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Abstract

Using the PHANGS–ALMA CO(2–1) survey, we characterize molecular gas properties on ∼100 pc scales across
102,778 independent sightlines in 70 nearby galaxies. This yields the best synthetic view of molecular gas
properties on cloud scales across the local star-forming galaxy population obtained to date. Consistent with
previous studies, we observe a wide range of molecular gas surface densities (3.4 dex), velocity dispersions
(1.7 dex), and turbulent pressures (6.5 dex) across the galaxies in our sample. Under simplifying assumptions about
subresolution gas structure, the inferred virial parameters suggest that the kinetic energy of the molecular gas
typically exceeds its self-gravitational binding energy at ∼100 pc scales by a modest factor (1.3 on average). We
find that the cloud-scale surface density, velocity dispersion, and turbulent pressure (1) increase toward the inner
parts of galaxies, (2) are exceptionally high in the centers of barred galaxies (where the gas also appears less
gravitationally bound), and (3) are moderately higher in spiral arms than in inter-arm regions. The galaxy-wide
averages of these gas properties also correlate with the integrated stellar mass, star formation rate, and offset from
the star-forming main sequence of the host galaxies. These correlations persist even when we exclude regions with
extraordinary gas properties in galaxy centers, which contribute significantly to the inter-galaxy variations. Our
results provide key empirical constraints on the physical link between molecular cloud populations and their
galactic environment.

Unified Astronomy Thesaurus concepts: Millimeter astronomy (1061); Molecular gas (1073); Late-type
galaxies (907)

Supporting material: machine-readable tables
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1. Introduction

Observations indicate that the physical properties of giant
molecular clouds (GMCs) vary systematically with their
location in a galaxy. This result is obtained in the Milky
Way (e.g., Rice et al. 2016; Roman-Duval et al. 2016; Miville-
Deschênes et al. 2017; Colombo et al. 2019, but see Lada &
Dame 2020) and in other galaxies (e.g., Donovan Meyer et al.
2013; Hughes et al. 2013a; Colombo et al. 2014a; Leroy et al.
2016; Schruba et al. 2019). This suggests that GMCs are
connected to their galactic context, which affects their
formation, structure, or evolution (see, e.g., Field et al. 2011;
Hughes et al. 2013a; Jeffreson & Kruijssen 2018; Meidt et al.
2018, 2020; Schruba et al. 2019; Sun et al. 2020).

Understanding this cloud–environment connection has been
a challenge because it requires comprehensive, observationally
expensive mapping of GMC demographics across the local
galaxy population. This challenge is being addressed by
PHANGS–ALMA,29 a large CO (2–1) line survey covering
essentially all ALMA-visible, nearby, massive, star-forming
galaxies (A. K. Leroy et al. 2020a, in preparation). PHANGS–
ALMA well samples the local star-forming main sequence
across two decades in stellar mass ( – M10 109 11 ). The high
resolution and sensitivity of the PHANGS–ALMA data offer
an unprecedented opportunity to characterize molecular gas
properties on 50–150 pc “cloud scales,” and the cloud–
environment connection across typical star-forming environ-
ments in the local universe.

In this Letter, we report measurements of the cloud-scale
molecular gas surface density and velocity dispersion, as well
as estimates of the turbulent pressure and the virial parameter.
Following our analysis of the PHANGS–ALMA pilot sample
of 11 galaxies (Sun et al. 2018, hereafter S18), we derive these
measurements on fixed 90 pc and 150 pc scales using the full
PHANGS–ALMA survey, which increases our sample size to
70 galaxies. The derived measurements constitute a benchmark
data set that can be readily compared with observations of other
types of galaxies or numerical simulations reaching similar
spatial resolutions (e.g., Semenov et al. 2018; Dobbs et al.
2019; Fujimoto et al. 2019; Jeffreson et al. 2020).

2. Data and Measurements

Overview: We carry out a pixel-by-pixel analysis of
molecular gas properties at fixed 90 pc and 150 pc scales. This
method provides a simple, reproducible characterization of all
detected emission (e.g., Sawada et al. 2012; Hughes et al.
2013b; Leroy et al. 2016). Complementary analyses decom-
posing the same CO data into individual objects
(E. Rosolowsky et al. 2020, in preparation; A. Hughes et al.,
in preparation) yield qualitatively similar conclusions.

Galaxy sample: We include the 70 PHANGS–ALMA
galaxies that had fully processed ALMA data by 2019
December.30 They consist of 67 out of the 74 galaxies in the
ALMA Large Program and pilot samples and three nearby
galaxies from the extended PHANGS–ALMA sample.
Table A1 lists the galaxy sample together with their global
properties (columns 1–9).

Data characteristics: The PHANGS–ALMA CO (2–1) data
have native spatial resolutions of 50–150 pc at the distances of
the target galaxies, and 1σ noise levels of 0.2–0.3 K per
2.5 -km s 1 channel. They combine ALMA interferometric
array and single-dish observations to recover emission across
the full range of spatial scales (see A. K. Leroy et al. 2020b, in
preparation).
Data homogenization: We convolve the data cubes to a

common 150 pc spatial resolution to allow direct comparison
between all 70 galaxies. For a subset of 35 galaxies, we are also
able to convolve the cubes to 90 pc resolution to investigate
trends with spatial resolution (see also S18).
Product creation: We mask the data cubes to only include

voxels that contain emission detected with high confidence.31

We integrate the masked cubes along the spectral axis to
produce the integrated intensity (ICO) and effective line width
(sCO) maps. The latter quantity is derived as

( )s p= I T2CO CO peak following Heyer et al. (2001),32 where
Tpeak is the brightness temperature at the line peak, and is
subsequently corrected for the instrumental line broadening
following S18 (see Equation (5) therein). We produce
associated uncertainty maps via error propagation from the
estimated noise in the cube. This product creation scheme
closely follows S18 and is detailed in A.K.Leroy et al.
(2020b, in preparation).
Our masking scheme guarantees high signal-to-noise ratio

(S/N) CO line measurements at the expense of excluding faint
CO emission, especially from sightlines with low ICO and high
sCO. The resultant data censoring function is shown in Figure 1
(see formulae in Appendix C). We report in Table A1
(column 12) the CO flux completeness for each galaxy (the
flux within the mask divided by the total flux in the data cube,
or fCO).
Resampling: We resample the two-dimensional maps of ICO,

sCO, and their uncertainties with hexagonal pixels matching the
beam size. This ensures that the resampled measurements are
nearly mutually independent. We list the number of indepen-
dent measurements (sightlines) in each galaxy in Table A1
(column 13).
Conversion to physical quantities: We use sCO as a tracer of

the molecular gas velocity dispersion, σmol. We derive
molecular gas surface density, Σmol, via

( )aS = -R I . 1mol CO 21
1

CO

Here =R 0.6521 is the adopted CO (2–1)-to-CO(1–0) line ratio

(Leroy et al. 2013b; den Brok et al. 2020) and aCO is the

CO-to-H2 conversion factor. We adopt a metallicity-dependent

aCO (similar to the metallicity-dependent part of the xCOLD-

GASS prescription; Accurso et al. 2017):

( ) ( )a = ¢- - - -Z M4.35 pc K km s , 2CO
1.6 2 1 1

where Z′ refers to the local metallicity in units of the solar

value. Following Sun et al. (2020), we estimate Z′ based on

galaxy global stellar mass and effective radius (see Table A1

for values and data sources), assuming a galaxy global mass–

29
“Physics at High Angular resolution in Nearby GalaxieS with the Atacama

Large Millimeter/submillimeter Array.” For more information, see www.
phangs.org.
30

Internal data release v3.4.

31
For the release that we use, the masks begin with all regions with S/

N>3.5 in three consecutive channels. These masks are then expanded to
include all adjacent regions with S/N>2 in two successive channels. The
Python realization of this signal identification scheme is available at https://
github.com/astrojysun/SpectralCubeTools.
32

Note that for a Gaussian line profile, sCO equals its dispersion.
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metallicity relation (Sánchez et al. 2019) and a fixed radial

metallicity gradient within a galaxy (Sánchez et al. 2014).
We use Σmol and σmol to estimate the mean turbulent

pressure in the molecular gas, r s»Pturb mol mol
2 , and the virial

parameter, avir, via
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Here Dbeam denotes the beam FWHM and is assumed to be the

depth along the line of sight.33 Both equations assume a single,

spherical gas structure filling each beam (S18). The second

equation assumes in addition that the gas structures have a

density profile of ( )r µ -r r 1 (e.g., following Rosolowsky &

Leroy 2006).

3. Results

We measure Σmol, σmol, Pturb, and avir on cloud scales in a
homogeneous way across our sample. This yields 102,778

independent measurements at 150 pc resolution in 70 galaxies,
and 79,840 measurements at 90 pc resolution in 35 galaxies.
These measurements are published in Table B1 in machine-
readable form. We focus on the 150 pc scale measurements,
which are available for all 70 galaxies, while occasionally
referencing the 90 pc scale measurements to illustrate resolu-
tion dependencies.
In the following data analysis and presentation, we omit

measurements from four galaxies (NGC 4207, NGC 4424,
NGC 4694, and NGC 4826). These galaxies have edge-on
orientation (NGC 4207) and/or peculiar gas kinematics due to
ram pressure stripping (NGC 4424), a strong nuclear outflow
(NGC 4694), or represent a recent merger event (NGC 4826).
We still report results for these galaxies in the tables, but below
we focus on the remaining 102,295 sightlines in 66 galaxies for
data presentation.

3.1. Statistics of Cloud-scale Molecular Gas Properties

Figure 1 shows the distributions of ICO, Σmol, and σmol,
measured at 150 pc resolution. This figure encapsulates
molecular gas properties on cloud scales across a wide range
of star-forming environments at »z 0. Table 1 provides area-
weighted statistics treating each sightline equally, and
Σmol-weighted statistics treating each quantum of molecular
gas mass equally.
We observe median ICO, Σmol, and σmol values similar to the

results of previous studies (e.g., Bolatto et al. 2008; Colombo et al.
2019), but with a large spread. Across the full sample at 150 pc
resolution, we find mass-weighted median S = -M110 pcmol

2

Figure 1. Strong and location-dependent variations in CO line intensity (ICO), molecular gas surface density (Σmol), and velocity dispersion (σmol) on cloud scales in
nearby star-forming galaxies. Each of the 102,295 data points represents an independent measurement on a 150 pc scale. Data density contours enclose 30%, 50%, and
70% of data points. Color indicates the galactocentric radius rgal of the measurement normalized by the host galaxy’s effective radius Reff . Color in the scatter plots

represents the median rgal/Reff for data points with similar ICO, Σmol, and σmol. Color in the histograms indicates the median rgal/Reff in each bin. The brown lines
show the censoring function, to the left of which little CO emission can be detected. As this function varies from galaxy to galaxy, we use the thick line to show the
median and the thin lines to show the 1σ range across all targets. The magenta dashed line indicates the channel width of the CO observations, above which the σmol

measurements are most reliable. The black dashed and dashed–dotted lines in the top right panel show the expected relation for beam-filling, spherical GMCs with
virial parameter a = 1vir and 2, respectively. The series of dotted lines in the background show the loci of constant Pturb (from the lower left to the upper

right: = ¼ -P k10 , 10 , , 10 K cmturb
3 4 8

B
3).

33
This differs from the assumptions adopted in the complementary cloud

identification analysis (E. Rosolowsky et al. 2020, in preparation): in that
paper, a gas cloud’s extent along the line of sight is limited to <100 pc.
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and mass-weighted median s = -9.1 km smol
1 (see Table 1).

Given the broad sample selection and coverage, these can be taken
as typical values across the local star-forming galaxy population.
We also see that the s3 (i.e., 99.7%) range of the mass-weighted
Σmol and σmol distributions is large, 3.4 and 1.7 dex, respectively.
Given that data censoring hinders the detection of low ICO signals
(to the left of the brown curves in Figure 1), the true ranges of ICO
and Σmol are likely even wider.

We find a strong and statistically significant34 correlation
between Σmol and σmol (Spearman’s rank correlation coefficient
ρ=0.77). This correlation results in even stronger variations
in r s»Pturb mol mol

2 than those in Σmol or σmol alone. Indeed,
Pturb varies byù6 dex at s3 across our sample (Figure 1 and
Table 1).

We further compare the observed sS -mol mol distribution to
the expected relations for beam-filling, spherical clouds with
fixed virial parameters avir (black diagonal lines in Figure 1;
see Equation (4)). These relations capture the overall trend in
the data, with the a = 1vir line lying near their lower envelope.
Across our full sample, avir has a mass-weighted median value
of 2.7 and a 1σ scatter of 0.7dex (Table 1). This means that the
kinetic energy in the molecular gas on average slightly exceeds
its gravitational binding energy by a factor of 1.3 on 150 pc
scales. This is consistent with the conclusion in Sun et al.
(2020) that the observed molecular gas velocity dispersion at
∼100 pc scales mainly reflects gas motions due to self-gravity
and, to a lesser degree, to external gravity and ambient
pressure.

The calculation of Pturb and avir assumes an idealized
subbeam gas distribution (see Section 2). In reality, the
molecular gas remains clumpy on ø100 pc spatial scales
(Leroy et al. 2013a), and the small-scale density distribution
may vary from place to place. These variations in subbeam
density distribution may introduce systematic uncertainties
in our inferred Pturb and avir values. Nevertheless, our Σmol

and σmol measurements should still capture the true distribu-
tion of molecular gas properties at the fixed 150 pc spatial
scale.

To further illustrate the effect of resolution on our analysis,
we compare our measurements at 150 pc scales with those at
90 pc scales for the 32 galaxies that have data at both
resolutions (see Table 1 for the statistics at 90 pc). This
includes 79,156 independent sightlines at 90 pc scales or
40,641 sightlines at 150 pc scales. We find the mass-weighted
medians of ICO, Σmol, and Pturb at 90 pc scales to be moderately
higher than the 150 pc scale values by factors of 1.5, 1.5, and
2.0, respectively. However, we see little difference in the
median values of σmol and avir at the two resolutions, and the
observed dynamic ranges of all quantities is essentially the
same at both spatial scales. This suggests that the gas is
moderately clumped below our resolution, but that our
qualitative conclusions are not sensitive to resolution-related
biases and robustly reflect typical molecular gas properties at
∼100 pc scales.

3.2. Correlation with Galactocentric Radius

The variations in ICO, Σmol, and σmol correlate with location
in the host galaxy. To illustrate this, we color-code all data
points in Figure 1 by their galactocentric radii (rgal), normalized

to the effective radii of their host galaxies (R ;eff see Table A1
for values and data sources). Both Σmol and σmol tend to
increase toward smaller rgal/Reff. Additionally, the gas in the
inner regions ( <r R 0.5gal eff ) frequently shows enhanced σmol

at a given Σmol.
These radial trends are partly driven by the structure of

galaxy disks. Most star-forming galaxies show increasing
gas and stellar mass surface densities toward their central
regions. This leads to a similar radial trend on the mean
pressure in the interstellar medium (ISM) required to keep
it in vertical dynamical equilibrium (Elmegreen 1989; Blitz
& Rosolowsky 2004; Ostriker et al. 2010). We expect
the same trend to hold for the turbulent pressure in the
molecular gas, Pturb, which correlates with the mean ISM
pressure (Sun et al. 2020). This expectation matches well
with the trend of decreasing rgal/Reff with increasing Pturb

values in Figure 1.
The expectation from ISM dynamical equilibrium does not

by itself explain all the trends in Figure 1—for fixed Σmol, we
also find excess σmol at smaller rgal/Reff. At face value, this
suggests that molecular gas in the inner galaxy tends to be more
weakly bound (higher avir) than the gas in the outer galaxy.
Such a trend is expected from the larger contribution of the
external (mostly stellar) potential to the dynamical equilibrium
at smaller radii (e.g., S18; Meidt et al. 2018; Gensior et al.
2020). However, the observed trend could instead suggest that
the gas is more clumpy in the inner parts of galaxies, or that our
prescription overpredicts aCO in the outer disks of galaxies. If
we adopt an alternative prescription with a µ ¢-ZCO

0.5 (as
suggested by recent numerical simulations; M. Gong et al.,
private communication), the apparent trend of lower σmol at
fixed Σmol toward the outer disks (i.e., ùr R 1.5gal eff ) would
disappear. But the elevated σmol at fixed Σmol near the galaxy
centers (i.e., ør R 0.5gal eff ) would persist and thus cannot be
explained by aCO alone.
The trend with galactocentric radius at fixed Σmol may also

reflect biases in the line width measurement. Using the CO
rotation curves from Lang et al. (2020), we verified that
unresolved rotation often represents a minor contribution to our
measured line width at 90–150 pc scales in the inner parts of
galaxies. However, unresolved noncircular motions may still
play an important role (e.g., Colombo et al. 2014b; Meidt et al.
2018, 2020; Henshaw et al. 2020).

3.3. Correlation with Galaxy Bars and Spiral Arms

We investigate whether galaxy morphological features, i.e.,
stellar bars and spiral arms, have an impact on the molecular
gas properties on cloud scales. We classify each target galaxy
as barred or unbarred (see Table A1), and divide the
PHANGS–ALMA CO footprint into a central region and a
disk region based on near-infrared images. The central regions
often correspond to distinct structures (e.g., nuclear rings)
showing extra light at near-infrared wavelengths. For galaxies
with strong spiral arms, we further identify arm regions and the
corresponding inter-arm regions covering the same rgal range.
The methodology closely follows Salo et al. (2015) and
Herrera-Endoqui et al. (2015) and is detailed in M.Querejeta
et al. (2020, in preparation).
The left panel of Figure 2 compares molecular gas properties

in the central regions and the disk regions of our galaxies.
Motivated by previous studies (e.g., Sakamoto et al. 1999;
Jogee et al. 2005, S18), we indicate the centers of 43 galaxies

34
Here and in subsequent sections “statistically significant” means -p
value 0.001.
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classified as barred and 13 galaxies classified as unbarred
separately.35 The centers of barred galaxies show ~20 times
higher mass-weighted median Σmol and~5 times higher mass-
weighted median σmol compared to the disk regions (Table 1).
These central regions of barred galaxies mostly host molecular
gas with S -ù M100 pcmol

2 and s -ù 10 km smol
1 and

commonly show excess in star formation. A small fraction of
the gas in the centers of unbarred galaxies also shows high Σmol

and σmol, but the majority resembles the gas in the disk regions.
This sharp contrast between barred and unbarred galaxies
indicates that the high Σmol and σmol frequently found in star-
forming galaxy centers is linked to the presence of stellar bars.

Our measurements in galaxy centers can be affected by
uncertainty related to aCO and R21. Sandstrom et al. (2013) and
den Brok et al. (2020) find evidence for low aCO and high R21
in star-forming galaxy centers. If our prescription also
accounted for these effects, the Σmol enhancement would be
reduced in galaxy centers, but the excess in σmol at a given Σmol

would be even more extreme relative to disks.
The observed extreme gas properties in barred galaxy centers

are consistent with existing knowledge about the role of stellar
bars in regulating ISM properties. Stellar bars can drive large-
scale gas inflows, boosting the central gas reservoir and leading
to high Σmol (e.g., Pfenniger & Norman 1990; Sakamoto et al.
1999; Sheth et al. 2002; Jogee et al. 2005; Tress et al. 2020b).
Meanwhile, the released gravitational energy from gas inflow
as well as the stronger local stellar and AGN feedback together
enhance the local turbulence (e.g., Kruijssen et al. 2014;
Armillotta et al. 2019; Sormani et al. 2019). Complex gas
streaming motions that are unresolved in our data could also
bias σmol higher than the turbulent velocity dispersion (e.g.,
Henshaw et al. 2016).

The right panel in Figure 2 compares the distribution of Σmol

at fixed rgal/Reff in spiral arm regions and inter-arm regions for
28 galaxies with identifiable spiral structures in their stellar
distribution. Molecular gas in the arm regions shows typically
1.5–2 times higher Σmol relative to the gas in the inter-arm
regions at fixed rgal/Reff. We further find (not shown in
Figure 2) that the gas in spiral arms shows ~20% higher σmol,
∼2–3 times higher Pturb, and~15% lower avir at fixed rgal/Reff.
Consistent with previous studies examining individual galaxies
(e.g., Hughes et al. 2013b; Colombo et al. 2014a; Hirota et al.
2018), these results support the idea that spiral arms harbor
more high surface density, turbulent, bound molecular clouds.

Though statistically significant, the measured contrast in
Σmol between arms and inter-arm gas may seem lower than
what one would expect from visual inspection of the
PHANGS–ALMA CO maps (e.g., Figure 12 in S18). There
the spiral arms typically appear replete with bright emission,
while the inter-arm regions show only a sporadic, faint signal
with a large portion of the area lacking significant CO
detection. We note that our quantitative analysis focuses solely
on the gas securely detected in CO without accounting for the
area covering fraction of the CO detection. Had we included
map pixels with non- or low-significance detections in our
analysis, measurements in the inter-arm regions would be more
severely diluted than measurements in the arm regions, and the
arm versus inter-arm contrast would be considerably larger than
the factor of 1.5–2 measured above (also see M. Querejeta et al.
2020, in preparation).

To summarize, our measurements based on significant
detections of CO emission reveal moderate differences between
the molecular gas properties in spiral arm versus inter-arm
regions. In addition to this, the spatial density of secure CO
detections is much lower in the inter-arm regions than in the
spiral arms of galaxies. Together, these two observations
suggest that spiral arms not only accumulate molecular gas but
also lightly modify the properties of the gas (e.g., Dobbs &
Bonnell 2008; Tress et al. 2020a).

3.4. Correlation with Integrated Galaxy Properties

We find that molecular gas properties on cloud scales
correlate with integrated properties of the host galaxies. In
Figure 3, the top left panel shows the mass-weighted median
Σmol and σmol values on 150 pc scale within each galaxy, with
each point colored by the galaxy global star formation rate
(SFR). The top right panel shows how the galaxy-wide, mass-
weighted median Σmol varies among galaxies across the galaxy
global -M SFR space.
Across our sample, the mass-weighted median Σmol and σmol

vary by 2dex and 1dex from galaxy to galaxy, respectively.
These cloud-scale gas properties also show statistically
significant correlations with host galaxy global M (Spearman’s
ρ=0.64 and 0.53), global SFR (ρ=0.72 and 0.58), and
offset in SFR from the local star-forming main sequence
(ΔMS; ρ=0.45 and 0.35). We also find positive correlations
between the mass-weighted median Pturb and the same galaxy
global properties (not shown in Figure 3). The mass-weighted
median of avir, however, shows an anticorrelation with the
galaxy’s SFR (ρ=−0.44) and ΔMS (ρ=−0.41). Figure 3
only shows the 150 pc results, but we see similar trends using
data at 90 pc resolution.
The pronounced galaxy-to-galaxy variations in these mass-

weighted median quantities is partly explained by galaxies in
our sample that host a distinct central concentration of CO-
bright molecular gas. This is especially true of barred galaxies,
where the central regions host a substantial fraction of the
galaxy’s molecular gas mass. In these galaxies, the exceptional
gas properties in the central region bias the galaxy-wide mass-
weighted median measurements toward high Σmol and σmol. In
light of this bias, we also calculate and compare the mass-
weighted median properties for all the CO emission outside the
central region in each galaxy. As shown in the bottom panels in
Figure 3, excluding the central regions reduces the level of
galaxy-to-galaxy variations in the mass-weighted median Σmol

and σmol. Nevertheless, the overall trends persist, and the rank
correlation of the median Σmol, σmol, and Pturb with all three
global galaxy properties remain significant.
Across the local star-forming galaxy population, we thus

conclude that the molecular gas in more massive and actively
star-forming galaxies is systematically denser (as traced by
Σmol), more turbulent (as tracked by σmol and Pturb), and more
strongly self-gravitating (as expressed by avir) on ∼100 pc
scales. We speculate that these trends arise because galaxy
global properties correlate with the structural properties on a
more local scale (e.g., local stellar mass distribution, galaxy
dynamical features). In turn, molecular gas properties on cloud
scales are linked to these local structural properties (e.g.,
Hughes et al. 2013a; Meidt et al. 2018, 2020; Schruba et al.
2019; Chevance et al. 2020; Sun et al. 2020). We plan to
investigate this topic in more detail in a future round of
PHANGS–ALMA analysis.

35
The remaining 10 galaxies have ambiguous classifications (see Table A1).

Measurements in their central regions are omitted in Figure 2.
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4. Summary

Using the full PHANGS–ALMA CO (2–1) data set, we

measure molecular gas surface density, velocity dispersion,

turbulent pressure, and virial parameter on cloud scales in 70

nearby, massive, star-forming galaxies. We publish the

resultant 102,778 independent measurements at 150 pc scales

and 79,840 measurements at 90 pc scales in Table B1 and

summarize their statistics in Table 1 and Section 3.1.
Consistent with observations in the PHANGS–ALMA pilot

sample (S18) and other galaxies (e.g., Hughes et al. 2013b;

Egusa et al. 2018), we find that molecular gas properties on

∼100 pc scales vary substantially and correlate with location in

the host galaxy. Specifically, our key results are:

1. Molecular gas surface density, velocity dispersion, and

turbulent pressure vary dramatically (by 3.4, 1.7, and

6.5 dex, respectively) across our full sample. The

correlation between surface density and velocity disper-

sion suggests that the gas motions on ∼100 pc scales are

mainly responding to gas self-gravity, though they do

also react to external gravity and/or ambient pressure in

some regions. The inferred virial parameter has a median

value of 2.7 and a 1σ range of 0.7dex (Figure 1 and

Section 3.1).
2. The cloud-scale gas surface density, velocity dispersion,

and turbulent pressure all increase toward small galacto-

centric radii, consistent with expectations from vertical

dynamical equilibrium and the structure of galaxy disks

(Figure 1 and Section 3.2).
3. The centers of barred galaxies display exceptionally high

molecular gas surface densities and velocity dispersions.

The high surface densities are likely fueled by gas inflows

induced by the stellar bars. The observed excess velocity

dispersion at fixed surface density in these regions

suggests less bound gas or enhanced bulk flow motions

(Figure 2 and Section 3.3).
4. Molecular gas in spiral arm regions shows moderately

higher surface densities and appears more turbulent and

more bound than the molecular gas detected in the inter-

arm regions. This suggests that spiral arms accumulate

Table 1

Statistics of Cloud-scale Molecular Gas Properties

Quantity Unit
Area-weighted Mass-weighted

Median 1σ Range (68.3%) 3σ Range (99.7%) Median 1σ Range (68.3%) 3σ Range (99.7%)

Full Sample at 150 pc Scales (102,295 Sightlines across 66 Galaxies; See Section 3.1)

ICO,150pc
-K km s 1 3.4×100 0.9dex 3.2dex 1.9×101 1.6dex 3.6dex

Σmol,150pc 
-M pc 2 2.2×101 0.9dex 2.9dex 1.1×102 1.5dex 3.4dex

σmol,150pc
-km s 1 5.0×100 0.4dex 1.7dex 9.1×100 0.8dex 1.7dex

Pturb,150pc
-k K cmB
3 1.8×104 1.6dex 6.1dex 3.0×105 3.0dex 6.5dex

αvir,150pc L 3.5 0.6dex 1.9dex 2.7 0.7dex 2.0dex

Gas in Galaxy Disks at 150 pc Scales (99,765 Sightlines across 66 Galaxies; See Sections 3.3 and 3.4)

ICO,150pc
-K km s 1 3.3×100 0.9dex 2.7dex 1.2×101 1.1dex 3.0dex

Σmol,150pc 
-M pc 2 2.1×101 0.9dex 2.5dex 7.1×101 1.0dex 2.8dex

σmol,150pc
-km s 1 4.9×100 0.4dex 1.6dex 7.5×100 0.5dex 1.6dex

Pturb,150pc
-k K cmB
3 1.7×104 1.6dex 5.4dex 1.3×105 1.9dex 5.6dex

αvir,150pc L 3.4 0.6dex 1.9dex 2.7 0.7dex 2.0dex

Gas in the Centers of Barred Galaxies at 150 pc Scales (1,715 Sightlines across 43 Galaxies; See Section 3.3)

ICO,150pc
-K km s 1 6.5×101 1.3dex 3.4dex 3.0×102 0.9dex 2.6dex

Σmol,150pc 
-M pc 2 2.8×102 1.3dex 3.4dex 1.3×103 0.9dex 2.6dex

σmol,150pc
-km s 1 2.3×101 0.5dex 1.7dex 3.4×101 0.4dex 1.2dex

Pturb,150pc
-k K cmB
3 5.1×106 2.1dex 6.5dex 5.0×107 1.3dex 4.3dex

αvir,150pc L 6.0 0.8dex 2.1dex 2.7 0.7dex 2.1dex

Full Sample at 90 pc Scales (79,156 Sightlines across 32 Galaxies; See Section 3.1)

ICO,90pc
-K km s 1 4.2×100 0.9dex 2.9dex 1.5×101 1.2dex 3.3dex

Σmol,90pc 
-M pc 2 2.6×101 0.8dex 2.6dex 8.7×101 1.1dex 3.1dex

σmol,90pc
-km s 1 4.5×100 0.4dex 1.6dex 7.0×100 0.6dex 1.7dex

Pturb,90pc
-k K cmB
3 2.9×104 1.5dex 5.5dex 2.3×105 2.2dex 6.3dex

αvir,90pc L 3.8 0.6dex 1.8dex 3.1 0.6dex 1.8dex

Gas in Galaxy Disks at 90 pc Scales (76,500 Sightlines across 32 Galaxies)

ICO,90pc
-K km s 1 4.1×100 0.8dex 2.6dex 1.2×101 1.0dex 2.8dex

Σmol,90pc 
-M pc 2 2.6×101 0.8dex 2.4dex 7.1×101 1.0dex 2.6dex

σmol,90pc
-km s 1 4.4×100 0.4dex 1.5dex 6.3×100 0.4dex 1.4dex

Pturb,90pc
-k K cmB
3 2.7×104 1.5dex 5.0dex 1.6×105 1.8dex 5.0dex

αvir,90pc L 3.7 0.6dex 1.8dex 2.9 0.6dex 1.8dex

Note. The area-weighted statistics are derived from percentiles weighted by sightline number counts, whereas the mass-weighted statistics from percentiles weighted

by molecular gas mass (equivalent to Σmol in our measurement scheme).
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molecular gas and further mildly alter the gas properties
(Figure 2 and Section 3.3).

5. The properties of molecular gas at cloud-scale resolution
correlate with the properties of the host galaxy. Galaxies
with higher stellar mass and more active star formation
tend to host molecular gas with higher surface density,
higher velocity dispersion, and lower virial parameter
(Figure 2 and Section 3.4).

These observations provide a first comprehensive view of the
the properties of molecular gas at cloud scales across the local
star-forming galaxy population. They provide strong evidence
that molecular cloud properties are closely coupled to the
galactic environment, likely through dynamical processes and
stellar feedback. The empirical relations presented in this work
establish the groundwork for unveiling the physics that
underpins the molecular cloud–environment connection.
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Figure 2. Left:molecular gas in the centers of barred galaxies shows distinctively high Σmol and σmol. Data density contours show the distribution of measurements in
galaxy disks (i.e., outside the central regions; blue filled contours), in the centers of 43 identified barred galaxies (red filled contours), and in the centers of 13 unbarred

galaxies (brown dashed contours). We see typical gas properties of S -ù M100 pcmol
2 and s -ù 10 km smol

1 in the centers of barred galaxies. This is in sharp
contrast to the gas properties in galaxy disks and in the centers of unbarred galaxies. Right:molecular gas in spiral arms displays higher Σmol than the gas in inter-arm
regions at given galactocentric radii. The blue and green curves show the trends of median Σmol in each rgal/Reff bin for the gas in spiral arms and inter-arm regions,
respectively. Shaded regions denote the 1σ (68.3%) range of the binned data distribution. In the 28 galaxies exhibiting stellar spiral structures, the gas in the spiral
arms typically shows 1.5–2 times higher Σmol than the detected gas in the inter-arm regions at the same rgal/Reff.
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Appendix A
Galaxy Sample

We list our galaxy sample in Table A1.

Figure 3. Molecular gas in more massive and more actively star-forming galaxies shows higher surface densities Σmol and velocity dispersions σmol on 150 pc scales.
Top left:each point shows the mass-weighted median value of Σmol and σmol across the PHANGS–ALMA field of view in a galaxy, and the error bars indicate their
1σ (68.3%) range. The diagonal lines represent constant loci of avir and Pturb as in Figure 1. Galaxies with a higher global SFR (denoted by darker color) tend to show
higher median Σmol and σmol on cloud scales. Top right:the 66 galaxies studied here (large symbols) are color-coded by their galaxy-wide, gas mass-weighted median
Σmol and overlaid on the -M SFR distribution of all local galaxies (gray contours; Leroy et al. 2019). Galaxies with low (<50%) CO flux completeness are shown
with a different symbol. The disk-wide median Σmol shows significant correlation with galaxy global properties, including stellar mass, SFR, and offset from the star-
forming main sequence (gray dashed line; Leroy et al. 2019). Bottom panels: similar to the top panels, but with each point showing the statistics for all the gas outside
the central regions in each galaxy. The galaxy-to-galaxy variations in gas properties become smaller, but the same general trends with galaxy global properties persist.
The single outlier showing high mass-weighted median σmol in the bottom left panel is NGC1365, for which the PHANGS–ALMA CO map only covers the stellar
bar-covered inner part of the galaxy.
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Table A1

Galaxy Sample

Galaxy Bar Arm d i qPA M SFR Reff Tnoise, 150pc rch, 150pc fCO, 150pc Nlos, 150pc

(Mpc) (deg) (deg) ( M109 ) ( 
-M yr 1) (kpc) (K)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Circinusa ? N 4.21 64.3 36.7 18.2 3.85 2.5 0.048 0.072 83% 456

IC1954 Y Y 15.2 57.2 63.7 6.6 0.48 3.0 0.026 0.059 79% 1054

IC5273 Y N 14.7 48.5 235.2 5.5 0.56 2.3 0.022 0.055 64% 750

NGC253a Y N 3.68 75.0 52.5 38.0 4.90 4.4 0.031 0.072 88% 2203

NGC300a N N 2.08 39.8 11.4 1.7 0.14 2.2 0.011 0.123 41% 127

NGC628 N Y 9.77 8.7 20.8 18.3 1.67 4.6 0.031 0.061 83% 3239

NGC685 Y N 16.0 32.7 99.9 7.0 0.26 4.0 0.029 0.058 41% 615

NGC1087 Y N 14.4 40.5 357.4 6.6 1.05 3.0 0.040 0.055 75% 1165

NGC1097 Y Y 14.2 48.6 122.8 60.8 5.08 5.4 0.032 0.062 85% 3093

NGC1300 Y Y 26.1 31.8 276.9 71.9 2.06 9.1 0.096 0.054 48% 1037

NGC1317 Y N 19.0 24.5 221.5 36.6 0.40 4.4 0.032 0.063 105%c 575

NGC1365 Y Y 18.1 55.4 202.4 66.8 14.34 11.8 0.067 0.191 88% 2073

NGC1385 ? Y 22.7 45.4 179.6 16.6 3.50 4.9 0.072 0.054 67% 1796

NGC1433 Y N 16.8 28.6 198.0 52.9 0.81 8.3 0.057 0.055 58% 684

NGC1511 ? N 15.6 73.5 296.9 7.6 2.27 2.8 0.038 0.063 89% 778

NGC1512 Y Y 16.8 42.5 263.8 38.3 0.91 7.2 0.052 0.057 61% 689

NGC1546 N N 18.0 70.1 147.8 22.8 0.80 3.2 0.030 0.057 97% 972

NGC1559 Y N 19.8 58.7 245.9 21.3 3.72 3.5 0.056 0.056 75% 2218

NGC1566 Y Y 18.0 30.5 216.5 53.3 4.49 8.4 0.057 0.058 97% 3944

NGC1637 Y Y 9.77 31.1 20.6 7.7 0.66 1.1 0.012 0.054 91% 1360

NGC1672 Y Y 11.9 43.8 135.9 17.7 2.73 5.1 0.052 0.064 82% 1291

NGC1792 N N 12.8 64.7 318.9 23.3 2.21 3.2 0.028 0.066 94% 1468

NGC2090 N Y 11.8 64.4 192.4 11.1 0.32 2.5 0.042 0.061 80% 516

NGC2283 Y Y 10.4 44.2 356.2 3.6 0.26 2.1 0.036 0.061 44% 287

NGC2566 Y Y 23.7 48.5 312.0 40.6 8.47 5.7 0.072 0.064 79% 1978

NGC2835 Y Y 10.1 41.1 0.2 5.9 0.76 2.8 0.056 0.060 28% 182

NGC2903 Y N 8.47 67.0 205.4 28.9 2.08 4.5 0.026 0.065 90% 2390

NGC2997 ? Y 11.3 31.9 109.3 31.2 2.79 5.0 0.026 0.063 86% 5380

NGC3137 ? N 14.9 70.1 358.9 5.8 0.41 4.6 0.033 0.056 70% 488

NGC3351 Y N 10.0 45.1 193.2 20.8 1.09 3.1 0.039 0.062 74% 991

NGC3507 Y Y 20.9 24.2 55.6 27.3 0.75 3.5 0.067 0.060 45% 1090

NGC3511 Y N 9.95 75.0 256.7 5.1 0.42 3.0 0.020 0.058 87% 769

NGC3521 N N 11.2 69.0 343.0 66.3 2.59 5.6 0.023 0.056 90% 3770

NGC3596 N N 10.1 21.6 78.1 3.5 0.23 1.7 0.052 0.060 72% 495

NGC3621 N N 6.56 65.4 343.8 9.2 0.79 2.9 0.013 0.063 91% 1487

NGC3626 Y N 20.0 46.6 165.2 27.5 0.23 3.3 0.084 0.057 57% 150

NGC3627 Y Y 10.57 56.5 174.0 53.1 3.24 5.2 0.033 0.061 89% 2933

NGC4207b ? N 16.8 62.5 120.5 5.1 0.22 1.3 0.062 0.067 91% 147

NGC4254 N Y 16.8 35.3 68.5 37.8 4.95 3.6 0.053 0.056 84% 6438

NGC4293 Y N 16.0 65.0 48.3 30.6 0.60 3.8 0.061 0.075 81% 164

NGC4298 N N 16.8 59.6 314.1 13.0 0.56 2.7 0.025 0.056 93% 2328

NGC4303 Y Y 17.6 20.0 310.6 50.4 5.63 6.2 0.066 0.061 82% 3945

NGC4321 Y Y 15.2 39.1 157.7 49.4 3.41 6.2 0.058 0.058 77% 4923

NGC4424b ? N 16.4 58.2 88.3 8.3 0.31 3.3 0.060 0.071 103%c 123

NGC4457 Y N 15.6 17.4 78.7 25.7 0.34 3.1 0.041 0.060 93% 645

NGC4496A Y N 14.9 55.3 49.7 4.2 0.61 3.1 0.057 0.058 29% 168

NGC4535 Y Y 15.8 42.1 179.3 32.3 2.07 5.8 0.053 0.059 75% 2433

NGC4536 Y Y 15.2 64.8 307.4 20.0 2.99 4.2 0.025 0.059 88% 2025

NGC4540 Y N 16.8 38.3 14.3 6.8 0.19 1.8 0.059 0.063 65% 428

NGC4548 Y Y 16.2 38.3 138.0 45.6 0.53 5.1 0.035 0.060 49% 1027

NGC4569 Y N 16.8 70.0 18.0 67.2 1.54 8.9 0.038 0.058 85% 2544

NGC4571 N N 14.9 31.9 217.4 11.6 0.30 3.3 0.058 0.059 42% 711

NGC4579 Y Y 16.8 37.3 92.5 83.1 1.08 5.7 0.039 0.057 70% 3078

NGC4689 N N 16.8 39.0 164.3 17.0 0.52 4.2 0.060 0.058 72% 1827

NGC4694b N N 16.8 60.7 143.3 7.8 0.15 3.0 0.055 0.056 38% 76

NGC4731 Y Y 12.4 64.0 255.4 3.3 0.42 4.0 0.017 0.052 56% 261

NGC4781 Y N 15.3 56.4 288.1 8.0 0.84 2.4 0.022 0.055 79% 1411

NGC4826b N N 4.36 58.6 293.9 16.0 0.20 1.7 0.014 0.068 97% 147

NGC4941 ? N 14.0 53.1 202.6 12.4 0.36 3.4 0.020 0.054 80% 1196

NGC4951 N N 12.0 70.5 92.0 3.9 0.21 2.5 0.034 0.063 71% 214

NGC5042 ? N 12.6 51.4 190.1 4.7 0.33 2.9 0.035 0.056 35% 300

NGC5068 Y N 5.16 27.0 349.0 2.2 0.28 2.1 0.037 0.065 46% 222
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Appendix B
Data Product

We publish our measurements in a machine readable table

and demonstrate its form and content in Table B1.

Table A1

(Continued)

Galaxy Bar Arm d i qPA M SFR Reff Tnoise, 150pc rch, 150pc fCO, 150pc Nlos, 150pc

(Mpc) (deg) (deg) ( M109 ) ( 
-M yr 1) (kpc) (K)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC5134 Y N 18.5 22.7 311.6 21.6 0.37 4.2 0.047 0.059 59% 538

NGC5248 ? Y 12.7 49.5 106.2 17.0 1.54 3.2 0.049 0.065 87% 1190

NGC5530 ? N 11.8 61.9 305.4 9.4 0.31 2.8 0.046 0.057 70% 798

NGC5643 Y Y 11.8 29.9 318.7 18.2 2.14 3.5 0.034 0.058 83% 2667

NGC6300 Y N 13.1 49.3 105.5 29.2 2.39 4.0 0.050 0.059 81% 2120

NGC6744 Y Y 11.6 53.2 14.3 48.8 2.28 9.7 0.065 0.065 66% 2511

NGC7456 ? N 7.94 63.7 12.9 1.2 0.06 2.2 0.011 0.057 48% 133

NGC7496 Y N 18.7 34.7 196.4 9.8 2.16 3.3 0.029 0.056 79% 1557

Notes. (2–3) If the galaxy has identifiable stellar bars and spiral arms (?—ambiguous; see M. Querejeta et al. 2020, in preparation); (4) distance (Tully et al. 2009);

(5–6) galaxy inclination and position angle (Lang et al. 2020); (7–9) galaxy global stellar mass, SFR, and the effective (half-mass) radius estimated from the measured

stellar scale length (Leroy et al. 2019; A. K. Leroy et al. 2020a, in preparation); (10–11) CO data rms noise and channel-to-channel correlation at 150 pc resolution;

(12) CO flux completeness at 150 pc resolution; (13) number of independent sightlines at 150 pc resolution.
a
These three very nearby galaxies are only observed by the ACA 7 m and total power telescopes. Because of their proximity, the data still have linear resolutions

matched to the other galaxies in the sample.
b
Measurements in these four galaxies are not presented in Section 3.

c
The estimated CO flux completeness exceeds 100% for these two targets. This is due to either low-S/N data (NGC 4424) or calibration mismatch between the

interferometric and single-dish data (NGC 1317).

(This table is available in machine-readable form.)

Table B1

Table of Key Measurements

Galaxy Resolution rgal Center Arm Inter-arm ( )-ICO 2 1 Σmol σmol Pturb avir
(pc) (kpc) ( -K km s 1) ( 

-M pc 2) ( -km s 1) ( -k K cmB
3)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Circinus 150 0.000 1 0 0 7.680e+02 3.423e+03 7.664e+01 6.574e+08 5.280e+00

Circinus 150 0.154 1 0 0 4.755e+02 2.161e+03 4.053e+01 1.160e+08 2.339e+00

Circinus 150 0.154 1 0 0 3.649e+02 1.659e+03 4.124e+01 9.228e+07 3.154e+00

Circinus 150 0.290 1 0 0 3.433e+02 1.596e+03 4.595e+01 1.101e+08 4.071e+00

Circinus 150 0.290 1 0 0 5.191e+02 2.398e+03 7.411e+01 4.305e+08 7.048e+00

Circinus 150 0.307 1 0 0 2.265e+02 1.053e+03 2.411e+01 2.001e+07 1.698e+00

Circinus 150 0.307 1 0 0 2.698e+02 1.252e+03 2.277e+01 2.121e+07 1.275e+00

Circinus 150 0.322 1 0 0 3.209e+02 1.493e+03 4.636e+01 1.049e+08 4.430e+00

Circinus 150 0.322 1 0 0 3.470e+02 1.624e+03 5.172e+01 1.420e+08 5.068e+00

Circinus 150 0.334 1 0 0 1.989e+02 9.334e+02 3.261e+01 3.244e+07 3.505e+00

L L L L L L L L L L L

(This table is available in its entirety in machine-readable form.)
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Appendix C
Data Censoring Function

As mentioned in Section 2, our data cube masking scheme
introduces a censoring effect that excludes sightlines with low
ICO and high sCO. Here we provide the analytic expression for
this censoring function.

We consider a generic masking scheme requiring N

consecutive channels with > XS N th. The intrinsic CO line
profile is assumed to be Gaussian, with a peak brightness
temperature of Tpeak and a 1σ line width of sCO. We also assume
the line peak is located right at the center of the N consecutive
channels, each of which has a channel width vch. If the CO
intensity in the “edge” channels (i.e., N 2 channels away
from the line center) exceeds X T vth noise ch, then all channels in
between also exceed this threshold, and thus this CO line
should enter the signal mask. Following this argument, we can
get an expression for the censoring function by integrating the
line profile within that “edge” channel:

( ) ( )
( )

( )

ò s- >
-

T v v X T vexp 2 d . C1
N v

N v

2 1

2

peak
2

CO
2

th noise ch
ch
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Recasting this integral by the error function and re-expressing

Tpeak with line-integrated intensity p s=I T2CO peak CO, we

have
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The above derivation assumes an infinitely sharp spectral
response curve, which is inconsistent with the nonzero channel-
to-channel correlation estimated for our data (see Table A1). To
address this, we introduce a three-element Hann kernel of the
shape [ – ]k k k, 1 2 , to model the spectral response curve. Here
the value k is determined so that the resultant channel-to-
channel correlation matches the estimated rch for our data
(following Equation (15) in Leroy et al. 2016). Convolving the
left-hand side of Equation (C1) with this kernel and recasting
the formula into a similar form as Equation (C2), we get a
modified censoring function that accounts for the realistic
spectral response curve36:
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Taking N=2, =X 2th , = -v 2.5 km sch
1, and the corresp-

onding Tnoise and k values for each galaxy in Equation (C3), we

recover the censoring function shown in Figure 1.
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