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ABSTRACT

We report the discovery of a population of deeply embedded protostellar candidates
in the 20 kms™"! cloud, one of the massive molecular clouds in the Central Molecular
Zone (CMZ) of the Milky Way, using interferometric submillimeter continuum and
H5O maser observations. The submillimeter continuum emission shows five 1-pc scale
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clumps, each of which further fragments into several 0.1-pc scale cores. We identify 17
dense cores, among which 12 are gravitationally bound. Among the 18 HoO masers
detected, 13 coincide with the cores and probably trace outflows emanating from the
protostars. There are also 5 gravitationally bound dense cores without HoO maser
detection. In total the 13 masers and 5 cores may represent 18 protostars with spectral
types later than Bl or potential growing more massive stars at earlier evolutionary
stage, given the non-detection in the centimeter radio continuum. In combination with
previous studies of CH3OH masers, we conclude that the star formation in this cloud is
at an early evolutionary phase, before the presence of any significant ionizing or heating
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sources. Our findings indicate that star formation in this cloud may be triggered by a
tidal compression as it approaches pericenter, similar to the case of (0.25340.016 but
with a higher star formation rate, and demonstrate that high angular resolution, high
sensitivity maser and submillimeter observations are a promising technique to unveil
deeply embedded star formation in the CMZ.

Subject headings: Galaxy: center — ISM: clouds — stars: formation

1. INTRODUCTION

The inner 500-pc region of the Galaxy, known as the Central Molecular Zone (CMZ), is rich
in dense molecular gas, but the current star formation is unusually inactive. Other than the few
star forming regions such as Sgr B2 (Goldsmith et al. 1990; Qin et al. 2008), Sgr A complex (Ekers
et al. 1983; Yusef-Zadeh et al. 2010), and Sgr C (Kendrew et al. 2013), most CMZ clouds appear to
be inactive in star formation (e.g., G0.253+0.016; Lis et al. 1994; Longmore et al. 2012; Kauffmann
et al. 2013b; Johnston et al. 2014; Mills et al. 2015; Rathborne et al. 2015). This inactivity is
in contrast to the general star formation relation that has been established for the Galactic disk
clouds as well as external galaxies, which presents a good correlation between the amount of dense
molecular gas and the star formation rate. The overall star formation rate in the CMZ is an order
of magnitude lower than the prediction of this correlation (Longmore et al. 2013a).

Recent theoretical works by Kruijssen et al. (2014) and Krumholz & Kruijssen (2015) point
out that star formation in the CMZ could be regulated by the strength of turbulence: the inflowing
gas through the Galactic bar drives strong turbulence, resulting in episodes of low star formation
activity; when the turbulence finally dissipates, a burst of star formation takes place. Such dis-
sipation of the turbulence could be induced by compressive tides during a close passage to the
bottom of the gravitational potential near Sgr A* (Longmore et al. 2013b). In the simulations of
Kruijssen et al. (2015), the massive molecular clouds in the CMZ are found to be in several streams
of open trajectory centered at Sgr A* with a radius of ~100 pc. The 20 kms™! cloud, a massive
(>1.6x10° Mg; Bally et al. 2010) molecular cloud named after its radial velocity, appears to be
close to pericenter passage with Sgr A*, therefore could be in the process of turbulence dissipation.
In this scenario, we expect to observe increasing dense gas fraction and signs of early star formation
in the 20 kms™! cloud.

Previous interferometric observations have found one H II region (Downes et al. 1979), and
several HoO masers (Sjouwerman et al. 2002; Caswell et al. 2011) in this cloud. However, the maser
observations were sensitivity-limited (usually >30 mJy beam™! per 0.2 kms~! channel), hence could
miss faint sources that trace star formation of lower masses or at early evolutionary stages. Here
we use interferometric submillimeter observations to trace dense cores, and interferometric HoO
maser observations with a sensitivity of ~5 times higher than previous studies to trace embedded
protostars. Throughout the paper, we adopt a distance to the Galactic Center of 8.4 kpc (Reid



et al. 2009).

2. OBSERVATIONS AND DATA REDUCTION
2.1. SMA Observations

In 2013, we observed a mosaic of eight positions in the 20 kms™! cloud with the Submillimeter
Array® (SMA) in its compact and sub-compact configurations at 230 GHz band. The primary
beam size is ~56”. All observations share the same correlator setup: the rest frequencies of 216.9-
220.9 GHz are covered in one sideband, and 228.9-232.9 GHz are covered in the other sideband,
with a uniform channel width of 0.812 MHz, equivalent to 1.1 kms™! at 230 GHz. Observation
details are listed in Table 1.

The visibility data were calibrated using MIR? and inspected and imaged using MIRIAD
(Sault et al. 1995) and CASA (McMullin et al. 2007). Continuum was extracted from line free
channels and imaged using data from both sidebands. Spectral lines were split from the continuum-
subtracted visibility data and were imaged separately. We used a robust parameter of 0.5 when
CLEANing images. The resulting continuum image has a clean beam of 4.9”x2.8"” (equivalent to
0.20 pcx0.11 pe) with a position angle of 5.2° and an rms of 3 mJy beam~!. Typical rms of spectral
lines images is ~0.13 Jy beam™! per 1.1 kms~' channel.

2.2. VLA Observations

In 2013 May, we observed a mosaic of three positions in this cloud with the National Radio As-
tronomy Observatory (NRAO)'? Karl G. Jansky Very Large Array (VLA) in the DnC configuration
at K band, with a primary beam size of ~2'. The WIDAR correlator was configured to cover the
H5O maser at 22.2 GHz using a 16 MHz subband in dual polarizations, as well as 1.3 cm continuum
using eight 128 MHz subbands in full polarizations. For the HoO maser, the subband was split into
1024 channels with a channel width of 15.6 kHz, equivalent to 0.2 kms™'. Observation details are
listed in Table 1.

The visibility data were calibrated and imaged using CASA. Continuum was extracted from
line free channels of the 128 MHz subbands, leading to a total bandwidth of 0.9 GHz. The robust
parameter we used in CLEAN is 0.5. For the HoO maser image, the resulting clean beam is

8The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia
Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinina.
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10The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under
cooperative agreement by Associated Universities, Inc.
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3.5"x2.4" (equivalent to 0.14 pcx0.10 pc) with a position angle of 5.7°. The rms in each 0.2 kms™!
channel is 6 mJy beam ™!, but can be significantly larger in channels where signals are dynamic range
limited.

3. RESULTS
3.1. SMA Dense Cores

The SMA 1.3 mm continuum emission revealed five clumps of 1-pc scales in the 20 kms™*
cloud, labelled as C1-C5 in Figure 1. In the projected plane of the sky they are equally spaced by
~1 pc and aligned along the densest part of the cloud. All the clumps appear to have substructures,
or cores, among which C4 is the most prominent one which presents at least 6 cores.

After a visual inspection of dust peaks with fluxes above 50 levels, we identified 17 cores. Then
we fitted 2D Gaussians to obtain their positions, deconvolved sizes, and primary-beam corrected
continuum fluxes. We assumed a gas-to-dust mass ratio of 100, a dust emissivity index 8 = 1.5,
and applied the dust temperature Tyust = 19 K (see Figure 1) and a mean continuum frequency
of 225 GHz, then the core masses were calculated following Beuther et al. (2005). The results are
listed in Table 2.

3.2. VLA H,0O Masers

The VLA observations revealed 18 HoO masers in this cloud, marked by crosses and labeled as
WI1-W18 in Figure 2. 15 out of 18 are within the SMA field, among which 13 spatially coincide with
dust emission peaks above 50 levels. The velocities of these 13 masers are all within +£20 kms™!
with respect to the core velocities. Properties of these HoO masers are summarized in Table 3 and
their spectra are shown in Figure 2.

Among the previous HoO maser surveys toward the CMZ, Walsh et al. (2011) did not find any
masers in this cloud using the Mopra telescope at a sensitivity of 1-2 Jy, while Caswell et al. (2011)
detected three masers, using ATCA at a sensitivity of <0.1 Jy: two of them are consistent with
W13 and W15, respectively, within a position uncertainty of 2”; the other one is in C1, offset from
the masers we detected by ~3"”. In addition, Sjouwerman et al. (2002) serendipitously detected 10
H20O masers in this cloud while studying OH/IR stars, all of which they concluded to be connected
to star formation given the non-detection of OH/IR stars. One of them is consistent with W5, while
the other 9 are scattered in C4: one is offset from any masers we detected, 8 are likely consistent
with W10, W11-W13, and W15.
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4. DISCUSSIONS
4.1. The Gravitational Equilibrium of the Dense Cores

We analyze the virial status of the cores. The virial parameter is defined as o = 502 R/(GMeore)
(Bertoldi & McKee 1992; Kauffmann et al. 2013a), where o0, = FWHM/v/81n 2 is the one-dimensional
velocity dispersion. For a self-gravitating, non-magnetized core, the critical virial parameter is 2,
above which the core is unbound and may expand, while below which it is bound and may collapse.

The NoHY line has a critical density of >10% cm™3, and is superior for tracing dense gas than
the spectral lines in our SMA data such as C'®O or HoCO. To derive line widths of the cores, we
obtain the SMA NoH™ 3-2 data (Kauffmann et al. in prep.), then fit Gaussians to the mean NoH™
spectra of the cores. For the 4 cores without NoHT detections, we fit their mean C*®0O or H,CO
spectra instead. Two cores, C3-P2 and C3-P3, do not present any of the three dense gas tracers,
thus are excluded in the analysis. The results are listed in Table 2.

Among the 15 cores included in the analysis, 12 have o < 2. The two most massive cores,
C1-P1 and C4-P1, have virial parameters as low as ~0.2. Three cores have a > 2, including C4-P4
which associates with an HoO maser.

The masses themselves have large uncertainties: the errors in the core masses are a factor of
1.2-1.8, while the virial masses are sensitive to the selection of line widths and the errors are a factor
of 1.7-2, according to the simulations of Battersby et al. (2010) that take errors in all variables of
the mass estimates into account. Besides, the magnetic field might be dynamically important on
pc scales in the CMZ clouds, as suggested by the ordered magnetic vectors in G0.2534+0.016 (Pillai
et al. 2015) which derive a magnetic flux density of ~5 mG from the Chandrasekhar-Fermi method.
Within these uncertainties, the 12 cores with a < 2 are gravitationally bound.

4.2. The Nature of the H,O Masers

H20 masers in star-forming regions are usually excited in shocked ambient gas (Elitzur et al.
1989), therefore are used to trace protostellar outflows. However, they can also be excited in the
envelope of evolved stars (Sjouwerman & van Langevelde 1996) or excited by shocks created in
large-scale dynamic processes (e.g., cloud collisions, Tarter & Welch 1986). We need to exclude
these scenarios before using the HoO masers as star formation indicators.

First, we compare the coordinates and velocities of the HoO masers with the evolved star cata-
logues in Lindqvist et al. (1992), Sevenster et al. (1997), and Sjouwerman et al. (1998, 2002) which
used OH or SiO masers as tracers. Two HoO masers (W6, W18) are consistent with evolved stars
(red crosses in Figure 2). The other 16 HoO masers do not have known evolved star counterparts.

Second, we compare with the class I CH3OH masers in Yusef-Zadeh et al. (2013), which are
collisionally pumped and trace large-scale dynamics. None of the HoO masers spatially coincide
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with the class I CH3OH masers. Most of the HyO masers coincide with the dense cores, instead of
uniformly scatter like the class I CH3OH masers. Their velocities are usually offset by 20 kms™!
from the core velocities, which is easily seen in masers tracing outflows, instead of all showing
the same value at the presumable shock interaction velocity. All these facts suggest that the HyO
masers are unlikely connected to large-scale shocks.

Therefore, the 16 HoO masers without evolved star counterparts, in particular, the 13 masers
coincident with the dense cores, are likely associated with outflows. Indeed, we find signatures of
outflows associated with these cores traced by SiO, SO, and HNCO lines in the SMA images, which
we will present in a forthcoming paper. A correlation between luminosities of HoO masers and
protostars (e.g., Palla et al. 1993) suggests that the more luminous masers (>107% L), see Table 3)
may correspond to early B-type stars of >10% L, while the characteristic luminosity of ~10~7 L,
for most masers is usually found in low- or intermediate-mass protostars (e.g., Furuya et al. 2001).

4.3. Comparison with Other Star Formation Tracers

The free-free emission from H II regions is a reliable star formation tracer. However, only one
H II region has been found in this cloud (Downes et al. 1979), which is verified by our VLA 1.3 cm
continuum observation (Figure 1). Assuming an electron temperature of 10* K, with a continuum
flux of 0.12 Jy, its ionizing photon rate is 9x 107 s=! (Mezger & Henderson 1967), corresponding
to an O9 star of 19 My (Mottram et al. 2011). The non-detection of any other H II regions at a
sensitivity of 100 pJy may suggest no protostars earlier than B1 above ~10 M, or simply an early
evolutionary phase without any visible ionizing sources.

Yusef-Zadeh et al. (2009) identified YSOs in the CMZ using the Spizter 8 pum and 24 pm
emission, and found three in the vicinity of this cloud, but none of them are within the cloud itself.
The only visible infrared point source within the cloud in the Spitzer mid-infrared images is the
H 11 region. Therefore, the deeply embedded protostars are not observable in the infrared bands,
probably due to the large column density (>10%3 cm™2) which obscures the embedded sources.

CH3OH masers have been found in star-forming regions in the Galactic disk, and are classified
as class I or class II, depending on whether they are collisionally or radiatively pumped (Menten
1991; Fontani et al. 2010). Recent class I CH3OH maser observations toward the CMZ (Yusef-
Zadeh et al. 2013; Mills et al. 2015) suggested that these masers may not trace star formation, but
may have cosmic ray or cloud-scale dynamic origins. On the other hand, radiatively pumped class
IT CH30OH masers have been reliable tracers of high-mass star formation (Urquhart et al. 2015).
The methanol multi-beam survey (MMB, Caswell et al. 2010) did not detect any class II (6.7 GHz)
CH3OH masers at a sensitivity of 0.17 Jy in this cloud. By contrast, four HoO masers in our results
(W3, W5, W11, W15) are detectable at 3o levels with the same sensitivity.
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4.4. Implications for Star Formation in the 20 kms~' Cloud

As discussed above, we find 13 HoO masers associated with the dense cores and probably trace
protostellar outflows, and 5 dense cores without HoO maser detection but gravitationally bound. In
total, they may represent 18 protostellar candidates. This number should be a lower limit because
the dense cores could harbor multiple protostars. By contrast, previous observations found ~10
Hs0O masers most of which are concentrated in C4, corresponding to 6 protostellar candidates in
our sample. In the following we discuss the implication of our results for the evolutionary phase
and star formation activity of the 20 kms™! cloud.

The evolutionary phases of star formation traced by HoO masers is under debate (e.g., Szym-
czak et al. 2005; Breen et al. 2010). Recent follow-up studies of the unbiased MMB survey suggest
that while not as well-defined as the other masers, HoO masers in general trace the protostellar
phase when outflows emerge (Breen et al. 2014; Titmarsh et al. 2014). On the other hand, these
studies seem to converge to the conclusion that class II CH3OH masers trace a well-defined evolu-
tionary phase (e.g., after protostars start to heat ambient gas and before the UC H 1I region phase).
For the 20 kms~! cloud, the large population of HoO masers and the virtually non-detection of
class IT CH3OH masers so far, combining with the non-detection of any prominent UC H II regions,
are likely indicative of two alternative scenarios: an early evolutionary phase when high-mass pro-
tostars have not started to heat or ionize the ambient gas, but have developed outflows, similar to
the situation in infrared dark clouds (IRDCs); or a cluster of low- or intermediate-mass protostars,
whose outflows power the HoO masers but whose radiation is not enough to create class II CH3OH
masers or visible H II regions. The former may be preferable because the more luminous masers
may trace high-mass protostars (see Section 4.2).

No matter which scenario it is, the 18 protostellar candidates traced by HoO masers and
gravitationally bound cores suggest more active star formation than that traced by free-free or
infrared emission (one H II region). Sensitive maser and submillimeter observations could be a
promising method to trace incipient star formation in other massive clouds in the CMZ.

In the orbital models of Kruijssen et al. (2015), G0.253+0.016 is also close to pericenter passage
with Sgr A*, but in a different gas stream. G0.25340.016 has a similar mass as the 20 km s~!
cloud (~1.3x10° M; Longmore et al. 2012), but only has one known HyO maser (Lis et al. 1994)
and one gravitationally bound dense core associated with the maser (Kauffmann et al. 2013b;
Rathborne et al. 2015). The progression of star formation activity from G0.253+0.016 to Sgr B2
supports the tidal compression and triggered collapse model proposed by Longmore et al. (2013b).
The 20 kms~! cloud could be a second case of such triggering. Based on the number of masers
and the amount of dense gas contained in cores, the current star formation rate in the 20 kms™!
cloud is likely higher than in G0.253+0.016. The difference might be due to variations in the local

environment in the streams.
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5. CONCLUSIONS

We have found 18 protostellar candidates traced by dust emission and HoO masers in the 20
kms~! cloud, most of which have been missed by previous infrared or radio continuum studies.
Systematic studies of other massive clouds in the CMZ, using high resolution, sensitive maser
and submillimeter observations, will be helpful to establish their star formation status. One such
example is the SMA Legacy Survey of the CMZ!! (PIs: C. Battersby & E. Keto) that will cover

2

all regions in the CMZ above a column density threshold of 10?3 ¢cm™2 using the same setups as

our SMA observations.

A virial analysis shows that among the 17 dense cores traced by dust emission, 12 cores are
gravitationally bound. The 13 HyO masers associated with the dense cores likely trace protostellar
outflows. The star formation in the 20 kms~! cloud appears to be in an early evolutionary phase,
before significant heating or ionization of ambient gas. This cloud may follow the tidal compression
and triggered collapse model of Longmore et al. (2013b) and Kruijssen et al. (2015), similar to the
dust ridge clouds. However, its star formation rate is higher than in G0.2534-0.016, which likely
reflects local differences in initial conditions.
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Table 1. Summary of the observations.

Tsys Calibrators

. . N s a
Telescope PI Project ID Lines Date T925 GHz (K) Pointing Bandpass Tl GainP Note
SMA X. Lu 2013A-S049 Many 2013 Jul 24 0.25 100-400 S1-S8 3C84 Neptune  Q1, Q2 6 antennas
Compact 2013 Aug 03 0.10 100240 S1-S8 3C84 Neptune Q1, Q2 5 antennas
2013 Aug 09 0.20 100-240 S1-S8 1924—292  Neptune Ql1, Q2 5 antennas
SMA Q. Zhang  2012B-S097 Many 2013 May 21 0.17 120-180  S1-S8 3cor9  NEPHUI 1o 5 antennas
Subcompact Titan

NH3 (1,1)-(5,5),
VLA DnC Q. Zhang 13A-307 HoO maser, 2013 May 12 e e V1-V3 3C279 3C286 Q2
1.3 cm continuum

2Coordinates of pointing centers: S1: (17:45:38.35, —29:03:49.90); S2: (17:45:38.77, —29:04:18.60); S3: (17:45:38.64, —29:04:46.20); S4: (17:45:38.10, —29:05:13.90);
S5: (17:45:37.55, —29:05:40.40); S6: (17:45:36.80, —29:06:07.60); S7: (17:45:35.00, —29:06:19.10); S8: (17:45:36.79, —29:06:31.10); V1: (17:45:38.60, —29:04:09.50); V2:
(17:45:38.00, —29:05:08.80); V3: (17:45:36.60, —29:06:05.00).

bGain calibrators: Q1: 1733—130; Q2: 1744—312.
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Table 2. Properties of the dense cores.

Core ID R.A. & Decl. Maj. x Min.® PA?2 Flux? FWHM¢ Meore o
(J2000) ("x") (°) (mJy) (kms™') (Mo)
C1-P1 17:45:37.58, -29:03:48.83 7.22 x 3.16 48.8 648.1 3.0 (N) 1309 0.17
C1-P2 17:45:38.18, -29:03:40.31 11.1 x 2.75 28.4 191.7 2.9 (N) 387 0.62
C1-P3 17:45:39.17, -29:03:41.03 12.2 x 3.32 5.25 112.7 4.2 (N) 228 2.32
C2-P1 17:45:38.23, -29:04:26.60 10.1 x 4.10 36.0 189.0 5.8 (N) 382 2.55
C2-P2 17:45:38.62, -29:04:18.69 9.10 x 5.02 22.7 118.5 3.2 (N) 239 1.45
C2-P3 17:45:39.04, -29:04:13.24 6.98 x 3.96 34.7 87.8 2.5 (N) 177 1.02
C3-P1 17:45:37.81, -29:05:02.41 6.38 x 3.12 178.0 208.1 4.3 (H) 420 0.92
C3-P2 17:45:37.62, -29:05:16.65 8.99 x 0.49 3.1 63.0 127
C3-P3 17:45:38.28, -29:04:58.59 8.96 x 5.11 90.8 112.7 e 228 e
C4-P1 17:45:37.64, -29:05:43.65 7.85 x 5.35 68.0 935.4 3.6 (N) 1889 0.22
C4-P2 17:45:38.23, -29:05:32.72 14.0 x 3.51 30.5 393.2 3.6 (C) 794 0.56
C4-P3 17:45:35.36, -29:05:55.53 4.07 x 1.70 99.0 104.1 3.8 (C) 210 0.87
C4-P4 17:45:36.25, -29:05:49.03 5.00 x 2.70 56.0 76.4 5.0 (N) 154 2.73
C4-P5 17:45:36.74, -29:05:45.93 <5.23 x <3.07 .. 35.3 2.4 (N) 71 1.82
C4-P6 17:45:37.16, -29:05:55.13 3.41 x 2.63 6.2 37.9 2.3 (C) 76 1.19
C5-P1 17:45:36.71, -29:06:17.50 7.12 x 3.93 73.4 189.7 2.7 (N) 383 0.54
C5-P2 17:45:36.43, -29:06:19.55 6.57 x 4.45 13.1 151.2 2.3 (N) 305 0.54

#Major and minor FWHMs and position angles of the cores are deconvolved from the beam.
bFluxes are corrected for primary-beam response.

¢Letters in parentheses indicate the lines used to estimate FWHM: N - NoH*; C - C180; H - H,CO.
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Table 3. Properties of the HoO masers.
R.A. & Decl. Upeak ™ Fpeak® Finte ratedb Lu,o
Maser 1D (J2000) (kms-1) (mly)  (mlykms-1) (107 Ly) Dense Cores
W1 17:45:38.10, -29:03:41.75  14.8,19.0 431, 100 430 7.0 C1-P2
W2 17:45:37.73, -29:03:46.29  21.5,27.8 131, 161 775 12.6 C1-P1
w3 17:45:37.48, -29:03:49.15  24.5,28.1 999, 1022 3797 61.8 C1-P1
W4 17:45:34.63, -29:04:36.42 2.4 396 670 10.9 -
W5 17:45:37.76, -29:05:01.91  -32.2, 18.6 180, 13180 6822 110.0 C3-P1
W6 17:45:40.75, -29:05:01.93 12.7 225 357 5.8 e
w7 17:45:35.85, -29:05:08.75 51.0 212 186 3.0 e
w8 17:45:37.68, -29:05:13.57 46.2 17 18 0.3 C3-P2
w9 17:45:37.52, -29:05:22.59  -40.8, -40.2 33, 35 46 0.7
W10 17:45:37.16, -29:05:41.70  -18.7, 10.8 54, 93 196 3.2 C4-P1
Wil 17:45:37.62, -29:05:43.92 4.5, 9.9 783, 507 3258 53.0 C4-P1
W12 17:45:37.51, -29:05:43.89  13.1, 16.9 110, 99 264 4.3 C4-P1
W13 17:45:37.90, -29:05:44.24  -21.5, 26.4 23, 23 55 0.9 C4-P1
Wid 17:45:36.72, -29:05:46.02  -25.5,-24.6 84, 171 246 4.0 C4-P5
W15 17:45:36.33, -29:05:49.52 5.5, 13.1 972, 1178 2377 38.7 C4-P4
W16 17:45:35.15, -29:05:53.62  -4.8, -4.4 26, 24 48 0.8 C4-P3
W17 17:45:37.11, -29:05:54.38  -3.8, -3.1 171, 159 302 4.9 C4-P6
W18 17:45:34.77, -29:06:02.43  20.3, 20.7 17, 16 33 0.5

2Peak fluxes are not corrected for primary-beam response. For masers with more than two velocity components,
only the two strongest peaks are listed.

2Integrated fluxes are corrected for primary-beam response.
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Fig. 1.— Left: Herschel dust temperature is shown in the background image. The white con-
tours present the Herschel Hy column density, between 5x10%2 cm™2 and 4x10%% ecm™2 in step
of 5x10%?2 ¢cm™2. The green contours present the VLA 1.3 c¢m continuum emission, between
2 mJybeam ™! and 18 mJy beam ™! in step of 4 mJybeam~!. The cyan and green dotted loops show
the FHWMSs of the SMA and VLA primary beam responses, respectively. Middle: both contours
and background image show the SMA 1.3 mm continuum emission. The contours are between 5o
and 650 levels in step of 100, where 10=3 mJybeam™'. The five clumps are labeled. The dotted
loop shows the FWHM of the SMA primary beam response. The synthesized beam of the SMA
is shown in the lower left corner. The H II region is marked by a green star. Right: same as the
middle panel, but only the 50 and 150 contours are plotted. The ellipses are the results of 2D

Gaussian fittings.
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Fig. 2.— Left: the crosses show the HoO masers. The two red crosses (W6, W18) are known
OH/IR stars. The blue crosses show HoO masers without known OH/IR star counterparts. Both
the contours and the background image show the SMA 1.3 mm continuum emission. The loops are
the same as in Figure 1. Right: the spectra of the 18 HyO masers. The features at ~18 kms™?,
either in emission or in absorption, are from sidelobes of the strongest maser, W5.
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