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Abstract

Predicting the effects of mutations in proteins is critical to many applications, from
understanding genetic disease to designing novel proteins that can address our
most pressing challenges in climate, agriculture and healthcare. Despite a surge in
machine learning-based protein models to tackle these questions, an assessment of
their respective benefits is challenging due to the use of distinct, often contrived,
experimental datasets, and the variable performance of models across different
protein families. Addressing these challenges requires scale. To that end we
introduce ProteinGym, a large-scale and holistic set of benchmarks specifically
designed for protein fitness prediction and design. It encompasses both a broad
collection of over 250 standardized deep mutational scanning assays, spanning
millions of mutated sequences, as well as curated clinical datasets providing high-
quality expert annotations about mutation effects. We devise a robust evaluation
framework that combines metrics for both fitness prediction and design, factors
in known limitations of the underlying experimental methods, and covers both
zero-shot and supervised settings. We report the performance of a diverse set
of over 70 high-performing models from various subfields (eg., alignment-based,
inverse folding) into a unified benchmark suite. We open source the corresponding
codebase, datasets, MSAs, structures, model predictions and develop a user-friendly
website that facilitates data access and analysis.
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1 Introduction

Proteins carry out a wide range of functions in nature, facilitating chemical reactions, transporting
molecules, signaling between cells, and providing structural support to cells and organisms. This
astonishing functional diversity is uniquely encoded in their amino acid sequence. For instance, the
number of possible arrangements for a 64-residue peptide chain (20%4) is already larger than the
estimated number of atoms in the universe. Despite substantial progress in sequencing over the past
two decades, we have observed a relatively small, biased portion of that massive sequence space.
Consequently, the ability to manipulate and optimize known sequences and structures represents
tremendous opportunities to address pressing issues in climate, agriculture and healthcare.

The design of novel, functionally optimized proteins presents several challenges. It begins with
learning a mapping between protein sequences or structures and their resulting properties. This
mapping is often conceptualized as a “fitness landscape”, a multivariate function that character-
izes the relationship between genetic variants and their adaptive fitness. The more accurately and
comprehensively we can define these landscapes, the better our chances of predicting the effects
of mutations and designing proteins with desirable and diverse properties. Machine learning, by
modeling complex, high-dimensional relationships, has emerged as a powerful tool for learning these
fitness landscapes. In recent years, a plethora of machine learning methods have been proposed for
protein modeling, each promising to offer new insights into protein function and design. However,
assessing the effectiveness of these methods has proven challenging. A key issue is their evaluation
on distinct and relatively sparse benchmark datasets, while relative model performance fluctuates
importantly across experimental assays, as was shown in several prior analyses [Riesselman et al.,
2018, Laine et al.,|2019} Meier et al., |2021]]. This situation underscores the importance of scale in
the benchmarks used. Larger, more diverse datasets would offer a more robust and comprehensive
evaluation of model performance.

To address these limitations, we introduce ProteinGym, a large-scale set of benchmarks specifically
tailored to protein design and fitness prediction. It comprises a broad collection of over 250standard-
ized Deep Mutational Scanning (DMS) assays which include over 2.7 million mutated sequences
across more than 200 protein families, spanning different functions, taxa and depth of homologous
sequences. It also encompasses clinical benchmarks providing high-quality annotations from domain
experts about the effects of ~65k substitution and indel mutations in human genes (§ 3).

We have designed ProteinGym to be an effective, holistic, robust, and user-friendly tool. It provides a
structured evaluation framework that factors in known limitations of the underlying experimental
methods and includes metrics that are tailored to protein design and mutation effect prediction (§ ).
We report the performance in a unified benchmark of over 70 diverse high-performing models that
come from various subfields of computational biology (eg., mutation effects prediction, sequence-
based models for de novo design, inverse folding), thereby supporting novel comparisons across.
Unlike prior benchmarks, ProteinGym integrates both the zero-shot and supervised settings, leading
to new insights (§ [5). All models are codified with a common interface in the same open-source
codebase, promoting consistency and ease of use. Lastly, a dedicated website offers an interactive
platform to facilitate comparisons across datasets and performance settings.

2 Related Work and Background

Multi-task protein benchmarks In recent years, several benchmarks have been introduced to
provide initial means to assess protein model performance across a multitude of tasks of interests,
e.g., predicting contacts, structure, thermostability, and fitness. These benchmarks are generally
geared towards assessing the quality of learned protein representations, and the extent to which these
representations can be broadly leveraged for various tasks. However, for fitness prediction, they all
rely on a very limited set of proteins (e.g., 1-3 assays). In comparison, the ProteinGym benchmarks
focus on a single task — fitness prediction — and encompass two orders of magnitude more point
mutations assessed and vast diversity of protein families included.

TAPE (Tasks Assessing Protein Embeddings) [Rao et al., 2019]] covers five protein prediction tasks,
each designed to test a different aspect of protein function and structure prediction (secondary
structure, contact, remote homology, fluorescence and stability), and focuses on assessments in the
semi-supervised regime via carefully curated train-validation-test splits. ProteinGLUE [Capel et al.,


https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s S s

7 7
2 sources of ground truth N 2 types of mutations N

( ) [
| |
| @@ T — : | MDKDYSIGLDIG MDKDY ---LDIG
| 11
| 11
| 11
| 1|

|
|
© |
5 MDKKESIGLDIG MHDKKYSIGLDIG |
a ..x’ N - N MDYKYSIALDIG MDKK-STGLDIG |
. MDKKYSVGLDIG MDKKYSIGASLDIG |
DMS assays Clinical datasets || |
\ 250+ proteins 3k+ genes ,\ 2.4M substitutions 300k indels /
N e - N e -
< \\ _______________________ \\
{/ 70+ baselines \ {/ 2 training regimes \
| Alignment-based Protein language models : | . MDKKYSIGLDAG 0.9 MDYKYSIALDIG :
| o Site-independent ¢ ESM || ' MRNDYYIGLDMG 1.1 MDKKYSIGLDAG |
5 : o DCA e ProGen2 | : F  MNKPYSIGLDIG 0.8 MDKKFSIGLDIG |
T | e EVE e Tranception I cee . |
Eo | . . I  MDKKYSTAYDIG 1.5 2.3 MDKKYSIAYDIG |
| [Inversefolding =~ Clinical models || MDKKCSIGLDAG0.2 0.5 MDKKCSIGLDAG |
| e Protein e ClinFre | MDKKFSIGLEIGO0.7 0.9 MDKKFSIGLEIG
| o ESM-IF1 e PolyPhen-2 Iy ’ |
\ / N\ Zero-shot Supervised /
D 7 D 7
5 performance metrics
Fitness prediction - Protein design
e Spearman 7/ e Top-k recall
e AUC 7 o NDCG
® e MCC
é 4 performance deep dives
) MSA Depth Mutational Depth
E I IIII [ ] [ ] [ ]
[ - [ -+ | ]
H !l'. [ ] [ ][ ]
High Medium ow Singles Triples Five+
Taxa Assayed Phenotype
{ 1
‘ Al 4
o8 W% — €
@] , = :
Viruses Humans Other Eukaryotes Prokaryotes Activity Binding Stability Expression

Figure 1: ProteinGym benchmarks ProteinGym is comprised of three layers. The data layer
encompasses two complementary ground truth labels from DMS assays and clinical annotations from
experts. For both, we analyze two types of mutations: substitutions and indels. The model layer is
comprised of a diverse set of baselines, tailored to both zero-shot and supervised training regimes.
Lastly, the analytics layer includes several performance metrics geared towards fitness prediction or
protein design evaluation. Different segmentation variables (e.g., MSA depth, assayed phenotype,
taxa) facilitate the comparisons of models across diverse settings

also focuses on assessing the usefulness of learned protein representations on supervised
downstream tasks. It is comprised of five different tasks, none directly related to protein fitness:
secondary structure, solvent accessibility, protein-protein interactions, epitope region and hydrophobic
patch prediction. PEER 2022] also focuses on multi-task benchmarking, grouped in five
categories: protein property, localization, structure, protein-protein interactions and protein-ligand
interactions. It contains a richer set of evaluations compared with the prior two benchmarks, and
also investigates the multi-task learning setting, but is not designed for thorough fitness prediction
benchmarking (3 fitness related assays). The handful of fitness DMS assays from these various
benchmarks are all subsumed in ProteinGym.

Single task, non-fitness datasets & benchmarks Efforts to create fair, large-scale, and comprehen-
sive benchmarks have been a significant focus of computational biologists for certain tasks. Among
these, the biennial Critical Assessment of protein Structure Prediction (CASP) [Kryshtafovych et al.
is the most renowned. CASP concentrates on protein structure prediction and has set the gold
standard in this domain. In parallel to CASP, the Critical Assessment of Functional Annotation
(CAFA) [2019] challenge provides a platform for evaluating protein function classifica-
tion. The SKEMPI [Moal and Fernandez-Recio}, [2012]] database is specifically designed to aid the
evaluation of computational methods predicting the effect of mutations on protein-protein binding
affinity. Several datasets have been curated for specific properties of interest across a diverse set of
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proteins, for instance thermostability [Tsuboyama et al.| 2022} [Stourac et al., 2020} (Chen et al., 2022]
or solubility [Hon et al., [2020].

Protein fitness benchmarks Closest to our work are the collections of DMS assays that were
curated in|{Hopf et al.|[2017] (28 substitution assays), and then further expanded upon in Riesselman
et al.|[2018]] (42 substitution assays) and |Shin et al.|[2021] (4 indel assays). We include all assays
related to fitness prediction from these prior works in ProteinGym. FLIP [Dallago et al., 2021]]
focused on comparing fitness predictors in the semi-supervised setting, developing a robust evaluation
framework and curating cross-validation schemes for three assays. MaveDB [Rubin et al.| [2021] is a
repository rather than a benchmark, but it compiles a large collection of datasets from multiple variant
effect mapping experiments that can be used for benchmarking purposes. An initial prototype of the
ProteinGym benchmarks (referred to as ‘ProteinGym v0.1’) was introduced in Notin et al.| [2022al].
We have since then significantly expanded the benchmarks in terms of number and diversity of
underlying datasets, baselines, evaluation framework and model training regimes (Table E]) This not
only enables performance evaluation at an unprecedented scale, but also builds connections between
different subfields that are often perceived as separate, as we discuss in the following paragraph.

Clinical Benchmarks Designing an unbiased, non-circular and broadly applicable benchmark to
evaluate the performance of human variant effect predictors at predicting clinical significance is still
an open-problem for the clinical community. Combining DMS with clinical annotations has been a
fruitful direction to avoid biases [Frazer et al., 2021} |Livesey and Marsh| [2023]]. ClinGen curated a
clinical dataset specifically designed to compare a subset of models [Pejaver et al., 2022].

Relationship between protein fitness, mutation effect prediction and design The protein fitness
landscape refers to the mapping between genotype (e.g., the amino acid sequence) and phenotype
(e.g., protein function). While it is a fairly broad concept, it should always be thought about in practice
within a particular context (e.g., stability at a given temperature in a specific organism). Models
that learn the protein fitness landscape have been shown to be effective at predicting the effects of
mutations [Frazer et al., 2021}, Jagota et al.| 2022, Brandes et al., 2023 [Notin et al., [2022b]. But
the ability to tell apart the sequences that are functional or not is also critical to protein engineering
efforts [Romero et al., 2012} [Yang et al.| [2018] Wu et al.l 2019, |Alley et al 2019bf]. Although
typically introduced in the context of de novo protein design [Huang et al.,|2016]], inverse folding
methods [Ingraham et al., 2019 Jing et al., 2020, [Dauparas et al., 2022} |Gao et al.,|2022] can also
be used for mutation effects prediction (Appendix [A.4.1). There is thus a very tight connection
between protein fitness, mutation effect prediction and protein engineering, and the same models
can be used for either task depending on context. We seek to illustrate this connection through this
work, comparing baselines introduced in different fields (e.g., protein representation learning, inverse
folding models, co-evolution models) on the same benchmarks, and including different metrics that
are geared more to mutation effect prediction (e.g., Spearman) or design tasks (e.g., NDCG).

3 ProteinGym benchmarks

ProteinGym is a collection of benchmarks (Fig.|1) that cover different types of mutation (ie., sub-
stitutions vs. indels), ground-truth labels (ie., experimental measurement from DMS vs. clinical
annotations), and model training regime (ie., zero-shot vs. supervised).

3.1 Mutation types

We curate benchmarks for two types of protein mutations — substitutions and indels (insertions or
deletions), each with unique implications for the structure, function, and modeling of proteins.

Substitutions Substitution mutations refer to a change in which one amino acid in a protein
sequence is replaced by another. Depending on the properties of the substituted amino acid, this can
have varied impacts on the protein’s structure and function, which can range from minimal to drastic.
The influence of a substitution largely depends on whether it is conservative (i.e., the new amino acid
shares similar properties to the original) or non-conservative. In terms of computational modeling,
substitutions are the most commonly addressed mutation type, and the majority of mutation effect
predictors support substitutions.
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Indels Indel mutations correspond to insertions or deletions of amino acids in protein sequences.
While indels can affect protein fitness in similar ways to substitutions, they can also have profound
impacts on protein structure by altering the protein backbone, causing structural modifications
inaccessible through substitutions alone [Shortle and Sondek, |1995| Toth-Petroczy and Tawfik, [2013]].
From a computational perspective, indels present a unique challenge because they alter the length of
the protein sequence, requiring additional considerations in model design and making it more difficult
to align sequences. For instance, the majority of models trained on Multiple Sequence Alignments
are typically unable to score indels due to the fixed coordinate system they operate within (see § H).
Furthermore, when dealing with probabilistic models, comparing relative likelihoods of sequences
with different lengths results in additional complexities and considerations.

3.2 Dataset types

The fitness of a protein is a measure of how well a protein can perform its function within an organism.
Factors that influence protein fitness are diverse and include stability, folding efficiency, catalytic
activity (for enzymes), binding specificity and affinity. To properly capture this diversity, we curated
a broad set of experimental assays that map a given sequence to phenotypic measurements that are
known or hypothesized to be related to its fitness. We focused on two potential sources of ground
truth: Deep Mutational Scanning (DMS) assays and Clinical datasets.

Deep Mutational Scanning assays Modeling protein fitness landscapes presents a challenge
due to the complex relationship between experimentally measured protein fitness, the distribution
of natural sequences, and the underlying fitness landscape. It is challenging to isolate a singular,
measurable molecular property that reflects the key aspects of fitness for a given protein. In developing
ProteinGym, we prioritized assays where the experimentally measured property for each mutant
protein is likely to represent the role of the protein in organismal fitness. The resulting compilation
of over 250 DMS assays extends over a wide array of functional properties, including ligand
binding, aggregation, thermostability, viral replication, and drug resistance. It encompasses diverse
protein families, such as kinases, ion channel proteins, G-protein coupled receptors, polymerases,
transcription factors, and tumor suppressors. In contrast to most DMS assay collections that focus
exclusively on single amino acid substitutions, ProteinGym includes several assays with multiple
amino acid variants. Moreover, it spans different taxa (i.e., humans, other eukaryotes, prokaryotes,
and viruses), alignment depths, and mutation types (substitutions vs indels). All details about the
curation and pre-processing of these DMS assays are provided in Appendix[A.3]

Clinical datasets ClinVar [Landrum and Kattman, 2018] is an extensive, public database developed
by the National Center for Biotechnology Information (NCBI). It serves as an archival repository
that collects and annotates reports detailing the relationships among human genetic variations and
associated phenotypes with relevant supporting evidence, thereby providing robust, clinically an-
notated datasets that are invaluable for understanding the functional impact of mutations. From
the standpoint of benchmarking mutation effects predictors, ClinVar permits the direct comparison
of predictive models in terms of their accuracy in estimating the functional impact of mutations
on human health. Annotations are also available for an order of magnitude more distinct proteins
compared with our DMS-based benchmarks, albeit much sparser per protein (see table 1). In the case
of indels, we focused on short (<3 amino acids) variants. In ClinVar, 84% of indel annotations are
pathogenic, so we added to our clinical dataset common indels from gnomAD (allele frequency >5%)
as pseudocontrols [[Karczewski et al., 2020].

3.3 Model training regime

Lastly, we discriminate in our benchmarks between zero-shot and supervised settings. In the
supervised regime we are allowed to leverage a subset of labels to train a predictive model, while
in the zero-shot setting we seek to predict the effects of mutations on fitness without relying on the
ground-truth labels for the protein of interest. These two settings offer complementary viewpoints
of practical importance. For instance, in settings where labels are subject to several biases or
scarcely available (e.g., labels for rare genetic pathologies), we need methods with robust zero-shot
performance performance. In cases where we seek to design new proteins that simultaneously
optimize several properties of interest (e.g., binding affinity, thermostability) and we have collected a
sufficiently large number of labels for each target, supervised methods are more appropriate. The
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Dataset  Description Mutation type # Proteins # Mutants
DMS High-throughput assays evaluating the functional ~ Substitutions 217 2.4M
impact of a wide range of protein mutations Indels 66 0.3M
Clinical Expert-curated clinical annotations across a wide  Substitutions 2,525 63k
range of human genes Indels 1,555 3k
Total 3,422 2.M

Table 1: ProteinGym datasets summary ProteinGym includes a large collection of DMS assays and
clinical datasets that offer complementary viewpoints when assessing protein fitness. The table reports
the number of mutants and unique proteins per dataset (the total being deduped across datasets).

need to rely on labels is even more pronounced when we seek to optimize several anti-correlated
properties or when evolution is a poor proxy for the property of interest. Predictions obtained in
the zero-shot settings may also be used to augment supervised models [Hsu et al.,[2022a]]. The two
settings require substantially different evaluation frameworks, which we detail in § 4]

4 Evaluation framework

4.1 Zero-shot benchmarks

DMS assays In the zero-shot setting we predict experimental phenotypical measurements from
a given assay, without having access to the labels at training time. Due to the often non-linear
relationship between protein function and organism fitness [Boucher et al2016], the Spearman’s
rank correlation coefficient is the most generally appropriate metric for model performance on
experimental measurements. We use this metric similarly to previous studies [Hopf et al., 2017,
Riesselman et al., [2018| Meier et al., 2021|]. However, in situations where DMS measurements exhibit
a bimodal profile, rank correlations may not be the optimal choice. Consequently, for these instances,
we supplement our performance assessment with additional metrics, namely the Area Under the ROC
Curve (AUC), and the Matthews Correlation Coefficient (MCC), which compare model scores with
binarized experimental measurements. Furthermore, for certain goals (e.g., optimizing functional
properties of designed proteins), it is more important that a model is able to correctly identify the
most functional proteins, rather than capture the distribution of the full data. Thus, we also calculate
the Normalized Discounted Cumulative Gains (NDCG), which up-weights a model if it gives its
highest scores to sequences with the highest DMS value. We also calculate Top K Recall, where we
select K to be the top 10% of DMS values. To avoid placing too much weight on properties where
we have many assays (e.g. thermostability), we first compute each of these metrics within groups
of assays that measure similar functions. The final value of the metric is then the average of these
averages, giving each functional group equal weight.

Clinical datasets For the clinical data, with pathogenic and benign categories, we calculate the
areas under the ROC and precision-recall curves. In the substitution dataset, 50% of the labels are
in approximately 10% of the proteins. Since clinical labels across genes correspond to underlying
pathologies that are very distinct to one another, it is preferable to assess performance on a gene-
by-gene basis. We thus compute the average per-gene performance on the substitution benchmark.
However, in the case of indels, only about half of the proteins has a pathogenic label (and only 10%
have a both pathogenic and benign or pseudocontrol labels), so we compute the total AUC for the
full dataset. The problem of calibrating model scores in a principled way across different genes is an
open problem; we leave this to future work.

Baselines We implement a diverse set of 50+ zero-shot baselines that may be grouped into
alignment-based models, protein language models, inverse folding models and ‘hybrid’ models.
Alignment-based models, such as site-independent and EVmutation models [Hopf et al., [2017],
DeepSequence [Riesselman et al., 2018, WaveNet [Shin et al., [2021]], EVE [Frazer et al., 2021]]
and GEMME [Laine et al.,[2019]], are trained on Multiple Sequence Alignments (MSAs). Protein
language models are trained on large quantities of unaligned sequences across protein families. They
include UniRep [Alley et al.,[2019a], the RITA suite [Hesslow et al., 2022], the ESM1 and ESM2
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suite [Rives et al.,2021, Meier et al., 2021} [Lin et al., |2023]], VESPA [Marquet et al.,[2022], the CARP
suite [Yang et al.,2023a]] and the ProGen?2 suite [Nijkamp et al., 2022]. Inverse Folding models learn
sequence distributions conditional on an input structure [Ingraham et al., 2019]]. We include here
ProteinMPNN [Dauparas et al.,|2022]] which is trained on structures in the PDB, MIF [Yang et al.,
2023b] trained on CATH4.2 [Dawson et al.,[2016], and ESM-IF1 [Hsu et al.| 2022b|] which is trained
on the PDB and a dataset of Alphafold2 folded structures. Hybrid models combine the respective
strengths of family-specific alignment-based and family-agnostic language models, such as the MSA
Transformer [Rao et al., [2021]], evotuned UniRep [Alley et al., 2019a], Tranception [Notin et al.,
2022a]| and TranceptEVE [Notin et al., [2022b]).

Because of the variable length of sequences subject to insertion or deletion mutations, alignment-based
methods with fixed matrix representations of sequences are unable to score indels. However, profile
Hidden Markov Model (HMM) and autoregressive models include explicit or implicit probabilities
of indels at each position. Both are trained on homologous sequences recovered with an MSA and
expanded to include insertions. The masked-marginals heuristic Meier et al.|[2021]] used to predict
protein fitness with protein language models trained with a masked-language modeling objective
(e.g., ESM-1v, MSA Transformer) does not support indels (see Appendix [A.4). We thus only report
the performance of the following baselines: Tranception [Notin et al.| 2022a]], TranceptEVE [Notin
et al., 2022b]], WaveNet [Shin et al., 2021]], HMM [Eddy, 2011]], ProGen2 [Madani et al., [2020],
UniRep [Alley et al.,|2019a], RITA [Hesslow et al.||2022]] and ProtGPT2 [Ferruz et al.,|[2022].

For comparisons on clinical benchmarks, we also include unsupervised baselines developed for
variant effect prediction in humans, such as SIFT [Ng and Henikoff}, [2002], MutPred [Li et al.,[2009],
LRT [Chun and Fay} 2009], MutationAssessor [Reva et al.,[201 1], PROVEAN [Choi et al., [2012]],
PrimateAl [[Sundaram et al.,[2018]] and LIST-S2 [Malhis et al.,[2020].

4.2 Supervised benchmarks

DMS assays We leverage the same set of 250+ substitutions and indels DMS assays as for the
zero-shot setting. In the supervised setting, greater care should be dedicated to mitigating overfitting
risks, as the observations in biological datasets may not be fully independent. For instance, two
mutations involving amino acids with similar biochemical properties at the same position will tend
to produce similar effects. If we train on one of these mutations and test on the other, we will
tend to overestimate our ability to predict the effects of mutants at unseen positions. In order to
quantify the ability of each model to extrapolate to unseen positions at training time, we leverage
3 types of cross validation schemes introduced in Notin et al.|[2023]]. In the Random scheme, each
mutation is randomly assigned to one of five different folds. In the Contiguous scheme, we split the
sequence contiguously along its length, in order to obtain 5 segments of contiguous positions, and
assign mutations to each segment based on the position at which it occurs. Lastly, in the Modulo
scheme, we assign positions to each fold using the modulo operator to obtain 5 folds overall. In all
supervised settings, we report both the Spearman’s rank correlation and Mean Squared Error (MSE)
between predictions and experimental measurements. A more challenging generalization task would
involve learning the relationship between protein representation (sequence, structure, or both) and
function using only a handful of proteins, and then extrapolating at inference time to protein families
not encountered during training. This setting may be seen as a hybrid between the zero-shot and
supervised regimes — closer to zero-shot if we seek to predict different properties across families, and
closer to the supervised setting if the properties are similar (eg., predicting the thermostability of
proteins with low sequence similarity with the ones in the training set). While this study does not
delve into these hybrid scenarios, the DMS assays in ProteinGym can facilitate such analyses.

Clinical datasets Given the restrictions on the number of labels available per gene and the dis-
crepancies between train-validation-test splits across the different supervised baselines, we report
test performance on the full set of all available ClinVar labels. We note that this may result in
overestimating the performance of supervised methods for which the training data would substantially
overlap with the labels considered in our ClinVar set. Further data leakage occurs for models trained
on population frequencies, as most ClinVar benign labels are established based on observed frequen-
cies in humans (situation especially evident for our indel dataset where we use frequent variants as
pseudocontrols). Interestingly, despite this overfitting risk and as first observed in |Frazer et al.|[2021],
we find that most supervised methods are outperformed by the best unsupervised methods (Fig. [2)).
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Baselines For the supervised DMS benchmark, we report two suites of baselines. The first suite is
comprised of models that take as inputs One-Hot-Encoded (OHE) features. Following the protocol
described in|[Hsu et al.|[2022a], we augment the model inputs with predictions from several state-of-
the-art zero-shot baselines: DeepSequence [Riesselman et al.,|2018]], ESM-1v [Meier et al.,|2021]],
MSA Transformer [Rao et al.,[2019], Tranception [Notin et al.|[2022a]] and TranceptEVE [Notin et al.,
2022b]. Following prior works from the semi-supervised protein modeling literature [Heinzinger
et al.|[2019, |Dallago et al.,[2021]], the second suite is formed with baselines that leverage mean-pooled
embeddings from several protein language models (ESM-1v, MSA Transformer and Tranception) in
lieu of OHE features. We also augment these baselines with zero-shot predictions obtained with the
same model used to extract the protein sequence embeddings. Lastly, we include ProteinNPT [Notin
et al., [2023]], a semi-supervised pseudo-generative architecture which jointly models sequences
and labels by performing axial attention [Ho et al.l [2019b| [Kossen et al., 2022] on input labeled
batches. Additional details for the corresponding model architectures are reported in Appendix
On the various clinical benchmarks, the above baselines are challenging to train given the low
number of labels available per gene. We instead include several supervised baselines that have been
specifically developed for variant effects predictions in humans, such as ClinPred [Alirezaie et al.}
2018]], MetaRNN |[Li et al., [2022]], BayesDel [Fengl 2017], REVEL [loannidis et al.l [2016]] and
PolyPhen-2 [Adzhubei et al., 2010] (full list in[A.4.3).

5 Results

5.1 Substitution benchmarks

We follow the experimental protocol described in § .1 and report our main results on the zero-shot
DMS benchmarks in Table [2] supervised DMS benchmark in Table 3] and combined supervised
and unsupervised clinical benchmarks in Fig. 2JA. TranceptEVE emerges as the best overall method
across the various settings. One of the key objectives of ProteinGym benchmarks is to analyze
performance across a wide range of regimes to guide model selection depending on the objectives
of the practitioners. To that end we also provide a performance breakdown across MSA depth,
mutational depth and taxa where relevant (see Appendix [A.5]and supplements). While TranceptEVE
tops the ranking across the majority of metrics and settings, GEMME achieves the best performance
in several categories, such as assays of viral or non-human eukaryotic proteins, and low and medium
depth MSAs. While we report average performance per metric in Table[2] the distribution of scores
across assays is also insightful. For instance, certain models are heavily penalized in aggregate
rankings due to very poor performance on a handful of assays (e.g., ESM-1v), such that looking a
the median performance in lieu of the average provides a complementary viewpoint. Furthermore,
although most models rank similarly under Spearman and NDCG, some have comparatively better
performance in one over the other (Fig.[2B). Superior ranking under NDCG may suggest a model
is better at predicting the top end of a score distribution, which may be a desirable feature when
using models for design and optimization. Many of the alignment-based methods (e.g. EVmutation,
WaveNet and DeepSequence) exhibit this behavior (Fig.[AT). Models with higher relative Spearman
(e.g., ESM-1v and ESM-2) may be more effective for cases where the model needs to learn the full
property distribution well, such as with mutation effect prediction. Lastly, in the zero-shot setting,
autoregressive protein language models (e.g., Tranception, ProGen2) tend to outperform their masked
language modeling (MLM) counterparts (e.g., ESM models). However, in supervised settings, both
types of models provide valuable embeddings for learning. The optimal method depends on the
specific situation, as observed in Table E] and Table @ The best performance is achieved with
the ProteinNPT architecture, demonstrating the value from performing self-attention alternatively
across columns (i.e., amino acid tokens and labels) and rows (i.e., protein sequences) to learn a rich
representation of the data.

5.2 Indel benchmarks

The results for an indel-compatible subset of the models in ProteinGym is shown in Table ] The
Spearman rank correlations are separated by the method used to generate test sequences: unbi-
ased libraries, or model-designed sequences biased towards natural sequences. The medium sized
Tranception model has the highest Spearman rank correlation and AUC across all the assays, al-
though TranceptEVE is the highest performing on the subset of assays measuring designed or natural
sequences. We provide additional results on the clinical indel benchmarks in Appendix
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Model type  Model name Spearman AUC MCC NDCG  Recall
Alignment- Site-Independent 0.361 0.697  0.288 0.746 0.201
based WaveNet 0.216 0.623  0.174 0.684 0.154
EVmutation 0.397 0.717  0.306 0.775 0.220
DeepSequence (ens.) 0.422 0.731 0.330 0.775 0.227
EVE (ens.) 0.441 0.741 0.343 0.781 0.231
GEMME 0.457 0.750  0.353 0.775 0.209
Protein UniRep 0.193 0.607  0.149 0.647 0.14
language CARP (640M) 0.373 0.704  0.289 0.749 0.210
RITA XL 0.373 0.708  0.294 0.750 0.194
ProGen2 XL 0.392 0.718  0.307 0.766 0.200
ESM-1b 0.399 0.722 0315 0.748 0.205
ESM2 (15B) 0.405 0.723  0.318 0.759 0.210
ESM-1v (ens.) 0.416 0.730  0.329 0.753 0.216
VESPA 0.437 0.743  0.348 0.774 0.201
Hybrid UniRep evotuned 0.347 0.693  0.274 0.737 0.181
MSA Transformer (ens.) 0.434 0.738 0.341 0.777 0.224
Tranception L 0.436 0.740  0.342 0.778 0.221
TranceptEVE L 0.457 0.752  0.357 0.785 0.231
Inverse ProteinMPNN 0.258 0.640  0.196 0.712 0.186
Folding MIF-ST 0.401 0.718  0.310 0.766 0.227
ESM-IF1 0.422 0.730  0.331 0.748 0.223

Table 2: Zero-shot substitution DMS benchmark Average Spearman’s rank correlation, AUC,
MCC, NDCG@10%, and top 10% recall between model scores and experimental measurements on
the ProteinGym substitution benchmark. We use ‘ens.’ as a shorthand for ensemble.

Model Model name Spearman (1) MSE (])

type Contig. Mod. Rand. Avg. | Contig. Mod. Rand. Avg.

OHE None 0.064 0.027 0.579 0.224 | 1.158 1.125 0.898 1.061
DeepSequence | 0.400 0.400 0.521 0.440 | 0967 0.940 0.767 0.891
ESM-1v 0.367 0368 0.514 0417 | 0977 0949 0.764 0.897
MSAT 0410 0412 0536 0453 | 0963 0.934 0.749 0.882
Tranception 0419 0419 0535 0458 | 0985 0.934 0.766 0.895
TranceptEVE 0441 0440 0550 0477 | 0953 0914 0.743 0.870

Embed. ESM-1v 0481 0506 0.639 0.542 | 0937 0.861 0.563 0.787
MSAT 0.525 0.538 0.642 0.568 | 0.836 0.795 0.573 0.735
Tranception 0490 0526 0.696 0.571 | 0972 0.833 0.503 0.769

NPT ProteinNPT | 0.547 0.564 0.730 0.613 | 0.820 0.771 0.459 0.683

Table 3: Supervised substitution DMS benchmark. Spearman’s rank correlation and MSE between
model predictions and experimental measurements. MSAT is a shorthand for MSA Transformer.

6 Resources

Codebase A key contribution of our work is the consolidation of the numerous baselines discussed
in § {]in a single open-source GitHub repository. While the main code for the majority of these
baselines is publicly available, it often does not support fitness prediction out-of-the-box or, when
it does, the codebase does not necessarily provide all the required data processing logic (e.g., pre-
processing of MSAs in MSA Transformer) or handle all possible edge cases that may be encountered
(e.g., scoring of sequences longer than context size in the ESM suite). Our GitHub repository
addresses all of these gaps and provides a consistent interface that will aid in the seamless integration
of new baselines as they become available.
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Figure 2: Comparing baselines across datasets and across performance metrics (A) Performance
estimated against known clinical labels (avg. AUC over genes in ClinVar (x axis)), and DMS assays
assessing the clinical effect of variants in humans (avg. Spearman (y axis)). (B) The zero-shot models’
median NDCG@10% (x-axis) against median Spearman (y-axis) on the DMS substitutions.

Model type Model name Spearman by DMS type (1) AUC (1)
Library Designed/Natural All All
Alignment HMM 0.459 0.385 0.391 0.731
models WaveNet 0.427 0.289 0.285 0.667
Protein UniRep -0.016 0.159 0.169 0.589
language RITAL 0.395 0.521 0.459 0.764
models ProtGPT2 0.153 0.188 0.194 0.615
ProGen2 XL 0.369 0.471 0.434 0.749
Hybrid Tranception L 0.449 0.443 0.399 0.742
models Tranception M 0.529 0.392 0.298 0.735
TranceptEVE 0.472 0.521 0.457 0.774

Table 4: Zero-shot indel DMS benchmark Spearman’s rank correlations and AUC between model
scores and experimental measurements.

Processed datasets We also make publicly available all processed datasets used in our various
benchmarks in a consistent format, including all DMS assays, model scores, ClinVar/gnomAD
datasets, predicted 3D structures and Multiple Sequence Alignments required for training and scoring
(see Section[A.3.3]for more details).

Website Lastly, we developed a user-friendly website in which all benchmarks are accessible, with
functionalities to support drill analyses across various dimensions (e.g., mutational depth, taxa) and
exporting capabilities.

7 Conclusion

ProteinGym addresses the lack of large-scale benchmarks for the robust assessment of models
developed for protein design and fitness prediction. It facilitates the direct comparison of methods
across several dimensions of interest (e.g., MSA depth, mutational depth, taxa), based on different
ground truth datasets (e.g., DMS assays vs Clinical annotations), and in different regimes (e.g., zero-
shot vs supervised). We expect the ProteinGym benchmarks and the various data assets we publicly
release along with them, to be valuable resources for the Machine Learning and Computational
Biology communities, and we plan to continue updating the benchmarks as new assays and baselines
become available.

10


https://www.proteingym.org
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Acknowledgments and Disclosure of Funding

P.N. was supported by GSK and the UK Engineering and Physical Sciences Research Council (ESPRC
ICASE award no.18000077). Y.G. holds a Turing AI Fellowship (Phase 1) at the Alan Turing Institute,
which is supported by EPSRC grant reference V030302/1. A.K., PN., and D.S.M. are supported by a
Chan Zuckerberg Initiative Award (Neurodegeneration Challenge Network, CZ12018-191853). S.P.,
H.S., and D.S.M. are supported by a NIH Transformational Research Award (TRO1 1R01CA260415).
L.vN. and R.O. gratefully acknowledge funding from CZI NDCN. R.W. is supported by the UK
Engineering and Physical Sciences Research Council, as part of the CDT in Health Data Science.
D.F is supported by Wellcome Leap Inc, Chan Zuckerberg Initiative/Silicon Valley Community
Foundation and The Coalition for Epidemic Preparedness Innovations. We thank the broader Marks
Lab, in particular Javier Marchena-Hurtado, for helpful discussions when writing this manuscript. We
gratefully acknowledge the compute resources provided by Invitae to train most of the EVE models
that we used for the clinical benchmark.

References

Christopher D. Aakre, Julien Herrou, Tuyen N. Phung, Barrett S. Perchuk, Sean Crosson, and Michael T. Laub.
Evolving New Protein-Protein Interaction Specificity through Promiscuous Intermediates. Cell, 163(3):
594-606, October 2015. ISSN 00928674. doi: 10.1016/j.cell.2015.09.055. URL https://linkinghub,
elsevier.com/retrieve/pii/S0092867415012726.

Bharat V. Adkar, Arti Tripathi, Anusmita Sahoo, Kanika Bajaj, Devrishi Goswami, Purbani Chakrabarti,
Mohit K. Swarnkar, Rajesh S. Gokhale, and Raghavan Varadarajan. Protein Model Discrimination Using
Mutational Sensitivity Derived from Deep Sequencing. Structure, 20(2):371-381, February 2012. ISSN
09692126. doi: 10.1016/.str.2011.11.021. URL https://linkinghub.elsevier.com/retrieve/pii/
S50969212612000068.

Ivan A Adzhubei, Steffen Schmidt, Leonid Peshkin, Vasily E Ramensky, Anna Gerasimova, Peer Bork, Alexey S
Kondrashov, and Shamil R Sunyaev. A method and server for predicting damaging missense mutations.
Nature Methods, 7(4):248-249, April 2010. ISSN 1548-7091, 1548-7105. doi: 10.1038/nmeth0410-248.
URL http://www.nature.com/articles/nmeth0410-248|

Ethan Ahler, Ames C. Register, Sujata Chakraborty, Linglan Fang, Emily M. Dieter, Katherine A. Sitko, Rama
Subba Rao Vidadala, Bridget M. Trevillian, Martin Golkowski, Hannah Gelman, Jason J. Stephany, Alan F.
Rubin, Ethan A. Merritt, Douglas M. Fowler, and Dustin J. Maly. A Combined Approach Reveals a Regulatory
Mechanism Coupling Src’s Kinase Activity, Localization, and Phosphotransferase-Independent Functions.
Molecular Cell, 74(2):393-408.e20, April 2019. ISSN 10972765. doi: 10.1016/j.molcel.2019.02.003. URL
https://linkinghub.elsevier.com/retrieve/pii/S1097276519300930,

Najmeh Alirezaie, Kristin D Kernohan, Taila Hartley, Jacek Majewski, and Toby Dylan Hocking. Clinpred:
prediction tool to identify disease-relevant nonsynonymous single-nucleotide variants. The American Journal
of Human Genetics, 103(4):474-483, 2018.

Ethan C. Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M. Church. Unified
rational protein engineering with sequence-based deep representation learning. Nature Methods, pages 1-8,
2019a.

Ethan C Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M Church. Unified
rational protein engineering with sequence-based deep representation learning. Nature methods, 16(12):
1315-1322, 2019b.

Clara J. Amorosi, Melissa A. Chiasson, Matthew G. McDonald, Lai Hong Wong, Katherine A. Sitko, Gabriel
Boyle, John P. Kowalski, Allan E. Rettie, Douglas M. Fowler, and Maitreya J. Dunham. Massively parallel
characterization of CYP2C9 variant enzyme activity and abundance. The American Journal of Human
Genetics, 108(9):1735-1751, September 2021. ISSN 00029297. doi: 10.1016/j.ajhg.2021.07.001. URL
https://linkinghub.elsevier.com/retrieve/pii/S000292972100269X.

Bryan Andrews and Stanley Fields. Distinct patterns of mutational sensitivity for A resistance and maltodextrin
transport in escherichia coli LamB. Microbial Genomics, 6(4), April 2020.

Carlos L. Araya, Douglas M. Fowler, Wentao Chen, Ike Muniez, Jeffery W. Kelly, and Stanley Fields. A
fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of
protein function. Proceedings of the National Academy of Sciences, 109(42):16858-16863, October 2012.
ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1209751109. URL https://pnas.org/doi/full/10,
1073/pnas. 1209751109,

11


https://linkinghub.elsevier.com/retrieve/pii/S0092867415012726
https://linkinghub.elsevier.com/retrieve/pii/S0092867415012726
https://linkinghub.elsevier.com/retrieve/pii/S0969212612000068
https://linkinghub.elsevier.com/retrieve/pii/S0969212612000068
http://www.nature.com/articles/nmeth0410-248
https://linkinghub.elsevier.com/retrieve/pii/S1097276519300930
https://linkinghub.elsevier.com/retrieve/pii/S000292972100269X
https://pnas.org/doi/full/10.1073/pnas.1209751109
https://pnas.org/doi/full/10.1073/pnas.1209751109
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pradeep Bandaru, Neel H Shah, Moitrayee Bhattacharyya, John P Barton, Yasushi Kondo, Joshua C Cofsky,
Christine L Gee, Arup K Chakraborty, Tanja Kortemme, Rama Ranganathan, and John Kuriyan. Deconstruc-
tion of the Ras switching cycle through saturation mutagenesis. eLife, 6:¢27810, July 2017. ISSN 2050-084X.
doi: 10.7554/eLife.27810. URL https://elifesciences.org/articles/27810.

Jesse D Bloom. An experimentally determined evolutionary model dramatically improves phylogenetic fit.
Molecular Biology and Evolution, 31(8):1956—-1978, August 2014.

Benedetta Bolognesi, Andre J. Faure, Mireia Seuma, Jorn M. Schmiedel, Gian Gaetano Tartaglia, and Ben
Lehner. The mutational landscape of a prion-like domain. Nature Communications, 10(1):4162, December
2019. ISSN 2041-1723. doi: 10.1038/s41467-019-12101-z. URL http://www.nature.com/articles/
s41467-019-12101-2z|

Jeftrey I Boucher, Daniel NA Bolon, and Dan S Tawfik. Quantifying and understanding the fitness effects of
protein mutations: Laboratory versus nature. Protein Science, 25(7):1219-1226, 2016.

Nadav Brandes and Vasilis Ntranos. ESM variants - data & code for analysis and figures, June 2023. URL
https://doi.org/10.5281/zenodo.8088402.

Nadav Brandes, Grant Goldman, Charlotte H Wang, Chun Jimmie Ye, and Vasilis Ntranos. Genome-wide
prediction of disease variant effects with a deep protein language model. Nature Genetics, 55(9):1512-1522,
2023.

Lisa Brenan, Aleksandr Andreev, Ofir Cohen, Sasha Pantel, Atanas Kamburov, Davide Cacchiarelli, Nicole S.
Persky, Cong Zhu, Mukta Bagul, Eva M. Goetz, Alex B. Burgin, Levi A. Garraway, Gad Getz, Tarjei S.
Mikkelsen, Federica Piccioni, David E. Root, and Cory M. Johannessen. Phenotypic Characterization
of a Comprehensive Set of MAPK1 /ERK2 Missense Mutants. Cell Reports, 17(4):1171-1183, October
2016. ISSN 22111247. doi: 10.1016/j.celrep.2016.09.061. URL https://linkinghub.elsevier.com/
retrieve/pii/S2211124716313171.

Jessica L. Bridgford, Su Min Lee, Christine M. M. Lee, Paola Guglielmelli, Elisa Rumi, Daniela Pietra,
Stephen Wilcox, Yash Chhabra, Alan F. Rubin, Mario Cazzola, Alessandro M. Vannucchi, Andrew J. Brooks,
Matthew E. Call, and Melissa J. Call. Novel drivers and modifiers of MPL-dependent oncogenic transformation
identified by deep mutational scanning. Blood, 135(4):287-292, January 2020. ISSN 0006-4971, 1528-0020.
doi: 10.1182/blood.2019002561. URL https://ashpublications.org/blood/article/135/4/287/
381157/Novel-drivers-and-modifiers-of-MPLdependent!

Ian J Campbell, Joshua T Atkinson, Matthew D Carpenter, Dru Myerscough, Lin Su, Caroline M Ajo-Franklin,
and Jonathan J Silberg. Determinants of multiheme cytochrome extracellular electron transfer uncovered by
systematic peptide insertion. Biochemistry, 61(13):1337-1350, July 2022.

Henriette Capel, Robin Weiler, Maurits Dijkstra, Reinier Vleugels, Peter Bloem, and K. Anton Feenstra.
ProteinGLUE multi-task benchmark suite for self-supervised protein modeling. Scientific Reports, 12(1):
16047, September 2022. ISSN 2045-2322. doi: 10.1038/541598-022-19608-4. URL https://www.nature,
com/articles/s41598-022-19608-4. Number: 1 Publisher: Nature Publishing Group.

Hannah Carter, Christopher Douville, Peter D Stenson, David N Cooper, and Rachel Karchin. Identifying
mendelian disease genes with the variant effect scoring tool. BMC genomics, 14(3):1-16, 2013.

Sujata Chakraborty, Ethan Ahler, Jessica J Simon, Linglan Fang, Zachary E Potter, Katherine A Sitko, Jason J
Stephany, Miklos Guttman, Douglas M Fowler, and Dustin J Maly. Profiling of the drug resistance of
thousands of src tyrosine kinase mutants uncovers a regulatory network that couples autoinhibition to catalytic
domain dynamics. December 2021.

Kui K. Chan, Danielle Dorosky, Preeti Sharma, Shawn A. Abbasi, John M. Dye, David M. Kranz, Andrew S.
Herbert, and Erik Procko. Engineering human ACE2 to optimize binding to the spike protein of SARS
coronavirus 2. Science, 369(6508):1261-1265, September 2020. ISSN 0036-8075, 1095-9203. doi: 10.1126/
science.abc0870. URL https://www.science.org/doi/10.1126/science.abc0870,

Yvonne H. Chan, Sergey V. Venev, Konstantin B. Zeldovich, and C. Robert Matthews. Correlation of fitness
landscapes from three orthologous TIM barrels originates from sequence and structure constraints. Nature
Communications, 8(1):14614, April 2017. ISSN 2041-1723. doi: 10.1038/ncomms14614. URL http:
//www.nature.com/articles/ncomms14614.

John Z Chen, Douglas M Fowler, and Nobuhiko Tokuriki. Comprehensive exploration of the translocation,
stability and substrate recognition requirements in VIM-2 lactamase. eLife, 9:e56707, June 2020. ISSN
2050-084X. doi: 10.7554/eLife.56707. URL https://elifesciences.org/articles/56707.

12


https://elifesciences.org/articles/27810
http://www.nature.com/articles/s41467-019-12101-z
http://www.nature.com/articles/s41467-019-12101-z
https://doi.org/10.5281/zenodo.8088402
https://linkinghub.elsevier.com/retrieve/pii/S2211124716313171
https://linkinghub.elsevier.com/retrieve/pii/S2211124716313171
https://ashpublications.org/blood/article/135/4/287/381157/Novel-drivers-and-modifiers-of-MPLdependent
https://ashpublications.org/blood/article/135/4/287/381157/Novel-drivers-and-modifiers-of-MPLdependent
https://www.nature.com/articles/s41598-022-19608-4
https://www.nature.com/articles/s41598-022-19608-4
https://www.science.org/doi/10.1126/science.abc0870
http://www.nature.com/articles/ncomms14614
http://www.nature.com/articles/ncomms14614
https://elifesciences.org/articles/56707
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Tianlong Chen, Chengyue Gong, Daniel Jesus Diaz, Xuxi Chen, Jordan Tyler Wells, Qiang Liu, Zhangyang
Wang, Andrew Ellington, Alex Dimakis, and Adam Klivans. HotProtein: A Novel Framework for Protein
Thermostability Prediction and Editing. October 2022. URL https://openreview.net/forum?id=RtV_
iEbWeGE.

Yongcan Chen, Ruyun Hu, Keyi Li, Yating Zhang, Lihao Fu, Jianzhi Zhang, and Tong Si. Deep mutational
scanning of an Oxygen-Independent fluorescent protein CreiLOV for comprehensive profiling of mutational
and epistatic effects. ACS Synthetic Biology, 12(5):1461-1473, May 2023.

Melissa A Chiasson, Nathan J Rollins, Jason J Stephany, Katherine A Sitko, Kenneth A Matreyek, Marta Verby,
Song Sun, Frederick P Roth, Daniel DeSloover, Debora S Marks, Allan E Rettie, and Douglas M Fowler.
Multiplexed measurement of variant abundance and activity reveals VKOR topology, active site and human
variant impact. eLife, 9:¢58026, September 2020. ISSN 2050-084X. doi: 10.7554/eLife.58026. URL
https://elifesciences.org/articles/58026.

Yongwook Choi, Gregory E Sims, Sean Murphy, Jason R Miller, and Agnes P Chan. Predicting the functional
effect of amino acid substitutions and indels. PLoS One, 7(10):e46688, October 2012.

Sung Chun and Justin C Fay. Identification of deleterious mutations within three human genomes. Genome
research, 19(9):1553-1561, 2009.

Lene Clausen, Vasileios Voutsinos, Matteo Cagiada, Kristoffer E Johansson, Martin Grgnb&k-Thygesen, Snehal
Nariya, Rachel L Powell, Magnus K N Have, Vibe H Oestergaard, Amelie Stein, Douglas M Fowler, Kresten
Lindorff-Larsen, and Rasmus Hartmann-Petersen. A mutational atlas for parkin proteostasis. June 2023.

Willow Coyote-Maestas, David Nedrud, Yungui He, and Daniel Schmidt. Determinants of trafficking, conduction,
and disease within a K+ channel revealed through multiparametric deep mutational scanning. eLife, 11:
€76903, May 2022. ISSN 2050-084X. doi: 10.7554/eLite.76903. URL https://elifesciences.org/
articles/76903.

Christian Dallago, Jody Mou, Kadina E Johnston, Bruce J Wittmann, Nicholas Bhattacharya, Samuel Goldman,
Ali Madani, and Kevin K Yang. FLIP: Benchmark tasks in fitness landscape inference for proteins. 2021.

Rohan Dandage, Rajesh Pandey, Gopal Jayaraj, Manish Rai, David Berger, and Kausik Chakraborty. Differential
strengths of molecular determinants guide environment specific mutational fates. PLOS Genetics, 14(5):
e1007419, May 2018. ISSN 1553-7404. doi: 10.1371/journal.pgen.1007419. URL https://dx.plos.org/
10.1371/journal.pgen.1007419.

J Dauparas, I Anishchenko, N Bennett, H Bai, R J Ragotte, L F Milles, B I M Wicky, A Courbet, R J de Haas,
N Bethel, PJ Y Leung, T F Huddy, S Pellock, D Tischer, F Chan, B Koepnick, H Nguyen, A Kang, B Sankaran,
A K Bera, N P King, and D Baker. Robust deep learning-based protein sequence design using ProteinMPNN.
Science, 378(6615):49-56, October 2022.

Natalie L. Dawson, Tony E. Lewis, Sayoni Das, Jonathan G. Lees, David A. Lee, Paul Ashford, Christine A.
Orengo, and Ian P. W. Sillitoe. Cath: an expanded resource to predict protein function through structure and
sequence. Nucleic Acids Research, 45:D289 — D295, 2016. URL https://api.semanticscholar.org/
CorpusID:9356024.

Zhifeng Deng, Wanzhi Huang, Erol Bakkalbasi, Nicholas G. Brown, Carolyn J. Adamski, Kacie Rice, Donna
Muzny, Richard A. Gibbs, and Timothy Palzkill. Deep Sequencing of Systematic Combinatorial Libraries
Reveals beta-Lactamase Sequence Constraints at High Resolution. Journal of Molecular Biology, 424(3-4):
150-167, December 2012. ISSN 00222836. doi: 10.1016/j.jmb.2012.09.014. URL https://linkinghub,
elsevier.com/retrieve/pii/S0022283612007711,

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding, 2019.

David Ding, Ada Shaw, Sam Sinai, Nathan Rollins, Noam Prywes, David F Savage, Michael T Laub, and
Debora S Marks. Protein design using structure-based residue preferences. June 2023.

Michael Doud and Jesse Bloom. Accurate Measurement of the Effects of All Amino-Acid Mutations on
Influenza Hemagglutinin. Viruses, 8(6):155, June 2016. ISSN 1999-4915. doi: 10.3390/v8060155. URL
http://www.mdpi.com/1999-4915/8/6/155.

Michael B. Doud, Orr Ashenberg, and Jesse D. Bloom. Site-Specific Amino Acid Preferences Are Mostly
Conserved in Two Closely Related Protein Homologs. Molecular Biology and Evolution, 32(11):2944-2960,
November 2015. ISSN 0737-4038, 1537-1719. doi: 10.1093/molbev/msv167. URL https://academic)
oup.com/mbe/article-lookup/doi/10.1093/molbev/msv167,

13


https://openreview.net/forum?id=RtV_iEbWeGE
https://openreview.net/forum?id=RtV_iEbWeGE
https://elifesciences.org/articles/58026
https://elifesciences.org/articles/76903
https://elifesciences.org/articles/76903
https://dx.plos.org/10.1371/journal.pgen.1007419
https://dx.plos.org/10.1371/journal.pgen.1007419
https://api.semanticscholar.org/CorpusID:9356024
https://api.semanticscholar.org/CorpusID:9356024
https://linkinghub.elsevier.com/retrieve/pii/S0022283612007711
https://linkinghub.elsevier.com/retrieve/pii/S0022283612007711
http://www.mdpi.com/1999-4915/8/6/155
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msv167
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msv167
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Maria Duenas-Decamp, Li Jiang, Daniel Bolon, and Paul R. Clapham. Saturation Mutagenesis of the HIV-1
Envelope CD4 Binding Loop Reveals Residues Controlling Distinct Trimer Conformations. PLOS Pathogens,
12(11):e1005988, November 2016. ISSN 1553-7374. doi: 10.1371/journal.ppat.1005988. URL https:
//dx.plos.org/10.1371/journal.ppat.1005988,

Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

Sean R Eddy. Accelerated profile HMM searches. PLoS Comput. Biol., 7(10):e1002195, October 2011.

Assaf Elazar, Jonathan Weinstein, Ido Biran, Yearit Fridman, Eitan Bibi, and Sarel Jacob Fleishman. Mu-
tational scanning reveals the determinants of protein insertion and association energetics in the plasma
membrane. eLife, 5:¢12125, January 2016. ISSN 2050-084X. doi: 10.7554/eLife.12125. URL
https://elifesciences.org/articles/12125,

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Wang Yu, Llion Jones, Tom Gibbs,
Tamas B. Fehér, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and Burkhard Rost. Prottrans:
Towards cracking the language of lifes code through self-supervised deep learning and high performance
computing. IEEE transactions on pattern analysis and machine intelligence, PP, 2021.

Stefan Engelen, Ladislas A Trojan, Sophie Sacquin-Mora, Richard Lavery, and Alessandra Carbone. Joint
evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. PLoS
computational biology, 5(1):¢1000267, 2009.

Steven Erwood, Teija M. I. Bily, Jason Lequyer, Joyce Yan, Nitya Gulati, Reid A. Brewer, Liangchi Zhou,
Laurence Pelletier, Evgueni A. Ivakine, and Ronald D. Cohn. Saturation variant interpretation using CRISPR
prime editing. Nature Biotechnology, 40(6):885-895, June 2022. ISSN 1087-0156, 1546-1696. doi:
10.1038/s41587-021-01201-1. URL https://www.nature.com/articles/s41587-021-01201-1,

Gabriella O. Estevam, Edmond M. Linossi, Christian B. Macdonald, Carla A. Espinoza, Jennifer M. Michaud,
Willow Coyote-Maestas, Eric A. Collisson, Natalia Jura, and James S. Fraser. Conserved regulatory motifs
in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET
receptor tyrosine kinase domain. preprint, Molecular Biology, August 2023. URL http://biorxiv.org/
lookup/doi/10.1101/2023.08.03.551866,

Andre J. Faure, Jilia Domingo, Jérn M. Schmiedel, Cristina Hidalgo-Carcedo, Guillaume Diss, and Ben
Lehner. Mapping the energetic and allosteric landscapes of protein binding domains. Nature, 604(7904):
175-183, April 2022. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-022-04586-4. URL https:
//www.nature.com/articles/s41586-022-04586-4.

Bing-Jian Feng. PERCH: a unified framework for disease gene prioritization. Human mutation, 38(3):243-251,
2017.

Jason D. Fernandes, Tyler B. Faust, Nicolas B. Strauli, Cynthia Smith, David C. Crosby, Robert L. Nakamura,
Ryan D. Hernandez, and Alan D. Frankel. Functional Segregation of Overlapping Genes in HIV. Cell,
167(7):1762-1773.e12, December 2016. ISSN 00928674. doi: 10.1016/j.cell.2016.11.031. URL https:
//linkinghub.elsevier.com/retrieve/pii/S0092867416316038.

Noelia Ferruz, Steffen Schmidt, and Birte Hocker. ProtGPT?2 is a deep unsupervised language model for protein
design. Nature Communications, 13, 2022.

Gregory M. Findlay, Riza M. Daza, Beth Martin, Melissa D. Zhang, Anh P. Leith, Molly Gasperini, Joseph D.
Janizek, Xingfan Huang, Lea M. Starita, and Jay Shendure. Accurate classification of BRCA1 variants with
saturation genome editing. Nature, 562(7726):217-222, October 2018. ISSN 0028-0836, 1476-4687. doi:
10.1038/s41586-018-0461-z. URL http://www.nature.com/articles/s41586-018-0461-z,

Elad Firnberg, Jason W. Labonte, Jeffrey J. Gray, and Marc Ostermeier. A Comprehensive, High-Resolution
Map of a Gene’s Fitness Landscape. Molecular Biology and Evolution, 31(6):1581-1592, June 2014.
ISSN 1537-1719, 0737-4038. doi: 10.1093/molbev/msu081. URL https://academic.oup.com/mbe/
article-lookup/doi/10.1093/molbev/msu081,

Julia M Flynn, Ammeret Rossouw, Pamela Cote-Hammarlof, Inés Fragata, David Mavor, Carl Hollins, Claudia
Bank, and Daniel Na Bolon. Comprehensive fitness maps of Hsp90 show widespread environmental
dependence. eLife, 9:¢53810, March 2020. ISSN 2050-084X. doi: 10.7554/eLife.53810. URL https:
//elifesciences.org/articles/53810.

14


https://dx.plos.org/10.1371/journal.ppat.1005988
https://dx.plos.org/10.1371/journal.ppat.1005988
https://elifesciences.org/articles/12125
https://www.nature.com/articles/s41587-021-01201-1
http://biorxiv.org/lookup/doi/10.1101/2023.08.03.551866
http://biorxiv.org/lookup/doi/10.1101/2023.08.03.551866
https://www.nature.com/articles/s41586-022-04586-4
https://www.nature.com/articles/s41586-022-04586-4
https://linkinghub.elsevier.com/retrieve/pii/S0092867416316038
https://linkinghub.elsevier.com/retrieve/pii/S0092867416316038
http://www.nature.com/articles/s41586-018-0461-z
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msu081
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msu081
https://elifesciences.org/articles/53810
https://elifesciences.org/articles/53810
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Julia M. Flynn, Neha Samant, Gily Schneider-Nachum, David T. Barkan, Nese Kurt Yilmaz, Celia A. Schiffer,
Stephanie A. Moquin, Dustin Dovala, and Daniel N.A. Bolon. Comprehensive fitness landscape of SARS-
CoV-2 M PO reveals insights into viral resistance mechanisms. preprint, Molecular Biology, January 2022.
URLhttp://biorxiv.org/lookup/doi/10.1101/2022.01.26.477860.

Jonathan Frazer, Pascal Notin, Mafalda Dias, Aidan Gomez, Joseph K Min, Kelly P. Brock, Yarin Gal, and
Debora S. Marks. Disease variant prediction with deep generative models of evolutionary data. Nature, 2021.

Kiran S Gajula, Peter J] Huwe, Charlie Y Mo, Daniel J Crawford, James T Stivers, Ravi Radhakrishnan,
and Rahul M Kohli. High-throughput mutagenesis reveals functional determinants for DNA targeting by
activation-induced deaminase. Nucleic Acids Research, 42(15):9964-9975, September 2014.

Zhangyang Gao, Cheng Tan, and Stan Z. Li. Pifold: Toward effective and efficient protein inverse folding. ArXiv,
abs/2209.12643, 2022. URL https://api.semanticscholar.org/CorpusID:252596302.

Sarah Gersing, Matteo Cagiada, Marinella Gebbia, Anette P. Gjesing, Atina G. Coté, Gireesh Seesankar, Roujia
Li, Daniel Tabet, Amelie Stein, Anna L. Gloyn, Torben Hansen, Frederick P. Roth, Kresten Lindorff-Larsen,
and Rasmus Hartmann-Petersen. A comprehensive map of human glucokinase variant activity. preprint,
Genetics, May 2022. URL http://biorxiv.org/lookup/doi/10.1101/2022.05.04.490571.

Sarah Gersing, Thea K Schulze, Matteo Cagiada, Amelie Stein, Frederick P Roth, Kresten Lindorff-Larsen, and
Rasmus Hartmann-Petersen. Characterizing glucokinase variant mechanisms using a multiplexed abundance
assay. bioRxiv, May 2023.

Dia A Ghose, Kaitlyn E Przydzial, Emily M Mahoney, Amy E Keating, and Michael T Laub. Marginal specificity
in protein interactions constrains evolution of a paralogous family. Proceedings of the National Academy of
Sciences of the United States of America, 120(18):2221163120, May 2023.

Andrew O. Giacomelli, Xiaoping Yang, Robert E. Lintner, James M. McFarland, Marc Duby, Jaegil Kim,
Thomas P. Howard, David Y. Takeda, Seav Huong Ly, Eejung Kim, Hugh S. Gannon, Brian Hurhula, Ted
Sharpe, Amy Goodale, Briana Fritchman, Scott Steelman, Francisca Vazquez, Aviad Tsherniak, Andrew J.
Aguirre, John G. Doench, Federica Piccioni, Charles W. M. Roberts, Matthew Meyerson, Gad Getz, Cory M.
Johannessen, David E. Root, and William C. Hahn. Mutational processes shape the landscape of TP53
mutations in human cancer. Nature Genetics, 50(10):1381-1387, October 2018. ISSN 1061-4036, 1546-1718.
doi: 10.1038/s41588-018-0204-y. URL https://www.nature.com/articles/s41588-018-0204-y.

Kevin S Gill, Kritika Mehta, Jeremiah D Heredia, Vishnu V Krishnamurthy, Kai Zhang, and Erik Procko.
Multiple mechanisms of self-association of chemokine receptors CXCR4 and CCRS5 demonstrated by deep
mutagenesis. bioRxiv, March 2023.

Andrew M. Glazer, Brett M. Kroncke, Kenneth A. Matreyek, Tao Yang, Yuko Wada, Tiffany Shields, Joe-
Elie Salem, Douglas M. Fowler, and Dan M. Roden. Deep Mutational Scan of an SCN5A Voltage Sensor.
Circulation: Genomic and Precision Medicine, 13(1):e002786, February 2020. ISSN 2574-8300. doi:
10.1161/CIRCGEN.119.002786. URL https://www.ahajournals.org/doi/10.1161/CIRCGEN.119|
002786

Courtney E. Gonzalez, Paul Roberts, and Marc Ostermeier. Fitness Effects of Single Amino Acid Insertions and
Deletions in TEM-1 beta-Lactamase. Journal of Molecular Biology, 431(12):2320-2330, May 2019. ISSN
00222836. doi: 10.1016/j.jmb.2019.04.030. URL https://linkinghub.elsevier.com/retrieve/pii/
S50022283619302372.

Louisa Gonzalez Somermeyer, Aubin Fleiss, Alexander S Mishin, Nina G Bozhanova, Anna A Igolkina, Jens
Meiler, Maria-Elisenda Alaball Pujol, Ekaterina V Putintseva, Karen S Sarkisyan, and Fyodor A Kondrashov.
Heterogeneity of the GFP fitness landscape and data-driven protein design. eLife, 11:75842, May 2022.
ISSN 2050-084X. doi: 10.7554/eLife.75842. URL https://elifesciences.org/articles/75842,

Vanessa E Gray, Katherine Sitko, Floriane Z Ngako Kameni, Miriam Williamson, Jason J Stephany, Nicholas
Hasle, and Douglas M Fowler. Elucidating the molecular determinants of AJ aggregation with deep mutational
scanning. G3, 9(11):3683-3689, November 2019.

Dominik G Grimm, Chloé-Agathe Azencott, Fabian Aicheler, Udo Gieraths, Daniel G MacArthur, Kaitlin E
Samocha, David N Cooper, Peter D Stenson, Mark J Daly, Jordan W Smoller, Laramie E Duncan, and
Karsten M Borgwardt. The evaluation of tools used to predict the impact of missense variants is hindered by
two types of circularity. Hum. Mutat., 36(5):513-523, May 2015.

Hugh K Haddox, Adam S Dingens, Sarah K Hilton, Julie Overbaugh, and Jesse D Bloom. Mapping mutational
effects along the evolutionary landscape of HIV envelope. eLife, 7:e34420, March 2018. ISSN 2050-084X.
doi: 10.7554/eLife.34420. URL https://elifesciences.org/articles/34420.

15


http://biorxiv.org/lookup/doi/10.1101/2022.01.26.477860
https://api.semanticscholar.org/CorpusID:252596302
http://biorxiv.org/lookup/doi/10.1101/2022.05.04.490571
https://www.nature.com/articles/s41588-018-0204-y
https://www.ahajournals.org/doi/10.1161/CIRCGEN.119.002786
https://www.ahajournals.org/doi/10.1161/CIRCGEN.119.002786
https://linkinghub.elsevier.com/retrieve/pii/S0022283619302372
https://linkinghub.elsevier.com/retrieve/pii/S0022283619302372
https://elifesciences.org/articles/75842
https://elifesciences.org/articles/34420
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Michael Heinzinger, Ahmed Elnaggar, Yu Wang, Christian Dallago, Dmitrii Nechaev, Florian Matthes, and
Burkhard Rost. Modeling aspects of the language of life through transfer-learning protein sequences. BMC
Bioinformatics, 20(1):723, December 2019. ISSN 1471-2105. doi: 10.1186/s12859-019-3220-8. URL
https://doi.org/10.1186/s12859-019-3220-8.

Daniel Hesslow, N. ed. Zanichelli, Pascal Notin, Iacopo Poli, and Debora S. Marks. RITA: a study on scaling up
generative protein sequence models. ArXiv, abs/2205.05789, 2022.

Ryan T Hietpas, Jeffrey D Jensen, and Daniel N A Bolon. Experimental illumination of a fitness landscape.
Proceedings of the National Academy of Sciences of the United States of America, 108(19):7896-7901, May
2011.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidimensional
transformers. ArXiv, abs/1912.12180, 2019a. URL https://api.semanticscholar.org/CorpusID!
209323787.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidimensional
transformers. arXiv preprint arXiv:1912.12180, 2019b.

Helen T. Hobbs, Neel H. Shah, Sophie R. Shoemaker, Jeanine F. Amacher, Susan Marqusee, and John Kuriyan.
Saturation mutagenesis of a predicted ancestral Syk-family kinase. Protein Science, 31(10), October 2022.
ISSN 0961-8368, 1469-896X. doi: 10.1002/pro.4411. URL https://onlinelibrary.wiley.com/doi/
10.1002/pro.4411]

Nancy Hom, Lauren Gentles, Jesse D Bloom, and Kelly K Lee. Deep mutational scan of the highly conserved
influenza a virus M1 matrix protein reveals substantial intrinsic mutational tolerance. Journal of Virology, 93
(13), July 2019.

Jiri Hon, Martin Marusiak, Tomas Martinek, Antonin Kunka, Jaroslav Zendulka, David Bednar, and Jif{
Damborsky. SoluProt: prediction of soluble protein expression in escherichia coli. Bioinformatics, 37:23 —
28, 2020.

Thomas A Hopf, John B Ingraham, Frank J Poelwijk, Charlotta PI Schirfe, Michael Springer, Chris Sander,
and Debora S Marks. Mutation effects predicted from sequence co-variation. Nature biotechnology, 35(2):
128-135, 2017.

Chloe Hsu, Hunter Nisonoff, Clara Fannjiang, and Jennifer Listgarten. Learning protein fitness models
from evolutionary and assay-labeled data. Nature Biotechnology, 40(7):1114-1122, July 2022a. ISSN
1087-0156, 1546-1696. doi: 10.1038/s41587-021-01146-5. URL https://www.nature.com/articles/
s41587-021-01146-5|

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander Rives.
Learning inverse folding from millions of predicted structures. April 2022b.

Po-Ssu Huang, Scott E. Boyken, and David Baker. The coming of age of de novo protein design. Nature, 537:
320-327,2016. URL https://api.semanticscholar.org/CorpusID:205251398,

Zachary M Huttinger, Laura M Haynes, Andrew Yee, Colin A Kretz, Matthew L Holding, David R Siemieniak,
Daniel A Lawrence, and David Ginsburg. Deep mutational scanning of the plasminogen activator inhibitor-1
functional landscape. Scientific Reports, 11(1):18827, September 2021.

John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-based protein
design. Advances in neural information processing systems, 32, 2019.

Nilah M Ioannidis, Joseph H Rothstein, Vikas Pejaver, Sumit Middha, Shannon K McDonnell, Saurabh Baheti,
Anthony Musolf, Qing Li, Emily Holzinger, Danielle Karyadi, et al. REVEL: an ensemble method for
predicting the pathogenicity of rare missense variants. The American Journal of Human Genetics, 99(4):
877-885, 2016.

Hervé Jacquier, André Birgy, Hervé Le Nagard, Yves Mechulam, Emmanuelle Schmitt, Jérémy Glodt, Beatrice
Bercot, Emmanuelle Petit, Julie Poulain, Guilene Barnaud, Pierre-Alexis Gros, and Olivier Tenaillon. Captur-
ing the mutational landscape of the beta-lactamase TEM-1. Proceedings of the National Academy of Sciences,
110(32):13067-13072, August 2013. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1215206110. URL
https://pnas.org/doi/full/10.1073/pnas.1215206110.

Milind Jagota, Chengzhong Ye, Ruchir Rastogi, Carlos Albors, Antoine Koehl, Nilah M. Ioannidis, and Yun S.
Song. Cross-protein transfer learning substantially improves zero-shot prediction of disease variant effects.
2022. URL https://api.semanticscholar.org/CorpusID: 253628877,

16


https://doi.org/10.1186/s12859-019-3220-8
https://api.semanticscholar.org/CorpusID:209323787
https://api.semanticscholar.org/CorpusID:209323787
https://onlinelibrary.wiley.com/doi/10.1002/pro.4411
https://onlinelibrary.wiley.com/doi/10.1002/pro.4411
https://www.nature.com/articles/s41587-021-01146-5
https://www.nature.com/articles/s41587-021-01146-5
https://api.semanticscholar.org/CorpusID:205251398
https://pnas.org/doi/full/10.1073/pnas.1215206110
https://api.semanticscholar.org/CorpusID:253628877
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Xiaoyan Jia, Bala Bharathi Burugula, Victor Chen, Rosemary M. Lemons, Sajini Jayakody, Mariam Maksu-
tova, and Jacob O. Kitzman. Massively parallel functional testing of MSH2 missense variants conferring
Lynch syndrome risk. The American Journal of Human Genetics, 108(1):163—175, January 2021. ISSN
00029297. doi: 10.1016/j.ajhg.2020.12.003. URL https://linkinghub.elsevier.com/retrieve/
pii/S0002929720304390.

Li Jiang, Ping Liu, Claudia Bank, Nicholas Renzette, Kristina Prachanronarong, Lutfu S. Yilmaz, Daniel R.
Caffrey, Konstantin B. Zeldovich, Celia A. Schiffer, Timothy F. Kowalik, Jeffrey D. Jensen, Robert W.
Finberg, Jennifer P. Wang, and Daniel N.A. Bolon. A Balance between Inhibitor Binding and Substrate
Processing Confers Influenza Drug Resistance. Journal of Molecular Biology, 428(3):538-553, February
2016. ISSN 00222836. doi: 10.1016/j.jmb.2015.11.027. URL https://linkinghub.elsevier.com/
retrieve/pii/S0022283615006907.

Rosanna Junchen Jiang. Exhaustive Mapping of Missense Variation in Coronary Heart Disease-related Genes.
PhD thesis, University of Toronto, November 2019. URL https://hdl.handle.net/1807/98076.

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael J L Townshend, and Ron Dror. Learning from protein
structure with geometric vector perceptrons. September 2020.

Eric M Jones, Nathan B Lubock, Aj Venkatakrishnan, Jeffrey Wang, Alex M Tseng, Joseph M Paggi, Naomi R
Latorraca, Daniel Cancilla, Megan Satyadi, Jessica E Davis, M Madan Babu, Ron O Dror, and Sriram
Kosuri. Structural and functional characterization of G protein—coupled receptors with deep mutational
scanning. eLife, 9:e54895, October 2020. ISSN 2050-084X. doi: 10.7554/eLife.54895. URL https:
//elifesciences.org/articles/54895|

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
A A Kohl, Andrew J Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,
Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger,
Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W
Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure
prediction with AlphaFold. Nature, July 2021.

Konrad J Karczewski, Laurent C Francioli, Grace Tiao, Beryl B Cummings, Jessica Alfoldi, Qingbo Wang,
Ryan L Collins, Kristen M Laricchia, Andrea Ganna, Daniel P Birnbaum, Laura D Gauthier, Harrison
Brand, Matthew Solomonson, Nicholas A Watts, Daniel Rhodes, Moriel Singer-Berk, Eleina M England,
Eleanor G Seaby, Jack A Kosmicki, Raymond K Walters, Katherine Tashman, Yossi Farjoun, Eric Banks,
Timothy Poterba, Arcturus Wang, Cotton Seed, Nicola Whiffin, Jessica X Chong, Kaitlin E Samocha, Emma
Pierce-Hoftman, Zachary Zappala, Anne H O’Donnell-Luria, Eric Vallabh Minikel, Ben Weisburd, Monkol
Lek, James S Ware, Christopher Vittal, Irina M Armean, Louis Bergelson, Kristian Cibulskis, Kristen M
Connolly, Miguel Covarrubias, Stacey Donnelly, Steven Ferriera, Stacey Gabriel, Jeff Gentry, Namrata Gupta,
Thibault Jeandet, Diane Kaplan, Christopher Llanwarne, Ruchi Munshi, Sam Novod, Nikelle Petrillo, David
Roazen, Valentin Ruano-Rubio, Andrea Saltzman, Molly Schleicher, Jose Soto, Kathleen Tibbetts, Charlotte
Tolonen, Gordon Wade, Michael E Talkowski, Genome Aggregation Database Consortium, Benjamin M
Neale, Mark J Daly, and Daniel G MacArthur. The mutational constraint spectrum quantified from variation
in 141,456 humans. Nature, 581(7809):434-443, May 2020.

Eric D. Kelsic, Hattie Chung, Niv Cohen, Jimin Park, Harris H. Wang, and Roy Kishony. RNA Structural
Determinants of Optimal Codons Revealed by MAGE-Seq. Cell Systems, 3(6):563-571.e6, December
2016. ISSN 24054712. doi: 10.1016/j.cels.2016.11.004. URL https://linkinghub.elsevier.com/
retrieve/pii/S2405471216303684.

Paul Kennouche, Arthur Charles-Orszag, Daiki Nishiguchi, Sylvie Goussard, Anne-Flore Imhaus, Mathieu
Dupré, Julia Chamot-Rooke, and Guillaume Duménil. Deep mutational scanning of the Neisseria meningitidis
major pilin reveals the importance of pilus tip-mediated adhesion. The EMBO Journal, 38(22):e102145,
November 2019. ISSN 0261-4189, 1460-2075. doi: 10.15252/embj.2019102145. URL https://www,
embopress.org/doi/10.15252/embj.2019102145,

Jacob O Kitzman, Lea M Starita, Russell S Lo, Stanley Fields, and Jay Shendure. Massively parallel single-
amino-acid mutagenesis. Nature Methods, 12(3):203-206, March 2015. ISSN 1548-7091, 1548-7105. doi:
10.1038/nmeth.3223. URL http://www.nature.com/articles/nmeth.3223.

Justin R. Klesmith, John-Paul Bacik, Ryszard Michalczyk, and Timothy A. Whitehead. Comprehensive
Sequence-Flux Mapping of a Levoglucosan Utilization Pathway in E. coli. ACS Synthetic Biology, 4
(11):1235-1243, November 2015. ISSN 2161-5063, 2161-5063. doi: 10.1021/acssynbio.5b00131. URL
https://pubs.acs.org/doi/10.1021/acssynbio.5b00131,

17


https://linkinghub.elsevier.com/retrieve/pii/S0002929720304390
https://linkinghub.elsevier.com/retrieve/pii/S0002929720304390
https://linkinghub.elsevier.com/retrieve/pii/S0022283615006907
https://linkinghub.elsevier.com/retrieve/pii/S0022283615006907
https://hdl.handle.net/1807/98076
https://elifesciences.org/articles/54895
https://elifesciences.org/articles/54895
https://linkinghub.elsevier.com/retrieve/pii/S2405471216303684
https://linkinghub.elsevier.com/retrieve/pii/S2405471216303684
https://www.embopress.org/doi/10.15252/embj.2019102145
https://www.embopress.org/doi/10.15252/embj.2019102145
http://www.nature.com/articles/nmeth.3223
https://pubs.acs.org/doi/10.1021/acssynbio.5b00131
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Justin R. Klesmith, Lihe Su, Lan Wu, Ian A. Schrack, Fay J. Dufort, Alyssa Birt, Christine Ambrose, Benjamin J.
Hackel, Roy R. Lobb, and Paul D. Rennert. Retargeting CD19 Chimeric Antigen Receptor T Cells via
Engineered CD19-Fusion Proteins. Molecular Pharmaceutics, 16(8):3544-3558, August 2019. ISSN 1543-
8384, 1543-8392. doi: 10.1021/acs.molpharmaceut.9b00418. URL https://pubs.acs.org/doi/10}
1021/acs.molpharmaceut.9b00418.

Jannik Kossen, Neil Band, Clare Lyle, Aidan N. Gomez, Tom Rainforth, and Yarin Gal. Self-Attention
Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning, February 2022. URL
http://arxiv.org/abs/2106.02584, arXiv:2106.02584 [cs, stat] version: 2.

Eran Kotler, Odem Shani, Guy Goldfeld, Maya Lotan-Pompan, Ohad Tarcic, Anat Gershoni, Thomas A. Hopf,
Debora S. Marks, Moshe Oren, and Eran Segal. A Systematic p5S3 Mutation Library Links Differential
Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Molecular Cell, 71(1):178—
190.e8, July 2018. ISSN 10972765. doi: 10.1016/j.molcel.2018.06.012. URL https://linkinghub,
elsevier.com/retrieve/pii/S1097276518304544.

Krystian A. Kozek, Andrew M. Glazer, Chai-Ann Ng, Daniel Blackwell, Christian L. Egly, Loren R. Vanags,
Marcia Blair, Devyn Mitchell, Kenneth A. Matreyek, Douglas M. Fowler, Bjorn C. Knollmann, Jamie I.
Vandenberg, Dan M. Roden, and Brett M. Kroncke. High-throughput discovery of trafficking-deficient
variants in the cardiac potassium channel KV11.1. Heart Rhythm, 17(12):2180-2189, December 2020. ISSN
15475271. doi: 10.1016/j.hrthm.2020.05.041. URL https://linkinghub.elsevier.com/retrieve/
pii/S1547527120305427.

Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult. Critical assessment of
methods of protein structure prediction (CASP)—Round XIV. Proteins: Structure, 89:1607 — 1617, 2021.

Jason J. Kwon, Behnoush Hajian, Yuemin Bian, Lucy C. Young, Alvaro J. Amor, James R. Fuller, Cara V.
Fraley, Abbey M. Sykes, Jonathan So, Joshua Pan, Laura Baker, Sun Joo Lee, Douglas B. Wheeler, David L.
Mayhew, Nicole S. Persky, Xiaoping Yang, David E. Root, Anthony M. Barsotti, Andrew W. Stamford,
Charles K. Perry, Alex Burgin, Frank McCormick, Christopher T. Lemke, William C. Hahn, and Andrew J.
Aguirre. Structure—function analysis of the SHOC2-MRAS-PP1C holophosphatase complex. Nature, 609
(7926):408-415, September 2022. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-022-04928-2. URL
https://www.nature.com/articles/s41586-022-04928-2,

Elodie Laine, Yasaman Karami, and Alessandra Carbone. GEMME: A Simple and Fast Global Epistatic Model
Predicting Mutational Effects. Molecular Biology and Evolution, 36(11):2604-2619, November 2019. ISSN
0737-4038. doi: 10.1093/molbev/msz179. URL https://doi.org/10.1093/molbev/msz179.

Melissa J. Landrum and Brandi L. Kattman. ClinVar at five years: Delivering on the promise. Human Mutation,
39(11):1623-1630, November 2018. ISSN 1098-1004. doi: 10.1002/humu.23641.

Juhye M. Lee, John Huddleston, Michael B. Doud, Kathryn A. Hooper, Nicholas C. Wu, Trevor Bedford, and
Jesse D. Bloom. Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human
H3N2 influenza variants. Proceedings of the National Academy of Sciences, 115(35), August 2018. ISSN
0027-8424, 1091-6490. doi: 10.1073/pnas.1806133115. URL https://pnas.org/doi/full/10.1073/
pnas.1806133115.

Ruipeng Lei, Andrea Hernandez Garcia, Timothy J C Tan, Qi Wen Teo, Yiquan Wang, Xiwen Zhang, Shitong
Luo, Satish K Nair, Jian Peng, and Nicholas C Wu. Mutational fitness landscape of human influenza H3N2
neuraminidase. Cell Reports, 42(1):111951, January 2023.

Biao Li, Vidhya G Krishnan, Matthew E Mort, Fuxiao Xin, Kishore K Kamati, David N Cooper, Sean D
Mooney, and Predrag Radivojac. Automated inference of molecular mechanisms of disease from amino acid
substitutions. Bioinformatics, 25(21):2744-2750, 2009.

Chang Li, Degui Zhi, Kai Wang, and Xiaoming Liu. MetaRNN: differentiating rare pathogenic and rare
benign missense SNVs and InDels using deep learning. Genome Medicine, 14(1):115, October 2022. ISSN
1756-994X. doi: 10.1186/s13073-022-01120-z. URL https://genomemedicine.biomedcentral.com/
articles/10.1186/s13073-022-01120-z|

Yuan Li, Sarah Arcos, Kimberly R. Sabsay, Aartjan J.W. Te Velthuis, and Adam S. Lauring. Deep mutational
scanning reveals the functional constraints and evolutionary potential of the influenza A virus PB1 protein.
preprint, Microbiology, August 2023. URL http://biorxiv.org/lookup/doi/10.1101/2023.08.27,
554986,

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert Verkuil,
Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Salvatore Candido,
and Alexander Rives. Evolutionary-scale prediction of atomic-level protein structure with a language model.
Science, 379(6637):1123-1130, March 2023. doi: 10.1126/science.ade2574.

18


https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.9b00418
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.9b00418
http://arxiv.org/abs/2106.02584
https://linkinghub.elsevier.com/retrieve/pii/S1097276518304544
https://linkinghub.elsevier.com/retrieve/pii/S1097276518304544
https://linkinghub.elsevier.com/retrieve/pii/S1547527120305427
https://linkinghub.elsevier.com/retrieve/pii/S1547527120305427
https://www.nature.com/articles/s41586-022-04928-2
https://doi.org/10.1093/molbev/msz179
https://pnas.org/doi/full/10.1073/pnas.1806133115
https://pnas.org/doi/full/10.1073/pnas.1806133115
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-022-01120-z
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-022-01120-z
http://biorxiv.org/lookup/doi/10.1101/2023.08.27.554986
http://biorxiv.org/lookup/doi/10.1101/2023.08.27.554986
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Xiaoming Liu, Xueqiu Jian, and Eric Boerwinkle. dbnsfp: a lightweight database of human nonsynonymous
snps and their functional predictions. Human mutation, 32(8):894-899, 2011.

Xiaoming Liu, Chang Li, Chengcheng Mou, Yibo Dong, and Yicheng Tu. dbnsfp v4: a comprehensive database
of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site snvs.
Genome medicine, 12(1):1-8, 2020.

Benjamin J Livesey and Joseph A Marsh. Updated benchmarking of variant effect predictors using deep
mutational scanning. Molecular Systems Biology, page e11474, 2023.

Russell S Lo, Gareth A Cromie, Michelle Tang, Kevin Teng, Katherine Owens, Amy Sirr, J Nathan Kutz, Hiroki
Morizono, Ljubica Caldovic, Nicholas Ah Mew, Andrea Gropman, and Aimée M Dudley. The functional
impact of 1,570 individual amino acid substitutions in human OTC. American Journal of Human Genetics,
110(5):863-879, May 2023.

Christian B. Macdonald, David Nedrud, Patrick Rockefeller Grimes, Donovan Trinidad, James S. Fraser, and
Willow Coyote-Maestas. DIMPLE: deep insertion, deletion, and missense mutation libraries for exploring
protein variation in evolution, disease, and biology. Genome Biology, 24(1):36, February 2023. ISSN
1474-760X. doi: 10.1186/s13059-023-02880-6. URL https://genomebiology.biomedcentral.com/
articles/10.1186/s13059-023-02880-6.

Mark R MacRae, Dhenesh Puvanendran, Max A B Haase, Nicolas Coudray, Ljuvica Kolich, Cherry Lam,
Minkyung Baek, Gira Bhabha, and Damian C Ekiert. Protein-protein interactions in the mla lipid transport
system probed by computational structure prediction and deep mutational scanning. Journal of Biological
Chemistry, 299(6):104744, June 2023.

Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R. Eguchi, Po-Ssu
Huang, and Richard Socher. ProGen: Language modeling for protein generation, 2020.

Nawar Malhis, Matthew Jacobson, Steven JM Jones, and Jorg Gsponer. LIST-S2: taxonomy based sorting of
deleterious missense mutations across species. Nucleic acids research, 48(W1):W154-W161, 2020.

Céline Marquet, Michael Heinzinger, Tobias Olenyi, Christian Dallago, Kyra Erckert, Michael Bernhofer,
Dmitrii Nechaev, and Burkhard Rost. Embeddings from protein language models predict conservation and
variant effects. Human Genetics, 141(10):1629-1647, October 2022. ISSN 1432-1203. doi: 10.1007/
s00439-021-02411-y.

Kenneth A. Matreyek, Lea M. Starita, Jason J. Stephany, Beth Martin, Melissa A. Chiasson, Vanessa E. Gray,
Martin Kircher, Arineh Khechaduri, Jennifer N. Dines, Ronald J. Hause, Smita Bhatia, William E. Evans,
Mary V. Relling, Wenjian Yang, Jay Shendure, and Douglas M. Fowler. Multiplex assessment of protein
variant abundance by massively parallel sequencing. Nature Genetics, 50(6):874-882, June 2018. ISSN
1061-4036, 1546-1718. doi: 10.1038/s41588-018-0122-z. URL https://www.nature.com/articles/
s41588-018-0122-z,

Kenneth A. Matreyek, Jason J. Stephany, Ethan Ahler, and Douglas M. Fowler. Integrating thousands of PTEN
variant activity and abundance measurements reveals variant subgroups and new dominant negatives in cancers.
Genome Medicine, 13(1):165, December 2021. ISSN 1756-994X. doi: 10.1186/s13073-021-00984-x. URL
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-021-00984-x.

Florian Mattenberger, Victor Latorre, Omer Tirosh, Adi Stern, and Ron Geller. Globally defining the effects of
mutations in a picornavirus capsid. eLife, 10:e64256, January 2021. ISSN 2050-084X. doi: 10.7554/eLife.
64256. URL https://elifesciences.org/articles/64256,

David Mavor, Kyle Barlow, Samuel Thompson, Benjamin A Barad, Alain R Bonny, Clinton L Cario, Garrett
Gaskins, Zairan Liu, Laura Deming, Seth D Axen, Elena Caceres, Weilin Chen, Adolfo Cuesta, Rachel E Gate,
Evan M Green, Kaitlin R Hulce, Weiyue Ji, Lillian R Kenner, Bruk Mensa, Leanna S Morinishi, Steven M
Moss, Marco Mravic, Ryan K Muir, Stefan Niekamp, Chimno I Nnadi, Eugene Palovcak, Erin M Poss,
Tyler D Ross, Eugenia C Salcedo, Stephanie K See, Meena Subramaniam, Allison W Wong, Jennifer Li,
Kurt S Thorn, Shane O Conchiir, Benjamin P Roscoe, Eric D Chow, Joseph L DeRisi, Tanja Kortemme,
Daniel N Bolon, and James S Fraser. Determination of ubiquitin fitness landscapes under different chemical
stresses in a classroom setting. eLife, 5:¢15802, April 2016. ISSN 2050-084X. doi: 10.7554/eLife.15802.
URL https://elifesciences.org/articles/15802,

Richard N. McLaughlin, Jr., Frank J. Poelwijk, Arjun Raman, Walraj S. Gosal, and Rama Ranganathan.
The spatial architecture of protein function and adaptation. Nature, 491(7422):138—-142, November 2012.
ISSN 0028-0836, 1476-4687. doi: 10.1038/nature11500. URL https://www.nature.com/articles/
naturel1500.

19


https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-02880-6
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-023-02880-6
https://www.nature.com/articles/s41588-018-0122-z
https://www.nature.com/articles/s41588-018-0122-z
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-021-00984-x
https://elifesciences.org/articles/64256
https://elifesciences.org/articles/15802
https://www.nature.com/articles/nature11500
https://www.nature.com/articles/nature11500
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Gianmarco Meier, Sujani Thavarasah, Kai Ehrenbolger, Cedric A J Hutter, Lea M Hiirlimann, Jonas Barandun,
and Markus A Seeger. Deep mutational scan of a drug efflux pump reveals its structure-function landscape.
Nature Chemical Biology, 19(4):440-450, April 2023.

Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alexander Rives. Language models
enable zero-shot prediction of the effects of mutations on protein function. bioRxiv, 2021. doi: 10.1101/2021.
07.09.450648. URL https://www.biorxiv.org/content/early/2021/07/10/2021.07.09.450648|

Iana Meitlis, Eric J. Allenspach, Bradly M. Bauman, Isabelle Q. Phan, Gina Dabbah, Erica G. Schmitt, Nathan D.
Camp, Troy R. Torgerson, Deborah A. Nickerson, Michael J. Bamshad, David Hagin, Christopher R. Luthers,
Jeftrey R. Stinson, Jessica Gray, Ingrid Lundgren, Joseph A. Church, Manish J. Butte, Mike B. Jordan,
Seema S. Aceves, Daniella M. Schwartz, Joshua D. Milner, Susan Schuval, Suzanne Skoda-Smith, Megan A.
Cooper, Lea M. Starita, David J. Rawlings, Andrew L. Snow, and Richard G. James. Multiplexed Functional
Assessment of Genetic Variants in CARD11. The American Journal of Human Genetics, 107(6):1029-1043,
December 2020. ISSN 00029297. doi: 10.1016/j.ajhg.2020.10.015. URLhttps://linkinghub.elsevier)
com/retrieve/pii/S0002929720303736.

Daniel Melamed, David L. Young, Caitlin E. Gamble, Christina R. Miller, and Stanley Fields. Deep mutational
scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein. RNA, 19(11):
1537-1551, November 2013. ISSN 1355-8382, 1469-9001. doi: 10.1261/rna.040709.113. URL http:
//rnajournal.cshlp.org/lookup/doi/10.1261/rna.040709.113,

Alexandre Melnikov, Peter Rogov, Li Wang, Andreas Gnirke, and Tarjei S. Mikkelsen. Comprehensive
mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes. Nucleic Acids
Research, 42(14):e112—e112, August 2014. ISSN 0305-1048, 1362-4962. doi: 10.1093/nar/gku511. URL
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkub11.

Taylor L. Mighell, Sara Evans-Dutson, and Brian J. O’Roak. A Saturation Mutagenesis Approach to Under-
standing PTEN Lipid Phosphatase Activity and Genotype-Phenotype Relationships. The American Journal
of Human Genetics, 102(5):943-955, May 2018. ISSN 00029297. doi: 10.1016/j.ajhg.2018.03.018. URL
https://linkinghub.elsevier.com/retrieve/pii/S0002929718301071,

Peter G. Miller, Murugappan Sathappa, Jamie A. Moroco, Wei Jiang, Yue Qian, Sumaiya Igbal, Qi Guo,
Andrew O. Giacomelli, Subrata Shaw, Camille Vernier, Besnik Bajrami, Xiaoping Yang, Cerise Raffier,
Adam S. Sperling, Christopher J. Gibson, Josephine Kahn, Cyrus Jin, Matthew Ranaghan, Alisha Caliman,
Merissa Brousseau, Eric S. Fischer, Robert Lintner, Federica Piccioni, Arthur J. Campbell, David E. Root,
Colin W. Garvie, and Benjamin L. Ebert. Allosteric inhibition of PPM1D serine/threonine phosphatase via
an altered conformational state. Nature Communications, 13(1):3778, June 2022. ISSN 2041-1723. doi:
10.1038/s41467-022-30463-9. URL https://www.nature.com/articles/s41467-022-30463-9.

Parul Mishra, Julia M. Flynn, Tyler N. Starr, and Daniel N.A. Bolon. Systematic Mutant Analyses Elucidate
General and Client-Specific Aspects of Hsp90 Function. Cell Reports, 15(3):588-598, April 2016. ISSN
22111247. doi: 10.1016/j.celrep.2016.03.046. URL https://linkinghub.elsevier.com/retrieve/
pii/S2211124716303175.

Iain H. Moal and Juan Ferndndez-Recio. SKEMPI: a structural kinetic and energetic database of mutant protein
interactions and its use in empirical models. Bioinformatics, 28 20:2600-7, 2012.

Ayesha Muhammad, Maria E Calandranis, Bian Li, Tao Yang, Daniel J Blackwell, M Lorena Harvey, Jeremy E
Smith, Ashli E Chew, John A Capra, Kenneth A Matreyek, Douglas M Fowler, Dan M Roden, and Andrew M
Glazer. High-throughput functional mapping of variants in an arrhythmia gene, KCNE1 , reveals novel
biology. bioRxiv, April 2023.

Robert W. Newberry, Taylor Arhar, Jean Costello, George C. Hartoularos, Alison M. Maxwell, Zun Zar Chi
Naing, Maureen Pittman, Nishith R. Reddy, Daniel M. C. Schwarz, Douglas R. Wassarman, Taia S. Wu,
Daniel Barrero, Christa Caggiano, Adam Catching, Taylor B. Cavazos, Laurel S. Estes, Bryan Faust, Elissa A.
Fink, Miriam A. Goldman, Yessica K. Gomez, M. Grace Gordon, Laura M. Gunsalus, Nick Hoppe, Maru
Jaime-Garza, Matthew C. Johnson, Matthew G. Jones, Andrew F. Kung, Kyle E. Lopez, Jared Lumpe, Calla
Martyn, Elizabeth E. McCarthy, Lakshmi E. Miller-Vedam, Erik J. Navarro, Aji Palar, Jenna Pellegrino, Wren
Saylor, Christina A. Stephens, Jack Strickland, Hayarpi Torosyan, Stephanie A. Wankowicz, Daniel R. Wong,
Garrett Wong, Sy Redding, Eric D. Chow, William F. DeGrado, and Martin Kampmann. Robust Sequence
Determinants of alpha-Synuclein Toxicity in Yeast Implicate Membrane Binding. ACS Chemical Biology,
15(8):2137-2153, August 2020. ISSN 1554-8929, 1554-8937. doi: 10.1021/acschembio.0c00339. URL
https://pubs.acs.org/doi/10.1021/acschembio.0c00339.

Pauline C Ng and Steven Henikoff. Accounting for human polymorphisms predicted to affect protein function.
Genome Res., 12(3):436-446, March 2002.

20


https://www.biorxiv.org/content/early/2021/07/10/2021.07.09.450648
https://linkinghub.elsevier.com/retrieve/pii/S0002929720303736
https://linkinghub.elsevier.com/retrieve/pii/S0002929720303736
http://rnajournal.cshlp.org/lookup/doi/10.1261/rna.040709.113
http://rnajournal.cshlp.org/lookup/doi/10.1261/rna.040709.113
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gku511
https://linkinghub.elsevier.com/retrieve/pii/S0002929718301071
https://www.nature.com/articles/s41467-022-30463-9
https://linkinghub.elsevier.com/retrieve/pii/S2211124716303175
https://linkinghub.elsevier.com/retrieve/pii/S2211124716303175
https://pubs.acs.org/doi/10.1021/acschembio.0c00339
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Thuy N Nguyen, Christine Ingle, Samuel Thompson, and Kimberly A Reynolds. The genetic landscape of a
metabolic interaction. May 2023a.

Vanessa Nguyen, Ethan Ahler, Katherine A Sitko, Jason J Stephany, Dustin J Maly, and Douglas M Fowler.
Molecular determinants of hsp90 dependence of src kinase revealed by deep mutational scanning. Protein
Science, 32(7):e4656, July 2023b.

Erik Nijkamp, Jeffrey A. Ruffolo, Eli N. Weinstein, Nikhil Naik, and Ali Madani. ProGen2: Exploring the
boundaries of protein language models. ArXiv, abs/2206.13517, 2022.

Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks,
and Yarin Gal. Tranception: protein fitness prediction with autoregressive transformers and inference-time
retrieval. In ICML, 2022a.

Pascal Notin, Lood Van Niekerk, Aaron W. Kollasch, Daniel Ritter, Yarin Gal, and Debora Susan Marks.
TranceptEVE: Combining Family-specific and Family-agnostic Models of Protein Sequences for Improved
Fitness Prediction. December 2022b. URL https://openreview.net/forum?id=17009DcLmR1.

Pascal Notin, Ruben Weitzman, Debora S. Marks, and Yarin Gal. Proteinnpt: Improving protein property
prediction and design with non-parametric transformers. Advances in Neural Information Processing Systems,
37,2023.

Christina Nutschel, Alexander Fulton, Olav Zimmermann, Ulrich Schwaneberg, Karl-Erich Jaeger, and Holger
Gohlke. Systematically Scrutinizing the Impact of Substitution Sites on Thermostability and Detergent
Tolerance for Bacillus subtilis Lipase A. Journal of Chemical Information and Modeling, 60(3):1568-1584,
March 2020. ISSN 1549-9596, 1549-960X. doi: 10.1021/acs.jcim.9b00954. URL https://pubs.acs!
org/doi/10.1021/acs. jcim.9b00954,

C. Anders Olson, Nicholas C. Wu, and Ren Sun. A Comprehensive Biophysical Description of Pairwise
Epistasis throughout an Entire Protein Domain. Current Biology, 24(22):2643-2651, November 2014. ISSN
09609822. doi: 10.1016/j.cub.2014.09.072. URL https://linkinghub.elsevier.com/retrieve/pii/
S50960982214012688.

Martin K Ostermaier, Christian Peterhans, Rolf Jaussi, Xavier Deupi, and Jorg Standfuss. Functional map
of arrestin-1 at single amino acid resolution. Proceedings of the National Academy of Sciences, 111(5):
1825-1830, February 2014.

Vikas Pejaver, Alicia B Byrne, Bing-Jian Feng, Kymberleigh A Pagel, Sean D Mooney, Rachel Karchin, Anne
O’Donnell-Luria, Steven M Harrison, Sean V Tavtigian, Marc S Greenblatt, et al. Calibration of computational
tools for missense variant pathogenicity classification and clingen recommendations for pp3/bp4 criteria. The
American Journal of Human Genetics, 109(12):2163-2177, 2022.

Victoria O. Pokusaeva, Dinara R. Usmanova, Ekaterina V. Putintseva, Lorena Espinar, Karen S. Sarkisyan,
Alexander S. Mishin, Natalya S. Bogatyreva, Dmitry N. Ivankov, Arseniy V. Akopyan, Sergey Ya. Avvakumov,
Inna S. Povolotskaya, Guillaume J. Filion, Lucas B. Carey, and Fyodor A. Kondrashov. An experimental
assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape.
PLOS Genetics, 15(4):e1008079, April 2019. ISSN 1553-7404. doi: 10.1371/journal.pgen.1008079. URL
https://dx.plos.org/10.1371/journal.pgen.1008079.

Hangfei Qi, C. Anders Olson, Nicholas C. Wu, Ruian Ke, Claude Loverdo, Virginia Chu, Shawna Truong,
Roland Remenyi, Zugen Chen, Yushen Du, Sheng-Yao Su, Laith Q. Al-Mawsawi, Ting-Ting Wu, Shu-Hua
Chen, Chung-Yen Lin, Weidong Zhong, James O. Lloyd-Smith, and Ren Sun. A Quantitative High-Resolution
Genetic Profile Rapidly Identifies Sequence Determinants of Hepatitis C Viral Fitness and Drug Sensitivity.
PLoS Pathogens, 10(4):e1004064, April 2014. ISSN 1553-7374. doi: 10.1371/journal.ppat.1004064. URL
https://dx.plos.org/10.1371/journal.ppat.1004064.

Daniel Quang, Yifei Chen, and Xiaohui Xie. DANN: a deep learning approach for annotating the pathogenicity
of genetic variants. Bioinformatics, 31(5):761-763, 2015.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are un-
supervised multitask learners. 2019. URL https://api.semanticscholar.org/CorpusID:160025533

Daniele Raimondi, Ibrahim Tanyalcin, Julien Ferté, Andrea Gazzo, Gabriele Orlando, Tom Lenaerts, Marianne
Rooman, and Wim Vranken. DEOGEN?2: prediction and interactive visualization of single amino acid variant
deleteriousness in human proteins. Nucleic acids research, 45(W1):W201-W206, 2017.

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter Abbeel, and Yun S.
Song. Evaluating Protein Transfer Learning with TAPE, June 2019. URL http://arxiv.org/abs/1906,
08230, arXiv:1906.08230 [cs, g-bio, stat].

21


https://openreview.net/forum?id=l7Oo9DcLmR1
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00954
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00954
https://linkinghub.elsevier.com/retrieve/pii/S0960982214012688
https://linkinghub.elsevier.com/retrieve/pii/S0960982214012688
https://dx.plos.org/10.1371/journal.pgen.1008079
https://dx.plos.org/10.1371/journal.ppat.1004064
https://api.semanticscholar.org/CorpusID:160025533
http://arxiv.org/abs/1906.08230
http://arxiv.org/abs/1906.08230
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F. Canny, Pieter Abbeel, Tom Sercu, and Alexander
Rives. MSA transformer. bioRxiv, 2021. doi: 10.1101/2021.02.12.430858. URL https://www.biorxiv)
org/content/early/2021/02/13/2021.02.12.430858.

Philipp Rentzsch, Daniela Witten, Gregory M Cooper, Jay Shendure, and Martin Kircher. Cadd: predicting the
deleteriousness of variants throughout the human genome. Nucleic acids research, 47(D1):D886-D894, 2019.

Boris Reva, Yevgeniy Antipin, and Chris Sander. Predicting the functional impact of protein mutations:
application to cancer genomics. Nucleic Acids Research, 39(17):e118, September 2011. ISSN 1362-4962.
doi: 10.1093/nar/gkr407.

Adam J Riesselman, John B Ingraham, and Debora S Marks. Deep generative models of genetic variation
capture the effects of mutations. Nature Methods, 15(10):816-822, 2018.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott,
C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. Proceedings of the National Academy of Sciences, 118(15), 2021.

Liat Rockah-Shmuel, Agnes Téth-Petréczy, and Dan S. Tawfik. Systematic Mapping of Protein Mutational Space
by Prolonged Drift Reveals the Deleterious Effects of Seemingly Neutral Mutations. PLOS Computational
Biology, 11(8):e1004421, August 2015. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1004421. URL
https://dx.plos.org/10.1371/journal.pcbi.1004421,

Philip A. Romero, Andreas Krause, and Frances H. Arnold. Navigating the protein fitness landscape with
gaussian processes. Proceedings of the National Academy of Sciences, 110:E193 — E201, 2012. URL
https://api.semanticscholar.org/CorpusID:1093192.

Philip A. Romero, Tuan M. Tran, and Adam R. Abate. Dissecting enzyme function with microfluidic-based
deep mutational scanning. Proceedings of the National Academy of Sciences, 112(23):7159-7164, June 2015.
ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1422285112. URL https://pnas.org/doi/full/10,
1073/pnas. 1422285112,

Benjamin P. Roscoe and Daniel N.A. Bolon. Systematic Exploration of Ubiquitin Sequence, E1 Activation
Efficiency, and Experimental Fitness in Yeast. Journal of Molecular Biology, 426(15):2854-2870, July
2014. ISSN 00222836. doi: 10.1016/j.jmb.2014.05.019. URL https://linkinghub.elsevier.com/
retrieve/pii/S0022283614002587.

Benjamin P. Roscoe, Kelly M. Thayer, Konstantin B. Zeldovich, David Fushman, and Daniel N.A. Bolon.
Analyses of the Effects of All Ubiquitin Point Mutants on Yeast Growth Rate. Journal of Molecular
Biology, 425(8):1363-1377, April 2013. ISSN 00222836. doi: 10.1016/j.jmb.2013.01.032. URL https!
//linkinghub.elsevier.com/retrieve/pii/S0022283613000636.

Hridindu Roychowdhury and Philip A Romero. Microfluidic deep mutational scanning of the human executioner
caspases reveals differences in structure and regulation. Cell Death Discovery, 8(1):7, January 2022.

Alan F. Rubin, Joseph K Min, Nathan J. Rollins, Estelle Y Da, Daniel Esposito, Matthew Harrington, Jeremy
Stone, Aisha Haley Bianchi, Mafalda Dias, Jonathan Frazer, Yunfan Fu, Molly Gallaher, Iris Li, Olivia
Moscatelli, Jesslyn YL Ong, Joshua E Rollins, Matthew J. Wakefield, Shenyi “Sunny” Ye, Amy Sze Pui Tam,
Abbye E. McEwen, Lea M. Starita, Vanessa L. Bryant, Debora S. Marks, and Douglas M. Fowler. MaveDB
v2: a curated community database with over three million variant effects from multiplexed functional assays.
bioRxiv, 2021.

William P. Russ, Matteo Figliuzzi, Christian Stocker, Pierre Barrat-Charlaix, Michael Socolich, Peter Kast,
Donald Hilvert, Remi Monasson, Simona Cocco, Martin Weigt, and Rama Ranganathan. An evolution-based
model for designing chorismate mutase enzymes. Science, 369(6502):440-445, July 2020. ISSN 0036-
8075, 1095-9203. doi: 10.1126/science.aba3304. URL https://www.sciencemag.org/lookup/doi/10},
1126/science.aba3304.

Kaitlin E Samocha, Jack A Kosmicki, Konrad J Karczewski, Anne H O’Donnell-Luria, Emma Pierce-Hoffman,
Daniel G MacArthur, Benjamin M Neale, and Mark J Daly. Regional missense constraint improves variant
deleteriousness prediction. BioRxiv, page 148353, 2017.

Karen S. Sarkisyan, Dmitry A. Bolotin, Margarita V. Meer, Dinara R. Usmanova, Alexander S. Mishin, George V.
Sharonov, Dmitry N. Ivankov, Nina G. Bozhanova, Mikhail S. Baranov, Onuralp Soylemez, Natalya S.
Bogatyreva, Peter K. Vlasov, Evgeny S. Egorov, Maria D. Logacheva, Alexey S. Kondrashov, Dmitry M.
Chudakov, Ekaterina V. Putintseva, [lgar Z. Mamedov, Dan S. Tawfik, Konstantin A. Lukyanov, and Fyodor A.
Kondrashov. Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397-401, May 2016.
ISSN 0028-0836, 1476-4687. doi: 10.1038/nature17995. URL http://www.nature.com/articles/
naturel7995.

22


https://www.biorxiv.org/content/early/2021/02/13/2021.02.12.430858
https://www.biorxiv.org/content/early/2021/02/13/2021.02.12.430858
https://dx.plos.org/10.1371/journal.pcbi.1004421
https://api.semanticscholar.org/CorpusID:1093192
https://pnas.org/doi/full/10.1073/pnas.1422285112
https://pnas.org/doi/full/10.1073/pnas.1422285112
https://linkinghub.elsevier.com/retrieve/pii/S0022283614002587
https://linkinghub.elsevier.com/retrieve/pii/S0022283614002587
https://linkinghub.elsevier.com/retrieve/pii/S0022283613000636
https://linkinghub.elsevier.com/retrieve/pii/S0022283613000636
https://www.sciencemag.org/lookup/doi/10.1126/science.aba3304
https://www.sciencemag.org/lookup/doi/10.1126/science.aba3304
http://www.nature.com/articles/nature17995
http://www.nature.com/articles/nature17995
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Jana Marie Schwarz, Christian Rodelsperger, Markus Schuelke, and Dominik Seelow. MutationTaster evaluates
disease-causing potential of sequence alterations. Nature methods, 7(8):575-576, 2010.

Mireia Seuma, Andre J Faure, Marta Badia, Ben Lehner, and Benedetta Bolognesi. The genetic landscape for
amyloid beta fibril nucleation accurately discriminates familial Alzheimer’s disease mutations. eLife, 10:
63364, February 2021. ISSN 2050-084X. doi: 10.7554/eLife.63364. URL https://elifesciences|
org/articles/63364.

Mireia Seuma, Ben Lehner, and Benedetta Bolognesi. An atlas of amyloid aggregation: the impact of substitu-
tions, insertions, deletions and truncations on amyloid beta fibril nucleation. Nature Communications, 13(1):
7084, November 2022.

Hashem A Shihab, Julian Gough, David N Cooper, Peter D Stenson, Gary LA Barker, Keith J Edwards, Ian NM
Day, and Tom R Gaunt. Predicting the functional, molecular, and phenotypic consequences of amino acid
substitutions using hidden markov models. Human mutation, 34(1):57-65, 2013.

Jung-Eun Shin, Adam J Riesselman, Aaron W Kollasch, Conor McMahon, Elana Simon, Chris Sander, Aashish
Manglik, Andrew C Kruse, and Debora S Marks. Protein design and variant prediction using autoregressive
generative models. Nature communications, 12(1):1-11, 2021.

D Shortle and J Sondek. The emerging role of insertions and deletions in protein engineering. Curr. Opin.
Biotechnol., 6(4):387-393, August 1995.

Rachel A. Silverstein, Song Sun, Marta Verby, Jochen Weile, Yingzhou Wu, Marinella Gebbia, losifina
Fotiadou, Julia Kitaygorodsky, and Frederick P. Roth. A systematic genotype-phenotype map for missense
variants in the human intellectual disability-associated gene GDII. preprint, Genetics, October 2021. URL
http://biorxiv.org/lookup/doi/10.1101/2021.10.06.463360.

Sam Sinai, Nina Jain, George M Church, and Eric D Kelsic. Generative AAV capsid diversification by latent
interpolation. preprint, Synthetic Biology, April 2021. URL http://biorxiv.org/lookup/doi/10!
1101/2021.04.16.440236.

Yq Shirleen Soh, Louise H Moncla, Rachel Eguia, Trevor Bedford, and Jesse D Bloom. Comprehensive mapping
of adaptation of the avian influenza polymerase protein PB2 to humans. eLife, 8:¢45079, April 2019. ISSN
2050-084X. doi: 10.7554/eLite.45079. URL https://elifesciences.org/articles/45079.

Marion Sourisseau, Daniel J. P. Lawrence, Megan C. Schwarz, Carina H. Storrs, Ethan C. Veit, Jesse D. Bloom,
and Matthew J. Evans. Deep Mutational Scanning Comprehensively Maps How Zika Envelope Protein
Mutations Affect Viral Growth and Antibody Escape. Journal of Virology, 93(23):e01291-19, December
2019. ISSN 0022-538X, 1098-5514. doi: 10.1128/JVI.01291-19. URL https://journals.asm.org/
doi/10.1128/JVI.01291-19,

Jeffrey M. Spencer and Xiaoliu Zhang. Deep mutational scanning of S. pyogenes Cas9 reveals important
functional domains. Scientific Reports, 7(1):16836, December 2017. ISSN 2045-2322. doi: 10.1038/
s41598-017-17081-y. URL https://www.nature.com/articles/s41598-017-17081-y.

Tobias Stadelmann, Daniel Heid, Michael Jendrusch, Jan Mathony, Stéphane Rosset, Bruno E. Correia, and
Dominik Niopek. A deep mutational scanning platform to characterize the fitness landscape of anti-CRISPR
proteins. preprint, Synthetic Biology, August 2021. URL http://biorxiv.org/lookup/doi/10.1101/
2021.08.21.457204.

Max V. Staller, Alex S. Holehouse, Devjanee Swain-Lenz, Rahul K. Das, Rohit V. Pappu, and Barak A.
Cohen. A High-Throughput Mutational Scan of an Intrinsically Disordered Acidic Transcriptional Activation
Domain. Cell Systems, 6(4):444-455.e6, April 2018. ISSN 24054712. doi: 10.1016/j.cels.2018.01.015. URL
https://linkinghub.elsevier.com/retrieve/pii/S2405471218300528,

Lea M. Starita, Jonathan N. Pruneda, Russell S. Lo, Douglas M. Fowler, Helen J. Kim, Joseph B. Hiatt,
Jay Shendure, Peter S. Brzovic, Stanley Fields, and Rachel E. Klevit. Activity-enhancing mutations in
an E3 ubiquitin ligase identified by high-throughput mutagenesis. Proceedings of the National Academy
of Sciences, 110(14), April 2013. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1303309110. URL
https://pnas.org/doi/full/10.1073/pnas.1303309110.

Tyler N. Starr, Allison J. Greaney, Sarah K. Hilton, Daniel Ellis, Katharine H.D. Crawford, Adam S. Dingens,
Mary Jane Navarro, John E. Bowen, M. Alejandra Tortorici, Alexandra C. Walls, Neil P. King, David
Veesler, and Jesse D. Bloom. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain
Reveals Constraints on Folding and ACE2 Binding. Cell, 182(5):1295-1310.€20, September 2020. ISSN
00928674. doi: 10.1016/j.cell.2020.08.012. URL https://linkinghub.elsevier.com/retrieve/pii/
S0092867420310035.

23


https://elifesciences.org/articles/63364
https://elifesciences.org/articles/63364
http://biorxiv.org/lookup/doi/10.1101/2021.10.06.463360
http://biorxiv.org/lookup/doi/10.1101/2021.04.16.440236
http://biorxiv.org/lookup/doi/10.1101/2021.04.16.440236
https://elifesciences.org/articles/45079
https://journals.asm.org/doi/10.1128/JVI.01291-19
https://journals.asm.org/doi/10.1128/JVI.01291-19
https://www.nature.com/articles/s41598-017-17081-y
http://biorxiv.org/lookup/doi/10.1101/2021.08.21.457204
http://biorxiv.org/lookup/doi/10.1101/2021.08.21.457204
https://linkinghub.elsevier.com/retrieve/pii/S2405471218300528
https://pnas.org/doi/full/10.1073/pnas.1303309110
https://linkinghub.elsevier.com/retrieve/pii/S0092867420310035
https://linkinghub.elsevier.com/retrieve/pii/S0092867420310035
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Martin Steinegger and Johannes Soding. Clustering huge protein sequence sets in linear time. Nature
Communications, 9(1):2542, Jun 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-04964-5. URL
https://doi.org/10.1038/s41467-018-04964-5|

Michael A. Stiffler, Doeke R. Hekstra, and Rama Ranganathan. Evolvability as a Function of Purifying Selection
in TEM-1 beta-Lactamase. Cell, 160(5):882-892, February 2015. ISSN 00928674. doi: 10.1016/j.cell.2015.
01.035. URL https://linkinghub.elsevier.com/retrieve/pii/S0092867415000781.

Jan Stourac, Juraj Dibrava, Milo§ Musil, Jana Hordckov4, Jiff Damborsky, S. Mazurenko, and David Bednar.
FireProtDB: database of manually curated protein stability data. Nucleic Acids Research, 49:D319 — D324,
2020.

Chase C. Suiter, Takaya Moriyama, Kenneth A. Matreyek, Wentao Yang, Emma Rose Scaletti, Rina Nishii, Wen-
jian Yang, Keito Hoshitsuki, Minu Singh, Amita Trehan, Chris Parish, Colton Smith, Lie Li, Deepa Bhojwani,
Liz Y. P. Yuen, Chi-kong Li, Chak-ho Li, Yung-li Yang, Gareth J. Walker, James R. Goodhand, Nicholas A.
Kennedy, Federico Antillon Klussmann, Smita Bhatia, Mary V. Relling, Motohiro Kato, Hiroki Hori, Prateek
Bhatia, Tarig Ahmad, Allen E. J. Yeoh, Pal Stenmark, Douglas M. Fowler, and Jun J. Yang. Massively
parallel variant characterization identifies NUDT15 alleles associated with thiopurine toxicity. Proceedings
of the National Academy of Sciences, 117(10):5394-5401, March 2020. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.1915680117. URL https://pnas.org/doi/full/10.1073/pnas.1915680117,

Song Sun, Jochen Weile, Marta Verby, Yingzhou Wu, Yang Wang, Atina G. Cote, losifina Fotiadou, Julia Kitay-
gorodsky, Marc Vidal, Jasper Rine, Pavel Jesina, Viktor KoZich, and Frederick P. Roth. A proactive genotype-
to-patient-phenotype map for cystathionine beta-synthase. Genome Medicine, 12(1):13, December 2020.
ISSN 1756-994X. doi: 10.1186/s13073-020-0711-1. URL https://genomemedicine.biomedcentral)
com/articles/10.1186/s13073-020-0711-1|

Laksshman Sundaram, Hong Gao, Samskruthi Reddy Padigepati, Jeremy F McRae, Yanjun Li, Jack A Kosmicki,
Nondas Fritzilas, Jorg Hakenberg, Anindita Dutta, John Shon, et al. Predicting the clinical impact of human
mutation with deep neural networks. Nature genetics, 50(8):1161-1170, 2018.

Amporn Suphatrakul, Pratsaneeyaporn Posiri, Nittaya Srisuk, Rapirat Nantachokchawapan, Suppachoke On-
nome, Juthathip Mongkolsapaya, and Bunpote Siridechadilok. Functional analysis of flavivirus replicase by
deep mutational scanning of dengue NS5. March 2023.

Baris E. Suzek, Yuqi Wang, Hongzhan Huang, Peter B. McGarvey, and Cathy H. Wu. UniRef clusters: a
comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics, 31:926 —
932, 2014.

Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, Cathy H Wu, and UniProt Consortium. UniRef
clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics,
31(6):926-932, 2015.

Timothy J C Tan, Zongjun Mou, Ruipeng Lei, Wenhao O Ouyang, Meng Yuan, Ge Song, Raiees Andrabi,
Ian A Wilson, Collin Kieffer, Xinghong Dai, Kenneth A Matreyek, and Nicholas C Wu. High-throughput
identification of prefusion-stabilizing mutations in SARS-CoV-2 spike. Nature Communications, 14(1):2003,
April 2023.

Samuel Thompson, Yang Zhang, Christine Ingle, Kimberly A Reynolds, and Tanja Kortemme. Altered expression
of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme. eLife, 9:
€53476, July 2020. ISSN 2050-084X. doi: 10.7554/eLife.53476. URL https://elifesciences.org/
articles/53476,

Bargavi Thyagarajan and Jesse D Bloom. The inherent mutational tolerance and antigenic evolvability of
influenza hemagglutinin. Elife, 3, July 2014.

Agnes Téth-Petréczy and Dan S Tawfik. Protein insertions and deletions enabled by neutral roaming in sequence
space. Mol. Biol. Evol., 30(4):761-771, April 2013.

Arti Tripathi, Kritika Gupta, Shruti Khare, Pankaj C. Jain, Siddharth Patel, Prasanth Kumar, Ajai J. Pulianmackal,
Nilesh Aghera, and Raghavan Varadarajan. Molecular Determinants of Mutant Phenotypes, Inferred from
Saturation Mutagenesis Data. Molecular Biology and Evolution, 33(11):2960-2975, November 2016.
ISSN 0737-4038, 1537-1719. doi: 10.1093/molbev/imsw182. URL https://academic.oup.com/mbe/
article-lookup/doi/10.1093/molbev/msw182,

Kotaro Tsuboyama, Justas Dauparas, Jonathan Chen, Elodie Laine, Yasser Mohseni Behbahani, Jonathan J.
Weinstein, Niall M. Mangan, Sergey Ovchinnikov, and Gabriel J. Rocklin. Mega-scale experimental analysis
of protein folding stability in biology and protein design, December 2022. URL https://www.biorxiv,
org/content/10.1101/2022.12.06.519132v3| Pages: 2022.12.06.519132 Section: New Results.

24


https://doi.org/10.1038/s41467-018-04964-5
https://linkinghub.elsevier.com/retrieve/pii/S0092867415000781
https://pnas.org/doi/full/10.1073/pnas.1915680117
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-020-0711-1
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-020-0711-1
https://elifesciences.org/articles/53476
https://elifesciences.org/articles/53476
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msw182
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msw182
https://www.biorxiv.org/content/10.1101/2022.12.06.519132v3
https://www.biorxiv.org/content/10.1101/2022.12.06.519132v3
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Kotaro Tsuboyama, Justas Dauparas, Jonathan Chen, Elodie Laine, Yasser Mohseni Behbahani, Jonathan J.
Weinstein, Niall M. Mangan, Sergey Ovchinnikov, and Gabriel J. Rocklin. Mega-scale experimental anal-
ysis of protein folding stability in biology and design. Nature, 620(7973):434—444, August 2023. ISSN
0028-0836, 1476-4687. doi: 10.1038/s41586-023-06328-6. URL https://www.nature.com/articles/
s41586-023-06328-6.

UK Monogenic Diabetes Consortium, Myocardial Infarction Genetics Consortium, UK Congenital Lipodystro-
phy Consortium, Amit R Majithia, Ben Tsuda, Maura Agostini, Keerthana Gnanapradeepan, Robert Rice, Gina
Peloso, Kashyap A Patel, Xiaolan Zhang, Marjoleine F Broekema, Nick Patterson, Marc Duby, Ted Sharpe,
Eric Kalkhoven, Evan D Rosen, Inés Barroso, Sian Ellard, Sekar Kathiresan, Stephen O’Rahilly, Krishna Chat-
terjee, Jose C Florez, Tarjei Mikkelsen, David B Savage, and David Altshuler. Prospective functional classifica-
tion of all possible missense variants in PPARG. Nature Genetics, 48(12):1570-1575, December 2016. ISSN
1061-4036, 1546-1718. doi: 10.1038/ng.3700. URL https://www.nature.com/articles/ng.3700.

Fabio Urbina, Filippa Lentzos, Cédric Invernizzi, and Sean Ekins. Dual use of artificial-intelligence-powered
drug discovery. Nature Machine Intelligence, 4(3):189-191, 2022.

Oana Ursu, James T Neal, Emily Shea, Pratiksha I Thakore, Livnat Jerby-Arnon, Lan Nguyen, Danielle Dionne,
Celeste Diaz, Julia Bauman, Mariam Mounir Mosaad, Christian Fagre, April Lo, Maria McSharry, Andrew O
Giacomelli, Seav Huong Ly, Orit Rozenblatt-Rosen, William C Hahn, Andrew J Aguirre, Alice H Berger,
Aviv Regev, and Jesse S Boehm. Massively parallel phenotyping of coding variants in cancer with perturb-seq.
Nature Biotechnology, 40(6):896-905, June 2022.

Warren van Loggerenberg, Shahin Sowlati-Hashjin, Jochen Weile, Rayna Hamilton, Aditya Chawla, Marinella
Gebbia, Nishka Kishore, Laure Frésard, Sami Mustajoki, Elena Pischik, Elena Di Pierro, Michela Barbaro,
Ylva Floderus, Caroline Schmitt, Laurent Gouya, Alexandre Colavin, Robert Nussbaum, Edith C H Friesema,
Raili Kauppinen, Jordi To-Figueras, Aasne K Aarsand, Robert J Desnick, Michael Garton, and Frederick P
Roth. Systematically testing human HMBS missense variants to reveal mechanism and pathogenic variation.
bioRxiv, February 2023.

Rosario Vanella, Christoph Kiing, Alexandre A Schoepfer, Vanni Doffini, Jin Ren, and Michael A Nash.
Understanding Activity-Stability tradeoffs in biocatalysts by enzyme proximity sequencing. March 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2017.

Veeramohan Veerapandian, Jan Ole Ackermann, Yogesh Srivastava, Vikas Malik, Mingxi Weng, Xiaoxiao Yang,
and Ralf Jauch. Directed evolution of reprogramming factors by cell selection and sequencing. Stem Cell
Reports, 11(2):593-606, August 2018.

Aliete Wan, Emily Place, Eric A. Pierce, and Jason Comander. Characterizing variants of unknown significance
in rhodopsin: A functional genomics approach. Human Mutation, 40(8):1127-1144, August 2019. ISSN
1059-7794, 1098-1004. doi: 10.1002/humu.23762. URL https://onlinelibrary.wiley.com/doi/10,
1002/humu. 23762,

Ryan Weeks and Marc Ostermeier. Fitness and functional landscapes of the e. coli RNase III gene rnc. Molecular
Biology and Evolution, 40(3), March 2023.

Jochen Weile, Song Sun, Atina G Cote, Jennifer Knapp, Marta Verby, Joseph C Mellor, Yingzhou Wu, Carles
Pons, Cassandra Wong, Natascha Lieshout, Fan Yang, Murat Tasan, Guihong Tan, Shan Yang, Douglas M
Fowler, Robert Nussbaum, Jesse D Bloom, Marc Vidal, David E Hill, Patrick Aloy, and Frederick P
Roth. A framework for exhaustively mapping functional missense variants. Molecular Systems Biology,
13(12):957, December 2017. ISSN 1744-4292, 1744-4292. doi: 10.15252/msb.20177908. URL https:
//onlinelibrary.wiley.com/doi/10.15252/msb.20177908.

Jochen Weile, Nishka Kishore, Song Sun, Ranim Maaieh, Marta Verby, Roujia Li, losifina Fotiadou, Julia
Kitaygorodsky, Yingzhou Wu, Alexander Holenstein, Céline Biirer, Linnea Blomgren, Shan Yang, Robert
Nussbaum, Rima Rozen, David Watkins, Marinella Gebbia, Viktor Kozich, Michael Garton, D Sean Froese,
and Frederick P Roth. Shifting landscapes of human MTHFR missense-variant effects. American Journal of
Human Genetics, 108(7):1283-1300, July 2021.

Chenchun Weng, Andre J Faure, and Ben Lehner. The energetic and allosteric landscape for KRAS inhibition.
December 2022.

Emily E. Wrenbeck, Laura R. Azouz, and Timothy A. Whitehead. Single-mutation fitness landscapes for an
enzyme on multiple substrates reveal specificity is globally encoded. Nature Communications, 8(1):15695,
August 2017. ISSN 2041-1723. doi: 10.1038/ncomms15695. URL http://www.nature.com/articles/|
ncomms15695.

25


https://www.nature.com/articles/s41586-023-06328-6
https://www.nature.com/articles/s41586-023-06328-6
https://www.nature.com/articles/ng.3700
https://onlinelibrary.wiley.com/doi/10.1002/humu.23762
https://onlinelibrary.wiley.com/doi/10.1002/humu.23762
https://onlinelibrary.wiley.com/doi/10.15252/msb.20177908
https://onlinelibrary.wiley.com/doi/10.15252/msb.20177908
http://www.nature.com/articles/ncomms15695
http://www.nature.com/articles/ncomms15695
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Emily E Wrenbeck, Matthew A Bedewitz, Justin R Klesmith, Syeda Noshin, Cornelius S Barry, and Timothy A
Whitehead. An automated Data-Driven pipeline for improving heterologous enzyme expression. ACS
Synthetic Biology, 8(3):474-481, March 2019.

Nicholas C. Wu, Arthur P. Young, Laith Q. Al-Mawsawi, C. Anders Olson, Jun Feng, Hangfei Qi, Shu-Hwa
Chen, I.-Hsuan Lu, Chung-Yen Lin, Robert G. Chin, Harding H. Luan, Nguyen Nguyen, Stanley F. Nelson,
Xinmin Li, Ting-Ting Wu, and Ren Sun. High-throughput profiling of influenza A virus hemagglutinin
gene at single-nucleotide resolution. Scientific Reports, 4(1):4942, December 2014. ISSN 2045-2322. doi:
10.1038/srep04942. URL https://www.nature.com/articles/srep04942,

Nicholas C. Wu, C. Anders Olson, Yushen Du, Shuai Le, Kevin Tran, Roland Remenyi, Danyang Gong, Laith Q.
Al-Mawsawi, Hangfei Qi, Ting-Ting Wu, and Ren Sun. Functional Constraint Profiling of a Viral Protein
Reveals Discordance of Evolutionary Conservation and Functionality. PLOS Genetics, 11(7):e1005310,
July 2015. ISSN 1553-7404. doi: 10.1371/journal.pgen.1005310. URL https://dx.plos.org/10.1371/
journal.pgen.1005310.

Nicholas C Wu, Lei Dai, C Anders Olson, James O Lloyd-Smith, and Ren Sun. Adaptation in protein
fitness landscapes is facilitated by indirect paths. eLife, 5:e16965, July 2016. ISSN 2050-084X. doi:
10.7554/eLife.16965. URL https://elifesciences.org/articles/16965.

Yingzhou Wu, Hanqing Liu, Roujia Li, Song Sun, Jochen Weile, and Frederick P Roth. Improved pathogenicity
prediction for rare human missense variants. The American Journal of Human Genetics, 108(10):1891-1906,
2021.

Zachary Wu, S. B. Jennifer Kan, Russell D. Lewis, Bruce J. Wittmann, and Frances H. Arnold. Machine learning-
assisted directed protein evolution with combinatorial libraries. Proceedings of the National Academy of
Sciences, 116:8852 — 8858, 2019. URL https://api.semanticscholar.org/CorpusID:67770057,

Michael J Xie, Gareth A Cromie, Katherine Owens, Martin S Timour, Michelle Tang, J Nathan Kutz, Ayman W
El-Hattab, Richard N McLaughlin, and Aimée M Dudley. Predicting the functional effect of compound
heterozygous genotypes from large scale variant effect maps. bioRxiv, January 2023.

Minghao Xu, Zuobai Zhang, Jiarui Lu, Zhaocheng Zhu, Yangtian Zhang, Chang Ma, Runcheng Liu, and Jian
Tang. PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding, September
2022. URL http://arxiv.org/abs/2206.02096, arXiv:2206.02096 [cs].

Kevin Kaichuang Yang, Zachary Wu, and Frances H. Arnold. Machine-learning-guided directed evolution
for protein engineering. Nature Methods, pages 1-8, 2018. URL https://api.semanticscholar.org/
CorpusID:128342395.

Kevin Kaichuang Yang, Alex X. Lu, and Nicol6 Fusi. Convolutions are competitive with transformers for
protein sequence pretraining. bioRxiv, 2023a. URL https://api.semanticscholar.org/CorpusID:
248990392,

Kevin Kaichuang Yang, Niccolé Zanichelli, and Hugh Yeh. Masked inverse folding with sequence transfer for
protein representation learning. bioRxiv, 2023b. URL https://api.semanticscholar.org/CorpusID:
249241961,

Sook Wah Yee, Christian Macdonald, Darko Mitrovic, Xujia Zhou, Megan L Koleske, Jia Yang, Dina Buitrago
Silva, Patrick Rockefeller Grimes, Donovan Trinidad, Swati S More, Linda Kachuri, John S Witte, Lucie
Delemotte, Kathleen M Giacomini, and Willow Coyote-Maestas. The full spectrum of OCT1 (SLC22A1)
mutations bridges transporter biophysics to drug pharmacogenomics. bioRxiv, June 2023.

Heather J. Young, Matthew Chan, Balaji Selvam, Steven K. Szymanski, Diwakar Shukla, and Erik Procko. Deep
Mutagenesis of a Transporter for Uptake of a Non-Native Substrate Identifies Conformationally Dynamic
Regions. preprint, Biochemistry, April 2021. URL http://biorxiv.org/lookup/doi/10.1101/2021,
04.19.440442.

Haicang Zhang, Michelle S Xu, Xiao Fan, Wendy K Chung, and Yufeng Shen. Predicting functional effect of
missense variants using graph attention neural networks. Nature Machine Intelligence, 4(11):1017-1028,
2022.

Naihui Zhou, Yuxiang Jiang, Timothy Bergquist, Alexandra J. Lee, Balint Z. Kacsoh, Alex Crocker, Kimberley A.
Lewis, George E. Georghiou, Huy N. Nguyen, Nafiz Imtiaz Bin Hamid, Larry Davis, Tunca Dogan, Volkan
Atalay, Ahmet Sureyya Rifaioglu, Alperen Dalkiran, Rengul Cetin-Atalay, Chengxin Zhang, Rebecca L.
Hurto, Peter L. Freddolino, Yang Zhang, Prajwal Bhat, Fran Supek, José Maria Fernandez, Branislava
Gemovi¢, Vladimir Perovic, Radoslav Davidovic, Neven Sumonja, Nevena Veljkovic, Ehsaneddin Asgari,
Mohammad R. K. Mofrad, Giuseppe Profiti, Castrense Savojardo, Pier Luigi Martelli, Rita Casadio, Florian

26


https://www.nature.com/articles/srep04942
https://dx.plos.org/10.1371/journal.pgen.1005310
https://dx.plos.org/10.1371/journal.pgen.1005310
https://elifesciences.org/articles/16965
https://api.semanticscholar.org/CorpusID:67770057
http://arxiv.org/abs/2206.02096
https://api.semanticscholar.org/CorpusID:128342395
https://api.semanticscholar.org/CorpusID:128342395
https://api.semanticscholar.org/CorpusID:248990392
https://api.semanticscholar.org/CorpusID:248990392
https://api.semanticscholar.org/CorpusID:249241961
https://api.semanticscholar.org/CorpusID:249241961
http://biorxiv.org/lookup/doi/10.1101/2021.04.19.440442
http://biorxiv.org/lookup/doi/10.1101/2021.04.19.440442
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Boecker, Indika Kahanda, Natalie Thurlby, Alice Mchardy, Alexandre Renaux, Rabie Saidi, Julian Gough,
Alex Alves Freitas, Magdalena Antczak, Fabio Fabris, Mark N. Wass, Jie Hou, Jianlin Cheng, Zheng Wang,
Alfonso E. Romero, Alberto Paccanaro, Haixuan Yang, Tatyana Goldberg, Chenguang Zhao, Liisa Holm, Petri
Toronen, Alan Medlar, Elaine Zosa, Itamar Borukhov, Ilya B. Novikov, Angela D. Wilkins, Olivier Lichtarge,
Po-Han Chi, Wei-Cheng Tseng, Michal Linial, Peter W. Rose, Christophe Dessimoz, Vedrana Vidulin, Saso
Dzeroski, Ian P. W. Sillitoe, Sayoni Das, Jonathan G. Lees, David T. Jones, Cen Wan, Domenico Cozzetto,
Rui Fa, Mateo Torres, Alex Warwick Vesztrocy, Jose Manuel Rodriguez, Michael L. Tress, Marco Frasca,
Marco Notaro, Giuliano Grossi, Alessandro Petrini, Matteo Ré, Giorgio Valentini, Marco Mesiti, Daniel B.
Roche, Jonas Reeb, David W. Ritchie, Sabeur Aridhi, Seyed Ziaeddin Alborzi, Marie-Dominique Devignes,
Da Chen Emily Koo, Richard Bonneau, Vladimir Gligorijevi¢, Meet Barot, Hai Fang, Stefano Toppo, Enrico
Lavezzo, Marco Falda, Michele Berselli, Silvio C. E. Tosatto, Marco Carraro, Damiano Piovesan, Hafeez
ur Rehman, Qizhong Mao, Shanshan Zhang, Slobodan Vucetic, Gage S Black, Dane Jo, Dallas J. Larsen,
Ashton Omdahl, Luke Sagers, Erica Suh, Jonathan B. Dayton, Liam James McGuffin, Danielle Allison
Brackenridge, Patricia C. Babbitt, Jeffrey M. Yunes, Paolo Fontana, Feng Zhang, Shanfeng Zhu, Ronghui You,
Zihan Zhang, Suyang Dai, Shuwei Yao, Weidong Tian, Renzhi Cao, Caleb Chandler, Miguel Amezola, Devon
Johnson, Jia-Ming Chang, Wen-Hung Liao, Yi-Wei Liu, Stefano Pascarelli, Yotam Frank, R. Hoehndorf,
Maxat Kulmanov, Imane Boudellioua, Gianfranco Politano, Stefano Di Carlo, Alfredo Benso, Kai Hakala,
Filip Ginter, Farrokh Mehryary, Suwisa Kaewphan, Jari Bjorne, Hans Moen, Martti Tolvanen, Tapio Salakoski,
Daisuke Kihara, Aashish Jain, Tomislav Smuc, Adrian M. Altenhoff, Asa Ben-Hur, Burkhard Rost, Steven E.
Brenner, Christine A. Orengo, Constance J. Jeffery, Giovanni Bosco, Deborah A. Hogan, Maria Jesus Martin,
Claire O’Donovan, Sean D. Mooney, Casey S. Greene, Predrag Radivojac, and Iddo Friedberg. The CAFA
challenge reports improved protein function prediction and new functional annotations for hundreds of genes
through experimental screens. Genome Biology, 20, 2019.

Julia Zinkus-Boltz, Craig DeValk, and Bryan C. Dickinson. A Phage-Assisted Continuous Selection Approach
for Deep Mutational Scanning of Protein—Protein Interactions. ACS Chemical Biology, 14(12):2757-2767,
December 2019. ISSN 1554-8929, 1554-8937. doi: 10.1021/acschembio.9b00669. URL https://pubs!
acs.org/doi/10.1021/acschembio.9b00669.

27


https://pubs.acs.org/doi/10.1021/acschembio.9b00669
https://pubs.acs.org/doi/10.1021/acschembio.9b00669
https://doi.org/10.1101/2023.12.07.570727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.07.570727; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Appendix

A.1 Social Impact

Protein design holds considerable promise for various fields, ranging from medicine to agriculture, and is likely
to have a profound social impact. However, the development of such technology introduces several concerns,
particularly relating to the dual use of protein fitness and design models. For instance, while beneficial for areas
like drug design, these models can also be potentially utilized for harmful purposes such as bio-weapon design.
Consider a generative model developed for therapeutic purposes: it typically penalizes predicted toxicity. Yet,
the logic of this model could be inverted to instead reward for toxicity [Urbina et al., 2022]]. Indeed, any tool or
benchmark developed to improve protein design can be manipulated for nefarious objectives. Lastly, protein
fitness models will significantly influence the way experiments are conducted. With increased adoption and
development of protein design, substantial portions of experimental work can be accelerated, leading to quicker
iterations and improved results. Nonetheless, the need for wet lab experimentation remains. These technological
advancements will serve to augment, rather than completely supplant, traditional experimental procedures.

Additionally, the American College of Medical Genetics (ACMG) disregards computational prediction of variant
effects due to insufficient validation. Consequently, it is essential to create benchmarks using clinical data in
order to promote the acceptance of these machine learning methods in medical practice.

A.2 Limitations

Deep mutational scans While significant efforts have been dedicated to curating and preprocessing a
diverse set of deep mutational scans (DMS), the very nature of these scans imposes biases and limitations to this
benchmark:

1. Measurement noise Experiments do not have a perfect dynamic range, often imposing a restrictive
ceiling and/or floor to the measured response of mutation effects that is not meaningful for protein
function and mutation effect prediction. Furthermore, noise is a perennial issue in high-throughput
assays, and some assays have poor experimental replicate correlation. Taken together, this means
that one cannot expect perfect correlation between experiment and model. Since these considerations
affect different proteins to different extents, computing average Spearman correlations across proteins
can be misleading.

2. Bias There is additional bias in the types of proteins chosen for deep mutational scans. This can
be due both to experimental limitations on which proteins’ functions can be assayed (for example,
disordered proteins are challenging), and to protein prioritisation considerations (for example, viral
and cancer-related proteins are over-represented).

3. Representativeness No assay is fully representative of the impacts of protein changes on the
evolutionary fitness of an organism, which typically involves a convolution of molecular functions
across changing environments. In fact, many assays target only a single feature such as expression,
binding, or enzymatic activity.

4. Inconsistent processing The reported fitness effects from DMS are themselves the result of modeling
and analysis of the raw data. The treatment of data is extremely heterogeneous across the community
and different analyses can lead to different conclusions on the effect of mutations. For a perfect
standardised curation of experimental results one should treat all data with the same approach. We
leave this type of analysis for future work.

Human mutation databases ClinVar data has the advantage of covering more proteins than DMS, even if
only human proteins involved in disease. But it has several limitations:

1. Noise This dataset, by the very community-based nature of it, is very noisy. Filtering to more
stringently curated ClinVar labels, or to more recent labels, improves correlation with predictions from
sequence models [Frazer et al., 2021]]. Here we decided to keep a reasonable number of clinical labels
— a trade-off between quantity and quality.

2. Bias Clinical labels are biased towards classes of proteins that are heavily studied, such as well-
known cancer genes, as well as towards European ancestry.

3. Circularity |Grimm et al.|[2015] details two types of circularity that hinder the evaluation of human
variant effect predictors. In a supervised benchmark, there is the potential for data leakage from training
to testing, even for different variants in the same protein. Even for our unsupervised benchmark,
where models have not trained on clinical labels, there is the potential for another type of circularity:
evolutionary conservation is one of the criteria used to classify a variant as benign or pathogenic in
ClinVar.
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Finally, the current benchmarks are limited to mutations in coding regions. But there are both DMS datasets and
clinical labels (although fewer of them) in regulatory regions — for example in UTRs, introns, promoters. This
could be an interesting direction of growth for these benchmarks.

A.3 Datasets

A.3.1 DMS assays

Evolution of protein fitness benchmarks based on DMS assays As discussed in § our DMS
benchmarks build on several prior works that had compiled a growing library of such assays. We summarize
their content in Table[ATl

Category Mut. Metric or EVmutation Deep ProteinGym ProteinGym

Type Setting Sequence v0.1 v1.0
DMS Sub.  Assays (mut.) 26 (0.1M) 38 (0.7M) 87 (1.6M) 217 (2.4M)

Ind.  Assays (mut.) 0 (0k) 0 (0k) 7 (270k) 66 (289k)
Clinical Sub.  Genes (mut.) 0 0 0 2,525 (63k)

Ind. Genes (mut.) 0 0 0 1,555 (3k)
Training Sub.  Zero-shot v v v v
regime Ind.  Zero-shot - - v v

Sub.  Supervised - - - v

Ind.  Supervised - - - v
Baselines Sub.  Zero-shot 5 3 9 42

Ind. Zero-shot 0 0 3 20

Sub.  Supervised 0 0 0 9

Ind.  Supervised 0 0 0 3
Metrics - Zero-shot 2 3 3 5

- Supervised 0 0 0 2

Table Al: Evolution of protein fitness benchmarks ProteinGym v0.1 corresponds to benchmarks
in Notin et al| [2022a]], while ProteinGym v1.0 corresponds to benchmarks in this paper. The
EVmutation benchmark was introduced in Hopf et al.|[2017]], while the DeepSequence benchmark
was developed in |Riesselman et al|[2018]]. Sub., Ind. and mut. are shorthands for substitutions,
indels and mutants respectively.

Selection and processing We focused on several different criteria when determining which DMS assays to
include in ProteinGym. These are:

. The public availability of data

. The experimental throughput (how many mutations were assayed)

. The level of noise between experiment replicates

The dynamic range of the assay

. The assay type (selection, enrichment, etc) and whether or not it captures evolutionary constraints.

<N N NS SR

. If the assay used amino-acid substitution or indel mutations (no UTR, tRNA, promoter, etc. variants
were included).

Final list of assays In-depth metadata about the assays, including the assay type, UniProt ID, MSA start and
end positions, mutated positions, and target sequence, is provided under the reference_files directory in the
codebase. A complete list of included assays is presented at the end of the appendix (See Tables[AT9]and [A20)

Processing of large thermostability dataset A large dataset of thermostability assays of 331 natural
domains [Tsuboyama et al.,2023]] contributed 65 assays to our list. We processed these assays as follows:

We used the set of non-redundant natural domains (referred to as Dataset #5 in the original paper). After mapping
to UniProt IDs for our DMS id naming convention and removing datasets where none of the tested evolutionary
models had a Spearman correlation above 0.2 (suggesting that there is inadequate evolutionary fitness signal in
the stability assay, preventing meaningful comparisons between models), we were left with 65 thermostability
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Function type # Assays Description

Subs Indels

Activity 43 3 Assays that directly or indirectly measure a protein’s catalytic (or
otherwise biochemical) activity

Binding 14 0 Assays that measure the affinity or the degree to which a protein
binds its target

Expression 17 2 Assays that measure how much the protein is expressed in a cell

Organismal fitness 77 6 Assays that measure how much changes in the protein affect an
organism’s growth rate

Stability 66 55 Assays that measure how thermostable a protein is

Table A2: DMS assay function types. The number of substitution and indel assays in each of the 5
function type categories and a general description used to categorize the assays.

assays of short domains (40-72 residues long). For substitutions, there was 99+% coverage of each position with
14-19 mutations per position (and 52 of those datasets with multiples), and for indels there was a deletion, Gly
and Ala insertion at every position.

Classification of DMS assays We grouped the substitution DMS assays into five function types: activity,
binding, expression, organismal fitness, and stability. While many DMS assays are well described by multiple
classes, we assigned each to a primary class such that the classes are non-overlapping. We provide a brief
description of each class in Table[A2]

Cross-validation schemes As described in § we leverage 3 types of cross validation schemes: ‘Ran-
dom’, ‘Contiguous’ and ‘Modulo’. We only keep single substitution mutants for the corresponding analyses. For
the ’Random’ split, we randomly assigned each mutant to one of 5 folds. The ‘Contiguous’ split is obtained by
splitting the sequence in contiguous segments along its length, ensuring the segments are comprised of the same
number of positions. The ‘Modulo’ scheme is obtained by assigning positions to each fold using the modulo of
the position number by the total number of folds. Therefore, for a 5-fold cross validation, position 1 is assigned
to fold 1, position 2 to fold 2, ..., position 6 to fold 1, etc. Once again, we make sure to only consider mutated
positions. We operate a five fold cross validation for all assays except for assays F7YBW8_MESOW [Aakre
et al.} 2015] and SPG1_STRSG [Wu et al.}|2016], as these contain only 4 mutated positions.

High-level statistics Table[A3|describes the size and mutation depth of the indel datasets.

A.3.2 Clinical datasets
We collect 65k variants from the ClinVar and gnomAD databases (Table [A4).

For our indel benchmark, detailed in Section[d.I} we focus on short indels, less than or equal to three amino
acids, which make up over 80% of in-frame indels in our data. There were insufficient benign annotations for
indel clinical variants, so gnomAD common variants (allele frequency > 0.5%) were used as a pseudocontrols.

ClinVar processing The clinical substitutions dataset was obtained following the procedure from EVE
[Frazer et al.|[2021]], detailed in Supplementary Methods Section 3 of that paper (which dataset is downloadable
fromhttps://evemodel.org/download/bulk), but correcting for mapping errors to GRCh38, which yielded
2,525 proteins and 63k variants, with Pathogenic/Likely Pathogenic/Benign/Likely Benign annotations and at
least 1 star of clinical evidence - where assertion criteria is provided by a submitter. As a result, our dataset
contains significantly more mutants than the dataset from [Frazer et al.|[2021]] (42k vs. 63k).

The raw set of inframe indels was obtained from ClinVar on February 6th, 2023, by using the following query:

("inframe deletion"[Molecular consequence] OR "inframe indel"[Molecular consequence]
OR "inframe insertion"[Molecular consequence])

This query yielded 18407 variants. After filtering out invalid/uncertain amino acids, repeats, remaining frameshift
variants, and synonymous/stop codons, 17039 (92.5%) remained.

When filtering for Benign/Pathogenic/Likely Benign/Likely Pathogenic annotations (80%+ of annotations are
uncertain significance), and selecting variants in genes with at least one P/LP annotation, and filtering indels up
to 3 amino acids, 2090 / 18407 = 11.35% of the original variants remained, 330 benign and 1760 pathogenic.
When using gnomAD as the benign pseudocontrols, we only keep the 1760 pathogenic variants from ClinVar.
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Dataset #Datapoints Mutation Depth Mutation Source
(Benign/Path.)  (Min/Mean/Max)
DMS Assays
AAV 24,909 1/3.57/11 randomization
B-Lac 4,751 1/1/1 library
Kir2.1 10,502 1/1.2/3 library
MtrA 331 8/8/8 library
PTEN 314 1/1/1 library
TP53 341 1/1.5/2 library
amyloid 2,354 1/14/39 library
OCT1 543 1/1/1 library
Tsuboyama 14,280 1/2.7/3 library
Assays of Natural and Designed Sequences
AAV 225,998 3/13.9/37 model-designed
CM 3,074 1/68.9/82 model-designed
HIS3 6,102 1/8.4/29 interpolations between

natural sequences

Human Variants

ClinVar 3k 1/1.37/3 population variation
(1,760/839)

Table A3: Summary of indel datasets.

Dataset #Proteins #Variants #Variants per Protein
(Median)
Substitutions 2,525 63k 6
Indels 1,555 3k 1

Table A4: Summary of ClinVar human variant datasets.

All the preprocessing code from raw ClinVar data is available in the companion codebase.

gnomAD processing The Genome Aggregation Database (gnomAD) [Karczewski et al.l[2020] seeks to
aggregate genome and exome sequencing data from multiple large-scale sequencing projects, and publishes
summary data such as variant allele frequencies in a consistent format. The jgnomAD v2.1.1 GRCh38 liftover
was downloaded on February 8th 2023 and contains 125,748 exomes and 15,708 genomes. v2 was originally
based on the GRCh37 reference sequence and v2.1.1 was lifted over to the GRCh38 reference sequence.

The inframe indels were similarly preprocessed to the ClinVar indels (the preprocessing code from raw data is
also available in the repository), yielding 839 common indels up to 3 amino acids in length.

A.3.3 Access

The following provides more details on the code and data Resources (§ [6) accompanying this paper.

The open-source codebase containing a framework for scoring all the benchmarks (and easily facilitating the
addition of new benchmarks) is available at https://github.com/0ATML-Markslab/ProteinGym. Mod-
ifications of certain baselines (e.g. scoring of long sequences beyond the context size in the ESM suite, or
pre-processing of MSAs in MSA Transformer) are also released, and all of the model predictions can be
reproduced using this repository. We also include preprocessing code for the clinical data (ClinVar/gnomAD)
and DMS assays for reproducibility.

We developed a user-friendly website, https://www.proteingym.org containing a leaderboard, detailed
results per assay, as well as drill analyses across various dimensions (e.g mutational depth, taxa).

The DMS assays, model scores, Multiple Sequence Alignments, predicted 3D structures, processed Clin-
Var/gnomAD datasets, and raw files before preprocessing are made available athttps://marks.hms.harvard,
edu/proteingym/. Instructions for downloading are in the GitHub repository. Some model checkpoints and
other files necessary for scoring (for baselines such as profileHMM, PROVEAN) are also available at the FTP
server, although most model checkpoints such as ESM-1v are available from their respective repositories.
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A.3.4 License

The codebase is open source under the MIT license.

A.4 Baselines

Unless otherwise specified, model scores are calculated by taking the log-ratio of the sequence probabilities
between the mutant and wild-type sequences log %, following the convention in|Hopf et al.| [2017].

A.4.1 Zero-shot baselines
Alignment-based models

¢ Site-independent Model We use a site-wise maximum entropy model to infer the contribution of
site-specific amino acid constraints without considering explicit epistatic constraints. This model is
implemented as referred to in|[Hopf et al.|[2017].

« HMM We use the profile hidden Markov model (HMM) implementation in HMMER [Eddy} 2011].
Profile HMMs are frequently used to generate multiple sequence alignments, but also produce log
probabilities of sequences that can be used as estimates of fitness for both substitutions and indels
[Durbin et al.l [1998]].

« EVMutation EVMutation [Hopf et al., 2017] models pairwise evolutionary couplings between
protein sequences using a Potts model (otherwise known as a Markov Random Field).

¢ DeepSequence DeepSequence [Riesselman et al., 2018 uses a VAE architecture to learn higher-
order non-linear evolutionary constraints within each protein family. Mutation effect scores are
calculated similarly as EVMutation, as the log-ratio between the mutant and wild-type sequence

probabilities log pp((’:“iut“‘:)), but using the VAE evidence lower bound (ELBO) as a proxy for p(x|6).

* WaveNet We use a previously published dilated convolutional neural network (dilCNN) based on
the WaveNet architecture [Shin et al., 2021] as an example of a family-specific sequence decoder
capable of handling indels. Due to the expense of training a separate model for each protein, we only
evaluate this model against the DMS datasets. Sequence scores are calculated as the difference in
(length-normalized) log-likelihoods between the mutant and wild-type sequences.

* EVE EVE [Frazer et al.|[2021] is a Bayesian VAE model architecture for predicting clinical variant
effects. The model includes a Gaussian Mixture Model fitted to the background distribution of
mutations, in order to provide interpretable protein-specific pathogenicity scores. We use the ClinVar
preprocessing pipeline from EVE, and EVE is also used in TranceptEVE [Notin et al.| 2022b].

* GEMME GEMME is the Global Epistatic Model for predicting Mutational Effects. It infers the
conservation of combinations of mutations across the entire sequence according to an evolutionary
tree [Engelen et al., 2009] and combines it with site-wise frequencies to calculate a combined epistatic
sequence score for mutations [Laine et al.l|2019]]. GEMME intakes multiple sequence alignments of
protein families as well as specific mutations to generate scores. To obtain scores, we used the GEMME
web-tool hosted at http://www.lcgb.upmc.fr/GEMME/submit . html with default parameters.

Protein language models Protein language models are so called because they all use variants of the
Transformer [Vaswani et al.l|2017]] architecture popularised in natural language processing.

e UniRep UniRep [Alley et all 2019b] trains a Long Short-Term Memory (LSTM) model on
UniRef50 [Suzek et al.,|2015]] sequences. It learns how to internally represent proteins by being trained
on next amino acid prediction through minimizing cross-entropy loss. While the core model is trained
on unaligned sequences, UniRep can also be fine-tuned on sets of homologous sequences from a given
family, retrieved with a MSA. This process is called ‘evotuning’ and typically leads to stronger fitness
prediction performance.

« ESM ESM-1b [Rives et al.,|2021] and ESM-1v [Meier et al.} 2021] are protein language models
with a Transformer encoder architecture similar to BERT [Devlin et al., 2019] and trained with a
Masked-Language Modeling (MLM) objective on UniRef50 and UniRef90 respectively. We extend the
original ESM codebase for these two models to handle sequences that are longer than the model context
window (ie., 1023 amino acids), with the approach described in|Brandes et al.| [2023] for ESM-1b and
in Notin et al.|[2022a]] for ESM-1v. We predict fitness for ESM models with the masked-marginal
approach introduced in |Meier et al.| [2021]], which provides optimal performance on substitutions, but
does not support indels.

« CARP CARP [Yang et al.,[2023a] is a protein language model trained with a MLM objective on
Uniref50. The architecture leverages convolutions instead of self-attention, leading to computational
speedups while maitenaning high downstream task performance.
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* RITA RITA [Hesslow et al., 2022] is an autoregressive language model akin to GPT2 [Radford
et al., [2019]], trained on UniRef100 [Suzek et al.| [2015]]. Four model sizes are available, ranging from
85 million to 1.2 billion parameters. RITA takes unaligned sequences as input, and can score both
substitution and indel mutations.

* ProGen2 ProGen2 [Nijkamp et al.,|2022] is an autoregressive protein language model trained on a
mixture of UniRef90 [Suzek et al.| 2014]] and BFD30 [Steinegger and Soding;, |2018]. It follows the
standard transformer decoder architecture, and five models of different sizes are available, ranging
from 151 million to 6.4 billion parameters. ProGen2 takes unaligned sequences as input, and can score
both indel and substitution mutations.

« VESPA VESPA [Marquet et al., [2022] is as Single Amino acid Variant (SAV) effect predictor based
on a combination the embeddings from the protein language model ProtT5 [Elnaggar et al.l|2021], as
well as per-residue conservation predictions.

Inverse Folding models Inverse folding models learn the conditional distribution of sequences that are
likely to fold to an input protein structure [Ingraham et al.,|2019]. Given that there may not be experimentally
solved structures for the target sequence of all DMS assays in ProteinGym, we generate input structures using
Alphafold2 (AF2) [Jumper et al.,|2021]]. The inverse folding model in combination with AF2 encompasses an
end-to-end scoring pipeline that only requires a protein sequence to score variants. As the sequence representation
size is defined by the size of the input structure, the models we benchmark here can only score substitutions.

e ProteinMPNN ProteinMPNN [Dauparas et al., 2022] takes in a protein backbone structure and
featurizes it as a graph where backbone (N,C,Cc) atoms are nodes and edges are determined via
euclidian distance cut-offs. The model uses a message passing neural network (MPNN) [Ingraham
et al.,2019] to encode the structure into a latent graph representation. The model then decodes the
representation and samples sequences autoregressively.

* MIF The Masked Inverse Folding (MIF) and Masked Inverse Folding with Sequence Transfer
(MIF-ST) models [Yang et al.||2023b]] are structured-conditioned protein language models trained with
a MLM objective. MIF is trained on CATH4.2 [Dawson et al.| |2016], and MIF-ST further augments
the MIF model with embeddings from CARP (640M).

* ESM-IF1 ESM-IF1 [Hsu et al.| 2022b]| functions similarly to ProteinMPNN but leverages a Geomet-
ric Vector Perceptron [Jing et al.,2020] (an equivariant message passing module ideal for coordinate
data) as the architecture for the structure encoder and sequence decoder.

Hybrid models

¢ MSA Transformer The MSA Transformer [Rao et al.|2021]] learns a representation of Multiple
Sequence Alignments (MSAs) by training an Axial transformer-based transformer [Ho et al.,2019a]
with a MLM objective across a diverse set of 26 million MSAs.

¢ Tranception Tranception [Notin et al.,2022a]] combines an autoregressive protein language model
with inference-time retrieval from a MSA. We evaluate Tranception Small (§85M), Tranception Medium
(300M parameters) and Tranception Large (700M parameters) both with and without MSA retrieval.
Tranception can score both indel and substitution mutations.

TranceptEVE TranceptEVE augments Tranception with priors for the amino acid distribution at
each position based on an ensemble of EVE models for the protein family of interest. The final output
log probability is thus a weighted sum of that EVE log prior, the log probability from the autoregressive
transformer model in Tranception, as well as site-specific log probabilities obtained from a retrieved
MSA (as in the inference-time retrieval procedure described in Tranception). TranceptEVE can score
both indels and substitutions.

A.4.2 Supervised baselines

We leverage the various supervised baselines defined in|Notin et al.| [2023]:

¢ One-hot encoding (OHE) models OHE baselines take as input a one-hot encoding representation
of the amino acid sequence, together with zero-shot fitness predictions obtained with several of the
baselines discussed above in Appendix [A.4.T] Both are input into a L2-penalized regression, following
the approach discussed in [Hsu et al.| 2022a;

* Embeddings models Embeddings models are based on mean-pooled embeddings from various
protein language models introduced above (e.g., Tranception, ESM-1v, MSA Transformer), augmented
with zero-shot fitness predictions from the same model. We refer to |[Notin et al.| [2023]] for all
implementation details;
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e ProteinNPT  ProteinNPT [Notin et al) [2023] is a semi-supervised non-parametric trans-
former [Kossen et al.l[2022] which learns a joint representation of full batches of labeled sequences. It
is trained with a hybrid objective consisting of fitness prediction and masked amino acids reconstruc-
tion. The model can be used to predict mutation effects for single or multiple properties simultaneously,
and sample novel sequences conditioned on label values of interest.

A.4.3 Clinical baselines

We leverage a set of clinical variant effect predictors from dbNSFP v4.4a [Liu et al.| 2011}, |2020], which is a
database of functional predictions for all possible non-synonymous single-nucleotide variants (nsSNVs) in the
human genome.

These models were developed primarily to assess the effects of mutations in humans and are included in clinical
benchmarks only:

* Supervised The following assays used ClinVar label annotations in their training (or are meta-
predictors that contain one or more supervised models): ClinPred [Alirezaie et al.,|2018|], MetaRNN [L1
et al.| 2022]], BayesDel [Feng| [2017], VEST4 (variant effect scoring tool 4.0) [Carter et al.,
2013|], REVEL |[loannidis et al., |2016], VARITY [Wu et al.| [2021], gMVP [Zhang et al 2022],
CADD [Rentzsch et al., 2019], PolyPhen2 [Adzhubei et al., 2010], DEOGEN?2 [Raimondi et al.| [2017]],
MPC [Samocha et al.,[2017]], MutationTaster [Schwarz et al.,|2010], DANN [Quang et al.l 2015]],
FATHMM(Shihab et al.} 2013

e Unsupervised In addition to TranceptEVE, GEMME, EVE and ESM-1b (zero-shot baselines
mentioned above), the following unsupervised clinical variant effect predictors were used as baselines:
PROVEAN [Choi et al., 2012, SIFT [Ng and Henikotf, 2002]], MutationAssessor [Reva et al.; 2011]],
MutPred [Li et al.l 2009]], PrimateAl [[Sundaram et al.| 2018]], LIST-S2 [Malhis et al., |2020], and
LRT [Chun and Fay, [2009].

For ESM-1b, we downloaded precomputed scores from [Brandes and Ntranos| [2023]] from a recent study that
extended ESM-1b to predict all possible missense variant effects in the human genome [Brandes et al.| [2023]].
TranceptEVE and EVE models were trained for the subset of 2,525 proteins in the clinical benchmark, and
the model weights/scores are provided online for further analysis (See Section[A.3.3). GEMME scores were
obtained as detailed above. We provide an analysis of performance on clinical datasets vs the subset of assays on
human proteins in Fig. 2]

A.5 Detailed performance results

A.5.1 DMS substitution benchmarks

Zero-shot Table|A5|shows the results for our zero-shot DMS substitutions benchmark. We report Spearman’s
rank correlations and bootstrapped standard error estimates for forty baseline models. Table[A6]breaks down our
substitution DMS by MSA depth, , Table[A7]by function type, Table[A§|by taxa, and Table[A9]by mutational
depth. To compute the final Spearman’s rank correlation reported in Table[A3] we first average all the assays for
a particular function type together, resulting in five average values (one each for Activity, Binding, Expression,
Organismal Fitness, and Stability). The average of these five numbers is the final reported value.

Clustering zero-shot substitution models We clustered the zero-shot models using hierarchical clustering
on the vector of NDCG metrics for each dataset in the DMS substitutions (Fig. [AT). We find that models with
the same architecture tend to cluster together (e.g., RITA models), however, there are exceptions (e.g., ESM-2
models). We also observe that the alignment-based models tend to cluster together, suggesting that training on
the same MSA may promote similar scoring behavior.

Supervised Table shows the results for our supervised DMS substitutions benchmark. We report
Spearman’s rank correlations for 10 baseline models.

A.5.2 DMS indel benchmarks

Zero-shot Table shows the results for our zero-shot DMS indels benchmark, and Table shows
Spearman’s rank correlations for each indel DMS dataset and model. Figure [A2] compares each model’s
aggregate performance between the Library and Designed DMS sets (numbers provided in Table ). More
detailed performance files are available in the repository.

Supervised Table ranks the performance of each model on the supervised indel DMS benchmark.
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Figure A1l: Hierarchical clustering of zero-shot models by NDCG performance Heatmap colored
by the Pearson correlation of the NDCG @ 10% values for each DMS assay for each pair of zero-shot
models. Lighter color corresponds to higher correlation. The ordering and dendogram were produced
by hierarchical clustering of the correlation values.

A.5.3 Clinical substitution benchmarks

As discussed in §[4] since the performance of zero-shot models is on par — or higher — than their supervised
counterparts we subsume the Clinical zero-shot and supervised rankings into a combined rankings, available
in Table.[AT7] Although supervised models trained on ClinVar labels (such as ClinPred) perform well on the
clinical benchmark, unsupervised models (such as TranceptEVE) provide better performance on the subset of
DMS assays assessing the clinical effect of variants in humans, and competitive performance on the clinical
benchmark without being subject to the same label biases (see Fig.[2).

A.5.4 Clinical indel benchmarks

Table[AT8]shows model performance on the ClinVar datasets, and Figure[A3|shows the combined performance
on the DMS and ClinVar indel benchmarks.
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Ranking Model Type Spearman  Std. error
1* TranceptEVE L Hybrid model 0.457 0.000
1* GEMME Alignment-based model 0.457 0.007
3 TranceptEVE M Hybrid model 0.456 0.004
4 TranceptEVE S Hybrid model 0.453 0.004
5 EVE (ensemble) Alignment-based model 0.441 0.006
6 VESPA Protein language model 0.437 0.006
7 Tranception L Hybrid model 0.436 0.003
8 EVE (single) Alignment-based model 0.434 0.005
9 MSA Transformer (ensemble)  Hybrid model 0.434 0.009
10 Tranception M Hybrid model 0.429 0.005
11 ESM-IF1 Inverse folding model 0.422 0.012
12 DeepSequence (ensemble) Alignment-based model 0.422 0.008
13 MSA Transformer (single) Hybrid model 0.421 0.009
14 Tranception S Hybrid model 0.419 0.006
15 ESM-2 (650M) Protein language model 0.419 0.011
16 ESM-1v (ensemble) Protein language model 0.416 0.011
17 DeepSequence (single) Alignment-based model 0.411 0.008
18 ESM-2 (3B) Protein language model 0.410 0.010
19 ESM-2 (15B) Protein language model 0.405 0.010
20 MIF-ST Inverse folding model 0.401 0.010
21 ESM-1b Protein language model 0.399 0.010
22 EVmutation Alignment-based model 0.397 0.006
23 VESPAI Protein language model 0.393 0.007
24 ProGen2 XL Protein language model 0.392 0.008
25 ESM-2 (150M) Protein language model 0.392 0.012
26 ESM-1v (single) Protein language model 0.385 0.012
27 MIF Inverse folding model 0.381 0.011
28 ProGen2 L Protein language model 0.381 0.008
29 ProGen2 M Protein language model 0.380 0.008
30 ProGen2 Base Protein language model 0.379 0.009
31 Tranception L no retrieval Protein language model 0.375 0.008
32 CARP (640M) Protein language model 0.373 0.011
33 RITA XL Protein language model 0.373 0.009
34 RITA L Protein language model 0.366 0.009
35 Site-Independent Alignment-based model 0.361 0.010
36 RITAM Protein language model 0.350 0.010
37 Tranception M no retrieval Protein language model 0.349 0.009
38 UniRep evotuned Hybrid model 0.347 0.009
39 ProGen2 S Protein language model 0.336 0.011
40 CARP (76M) Protein language model 0.332 0.012
41 ESM-2 (35M) Protein language model 0.325 0.014
42 RITA S Protein language model 0.304 0.012
43 Tranception S no retrieval Protein language model 0.303 0.012
44 CARP (38M) Protein language model 0.283 0.013
45 ProteinMPNN Inverse folding model 0.258 0.011
46 ESM-2 (8M) Protein language model 0.229 0.015
47 WaveNet Alignment-based model 0.216 0.017
48 UniRep Protein language model 0.193 0.016
49 ProtGPT2 Protein language model 0.188 0.011
50 CARP (600K) Protein language model 0.108 0.017

Table A5: ProteinGym - Zero-shot substitution DMS benchmark Ranking based on Spearman’s
rank correlation between experimental assay measurement and model prediction. The standard error
reported corresponds to the non-parametric bootstrap standard error of the difference between the
Spearman performance of a given model and that of the best overall model (i.e., TranceptEVE),
computed over 10k bootstrap samples from the set of proteins in the ProteinGym DMS substitution
benchmark.
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Model type Model name Spearman by MSA depth (1)
Low Medium High All
Alignment- Site-Independent 0.426 0.373 0.320 0.373
based WaveNet 0.207 0.255 0.207 0.223
EVmutation 0.403 0.423 0.410 0.412
DeepSequence (ens.) 0.383 0.428 0.473 0.428
EVE (ens.) 0.425 0.453 0.481 0.453
GEMME 0.455 0.470 0.497 0.474
Protein UniRep 0.181 0.161 0.209 0.184
language CARP (640M) 0.314 0.375 0.428 0.372
ESM-1b 0.350 0.398 0.482 0.410
ESM-2 (15B) 0.357 0414 0.473 0.415
RITA XL 0.315 0.382 0.412 0.370
ESM-1v (ens.) 0.326 0.418 0.502 0.415
ProGen2 XL 0.354 0.405 0.444 0.401
VESPA 0.427 0.455 0.484 0.455
Hybrid UniRep evotuned 0.330 0.344 0.372 0.349
MSA Transformer (ens.) 0.404 0.450 0.488 0.447
Tranception L 0.432 0.438 0.473 0.448
TranceptEVE L 0.451 0.467 0.492 0.470
Inverse ESM-IF1 0.300 0.431 0.544 0.425
Folding MIF-ST 0.376 0.403 0.456 0.412
ProteinMPNN 0.173 0.280 0.434 0.296

Table A6: ProteinGym - Zero-shot substitution DMS benchmark by MSA depth Average
Spearman’s rank correlation between model scores and experimental measurements by MSA depth
on the ProteinGym substitution benchmark. Alignment depth is measured by the ratio of the effective
number of sequences Neg in the MSA, following |[Hopf et al.|[2017], by the length covered L (Low:
Neg/L <1; Medium: 1< Neg/L <100; High: Neg /L >100). The All column is the average across
the 3 depths.
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Model type Model name Spearman by Function Type (1)
Activity Binding Expression Orgﬁﬁfgal Stability  All
Alignment-  Site-Independent 0.369 0.345 0.351 0.382 0.358 0.361
based WaveNet 0.219 0.187 0.185 0.303 0.182  0.215
EVmutation 0.440 0.322 0.382 0.411 0.430  0.397
DeepSequence (ens.) 0.455 0.368 0.396 0.413 0476 0422
EVE (ens.) 0.464 0.394 0.406 0.447 0.491 0.440
GEMME 0.482 0.387 0.443 0.452 0.519 0457
Protein UniRep 0.182 0.203 0.230 0.141 0.210  0.193
language CARP (640M) 0.395 0.274 0.419 0.364 0414  0.373
ESM-1b 0.428 0.289 0.427 0.351 0.500  0.399
ESM-2 (15B) 0.405 0.318 0.425 0.388 0.488 0.405
RITA XL 0.366 0.303 0.416 0.381 0.398 0.373
ESM-1v (ens.) 0414 0.320 0.456 0.387 0.500 0415
ProGen2 XL 0.402 0.302 0.423 0.387 0.445 0.392
VESPA 0.468 0.365 0.410 0.440 0.500  0.437
Hybrid UniRep evotuned 0.355 0.304 0.366 0.346 0.366  0.347
MSA Transformer (ens.)  0.469 0.343 0.439 0.421 0.495 0.433
Tranception L 0.465 0.351 0.455 0.436 0471 0.436
TranceptEVE L 0.487 0.381 0.456 0.460 0.500  0.457
Inverse ESM-IF1 0.368 0.392 0.403 0.324 0.624 0422
Folding MIF-ST 0.390 0.323 0.432 0.373 0486  0.401
ProteinMPNN 0.197 0.165 0.198 0.165 0.566  0.258

Table A7: ProteinGym - Zero-shot substitution DMS benchmark by function type Average Spear-
man’s rank correlation between model scores and experimental measurements on the ProteinGym
substitution benchmark, separated into five functional categories (Activity, Binding, Organismal
Fitness, Stability and Expression). ‘All’ is the average of all the categories.

Model type Model name Spearman by Taxa (1)
Human Eu(l)(g;f/z) e Prokaryote Virus  All
Alignment-  Site-Independent 0.379 0.385 0.316 0.383  0.366
based WaveNet 0.145 0.305 0.293 0.283  0.256
EVmutation 0.409 0.444 0.422 0.388 0.416
DeepSequence (ens.) 0.442 0.469 0.460 0.344 0.429
EVE (ens.) 0.453 0.487 0.468 0.428 0.459
GEMME 0.468 0.510 0.473 0.469 0.480
Protein UniRep 0.213 0.219 0.165 0.057 0.164
language CARP (640M) 0.416 0.386 0.390 0.273  0.366
ESM-1b 0.434 0.475 0.455 0.241 0.401
ESM-2 (15B) 0.431 0.449 0.459 0313 0413
RITA XL 0.394 0.384 0.353 0.402 0.383
ESM-1v (ens.) 0.458 0.446 0.454 0.289 0.412
ProGen2 XL 0.384 0.442 0.439 0.391 0414
VESPA 0.438 0.492 0.490 0.432 0.463
Hybrid UniRep evotuned 0.355 0.363 0.346 0.349 0.353
MSA Transformer (ens.)  0.437 0.505 0.463 0.414 0.455
Tranception L 0.453 0.483 0.431 0432 0.450
TranceptEVE L 0.471 0.498 0.473 0.453 0.474
Inverse ESM-IF1 0415 0.497 0.507 0.374 0.448
Folding MIF-ST 0.404 0.415 0.463 0.396  0.420
ProteinMPNN 0.282 0.395 0.354 0.248 0.320

Table A8: ProteinGym - Zero-shot substitution DMS benchmark by taxa Average Spearman’s
rank correlation between model scores and experimental measurements on the ProteinGym substitu-
tion benchmark, separated by taxon. ‘All* is the average across the taxa.
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Model type = Model name Spearman by Mutational Depth (1)
1 2 3 4 5+ All
Alignment-  Site-Independent 0336 0.235 0226 0.267 0.350 0.283
based WaveNet 0.176  0.059 0.218 0.181 0.258 0.178
EVmutation 0376 0274 0.324 0301 0.394 0.334
DeepSequence (ens.) 0405 0.264 0313 0309 0378 0.334
EVE (ens.) 0428 0.273 0308 0.298 0.355 0.332
GEMME 0.447 0274 0321 0.324 0.414 0.356
Protein UniRep 0.175 0.071 0.111  0.141  0.191 0.138
language CARP (640M) 0390 0.213 0.187 0.164 0.162 0.223
ESM-1b 0.384 0.227 0.187 0.149 0.270 0.243
ESM-2 (15B) 0.407 0204 0239 0.172 0.234 0.251
RITA XL 0.356 0.139 0.136 0.154 0.233 0.204
ESM-1v (ens.) 0.403 0.221 0.186 0.151 0.203 0.233
ProGen2 XL 0.385 0.184 0280 0.219 0.280 0.270
VESPA 0.434 0.183 0357 0302 0.328 0.321
Hybrid UniRep evotuned 0319 0.154 0250 0226 0.294 0.249
MSA Transformer (ens.) 0.426  0.238 0.384 0.366 0.408  0.364
Tranception L 0423 0.258 0.352 0318 0.387 0.348
TranceptEVE L 0446 0.280 0350 0.320 0.382 0.356
Inverse ESM-IF1 0.439 0345 0290 0.289 0.358 0.344
Folding MIF-ST 0430 0.265 0334 0298 0.298 0.325
ProteinMPNN 0292 0.257 0.171 0.186 0.278  0.237

Table A9: ProteinGym - Zero-shot substitution DMS benchmark by mutational depth Average
Spearman’s rank correlation between model scores and experimental measurements on the Prote-
inGym substitution benchmark, separated by mutational depths of 1,2,3,4, and 5 or more. The All
column is the average across the 5 depths.

Ranking Model name Model type Spearman
1 ProteinNPT NPT 0.613
2 Tranception Embeddings 0.571
3 MSA Transformer Embeddings 0.568
4 ESM-1v Embeddings 0.542
5 TranceptEVE OHE 0.477
6 Tranception OHE 0.458
7 MSAT OHE 0.453
8 DeepSequence OHE 0.440
9 ESM-1v OHE 0.417
10 OHE w/o augmentation OHE 0.224

Table A10: ProteinGym - Supervised substitution DMS benchmark Ranking based on Spearman’s
rank correlation between experimental assay measurement and model prediction.
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Model type Model name Spearman by MSA depth (1)
Low Medium High All
NPT ProteinNPT 0.701 0.587 0.608 0.632
Embeddings Tranception 0.621 0.556 0.561 0.579
MSAT 0.685 0.518 0.567 0.590
ESM-1v 0.653 0.465 0.541 0.553
One-hot TranceptEVE 0.503 0.483 0.468 0.485
encoding Tranception 0.490 0.455 0.445 0.463
MSAT 0.500 0.441 0.448 0.463
DeepSequence 0.482 0.422 0.426 0.443
ESM-1v 0.496 0.338 0.400 0.411
No Augmentation 0.246 0.204 0.227 0.226

Table A11: Supervised substitution DMS benchmark by MSA depth Average Spearman’s rank
correlation between model scores and experimental measurements by MSA depth on the ProteinGym
substitution benchmark. Alignment depth is measured by the ratio of the effective number of
sequences Nog in the MSA, following |Hopf et al.| [2017]], by the length covered L (Low: Neg/L <1;
Medium: 1< Nog/L <100; High: Neg/L >100)

Model type  Model name Spearman by Function Type (1)
.. . . Organismal -
Activity Binding Expression Fitness Stability  All
NPT ProteinNPT 0.577 0.536 0.637 0.545 0.772  0.613
Embeddings Tranception 0.520 0.529 0.613 0.519 0.674  0.571
MSAT 0.547 0.470 0.584 0.493 0.749  0.569
ESM-1v 0.487 0.450 0.587 0.468 0.717  0.542
One-hot TranceptEVE 0.502 0.444 0.476 0.470 0.493 0.477
encoding Tranception 0.475 0.416 0.476 0.448 0.473 0.458
MSAT 0.480 0.393 0.463 0.437 0.491 0.453
DeepSequence 0.467 0418 0.424 0.422 0.471 0.440
ESM-1v 0.421 0.363 0.452 0.383 0463 0416
No Augmentation ~ 0.213 0.212 0.226 0.194 0273  0.224

Table A12: Supervised substitution DMS benchmark by function type Average Spearman’s rank
correlation between supervised model scores and experimental measurements on the ProteinGym
substitution benchmark, separated into five functional categories. Assays are split into one of Activity,
Binding, Organismal Fitness, Stability and Expression. The All column is the average of all the
categories
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Model type  Model name Spearman by Taxa (1)
Human  Other Eukaryote  Prokaryote  Virus All
NPT ProteinNPT 0.649 0.628 0.668 0.580 0.631
Embeddings  Tranception 0.569 0.582 0.594 0.568 0.578
MSAT 0.634 0.579 0.648 0.521  0.596
ESM-1v 0.565 0.579 0.617 0.433  0.548
One-hot TranceptEVE 0.481 0.490 0.475 0.478 0.481
encoding Tranception 0.457 0.472 0.453 0.456 0.460
MSAT 0.482 0.459 0.468 0.448 0.464
DeepSequence 0.451 0.460 0.455 0.383  0.437
ESM-1v 0.426 0.444 0.452 0.292  0.404
No Augmentation  0.236 0.217 0.233 0.238  0.231

Table A13: Supervised substitution DMS benchmark by taxa Average Spearman’s rank correlation
between model scores and experimental measurements on the ProteinGym substitution benchmark,
separated into four taxon categories. Assays are split into one of Human, Prokaryote, Other Eukaryote,
or Virus. The All column is the average across the categories.

Ranking  Model Type Spearman  Std. error
1* TranceptEVE M Hybrid model 0.467 0.000
1* ProGen2 M Protein language model 0.467 0.054
3 ProGen2 Base Protein language model 0.466 0.051
4 RITAL Protein language model 0.459 0.039
5 TranceptEVE L Hybrid model 0.457 0.014
6 Tranception M no retrieval ~ Protein language model 0.455 0.045
7 RITA XL Protein language model 0.452 0.038
8 ProGen2 L Protein language model 0.451 0.049
9 Tranception L no retrieval Protein language model 0.439 0.040
10 RITAM Protein language model 0.439 0.032
11 ProGen2 XL Protein language model 0.434 0.029
12 ProGen2 S Protein language model 0.425 0.049
13 Tranception S no retrieval Protein language model 0.412 0.045
14 Tranception L Hybrid model 0.399 0.032
15 RITA S Protein language model 0.399 0.036
16 Tranception M Hybrid model 0.398 0.029
17 Hidden Markov Model Alignment-based model 0.391 0.028
18 TranceptEVE S Hybrid model 0.361 0.032
19 PROVEAN Alignment-based model 0.351 0.029
20 Tranception S Hybrid model 0.344 0.031
21 WaveNet Alignment-based model 0.285 0.046
22 ProtGPT2 Protein language model 0.194 0.033
23 UniRep Protein language model 0.169 0.061

Table A14: ProteinGym - Zero-shot indel DMS benchmark Ranking based on Spearman’s rank
correlation between experimental assay measurement and model prediction. The standard error
reported corresponds to the non-parametric bootstrap standard error of the difference between the
Spearman performance of a given model and that of the best overall model (ie., TranceptEVE),
computed over 10k bootstrap samples from the set of proteins in the ProteinGym DMS indel
benchmark.
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Dataset Tranception ProGen2 PROVEAN HMM WaveNet
M L M+Ret L+Ret M XLarge
DMS Assays
AAV 0.126  0.210  0.371 0.338 -0.100 0.167 0.177 0.057 -0.007
B-Lac 0379 0.296  0.365 0.344  0.619 0.409 0.385 0.347 0.437
KCNJ2 0412 0391 0437 0.440 0.432 0.386 0.386 0.368 0.408
MtrA 0.615 0.375 0.612 0.395 0403 0.348 0.278 0.472 0.244
PTEN  0.700 0.563 0.678 0.546  0.552 0.402 0.237 0.668 0.697
TP53 0.579 0395 0.536 0.362  0.428 0.354 0.273 0.482 0.031
Assays of Natural and Designed Sequences

AAV 0.362 0.691  0.677 0.709 -0.466  0.492 0.683 0.607 0.666
CM 0.219 0.223  0.344 0.326  0.380 0.379 0.372 0.398 0.438
HIS3 0.687 0.707 0.611 0.655 0.702 0.713 0.701 0.548 0.687

Table A15: Spearman’s rank correlation between model scores and individual deep mutational
scans of indels.

Ranking Model Type Spearman
1 ESM-1v Embeddings 0.752
2 Tranception Embeddings 0.735
3 MSAT Embeddings 0.689

Table A16: ProteinGym - Supervised indel DMS benchmark Ranking based on Spearman’s rank
correlation between experimental assay measurement and model prediction.
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Ranking Model Type AUC
1 ClinPred Supervised 0.981
2 MetaRNN Supervised 0.977
3 BayesDel (addAF) Supervised 0.972
4 VEST4 Supervised 0.929
5 REVEL Supervised 0.928
6 BayesDel (noAF) Supervised 0.925
7 VARITY (R) Supervised 0.921
8 TranceptEVE Unsupervised 0.920
9 GEMME Unsupervised 0.919
10 VARITY (ER) Supervised 0.918
11 EVE Unsupervised 0.917
12 gMVP Supervised 0914
13 CADD Supervised 0.905
14 PolyPhen2 (HVAR) Supervised 0.896
15 DEOGEN2 Supervised 0.894
16 ESM-1b Unsupervised 0.892
17 PROVEAN Unsupervised 0.886
18 MPC Supervised 0.881
19 PolyPhen2 (HDIV) Supervised 0.879
20 SIFT Unsupervised 0.878
21 SIFT4G Unsupervised 0.877
22 MutationAssessor Unsupervised 0.877
23 MutPred Unsupervised 0.875
24 PrimateAl Unsupervised 0.855
25 LIST-S2 Unsupervised 0.842
26 MutationTaster Supervised 0.816
27 DANN Supervised 0.812
28 LRT Unsupervised 0.805
29 FATHMM Supervised 0.723

Table A17: ProteinGym - Clinical substitution benchmark Ranking based on AUROC between
model prediction and ClinVar benign/pathogenic annotation.

Model Type Model Name AUROC(1) AUPRC (1)
Alignment-based HMM 0.679 0.775
models PROVEAN 0.926 0.947
WaveNet - -
Protein UniRep 0.395 0.600
language RITA XL 0.923 0.954
models ProGen2 XL 0.846 0.889
Tranception L (no retrieval) 0.877 0.938
Tranception M (no retrieval) 0.858 0.929
ProtGPT2 0.655 0.779
Hybrid Tranception L 0.857 0.920
models Tranception M 0.844 0.909
TranceptEVE 0.857 0.916

Table A18: ClinVar AUROC and Average Precisions Results for indel-compatible baselines on our
ClinVar/gnomAD indel benchmark. AUPRC is area under the precision recall curve, and AUROC is
area under the receiver-operating characteristic curve.
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Table A19: List of substitution datasets See the reference file in the GitHub repo
for other info (UniProt ID, taxon, DOI, and more assay details).

Dataset Reference

[-Lactamase Jacquier et al.|[2013
[-Lactamase tiffler et al.[[2
[-Lactamase irnberg et al.[[2014]
[-Lactamase Deng et al.[[2012
[-Lactamase VIM-2 Chen et al.| [2020
[B-Glucosidase Romero et al.| I]ZOQ]
AAV Sinai et al.[[2021

ACE2 Chan et al.| [2020

ADRB2 Jones et al.|[2020
APH(3)II, neo elnikov et al.| I]ZOvlﬂ]
APP Seuma et al.|[2021
Activation-induced deaminase Gajula et al.|[2014;
Aliphatic amidase renbeck et al.[[2017]]
Alpha-synuclein ewberry et al.|[2020
Amyloid g Gray et al.| [2019]
Amyloid g Seuma et al.[[2022]]
Ancestral spleen tyrosine kinase obbs et al.|[2022!
Anti-CRISPR protein AcrlIA4 Stadelmann et al. 2021[]
Antitoxin ParD3 ing et al.[[202

Antitoxin ParD3 Aakre et al.|[[2015]
Arrestin-1 Ostermaier et al|[2014]
BRCAL1 indlay et al.[[2018
BRCA2 rwood et al.| [2022
CALM1 eile et al.| [2017]
CARDI1 eitlis et al.[[2020]
CASP3 oychowdhury and Romero| [2022]
CASP7 Roychowdhury and Romero|[[2022
CBS (cystathionine beta-synthase) Sun et al.|[2020

CCRS5 Gill et al.|[2023

CDI19 Klesmith et al.[[2019]
CVB3 capsid attenberger et al.|[2021]]
CXCR4 Gill et al.[[2023

Chalcone synthase renbeck et al.[[2019
Cytochrome P450 2C9 Amorosi et al.|[2021
Cytochrome P450 2C9 Amorosi et al.| [2021
D-amino acid oxidase anella et al.| [2023
DHEFR reductase Nguyemrh a
DHEFR reductase hompson et al.|[2020
DNA methylase Haelll Rockah-Shmuel et al[[2015]]
Dengue virus NS5 Suphatrakul et al.[[202
Dlg4, (PSD95_PDZ3) McLaughlin et al.| [2012
EfrC eler et al.|[2023

EfrD Meier et al.| [2023

EnvZ Ghose et al.|[2023

ErbB2 membrane domain Elazar et al.|[2016]

EstA utschel et al.|[2020
GAL4 Kitzman et al.[[2015

GB1 u et al.| [2016

GB1 Olson et al.[[2014]

GDI1 Silverstein et al.[[2021])
GFP Sarkisyan et al.| [2016]
GMR (aacCl) andage et al.[[2018
GRB2-SH3 aure et al.|[20

Gend Staller et al.|[2018]]
Glucokinase regulatory protein Gersing et al.[[2023]
Glucokinase regulatory protein Gersing et al.| [2022
Glycophorin A membrane domain lazar et al.|[2016]

Green fluorescent protein amacGFP Gonzalez Somermeyer et al.| [2022
Green fluorescent protein cgreGFP Gonzalez Somermeyer et al.| [2022
Green fluorescent protein ppluGFP2 Gonzalez Somermeyer et al.| [2022
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Table A19: (continued)

Dataset Reference

HIV env Duenas-Decamp et al|[2016]
HIV env Haddox et al.|[2018]]

HIV env (BF520) addox et al.|[2018

HIV env (BG505) Haddox et al.|[2018

HIV rev ernandes et al.[[2016]

HIV tat ernandes et al.|[2016
HMG-CoA reductase Jiang| [2019]

HRAS andaru et al.|[2017]

HSP82 lynn et al.| [2020]

HSP82 ishra et al.[[2016]

Hsp90 ietpas et al|[2011]
Hydroxymethylbilane synthase van Loggerenberg et al.|[2023)]
IGP dehydratase (HIS3) okusaeva et al[[2019]

InfA Kelsic et al.{[2016]

Influenza H3N2 neuraminidase
Influenza M1 matrix protein
Influenza RNA polymerase PB1
Influenza hemagglutinin

Influenza hemagglutinin

Influenza hemagglutinin

Influenza hemagglutinin

Influenza neuraminidase

Influenza nucleoprotein

Influenza nucleoprotein

Influenza nucleoprotein

Influenza polymerase acidic protein
Influenza polymerase basic protein 2
KCNE1

KCNH2

KCNIJ2

KRAS

KRAS

L-selectin

LGK (levoglucosan kinase)

LGK (levoglucosan kinase)

LamB

Leucine-rich repeat protein SHOC-2
MAPK1

MET kinase

MPL

MSH2

MTHEFR reductase

MlaC

NPC intracellular cholesterol transporter
NPC intracellular cholesterol transporter
NS5A

NUDTI15

OCT1 (SLC22A1)

Ornithine transcarbamylase

pS3

pS3

PAB1

PPARG

PSD95-PDZ3

PTEN

PTEN

Parkin

Phosphoserine aminotransferase
Phototropin

Pilin (PilE)

Plasminogen activator inhibitor-1

hyagarajan and Bloom| [2014]]

oud and Bloom|[2016

Uetal| [2014

ee et al|[2018

Jiang et al.[[2016
oom
oud et al.[[2015

oud and Bloom|[2016]

u et al.|[2015
oh et al.

uhammad et al.|[2023
ozek et al.

Coyote-Maestas et al.|[2022]

eng et al.| [2022
rsu et al.|

Elazar et al.[[2016]

renbeck et al.|[2019

Klesmith et al.[[2015

Andrews and Fields|[2020

Kwon et al.[[2022]

renan et al.[[2016]

stevam et al.[[2023]]

ridgford et al.|[2020:
1a et al.
eile et al.| [2021

acRae et al.|[2023

rwood et al.|[

rwood et al.

Qi et al.|[2014

Suiter et al.[[2020]

ee et al.|[2023]

o et al.|[2023]]

Giacomelli et al| [2018]

Kotler et al.[[2018]

elamed et al[[2013]

K Monogenic Diabetes Consortium et al.|[2016]]

aure et al.| [2022]

Matreyek et al. [2021]]

1ghell et al.|[2018

Clausen et al.|[2023

Xie et al.|[20
en et al. 3

Kennouche et al][2019]

uttinger et al.|[2021]]
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Table A19: (continued)

Dataset Reference

Protein phosphatase 1D Miller et al.|[2022

RAF oncogene Zinkus-Boltz et al.|[2019]
RNAse III (rnc) eeks and Ostermeier |]2023|]
Rhodopsin an et al.[[2019]
SARS-CoV-2 Mpro lynn et al. [|2022|]
SARS-CoV-2 Spike RBD an et al.[[2023]
SARS-CoV2 Spike RBD Starr et al.[[2020]
SCNSA Glazer et al.[[2020]
SOX17 eerapandian et al.[[2018]
SOX2 eerapandian et al.|[2018
SRC Ahler et al.|[2019
SUMO-conjugating enzyme UBC9 eile et al.| [2017

Small ubiquitin-related modifier 1 eile et al.| [2017
Sodium-dependent serotonin transporter  |Young et al.|[2021]]

Src Chakraborty et al[[2021]
Src guyen et al.|[2023b]
Streptococcus pyogenes Cas9 Spencer and Zhang|[2017,
TARDBP Bolognesi et al.| [201
TIM Barrel (S. solfataricus) Chan et al.| [2017

TIM Barrel (T. maritima) Chan et al.|[2017

TIM Barrel (T. thermophilus) Chan et al.[[2017
Thiamin pyrophosphokinase 1 eile et al.|[201
Thiopurine S-methyltransferase (TPMT) atreyek et al.[[2018]
Toxin CcdB ripathi et al[[2016]
Toxin CcdB Adkar et al.[[2012]
Tsuboyama multi-DMS suboyama et al.| 2023[]
Ubedb Starita et al.[[2013
Ubiquitin oscoe et al.|[201
Ubiquitin Roscoe and Bolon![2014]
Ubiquitin avor et al.|[2016]
VKORCI1 Chiasson et al.|[2020
VKORCI1 Chiasson et al.|[2020
YAP1 Araya et al.|[2012]

Zika virus env Sourisseau et al.| []2019[]
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Dataset Reference
B-Lactamase Gonzalez et al|[2019)]
AAV Sinai et al.[[2021
Chorismate mutase (CM) uss et al.|[2020

IGP dehydratase (HIS3) okusaeva et al.|[2019
Kir2.1 acdonald et al.|[2023])
MtrA Campbell et al.[[2022]
p53 Kotler et al.|[2018]]
PTEN phosphatase Mighell et al.[[2018
amyloid 8 Seuma et al.|[2

OCT1 (SLC22A1) Yee et al.| [2023]
Tsuboyama multi-DMS suboyama et al.| [2023]]

Table A20: List of indel datasets.
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