

Changes in ADAR1 activity during *Plasmodium* infection contribute to protection from malaria.

Jaclyn Quin¹, Eli Kopel², Riem Gawish³, Michelle Eidelman², Dragana Vukić^{1,4}, Pavla Linhartová¹, Janka Melicherová^{1,4}, Ketty Sinigaglia¹, Sajjad Ghodrati⁵, Charles Arama⁶, Issa Nebie⁷, Marita Troye-Blomberg⁸, Eva Sverremark-Ekström⁸, Sylvia Knapp³, David Modry^{5,9,10}, Ann-Kristin Östlund-Farrants⁸, Erez Levanon², Liam P. Keegan¹, and Mary A. O'Connell^{1*}.

¹CEITEC Masaryk University; Brno, Czech Republic. ²The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University; Ramat Gan, Israel. ³Research Division Infection Biology, Department of Medicine I, Medical University of Vienna; Vienna, Austria. ⁴National Centre for Biomolecular Research, Faculty of Science, Masaryk University; Brno, Czech Republic. ⁵Department of Botany and Zoology, Faculty of Science, Masaryk University; Brno, Czech Republic. ⁶Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako; Bamako, Mali. ⁷Groupe de Recherche Action en Santé; Ouagadougou, Burkina Faso. ⁸Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University; Stockholm, Sweden. ⁹Department of Veterinary Sciences FAPPZ and CINeZ, Czech University of Life Sciences; Prague, Czech Republic. ¹⁰Parasitological Institute of CAS, Biology Center; České Budějovice, Czech Republic.

*Corresponding author. Email: mary.oconnell@ceitec.muni.cz

Summary.

Adenosine deaminase acting on RNA 1 (ADAR1) suppresses the activation of multiple antiviral immune response pathways. Here, we investigate the role of ADAR1 during infection with the *Plasmodium* parasite, which causes malaria and is responsible for over almost a half million childhood deaths every year. Reduced activity of ADAR1 during *Plasmodium* infection is associated with populations protected from clinical malaria. In animal models, *Adar^{+/−}* mice are protected from *P. yoelii* parasitemia, via a previously unreported pathway. These mice display elevated Type-I IFN responses and CD8⁺ T cell activation, but no detrimental immune responses. Our results suggest that a decrease in the levels of ADAR1 occurs during infection and can drive both innate and adaptive immune responses, and this presents a previously unrecognized opportunity for targeting ADAR1 in diverse infectious diseases.

Main Text.

ADAR1 converts adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) by hydrolytic deamination, a process called A-to-I RNA editing. A-to-I RNA editing by ADAR1 is widespread in human RNA, occurring at millions of sites in stretches of dsRNA which form within the majority of transcripts (1, 2). An essential function of ADAR1 is to prevent harmful activation of innate immunity. Particularly, the classical role of ADAR1 is to prevent ‘self’-dsRNAs from activating immune sensors that detect viral and other ‘non-self’-dsRNAs in the cytoplasm. Such innate immune sensors include the RIG-I like receptors (RLRs) (3-5), protein kinase R (PKR) (6-12), oligoadenylate synthetase (OAS)-ribonuclease (RNase) L (13-16), and Z-D/RNA binding protein 1 (ZBP1) (17-22). When activated by dsRNAs, these pathways drive antiviral innate immune responses, including expression of Type-I interferons (IFNs) and proinflammatory cytokines, inhibition of translation, cleavage of cellular RNAs, and/or activation of cell death pathways (23-25) (Fig. 1A). Mutations in ADAR1 have been found to cause autoimmune disorders which are characterized by aberrant Type-I IFN responses and chronic inflammation (26). On the other hand, overexpression of ADAR1 and increased A-to-I RNA editing is common across different cancer types (27, 28), and targeting ADAR1 can result in cancer cell lethality by driving anti-tumor immune responses (29).

Relatively little is known about the regulation of ADAR1 during infection, and how this impacts disease outcomes (30, 31). ADAR1 has two isoforms: ADAR1p110, which localizes

predominantly within the nucleus; and ADAR1p150, which localizes in both the nucleus and cytoplasm, and is induced by IFN(32, 33). Significant spatiotemporal changes occur in levels of A-to-I RNA editing by ADAR1 (34-36), and a number of reports illustrate that ADAR1 activity is sensitively and dynamically controlled by diverse mechanisms (37). However, our understanding of pathways of regulation of ADAR1 activity remains largely incomplete. During viral infections, ADAR1 activity can suppress antiviral immune response pathways. For example, knock-down of ADAR1 increases IFN and/or PKR signaling in infected cell line models (7, 30, 38-42). However, ADAR1 can also directly edit virus dsRNA, which can be either pro-viral or antiviral in different contexts (43). Despite the abundance of evidence that ADAR1 can impact viral infections in diverse ways, its role in other types of infections has been almost entirely unexplored(44, 45).

Malaria is caused by infection with *Plasmodium*, which are single-celled eukaryotic protozoan parasites. Here, we identify changes in A-to-I RNA editing by ADAR1 in the Fulani, a West African ethnic group protected from malaria (46). This led us to investigate whether ADAR1 activity impacts malaria infection. In different human models, we find A-to-I editing of endogenous ‘self’ RNA is altered following malaria infection, and lower A-to-I editing is associated with protection from the disease. Strikingly, *Adar* (encoding Adar1) heterozygous mutant mice are significantly protected from blood stage parasitemia during infection with rodent *P. yoelii* malaria. *Adar* heterozygous mutant mice display activation of Type-I IFN and CD8⁺ T-cell responses, at a relatively controlled level at baseline, and these are further activated during *P. yoelii* infection. Therefore, our data suggests that ADAR1 impacts infection with *Plasmodium* protozoan parasite, and that reduction of ADAR1 activity during malaria contributes to protection from the disease.

A reduced level of A-to-I RNA editing by ADAR1 following *Plasmodium* infection is associated with protection from malaria. The Fulani ethnic group of the Sahel region of Africa are protected from *P. falciparum* malaria(46). Despite similar exposure as other sympatric ethnic groups, the Fulani have heightened innate and adaptive immune responses to *P. falciparum*, lower parasite densities in infected individuals, and fewer symptomatic cases of malaria (47). However, the underlying basis of their protection is unknown. We previously performed RNA-sequencing analysis of CD14⁺ peripheral blood mononuclear cells (PBMCs) isolated from the Fulani during the *P. falciparum* infection season (48). Levels of A-to-I editing by ADAR1 can be readily

Quan et al., 2023

determined from RNA-sequencing data using established methods, as inosines (I) are recognised as guanosines (G) by reverse transcriptase during cDNA synthesis, creating A-G mismatches during sequence alignment (49, 50). Here, we show that during *P. falciparum* infection, global levels of A-to-I editing measure by analysis of the Hyperediting Index in CD14⁺ PBMCs are reduced in the Fulani compared to a sympatric ethnic group (Fig. 1B). This indicates that ADAR1 activity levels are differently modulated in susceptible versus protected individuals during malaria. We extended our analysis to publicly available RNA-sequencing data from human models of *Plasmodium* infection. Controlled human malaria infection (CHMI) with *P. falciparum* in malaria-naïve individuals results in increased A-to-I editing levels in whole blood from pre- to post-challenge (51) (Fig. 1C). In contrast, individuals who have undergone immunization with attenuated *P. falciparum* sporozoites (*PfSPZ*) have reduced A-to-I editing levels in whole blood following the final *PfSPZ* infection (52) (Fig. 1D). Individuals who have undergone immunization with attenuated *P. vivax* sporozoites (*PvRAS*) also have reduced A-to-I editing levels in PBMCs both following the final *PvRAS* infection and during subsequent challenge with *P. vivax* (53) (Fig. 1E). Further analysis of a cohort of young individuals living in a *P. falciparum* endemic region as they acquire natural protection from malaria, suggests that exposure to *Plasmodium* results in reduced levels of global editing by ADAR1p110 in protected individuals, and increased rates of editing predominantly by IFN-inducible ADARp150 in susceptible individuals (51) (fig. S1). Overall, reduced levels of global A-to-I editing by ADAR1 during *Plasmodium* infection are associated with protection from malaria.

***Adar*^{+/−} heterozygous mutant mice have a benign Type I IFN phenotype and are protected from *P. yoelii* parasitemia.** In order to determine if reduced ADAR1 activity can contribute to protection during malaria, we performed infection of *Adar* heterozygous mutant mice with *P. yoelii* 17XNL non-lethal rodent malaria. *Adar*^{−/−} homozygous null mice are embryonic lethal at day E11.5-E12.5, associated with overproduction of Type-I IFN, loss of embryonic liver hematopoietic cells, liver disintegration, and widespread apoptosis (6, 54). The embryonic lethal phenotype can be rescued to several days after birth in double mutants lacking *Adar*^{−/−} *Ifih1*^{−/−} encoding melanoma differentiation-associated protein 5 (Mda5) and in *Adar*^{−/−} *Mavs*^{−/−} (mitochondrial antiviral-signaling protein) double mutants, which prevent activation of the RLR/MAVS pathway, but these mice do not survive to adulthood (3-5). Here, we have utilised *Adar*^{+/−} heterozygous mutant mice, which are born at Mendelian ratios and are phenotypically normal (6, 54, 55). We have previously

shown that mouse embryonic fibroblast (MEF) cultures from these mice have heightened Type-I IFN responses following stimulation with Poly(I:C) dsRNA (3). We performed RNA-sequencing analysis of whole blood of adult wild-type and *Adar*^{+/−} mice. Only a small number of genes are significantly differentially expressed (DE) in *Adar*^{+/−} mice (27 genes, Adjusted p-value <0.05, Log2FoldChange >1) (Fig. 2A&B, and table S1). Gene ontology (GO) enrichment analysis shows that these are significantly enriched for genes involved in cellular response to IFNs, antiviral response, and innate immunity (table S1). All DE genes are IFN-stimulated genes (ISGs) (27/27 genes; Interferome database (56)). Analysis of cytokine levels in plasma collected from peripheral blood of adult wild-type and *Adar*^{+/−} mice shows only a small but significant increase in CXCL10, a sensitive marker of Type-I IFN activation (Fig. 2C, and fig. S2). Immunoblot analysis of the livers of adult mice shows slightly increased protein levels of ISGs, including RIG-I and PKR, in *Adar*^{+/−} mice (Fig. 2D). *Adar*^{+/−} mice maintain a normal body weight and blood cell composition (fig. S3). Collectively, our analyses indicate that *Adar*^{+/−} mice have mildly increased levels of Type-I IFN responses. This increase is controlled, and does not cause any apparent deleterious consequences during a normal lifespan. We infected age-matched pairs of wild-type and *Adar*^{+/−} mice with 10^5 *P. yoelii* 17XNL:PyGFP infected red blood cells (iRBCs) via tail vein injection, and monitored levels of parasitemia until self-resolution (approximately 4 weeks). The maximum *P. yoelii* parasitemia was significantly lower in *Adar*^{+/−} mice. *P. yoelii* parasitemia began to diverge after 1 week of infection, and remained significantly lower across the course of infection in *Adar*^{+/−} mice (Fig. 2E). Therefore, reduced levels of Adar1 protect against *P. yoelii* parasitemia.

***Adar*^{+/−} mice are protected from *P. yoelii* parasitemia independently of the RLR pathway.** To investigate the mechanisms underlying the protection of *Adar*^{+/−} mice from *P. yoelii* parasitemia, we performed RNA-sequencing analysis of whole blood from adult wild-type and *Adar*^{+/−} mice at 7 days following *P. yoelii* infection. At day 7, there are no significant differences in parasitemia between wild-type and *Adar*^{+/−} mice (fig. S4). We observed very few significant differences in gene expression, with only 6 DE genes in *P. yoelii*-infected *Adar*^{+/−} mice compared to *P. yoelii*-infected wild-type mice (Adjusted p-value <0.05, Log2FoldChange >1) (Fig. 3A&B, and table S1). There were a large number of DE genes when comparing infected mice to uninfected mice for both genotypes (wild-type day 7 vs wild-type uninfected, 1420 DE genes; *Adar*^{+/−} day 7 vs *Adar*^{+/−} uninfected, 1796 DE genes (Adjusted p-value <0.05, Log2FoldChange >1)), with a significant overlap in DE genes between wild-type and *Adar*^{+/−} mice (1004 genes, or 70% of wild-

type DE genes, and 56% *Adar*^{+/−} DE genes) (fig. S5). Together, this suggests that wild-type and *Adar*^{+/−} mice respond in a generally similar manner to *P. yoelii* infection but responses are higher in *Adar*^{+/−} mice. The DE gene *Trem1* is specifically expressed in platelets and megakaryocytes, and used as a sensitive marker of platelet activation (57). We performed analysis of platelets in peripheral blood of uninfected mice, and observed slightly increased platelet counts and plateletcrit in *Adar*^{+/−} compared to wild-type mice, providing phenotypic validation of our RNA-sequencing results (fig. S6).

As outlined above, Adar1 is known to prevent activation of dsRNA receptors, including RLRs, PKR, OAS-RNaseL and ZBP1. Of these, only the RLR pathway has been implicated in the immune response to malaria. Type-I IFN signalling is activated by *Plasmodium* infection early in liver stage in an Mda5- and Mavs-dependent manner, and mice that are deficient for components of this pathway have reduced ability to control both liver- and blood-stage infection (58, 59). Therefore, we investigated the hypothesis that reduced levels of A-to-I editing of dsRNA in *Adar*^{+/−} mice activate the RLR pathway to confer protection from *P. yoelii* parasitemia. At baseline, *Adar*^{+/−} mice do not appear to have significantly reduced levels of A-to-I editing (Fig. 3C). During *P. yoelii* infection both wild-type and *Adar*^{+/−} mice display a trend for reduced levels of global A-to-I editing. In contrast, A-to-I editing of 3' UTRs of mRNAs, which are enriched in Adar1p150 target sites, are significantly increased in *Adar*^{+/−} mice (Fig. 3C). These results reflect those reported for human models of malaria infection above. We also confirmed that *P. yoelii* RNA is not targeted for A-to-I RNA editing by Adar1 during infection of the host (fig. S7). Levels of some cytokines, including CXCL10 and TNF- α , increase more significantly in *Adar*^{+/−} mice than in wild-type mice following *P. yoelii* infection (Fig. 3D, and fig. S8). However, the increase is slight and does not indicate a strong pro-inflammatory phenotype in the *Adar*^{+/−} mice. Finally, we infected RLR pathway mutant *Mavs*^{−/−} and *Mavs*^{−/−}*Adar*^{+/−} mice with *P. yoelii*, under the same conditions as described above. *P. yoelii* parasitemia is significantly lower after 14 days of infection in *Mavs*^{−/−}*Adar*^{+/−} compared to *Mavs*^{−/−} mice. We could not decisively compare the protection between all four genotypes (wt, *Adar*^{+/−}, *Mavs*^{−/−}, and *Mavs*^{−/−}*Adar*^{+/−}) as these mice were not sibling pairs. However, the level of protection between *Adar*^{+/−} and *Mavs*^{−/−}*Adar*^{+/−} mice is equivalent (Fig. 3E). Therefore, reduced levels of Adar1 can contribute to protection against *P. yoelii* parasitemia in an RLR pathway-independent manner.

***Adar*^{+/−} mice display T cell phenotypes associated with protection from malaria.** Our current understanding of the key immune responses that contribute to establishing resistance to malaria suggest that clinical immunity (for example, after experiencing multiple *Plasmodium* infections) is acquired mainly through memory CD4⁺ T cells, which produce pro-inflammatory responses and contribute to activation of B cells and production of antibodies, and also through memory CD8⁺ T cells, which actively kill infected cells (60). On the other hand, sterile immunity (for example, following effective vaccination) appears to be acquired mainly through blocking of infection through high antibody titres, and killing of infected cells by memory CD8⁺ T cells in the liver stage (61, 62). Prior studies have shown that hematopoietic cell types are particularly affected by Adar1 loss (5, 54, 55, 63, 64). *Adar* is essential for erythropoiesis (65), T cell development (66), and B cell development (67, 68). On the other hand, ADAR has been identified as a ‘top hit’ in loss-of-function CRISPR screens to both restore tumor cell line responses to CD8⁺ T cell dependent immune checkpoint blockade therapy (69), and to induce anti-tumor CD8⁺ T cell killing (11, 70). Therefore, we immunologically characterised *Adar*^{+/−} mice to determine whether reduced Adar1 levels hinder or promote malaria protective immune responses.

Analysis of the thymus and bone marrow indicates that normal T cell and B cell development is preserved in *Adar*^{+/−} heterozygous mice (fig. S9). However, in peripheral blood, while we find the total leukocyte numbers unaffected, *Adar*^{+/−} mice present with a different cellular composition (fig. S10). The abundance of CD8⁺ T cells is increased, and intriguingly, there are fewer naïve and more memory CD8⁺ T cells in uninfected *Adar*^{+/−} mice (Fig. 4A). The spleen is central to the immune response to blood stage *Plasmodium* infection, acting as a significant site of infected red blood cells (iRBC) sequestration (71, 72), removing iRBCs from circulation, and acting as a secondary lymphoid organ to activate immune responses (73). In the spleen of uninfected *Adar*^{+/−} mice, leukocyte counts are slightly elevated, including for B cells and T cells (fig. S10). Similarly to blood, we specifically find CD8⁺ T cells to be elevated, with fewer naïve, and more effector and memory CD8⁺ T cells in uninfected *Adar*^{+/−} mice (Fig. 4B). During infection with *P. yoelii* (day 5), at which stage parasitemia remains the same between the two genotypes, the blood cell composition is indistinguishable between wild-type and *Adar*^{+/−} mice (data not shown). However, while all mice develop profound splenomegaly, spleen weights are significantly lower in *Adar*^{+/−} mice (Fig. 4C). These differences are not caused by leukocytes, as total splenic leukocyte numbers remain higher in infected *Adar*^{+/−} mice (fig. S10). During infection with *P. yoelii*, *Adar*^{+/−} mice

present with increased numbers of both CD4⁺ and CD8⁺ T cells, including naïve, effector, and memory T cell populations (Fig. 4D). This increase occurs independently of the RLR pathway, as *Mavs*^{-/-} *Adar*^{+/+} mice also have significantly increased CD4⁺ and CD8⁺ T cell populations (fig. S11). Together, reduced levels of Adar1 can drive protective T cell responses during *Plasmodium* infection, by an as yet unidentified mechanism.

Discussion. Here we show that targeting ADAR1 can offer protection from *Plasmodium* parasites. These parasites are biologically far more complex organisms than the viruses that have been the focus of past studies on the role of ADAR1 in infection. Our findings indicate that ADAR1 may impact a much broader range of infectious diseases types, including malaria. Key responses for establishing sterile protection from malaria can be induced by targeting ADAR1, including Type-I IFN signaling (11, 74), and cytotoxic CD8⁺ T-cell killing (11, 69, 70) (61, 62). In our model, reduced activity of ADAR1 does not impact the pathogen directly, but rather independently activates host immune responses to offer protection from disease.

ADAR1 has numerous emerging roles in coordinating the immune response. The regulation of antiviral innate immune response pathways via cytosolic dsRNA sensors RLRs, PKR, OAS-RNase L and ZBP1 is well established. More recent studies, for example, report that ADAR1 impacts antigen presenting cell (APC) activation and signaling to T cells (75-77), as well as T cell dependent antibody responses in activated B cells (78). However, to date this is the first report in an animal model of protection against infection with microorganisms due to a decrease in Adar1 levels. This result was unexpected and opens new opportunities for exploration.

ADAR1 has been identified as a ‘top hit’ in multiple genome wide studies to identify targets that sensitize cancers to the immune response (69, 70, 79-81). These results have motivated a race for ADAR1 inhibitors, and a number of candidates are currently in development (82-84). Considering the multitude of dynamic pathways through which ADAR1 may influence infection, there are advantages in performing studies in live animals so that the entire host response to the disease can be considered. We show here that *Adar*^{+/+} mice are a robust model to investigate the impact of Adar1 on infection. Despite having only mild inflammation and a normal life span, they have significant protection from malaria. Promisingly, this suggests that a just a 50% decrease in *Adar* can be beneficial, and that there is ample therapeutic window for targeting ADAR1. In this context,

it is timely to investigate the role of ADAR1 in different infections, and to identify the mechanisms through which it confers protection.

1. L. Bazak *et al.*, A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. *Genome research* **24**, 365-376 (2014).
2. L. Mansi *et al.*, REDIportal: millions of novel A-to-I RNA editing events from thousands of RNAseq experiments. *Nucleic acids research* **49**, D1012-D1019 (2021).
3. N. M. Mannion *et al.*, The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. *Cell Rep* **9**, 1482-1494 (2014).
4. B. J. Liddicoat *et al.*, RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. *Science (New York, N.Y.)* **349**, 1115-1120 (2015).
5. K. Pestal *et al.*, Isoforms of RNA-Editing Enzyme ADAR1 Independently Control Nucleic Acid Sensor MDA5-Driven Autoimmunity and Multi-organ Development. *Immunity* **43**, 933-944 (2015).
6. Q. Wang *et al.*, Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. *The Journal of biological chemistry* **279**, 4952-4961 (2004).
7. Z. Li, K. C. Wolff, C. E. Samuel, RNA adenosine deaminase ADAR1 deficiency leads to increased activation of protein kinase PKR and reduced vesicular stomatitis virus growth following interferon treatment. *Virology* **396**, 316-322 (2010).
8. K. M. Okonski, C. E. Samuel, Stress granule formation induced by measles virus is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1. *Journal of virology* **87**, 756-766 (2013).
9. C. X. George, G. Ramaswami, J. B. Li, C. E. Samuel, Editing of Cellular Self-RNAs by Adenosine Deaminase ADAR1 Suppresses Innate Immune Stress Responses. *The Journal of biological chemistry* **291**, 6158-6168 (2016).
10. H. Chung *et al.*, Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. *Cell* **172**, 811-824.e814 (2018).
11. J. J. Ishizuka *et al.*, Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. *Nature* **565**, 43-48 (2019).
12. M. Maurano *et al.*, Protein kinase R and the integrated stress response drive immunopathology caused by mutations in the RNA deaminase ADAR1. *Immunity* **54**, 1948-1960.e1945 (2021).
13. Y. Li *et al.*, Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. *eLife* **6**, (2017).
14. S. Banerjee *et al.*, OAS-RNase L innate immune pathway mediates the cytotoxicity of a DNA-demethylating drug. *Proceedings of the National Academy of Sciences of the United States of America* **116**, 5071-5076 (2019).
15. S. Daou *et al.*, A phenolic small molecule inhibitor of RNase L prevents cell death from ADAR1 deficiency. *Proceedings of the National Academy of Sciences of the United States of America* **117**, 24802-24812 (2020).
16. A. Chitrakar *et al.*, Introns encode dsRNAs undetected by RIG-I/MDA5/interferons and sensed via RNase L. *Proceedings of the National Academy of Sciences of the United States of America* **118**, (2021).
17. R. Karki *et al.*, ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. *Cell Rep* **37**, 109858 (2021).
18. N. W. Hubbard *et al.*, ADAR1 mutation causes ZBP1-dependent immunopathology. *Nature* **607**, 769-775 (2022).
19. H. Jiao *et al.*, ADAR1 averts fatal type I interferon induction by ZBP1. *Nature* **607**, 776-783 (2022).

20. R. de Reuver *et al.*, ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. *Nature* **607**, 784-789 (2022).
21. T. Zhang *et al.*, ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. *Nature* **606**, 594-602 (2022).
22. R. Karki, T. D. Kanneganti, ADAR1 and ZBP1 in innate immunity, cell death, and disease. *Trends in immunology* **44**, 201-216 (2023).
23. G. I. Rice *et al.*, Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. *Nature genetics* **44**, 1243-1248 (2012).
24. H. L. John *et al.*, A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. *Journal of Medical Genetics* **51**, 76 (2014).
25. S. Straub, N. G. Sampaio, Activation of cytosolic RNA sensors by endogenous ligands: roles in disease pathogenesis. *Frontiers in Immunology* **14**, (2023).
26. B. Song, Y. Shiromoto, M. Minakuchi, K. Nishikura, The role of RNA editing enzyme ADAR1 in human disease. *Wiley interdisciplinary reviews. RNA* **13**, e1665 (2022).
27. L. Han *et al.*, The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. *Cancer cell* **28**, 515-528 (2015).
28. N. Paz-Yaacov *et al.*, Elevated RNA Editing Activity Is a Major Contributor to Transcriptomic Diversity in Tumors. *Cell Reports* **13**, 267-276 (2015).
29. A. R. Baker, F. J. Slack, ADAR1 and its implications in cancer development and treatment. *Trends in genetics : TIG* **38**, 821-830 (2022).
30. L. Li *et al.*, Ubiquitin-dependent Turnover of Adenosine Deaminase Acting on RNA 1 (ADAR1) Is Required for Efficient Antiviral Activity of Type I Interferon. *The Journal of biological chemistry* **291**, 24974-24985 (2016).
31. R. Merdler-Rabinowicz *et al.*, Elevated A-to-I RNA editing in COVID-19 infected individuals. *NAR Genom Bioinform* **5**, lqad092 (2023).
32. J. B. Patterson, C. E. Samuel, Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. *Molecular and cellular biology* **15**, 5376-5388 (1995).
33. C. X. George, C. E. Samuel, Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. *Proceedings of the National Academy of Sciences of the United States of America* **96**, 4621-4626 (1999).
34. M. H. Tan *et al.*, Dynamic landscape and regulation of RNA editing in mammals. *Nature* **550**, 249-254 (2017).
35. H. Wahlstedt, C. Daniel, M. Ensterö, M. Ohman, Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. *Genome research* **19**, 978-986 (2009).
36. A. A. Schaffer *et al.*, The cell line A-to-I RNA editing catalogue. *Nucleic acids research* **48**, 5849-5858 (2020).
37. C. Vesely, M. F. Jantsch, An I for an A: Dynamic Regulation of Adenosine Deamination-Mediated RNA Editing. *Genes* **12**, (2021).
38. A. M. Toth, Z. Li, R. Cattaneo, C. E. Samuel, RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR. *The Journal of biological chemistry* **284**, 29350-29356 (2009).
39. M. Pujantell *et al.*, RNA editing by ADAR1 regulates innate and antiviral immune functions in primary macrophages. *Scientific reports* **7**, 13339 (2017).
40. M. Pujantell *et al.*, ADAR1 affects HCV infection by modulating innate immune response. *Antiviral Research* **156**, 116-127 (2018).

41. S. Zhou *et al.*, Double-stranded RNA deaminase ADAR1 promotes the Zika virus replication by inhibiting the activation of protein kinase PKR. *The Journal of biological chemistry* **294**, 18168-18180 (2019).
42. L. Wang *et al.*, Hepatitis B virus evades immune recognition via RNA adenosine deaminase ADAR1-mediated viral RNA editing in hepatocytes. *Cellular & molecular immunology* **18**, 1871-1882 (2021).
43. H. Piontkivska, B. Wales-McGrath, M. Miyamoto, M. L. Wayne, ADAR Editing in Viruses: An Evolutionary Force to Reckon with. *Genome biology and evolution* **13**, (2021).
44. Y. Huang *et al.*, A survey on cellular RNA editing activity in response to *Candida albicans* infections. *BMC Genomics* **19**, 43 (2018).
45. Z.-Y. Wei *et al.*, Host A-to-I RNA editing signatures in intracellular bacterial and single-strand RNA viral infections. *Frontiers in Immunology* **14**, (2023).
46. D. Modiano *et al.*, Different response to *Plasmodium falciparum* malaria in west African sympatric ethnic groups. *Proceedings of the National Academy of Sciences of the United States of America* **93**, 13206-13211 (1996).
47. C. Arama *et al.*, Ethnic differences in susceptibility to malaria: what have we learned from immuno-epidemiological studies in West Africa? *Acta tropica* **146**, 152-156 (2015).
48. J. E. Quin *et al.*, Major transcriptional changes observed in the Fulani, an ethnic group less susceptible to malaria. *eLife* **6**, (2017).
49. H. T. Porath, S. Carmi, E. Y. Levanon, A genome-wide map of hyper-edited RNA reveals numerous new sites. *Nature communications* **5**, 4726 (2014).
50. S. H. Roth, E. Y. Levanon, E. Eisenberg, Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. *Nature methods* **16**, 1131-1138 (2019).
51. T. M. Tran *et al.*, Transcriptomic evidence for modulation of host inflammatory responses during febrile *Plasmodium falciparum* malaria. *Scientific reports* **6**, 31291 (2016).
52. I. Zaidi *et al.*, $\gamma\delta$ T Cells Are Required for the Induction of Sterile Immunity during Irradiated Sporozoite Vaccinations. *Journal of immunology (Baltimore, Md. : 1950)* **199**, 3781-3788 (2017).
53. M. L. Rojas-Peña, A. Vallejo, S. Herrera, G. Gibson, M. Arévalo-Herrera, Transcription Profiling of Malaria-Naïve and Semi-immune Colombian Volunteers in a *Plasmodium vivax* Sporozoite Challenge. *PLoS neglected tropical diseases* **9**, e0003978 (2015).
54. J. C. Hartner *et al.*, Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. *The Journal of biological chemistry* **279**, 4894-4902 (2004).
55. J. C. Hartner, C. R. Walkley, J. Lu, S. H. Orkin, ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. *Nature immunology* **10**, 109-115 (2009).
56. I. Rusinova *et al.*, Interferome v2.0: an updated database of annotated interferon-regulated genes. *Nucleic acids research* **41**, D1040-1046 (2013).
57. C. W. Smith *et al.*, TREM-like transcript 1: a more sensitive marker of platelet activation than P-selectin in humans and mice. *Blood advances* **2**, 2072-2078 (2018).
58. P. Liehl *et al.*, Host-cell sensors for *Plasmodium* activate innate immunity against liver-stage infection. *Nat Med* **20**, 47-53 (2014).
59. J. Wu *et al.*, Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. *Proceedings of the National Academy of Sciences of the United States of America* **111**, E511-520 (2014).

60. S. P. Kurup, N. S. Butler, J. T. Harty, T cell-mediated immunity to malaria. *Nature reviews. Immunology* **19**, 457-471 (2019).

61. P. E. Duffy, Current approaches to malaria vaccines. *Current opinion in microbiology* **70**, 102227 (2022).

62. C. A. Ezema, I. U. Okagu, T. P. C. Ezeorba, Escaping the enemy's bullets: an update on how malaria parasites evade host immune response. *Parasitology research* **122**, 1715-1731 (2023).

63. J. E. Heraud-Farlow *et al.*, Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. *Genome biology* **18**, 166 (2017).

64. J. E. Heraud-Farlow, A. M. Chalk, C. R. Walkley, Defining the functions of adenosine-to-inosine RNA editing through hematology. *Current opinion in hematology* **26**, 241-248 (2019).

65. B. J. Liddicoat *et al.*, Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. *Experimental hematology* **44**, 947-963 (2016).

66. T. Nakahama *et al.*, ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity. *EMBO reports* **19**, (2018).

67. V. Marcu-Malina *et al.*, ADAR1 is vital for B cell lineage development in the mouse bone marrow. *Oncotarget* **7**, 54370-54379 (2016).

68. Y. G. Chen, S. Hur, Cellular origins of dsRNA, their recognition and consequences. *Nature reviews. Molecular cell biology* **23**, 286-301 (2022).

69. R. T. Manguso *et al.*, In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. *Nature* **547**, 413-418 (2017).

70. K. A. Lawson *et al.*, Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. *Nature* **586**, 120-126 (2020).

71. S. Kho *et al.*, Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: A prospective human splenectomy study. *PLoS medicine* **18**, e1003632 (2021).

72. S. Kho *et al.*, Hidden Biomass of Intact Malaria Parasites in the Human Spleen. *The New England journal of medicine* **384**, 2067-2069 (2021).

73. D. Ghosh, J. S. Stumhofer, The spleen: "epicenter" in malaria infection and immunity. *Journal of leukocyte biology* **110**, 753-769 (2021).

74. X. He, L. Xia, K. C. Tumas, J. Wu, X. Z. Su, Type I Interferons and Malaria: A Double-Edge Sword Against a Complex Parasitic Disease. *Frontiers in cellular and infection microbiology* **10**, 594621 (2020).

75. J. Li *et al.*, ADAR1 attenuates allogeneic graft rejection by suppressing miR-21 biogenesis in macrophages and promoting M2 polarization. *FASEB journal : official publication of the Federation of American Societies for Experimental Biology* **32**, 5162-5173 (2018).

76. N. Baal *et al.*, ADAR1 Is Required for Dendritic Cell Subset Homeostasis and Alveolar Macrophage Function. *Journal of immunology (Baltimore, Md. : 1950)* **202**, 1099-1111 (2019).

77. J. Z. Adamska *et al.*, Ablation of Adar1 in myeloid cells imprints a global antiviral state in the lung and heightens early immunity against SARS-CoV-2. *Cell Rep* **42**, 112038 (2023).

78. Y. Li *et al.*, RNA-Editing Enzyme ADAR1 p150 Isoform Is Critical for Germinal Center B Cell Response. *Journal of immunology (Baltimore, Md. : 1950)* **209**, 1071-1082 (2022).

79. H. S. Gannon *et al.*, Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. *Nature communications* **9**, 5450 (2018).

80. H. Liu *et al.*, Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. *Nature Medicine* **25**, 95-102 (2019).

81. N. Frey *et al.*, Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing. *Nature communications* **13**, 1804 (2022).

82. A. B. Papaiah *et al.*, 1334 AVA-ADR-001 suppresses tumor growth and induces anti-tumor immunity by selectively inhibiting ADAR1 p150. *Journal for ImmunoTherapy of Cancer* **10**, A1385-A1385 (2022).

83. L. Ding *et al.*, Genetically engineered nanovesicles mobilize synergistic antitumor immunity by ADAR1 silence and PDL1 blockade. *Molecular Therapy* **31**, 2489-2506 (2023).

84. H. G. Mendoza, V. J. Matos, S. Park, K. M. Pham, P. A. Beal, Selective Inhibition of ADAR1 Using 8-Azanebularine-Modified RNA Duplexes. *Biochemistry* **62**, 1376-1387 (2023).

85. B. Malleret *et al.*, A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development. *Scientific reports* **1**, 118 (2011).

86. S. Andrews, FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. . Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>, (2010).

87. J. Chu *et al.*, BioBloom tools: fast, accurate and memory-efficient host species sequence screening using bloom filters. *Bioinformatics (Oxford, England)* **30**, 3402-3404 (2014).

88. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics (Oxford, England)* **30**, 2114-2120 (2014).

89. A. Dobin *et al.*, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics (Oxford, England)* **29**, 15-21 (2013).

90. L. Wang, S. Wang, W. Li, RSeQC: quality control of RNA-seq experiments. *Bioinformatics (Oxford, England)* **28**, 2184-2185 (2012).

91. M. Broad Institute. (GitHub Repository. <http://broadinstitute.github.io/picard/>, 2018).

92. P. Ewels, M. Magnusson, S. Lundin, M. Käller, MultiQC: summarize analysis results for multiple tools and samples in a single report. *Bioinformatics (Oxford, England)* **32**, 3047-3048 (2016).

93. Y. Liao, G. K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics (Oxford, England)* **30**, 923-930 (2014).

94. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome biology* **15**, 550 (2014).

95. H. Wickham. (Wiley Interdisciplinary Reviews: Computational Statistics 3.2 (2011): 180-185.).

96. A. Kassambara. (R package version 0.17, 2018).

97. T. Wu *et al.*, clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *Innovation (Cambridge (Mass.))* **2**, 100141 (2021).

98. M. Carlson. (R package version 3.8.2., 2019)

Acknowledgments.

Acknowledgments The following reagent was obtained through BEI Resources, NIAID, NIH: *Plasmodium yoelii* subsp. *yoelii*, Strain 17XNL:PyGFP, MRA-817, contributed by Ana Rodriguez. The authors used services of the Czech Centre for Phenogenomics supported by the Czech Academy of Sciences RVO 68378050 and by the project LM2018126 Czech Centre for Phenogenomics provided by Ministry of Education, Youth and Sports of the Czech Republic. The Core Facilities of Bioinformatics and Genomics of CEITEC Masaryk University are gratefully acknowledged for the bioinformatics analysis of the data presented in this paper. Access to the experimental animal facility was kindly provided by the University of Veterinary Sciences Brno.

Funding.

EU Horizon 2020 Research and Innovation Programme, Marie Skłodowska-Curie Grant Agreement No 867470 (JQ); Czech Science Foundation GAČR 21-27329X (MOC); Czech Science Foundation GAČR 20-11101S (DV); Austrian Science Fund SFB-F061(P04) (SK); Swedish Research Council 2020-01839_3 (ESE); Israeli Ministry of Science (3-17916) and ISF (2039/20) (EYL).

Author contributions.

Conceptualization: JQ, MOC

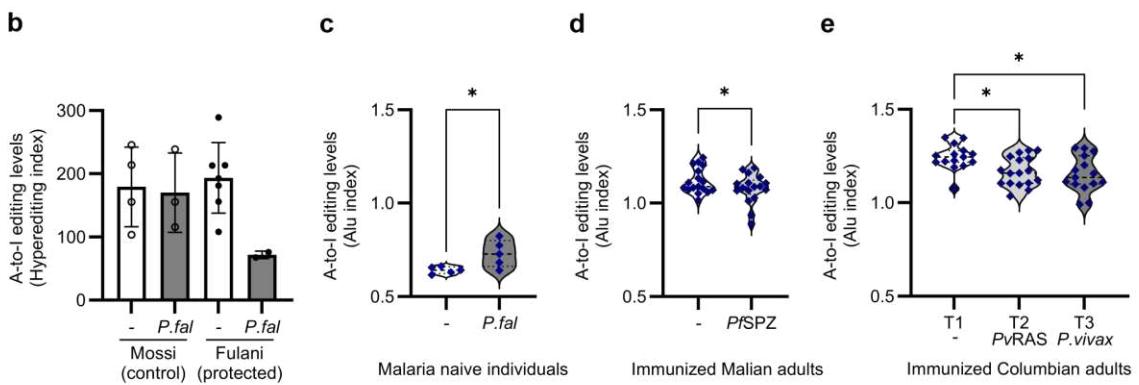
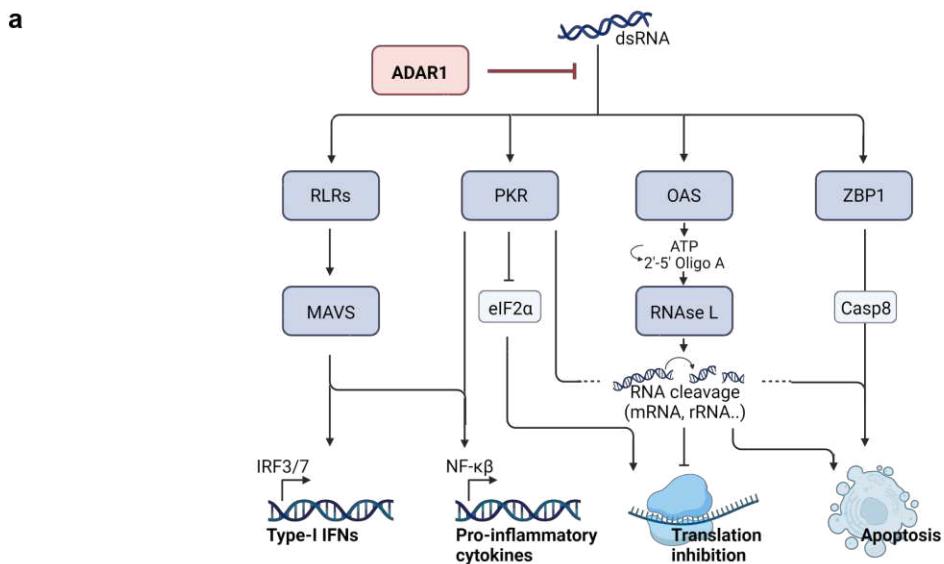
Methodology: JQ, MOC, EYL, RG

Investigation: JQ, EK, RG, ME, DV, PL, JM, KS, SG, IN, CA

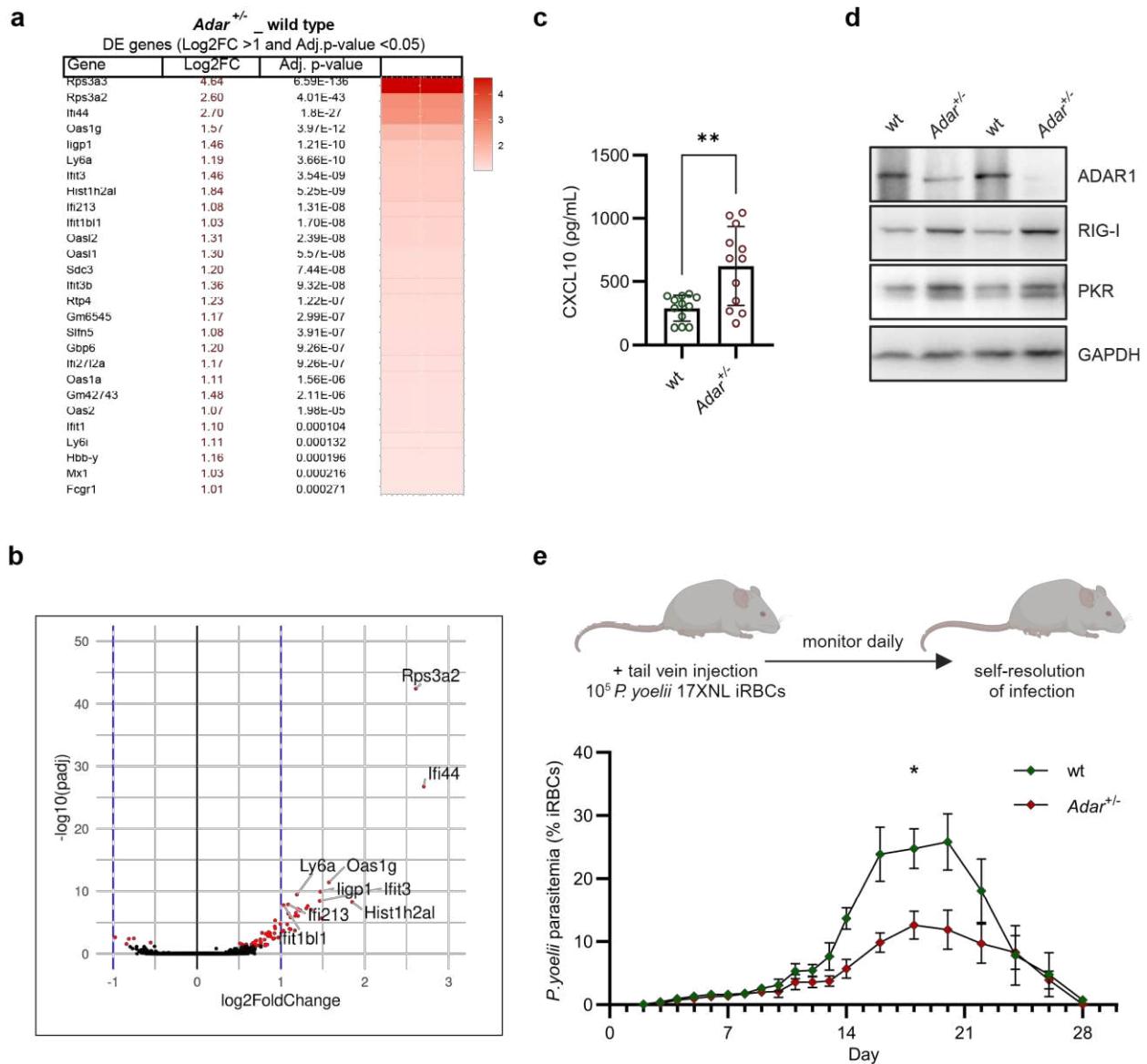
Visualization: JQ

Funding acquisition: JQ, MOC

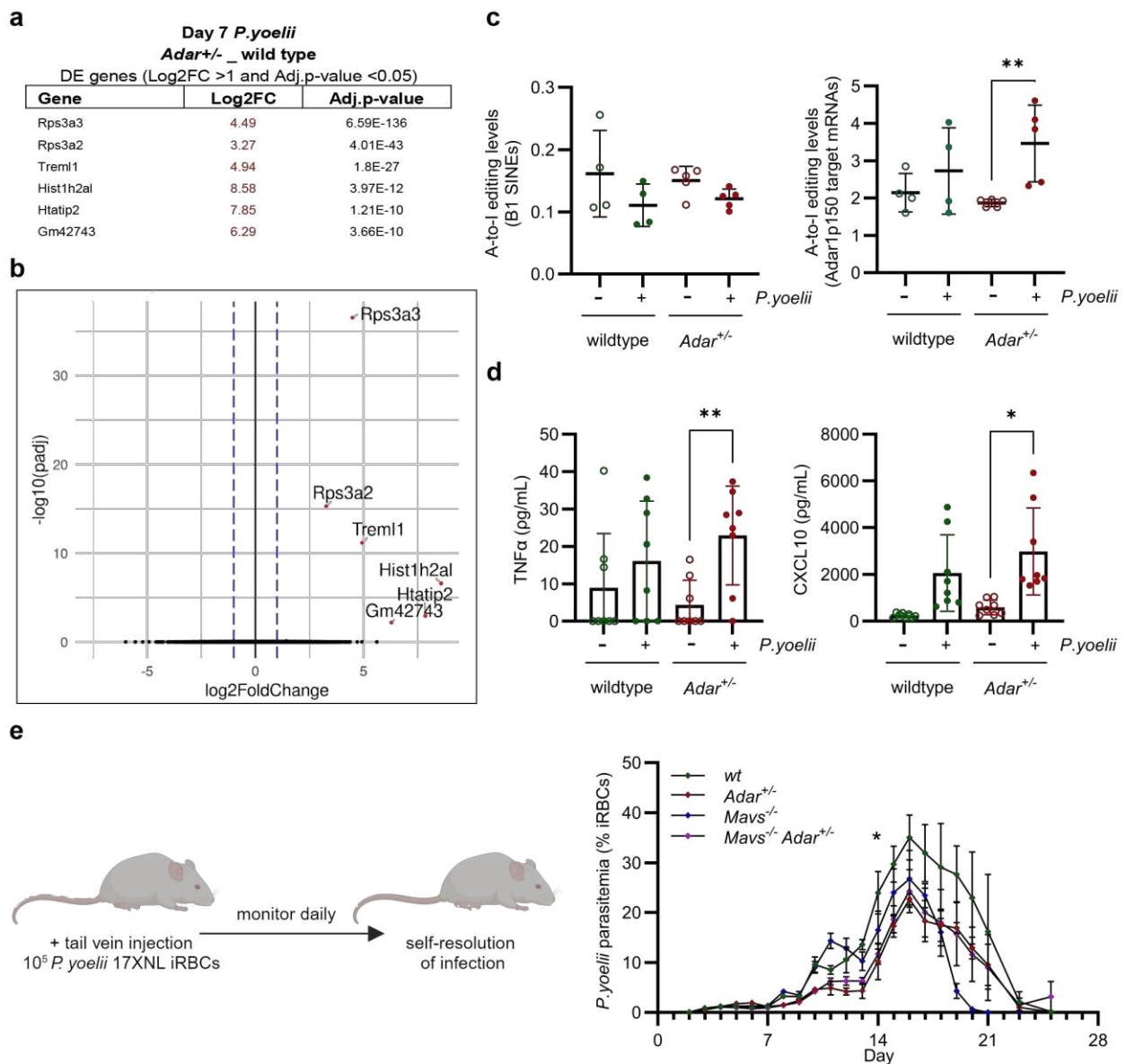
Project administration: JQ, MOC



Supervision: JQ, IN, MTB, ESE, SK, DM, AOF, EYL, LK, MOC

Writing – original draft: JQ


Writing – review & editing: EK, RG, ME, DV, PL, JM, CA, ESE, AOF, EYL, LP, MOC

Declarations.


MOC and LPK have a collaboration with CD3 Leuven Belgium.

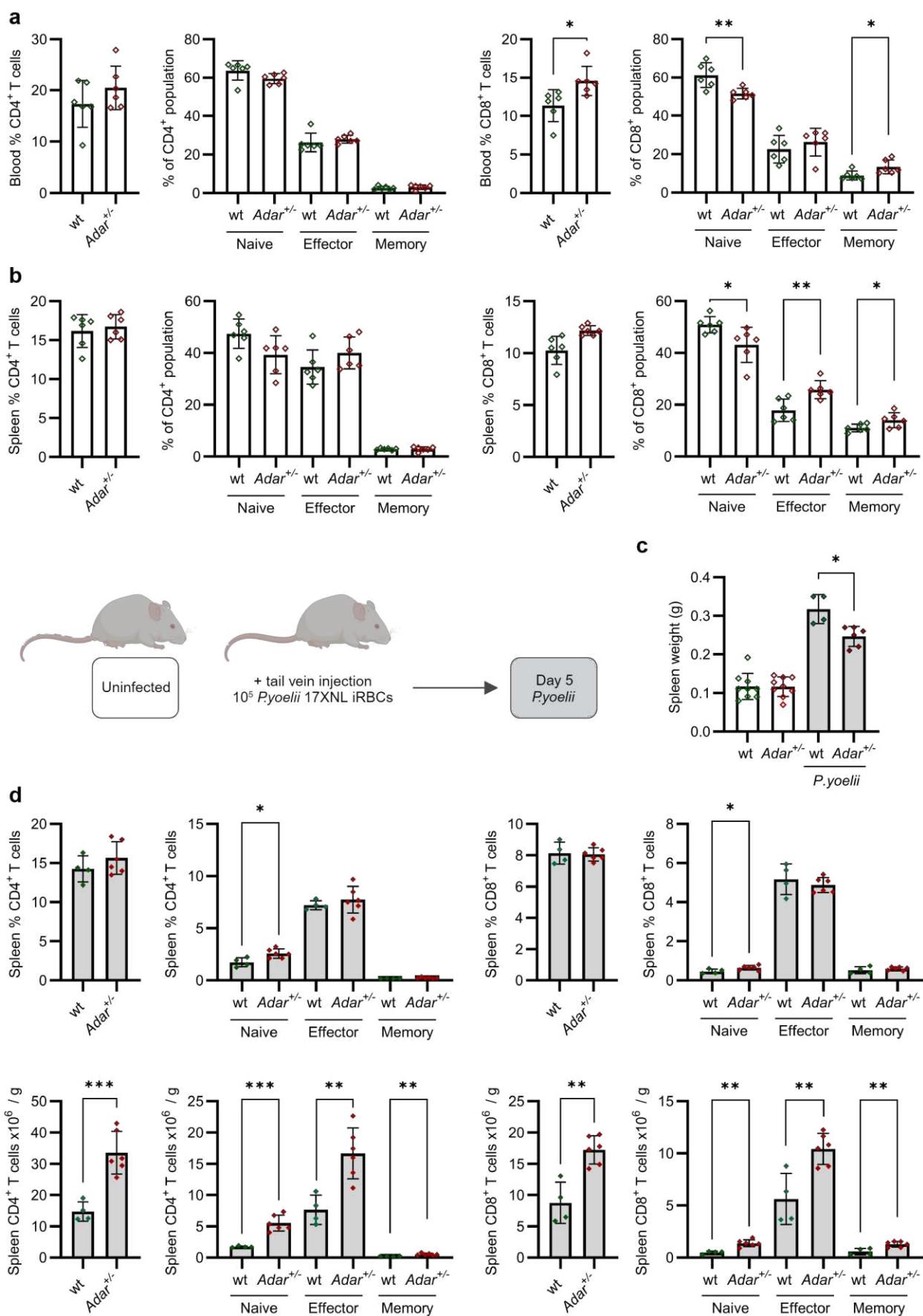

Fig. 1. A reduced level of A-to-I RNA editing by ADAR1 following *Plasmodium* infection is associated with protection from malaria. (A) ADAR1 prevents activation of cytosolic dsRNA receptors and downstream anti-viral immune responses. (B-E) Global A-to-I RNA editing levels in human blood determined by analyses of RNA-sequencing data. (B) CD14⁺ PBMCs of protected Fulani and sympatric Mossi individuals uninfected or infected with *P. falciparum*. Hyperediting index (total edited sites/unique mapped reads). (Mossi – *P. fal* (n=4 179.4 +/-62.9 s.d.); Mossi + *P. fal* (n=3 170.1 +/-62.7 s.d.); Fulani – *P. fal* (n=7 193.4 +/-55.9 s.d.); Fulani + *P. fal* (n=2 72.0 +/-5.9 s.d.). (C) Whole blood of malaria-naive Dutch adults following CHMI with *P. falciparum* (GSE50957). Alu editing index (n=5. Pre-challenge vs post-challenge *P=0.0477 paired t-test). (D) Whole blood of Malian adults after five rounds of immunization with attenuated *P. falciparum* sporozoites (Sanaria PfSPZ) every 4 weeks (GSE86308). Alu editing index (n=17. Pre-vaccination (day -7) vs post-vaccination (day 143) *P=0.0203 paired t-test). (E) PBMCs isolated from malaria-naive Columbian volunteers, at baseline (T1), after seven rounds of immunization with attenuated *P. vivax* sporozoites (PvRAS) every 8 weeks (T2), and at first diagnosis of infection after a subsequent *P. vivax* challenge (T3) (GSE85263). Alu editing index. (n=15-17. Mean +/- s.d. T1 vs T2 *P=0.0291, T1 vs T3 *P=0.0100 ordinary one-way ANOVA with Dunnett's test for multiple comparisons).

Fig. 2. *Adar*^{+/−} heterozygous mutant mice have a benign Type I IFN phenotype and are protected from *P. yoelii* parasitemia. (A-B) RNA-sequencing analysis of whole blood of adult wild-type and *Adar*^{+/−} mice (n=4 age-matched pairs). (A) Table of differentially expressed (DE) genes (27 genes, Adjusted p-value <0.05, Log2 FoldChange>1). (B) Volcano plot of DE genes. Significantly DE genes are shown in red (65 genes, Adjusted p-value <0.05). Gene *Rps3a3* is not shown. (C) Peripheral blood plasma levels of CXCL10 in wild-type and *Adar*^{+/−} adult mice (n=12 age-matched pairs. Mean +/- s.d. **P=0.0019 paired t-test). (D) Western blot analysis of liver of wild-type and *Adar*^{+/−} adult mice (Representative n=2 age-matched pairs). (E) *P. yoelii* parasitemia (% of *P. yoelii* iRBCs) following tail vein injection with 10⁵ *P. yoelii* 17XNL:PyGFP infected RBCs monitored until resolution of infection (by 30 days) (n=6 age-matched female mice, mean +/- s.e.m *P=0.118, Two-way ANOVA with Geisser-Greenhouse correction).

Fig. 3. *Adar*^{+/−} mice are protected from *P. yoelii* parasitemia independently of the RLR pathway. (A-B) RNA sequencing analysis of whole blood of wild-type and *Adar*^{+/−} adult mice on day 7 following infection with *P. yoelii* (n=3 age-matched pairs). (A) Table of differentially expressed (DE) genes comparing day 7 *P. yoelii*-infected *Adar*^{+/−} mice with d7 *P. yoelii*-infected wild-type mice. (6 genes, Adjusted p-value <0.05, Log2 FoldChange>1). Genes that are also DE when comparing uninfected *Adar*^{+/−} mice with uninfected wild-type mice are shown in grey, genes that are uniquely DE in this data set are shown in black. (B) Volcano plot of differentially expressed genes comparing d7 *P. yoelii* *Adar*^{+/−} mice with d7 *P. yoelii* wild-type mice. Significantly DE genes shown in red (Adjusted p-value <0.05). (C) A-to-I RNA editing analysis of wild-type and *Adar*^{+/−} adult mice from RNA-sequencing (n=4-5 age-matched pairs). Mean +/- s.d. (Left) B1 SINE A to G editing index. Wild-type n.s. P=0.3829, paired t-test (n=4); *Adar*^{+/−} n.s. P=0.0549, paired t-test (n=5). (Right) ADAR1 p150 target mRNA A to G editing index. Wild-type n.s. P=0.5098, paired t-test (n=4); *Adar*^{+/−} *P=0.0249, paired t-test (n=5)). (D) Cytokine levels of wild-type and *Adar*^{+/−} mice following *P. yoelii* infection (d7). (n=8 age-matched pairs. Mean +/- s.d. CXCL10 wild-type n.s. P=0.0580, *Adar*^{+/−} *P=0.0200; TNF α wild-type n.s. P=0.3317, *Adar*^{+/−} *P=0.0485. One-way ANOVA with Tukey's multiple comparison test). (E) *P. yoelii* parasitemia (% of *P. yoelii* iRBCs) following tail vein injection with 10^5 *P. yoelii* 17XNL:PyGFP iRBCs monitored until resolution of infection (by 30 days) (n=3-5 age-matched female mice, mean +/- s.e.m. Day14: wt vs *Adar*^{+/−} *P=0.0277. wt vs *Mavs*^{s−l} *Adar*^{+/−} *P=0.0280. Two-way ANOVA with Tukey's multiple comparison test).

Fig. 4. *Adar*^{+/−} mice display T cell phenotypes associated with protection from malaria. (A) Percentage (%) of T cells in circulating blood of wild-type and *Adar*^{+/−} mice (n=6 age-matched pairs. Mean +/- s.d. Unpaired t-test. *P<0.05, **P<0.005). **(B)** Percentage (%) of T cells in spleen of wild-type and *Adar*^{+/−} mice (n=6 age-matched pairs. Mean +/- s.d. Unpaired t-test). **(C)** Spleen weights of uninfected wild-type (n=9) and *Adar*^{+/−} (n=9) mice (n.s), and *P.yoelii* infected (day 5) wild-type (n=4) and *Adar*^{+/−} (n=6) mice (*P=0.0361, One-way ANOVA with Tukey's multiple comparison test). **(D)** Percentage (%) (upper panel) and total number of T cells per g spleen weight (lower panel) of *P.yoelii* infected (day 5) wild-type (n=4) and *Adar*^{+/−} (n=6) mice (Mean +/- s.d. Unpaired t-test. *P<0.05, **P<0.005, ***P<0.0005).