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Abstract 

Human craniofacial shape is highly variable yet highly heritable with genetic variants interacting through 

multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the 

extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-

informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial 

variation in the normal population. We compared three-dimensional facial scans from 43 individuals 

with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores. Multivariate GWAS 

of the control scores revealed a polygenic basis for normal facial variation along an achondroplasia-

specific shape axis, identifying genes primarily involved in skeletal development. Jointly modeling these 

genes in two independent control samples showed craniofacial effects approximating the characteristic 

achondroplasia phenotype. These findings suggest that both complex and Mendelian genetic variation 

act on the same developmentally determined axes of facial variation, providing new insights into the 

genetic intersection of complex traits and Mendelian disorders. 

Keywords: Craniofacial Variation, Developmental Constraints, Complex Traits, Mendelian Disease, 

Achondroplasia, Genome-Wide Association Study  
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Introduction 

Genetic variation in conjunction with environmental factors influences developmental processes that 

drive phenotypic variation
1,2

. Rare major-effect variants and common variants have been identified 

through largely separate studies of monogenic and complex phenotypes, respectively
3
. However, recent 

advances have led to a far deeper understanding of the relationship between normal and syndromic 

development. One key conceptual hypothesis is that both normal and syndromic phenotypic variation 

occur predominantly along developmentally delimited directions of phenotypic change, or ‘axes of 

variation’. Both common and rare variants can act upon these axes, causing syndromic phenotypic 

variation to occur along the extremes of normal phenotypic axes of variation. Preliminary findings 

supporting this
3–8

 highlight the potential importance of an integrated approach that incorporates both 

complex and Mendelian traits into the study of phenotypic variation. 

Human facial shape shows great potential for such an integrated approach. Facial shape is an 

assemblage of highly variable, developmentally complex phenotypes that are largely genetically 

determined, involving both common and rare variants with a range of effect sizes
9
. Recent advances in 

three-dimensional (3D) image processing technology and genome-wide association studies (GWAS) have 

enabled the identification of hundreds of genetic loci associated with normal-range facial variation, yet 

collectively these only account for about 10% of facial phenotypic variance
9
. In addition, many rare 

large-effect variants have been discovered through the study of Mendelian disorders with craniofacial 

dysmorphism
10

. A well-known example is the recurrent pathogenic gain-of-function variant G380R in 

FGFR3 that causes achondroplasia (ACH), the most common form of skeletal dysplasia
11

. FGFR3 is a 

regulator of bone growth that is expressed in chondrocytes and mature osteoblasts, and increased 

FGFR3 signaling suppresses proliferation and maturation of growth plate chondrocytes. This, in turn, 

impairs endochondral bone growth, resulting in rhizomelic limb shortening and short stature in ACH
12,13

. 

In the skull, premature fusion of skull base synchondroses leads to a shortened basicranium and a 

recognizable pattern of frontal bossing and midface hypoplasia in affected individuals
14

. While all ACH 

patients share the same pathogenic G380R FGFR3 variant, a modest range of variability exists within the 

characteristic ACH phenotype
15

. As for most monogenic disorders, the factors underlying this variable 

phenotypic expressivity remain largely unknown.  

If both normal-range and syndromic phenotypic effects converge on developmentally delimited axes, 

and phenotypic variation occurs principally along those axes, we would expect that facial variation along 

a syndromic phenotypic axis would also be present to some degree in the general population. In this 
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work, we tested this hypothesis by projecting the ACH facial phenotype onto an unselected control 

population to model ACH-derived facial variation as a quantitative trait, rather than a binary categorical 

(or monogenic) trait. Genetically mapping these traits in the control population revealed strong 

enrichment for genes involved in developmental processes that are key in the pathophysiology of ACH. 

Elements of the ACH phenotype could also be replicated in silico in two independent control samples, 

relying solely on the uncovered polygenic background. We discuss the implications of our findings to the 

broader field of Mendelian and complex trait genetics. 

Results 

ACH phenotype can be constructed from axes of normal-range facial variation 

3D facial photographs were available from 43 subjects with ACH and 8246 unselected controls, all with 

European ancestry (Fig. 1a). We obtained homologous facial configurations by non-rigidly mapping an 

atlas (composed of 7160 points) to each individual image
16

. Controls were Procrustes aligned to a 

common coordinate system and principal component analysis (PCA) was applied to capture the major 

axes of normal-range facial variation. Projecting ACH subjects into the same coordinate space accurately 

described syndromic facial shape variation, with 0.49 mm average error between the original ACH 

shapes and corresponding projections (Supplementary Fig. 1a). Regions of higher reconstruction error 

coincided with the clinically most distinct regions (e.g., nasion and forehead). As a comparison, the 

average PCA reconstruction error of the controls was 0.35 mm (Supplementary Fig. 1b). While ACH 

syndromic samples could be coded well as linear combinations of these axes (principal components) of 

normal variation, they showed greater variation overall and were generally found towards the tail-end 

of the distribution (Supplementary Data 1).  

Definition of ACH-informed phenotype as a quantitative trait 

We compared 3D facial images of the ACH samples to the unselected controls (Fig. 1b) at multiple 

scales, starting from a global description of facial shape and gradually focusing on more local segments 

of shape variation (Supplementary Fig. 2a) determined by hierarchical spectral clustering
17

. By regressing 

facial shape onto syndrome status (ACH or control), we found that facial shape was significantly 

different between ACH and control samples in 58 out of the 63 facial segments (p < 0.05) 

(Supplementary Fig. 2b). For each of these significant segments, we established an ACH trait axis as the 

vector spanning the ACH and control shape means. These axes describe the facial shape effects 
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associated with ACH (<ACH-derived facial trait=), such as frontal bossing and midfacial hypoplasia. 

Moving along the axes is equivalent to changing phenotypic severity (Fig. 2a). 

We quantified the extent to which the ACH-derived traits or shape effects exist in the control population 

by measuring facial similarity of the unselected controls to the ACH trait axes using the cosine distance, 

hereafter referred to as <syndrome-informed phenotyping= (Fig. 2a). This approach generated univariate 

scores, with controls that display ACH-like facial features having a low score (values smaller than 1), 

while individuals with an inverse phenotype (e.g., protrusion of the midface) have higher scores (values 

greater than 1) (Fig. 2b). The control sample showed great variation in the ACH trait scores, yet a clear 

overlap was observed with the ACH cohort scored along the same axes (Supplementary Data 2). 

Furthermore, the ACH trait scores explained 2.6% of full facial shape variation in the control population, 

which is substantial, considering that sex and age explained 11.3% and 4.9% of variance in the same 

cohort, respectively.  

Multivariate GWAS reveals polygenic background of ACH-derived facial traits  

We sought to identify SNPs associated with facial variation in the general population along the ACH trait 

axes. We combined the trait scores for all 58 significant facial segments into a matrix, for the US and UK 

subsamples separately, and performed a multivariate GWAS meta-analysis using canonical correlation 

analysis. In total, we identified 1925 SNPs that reached genome-wide significance (p <L5e−8). Significant 

SNPs were merged into 35 genomic loci, revealing a polygenic basis for normal facial variation along a 

characteristic shape axis derived from ACH, a monogenic disorder (Fig. 2c; Supplementary Table 1). The 

35 lead SNPs combined explained 1.77% and 2.00% of total facial shape variation in the US and UK 

subsamples, respectively.  While some lead SNPs correlated most with ACH-derived shape changes of 

the full face, others showed more localized effects, affecting only a specific aspect of the ACH facial 

phenotype (Supplementary Data 3).  

For many of these significant associated loci, candidate genes in the immediate vicinity have well-

established roles in craniofacial development and/or have previously been identified in GWAS of facial 

shape variation (Supplementary Table 1). To our knowledge, 4 of the 35 loci have not previously been 

linked with craniofacial morphology. No significant associations were found for SNPs near FGFR3; 

neither did we find significant enrichment for associations with genes that interact with FGFR3 directly 

(p = 0.48) (Supplementary Table 2). However, STRING analysis of the GWAS-associated candidate genes 

showed plausible interactions with the FGFR3 network at higher levels (Supplementary Fig. 3). 
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Genetic loci associated with ACH-derived facial variation are enriched for processes related to skeletal 

development 

Gene-set enrichment analysis
18

 of the 35 associated loci showed significant enrichment for biological 

processes related to cartilage growth and development, and skeletal development overall 

(Supplementary Table 3). To evaluate targeted enrichment of certain biological processes, we compared 

our findings to those of a GWAS of normal facial variation performed in the same unselected control 

group by White et al.
19

. While the normal facial GWAS showed enrichment for a broad spectrum of 

processes related to embryonic development, the current ACH-informed GWAS was enriched for a 

specific subset of these biological processes, with all but one term (84/85, 99%) also significantly 

enriched in the previous study
19

. Processes related to cartilage development such as chondrocyte 

differentiation and development, chondrocyte hypertrophy, and cartilage condensation were 

consistently more enriched in the ACH-informed GWAS than in the previous uninformed facial shape 

GWAS by White et al.
19

 (Fig. 3a). Interestingly, these same biological processes are at the core of ACH 

pathophysiology
20

. For other branches of system development (e.g., nervous system development, 

circulatory system development), we observed no significant difference between the ACH-informed and 

uninformed facial shape GWAS
19

 (Fig. 3a).  Similarly, the ACH-informed GWAS genes were specifically 

enriched for skeletal developmental genes when compared against all genes previously identified 

through GWAS of facial shape (Fig. 3b), as well as against known craniofacial genes implicated in 

Mendelian syndromes
9
 (Supplementary. Fig 4a-b; Supplementary Table 4). A similar targeted 

enrichment was not observed in comparison to a <negative control= GWAS of inflammatory bowel 

disease
21

 (Supplementary Fig. 4c). 

Genetic loci associated with ACH-derived facial trait are not enriched for layer-specific murine growth 

plate gene expression 

Following the observed enrichment for cartilage-related processes, we further tested whether the ACH-

informed GWAS genes were preferentially expressed in certain epiphyseal layers or at specific 

chondrocyte maturation stages. We analyzed public gene expression data from murine growth plates 

and chondrocytes, but found no correlation between MAGMA gene-level p-values and gene expression 

specificity per epiphyseal layer or chondrocyte maturation stage. Differential expression analysis 

showed no significant associations between gene-level p-values and changes in gene expression 

between early and late chondrocyte maturation stage.  
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ACH-derived facial trait shows significant genetic correlations with other ACH-linked traits 

We calculated the Spearman genetic correlation
22

 between the ACH-derived facial trait and five ACH-

associated traits, including body height, infant head circumference, obstructive sleep apnea, lung 

volume, and sitting height ratio (Supplementary Table 5). Although these five traits are all associated 

with the pathogenic G380R FGFR3 variant in individuals with ACH, it is unknown if they also correlate 

with ACH-like facial features in the healthy population. We found significant genetic correlations (FDR-

corrected p < 0.05) between the ACH-derived facial trait and body height, obstructive sleep apnea, and 

sitting height ratio (Table 1), likely pointing to the same skeletal system pathways that showed 

enrichment in the previous analysis. In individuals with ACH, reduced endochondral bone growth causes 

disproportionate short stature with increased sitting height ratio, and can also lead to narrowing of the 

upper airway, which in turn may increase the risk for obstructive sleep apnea
23,24

. The ACH-derived facial 

trait also showed a stronger genetic correlation with sitting height ratio than with height, while 

uninformed facial shape by White et al.
19

 showed no differential correlation with these two traits. In line 

with the current findings, previous research revealed that genetic loci associated with sitting height ratio 

show an increased specificity for biological processes related to bone and cartilage, compared to height-

associated loci
25

. We observed no significant genetic correlations between ACH-derived facial variation, 

inflammatory bowel disease
21

 and hormone-sensitive cancer
26

, both serving as <negative control= 

disorders without known associations to ACH. 

ACH-like phenotype can be obtained in the absence of FGFR3 mutations 

We extended the single SNP analysis to a multivariate genotype-phenotype (MGP) approach that maps 

the coordinated effects of marker variation of the GWAS associated genes onto craniofacial shape
27,28

. In 

a sample of 1154 Diversity Outbred mice, the primary MGP associated effect axis resembled an ACH-like 

phenotype, characterized by a shortened and rounder skull, even when Fgfr3 marker variation was not 

included in the model (Fig. 4a-b). Applying the same method to an independent sample of 6772 human 

cranial vault shapes
29

, the primary MGP associated effect axis revealed a more globular appearance of 

the cranial vault combined with a relative increase in biparietal diameter (Fig. 4c-d). Similar features are 

also observed in individuals with ACH, where the narrowing of the skull base can lead to a more rounded 

calvarium (upper part of the neurocranium). A significant increase in biparietal diameter, but not antero-

posterior diameter, of the skull has also been described in individuals with ACH
30

.  

Discussion 
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Unravelling the complex relationship between genomic and phenotypic variation is a central problem in 

biology. In this work, we introduce a syndrome-informed phenotyping method to study the connections 

between the biology of normal-range variation and syndromic variation observed in Mendelian disease, 

using facial variation in ACH as a case example. Facial features in ACH make up a distinct and 

recognizable phenotype
15

, represented by the significant facial shape differences between ACH 

individuals and controls for most parts of the face. In line with existing literature, we found that these 

differences largely result from changes in phenotypic ‘extremeness’
5,31

. ACH individuals could be well 

positioned along the extremes of the axes of normal-range facial variation, while some shape deviations 

remained in those regions of the face that constitute the characteristic ACH facial gestalt. Quantification 

of ACH-derived facial features in unselected controls showed that individuals vary along the ACH-

derived shape axis, and that ACH-like facial shape variation is clearly present in a subset of these control 

individuals. Though the ACH-derived phenotype axis is derived from a monogenic condition, GWAS of 

facial shape in an unselected control population revealed a polygenic background for the ACH-derived 

phenotype scores in this control population. Furthermore, ACH-like craniofacial variation could also be 

reproduced in two independent datasets of Diversity Outbred mice and control human cranial vaults 

relying solely on the uncovered polygenic background. 

We observed no significant genetic associations with ACH-derived facial shape in the vicinity of the 

FGFR3 locus. Similarly, previous GWAS of human facial shape have not found significant associations 

near FGFR3
9
. While the lack of associations between common variants near FGFR3 and ACH-derived 

variation does not rule out their contribution, it is also not unexpected given the clinical knowledge on 

genotype-phenotype correlations for FGFR3. Rare variants with large effect in FGFR3 do not always 

affect facial features, such as in hypochondroplasia where the mutation causes short stature but no 

facial dysmorphism
32

. In addition, common variants in FGFR3 have been associated with idiopathic short 

stature
33

. This suggests, unlike for height, no general role for FGFR3 in facial development, but a marked 

sensitivity to disturbance by very specific large-effect variants. These observations might indicate that 

facial and skeletal development have different tissue- and/or timepoint-specific sensitivities to 

disturbances by FGFR3, warranting further research. 

Nearly all genes that were identified through the current GWAS had previously been linked to normal-

range facial variation
9
, indicating that the ACH-informed phenotype is determined by genes that play a 

role in facial morphology more broadly. Interestingly, the polygenic background was specifically 

enriched for biological processes that are disturbed in ACH, such as chondrocyte hypertrophy and 
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differentiation
20

, and genetic correlations were found between ACH-derived facial variation in controls 

and ACH-linked features such as sitting height ratio
25,34

. These results are in line with previous findings 

that the effects of major mutations often co-align with the directions of effect linked to broader 

developmental processes that are affected by those mutations
27

.  

The convergence of genetic effects onto shared axes of shape variation stems from the highly integrated 

nature of the human face
35,36

. While myriad genes can influence facial morphology, the potential 

directions (axes) in which facial shape can vary are constrained by the developmental processes on 

which they act
35

. Our findings indicate that both normal human facial variation and facial variation 

associated with rare Mendelian syndromes occur along the same developmental axes. These 

developmental axes appear to be determined by a background of common polygenic variation. Rare 

Mendelian genetic variants with major effects appear to move individuals further toward the extreme 

end of these axes. The polygenic variation that underlies these developmental axes thus likely 

contributes to the range of variation seen in the corresponding Mendelian syndromes. Indeed, this may 

partially explain the occurrence of subclinical phenotypes in conditions such as orofacial clefting
37

, as 

well as a tendency for unaffected relatives of probands with craniofacial syndromes to sometimes 

themselves be misclassified as syndromic by an automated syndrome classification tool based on 3D 

facial imaging
38

.  

The finding that normal and syndromic facial variation are related through shared developmental axes 

also has implications for the mechanisms of variable expressivity and penetrance. This phenomenon 

likely occurs because developmental processes drive directions of variation on which multiple genomic 

and environmental influences may converge. For ACH, this would mean that the FGFR3 gain-of-function 

mutation produces a large-scale effect on an axis of variation that exists in the general population, and is 

driven by variation in growth at the cranial synchondroses and cartilaginous growth centers in early 

craniofacial development. Mutations that alter chondrocyte proliferation or maturation in mice show 

directions of effect that broadly resemble ACH including doming of the neurocranium, decreased cranial 

base flexion and reduction in midfacial prognathism
39,40

. If individuals with ACH vary along this same 

multivariate axis of facial shape, modulation of the degree of cartilage proliferation could explain 

variation in phenotypic severity for ACH. Conversely, when individuals with ACH vary in directions 

orthogonal to this axis, however, this would point towards other developmental drivers of variation
35

.  

The value of integrating common and Mendelian disease genetics was recently demonstrated by Blair et 

al.
5
, who mapped heterogeneous symptom data to latent quantitative traits for various Mendelian 
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diseases. Genomic association testing of the newly derived traits revealed common variants predictive 

of disease outcome; however, the inference of latent traits required phenotypes available at biobank-

scale, limiting applicability of that approach. The syndrome-informed framework we present here is 

applicable to many other phenotypes and, importantly, to relatively small sample sizes, which remains a 

major challenge in studies of rare diseases. Here, we studied ACH (n = 43) as proof of principle, but the 

syndrome-informed framework can also be generalized to other genetic disorders. For example, 

genomic analysis of Pierre Robin Sequence-derived phenotypic scores identified genetic variants near 

the SOX9 locus, which is commonly linked to the disorder, among other genetic loci that are thought to 

conjointly modulate the facial phenotype
41

. In addition, applying our approach to genetic conditions 

with a poorly understood pathophysiology could highlight developmental and biological pathways of 

importance. Similarly, by defining a shape axis based on a group of individuals with similar phenotypic 

features but unknown diagnosis, our approach could provide insight into the shared genetic etiology and 

impaired pathways in these individuals. And, of particular importance, the polygenic background 

identified using a syndrome-informed approach may highlight interesting targets to identify putative 

modifiers of phenotypic expression in monogenic disorders
42

. 

In conclusion, genetically mapping ACH-derived phenotypic effects in the general population highlighted 

a polygenic basis for a shape axis determined by a monogenic disorder. Jointly modeling these candidate 

genes in turn revealed that ACH-like phenotypes can be generated without FGFR3. These findings have 

important implications for unravelling the relationship between discrete and continuous variation and 

for understanding the role of causative genes for Mendelian disorders. If causative genes act on already 

existing axes of variation determined by developmental processes, then they are causes in only a limited 

sense in the background developmental context. Disease associated variants may be more productively 

seen as belonging to a larger set of potential perturbations capable of shifting phenotypes along 

developmentally determined directions of variation. This framework also promotes understanding of 

variable expressivity and penetrance in genetic disease, which is of great value to aid diagnosis and 

improve patient outcomes. 

Methods 

Sample composition 

We obtained 3D facial photos, demographic data (age, sex, self-reported ethnicity) and clinical and/or 

molecular testing results of 70 individuals with achondroplasia from the online FaceBase repository 
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(www.facebase.org; FB00000861). From this group we excluded individuals of self-reported non-

European descent (n = 21) and those with incomplete or missing metadata (n = 6) to retain a curated 

sample of 43 individuals.  

The unselected control sample consisted of 3D facial images, demographics (age, sex, genomic ancestry) 

and imputed genotype data of 8246 unrelated individuals of European descent originating from the 

United States (US) and the United Kingdom (UK)
19

. The US dataset (n = 4680) included samples from the 

3D Facial Norms cohort
43

 and studies at the Pennsylvania State University and Indiana University-Purdue 

University Indianapolis. The UK sample (n = 3566) consisted of participants from the Avon Longitudinal 

Study of Parents and Children (ALSPAC)
44,45

. European participants were identified by projecting them 

into a principal component space constructed using the 1000G Phase 3 dataset. Participants with 

missing covariate information (e.g., age, sex) or with insufficient image quality were excluded. Detailed 

sample characteristics and further information on the calculation of the genetic ancestry axes are 

provided by White et al.
19

.  

The appropriate local ethical approvals were obtained, and all participants gave written informed 

consent prior to participation. Ethical approval for the ALSPAC study was obtained from the ALSPAC 

Ethics and Law Committee and the Local Research Ethics Committees. 

Genotyping and imputation 

Genotyping and imputation of the European control sample was performed as described previously
19

. In 

brief, genotypes of the three different US subsamples, separately, were phased using SHAPEIT2 

(v2.r900)
46

 and imputed to the 1000 Genomes Phase 3 reference panel
47

 using the Positional Burrows-

Wheeler Transform pipeline (v3.1)
48

 of the Sanger Imputation Server (v0.0.6)
49

. SNP-level (INFO score < 

0.8) and genotype per participant-level (genotype probability < 0.9) filters were used to omit poorly 

imputed variants. Finally, a single US cohort was obtained by merging the subsamples and filtering the 

SNPs based on missingness across individuals (--geno 0.5), minor allele frequency (--maf 0.01), and 

Hardy-Weinberg equilibrium (p < 1e-6), resulting in 7,417,619 SNPs for analysis. 

For the UK dataset, imputed genotypes were obtained directly from the ALSPAC database. SHAPEIT2
46

 

was used for pre-phasing of haplotypes and imputation against the 1000 Genomes Phase 1 reference 

panel (Version 3)
50

 was performed using IMPUTE2
51

. After post-imputation quality control, the UK 

dataset contained 8,629,873 SNPs for analysis. Because restrictions are in place against merging the 

ALSPAC genotypes with any other genotypes, these were held separately during the analysis. 
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In total, 7,417,619 SNPs were overlapping between US and UK datasets, which were used in subsequent 

genetic association analyses. SNPs on the X chromosome were coded 0/2 for hemizygous males, to 

match with the 0/1/2 coding for females. 

Facial phenotyping and segmentation 

3D facial images were acquired using three digital stereophotogrammetry systems (3dMDface, Vectra 

H1, Creaform Gemini) and one laser scanning system (Konica Minolta VI-900). We non-rigidly registered 

an average facial atlas to each 3D image using the MeshMonk toolbox
16

 to obtain a standard facial 

representation defined by 7160 homologous quasi-landmarks. Due to the bilaterally paired construction 

of the quasi-landmarks constituting the atlas, registered images were symmetrized by averaging the 

original configuration and its horizontally reflected copy following Procrustes superimposition. Images 

were visually inspected and excluded if the registration process had failed. 

All symmetrized quasi-landmark configurations of the unselected control sample were aligned by 

generalized Procrustes analysis (GPA) and adjusted for sex, age, and age-squared in a partial least-

squares regression (PLSR, function plsregress in MATLAB). Facial shape was divided into 63 global-to-

local segments by hierarchical spectral clustering as described elsewhere
17

, providing facial segments at 

five hierarchical levels of scale. In each segment separately, symmetrized and covariate-adjusted shapes 

were aligned using GPA and dimensionality was reduced by principal component analysis (PCA), with the 

optimal number of principal components (PC) to retain determined by parallel analysis. We normalized 

the projections on each PC to have unit variance by dividing each projection by the standard deviation of 

all projections. 

Next, the ACH sample was superimposed onto the mean control shape using GPA and shapes were 

corrected for the same sex and age covariates using the regression coefficients from the PLSR model of 

the control sample. We then applied the same facial segmentation to the ACH sample and participants 

were projected into each segment-specific principal component space, again normalizing by dividing 

each projection by the standard deviation of all projections from the control sample. To assess how 

much of the facial variation was retained by projecting ACH syndromic samples into a principal 

component space derived from unselected, non-syndromic individuals, we measured the reconstruction 

error between the age- and sex-corrected shapes and their corresponding projections as the mean 

Euclidean distance across all 7160 quasi-landmarks.  

Achondroplasia-informed phenotyping 
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For each of the 63 facial segments separately, an ACH-derived facial trait was defined as follows. First, in 

the variation standardized space, we established an ACH facial trait as the shape axis passing through 

the average PC projection of the control sample and the ACH average projection. We then obtained 

univariate trait scores for each control subject by computing the cosine of the angle between their 

individual vector, going from the average PC projection of the control sample to their individual PC 

projections, and the ACH trait vector
52,53

. These scores were computed in a leave-one-out scheme such 

that each subject was excluded from learning the trait vectors on which they were scored. To evaluate 

the ACH-like effect size in the control population, we regressed global facial shape onto the trait scores 

obtained for segment 1 (full face) using PLSR and report R-squared as the percentage of phenotypic 

variation explained. 

We additionally tested whether ACH facial shapes differed significantly from a matched control sample 

of equal size. In a random order, we matched each ACH sample to a control sample of the same sex that 

was closest in age. The selected control was then omitted from the pool of potential matches. We co-

aligned the covariate-adjusted and symmetrized quasi-landmarks of both groups using GPA and 

regressed facial shape onto group membership using PLSR. A p-value was generated by a permutation 

test on R-squared with 10,000 permutations. This was done for each segment separately, and significant 

differences (p < 0.05) were observed in 58 out of 63 facial segments.  

Genome-wide association study 

For both US and UK datasets separately, we combined the ACH-derived trait scores across the 58 

significant segments into a single phenotype matrix ([n x m] with nUS = 4680 controls, nUK = 3566 

controls, and m = 58 facial segments). This phenotype matrix was tested for genome-wide SNP-

associations in a multivariate association framework using canonical correlation analysis (CCA) following 

White et al.
16

. However, instead of performing a separate GWAS per facial segment, scores generated 

across multiple segments were now combined into a single multivariate GWAS. The GWAS was 

conducted following a two-stage design with both US and UK cohorts alternating as the discovery and 

replication sets. First, we applied CCA in the discovery sample to obtain association p-values as well as 

the shape axis maximally correlated with each SNP. Next, the replication sample was projected onto this 

axis to ensure consistency of the phenotype, leading to univariate trait scores which were subsequently 

tested for genetic associations in a linear regression model. Finally, discovery and replication p-values 

were aggregated in a meta-analysis using Stouffer’s method
54

. Per SNP, the GWAS design generated two 

meta-analysis p-values, metaUS and metaUK, reflecting the sample that served as the discovery set. 
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Because CCA does not accommodate adjustments for covariates, we corrected the dependent (facial 

shape) and independent variables (genotypes) for age, age-squared, sex, height, weight, facial size, four 

genomic ancestry axes, and camera system using PLSR prior to GWAS.  

The lowest meta-analysis p-value per SNP was selected and compared against the genome-wide 

Bonferroni threshold (p < 5e-8). We observed 1925 SNPs at the level of genome-wide significance, which 

were clumped into 35 independent loci as follows. Starting from the lead SNP (lowest p-value), SNPs 

within 10kb or within 1Mb but in linkage disequilibrium (r
2
 > 0.01) were clumped into the same locus 

represented by the lead SNP. Next, considering the lead SNPs only, signals within 10Mb and r
2 

> 0.01 

were merged. Third, any locus with a singleton lead SNP was removed. For each of the lead SNPs, the 

nearest gene was assigned as the candidate gene. 

In the multivariate GWAS setup, CCA extracts the linear combination of the ACH trait scores for the 58 

significant facial segments that maximally correlates with the SNP being tested. From the CCA loadings, 

we examined which of the facial segments contributed most to the observed GWAS signals to delineate 

the associated shape effects.  

Protein network analysis 

We searched the STRING database
55

 for known interactions with FGFR3. We focused on high-confidence 

interactions (confidence score 0.7) derived from curated databases or experimentally determined 

(Supplementary Table 2). SNP p-value data were aggregated to gene-association scores (gene-level p-

values) and we evaluated enrichment for associations with the FGFR3 network using MAGMA
56

. Next, 

we performed protein-protein interaction analysis of the GWAS candidate genes and evaluated 

potential associations, direct or indirect, with the FGFR3 network using default settings (confidence 

score 0.4, including all interaction sources).  

Gene set enrichment analysis 

We used GREAT
18

 to associate the 35 genetic loci to Gene Ontology (GO) annotations and calculated 

enrichment of biological processes for these annotations. To assess targeted enrichment of processes 

specific to our ACH-informed phenotyping approach, we compared gene set enrichment of all biological 

processes that reached significance in the hypergeometric test to a recent GWAS of normal facial 

variation in the current European control sample by White et al.
19

. In addition, we repeated GO term 

enrichment against three background sets of craniofacial-associated genes as summarized by Naqvi et 

al.
9
. The first set consisted of all genes identified in 25 previously published GWASs of facial shape, the 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570544doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570544
http://creativecommons.org/licenses/by-nc/4.0/


second set contained genes with known roles in Mendelian craniofacial disorders and/or orofacial 

clefting, and the third set is a combination of both GWAS and disease-associated genes. As a negative 

control, we repeated the analysis with results from a recent GWAS of inflammatory bowel disease as 

foreground set
21

.  

A database of genes and annotated ontology terms was downloaded from the StringDB website 

(https://stringdb-static.org/download/protein.enrichment.terms.v11.5.txt.gz). For each term, τ, a 

hypergeometric p-value was calculated as 

�
���

� � �� � ��

	 � � �
��

	 �

��� ��,	�


��
�

 

with N the total number of genes in the background set, n the total number of genes in the foreground 

set, K the number of genes with annotation τ in the background set, and k the number of genes with 

annotation τ in the foreground set. P-values were adjusted to a 5% false discovery rate (FDR) using the 

Benjamini-Hochberg procedure
57

.  

Gene expression in chondrocytes 

We computed gene-level p-values (gene-association scores) based on the ACH-informed GWAS 

summary statistics using MAGMA
56

, as well as from published GWAS summary statistics of normal facial 

shape in the same unselected control population
19

, height
58

, and inflammatory bowel disease
21

.  

We downloaded published microarray data from murine growth plate dissections from the GEO data 

repository
59

 (accession number GSE87605). Probe identifiers were mapped to mouse genes using the 

Mouse Genome Informatics database
60

. Mouse gene names were subsequently mapped to their human 

homologs using the Ensembl BioMaRt tool
61

. We calculated gene expression specificity scores per 

epiphyseal layer by dividing the expression of each gene per layer by the total expression of that gene. 

We calculated gene expression Z-scores per chondrocyte maturation stage by averaging gene expression 

across the four available samples for day 3 of embryonic development (early maturation stage) and day 

10 of embryonic development (late maturation stage). Finally, we evaluated the Pearson correlation 

between gene-level p-values, specificity scores for expression per epiphyseal layer, and Z-scores per 

chondrocyte maturation stage.  

From the GEO data repository
59

, we downloaded murine chondrocyte RNAseq data (accession number 

GSE225796) and used the DESeq function (DESeq2 package) in R to perform differential gene expression 
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analysis. DESeq2 transforms read counts based on size factors and dispersion, fits a negative binomial 

generalized linear model (GLM), performs a Wald significance test, and assesses differentially expressed 

genes based on a false discovery rate cutoff of 0.05 using the Benjamini-Hochberg procedure. 

Genetic correlation 

To assess the extent to which genome-wide profiles of association were shared with known ACH related 

traits, we computed the Spearman correlation between two vectors of linkage disequilibrium (LD)-block 

stratified association p-values. This approach provides a multivariate, robust alternative to LD score 

regression (LDSC)
62,63

 for computing genetic correlations and is applicable to unsigned summary 

statistics yielded by CCA
22

. We collected publicly available genome-wide summary statistics for five traits 

with known associations with the achondroplasia phenotype (body height
58

, head circumference
64

, lung 

volume
65

, obstructive sleep apnea syndrome
66

 and sitting height ratio
67

) and for two putative unrelated 

traits (hormone-sensitive cancer
26

 and inflammatory bowel disease
21

) to serve as negative controls. 

Details on the selected traits and links to relevant publications are summarized in Supplementary Table 

5. LD scores were readily obtained from the 1000 Genomes European data
46

 and SNPs were filtered to 

HapMap3 SNPs, excluding SNPs in the Major Histocompatibility Complex region
68

. For each LD block, we 

computed the mean SNP -log10(p-value) and computed a rank-based Spearman correlation using the 

average association value for that LD-block. We estimated the standard error of the Spearman 

correlation using a bootstrapping approach with 100 resampling cycles.  

Multivariate genotype-phenotype mapping 

We applied the GWAS candidate genes to the recent multivariate genotype-phenotype (MGP) model in 

Diversity Outbred (DO) mice
27

 in R (version 4.2.0). Composition (n = 1154 samples), genotyping (n = 

123,309 markers) and landmarking (n = 54 3D landmarks) of the DO sample is described in detail by 

Aponte et al.
27

. In a regularized partial least squares model, the MGP method identifies axes of shape 

variation that maximally covary with genetic marker variation for the selected gene set. The 

regularization parameter was determined at 0.06 based on 10-fold cross-validation. For each of the 

genes, the MGP model outputs their overall contribution, or marker loadings, to the estimated shape 

axes. The principal axis of shape covariation is visualized directly onto the mouse craniofacial shape as a 

heatmap, representing the displacement along the surface normals with reference to the mean DO 

shape. 
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For 6,772 multi-ancestry participants of the Adolescent Brain Cognitive Development (ABCD) study
69

, the 

outer head surface was extracted from magnetic resonance images as described by Goovaerts et al.
29

. 

The MeshMonk toolbox
16

 was used to perform rigid and subsequently nonrigid surface registration using 

a full-head template comprising 28,218 quasi landmarks. From this, we cropped out the area covering 

the cranial vault (n = 11,410 quasi landmarks), encompassing the supraorbital ridge, and extending 

towards the occipital bone. Shapes were then adjusted for age, sex, weight, height, cranial size, scanner 

site, and the first 10 genomic PCs using PLSR after GPA alignment. Following PCA and parallel analysis, 

65 orthogonal axes of cranial vault shape variation were retained and normalized to unit variance. Using 

CCA, we optimized the linear combinations of ACH lead SNPs and vault shape PCs to extract a maximally 

correlated latent phenotype. For SNPs not found in the ABCD sample, we searched for proxy SNPs within 

the 1000 Genomes Phase 3 European sample and selected the SNP in strongest LD with the original SNP 

and with at least r
2
 > 0.9. No suitable proxy was available for rs113434679. The latent phenotypic traits 

were visualized directly onto the head surface as a heatmap, representing the displacement along the 

surface normals with reference to the mean head surface. 
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Figure 1. Sample characteristics of the achondroplasia and control dataset. (a) Age and sex 

distribution, (b) Average facial shapes.  
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Figure 2. Achondroplasia-informed phenotyping. (a) ACH trait axis spanning the ACH and control mean

shapes. Morphs on the left and right side of the axis represent the extremes of the phenotypic

spectrum. Controls (ID1-3) can be scored along the axis by measuring the angle between their individual

vectors and the ACH trait vector. Facial variation of the three control individuals is visualized as a

heatmap. Red areas on the facial shape correspond to a local outward deviation from the control mean

shape, blue indicates inward deviation. (b) Distribution of the facial trait scores for the full face

(segment 1) for both the ACH (in green) and control (in beige) datasets. Values smaller than 1 indicate

more ACH-like; values greater than 1 indicate less ACH-like. The mean facial shape of the 5 lowest and

highest scoring individuals is shown for both ACH and control samples. (c) Manhattan plot of

genomewide associations. For each SNP, the lowest p-value (CCA, right-tailed chi square) across all 58

significant facial segments is plotted. The full horizontal line represents the genome-wide significance

threshold (p = 5e-8). Candidate genes are annotated to each genome-wide significant locus (n = 35).  
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Figure 3. GO enrichment analysis. Fold enrichment of Gene Ontology (GO) biological processes 

enriched in the ACH GWAS compared to different background sets.  (a) ACH-informed GWAS versus 

uninformed GWAS of normal facial variation by White et al. (b) ACH-informed GWAS versus all genes 

previously identified through GWAS of facial shape. Only processes enriched in both studies are 

displayed. Node size corresponds to the number of genes mapped to each process.  
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Figure 4. Multivariate genotype-phenotype mapping of mouse and human craniofacial shape. Genetic 

marker loadings for the multivariate genotype-phenotype mapping of the GWAS candidate genes onto 

(a) mouse craniofacial shape and (c) human cranial vault shape. Genes are ordered by their relative 

contribution to the associated shape effects shown in (b) and (d), respectively. The top row shows the 

mean craniofacial shape colored according to the difference between the upper and lower extremes of 

the MGP shape axis. Red areas indicate a local inward deviation, blue indicates an outward deviation. 

The middle row shows the upper extreme of the MGP shape axis. The bottom row shows the lower 

extreme of the same shape axis.  
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Table 1. Genetic correlation. Genetic correlation between the ACH-informed GWAS, five ACH-associated traits (body height, infant head 

circumference, lung volume, obstructive sleep apnea, sitting height ratio), and two negative control traits (hormone-sensitive cancer, cigarettes 

per day measurement). For each trait, this table contains the Spearman genetic correlation with the ACH-informed GWAS (GCACH), the 

corresponding 95% confidence interval (CIACH) and pvalue (PACH). We also report the Spearman genetic correlation of these traits with the 

uninformed facial shape GWAS by White et al. (GCFACE), the corresponding 95% confidence interval (CIFACE) and p-value (PFACE). Genetic 

correlations that are statistically significant after Bonferroni correction are indicated in bold. Additional information on the selected traits is 

provided in Supplementary Table 5.  

Traits  GCACH CIACH PACH GCFACE CIFACE PFACE 

Achondroplasia associated traits        

Body height  0.14 0.087-0.20 1.2E-07 0.23 0.17-0.27 1.6E-21 

Infant head circumference   0.040 0-0.089 0.05 0.059 0.0061-0.11 0.01 

Lung volume   0.037 0-0.090 0.08 0.069 0.017-0.12 0.004 

Obstructive sleep apnea  0.075 0.030-0.12 5.2E-04 0.085 0.033-0.14 5.9E-04 

Sitting height ratio  0.22 0.17-0.27 2.6E-21 0.24 0.20-0.29 9.1E-27 

Negative control traits       

Hormone-sensitive cancer 0.024 0-0.075 0.17 0.0030 0-0.053 0.45 
Inflammatory bowel disease 0.016 0-0.067 0.27 0.007 0-0.057 0.39 
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Supplementary Figure 1. Average reconstruction error. Reconstruction error (in mm) between the 

original quasi-landmark configurations and their corresponding projections in principal component 

space (constructed from healthy controls only), averaged across all ACH and control samples, 

respectively.   
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Supplementary Figure 2. Global-to-local segmentation. (a) 63 facial segments obtained by 

hierarchical spectral clustering, ordered and colored according to facial quadrant. Starting from the 

full face in the center, each segment is subdivided into two smaller segments, providing a detailed 

description of facial shape at multiple levels of scale. (b) For each of the 63 segments, we tested if 

facial shape was significantly different between the ACH and control samples in an age- and sex-

matched setup. Nodes are colored according to the p-value, with black outlines indicating statistical 

significance (p < 0.05). The position of each node corresponds to the facial segments depicted in 

panel a.    
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Supplementary Figure 3. Predicted FGFR3 interaction network. High confidence interactions 

(confidence score > 0.7) are shown in blue; the candidate genes identified through GWAS are shown 

in green. Line thickness indicates the degree of confidence prediction of the interaction.  
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Supplementary Figure 4. GO enrichment analysis. Fold enrichment of Gene Ontology (GO) biological processes enriched in the ACH GWAS compared to 

different background sets. (a) ACH-informed GWAS versus genes implicated in Mendelian craniofacial disorders (b) ACH-informed GWAS versus all genes 

previously identified through GWAS of facial shape and genes implicated in Mendelian craniofacial disorders combined (c) Negative control GWAS of 

inflammatory bowel disease versus all genes previously identified through GWAS of facial shape and genes implicated in Mendelian craniofacial disorders. 

Only processes enriched in both studies are displayed. Node size corresponds to the number of genes mapped to each process.   
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