1903.06158v1 [astro-ph.GA] 14 Mar 2019

arXiv

MNRAS 000, 1-21 (2018) Preprint 15 March 2019 Compiled using MNRAS IATEX style file v3.0

Young massive star cluster formation in the Galactic
Centre is driven by global gravitational collapse of
high-mass molecular clouds

A. T. Barnes,">3* S. N. Longmore,' A. Avison,* Y. Contreras,® A. Ginsburg,’

J. D. Henshaw,® J. M. Rathborne,” D. L. Walker,!%!! J. Alves,'? J. Bally,!3

C. Battersby,!* M. T. Beltran,"> H. Beuther,® G. Garay,'® L. Gomez,'° J. Jackson,!”

J. Kainulainen,'® J. M. D. Kruijssen,'” X. Lu,'' E. A. C. Mills,?° J. Ott” and T. Peters®!

! Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L8 5RF, UK
2 Maz- Planck-Institut fiir extraterrestrische Physik, Giefenbachstrafe 1, 85748, Garching, Germany
3 Argelander-Institut fiir Astronomie, Universitit Bonn, Auf dem Hiigel 71, 58121, Bonn, Germany
YUK Atacama Large Millimeter/submillimeter Array Regional Centre Node

5 Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester, M18 9PL, UK

6 Leiden Observatory, Leiden University, PO Box 9513, NL-2800 RA Leiden, Netherlands

7 National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro, NM, 87801, USA

8 Maz-Planck-Institut fiir Astronomie, Konigstuhl 17, 69117 Heidelberg, Germany

9CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW, 1710, Australia

10 70int ALMA Observatory, Alonso de Cérdova 8107, Vitacura, Santiago, Chile

1 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan

12 University of Vienna, Department of Astrophysics, TAijrkenschanzstije 17, 1180 Vienna, Austria
B3CASA, University of Colorado, 389-UCB, Boulder, CO, 80309, USA

14 Department of Physics, University of Connecticut, Storrs, CT, 06269 USA

I5SINAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy

16 Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago, Chile

17 SOFIA Science Center, USRA, NASA Ames Research Center, Mountain View, CA, 94043, USA
18 Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden

19 A stronomisches Rechen-Institut, Zentrum fiir Astronomie der Universitit Heidelberg, Méonchhofstrafe 12-14, 69120 Heidelberg, Germany
20 Physics Department, Brandeis University, 415 South Street, Waltham, MA, 02453, USA

21 Mag- Planck-Institut fir Astrophysik, Karl-Schwarzschild-Strafe 1, D-85748 Garching, Germany

Accepted 2019 March 13. Received 2019 March 13; in original form 2018 November 26.

ABSTRACT

Young massive clusters (YMCs) are the most compact, high-mass stellar systems
still forming at the present day. The precursor clouds to such systems are, however,
rare due to their large initial gas mass reservoirs and rapid dispersal timescales due
to stellar feedback. Nonetheless, unlike their high-z counterparts, these precursors are
resolvable down to the sites of individually forming stars, and hence represent the
ideal environments in which to test the current theories of star and cluster formation.
Using high angular resolution (1” /0.05pc) and sensitivity ALMA observations of two
YMC progenitor clouds in the Galactic Centre, we have identified a suite of molecular
line transitions — e.g. ¢-C3H, (7 — 6) — that are believed to be optically thin, and
reliably trace the gas structure in the highest density gas on star-forming core scales.
We conduct a virial analysis of the identified core and proto-cluster regions, and show
that half of the cores (5/10) and both proto-clusters are unstable to gravitational
collapse. This is the first kinematic evidence of global gravitational collapse in YMC
precursor clouds at such an early evolutionary stage. The implications are that if these
clouds are to form YMCs, then they likely do so via the “conveyor-belt” mode, whereby
stars continually form within dispersed dense gas cores as the cloud undergoes global
gravitational collapse. The concurrent contraction of both the cluster-scale gas and
embedded (proto)stars ultimately leads to the high (proto)stellar density in YMCs.
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1 INTRODUCTION

Studies of the most massive and dense molecular clouds
are key in developing our understanding of the extremes of
star and stellar cluster formation. The largest clusters cur-
rently forming within the Galaxy today are referred to as
young massive clusters (or YMCs), which can be charac-
terised as having masses Mypmc > 10* Mo, ages < 100 Myr,
radii Rymc < 1 pc and being gravitationally bound (as out-
lined in the review by Portegies Zwart et al. 2010). Given
these properties, YMCs have been suggested as the current
day analogues of the early universe globular clusters (e.g.
Elmegreen & Efremov 1997; Kruijssen 2015).

Molecular clouds with sufficient mass (Mymc ~ 10° Mo)
to form such clusters are, however, very rare, and only a
handful of candidate objects have been currently identified
(Ginsburg et al. 2012; Longmore et al. 2012; Urquhart et al.
2013; Contreras et al. 2017; Jackson et al. 2018). Nonethe-
less, investigating the very early stages of YMC evolution,
before the onset of star formation, is crucial in understand-
ing how these systems formed (e.g. Walker et al. 2015, 2016).

The current theories for cluster formation differ in their
predictions for the spatial density distribution of the gas
within molecular clouds, just before the onset of star forma-
tion, and how this compares to the density distribution of
stars within the resultant cluster. In other words, these the-
ories ask: how could a molecular cloud with an observed ini-

tial mean density of p‘c‘;gj(li form a typical YMC with a mean
final

density of Pymc = 103£Mg pe3 (approximately equivalent
to a molecular hydrogen number density within a molecular
cloud of ny, ~ 10*#! cm3; Portegies Zwart et al. 2010)? In
the most simplistic terms, the models can be described as
the following (see review by Longmore et al. 2014):

i) “Conveyor-belt” (piC’]‘(i)tfi‘(l1 < p%’j}c; Ré’l‘(‘)tl‘]‘(li >> 1pc): the
molecular cloud has an initial gas density distribution lower

than the stellar distribution of the final YMC (i.e. pic?gﬁ(lj <

103£1Mg pc’3). Star formation can occur throughout the
cloud following it hierarchical gas density distribution (e.g.
Larson 1981). As the system evolves, both the gas and the
embedded protostellar population concurrently globally col-
lapse, until all the gas has formed stars or been expelled, and
stellar dynamics eventually dominate (e.g. Girichidis et al.
2012; Kruijssen 2012; Kruijssen et al. 2012; Zamora-Avilés
et al. 2012). The merging of the initially hierarchical struc-
ture, imprinted on the protostellar population from the gas,
forms a smooth, centrally concentred, bound stellar cluster
(e.g. Fujii et al. 2012; Parker et al. 2014).

ii) “In situ” (pg;:)‘s(lj ~ pgrll\"j‘[lc; Rgl‘gli‘é ~ 1pc): star formation
is initially inhibited within the molecular cloud, and the gas
alone contracts to reach a density similar to the final YMC
stellar density (i.e. picrllg;‘é ~ 103*! Mg pc™3). Stars then form
at this higher gas density, and do not have to change their
density distribution to reach that of the final YMC stellar
density.

iii) “Popping” (p‘crllgs(lj > pgr]‘&lc; Ricl;étlili << lpc): as in sce-
nario ii), the molecular cloud collapses with inhibited star
formation, but down to an even higher gas density (smaller
radius) than the final YMC stellar density (i.e. p™mitl

cloud

103*1Mg pc_3). Star formation then proceeds at this higher
gas density. As the stellar population is formed, the clus-
ter exhausts or expels its gas content, hence removing its

gravitational influence, and the cluster expands towards its
final, lower stellar density distribution (e.g. Lada et al. 1984;
Boily & Kroupa 2003; Bastian & Goodwin 2006; Baumgardt
& Kroupa 2007).

However, definitively discriminating between these models
is complicated by the scale-free nature of molecular clouds,
as imposing arbitrary density (or extinction) thresholds to
define clouds can lead to differing interpretations depending
on whether ongoing star formation is included within the
boundary. Despite these caveats, a relatively simple test to
discriminate between the conveyor-belt, in situ, and popping
cluster formation scenarios can be conducted by comparing
molecular clouds, proto-clusters and clusters at different evo-
lutionary stages. If these star-forming proto-clusters clouds
are observed with pg]‘gﬁ > Pproto—cluster > pgrﬁlc then these
can only form a YMC through the conveyor-belt scenario.

Along these lines, Walker et al. (2016) have con-
ducted an extensive study of YMC progenitors within
both the disc of the Galaxy (W49, W51, G010.472+00.026,
G350.11140.089, G351.774-00.537, G352.622-01.077) and
central 200 pc of the Galaxy (G0.253+0.016, Cloud D, E/F),
referred to as the Central Molecular Zone (CMZ, see Fig-
ure 1, also see Walker et al. 2015). These authors find that
quiescent clouds in both environments do not have the den-
sities required to form a YMC (CMZ: Sgr B2 main, north,
Arches; Disc: NGC 3603, Trumpler 14, W1), and they only
begin to approach high enough densities when they harbour
a significant level of star formation (i.e. they have evolved for
>1Myr; e.g. see Sgr B2 in their Figures 7 & 8). This would
suggest that the conveyor-belt scenario for cluster formation
is the most common throughout the Galaxy.

The result that all the observed YMC progenitors have
a common formation mechanism, regardless of environment,
is somewhat surprising given that the central 200pc of
the Galaxy has very extreme environmental conditions (e.g.
Kruijssen & Longmore 2013). It may even be surprising that
massive YMC progenitor clouds can exist within the Galac-
tic Centre at all without rapidly forming stars, as their aver-
age densities are factors of a few to several orders of magni-
tude larger than required for many of the commonly adopted
critical densities for star formation, which are typically cal-
ibrated for disc environments (~10*cm™; e.g. Lada et al.
2010, 2012). It has, however, been noted for several decades
that despite containing ~ 80 per cent of the Galaxy’s dense
molecular gas (2-6x107 Me; Morris & Serabyn 1996), the
CMZ does not appear to be forming stars at a proportional
rate (e.g. Guesten & Downes 1983; Caswell et al. 1983; Tay-
lor et al. 1993), with recent estimates at <10per cent of
the Galaxy’s total star formation rate (e.g. Longmore et al.
2013a; Barnes et al. 2017). Indeed, high-resolution observa-
tions show a distinct lack of core condensates within the
Galactic Centre molecular clouds (Rathborne et al. 2014a,
2015; Walker et al. 2018; Kauffmann et al. 2017a,b), in com-
parison to similar density and age high-mass star forming re-
gions within the disc, which are typically highly fragmented
on core scales (~0.1pc; c.f. Wang et al. 2014; Dirienzo et al.
2015; Henshaw et al. 2016a, 2017; Kainulainen et al. 2013,
2017; Motte et al. 2018; Beuther et al. 2019). It has been sug-
gested that this lack of star and dense core formation is due
to the higher fraction of turbulent gas that is sinusoidally
(divergence-free) driven within the the Galactic Centre (e.g.
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Rathborne et al. 2014b; Kruijssen et al. 2014; Federrath et al.
2016; Barnes et al. 2017; Ginsburg et al. 2018).

In this work we target the young massive cluster pro-
genitor clouds found towards the “dust-ridge” region of the
CMZ (e.g. Lis et al. 1999; Longmore et al. 2013b), which is
highlighted in the three colour image presented in Figure 1.
The dust-ridge region is composed of several massive (e.g.
Walker et al. 2016), relatively quiescent (e.g. Immer et al.
2012; Barnes et al. 2017), and kinematically complex molec-
ular clouds (e.g. Henshaw et al. 2016b, 2019), and is thought
to have been formed by a recent (<Myr) flow of gas into
the CMZ from larger Galactic radii (~kpc; e.g. Sormani &
Barnes 2019). Specifically, here we present results based on
the high-angular resolution, high-sensitivity, high-dynamic-
range Atacama Large Millimetre array (ALMA) observa-
tions of the dust-ridge clouds “Cloud D” (G0.412+0.052)
and “Cloud E/F” (G0.4894-0.010).'. These clouds are mas-
sive (gas masses of ~ 10° Mg), compact (radii of ~1 pc), and
are thought to harbour only the earliest stages of star for-
mation (no prominent HII regions; e.g. Caswell et al. 2010;
Immer et al. 2012; Titmarsh et al. 2016; Lu et al. 2019), and
hence represent the ideal candidates to distinguish between
the current cluster formation mechanisms.

The ALMA observations presented here will be used to
investigate a range of outstanding questions relating to core,
star and cluster formation and evolution over a series of fu-
ture works. In this first paper, we present an overview of the
datasets of both clouds (i.e. both continuum and line obser-
vations), and focus our analysis to understanding YMC for-
mation. This paper is organised as follows. Section 2 presents
the data calibration, reduction and imaging techniques used
to obtain both the continuum and line datasets. Section 3
presents the column density and moment maps, which are
used to identify regions of interest within the clouds, and
Section 4 presents a virial analysis of these regions. Section 5
presents a discussion on the implication of these results, the
critical density for star formation, and the implication of
the virial analysis on the different theories of star and stellar
cluster formation. A summary of this paper is then presented
in Section 6. In the online version, the appendix contains sev-
eral additional tables and figures.

2 OBSERVATIONS
2.1 ALMA interferometric observations

To investigate the early stages of star formation within
these regions on proto-stellar core scales, high-angular reso-
lution dust continuum and molecular line observations have
been taken with ALMA as part of the Cycle 2 project:
2013.1.00617.S (Principal investigator: S.N. Longmore). The
observations made use of the Band 6 receiver, configured

I These clouds were originally referred by Lis et al. (1999) to as
Clouds “D”, “E” and “F”, who separated the structures based on
dust continuum emission (i.e. “D”, “E” and “F”). However, recent
analysis of molecular line observations suggest Clouds E and F
may be physically linked (e.g. Henshaw et al. 2016b). Therefore,
as they are covered by the same mosaic in the observations pre-
sented in this work, these are henceforth referred to as a single
cloud, ”Cloud E/F”.

MNRAS 000, 1-21 (2018)
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to use four spectral windows in dual polarisation centred
at 250.5 GHz, 252.5 GHz, 265.5 GHz, and 267.5 GHz, each
with a bandwidth of 1875 MHz (1920 channels), a chan-
nel spacing of 977kHz (uniformly regridded to 1.25km s
in all cubes used throughout this work), and resolution of
1129kHz (equivalent to 1.35kms™' at 250 GHz). The ob-
servations were carried out in April, August and September
2015 (see Tablel). During these dates, the configurations
of 12m and 7m arrays had projected baseline ranges of
15.0-348.5m (configuration C34-1) and 8.9-48.9m (ACA),
respectively, which, at the average observed frequency of
~ 259 GHz, gives an combined angular resolution of ~1”” and
a maximum recoverable size scale up to ~50”. At this fre-
quency, the primary beam sizes of the 12m and 7m dishes
are ~ 25”7 and ~ 42" respectively. Given these, we proposed
for mosaics containing 100 pointings with the 12m array,
and 37 pointings with the 7m array for Cloud D, and 132
pointings with the 12m array, and 47 pointings with the 7m
array for Cloud E/F. The 12m array observations for both
clouds were, however, not fully completed. This resulted in
the final 12m array mosaics containing 65 and 88 pointings
for Cloud D and E/F, respectively. The missing pointings
can be seen to the upper right side of both clouds, and re-
sult in an irregularly shaped coverage (see Figures2 and 3).
The complete observational information regarding the final
on-source integration time for each array configuration, the
observation date, and the bandpass, phase and amplitude
calibrators are given in Table 1.

2.1.1 Calibration

As a result of the missing pointings, the 12m observations
were assigned a Quality-Assurance stage 0 “Semi-Pass” clas-
sification, and were not subject to the pipeline reduction
and Quality-Assurance stage 2 stage. The raw data, there-
fore, had to be manually calibrated. This was done in the
Common Astronomy Software Applications package casa®
version 4.4.0 with assistance from the ALMA support sci-
entist at the UK ALMA Regional Centre.? For consistency,
we also chose to calibrate the 7m array observations.

As is common practice, after calibration we created
rough images of the dataset for checking. Upon compar-
ison with observations made with the Submillimeter Ar-
ray (SMA) towards these sources (Walker et al. 2018), sys-
tematic offsets of 3.6” and 2.2”” for Cloud D and Cloud
E/F, respectively, between the bright, compact sources were
found. This was caused by a known problem with around
80 projects observed as part of Cycles 1 to 3, of which
2013.1.00617 is included. The problem was produced by the
ALMA online system, which introduced a small mislabelling
of the position of each field. This was due to an inconsistency
between the procedure for computing the coordinates that
are stored in the field table of the data by the online software,
and the procedure for computing the delay propagation and
antenna pointing coordinates. The issue only affected pro-
grams that intended to either map extended areas around a
reference (mosaics) or used offset pointings from a reference

2
3

see https://casa.nrao.edu
see http://wuw.alma.ac.uk/
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Figure 1. A three colour image of the Galactic Centre. In this image, red is 70 um emission from Herschel Hi-GAL (Molinari et al. 2010),
green is 24 um emission from Spitzer MIPSGAL (Carey et al. 2009), and blue is 8 ym emission from Spitzer GLIMPSE (Churchwell et al.
2009). Labeled are the sources of interest throughout this region, and shown as rectangles are the approximate regions of the Central
Molecular Zone (or CMZ) and the dust-ridge. Observations from the BOLOCAM Galactic Plane Survey (BGPS) is shown in a contour
of 0.5 Jy beam™! for the main panel, and contours of 0.5, 1, 2, 3, 7, 20 and 50 Jy beam™! for the zoom-in panel, which have been chosen
to highlight the regions of dense molecular gas (> 1023 cm™2; Ginsburg et al. 2013). Shown in the upper left is a zoom-in of the dust-ridge
region, which contains the sources Cloud D and Cloud E/F that are studied in this work. Shown in the lower right of full and zoom-in
images are scale-bars representing projected lengths of ~ 200 pc and ~ 10 pc, respectively, at a distance of ~8kpc (Reid et al. 2014; Gravity
Collaboration et al. 2018).

Table 1. Observations log. Shown are the sources, observation date, array configuration, total on-source integration time, and the sources
used for the band pass, flux and phase calibrations.

Cloud Date Array On-source time Band Pass Flux Phase
configuration® (hour:min) calibrator calibrator calibrator
D 26/04/2015 12m C34-1/(2) 1:11 J1733-1304, 1924-2914  Titan, Neptune J1744-3116
D 13/08/2015 7m ACA 0:35 J1733-1304 Titan J1744-3116
D 14/08/2015 7m ACA 0:42 J1733-1304 J1733-1304 J1744-3116
D 15/08/2015 7m ACA 0:29 1733-1304 J1733-1304 J1744-3116
E/F 26/04/2015 12m C34-1/(2) 2:07 J1517-242, J1733-1304 Titan J1744-3116
E/F  27/04/2015 12m C34-1/(2) 0:46 J1733-1304 Titan J1744-3116
E/F 18/08/2015 7m ACA 1:05 J1733-1304 Titan, Neptune  J1744-3116
E/F  03/09/2015 7m ACA 0:28 J1924-2914 Titan J1744-3116
E/F 04/09/2015 7m ACA 0:15 J1924-2914 Titan J1744-3116
E/F 20/09/2015 7m ACA 0:22 J1517-2422 Titan J1744-3116

a: The parenthetical numbers are added to indicate that the array configuration is expected to contain sufficient baselines to approximate
either configuration (see https://almascience.nrao.edu/observing/prior-cycle-observing-and-configuration-schedule).

position. For such maps, this problem would result in a dis-
tortion of the final image, which depends on the distance
from the reference position, the coordinates of the refer-
ence position and the size of the area mapped (for mosaics).
Therefore, in addition to the normal astrometric uncertainty,
the positions derived from these images have a systematic
error whose magnitude depends on the above factors (see

ALMA User Support Ticket ID: 6347). This issue was cor-
rected, and the raw data was again downloaded and reduced
following the previously produced scripts. A comparison be-
tween the ALMA and SMA observations, when smoothed to
a comparable angular resolution of ~ 4", showed no obvious
offset, and hence this issue was deemed to be resolved. We
do note, however, an issue still persists in all CASA versions

MNRAS 000, 1-21 (2018)
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Observational parameter Cloud D Cloud E/F
Synthesised beam:
major axis, Omajor () 1.47 1.27
minor axis, Ominor () 0.90 0.90
beam position angle, Opa (°) -23.2 0.0
Velocity Resolution, Avees (kms™!) 1.25 1.25
Continuum rms level, opms (mJy beam™1)¢ 0.4 0.6

: b
Line rms level, oms

0.1K [9mJy beam™]

0.07K [4mJybeam™!]

a: The rms level determined across the full ~8 GHz bandwidth.
b: The rms level determined within a single channel.

at the time of publication, whereby regridding from the In-
ternational Celestial Reference Frame (the default created
by TCLEAN) to the Galactic coordinate system with IMRE-
GRID produces a systematic offset of ~0.5”" across the map
(ALMA/CASA User Support Ticket ID: 14182/5379). This
issue, however, does not effect the results presented in this
work, as all the maps (i.e both lines and continuum) contain
the same systematic offset, and hence no significant relative
difference.

As with the previous calibration, rough images of the
final calibrated dataset were produced to check for abnor-
malities. Given that no further unexpected issues were then
present, the next step was to identify the channel ranges
which contain strong line emission (see online appendix).
These channels were then masked and a first-order polyno-
mial baseline was fit to the remaining channels using the
task UvconTsuB.* This task produces a “model” continuum
dataset, which is subtracted from the original dataset to pro-
duce a continuum subtracted dataset. The latter of these is
used for molecular line imaging, and the former for con-
tinuum imaging. We note that using the model continuum
dataset for continuum imaging is, however, not advised in
the imaging guidelines. To test this, maps were produced us-
ing the continuum “model” output and produced when mask-
ing the line channels in the whole cube in TCLEAN. Compari-
son of these showed that qualitatively, the flux distributions
appear to be very similar. Quantitatively, on scales of up
to 5”7 and 10” the fluxes are in agreement to within 10%
and 20%, respectively. The induced uncertainty, along with
the known issues when cleaning in CASA-4.7.0°, which was
also checked and found to cause a flux difference of ~5%
compared to images produced in the most recent version
of CASA at the time of publication (CASA-5.4.0), are ac-
counted for in section 5.4. Given that these uncertainties do
not change the results presented in this paper, and that it
was significantly faster to produce a cleaned image using
the continuum model output, and, hence, easier to test and
refine the imaging method presented below, the images pro-
duced using the continuum models for both clouds are used
throughout this work.

The calibrated data sets from the 12m and 7m ar-
rays were weighted and imaged together with clean process
TCLEAN in CASA-4.7.0. This was chosen over the standard

4 Tt is preferable to do this at this stage, rather than post imaging
with the IMCONTSUB routine.

5 See the North American ALMA Science Center Software Sup-
port Team & the CASA Team Memo #117.
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CLEAN function for its increased functionality and improved
stability. For example, testing showed that CLEAN would be-
gin to diverge from a solution for a much smaller number of
cleaning cycles compared to TCLEAN.

2.1.2  Imaging

Initially, a “basic” set of parameters (i.e. a “Hogbom” de-
convolver and a single run with large iterations) was used
in TCLEAN. The produced images, however, contained many
artefacts and had noise levels significantly higher than the
theoretical noise limits. To produce the best image quality
(e.g. with minimal side-lobe structure), the cleaning of both
the continuum maps and molecular line cubes was done in
an iterative process. The data were cleaned down to a given
noise level (with a “multiscale” deconvolver), and then the
resultant image was checked. If required, the mask was then
adjusted, and the clean continued down to a lower noise
threshold. The steps of this process are:

i) The “dirty” image was produced by setting the num-
ber of clean cycle iterations to zero. Using this dirty map,
an initial mask corresponding to some high multiple of the
noise was produced (typically ~10 orms). The mask was then
pruned such that structures smaller than a given multiple of
the beam size are removed (typically ~3beams), hence re-
moving any noise spikes taken into the mask.

ii) The initial mask was then applied in the TCLEAN func-
tion, which effectively informed clean where to find the
brightest, and therefore most likely real, structures within
the map. This procedure was repeated until a specified
threshold was reached. At the first pass of this stage, the
threshold should be reasonably high (typically ~ 10 orms),
such that only the bright structures are cleaned, and to make
sure clean does not begin to diverge early. With this choice of
a high initial threshold, fainter, extended emission remained
in the residual image.

iii) A new mask was then made from the residual image
produced in stage ii), which has a lower multiple of the noise
and a higher multiple of the beam size for pruning than used
in the previous masking stage (typically around a factor of
two lower threshold and a factor of two larger in beam size
than previously used). This mask encompassed more of the
larger scale, lower level emission.

iv) The mask from step iii) was then used in clean, with the
image from step ii) as the starting model. Using the image
as the starting model allowed clean to continue from step ii),
taking into account the information of the bright emission
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(i.e. effectively removing it before clean begins), such that
clean can focus on the lower level, larger scale emission.

The steps iii) and iv) were then repeated until an acceptable
image was reached, or the deconvolved image began to di-
verge from a sensible solution (e.g. producing large negative
bowls in the image). Cleaning the images via this method of
dynamically altering the mask, rather than directly clean-
ing the image down to a threshold of a given sigma level,
enhanced the lower level, diffuse emission, whilst suppress-
ing artefacts commonly seen in interferometric images (e.g.
large-scale striping across the image).

2.2 ALMA and single dish continuum
observations

Single dish continuum observations taken with the 10.4-
meter diameter Caltech Submillimeter Observatory (CSO),
as part of the BOLOCAM Galactic Plane Survey (BGPS;
Ginsburg et al. 2013), were used to estimate the zero-spacing
(i.e. the missing uv-coverage of the interferometric observa-
tions). The BGPS is a publicly available,® 1.1 mm survey of
dust emission in the Northern Galactic plane, covering lon-
gitudes -10° < [ < 90° and latitudes |b| < 0.5° with a typical
rms sensitivity of 30—100mJy in a ~ 33" beam. These obser-
vations were chosen as they closely match the frequency and
coverage of the ALMA observations, whilst having a moder-
ate cross-over between CSO dish size (10.4 m) and the small-
est baseline of the ALMA observations (8.9m). Crossover in
dish size is important for the combination of the single dish
and interferometric observations, such that the absolute flux
scaling of the images can be determined (i.e. so that the flux
in the single dish image is conserved).

The single dish observations had to be modified before
combination. Firstly, as the BOLOCAM observations are at
a slightly different frequency to the ALMA dish observa-
tions, the flux was scaled in accordance with,

s (|90
FBOLOCAM  \ YBOLOCAM 272 ’

where F (units of Jy beam™") and v (units of GHz) are the
continuum intensities and approximate central frequencies
of the ALMA and BOLOCAM observations, which are de-
noted in the subscript. Ginsburg et al. (2013) found that
the spectral index from the BOLOCAM to higher frequency
Herschel observations is approximately @, ~ 3.75, which is
consistent with typical dust emissivity index measurements
in the range 1.5 < B(= @y, —2) < 2.5 (e.g. Paradis et al. 2010).
The BOLOCAM image was then regridded and cropped to
the same pixel grid and coverage of the ALMA observations.
Additionally, before the combination procedure, the ALMA
image was corrected for the primary beam response, which
has the effect of enhancing emission towards the edge of the
mosaic, where the antenna response (or sensitivity) is lower.

We used the “feathering” technique to combine the
prepared BOLOCAM image and ALMA image. Feathering
works by taking the Fourier transforms of both images, sum-
ming them with a weighting factor applied to each image,

% http://irsa.ipac.caltech.edu/data/BOLOCAM_GPS/

and taking the inverse transform to produce a combined im-
age (see Cotton 2017). The weighting factor is applied dur-
ing this procedure such that the combined image has a total
flux comparable to the single dish observations. To conduct
this procedure, we used the FEATHER function from CASA-
version 4.7.0 with the default parameter set (i.e. effective
dish size, single dish scaling and low pass filtering of the sin-
gle dish observations). As a consistency check, we compared
the resultant combined images for both Cloud D and E/F to
the single dish BOLOCAM observations (accounting for the
frequency difference) and found that the total flux within
the mapped region was conserved. Shown in Figures2 and
3 are the BGPS single dish only, and 7m ACA array, 12m
array, the combined 7m ACA and 12m array and combined
7m ACA, 12m and single-dish maps towards Clouds D and
E/F, respectively.

The final combined continuum map for Cloud D has
an angular beam major axis size, minor axis size, and po-
sition angle of Omajor: 1.47", Ominor: 0.90”, and Opa: -23.2°,
respectively, with a 1oyms sensitivity of ~0.4mJy beam™!.
The final combined map for Cloud E/F has Opgjor: 1.27",
Ominor: 0.90”, and Opa: -0.0°, and a 1oyys sensitivity of
~0.6 mJy beam™!. These values are summarised in Table 2.

2.3 ALMA line observations

Since these are the first observations of Clouds D and E/F
with this spectral coverage the first step was to identify the
detected molecular lines. To do so, dirty images of the whole
continuum subtracted data cube where produced for a selec-
tion of sub-regions throughout both clouds, i.e. step i) in the
process presented in the previous section. These positions
were chosen to include both the peaks and the more diffuse
continuum emission, and thereby to eliminate any potential
bias (see Rathborne et al. 2015). To identify the molecular
transitions potentially responsible for any emission peak ob-
served above a 3 oy threshold, the frequency was firstly ad-
justed to the source velocities of ~20km s~ and ~30kms™!
for Cloud D and Cloud E/F, respectively (Henshaw et al.
2016b), and then compared to the rest frequency of the
lines within the Splatalogue spectral line database.” In some
cases multiple line transitions were present in the database
with frequencies in agreement with the observed line emis-
sion. To choose between these, we took into account several
criteria: whether any transitions from the given molecules
had already been observed; for the case of rare isotopo-
logues, whether any transitions from the main isotopologue
had already been observed; the expected intensity (either
CDMS/JPL or Lovas/AST, as listed by Splatalogue); and
whether the upper state energy of the line falls within a rea-
sonable range of 10 - 200K (i.e. similar to the highest gas
temperature within these cloud, as determined by Walker
et al. 2018).

The list of molecules detected within the clouds is pre-
sented in Table 3, and the full information regarding the in-
dividual transitions is presented in the online appendix. In
some cases, due to many lines being very close in frequency,
the selection criteria listed above did not produce a defini-
tive line identification. These cases are highlighted in the

7 http://www.splatalogue.net
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Figure 2. Continuum observations towards Cloud D. The upper left panel shows the single dish observations from the BGPS (Ginsburg
et al. 2013), overlaid with contours of [1, 1.5, 2, 2.5] Jy beam™'. The upper centre panel shows the map produced from the ACA 7Tm
array observations only, overlaid with contours of [3, 9, 15, 20, 30, 40] 0yms, where oms ~ 1.4 mJy beam™!. The upper right shows the map
produced from the 12m array observations only, overlaid with contours of [6, 9, 15] oyms, where orms ~ 0.2 mJy beam™'. The lower left
panel shows the map produced from the combined 12m and ACA 7m observations, overlaid with contours of [3, 6, 15, 25] orms, where
Oms ~0.2mJy beam™!. The lower centre panel shows the combined (or “feathered”) 7m ACA, 12m, and single dish map, overlaid with
contours of [3, 6, 9, 15] 0rms, where oyms ~0.4mJy beam~!. The lower right panel shows the SMA map for comparison, overlaid with
contours of [3, 4, 5, 6, 7] Orms, Where oyms ~6 mJy beam™! (Walker et al. 2018). Contours for each panel have been chosen to best highlight
the structure in the map, with colours from white to black showing increasing levels. Shown in the lower left of each panel is the beam
size for each set of observations. Shown in the lower right of the upper left panel is a scale bar for reference.

notes column of the online table. At the end of online table
the frequencies of lines that were detected yet not identified
are given, which have been adjusted for the assumed source
velocity such that they represent the rest frequency of the
associated transition. For comparison, in this online table
the molecular transitions that have been detected within
the “Brick” molecular cloud are presented, which have been

MNRAS 000, 1-21 (2018)

identified using complementary Band 6 ALMA observations
(Contreras et al. in prep)8.

After the cleaning procedure, the final line cubes were
converted from flux density to brightness temperature units
assuming the standard conversion in the Rayleigh-Jeans
limit, which for Cloud D and E/F is approximately 11K
(Jy beam_l)_l and 18K (Jy beam™')~!, respectively. We

8 Project: 2012.1.00133.S (Principal investigator: G. Garay)
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Figure 3. Continuum observations towards Cloud E/F. The upper left panel shows the single dish observations from the BGPS (Ginsburg
et al. 2013), overlaid with contours of [1, 1.5, 2, 2.5, 3, 4] Jybeam™!. The upper centre panel shows the map produced from the ACA
7m array observations only, overlaid with contours of [3, 9, 15, 20, 30, 40] orms, where oms ~ 3 mJy beam™!. The upper right shows the
map produced from the 12m array observations only, overlaid with contours of [6, 9, 15, 30, 50, 70] 0rms, where oyms ~0.2mJy beam™!.
The lower left panel shows the map produced from the combined 12m and ACA 7m observations, overlaid with contours of [3, 6, 15, 30,
50, 70] 0tms, where oyms ~ 0.3 mJy beam™!. The lower centre panel shows the combined (or “feathered”) 7m ACA, 12m, and single dish
map, overlaid with contours of [3, 6, 9, 15, 30, 50, 70] 0rms, Where oms ~ 0.6 mJy beam~!. The lower right panel shows the SMA map for
comparison, overlaid with contours of [3, 4, 5, 6, 9, 12] orms, Where oyms ~7mJybeam™! (Walker et al. 2018). Contours for each panel
have been chosen to best highlight the structure in the map, with colours from white to black showing increasing levels. Shown in the
lower left of each panel is the beam size for each set of observations. Shown in the lower right of the upper left panel is a scale bar for
reference.

note that, unlike the continuum, the cubes are not primary The authors suggest that the rate at which stars form in-
beam corrected, and therefore have uniform oy levels of creases linearly with increasing mass above a molecular hy-
~0.1K (~9mJybeam™!) and ~0.07K (~4mJybeam™!) for drogen column density of Ny, > 6.7 x 102! em™2. To inves-
Cloud D and E/F, respectively (see Table?2). tigate how this applies to the clouds studied here, the col-

umn density of hydrogen has been determined from the dust
continuum emission assuming the observed flux-density, S,
(Jybeam™1), at a given frequency, v, is well described by the

3 RESULTS standard equation of radiative transfer, assuming no back-
ground contribution. This is given as,

2hyv? 1
2 exp(hv/kgT) -1
where T is the dust temperature and ¢, h and kg are the

speed of light, the Planck constant and Boltzmann constant,
respectively. The opacity is defined as,

3.1 Column density analysis

The column density distribution and inferred mass above a Sy = [1 —exp(-ty)], (2)

given threshold are key parameters for many models used to
predict the rate of star formation within molecular clouds
(e.g. see Padoan et al. 2014). The simplest and most com-
monly used of these is the empirical scaling relation from
Lada et al. (2010, 2012) (also see Kainulainen et al. 2014). Ty = fod HH,MHKy NH,, 3)

MNRAS 000, 1-21 (2018)
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Figure 4. The column density of molecular hydrogen determined towards Cloud D [left panel] and Cloud E/F [right panel]. These have
been plotted on the same discretised colour-scale, and angular size scale for ease of comparison. The grey and black contours overlaid
on both panels represent column density levels of Ny, = [67, 670] x 102! ¢cm™2, respectively (one and two orders of magnitude higher than
the star formation relation from Lada et al. 2012, respectively). For clarity, a zoom-in of the core region within Cloud E/F is shown in
the upper right of the right panel, overlaid with are red + and green X symbols marking the position of the HyO and CH30H Class II
maser emission, respectively (Caswell et al. 2010; Titmarsh et al. 2016; Lu et al. 2019). Shown in the lower left of the main panels are
maps of the Herschel derived dust temperature across each region (Barnes et al. 2017; Battersby et al. in prep), which were used in the
calculation of the column density. The overlaid contours are identical to those in the main panel.

where foq is the gas-to-dust ratio (typically assumed to
be 100), upg, is the mean molecular weight per hydrogen
molecule (2.8 a.m.u; see e.g. Kauffmann et al. 2008), and the
dust opacity, «,, is given as &, = kg (V/V())B at vg =230 GHz,
with the linear absorption coefficient xp=0.9cm? g~} (Os-
senkopf & Henning 1994) and an index of f=1.75 (Bat-
tersby et al. 2011).

To obtain an estimate of the dust temperature we use
far-infrared dust continuum emission, as observed with the
Herschel space observatory. Following the method outlined
in Battersby et al. (2011), both the molecular hydrogen col-
umn density and dust temperature at each position is de-
termined by fitting the spectral energy distribution from
70-500 pm with a modified black body function (see Barnes
et al. 2017 for a full outline of the procedure). The dust tem-
perature maps across both clouds are shown in the lower left
inset panels of Figure4. These maps are interpolated onto
the higher angular resolution ALMA pixel grid, and then
used to calculate the column density at each position us-

MNRAS 000, 1-21 (2018)

ing equations2 and 3. The final column density maps for
both clouds are presented in the main panels of Figure4.
These have been plotted using the same angular size scale,
and a discretised colour-scale has been chosen such that the
different density regimes present in both clouds can be eas-
ily compared, as shown by the colour bar above the shown
panels.

Figure4 clearly shows that the vast majority of the ob-
served gas within both of these clouds sits well above the
star formation threshold from Lada et al. (2012). Overlaid
on both panels are contours of factors of 10 and 100 times the
Lada et al. (2012) threshold, i.e. Ny, = [67,670] x 102! cm—2
(shown as grey and black contours). These contours show
that both clouds have typical column densities around an
order of magnitude larger than is typically expected for
quiescent, clouds in the solar neighbourhood. We find that
the peak column density towards the centre of Cloud D is
3.1x103cm™2, and towards the south of Cloud E/F it is
3.7x10%cm 2.
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The peaks towards the south of Cloud E/F corresponds
to previously identified 24 um and 70 um point sources, and
H,0 and CH3OH maser emission sources (Churchwell et al.
2009; Molinari et al. 2010; Caswell et al. 2010; Titmarsh
et al. 2016; Lu et al. 2019), which are thought to pinpoint po-
tential sites of high-mass star formation. For clarity, zoom-
ins of these regions are also shown in Figure 4, with the posi-
tion of the H,O and CH3OH maser emission sources within
Cloud E/F shown by the green and red crosses, respectively.

The highest contour of Ny, = 6.7 x 1083 em™2 (ie. two
orders of magnitude higher than the Lada et al. 2010 and
Lada et al. 2012 threshold), is only observed towards this
region containing the only known signature of star forma-
tion across both clouds (see zoom-in region shown in the
right panel of Figure4). This contour level is close to an
alternative threshold for the formation of high-mass stars,
as determined by Krumholz & McKee (2008). These au-
thors suggest that only clouds with a density of >1gcm™2
(i.e. N(Hy) > 6x 102 ecm™2) can avoid fragmentation and,
therefore, form high-mass stars. Indeed, the mass contained
within this contour level could be up to ~600 Mg (see sec-
tion 4.2), and is, therefore, capable of forming one or several
high-mass stars (assuming a typical star formation efficiency
for a core of ~25 per cent; e.g. Enoch et al. 2008).

3.2 Moment map analysis

In the previous section, we established that star formation
only appears to be present within a very small region of one
of the two clouds, despite both having average column den-
sities of around an order of magnitude higher than has been
suggested for the onset of star formation (Lada et al. 2010,
2012). To investigate how these environmental conditions
affects the molecular line emission, this section provides an
overview of all the detected transitions and presents a sim-
ple moment map analysis to investigate their distribution
throughout both clouds.

The identified molecules, ordered by increasing molecu-
lar weight, are summarised in Table 3. The main molecular
configuration and the isotopologues have been sorted into
separate columns, and the number of transitions detected
for each is shown in the final column (also see table in on-
line version).

To conduct the moment map analysis, firstly velocity
ranges that contain all the emission above a 3oyms threshold
were identified for each line. Typically these velocity ranges
were between 15.0 — 30.0kms™! and 25.0 - 35.0kms~! for
Cloud D and Cloud E/F, respectively. However, the more
extended molecules HCO' and HCN required larger velocity
ranges of -100—130km s~!. The moment maps were then cre-
ated using the SPECTRAL CUBE package for PYTHON.?, after
masking emission below a 3 oyps threshold within the cubes.
The results of this analysis for all the identified molecular
lines can be found in the online appendix of this work.

To highlight the variation in the spatial distribution of
the emission from the identified molecules, shown in Fig-
ures5 and 6 are the maximum intensity moments (i.e. the
voxels with the highest intensity within the chosen velocity
range). In Figure5 we show all the lines detected towards

9 https://spectral-cube.readthedocs.io/en/latest/.

Table 3. The molecules and the number of detected transitions
for the Galactic Centre clouds (see table in online version for
full details on the transitions). In this table, the molecules with
cyclic, trans and gauche isomers have been grouped, and only the
constituent chemical formula is shown.

Number Detected molecule Number of
of atoms Main Isotopologue  transitions detected
2
SO 2
3
SO,
HCN 1
HCO* 1
4
HNCO 1
HDCO 1
5
CH,NH 3
HCOOH 1
HCCCH 1
6
CH3;OH 30
B3CH;0H 4
CH3SH 1
BCH;CN 8
NH,CHO 2
7
CH;3NH, 1
CH3CHO 5
8
CH3OCHO 1
9
CH3OCHj3 3
CH3;CH,OH 2
CH3;CH,CN 8

Cloud D. Given the large number of molecular transitions
identified within Cloud E/F, only several molecules, which
are discussed below, are presented in Figure6 (see online
appendix for all maps).

Emission from the observed hydrogen cyanide, HCN (3—
2), and formylium, HCO™" (3-2), transitions cover the largest
velocity range and most extended spatial coverage of all the
identified molecular lines. This is expected given that they
have similar formation conditions, and have similar theo-
retical excitation densities (i.e. “critical density”) of around
~100"7 ¢m=3.10 However, despite their high critical densi-
ties, the HCN and HCO™ maps show little correspondence
to the features identifiable within the dust continuum maps
(compare to overlaid contours on Figures 5 and 6), as is typi-
cally observed within Galactic Disc star forming regions (e.g.
Kauffmann et al. 2017c). Indeed, Rathborne et al. (2015)
found a similar result for the majority of the molecular line
transitions identified in ALMA Band 3 observations towards
the Brick molecular cloud (see Figure 1). There are physical
mechanisms that may explain this difference in molecular
line to dust continuum morphology, such as different spatial

10 Binstein coefficients listed as Aji ~8x107*s!  and
Aji ~1x1073s7! for HCN (3 - 2) and HCO™ (3 - 2), respectively.
The critical density is approximated as ncrit = Aji / (OcrossViherm )

where (O crossViherm) = 10710 cm 3571,

MNRAS 000, 1-21 (2018)
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Figure 5. Maximum intensity moment maps of all the molecular transitions detected towards Cloud D [labelled in the lower left of each

panel]. Contours overlaid on each map are of the continuum emission, which is shown in levels of [9, 15] 0ms, where oms ~0.4 mJy beam™.

1

Contours for each panel have been chosen to best highlight the structure in the map, with colours from grey to black showing increasing
levels. A zoom-in of the core region is shown in the upper right of the right panels. Shown in the lower left of each panel is the beam
size for each set of observations. Shown in the lower right of the left panel is a scale bar for reference.

distributions of the gas and dust, excitation conditions, and
optical depth effects, as well as observational reasons, such as
missing spatial scales within the interferometric images. We
can not, however, differentiate between these explanations
as we are currently missing scales larger than ~ 30", due to
the lack of single-dish observations for these transitions.
The methanimine, CHyNH (4 - 3), and cyclopropenyli-
dene, ccHCCCH (7-6) (henceforth, c-C3Hj;), molecules have
also been observed within both clouds, both of which also
appear to trace similarly compact regions within the clouds.
Within Cloud E/F the CH,NH and ¢-C3H; emission is lim-
ited to regions towards the north and south of the cloud
(i.e. lowest continuum contour on Figure6). Within Cloud
D these are much fainter, albeit still significant given the
3 orms detection threshold of ~0.3K (see Table2), and are
only observed towards the peak in dust continuum emis-
sion towards the centre of the mapped region (i.e. highest
contour on Figure5). The critical excitation density of the
CH,NH (4 - 3) and ¢-C3H; (7 — 6) transitions is similar to
that of HCN (3 —2) and HCO* (3 - 2) (~10%7 cm™3),!!
however the former appear to be selectively tracing only
the densest region within the clouds (i.e. above a contour
of ~ 2x 102 ecm™2). This could be an effect of the chem-
istry within the region, whereby CH,NH and c¢-C3H, are
less abundant than HCN or HCO®, and, therefore, more
suitable to pinpoint the density peaks. Moreover, we find
that the spectra of the CHyNH and c¢-C3H; lines towards
both clouds are simple, typically showing only single Gaus-
sian features which have velocities coincident with strong
dips in the more complex HCN and HCO* spectra. These
dips are likely a result of the high optical depth of the HCN

Il Einstein coefficients listed as Aji ~2%x107*s7!  and
Aji ~9%x107*s7! for CH,NH (4 - 3) and c-C3H, (7 - 6),
respectively.

MNRAS 000, 1-21 (2018)

and HCO™ transitions, whereby the emission is self-absorbed
at the mean centroid velocity of the region. This would point
to the CH,NH and c-C3H; being both optically thin, likely
due to their low abundances, which would make them the
ideal observational tools to probe the compact, dense gas
dynamics of high-mass molecular clouds within the Galactic
Centre.

The remaining molecular line transitions shown in Fig-
ure6 have a similar spatial morphology to that of the
CH)NH and c-C3Hjp lines, which may indicate that these
also trace a similar density regime within Galactic Centre
clouds. It is interesting to then consider why these are ex-
clusively observed within Cloud E/F and not within Cloud
D. Indeed, the remaining transitions are generally not as
bright as CH,NH and ¢-C3H; but still would be above the
3 orms detection threshold (~ 0.3 K) if they were proportion-
ally as bright, relative to the overall column density of Cloud
D, as seen in Cloud E/F. Given that Cloud E/F already con-
tains signs of embedded star formation, which Cloud D does
not, it is, therefore, likely that this cloud is more evolved
both physically and chemically. Indeed, molecules such as
sulphur monoxide (SO) are thought to originate from re-
gions that harbour embedded star formation (e.g. due to
strong shocks). It could be that the remaining molecules
that are observed within Cloud E/F do not have high enough
abundances, or the correct excitation conditions (e.g. high
enough density), within Cloud D to emit strongly within the
observed frequency range. This would be in agreement with
the single dish observations from Jones et al. (2012), which
show complex molecular species, that are not observed in
Cloud D, appear to trace Cloud E/F, as well as the evolved,
actively star-forming source Sgr B2 (e.g. CH3CCH). These
results would then suggest that the molecular line detections
within the clouds are linked to their different evolutionary
stage.
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Figure 6. Maximum intensity moment maps of all the “extended” and “moderately extended” molecular transitions detected towards
Cloud E/F [labelled in the lower left of each panel]. Contours overlaid on each map are of the continuum emission, which is shown in
levels of [7, 15, 50] orms, where oms ~0.6 mJy beam™!. Contours for each panel have been chosen to best highlight the structure in the
map, with colours from grey to black showing increasing levels. A zoom-in of the core region is shown in the upper right of each panel.
Shown in the lower right of each panel is the beam size for each set of observations. Shown in the lower right of the upper left panel is a
scale bar for reference.

4 ANALYSIS

So far the focus of this work has been on the general dust
and molecular line properties of two molecular clouds that
reside within the Galactic Centre. We will now focus on an
investigation of how the gas dynamics can limit core and
star formation by assessing the virial state of the densest

gas within these clouds.

4.1 Defining the core and proto-cluster regions

The column density maps presented in Figure 4 show a vari-
ety of dense gas structures, which we attempt to characterise
here before beginning the virial analysis. We find that the
column density peaks towards the centre of Cloud D, with
a value of ~3x10%cm™2, and that this position is also co-
incident with emission from the high density tracing molec-
ular lines (c-C3Hy and CHpNH). The column density peaks
within the south of Cloud E/F, with an order of magnitude
higher value than observed in Cloud D (~ 4x 10?*cm™~2). This
region also contains much more molecular line emission than
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Figure 7. [upper two rows| Dust continuum (measured with ALMA and the SMA) and moment maps of the ¢c-C3H, v=0 7(0,7) —
6(1,6) transition towards the Cloud D proto-cluster region (as labelled in each panel). Overlaid on upper row left panel are the ALMA
continuum contours of [6, 9, 15, 20, 25] oyms, Where s ~ 0.4 mJy beam™!. Overlaid on the second row left panel are SMA continuum
image are contours of [3, 4, 5, 6] Oyms, Wwhere os ~ 6 mJy beam™'. Overlaid on the remaining map panels are maximum intensity contours
of [0.35, 0.42, 0.49, 0.56] K. All contours increase in colours from white to grey to black. Shown are the cores d2,, d4, and e4;, that have
been identified within this region, and the average region covering all these cores, referred to as proto-cluster (region d). [lower row] The
average spectra of the c-C3H, v=0 7(0,7) — 6(1,6) transition taken from each of the regions. For reference, overlaid on each spectrum are
vertical and horizontal dotted lines, which show the systemic velocity of the as proto-cluster region, and the opmg level of ~0.1 K. Also
shown are the profiles of the Gaussian fits to each spectrum (fit parameters are given in Table 4).

Cloud D, and both a 24 pm and 70 pm point source, and H,O the dense gas properties across the entire Galactic Centre,
and CH30H maser emission (Churchwell et al. 2009; Moli- down to scales of around ~ 0.1 pc (CMZoom survey; see Bat-
nari et al. 2010; Caswell et al. 2010).12 tersby et al. 2017; Battersby & CMZoom Team 2018). The

Recently, a large survey with SMA has also observed preliminary results of this survey have already highlighted
both Clouds D and E/F. The aim of this survey is to uncover these regions as has being particularly dense (Walker et al.

2018). These authors show that these regions contain sev-
eral continuum cores, “d2”, “d4”, “el” and “e2”, with masses

12 We note that, while the south of Cloud E/F is the only region ranging between 50 —400 Mo, respectively. It is clear ALMA
with any observed star formation indicators, these indicators used now resolves these regions into many smaller cores (see Fig-
are not complete and there could be more star formation activity ures2, 3 and 4). We make use of the ASTRODENDRO pack-
that is not yet detected. It is feasible that bipolar outflows from age in python to inspect the complex structure observed
any currently unknown protostars could be detected within our within our maps (see e.g. Goodman et al. 2009). The high-

HCO* and HCN observations, yet no unambiguous outflow sig-

est identified structures within the dendrogram hierarchy
natures (e.g line-wings) were detected across the mapped regions.
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Figure 8. [upper two rows| Dust continuum (measured with ALMA and the SMA) and moment maps of the ¢-C3H; v=0 7(0,7) —
6(1,6) transition towards the Cloud E/F proto-cluster region (as labelled in each panel). Overlaid on upper row left panel are the ALMA
continuum contours of [10, 15, 20, 30, 50, 70, 90] orms, where oms ~0.6 mJy beam™'. Overlaid on the second row left panel are SMA
continuum image are contours of [3, 4, 5, 6, 9, 12] 0ms, where oms ~ 7mJy beam™!. Overlaid on the remaining map panels are maximum
intensity contours of [0.21, 0.42, 0.63, 0.84, 1.05, 1.4 , 2.1] K. All contours increase in colours from white to grey to black. Labeled are
the individual cores el,, ely, elc, ely, ele, €2, €2}, that have been identified within this region, and the average region covering all these
cores, referred to as the proto-cluster (region e). [lower two rows| The average spectra of the ¢-C3H, v=0 7(0,7) — 6(1,6) transition taken
from each of the regions. For reference, overlaid on each spectrum are vertical and horizontal dotted lines, which show the systemic
velocity of the proto-cluster region, and the opms level of ~0.07 K. Also shown are the profiles of the Gaussian fits to each spectrum (fit
parameters are given in Table5).
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(i.e. the "leaves”) were then used as a basis to define the
elliptical cores within each cloud. We identify three cores
within Cloud D, and seven cores within Cloud E/F. We as-
sign a similar nomenclature to these as Walker et al. (2018),
using the subscripts separating the original core fragments
(i.e. d2,, d4a, d4p, ela, elp, elc, ely, ele, €24, €2p). These
cores are shown on the continuum maps shown in the up-
per left panels of Figures7 and 8. Additionally, we identify
the larger structure that contains these cores as a “proto-
cluster region”, defined as an ellipse approximately covering
the column density contour of ~ 2x10%3 cm™2 (discussed fur-
ther in section4.3). In the following section, we investigate
the dynamics and stability for star formation within these
high-density gas regions.

4.2 Virial state of the cores

The virial parameter, ayjr, is the simplest and most com-
monly used quantity to describe relative importance of the
kinetic, Eyjy, and gravitational potential energy, Epot, of a
parcel of gas. In the idealised case of a spherical core of
uniform density supported by only kinetic energy (i.e. no
magnetic fields), the virial parameter takes the form (e.g.
Bertoldi & McKee 1992),

2Exin 507, R

=a

line
ZZkin , 4
o] M @

Qyir =

where R is the radius of the core, M is the total mass of the
core, Ojipe is the line-of-sight velocity dispersion of a molec-
ular line, the G is gravitational constant. The factor a ac-
counts for systems with non-homogeneous and non-spherical
density distributions, and for a wide range of cloud shapes
and density gradients takes a value of ¢ = 2 + 1 (Kauffmann
et al. 2013). In the above framework, a value of ayir < 2 in-
dicates the cloud is sub-virial and should collapse, whereas
for a value of ayjr > 2 the cloud is super-virial and should
expand. The cloud is stable when ayir = 2.

The core masses for both clouds have been calculated
from the column density map shown in Figure4, for which
we use the Herschel derived dust temperatures, and are pre-
sented in Tables4 and 5. Walker et al. (2018) found higher
gas temperatures of 86 K towards core d2, and >150K to-
wards core el, which would lower the mass estimates by a
factor of several to an order of magnitude. Estimates of the
core masses using these higher temperatures for the cores
d2, and el, found here are shown in Tables4 and 5, respec-
tively. We apply this higher temperature to only the core el,
within core e, as it is associated with both an infrared point
source and maser emission, and hence is likely heated by an
embedded protostar. Whereas, the remaining cores, elp_e,
appear to be devoid of star formation, and are therefore ex-
pected to have temperatures more similar to those derived
using the Herschel observations (see Tables4 and 5).

The line-of-sight velocity dispersion for use in equation 4
is best derived from a molecular line that reliably probes
both the entire core region and the individual cores. We
have, therefore, chosen the c-C3H, v=0 7(0,7) — 6(1,6) tran-
sition, since it is readily detected in both the cores and in
proto-cluster regions, and also has relatively simple spectral
profiles (i.e. single velocity components, no sign of broad line
wings from outflows). The moment maps for c-C3H,, along
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with the spectrum averaged across each core is shown in
Figures 7 and 8.

The PYTHON package PYSPECKIT ° was used to a fit
a Gaussian profile to the emission above the opys level
of each spectra. Given the simplicity of the observed pro-
files, the fitting procedure provided robust fits for a range
of initial guesses for the peak brightness temperature,
centroid velocity and velocity dispersion required by the
PYSPECKIT.SPECFIT package. The results are shown on Fig-
ures7 and 8 and the fit parameters are given in Tables4
and 5. Given that the measured velocity dispersion, ogps
is similar in magnitude to the velocity-resolution, Aves =
1.25kms™! the velocity-resolution has to be removed in
quadrature before the velocity dispersion can be used in the
virial equation,

13

AVZ
_ 2 res
Oline = obs ~ 8In2 " (%)

The values of the velocity dispersion presented in Tables 4
and 5 have the velocity-resolution subtracted (i.e. Tjipe)-

All the necessary variables in equation 4 have now been
derived, allowing the virial parameter for each core to be cal-
culated. These are shown in Tables 4 and 5, where the values
in the parenthesis for cores d2, and el have been calcu-
lated using the higher temperatures determined by Walker
et al. (2018). When including these higher virial estimates,
we find that half (5/10) of the cores have the correct criteria
for being gravitationally bound and susceptible to collapse
(ayir < 2).

4.3 Virial state of the proto-clusters

Along with assessing the dynamics of the individual cores,
it is interesting to consider if these regions collectively could
go on to form a part of an Arches or Quintuplet-like Galac-
tic Centre YMC (Espinoza et al. 2009; Harfst et al. 2010).
Henceforth, we will refer to the larger ”"core d” and ”core e”
regions, which contain the smaller scale cores (see Figures 7
and 8), as proto-clusters. We assume that these cores will
form the central part of the final cluster; i.e. in order to
reach a YMC mass, we expect that stars will also form from
the global gas reservoir (caveats discussed in section5.4).

As a simple investigation into the proto-cluster dynam-
ics, we determine the virial state of the proto-clusters using
the method of the previous section. The spectrum for these
regions and the Gaussian fit are shown in Figure7 and 8,
and the mass, parameters of fit and the determined virial
parameter are shown in Tables4 and 5. As before, we esti-
mate the virial parameter using both the Herschel derived
dust temperature and the higher temperatures determined
by Walker et al. (2018) (as shown in parentheses in Tables 4
and 5). We find virial parameters of ayir(0jipe) = 1.7 £ 1.1 for
Cloud D, and ayir(diipe) = 0.5 £ 0.3 for Cloud E/F (quoted
uncertainties of 65 per cent; see section5.4). These values
suggest that the proto-clusters are susceptible to gravita-
tional collapse.

An alternative analysis would be to determine the rel-
ative motions of the cores themselves to determine the rel-
ative velocity dispersion, oy, rather than taking the ve-

13 Version: 0.1.20, https://pyspeckit.bitbucket.io



16 A. T. Barnes et al.

Table 4. The properties of the cores and proto-cluster within Cloud D (see Figure 2). Shown is the measured radius of the major and
minor axis of the ellipse used to define the cores, effective radius when assuming a spherical geometry, integrated continuum flux, the
mean Herschel dust temperature, gas mass, number density, and the free-fall time. Also shown are the results from the Gaussian fitting
procedure of the c-C3H, molecule towards each core, of the peak brightness temperature, centroid velocity, velocity dispersion. Shown in
the second to last row is the estimated Mach number, M = ojjpe/cs, where the gas sound speed is equal to cg = (kBT/ppmH)O‘S, where
the mean molecular weight per free particle up = 2.33 (see e.g. Kauffmann et al. 2008). Lastly, the virial parameter is given in the final
row.

Property Proto-cluster Core

d d2, d4,  d4y
Minor radius, Rminor () 9.7 3.1 1.8 2.0
Major radius, Rmgjor (") 4.8 2.1 1.7 1.5
Effective radius, Reg (pc) 0.3 0.11 0.07  0.07
Integrated flux (Jy) 0.5 0.11 0.06 0.04
Dust temperature (K) 19.2 19.3 19.0 19.1
Mass, M (M) 559 119 (200¢ 63 46
Density, ny, (10° cm™) 0.7 3.4 (0.6)¢ 59 4.3
Free-fall time, #g (10* yr) 11.4 5.3 (12.8)¢ 4.0 4.7
Peak brightness temperature, Tg (K) 0.1 0.2 0.2 0.2
Centroid velocity, Vs (km s’l) 26.2 27.8 24.5 24.6
Velocity dispersion, o= (kms™!) 1.7 1.4 1.0 1.5
Mach number, M 6.4 5.3 (2.5)¢ 3.7 5.6
Virial parameter, ayir 1.7 2.0 (11.5)¢ 1.2 3.9

a: The parameters shown in parentheses have been calculated using the higher gas temperature estimate of 86 K determined by Walker
et al. (2018).

Table 5. The properties for cores and proto-cluster within Cloud E/F, identical to Table4 (see Figure 3).

Property Proto-cluster Core

e el, ely el ely ele e2, e2y
Minor radius, Rminor (") 114 1.4 0.9 0.7 1.2 1.3 1.2 1.0
Major radius, Rmajor (") 8.8 1.0 0.8 0.6 0.9 1.0 1.1 0.9
Effective radius, Reg (pc) 0.42 0.05 0.04 0.03 0.04 0.05 0.05 0.04
Integrated flux (Jy) 2.58 0.27 0.06 0.02 0.04 0.05 0.13 0.08
Dust temperature (K) 18.6 18.9 18.8 18.8 18.6 18.6 184 18.3
Mass, M (Mp) 2993 311 (28)¢ 72 19 49 59 148 89
Density, ny, (105 cm™3) 1.4 832 (T.7)% 52.9 343 209 200 46.1 53.4
Free-fall time, #5 (10* yr) 8.2 11(35¢ 1.3 17 21 22 14 13
Peak brightness temperature, Tg (K) 0.2 0.9 0.9 0.7 0.5 0.6 0.5 0.3
Centroid velocity, Visr (km s_l) 29.9 31.2 29.0 294 294 298 28.1 31.1
Velocity dispersion, o (kms™!) 1.7 1.1 2.0 2.1 1.3 1.2 1.2 2.0
Mach number, M 6.6 44 (1.6)¢ 7.5 7.9 5.2 4.6 4.6 7.7
Virial parameter, ayir 0.5 0.2 (2.7)¢ 2.2 6.9 1.8 1.3 0.5 2.0

a: The parameters shown in parentheses have been calculated using the higher gas temperature estimate of 150 K determined by Walker
et al. (2018).

locity dispersion from the average spectrum of the proto-
cluster region. To do this, we calculate the difference of
all the core centroid velocities from the centroid velocity
of the proto-cluster, and define the relative velocity dis-
persion, as the standard deviation of core centroid veloc-
ities. We find that the relative velocity dispersion for the
cores in Cloud D is o = 1.5kms™! and for Cloud E/F
is 0] = 1.0kms™!, which are both lower than the values
previously determined when taking the average spectrum

the proto-cluster both regions appear to be gravitationally
bound (ayir < 2).

5 DISCUSSION

The observations presented in this work have allowed us to
determine several physical properties of the so-called Galac-
tic Centre dust-ridge clouds (i.e those that harbour only the

across the cores (~1.7kms™!). To calculate the virial pa-
rameter, we use the relative velocity dispersion with the
effective radius and mass measurements (see Tables4 and
5). We find that the virial parameter calculated using this
method for Cloud D is ayir(ope) = 1.5 = 1.0 and for Cloud
E/F is avir(0re)) = 0.2 £ 0.1 (uncertainties of 65 per cent;
see section 5.4). Even with the large uncertainties on these
estimates virial parameter, which could be up to factors
of several, we find that when using the relative velocities

early stages of star formation), on scales that have not been
previously investigated. In this section, we discuss how these
observations advance our understanding of star and cluster
formation mechanisms within this extreme environment.

5.1 The mass distribution for young mass cluster
formation

It has been previously discussed that the density distribu-
tions of progenitor YMCs can hold clues regarding their for-
mation mechanisms. For example, by comparing the mass
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surface density profiles of several YMC progenitors through-
out the Galaxy, Walker et al. (2016) showed that the
conveyor-belt formation scenario appears to be the most
likely formation mechanism across all environments (also see
Walker et al. 2015). Here we can use the higher resolution
observations presented in this work, along with more recent
observations of other Galactic Centre star-forming regions,
to test this result on much smaller spatial scales than previ-
ously possible.

To create the mass surface density profiles for the dust-
ridge clouds, we measure the masses at increasing radii
from various regions within the mapped regions. For this
we use the column density maps (see Figure4), and define
the aperture centres as the cores identified in section 4. Fig-
ure 9 shows the average profiles from apertures within both
clouds as solid and dashed blue lines, and the extrema as
the shaded blue regions. Also shown in this Figure are the
mass surface density profiles of embedded sources within
an actively star-forming Galactic Centre cloud, Sagittarius
B2 (henceforth Sgr B2), that have been recently identified
using ALMA observations (Ginsburg et al. 2018). These au-
thors define the identified embedded sources as young stel-
lar objects (or YSOs), and H 11 regions if they are associated
with known radio sources (e.g. from De Pree et al. 1998),
and assign them masses according to the following. To be
detectable, the H1I regions are assumed to be illuminated
by BO or earlier stars that have masses above 20 M. Each
source is, therefore, individually assigned the average mass
above this limit, assuming some initial mass function, which
they calculate to be 45.5 M. The remaining YSO sources
are thought to be proto-stars with masses of 8 —20 Mg that
are embedded within warm envelopes. These are individually
assigned the average within this mass range of 12 Mg, again
assuming some initial mass function distribution. These val-
ues can then be corrected by factors of 14% for the YSOs
and 9% for the H1I regions to account for the limited ini-
tial mass sampling (see Ginsburg et al. 2018). We use these
corrected masses, i.e. assuming each source can be thought
of as an individually embedded sub-cluster, and the source
positions to create the mass surface density profiles shown
in Figure 9. Again we vary the aperture centres to create the
variation shown as the shaded regions, where the solid lines
are the mean values from the variation.

Figure 9 shows that the gas within Cloud D is the least
centrally concentrated on all scales, having a shallow profile
from ~1pc down to ~0.01pc scales. Cloud E/F has a fac-
tor of several higher mass surface density at all measured
radii, and also on average a flatter mass surface density pro-
file than in Sgr B2. The upper limit of the shaded region for
Cloud E/F, which is taken from the core el region (shown as
the dashed line in the Figure), however, does show a steep-
ening at around ~0.1pc that levels off at ~0.04 pc. Inter-
estingly, this core profile appears to be similar to the Sgr
B2 YSO profile within the ~0.03 —0.1 pc range (i.e. staying
within the shaded region for the Sgr B2 YSOs). The Sgr B2
YSO profile does, however, have on average a steeper profile
than the clouds on larger scales. The Sgr B2 H 11 regions then
have an even steeper profile, which typically has factors of
several higher mass surface density values than both the Sgr
B2 YSO and core el, profiles. Also shown as dashed green
lines on the Figure are the profiles centred on Sgr B2 main
(1=0.667°, b=-0.035°) and Sgr B2 north (I=0.677°, b=-
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Figure 9. Plot of the mass surface density as a function of radius
for several progenitor YMCs within the Galactic Centre. Shown
as blue lines are the dust-ridge molecular clouds observed in this
work, determined from the column density maps presented in Fig-
ure 4. The shaded blue region represents the uncertainty produced
by varying the aperture centre between the identified cores. The
red and green lines show the mass distribution of the young stel-
lar objects (YSOs) and H 11 regions identified within Sgr B2 from
recent ALMA observations (Ginsburg et al. 2018). Based on the
detection limits of these observations, we assume that the unre-
solved YSOs and H1I regions have masses of 12 Mg and 45.5 Mg,
respectively, which are corrected by factors of 0.14 and 0.09 to
account for the limited initial mass sampling (see Ginsburg et al.
2018). The dotted blue line shows the profile centred at the the
densest observed core region. The dotted green lines highlight
well know regions within Sgr B2, as labelled. Also shown as a
grey dashed line is the M « R™2 relation.
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0.028°), the former representing the densest concentration
of protostars within the Sgr B2 region. We then find that
the cores within the dust-ridge clouds are on average signif-
icantly less dense than the protostars identified within Sgr
B2 (approximately two orders of magnitude less dense when
comparing to Sgr B2 main), which is in agreement with the
results of (Walker et al. 2015, 2016).

In summary, and returning to the YMC formation sce-
narios discussed in section 1, Figure9 shows a progression
from low-concentration to high-concentration that is corre-
lated with the degree of star formation activity. If one as-
sumes that each of the regions investigated here will end up
as a similarly-concentrated central cluster, and that they,
therefore, represent different steps of the same evolutionary
sequence, this result would be consistent with the conveyor-
belt mode of YMC formation (i.e. the concurrent collapse of
the gas and stellar objects within a molecular cloud to form
a condensed stellar cluster).

5.2 The critical density for star formation

On a global (~100pc) scale, the Galactic Centre is under-
producing stars given its mass of dense molecular gas when
based on relations calibrated for local environments (e.g.
Longmore et al. 2013a; Barnes et al. 2017). This result would
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suggest that the density at which star formation proceeds
within this environment is higher than that observed within
the disc. For example, a critical density for star formation of
~10* cm™3 has been suggested for disc star-forming regions
(Lada et al. 2010, 2012), whereas critical densities as high
as ~107 cm™ have recently been proposed for the Galac-
tic Centre (Rathborne et al. 2014b; Kruijssen et al. 2014;
Federrath et al. 2016; Kauffmann et al. 2017b; Ginsburg
et al. 2018). As discussed in the review by Longmore et al.
(2014), this higher critical density for star formation within
the Galactic Centre makes this the ideal environment for the
formation of YMC progenitors, because more massive grav-
itationally bound molecular clouds can form before they be-
gin to form a significant amount of stars. This is key as once
stars form their stellar feedback quickly disperses the cloud,
and hence limits the contained mass within the resultant
stellar cluster.

In order to see how the observations presented in this
work fit into this picture, in the left panel of Figure 10 we
plot the mass and radius of the cores identified within Cloud
D in blue, and Cloud E/F in red, with those found by Walker
et al. (2018) and Lu et al. (2019) using the SMA, and for the
larger scales we plot the clouds from Walker et al. (2015).
Here we make the distinction between the cores being the
smallest scale structures we identify, and the proto-clusters
being the whole core d and e regions (see Figures7 and 8).
Overlaid as diagonal lines are the densities, and for refer-
ence we highlight the critical number density for star for-
mation for the Galactic disc (Lada et al. 2010, 2012; Kain-
ulainen et al. 2014) and Galactic Centre (Kruijssen et al.
2014; Kauffmann et al. 2017b; Krumholz et al. 2017). This
plot shows the Galactic Centre clouds have values between
these critical star formation density limits on both the ~ 1 pc
and <1pc scales. We find that the mean density on the
smallest scales, for the core regions, within Cloud D and
E/F is 5x10° cm™3, and 5x10%cm™ (see Table5), with
only the highest mass cores within Cloud E/F approaching
the higher Galactic Centre critical density (density within
core el, is 8x 107 cm™3). Given that we know the Cloud
E/F core region contains signs of the very early stages of
star formation, this would imply a slightly lower than pre-
viously suggested critical density for star formation within
the Galactic Centre of ~5x10°cm™. Nonetheless, this is
still much larger than the critical density within the Galac-
tic Disc, and hence shows that the density above which stars
form should vary across the Milky Way (i.e. ~ 10* cm™3 in
the Galactic disc, ~10°7 cm™3 in Galactic Centre; e.g. also
see Rathborne et al. 2014b).

The possibility of an environmentally dependent crit-
ical density for star formation was recently tested within
the actively star-forming CMZ proto-YMC Sgr B2, by com-
paring young stellar objects identified with ALMA to the
high spatial resolution dust continuum observations, pro-
duced by combined Herschel space observatory observations
(SPIRE) with Caltech Submillimeter Observatory (SHARC;
for 350 mm) and James Clerk Maxwell Telescope (SCUBA,
for 450 mm) observations (Ginsburg et al. 2018). These au-
thors find that there are no YSOs below a column density of
10%cm™2, and that half the YSOs reside at NH, >10%cm™2
(i-e. several orders of magnitude higher than the Lada et al.
2012 threshold). These results are in agreement with those
presented here, whereby we only find cores that show the

early signs of star formation (i.e. masers; see Figure 4) above
a column density of Ny, ~ 10%* cm™2. Together, these re-
sults, therefore, provide further evidence for a higher column
density threshold for star formation within the extreme en-
vironment of the Galactic Centre.

5.3 Investigating the virial state

Up until this study, previous molecular line observations to-
wards Galactic Centre molecular clouds have not been able
to identify a molecule that is well correlated with the dust
continuum emission (e.g. Rathborne et al. 2015; Lu et al.
2017). Here, for the first time, we have been able to iden-
tify several molecular lines that are selectively tracing both
the quiescent and actively star-forming dense gas within the
Galactic Centre, and that appear to be optically thin and
have relatively simple line profiles (i.e. no inflow or outflow
signatures). In section 4.2 we use these tools to reliably as-
sess the virial state of the cores within the clouds, the results
of which are summarised in the right panel of Figure 10. We
find that half of the identified cores have ayi; < 2, and are,
therefore, within the limits of gravitational collapse for a
non-homogeneous and non-spherical parcel of gas (see equa-
tion4). Given the spatial scales of the ALMA observations
(~0.05pc), we would expect these core regions to form sin-
gle stars, or small bound stellar clusters, on the order of a
few to a few tens of solar masses assuming a star formation
efficiency of a few tens of per cent.

In section 4.3 we determined the virial parameter from
the relative core velocities, the results of which are also pre-
sented on Figure10. On this plot the oy label identifies
the markers where the relative velocity dispersion has been
used, as opposed to the velocity dispersion determined from
the line-width of the region (ojjpe). We find that the proto-
cluster regions within both clouds, appear to be unstable to
gravitational collapse, and most significantly for the proto-
cluster region within Cloud E/F (ayj; ~0.1).

We find that the virial ratios for the cores within Cloud
E/F, and the proto-cluster region as a whole, are typically
lower than those for Cloud D. This would be representative
of the more evolved state of Cloud E/F, as highlighted by
the higher quantity of observed star formation tracers (see
Figure 4). This could be explained by a scenario, where the
cores have condensed individually and become more grav-
itationally bound over time, and in addition, the proto-
cluster region, as a whole, has globally collapsed to become
more centrally concentrated. This would be consistent with
a conveyor-belt scenario for cluster formation in the Galactic
Centre.

5.4 Sources of uncertainty

5.4.1 Uncertainty propagation on mass and virial
estimates

We adopt a higher than typically assumed uncertainty of
20 per cent in the absolute flux scale of the ALMA obser-
vations, which accounts for the additional uncertainties in-
duced by using the continuum model in the clean process,
and the know issue when cleaning in CASA-4.7.0 (see North
American ALMA Science Center Software Support Team &
the CASA Team Memo #117). In section 3.1 we assumed a
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Figure 10. [left panel] The gas mass determined for each of the core regions as a function of radius. Blue points are the cores identified
in this work, purple and gold are CMZ cores identified using the SMA by Walker et al. (2018) and Lu et al. (2019), respectively, and
dust-ridge clouds from Walker et al. (2015). The mass and virial ratio determine using the higher temperature estimates for the cores
el, and d2, are show (see text). The x-axis error bars represents an uncertainty of 20 per cent on the radius for the source defined in this
work, and 10 per cent for the sources defined by the other authors. Larger uncertainties have been chosen for this work to incorporate
the by-eye estimate of the source boundaries. However, this uncertainty should only serve as an estimate, as it is in practise difficult to
definitively determine source boundaries due to the hierarchical structure of the interstellar medium. The y-axis error bars represent an
uncertainty of 60 and 65 per cent on the mass and virial ratio, respectively (see section 5.4). Overlaid are diagonal grey lines that show
the corresponding molecular hydrogen number density. Highlighted are the critical density thresholds for star formation, which appear
to accurately predict the star formation rate for Galactic Disc star-forming regions, (Lada et al. 2010, 2012; Kainulainen et al. 2014)
and the higher critical density that has been determined for the Galactic Centre (Kruijssen et al. 2014; Kauffmann et al. 2017b). [right
panel] The virial parameter of the core regions as a function of radius, as calculated using the velocity dispersion determined from the
¢-C3H, v=0 7(0,7) — 6(1,6) transition fits. Data taken from the same sources as the left panel are also included here for comparison,
using identical symbols and colours. The light and dark grey shaded regions show ayir < 2 and ayjr < 1, which represents the regimes of
gravitational instability assuming a typical and constant cloud density distribution, respectively (Kauffmann et al. 2013).

gas-to-dust ratio of 100, but several authors have shown that discussed below, which are typically larger in magnitude yet
there is a gradient of decreasing gas-to-dust ratio with de- more difficult to estimate.

creasing galactocentric radius (Schlegel et al. 1998; Watson

2011), a trend which has also been observed in other star-

forming galaxies (Sandstrom et al. 2013). Assuming that the 5.4.2  Additional uncertainties

gas-to-dust ratio is inversely proportional to the metallicity,

the gas-to-dust ratio within the central kpc of the Galaxy Firstly, there are several sources of uncertainty stemming
would be ~50 (e.g. Sodroski et al. 1995). In light of this, from our assumptions of the physical properties of the cloud.
we estimate the uncertainty on the gas-to-dust ratio to be The most significant of these is the use of the Herschel de-
~50per cent. Following Sanhueza et al. (2017), we assume rived dust temperatures to calculate the mass (and column
an uncertainty of 30per cent dust opacity, and following density) across both of the mapped regions (see Figure4).
Lu et al. (2019) we assume an uncertainty in the distance Whilst these temperature maps are accurate over the large
of +100pc (1.2per cent). These uncertainties in the dust spatial scales probed by the Herschel observations (~30”), it
opacity, the gas-to-dust ratio, dust emission fluxes, and the is very likely that temperature deviations are present on the
distance propagate to give an uncertainty of ~ 60 per cent in smaller scales probed by the ALMA observations presented
masses. We estimate that the measured angular sizes have here (~1”). It is not possible to quantify how these devia-
uncertainties of 20 per cent as a result of the by-eye identifi- tions will affect our results, but it is worth noting that the
cation of the cores, whilst the fitting errors of the line widths largest expected variations have been accounted for by using
are of the order 5 per cent. These propagate to give an uncer- the SMA formaldehyde derived temperature measurements
tainty of ~65 per cent on the virial parameter. These uncer- (i.e. for cores d2, and el,; see Walker et al. 2018).

tainties are represented as error bars in Figure9. These do There are also several uncertainties produced in the
not, however, include the additional sources of uncertainty virial parameter by our assumed physical source proper-

ties. We currently do not know the strength of the magnetic
field within the clouds investigated here, which could provide
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support against gravitational collapse (e.g. Girichidis et al.
2018), and thereby increase the calculated virial parameters
(see Kauffmann et al. 2013). Indeed, magnetic fields over an
order of magnitude higher than typically observed within
disc molecular clouds have been recently found within the
Brick molecular cloud (~ 5000uG; Pillai et al. 2015), al-
though it is not clear if these are sufficient to affect the star
formation given the high densities and turbulent conditions
within the Galactic Centre (Kruijssen et al. 2014; Federrath
et al. 2016; Barnes et al. 2017). Shear or tidal forces would
also provide support against gravitational collapse, yet have
not been accounted for in the virial analysis presented here.
These are thought to play a more significant role within the
dust-ridge clouds than is typically seen within Galactic disc
clouds, due to their association with an orbital stream within
the Galactic Centre that can impart strong shear forces (e.g.
Kruijssen et al. 2014; Sormani et al. 2018; Kruijssen et al.
2019). Another mechanism that we have not accounted for
in the virial analysis is the effect of external pressure, which,
again, is elevated within the Galactic Centre; two to three or-
ders of magnitude greater than typically found in the Galac-
tic disc (see Walker et al. 2018). This external pressure would
have a similar effect to magnetic fields and shear forces, and
cause the regions to have to appear super-virial, because it
would equilibrate with the external force. So the kinetic en-
ergy density would be higher than its potential energy. It is
difficult to assess on what scales these two physical effects
would predominantly act, and how that would change the
results and interpretations presented in this work.

Additional uncertainties arise from observational and
data processing limitations. Firstly, despite being some of
the highest spatial resolution (~0.04pc), largest (>>1pc),
and highest sensitivity observations of entire molecular
clouds within the Galactic Centre, the data presented here
still have limitations. It is likely that the identified cores frag-
ment further on spatial scales much smaller than the beam
size, and that narrower linewidths may be found with better
spectral resolution (see Kauffmann et al. 2017a). Secondly,
in the virial analysis we have used the combined single-dish
and ALMA image to calculate the masses, yet the ALMA
only image for the c-C3H, molecular line. Using the ALMA
only continuum image would lower the mass estimates on
the individual core scales of ~0.05pc by ~ 10 per cent, and
on the large core e region scale of ~0.5pc by ~ 50 per cent.
Thirdly, we have not conducted a background subtraction
when determining the core masses, hence attributing all the
mass along the line of sight through the cloud to the cores.
We have investigated this effect by subtracting different con-
tinuum contour levels before determining the mass, and we
find that this does not significantly affect the results of this
work.

Finally, an additional caveat arises from our assump-
tion that the clouds studied here will go on to form YMCs.
This is a justifiable assumption, given that the two Galactic
Centre clouds studied here harbour the ideal initial condi-
tions for YMC formation (i.e. gas masses of ~ 105 Mo, radii
~ 1pc, avir < 1, and, crucially, little-to-no signs of ongoing
star formation; Longmore et al. 2014). Future simulations
including the effects of star formation on molecular clouds
entering the Galactic Centre may be able to further con-
strain the likelihood that similar clouds to those observed
here will form bound YMCs (e.g. based on Kruijssen et al.

2015; Sormani et al. 2018; Kruijssen et al. 2019; Dale et al.
2019).

6 CONCLUSIONS

We have investigated the mass and density distribution,
along with the dynamical state of two molecular clouds
within the Galactic Centre. These were chosen to be high-
mass (~10° Mg of gas), compact (radius of ~ 1 pc), and glob-
ally gravitationally bound, and hence represent good candi-
date precursors to the most massive clusters currently form-
ing in the universe today — called young massive clusters
(~10* Mg of stars). Furthermore, these clouds are known to
harbour only the earliest stages of star formation, a neces-
sary condition to distinguish between the theories of cluster
formation.

We present high-angular resolution (~1""), high-
sensitivity continuum (~1mJybeam™!) and molecular line
(~0.1K) ALMA band 6 observations of these clouds. We use
the continuum observations to identify the compact, high-
density core regions within the clouds, and derive their phys-
ical properties. The current mass surface density profiles of
the clouds are one to two orders of magnitude below com-
parable actively star-forming molecular clouds and young
massive clusters present within the Galactic Centre. Fur-
thermore, we find evidence for a higher threshold density for
star formation within the Galactic Centre of ~100~7 cm™3,
orders of magnitude higher than is estimated for molecular
clouds within the Galactic disc. This result has important
implications for how we understand and characterise star
and cluster formation within other extreme environments,
such as within starburst and high redshift galaxies.

In agreement with previous molecular line observations
of the Galactic Centre, we find that hydrogen cyanide,
HCN (3-2), and formylium, HCO* (3 - 2), molecular tran-
sitions are extended across the clouds, and are spatially un-
correlated with these dust continuum cores (e.g. Rathborne
et al. 2015). However, uniquely, we do find a suite of optically
thin molecular lines, such as methanimine, CH,NH (4 — 3),
and cyclopropenylidene, c-C3H, (7-6), that selectively trace
the quiescent and actively star-forming dense gas within the
Galactic Centre.

The c-C3Hjline is used to conduct a virial analysis of the
identified core regions. We find that half (5/10) are within
the limits of gravitational collapse for a non-homogeneous
and non-spherical parcel of gas (ayir < 2). We also investigate
the “proto-cluster” dynamics by using the ensemble of cores
within each cloud. To do so, we use the standard deviation
of the relative centroid velocities of cores as a proxy for the
velocity dispersion, and calculate the virial parameter. We
find that both clouds contain proto-clusters that are sub-
virial, and, therefore, if not additionally supported, would
also gravitationally collapse (ayir < 2).

Given that we know that star formation has very re-
cently begun within these clouds, these results favour a
conveyor-belt scenario for cluster formation. In this scenario,
the molecular cloud has an initial density distribution lower
than the stellar distribution of the final YMC, and star for-
mation can occur throughout the cloud following its hierar-
chical density distribution. As the system evolves, both the
gas and the embedded protostellar population concurrently
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globally collapse, until all the gas has formed stars or been
expelled, and the final YMC density is reached.
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APPENDIX A: ONLINE SUPPLEMENTARY
MATERIAL

Table A1 shows the molecular line transitions detected
within both clouds. For referencing the large number of
molecular transitions, they are grouped according to col-
umn density above which emission is observed. These are
categorised as follows: 1) “extended”: for molecules that are
seen above a column density of ~ 1 x 1022 cm™2 cm ™2, such
that they are seen across the entire mapped region of 2—8 pc;
2) “moderately extended”: for molecules that are seen above
a column density of ~ 2 x 1023 cm™2, such that they are ex-
tended across a 1 — 2 pc region; 3) “compact”: for molecules
that are seen above a column density of ~ 6x10% cm™2 cm~2,
such that they are trace only <1 pc regions. These cate-
gories for all molecular line transitions within both clouds

are shown in the table from the online appendix.
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Cluster formation in the Galactic Centre 25

Table A1l. Table of the molecules identified in Cloud D and E/F . Also show are those identified within the Brick using a similar spectral
set-up with ALMA (Contreras et al. in prep). Columns show the molecule name, the transition, the frequency, the upper energy level

of the transition, the extent of the emission within each of the clouds, which have been abbreviated (‘c’ = core,

‘me’ = moderately

extended, and ‘e’ = extended), and additional notes where the symbol key is given below the table. Shown at the end of the table are
the rest frequencies of the unidentified line transitions, which have been adjusted for the approximate core velocity of ~29kms~!

Cloud Cloud

Molecule Transition Rest Upper D E/F Brick notes

frequency energy

(GHz) (K)
SO 3z v=0 5(6) — 4(5) 251.83 51 - me me
SO 3% v=0 3(4) - 4(3) 267.20 29 - c -
SO, v=0 13(1,13) - 12(0,12) 251.20 82 c
SO, v=0 8(3,5) — 8(2,6) 251.21 55 - c -
HCN v=0 J=3-2,F=3-2 265.89 26 e e e
HCO* (3-2) 267.56 26 e e e
HDCO 4(1, 3) - 3(1, 2) 268.29 40 - c - *
HNCO v=0 12(1,11) - 11(1,10) 264.69 126 - c
t-HCOOH 3(2,2) - 3(0, 3) 265.24 19 - c
c-C3H, v=0 7(0,7) — 6(1,6) 251.31 51 c me me Hox
NH,CHO 12(2,11) - 11(2,10) 253.17 91 - c -
NH,CHO 13(0,13) - 12(0,12) 267.06 91 - c -
CH,NH 7(1,6) - 7(0,7) 250.16 97 - c -
CH,NH 6(0,6) — 5(1,5) 251.42 64 - c -
CH,;NH 4(1,3) - 3(1,2) 266.27 40 c me me
CH3NH, (0)A1 - 5(0)A2 265.76 45 - me me
CH;3SH v=0 103) - 9(3) E 252.88 107 - c - *
CH;0H vt=0 14(3,11) - 14(2,12) 249.89 293 - c -
CH;0H vt=0 13(3,10) - 13(2,11) 250.29 261 - c -
CH;0H vt=0 11(0,11) - 10(1,10) 250.51 153 - me -
CH;30H vt=0 12(3,9) - 12(2,10) 250.64 231 - c -
CH;0H vt=0 11(3,8) - 11(2,9) 250.92 203 - c -
CH;0H vt=0 10(3,7) - 10(2,8) 251.16 177 - c -
CH;0H vt=0 9(3,6) — 9(2,7) 251.36 154 - c -
CH;0H vt=0 7(3,4) - 7(2,5) 251.64 115 - c -
CH;0H vt=0 6(3,3) — 6(2,4) 251.74 99 - c -
CH;0H vt=0 5(3,2) - 5(2,3) 251.81 85 - me -
CH;30H vt=0 4(3,1) - 4(2,2) 251.87 73 - c -
CH;0H vt=0 5(3,3) — 5(2,4) 251.89 85 - c -
CH;0H vt=0 6(3,4) — 6(2,5) 251.90 99 - c -
CH;0H vt=0 4(3,2) - 4(2,3) 251.90 73 - c -
CH;30H vt=0 3(3,0) - 3(2,1) 251.91 64 - c -
CH;0H vt=0 3(3,1) - 3(2,2) 251.92 64 - c -
CH;0H vt=0 7(3,5) - 7(2,6) 251.92 115 - c -
CH;0H vt=0 8(3,6) — 8(2,7) 251.98 133 - c -
CH;0H vt=0 9(3,7) - 9(2,8) 252.09 154 - c -
CH;0H vt=0 10(3,8) - 10(2,9) 252.25 177 - c -
CH;0H vt=0 11(3,9) - 11(2,10) 252.49 203 - c -
CH30H vt=0 12(3,10) - 12(2,11) 252.80 231 - c -
CH;30H vt=0 13(3,11) - 13(2,12) 253.22 261 - c -
CH;0H vt=0 6(1,5) - 5(2,3) 265.29 70 - c me
CH;0H vt=0 23(3,21) - 23(2,22) 266.70 690 - c -
CH;0H vt=0 5(2,3) — 4(1,3) 266.84 57 - me me
CH;0H vt=0 9(0,9) - 8(1,7) 267.40 117 - c me *
CH;0H vt=1 17(3) - 18(4), E1 250.97 771 - c -
CH30H vt=1 5(1,4) - 6(2,5) 265.22 360 - c -
CH;0H vt=1 14(6,8) - 15(5,11) 266.87 711 - c -
13CH;CN 14(3) - 13(3), F = 13 - 12 250.05 154 - c -
13CH;CN 14(2) - 13(2), F = 13 - 12 250.07 119 - c -
13CH;CN 14(1) - 13(1), F= 14 - 13 250.09 97 - c -
BCH;CN 14(0) - 13(0), F = 13 — 12 250.09 90 - c -
3CH;CN 15(3) — 14(3), F =14 - 15 267.91 167 - c -
BCH;CN 15(2) - 14(2), F = 15 - 14 267.93 132 - c -
BCH;CN 15(1) - 14(1) 267.95 110 - c -

*: A confused line, and, therefore, the chosen transition should be taken with caution.
**: Confusion with the c-HCCCH v=0 7(1,7) — 6(0,6) transition, which has an identical rest frequency.’
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Table A1l — continued

A. T. Barnes et al.

Molecule Transition Rest Upper CIBUd Céj;‘d Brick notes
frequency energy
(GHz) (K)

BCH;CN 15(0) - 14(0), F = 16 - 15 267.95 103 - c -

3BCH;0H vt=0 15(4,11) - 16(3,13) 252.37 368 - c - *
BCH;0H vt=0 15(3,12) — 15(2,13) 252.87 322 - c -

BCH;0H vt=0 14(3,11) - 14(2,12) 253.31 288 - c -

BCH;0H vt=0 4(-2,3) - 3(2,1) 264.87 49 - c - *
CH3CHO vt=0 13(4, 10) — 12(4, 9), E 250.80 75 - me me *
CH;3;CHO vt=0 13(4, 9) - 12(4, 8), E 250.81 75 - me - *
CH3CHO vt=0 13(3,11) - 12(3,10) A 250.93 105 - c -

CH3CHO vt=0 15(0,15) — 14(1,14) A 267.73 109 - c -

CH;CHO vt=0 14(2, 13) - 13(2, 12) E 268.31 106 - c -
CH;0CH; 15(1,14) - 14(2,13) EE 249.92 113 - c -
CH30CH; 21(5,16) — 21(4,17) EE 251.14 246 - c -
CH;O0CH; 11(2,10) - 10(1,9) EE 265.15 65 - c -
CH;0CHO v=0 20 (3,17) — 19 (3,16) A 250.26 134 - c -
CH;3;CH,CN v=0  30(0,31) - 30(0,30) 265.75 206 - c -
CH3CH,CN v=0 28( 3,26) — 27( 3,25) 250.44 120 - me me *
CH3CH,CN v=0 28(8,21) — 27(8,20) 250.94 246 - c -
CH;3;CH,CN v=0  28(7,22) - 27(7,21) 251.04 229 - c -
CH;3;CH,CN v=0  28(4, 25) — 27(4,24) 251.67 193 - c -
CH3CH,CN v=0  28(4,24) — 27(4,23) 252.90 193 - c -
CH3CH,CN v=0 30 (1,29) — 29(1,28) 264.75 202 - c -
CH;3;CH,CN v=0  31(1,31) - 30(1,30) 265.70 206 - c -
t-CH3CH,OH 4(4,1) - 3(3, 0) 252.95 28 - c me *
t-CH3CH,OH 16(0,16) — 15(1,15) 264.66 110 - c - *
? ? 252.44 - c -

? ? 252.51 - c -

? ? 265.09 - c -

? ? 266.67 - c -

? ? 267.31 - c -

? ? 268.35 - c -
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Intensity (Jy beam ') Integrated intensity (K kms™) Maximum intensity (K) Moment 1 (kms™!) Moment 2 (kms™')
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Figure A3. Moment maps of the molecular transitions identified towards Cloud D (see table A1). The analysis for the different molecular
transitions are presented in each row, with the molecule labeled at the top of each map. Shown in the upper left is the combined 12m,
7m and single dish continuum map, and then from left to right are moment maps of the integrated intensity, peak intensity, intensity
weighted centroid velocity, and intensity weighted velocity dispersion for each molecule. Contours on the upper left panel are of the
continuum shown in levels of [4, 6, 8, 15, 20, 30] oms, where oms ~0.4mJy beam™'. The lowest of these contours is repeated on each of
the moment maps.
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Figure A4. Moment maps of the molecular transitions identified towards the zoom region Cloud D (see table A1). Show is a zoom-in of
the region containing cores d2,, d4,, and d4;, (see section4.2). The analysis for the different molecular transitions are presented in each
row, with the molecule labeled at the top of each map. Shown in the upper left is the combined 12m, 7m and single dish continuum map,
and then from left to right are moment maps of the integrated intensity, peak intensity, intensity weighted centroid velocity, and intensity
weighted velocity dispersion for each molecule. Contours on each map are of the continuum shown in levels of [8, 15, 20, 30] orms, where

Orms ~0.4mJy beam™!.
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Figure A5. Moment maps of the molecular transitions towards Cloud E/F (see table A1). Shown here are the molecular transitions that
have been classified as either extended or moderately extended (see Figure A6).The analysis for the different molecular transitions are
presented in each row, with the molecule labeled at the top of each map. Shown in the upper left is the combined 12m, 7m and single
dish continuum map, and then from left to right are moment maps of the integrated intensity, peak intensity, intensity weighted centroid
velocity, and intensity weighted velocity dispersion for each molecule. Contours on upper left panel are of the continuum shown in levels
of 8, 15, 30, 50] Orms, where oms ~ 0.6 mJy beam™!. The lowest of these contours is repeated on each of the moment maps.
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Figure A6. Moment maps of the molecular transitions towards Cloud E/F, which were not noted as being uncertain (see table Al).

Show is a zoom-in of the region containing cores el,, elp, and el. (see section4.2). The analysis for the different molecular transitions
are presented in each row, with the molecule labeled at the top of each map. Shown in the upper left is the combined 12m, 7m and single
dish continuum map, and then from left to right are moment maps of the integrated intensity, peak intensity, intensity weighted centroid
velocity, and intensity weighted velocity dispersion for each molecule. Contours on each map are of the continuum shown in levels of [8,
15, 30, 50] 0rms, where oms ~0.6 mJy beam™!.
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Figure A7. Moment maps of the molecular transitions towards Cloud E/F (see table Al). Show is a zoom-in of the region containing
cores €2,, €2y, (see section4.2). The analysis for the different molecular transitions are presented in each row, with the molecule labeled
at the top of each map. Shown in the upper left is the combined 12m, 7m and single dish continuum map, and then from left to right are
moment maps of the integrated intensity, peak intensity, intensity weighted centroid velocity, and intensity weighted velocity dispersion
for each molecule. Contours on each map are of the continuum shown in levels of [8, 15, 30, 50] oyms, where oms ~ 0.6 mJy beam™!.
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