given the small number of replicates from each tissue, particularly
477  inthe normal tissue, we stop short of making blanket statements about relative performance across
478  a particular tissue type. The data suggests, instead, that Xenium and MERSCOPE provide more
479  reliable true-positive signals of lowly expressed genes and that Xenium’s overall performance is
480 less dependent on sample input quality than the other two platforms. MERSCOPE, especially,
481  appears to be particularly sensitive to sample input, highlighting the importance of prescreening
482  RNA integrity according to manufacturer instructions.

483 When we compared each dataset to existing RNA-seq datasets, we found comparable
484  correlation of pseudo-bulk data to RNA-seq data from GTEx or the TCGA across each panel and
485  platform. However, the presence of a characteristic upswing for CosMx, even when comparing to
486  orthogonal data, further shows that there is a higher false positive rate for lower expression level
487  genes in CosMx data. This upswing could be explained by the absence of probing genes in a
488  particular tissue in a larger panel. However, the Xenium multi tissue panel also includes genes not
489  expressed in breast and lung but does not show a similar upswing. Thus, a more likely
490 interpretation is that the CosMx is prone to a high FDR at the low expression regime. This could
491  also suggest that the CosMx transcript counts and detected gene numbers may be slightly inflated
492 by false discoveries.

493 From a tissue-specific expression perspective, Xenium showed a distinct expression

494  pattern of key tissue-markers, whereas CosMx and MERSCOPE did not. Additionally,
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495 MERSCOPE and CosMx consistently showed expression of known tissue markers in unexpected
496 tissue types. This could be partly explained by an overall low performance on this particular normal
497  tissue TMA for MERSCOPE due to RNA quality. This performance difference could be
498  problematic for studies that are designed to compare tissue-specific factors. For studies whose
499  main biological variable of interest are within the same tissue, factors like sensitivity, specificity,
500 and panel availability may be a more important guide for iST experimental design.

501 A significant advantage of spatial transcriptomics data is the ability to map expression in
502  single cells. We compared each platform on a cell-level basis by assessing cell identification and
503  cell clustering. Overall, it appears that the out of the box segmentation from Xenium performs
504  poorly in terms of drawing cell boundaries specific to a single cell, while MERSCOPE and Xenium
505  much more closely match cell boundaries. This did not appear to differ on a tissue-by-tissue basis,
506 thus, is likely inherent to the overall approach used by each platform. After applying an expression
507 level filter, Xenium overall retained the highest number of cells across various filtering
508  stringencies. Despite Xenium’s cell boundaries not clearly matching nuclei, both it and
509 MERSCOPE were able to effectively separate cells from different lineage markers, as judged by
510 finding minimal coexpression of disjoint markers, while CosMx showed more double positive
511  cells (out of, it should be noted, fewer cells expressing the target genes overall).

512 To determine whether clearer identification of lineage markers resulted in improved ability
513  to identify cell types, we performed clustering analyses specifically in the breast tissue and breast
514  cancer samples. We note that we used the full panel, not only the shared genes, when performing
515 these clustering analyses. Xenium allowed for identification of all major cell lineages in the breast
516  when compared to several reference breast atlases. Both the global and tissue clustering results

517  show that CosMx is also able to recognize the major cell types, but cannot identify cell subtypes.
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518  Additionally, since the cluster-enriched genes do not correspond to well-known markers, probably
519  due to the low expression caused by low sensitivity and specificity, cell type annotation was
520 particularly difficult. Lastly, despite lower transcript counts and fewer cells, MERFISH still
521  successfully identified cell groups, capturing the patterns seen in other platforms. These
522  differences in cell typing, can also be attributed to the differential performance of cell segmentation

373839401 Since all platforms provide the underlying DAPI stain and morphology images

523  pipelines!
524  (in the case of CosMx and MERSCOPE) it is likely that segmentation performance could be
525  improved on a sample-by-sample or tissue-type-by tissue-type basis. Future work should seek to
526  assess cell segmentation tools and their performance across data from each platform to help inform
527  the choice of analytical method where needed.

528 Plex is an important factor in ST experiments which we have not explicitly considered. The
529  kinds of questions that may be answered by a 1,000-plex panel are clearly different than those
530 answered by a 300-plex panel, offering more opportunities to explore intra- and intercellular
531  signaling interactions. Thus, we note that for the right question, the higher false positive rates and
532  lower sensitivities of CosMx relative to Xenium could be tolerated for a broader coverage of the
533  Dbiology. On the other hand, the fully configurable nature of Xenium and MERSCOPE panels could
534  be better suited for branches of biology not well sampled by the 1,000 plex CosMx panel. We
535 recommend subsampling existing atlas data to determine whether the gene set which can be studied
536  will be sufficient to cluster the cell types of interest and identify the necessary biological programs.
537  We note that each of the manufacturers has publicly stated plans to grow their product offerings
538  to increasing panel sizes.

539 There are several limitations of our study. While we attempted to match time post slicing,

540  the unintentional acquisition of MERSCOPE tissues at thinner thicknesses meant that the rerun
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541  MERSCORPE data had a longer time on slide than other panels. However, the fact that the increase
542  in counts in the rerun matched the increase in imaging volume, and the fact that Xenium runs
543  showed stable expression levels over time suggests that this contribution was minimal.
544  Additionally, our panel design for MERSCOPE required removal of genes so the panel was
545  compatible with all tissues, lowering the plexity slightly. This could have compromised
546 MERSCOPE’s ability to identify cell types relative to Xenium.

547 Most importantly, we only attempted to compare the performance of iST platforms under
548  typical use cases for clinical samples obtained from archival biobanks. Our results don’t
549  necessarily extend to non-human samples, frozen samples, and even FFPE samples which have
550 been extensively validated for high RNA integrity. Indeed, there have been reports that
551  MERSCOPE, in previous studies of the mouse brain, shows comparable or even superior results
552  to those reported by 10X Xenium[*!, Given the large change in data quality between the normal
553  and tumor TMA, we cannot exclude the possibility that in the highest quality samples MERSCOPE
554  would provide higher transcript numbers, with the associated downstream benefits relative to
555  Xenium and CosMx. However, the current guidance of DV200 > 0.6 restricts studies to the upper
556  regime sample quality and limits archival investigations.

557 Despite these limitations, our overall interpretation of these results is that amplification of
558  RNA signal is especially important for recovery of transcript counts by iST in low-quality samples
559  where RNA may be highly degraded and fewer landing sites are available for probes. Platforms
560 (such as Xenium) which rely on small numbers of landing sites and are subsequently heavily
561  amplified are robust to RNA degradation and are thus more broadly compatible with a broad range

562  of samples. On the other hand, when sample quality is high (as in some of our tumor samples) the
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gap between amplified and unamplified platforms’ performance closes and most platforms can

yield useful data for subsequent downstream spatial analysis.

Methods

Sample choice and TMA construction

Two TMAs were constructed using FFPE clinical discards at Brigham and Women’s
Hospital Pathology Core and were acquired with a waiver of consent for non-sequencing based
readouts under IRB 2014 P 001721. The samples included:

1. A tumor TMA of 170 cores, 0.6 mm in diameter, including a variety of cancer samples
and healthy lymphoid tissue as a positive staining control. The TMA samples were
selected from samples previously characterized by ImmunoProfile and were selected
to encompass both high and low levels of the biomarkers in the ImmunoProfile panel
[CD8, PD-1, PD-LI, Foxp3, tumor marker (Cytokeratin, SoxI10, or PAXS)].
Annotations were performed by KF and SR based on H&E and immunofluorescence
staining. Cores included both tumor and healthy control annotation, though for the
purpose of this study, all were combined under their tumor label. Tumors were also
chosen to be a mixture of PD-LI high and PD-LI low, a parameter to be analyzed at a
future date. This TMA had previously been studied by both H&E, and several highly
multiplexed immunostaining approaches, and was known to be of high morphological
integrity.

2. A normal TMA of 45 cores 1.2 mm in diameter representing a broad range of normal

tissues. Samples were sourced from the same patient in either duplicate or triplicate.
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584 This TMA was chosen for the breadth of tissue lineages included and the relatively
585 large core size.

586  All samples were fully de-identified before assembly into TMAs. The breakdown of the number
587  of samples per tissue and the number of cores per tissue is included in Supplementary Table 1-
588 2.

589  Preparation of sequential sections

590 Sequential sections were prepared according to manufacturer instructions (“Tissue
591  Preparation Guide Demonstrated Protocol CG000578” for Xenium, “91600112 MERSCOPE User
592  Guide Formalin-Fixed Paraffin-Embedded Tissue Sample Preparation RevB” for Vizgen, and
593  “MAN-10159-01CosMx SMI Manual Slide Preparation Manual” for CosMx) at the Brigham and
594  Women’s Hospital Pathology Core. Prior to collecting samples, ~50 um of each TMA were faced
595  off to reach deeper into the sample where RNA integrity was likely higher. 5 pm sequential
596  sections were then collected, floated in a 37°C water bath, and adhered to Xenium slides (10X, PN
597  1000460), Vizgen FFPE coverslips (Vizgen, PN 10500102), or standard Superfrost+ slides for
598  CosMx (Leica BOND PLUS slides, Leica Biosystems S21.2113.A). TMAs were sliced as close to
599 the center of the active area as possible for each platform. Samples were baked at 42°C for 3 hours
600 for Xenium, 55 °C for 15 minutes for MERSCOPE, and 60°C for 16 hours for CosMx. Sections
601  were stored according to manufacturer instructions prior to processing, with 10X Xenium stored
602  inadesicator at room temperature, Vizgen MERSCOPE coverslips stored at -20°C, and Nanostring
603  CosMx slides stored at 4°C. Samples for 10X Xenium and Vizgen MERSCOPE were brought to
604 the Spatial Technology Platform at the Broad Institute for processing, while samples for
605 Nanostring CosMx were processed at the Wei lab at Brigham and Women’s Hospital.

606
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607  Vizgen MERSCOPE probe selection

608 Pre-designed probe panels from Vizgen were not available at the time of the experiment.
609  Therefore, we ordered custom gene panels to match the pre-released gene panels from 10X for the
610  human breast and human lung panels. Gene lists were uploaded to the Vizgen panel design portal
611  and were checked against all profiled tissues, removing genes that were overexpressed in any
612  individual tissue based on Vizgen’s design guidelines (FPKM > 900), and ensuring that the total
613 panel FPKM did not exceed the allowed limit in any individual sample type. Panels were
614  manufactured at the 300 gene scale as custom panels BP0892 and BP0893. The final gene lists, for
615  all three iST modalities are available in Supplementary Table 3.

616

617 Vizgen MERSCOPE data acquisition

618 MERSCOPE samples were imaged according to manufacturer protocol “9160001
619  MERSCOPE Instrument User Guide RevF”. Samples were processed in two batches, the first of
620  four samples, two of each TMA and with each library prepped in parallel; and a follow up sample
621  of each TMA re-run with the breast panel. Samples were first hybridized with anchoring probes
622  overnight before being embedded in a polyacrylamide gel. Samples were incubated for two hours
623  with a digestion solution at 37°C and then overnight at 47°C overnight in a detergent clearing
624  solution and proteinase K to remove native proteins while the anchoring probes kept nucleic acids
625 bound to the gel. After clearing, samples were additionally photobleached using Vizgen’s
626 MERSCOPE Photobleacher for three hours at room temperature in the clearing solution. Samples
627  were hybridized with encoding probes and a cell boundary stain (PN 10400118) and then imaged
628  with imaging kits (PN 10400005). Samples were stored at 37°C in clearing solution after

629  hybridization and before final imaging. After an initial examination of the data, a second batch of
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630  both TMAs was run a second time with the human breast panel, increasing the set imaging capture
631  thickness from 5 um to 10 um to capture more tissue from cores that had lifted during the gel
632 embedding process. Data was processed on premises through the standard Vizgen workflow to
633  generate cell by gene and transcript by location matrices. We segmented the data with a built-in
634  Cellpose method on the most accurate looking cell boundary stain.

635

636 10X Xenium data acquisition

637 10X Xenium samples were processed in three batches according to manufacturer protocols
638  “Probe Hybridization, Ligation & Amplification, User Guide CG0000582” and “Decoding &
639 Imaging, User Guide CG000584”. Samples were stained utilizing 10X’s predesigned Human
640  Breast (10X, PN 1000463), Human Multi-Tissue and Cancer (10X, PN 1000626), and Human
641  Lung panels (10X, PN 1000601), as they became available from the manufacturer. Slides for both
642 TMAs were processed in pairs according to which probe library they were receiving. Slides were
643  stained with a Xenium imaging kit according to manufacturer instructions (10X, PN 1000460).
644  Briefly, padlock probes were incubated overnight before rolling circle amplification and native
645  protein autofluorescence was reduced with a chemical autofluorescence quencher. Slides were
646  processed on a 10 Xenium Analyzer, with ROIs selected to cover the entire TMA region. Data was
647  processed on premises through the standard 10X workflow to generate cell by gene and transcript
648 by location matrices.

649

650 Nanostring CosMx

651 Nanostring CosMx samples were prepared with one 1000 plex panel. Samples were

652  hybridized with probes and stained with cell markers. Samples were loaded onto the CosMx SMI
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653  at the same time for imaging, during which branched fluorescent probes were hybridized onto the
654  samples to amplify the signal above the background.

655 Nanostring CosMx samples were prepared with Human Universal Cell Characterization
656 1000 Plex Panel (part number 122000157) according to manufacturer protocol “MAN-10159-01
657  CosMx SMI Manual Slide Preparation Manual”. Firstly, slides were baked at 60°C overnight for
658  better tissue adherence. After baking, slides were treated sequentially with deparaffinization, target
659 retrieval (15 min at 100°C), permeabilization (3ug/mL proteinase K, 15 min at 40°C), fiducials
660 application, post-fixation, NHS-acetate application and then hybridized with denatured probes
661  from universal panel and default add-on panel. After in sifu hybridization (18 hours at 37°C), slides
662  were washed and incubated with DAPI (15 min at RT) and marker stain mix (with PanCK, CD435,
663 CD68 and cell segmentation marker CD298/B2M). Slides were washed and loaded onto the
664 CosMx SMI for UV bleaching, imaging, cycling and scanning. Raw images were decoded by
665  default pipeline on Atomx SIP (cloud-based service). Machine: CosMx_0020. Serial Number:

666 INS2301H0020

667  Data preprocessing

668 After data acquisition, the resulting outputs were uploaded to a Google bucket associated
669  with a terra.bio Workspace for distribution and follow on analysis.

670 To facilitate standardized data formatting and subsequent analytical processes, we built a
671  data ingestion pipeline with the following objectives: a) to grab cell-level and transcript-level
672  data from diverse platforms and normalize the data structure; b) to tag each cell and transcript
673  with essential metadata including tissue type, tumor status, PD-L/ status, among others

674  (Supplementary Fig. 6); and c) to transform the data into various formats tailored to the

675 requirements of particularized analyses. Specifically, to tag the data, core centers in the TMA
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676  were manually identified using DAPI images (Xenium) or cell metadata that contains global

677  coordinates (MERSCOPE and CosMx) using QGIS(version:3.16.10-Hannover). Cells or

678 transcripts within a specified radius were then labeled with core metadata via spatial joining

679  (implemented by GeoPandas, version:0.13.0). In instances where cores are in close proximity or
680  when a uniform radius cannot be applied effectively, we manually generated the core boundary
681  masks.

682

683  Reproducibility

684 To evaluate panel to panel reproducibility we summed the expression level of shared

685  genes between indicated panels (breast vs. multi-tissue and breast vs. lung panels from Xenium
686  and breast vs. lung panels from MERCOPE) over an individual core and plotted all cores present
687  in each panel, before calculating a Pearson’s correlation. The format of the data used is shown in
688  Supplementary Table 10. To evaluate core to core reproducibility, the individual gene counts of

689  core 1 were plotted against those of core 2 and a Pearson’s r correlation was calculated.
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690  On target rates and false-discovery measurements

691 To compare across panels and platforms, we subset all datasets to include only cores

692  assayed in all runs. The fraction of on-target barcodes was calculated as a percentage of all

693 transcripts corresponding to genes relative to the total number of calls (including negative

694  control probes and unused barcodes or blank barcodes). These measurements were performed on
695 individual cores and averaged across all cores of the same tissue type.

696 Because the difference in relative numbers of controls and target barcodes across

697 different platforms, we adopted the false discovery rate (FDR) calculation to evaluate the

698  specificity in a more normalized way (Fig. 2f-g). We calculated the FDR of platform p panel m
699  data in tissue ¢ using the following equation and cell level data (see example in Supplementary

700  Table 11):

e Ly
X-%X%], n={1,..,N
Yigin tXjnegin | ¢ J

701 FDR(negative control probes)}, ,, = mean(
702  Where N is the total number of cores that belong to tissue type ¢, [ is the total number of unique
703  genes, J is the total number of negative control probes, g;, is the gene expression of gene i in
704  core n, negjy is the total calls negative control probe j in core.

705 Since MERSCOPE does not include negative control probes, FDR was recalculated by

706  substituting negative control with blank barcodes (Fig. 2f) using the following equation:

707 FDR(blank barcodes)}, ,, =

< ¥, blank,, y I y (y) L)
mean -X%], n={1,..,
Zigin + Zl blankln L

708  Where N is the total number of cores that belong to tissue type ¢, [ is the total number of unique
709  genes, L is the total number of unused barcodes or blank barcodes, g;, is the gene expression of
710  gene i in core n, blank,, is the total calls of unused barcode or blank barcode / in core #,

711 specifically, we used BLANK for Xenium data, Blank for MERSCOPE data, and SystemControl
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for CosMx data. We only used the data from matched cores, so N is same for different platform

p-

Sensitivity comparison
Sensitivity was measured by the percentage of the total number of unique genes detected
above noise level, where the noise was estimated as two standard deviation above average

expression of the negative control probes.

Orthogonal RNA-Seq concordance analysis

RNA TCGA cancer sample gene data summarizes 7,932 samples from 17 different cancer
types, and it provides FPKM for each gene documented. We used all samples which were
annotated as BRCA (Breast cancer), BLCA (Bladder cancer), COAD and READ (colorectal
cancer), HNSC (head and neck squamous cell carcinoma), LUAD and LUSC (non-small cell lung
cancer), SKCM (melanoma), and OV (ovarian cancer). For GTEx, we selected the tissue types
matching the annotation in our normal tissue TMA. For each panel, the genes probed by iST were
averaged across all patients with the matching tissue label from the RNA-seq database.
To get pseudo-bulked iST values, the expression level of each gene in each core was normalized
to the sum of all genes in that core and scaled by 100,000. We then averaged these scaled pseudo-
bulk expression values across cores and plotted them against the averaged FPKMs from reference

RNA-seq data sets.

Tissue marker enrichment analysis
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734 To determine the assay’s ability to specifically identify known lineage markers, we focused
735  onthe normal tissue TMA profiled with multi-tissue panel of Xenium, breast panel of MERSCOPE,
736  and 1K panel of CosMx. We selected genes with known canonical expression patterns using based
737  on transcriptomics data from GTEx. If a gene had 20-fold higher expression in a specific tissue
738  than every other tissue combined, this gene was considered to be a tissue marker and was used for
739  assessing specificity for each platform. Counts for each gene were normalized to the total counts
740  within the core, and then the Z-score of this gene across tissue types was plotted in a heatmap Fig.
741 3e. We calculated average expression of a gene across cores of the same tissue type and normalized
742 to the total averaged expression of all genes. Z-scores were calculated with the mean and standard
743  deviation across all averaged genes.

744

745  Evaluation of cell segmentation performance

746 In the absence of ground truth data, we conducted a comparative analysis of cell counts,
747  cell areas, coexpression across various platforms and panels, utilizing the segmentation results
748  supplied by each respective company. To facilitate comparison, cell counts were normalized to a
749  consistent area of 1000 um?. Both cell count and cell area were then delineated at two distinct
750 levels of detail: a consolidated assessment encompassing all tissue types (see Fig. 4b-c¢), as well
751  as asegregated evaluation by individual tissue types (refer to Supplementary Table 6-7). To
752  evaluate the biological performance of the segmentation, we plotted coexpression plots of gene
753  pairs that are mutually exclusive including CD3e vs. CD19, CD4 vs. CDS, and CD3e vs.

754  EPCAM. We pooled all the filtered cells from matched cores and all available panels of each

755  platform, dropped cells which do not express either gene, plotted the expression of one gene
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756  against the other, and converted the scatter plot to a 2D histogram showing cell numbers in each
757  co-expression bin (Fig. 4g).

758

759  Cells per area quantification

760 Segmented cells were aggregated by TMA cores. For Xenium and MERSCOPE data, the
761  estimation of tissue area was performed by calculating the area of a discernible circle, utilizing
762 respective radius of 0.3 um and 0.6 um for tumor and normal TMA samples. Conversely, for the
763  CosMx dataset, the tissue area estimation was approached differently due to its square-like data
764  presentation, a result of the FOV selection process. Here, the tissue area was deduced by

765  multiplying the number of FOVs covered by each core with the area of a single FOV.

766  Clustering

767 For cell filtering, cells with less than 10 transcript counts in MERFISH and Xenium
768  datasets were removed, and cells with less than 20 transcript counts in CosMx datasets were
769  removed. We followed standard processes to then cluster and annotate cell types across each
770  dataset using Scanpy!*!. Briefly, data was normalized and scaled, dimensionality reduction was
771 performed and cell clusters were identified!** *4. To identify the cell type for each cluster, we used
772  a t-test to find the markers for each Leiden cluster and annotated them according to previous
773  literature!?®-3¢], These are some of the example markers used for cell type annotation: in breast
774  samples, PIGR and KIT for alveolar cells, for B cells, KRT5, DST, and MYLK for basal cells,
775 LUM, MMP2 and CXCL12 for fibroblast, etc. Heatmaps of the top 3 markers for each cluster are
776  drawn for each dataset from all three panels (refer to Supplementary Figure Sa-c). For datasets

777  that showed batch effect with patients, Harmony was used to remove this variance!*’l. Correlation


https://doi.org/10.1101/2023.12.07.570603
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570603; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

778  heatmaps were generated over overlapping genes that exist in both datasets, and the Pearson
779  correlation coefficient was calculated.
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Supplementary Figure 1: Reproducibility across different panels and cores from same patient.

(a) Scatter plots of cumulative gene expression levels (natural log transformed) of shared genes between two
panels within each platforms, captured from matched tissue cores. Column 1: Xenium breast vs. Xenium lung;
Column 2: Xenium breast vs. Xenium multi-tissue; Column 3: MERSCOPE breast round 1(5 um) vs.
MERSCOPE breast round 2(10 pm). Each data point corresponds to a TMA core. (b) Scatter plots of gene
expression levels (natural log transformed) of every shared gene between two cores of the same tissue type
from the same patient. In this example, cores are from breast cancer tissue. Each data point corresponds to a
gene. (¢) Heatmap of correlation coefficient expressed as Pearson’s r values, indicating good core-to-core or
sample-to-sample reproducibility. Core pairs are selected from same tissue/tumor type from the same patients.
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Supplementary Figure 2: Gene by gene plots of iST results by panel and by tissue microarray.

(a) Scatter plots of summed gene expression levels (natural log transformed) of every shared gene between
Xenium (breast/lung) and CosMx (1k) data, captured from matched normal tissue TMA cores. Each data point
corresponds to a gene. (b) Same as (a) but between MERSCOPE (breast/lung) and CosMx(1k). (¢) Same as
(a) but between Xenium(breast/lung) and MERSCOPE(breast/lung). (d) Same as (a) but between
Xenium(multi-tissue) and CosMx(1k). 1 denotes the MERSCOPE lung panel acquired with a 5 um imaging
thickness.
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Supplementary Figure 3: Tissue marker analyses and cell level measurements.
(a) Heatmap of Z-scored gene expression showing CosMx’s ability to specifically identify known lineage
markers. We focused on the normal tissue TMA profiled with multi-tissue panel and selected genes with
canonical expression patterns for this analysis. (b) Same as (a) but for MERSCOPE (breast panel). (c)
Heatmap of transcripts per cell after filtration. Only shared genes (40) are considered here for each panel.
(d) Same as (c) but showing unique transcripts from the same gene set.
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Supplementary Fig: 4 Global clustering analyses

(a) Global Clustering results of tumor TMA from Xenium breast
panel (top), Xenium lung panel (middle), and Xenium panhuman
panel (bottom). (b) Global Clustering results of tumor TMA from
MERFISH breast panel (top), MERSCOPE lung panel (middle),
and CosMx multitissue panel (bottom).
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Supplementary Fig: 4 Global clustering analyses
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(c¢) Global Clustering results of normal TMA from Xenium breast panel (top), Xenium lung panel (middle), and
Xenium panhuman panel (bottom). (d) Global Clustering results of normal TMA from MERSCOPE breast panel
(top), MERSCOPE lung panel (middle), and CosMx multitissue panel (bottom).
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Supplementary Fig: 5. Cell type recovery and UMAPs
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(a) Heatmap showing the top gene markers for cell types annotated in breast samples of normal TMA from Xenium
breast (left) and Cosmx multitissue (right). (b) Heatmap showing the top gene markers for cell types annotated in lung
samples of normal TMA from Xenium lung (left) and Cosmx multitissue (right). (¢) Heatmap showing the top gene
markers for cell types annotated in breast cancer samples of tumor TMA from Xenium breast (left), Cosmx multitissue

(middle), NERSCOPE breast (right).
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Supplementary Fig: 5. Cell type recovery and UMAPs

(d) UMAP of breast cancer samples of tumor TMA from Xenium breast panel pre (left) and post (right) batch effect
removal. (¢) UMAP of breast cancer samples of tumor TMA from Cosmx multitissue panel pre (left) and post (right)
batch effect removal. (f) UMAP of breast cancer samples of tumor TMA from MERFISH breast panel pre (left) and
post (right) batch effect removal
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Supplementary Fig: 5. Cell type recovery and UMAPs

(g) UMAP plot of well-known gene markers for BrC, in breast cancer samples of tumor TMA from CosMx
multitissue panel. (h) UMAP plot of well-known gene markers for BrC, in breast cancer samples of tumor TMA
from Xenium multitissue panel.
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Supplementary Figure 6: Workflow for tagging imaging spatial transcriptomics data

(a) To facilitate standardized data formatting and subsequent analytical processes, we built this data ingestion
pipeline with the following objectives: 1) to grab cell-level and transcript-level data from diverse platforms and
normalize the data structure; 2) to tag each cell and transcript with essential metadata including tissue type, tumor
status, PD-L1 status, among others; and 3) to transform the data into various formats tailored to the requirements
of particularized analyses. Specifically, to tag the data, core centers in the TMA were pinpointed using DAPI
images (Xenium) or cell metadata that contains global coordinates (MERSCOPE and CosMx) using
QGIS(version:3.16.10-Hannover). Cells or transcripts within a specified radius were then labeled with core
metadata via spatial joining (implemented by GeoPandas, version:0.13.0). In instances where the cores are in
close proximity or when a uniform radius cannot be applied effectively, we manually generated the core boundary
masks.
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