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Summary. 

Adenosine deaminase acting on RNA 1 (ADAR1) suppresses the activation of multiple antiviral 

immune response pathways.  Here, we investigate the role of ADAR1 during infection with the 

Plasmodium parasite, which causes malaria and is responsible for over almost a half million 

childhood deaths every year. Reduced activity of ADAR1 during Plasmodium infection is 

associated with populations protected from clinical malaria. In animal models, Adar+/- mice are 

protected from P. yoelii parasitemia, via a previously unreported pathway. These mice display 

elevated Type-I IFN responses and CD8+ T cell activation, but no detrimental immune responses. 

Our results suggest that a decrease in the levels of ADAR1 occurs during infection and can drive 

both innate and adaptive immune responses, and this presents a previously unrecognized 

opportunity for targeting ADAR1 in diverse infectious diseases.  

 

Main Text. 

ADAR1 converts adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) by hydrolytic 

deamination, a process called A-to-I RNA editing. A-to-I RNA editing by ADAR1 is widespread 

in human RNA, occurring at millions of sites in stretches of dsRNA which form within the majority 

of transcripts (1, 2). An essential function of ADAR1 is to prevent harmful activation of innate 

immunity. Particularly, the classical role of ADAR1 is to prevent 8self9-dsRNAs from activating 

immune sensors that detect viral and other 8non-self9-dsRNAs in the cytoplasm. Such innate 

immune sensors include the RIG-I like receptors (RLRs) (3-5), protein kinase R (PKR) (6-12), 

oligoadenylate synthetase (OAS)–ribonuclease (RNase) L (13-16), and Z-D/RNA binding protein 

1 (ZBP1) (17-22). When activated by dsRNAs, these pathways drive antiviral innate immune 

responses, including expression of Type-I interferons (IFNs) and proinflammatory cytokines, 

inhibition of translation, cleavage of cellular RNAs, and/or activation of cell death pathways (23-

25) (Fig. 1A). Mutations in ADAR1 have been found to cause autoimmune disorders which are 

characterized by aberrant Type-I IFN responses and chronic inflammation (26). On the other hand, 

overexpression of ADAR1 and increased A-to-I RNA editing is common across different cancer 

types (27, 28), and targeting ADAR1 can result in cancer cell lethality by driving anti-tumor 

immune responses (29).  

 

Relatively little is known about the regulation of ADAR1 during infection, and how this impacts 

disease outcomes (30, 31). ADAR1 has two isoforms: ADAR1p110, which localizes 
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predominantly within the nucleus; and ADAR1p150, which localizes in both the nucleus and 

cytoplasm, and is induced by IFN(32, 33). Significant spatiotemporal changes occur in levels of 

A-to-I RNA editing by ADAR1 (34-36), and a number of reports illustrate that ADAR1 activity is 

sensitively and dynamically controlled by diverse mechanisms (37). However, our understanding 

of pathways of regulation of ADAR1 activity remains largely incomplete. During viral infections, 

ADAR1 activity can suppress antiviral immune response pathways. For example, knock-down of 

ADAR1 increases IFN and/or PKR signaling in infected cell line models (7, 30, 38-42). However, 

ADAR1 can also directly edit virus dsRNA, which can be either pro-viral or antiviral in different 

contexts (43). Despite the abundance of evidence that ADAR1 can impact viral infections in 

diverse ways, its role in other types of infections has been almost entirely unexplored(44, 45).  

 

Malaria is caused by infection with Plasmodium, which are single-celled eukaryotic protozoan 

parasites. Here, we identify changes in A-to-I RNA editing by ADAR1 in the Fulani, a West 

African ethnic group protected from malaria (46).  This led us to investigate whether ADAR1 

activity impacts malaria infection. In different human models, we find A-to-I editing of 

endogenous 8self9 RNA is altered following malaria infection, and lower A-to-I editing is 

associated with protection from the disease. Strikingly, Adar (encoding Adar1) heterozygous 

mutant mice are significantly protected from blood stage parasitemia during infection with rodent 

P. yoelii malaria. Adar heterozygous mutant mice display activation of Type-I IFN and CD8+ T-

cell responses, at a relatively controlled level at baseline, and these are further activated during P. 

yoelii infection. Therefore, our data suggests that ADAR1 impacts infection with Plasmodium 

protozoan parasite, and that reduction of ADAR1 activity during malaria contributes to protection 

from the disease.  

 

A reduced level of A-to-I RNA editing by ADAR1 following Plasmodium infection is 

associated with protection from malaria. The Fulani ethnic group of the Sahel region of Africa 

are protected from P. falciparum malaria(46). Despite similar exposure as other sympatric ethnic 

groups, the Fulani have heightened innate and adaptive immune responses to P. falciparum, lower 

parasite densities in infected individuals, and fewer symptomatic cases of malaria (47). However, 

the underlying basis of their protection is unknown. We previously performed RNA-sequencing 

analysis of CD14+ peripheral blood mononuclear cells (PBMCs) isolated from the Fulani during 

the P. falciparum infection season (48). Levels of A-to-I editing by ADAR1 can be readily 
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determined from RNA-sequencing data using established methods, as inosines (I) are recognised 

as guanosines (G) by reverse transcriptase during cDNA synthesis, creating A-G mismatches 

during sequence alignment (49, 50). Here, we show that during P. falciparum infection, global 

levels of A-to-I editing measure by analysis of the Hyperediting Index in CD14+ PBMCs are 

reduced in the Fulani compared to a sympatric ethnic group (Fig. 1B). This indicates that ADAR1 

activity levels are differently modulated in susceptible versus protected individuals during malaria. 

We extended our analysis to publicly available RNA-sequencing data from human models of 

Plasmodium infection. Controlled human malaria infection (CHMI) with P. falciparum in malaria-

naïve individuals results in increased A-to-I editing levels in whole blood from pre- to post-

challenge (51) (Fig. 1C). In contrast, individuals who have undergone immunization with 

attenuated P. falciparum sporozoites (PfSPZ) have reduced A-to-I editing levels in whole blood 

following the final PfSPZ infection (52) (Fig. 1D). Individuals who have undergone immunization 

with attenuated P. vivax sporozoites (PvRAS) also have reduced A-to-I editing levels in PBMCs 

both following the final PvRAS infection and during subsequent challenge with P. vivax (53) (Fig. 

1E). Further analysis of a cohort of young individuals living in a P. falciparum endemic region as 

they acquire natural protection from malaria, suggests that exposure to Plasmodium results in 

reduced levels of global editing by ADAR1p110 in protected individuals, and increased rates of 

editing predominantly by IFN-inducible ADARp150 in susceptible individuals(51) (fig. S1). 

Overall, reduced levels of global A-to-I editing by ADAR1 during Plasmodium infection are 

associated with protection from malaria. 

 

Adar+/- heterozygous mutant mice have a benign Type I IFN phenotype and are protected 

from P. yoelii parasitemia. In order to determine if reduced ADAR1 activity can contribute to 

protection during malaria, we performed infection of Adar heterozygous mutant mice with P. yoelii 

17XNL non-lethal rodent malaria. Adar-/- homozygous null mice are embryonic lethal at day 

E11.5-E12.5, associated with overproduction of Type-I IFN, loss of embryonic liver hematopoietic 

cells, liver disintegration, and widespread apoptosis (6, 54). The embryonic lethal phenotype can 

be rescued to several days after birth in double mutants lacking Adar-/-  Ifih1-/-  encoding melanoma 

differentiation-associated protein 5 (Mda5) and in Adar-/- Mavs-/- (mitochondrial antiviral-

signaling protein) double mutants, which prevent activation of the RLR/MAVS pathway, but these 

mice do not survive to adulthood (3-5). Here, we have utilised Adar+/- heterozygous mutant mice, 

which are born at Mendelian ratios and are phenotypically normal (6, 54, 55). We have previously 
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shown that mouse embryonic fibroblast (MEF) cultures from these mice have heightened Type-I 

IFN responses following stimulation with Poly(I:C) dsRNA (3). We performed RNA-sequencing 

analysis of whole blood of adult wild-type and Adar+/- mice. Only a small number of genes are 

significantly differentially expressed (DE) in Adar+/- mice (27 genes, Adjusted p-value <0.05, 

Log2FoldChange >1) (Fig. 2A&B, and table S1). Gene ontology (GO) enrichment analysis shows 

that these are significantly enriched for genes involved in cellular response to IFNs, antiviral 

response, and innate immunity (table S1). All DE genes are IFN-stimulated genes (ISGs) (27/27 

genes; Interferome database (56)). Analysis of cytokine levels in plasma collected from peripheral 

blood of adult wild-type and Adar+/- mice shows only a small but significant increase in CXCL10, 

a sensitive marker of Type-I IFN activation (Fig. 2C, and fig. S2). Immunoblot analysis of the 

livers of adult mice shows slightly increased protein levels of ISGs, including RIG-I and PKR, in 

Adar+/- mice (Fig. 2D). Adar+/- mice maintain a normal body weight and blood cell composition 

(fig. S3). Collectively, our analyses indicate that Adar+/- mice have mildly increased levels of 

Type-I IFN responses. This increase is controlled, and does not cause any apparent deleterious 

consequences during a normal lifespan. We infected age-matched pairs of wild-type and Adar+/- 

mice with 105 P. yoelii 17XNL:PyGFP infected red blood cells (iRBCs) via tail vein injection, and 

monitored levels of parasitemia until self-resolution (approximately 4 weeks). The maximum P. 

yoelii parasitemia was significantly lower in Adar+/- mice. P. yoelii parasitemia began to diverge 

after 1 week of infection, and remained significantly lower across the course of infection in Adar+/- 

mice (Fig. 2E). Therefore, reduced levels of Adar1 protect against P. yoelii parasitemia.  

 

Adar+/- mice are protected from P. yoelii parasitemia independently of the RLR pathway. To 

investigate the mechanisms underlying the protection of Adar+/- mice from P. yoelii parasitemia, 

we performed RNA-sequencing analysis of whole blood from adult wild-type and Adar+/- mice at 

7 days following P. yoelii infection. At day 7, there are no significant differences in parasitemia 

between wild-type and Adar+/- mice (fig.  S4). We observed very few significant differences in 

gene expression, with only 6 DE genes in P. yoelii-infected Adar+/- mice compared to P. yoelii-

infected wild-type mice (Adjusted p-value <0.05, Log2FoldChange >1) (Fig. 3A&B, and table 

S1). There were a large number of DE genes when comparing infected mice to uninfected mice 

for both genotypes (wild-type day 7 vs wild-type uninfected, 1420 DE genes; Adar+/- day 7 vs 

Adar+/- uninfected, 1796 DE genes (Adjusted p-value <0.05, Log2FoldChange >1)), with a 

significant overlap in DE genes between wild-type and Adar+/- mice (1004 genes, or 70% of wild-
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type DE genes, and 56% Adar+/- DE genes) (fig. S5).  Together, this suggests that wild-type and 

Adar+/- mice respond in a generally similar manner to P. yoelii infection but responses are higher 

in Adar+/- mice. The DE gene Treml1 is specifically expressed in platelets and megakaryocytes, 

and used as a sensitive marker of platelet activation (57). We performed analysis of platelets in 

peripheral blood of uninfected mice, and observed slightly increased platelet counts and plateletcrit 

in Adar+/- compared to wild-type mice, providing phenotypic validation of our RNA-sequencing 

results (fig. S6).  

 

As outlined above, Adar1 is known to prevent activation of dsRNA receptors, including RLRs, 

PKR, OAS-RNASeL and ZBP1. Of these, only the RLR pathway has been implicated in the 

immune response to malaria. Type-I IFN signalling is activated by Plasmodium infection early in 

liver stage in an Mda5- and Mavs-dependent manner, and mice that are deficient for components 

of this pathway have reduced ability to control both liver- and blood-stage infection (58, 59). 

Therefore, we investigated the hypothesis that reduced levels of A-to-I editing of dsRNA in Adar+/-

mice activate the RLR pathway to confer protection from P. yoelii parasitemia. At baseline, Adar+/- 

mice do not appear to have significantly reduced levels of A-to-I editing (Fig. 3C). During P. yoelii 

infection both wild-type and Adar+/-mice display a trend for reduced levels of global A-to-I editing. 

In contrast, A-to-I editing of 39 UTRs of mRNAs, which are enriched in Adar1p150 target sites, 

are significantly increased in Adar+/- mice (Fig. 3C). These results reflect those reported for human 

models of malaria infection above. We also confirmed that P. yoelii RNA is not targeted for A-to-

I RNA editing by Adar1 during infection of the host (fig. S7). Levels of some cytokines, including 

CXCL10 and TNF-³, increase more significantly in Adar+/- mice than in wild-type mice following 

P. yoelii infection (Fig. 3D, and fig. S8). However, the increase is slight and does not indicate a 

strong pro-inflammatory phenotype in the Adar+/- mice. Finally, we infected RLR pathway mutant 

Mavs-/- and Mavs-/-Adar+/- mice with P. yoelii, under the same conditions as described above. P. 

yoelii parasitemia is significantly lower after 14 days of infection in Mavs-/-Adar+/- compared to 

Mavs-/- mice. We could not decisively compare the protection between all four genotypes (wt, 

Adar+/-, Mavs-/-, and Mavs-/-Adar+/-) as these mice were not sibling pairs. However, the level of 

protection between Adar+/- and Mavs-/-Adar+/- mice is equivalent (Fig. 3E). Therefore, reduced 

levels of Adar1 can contribute to protection against P. yoelii parasitemia in an RLR pathway-

independent manner.  
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Adar+/- mice display T cell phenotypes associated with protection from malaria. Our current 

understanding of the key immune responses that contribute to establishing resistance to malaria 

suggest that clinical immunity (for example, after experiencing multiple Plasmodium infections) 

is acquired mainly through memory CD4+ T cells, which produce pro-inflammatory responses and 

contribute to activation of B cells and production of antibodies, and also through memory CD8+ T 

cells, which actively kill infected cells (60). On the other hand, sterile immunity (for example, 

following effective vaccination) appears to be acquired mainly through blocking of infection 

through high antibody titres, and killing of infected cells by memory CD8+ T cells in the liver stage 

(61, 62). Prior studies have shown that hematopoietic cell types are particularly affected by Adar1 

loss (5, 54, 55, 63, 64). Adar is essential for erythropoiesis (65), T cell development (66), and B 

cell development (67, 68). On the other hand, ADAR has been identified as a 8top hit9 in loss-of-

function CRISPR screens to both restore tumor cell line responses to CD8+ T cell dependent 

immune checkpoint blockade therapy (69), and to induce anti-tumor CD8+ T cell killing (11, 70). 

Therefore, we immunologically characterised Adar+/- mice to determine whether reduced Adar1 

levels hinder or promote malaria protective immune responses.  

 

Analysis of the thymus and bone marrow indicates that normal T cell and B cell development is 

preserved in Adar+/- heterozygous mice (fig. S9). However, in peripheral blood, while we find the 

total leukocyte numbers unaffected, Adar+/- mice present with a different cellular composition (fig. 

S10). The abundance of CD8+ T cells is increased, and intriguingly, there are fewer naïve and more 

memory CD8+ T cells in uninfected Adar+/- mice (Fig. 4A). The spleen is central to the immune 

response to blood stage Plasmodium infection, acting as a significant site of infected red blood 

cells (iRBC) sequestration (71, 72), removing iRBCs from circulation, and acting as a secondary 

lymphoid organ to activate immune responses (73). In the spleen of uninfected Adar+/- mice, 

leukocyte counts are slightly elevated, including for B cells and T cells (fig. S10). Similarly to 

blood, we specifically find CD8+ T cells to be elevated, with fewer naïve, and more effector and 

memory CD8+ T cells in uninfected Adar+/- mice (Fig. 4B). During infection with P. yoelii (day 5), 

at which stage parasitemia remains the same between the two genotypes, the blood cell 

composition is indistinguishable between wild-type and Adar+/- mice (data not shown). However, 

while all mice develop profound splenomegaly, spleen weights are significantly lower in Adar+/- 

mice (Fig. 4C). These differences are not caused by leukocytes, as total splenic leukocyte numbers 

remain higher in infected Adar+/- mice (fig. S10). During infection with P. yoelii, Adar+/- mice 
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present with increased numbers of both CD4+ and CD8+ T cells, including naïve, effector, and 

memory T cell populations (Fig. 4D). This increase occurs independently of the RLR pathway, as 

Mavs-/- Adar+/- mice also have significantly increased CD4+ and CD8+ T cell populations (fig. S11). 

Together, reduced levels of Adar1 can drive protective T cell responses during Plasmodium 

infection, by an as yet unidentified mechanism.  

 

Discussion. Here we show that targeting ADAR1 can offer protection from Plasmodium parasites. 

These parasites are biologically far more complex organisms than the viruses that have been the 

focus of past studies on the role of ADAR1 in infection. Our findings indicate that ADAR1 may 

impact a much broader range of infectious diseases types, including malaria. Key responses for 

establishing sterile protection from malaria can be induced by targeting ADAR1, including Type-

I IFN signaling (11, 74), and cytotoxic CD8+ T-cell killing(11, 69, 70) (61, 62). In our model, 

reduced activity of ADAR1 does not impact the pathogen directly, but rather independently 

activates host immune responses to offer protection from disease.  

 

ADAR1 has numerous emerging roles in coordinating the immune response. The regulation of 

antiviral innate immune response pathways via cytosolic dsRNA sensors RLRs, PKR, OAS-

RNAse L and ZBP1 is well established. More recent studies, for example, report that ADAR1 

impacts antigen presenting cell (APC) activation and signaling to T cells (75-77), as well as T cell 

dependent antibody responses in activated B cells (78). However, to date this is the first report in 

an animal model of protection against infection with microorganisms due to a decrease in Adar1 

levels. This result was unexpected and opens new opportunities for exploration.  

 

ADAR1 has been identified as a 8top hit9 in multiple genome wide studies to identify targets that 

sensitize cancers to the immune response (69, 70, 79-81). These results have motivated a race for 

ADAR1 inhibitors, and a number of candidates are currently in development (82-84). Considering 

the multitude of dynamic pathways through which ADAR1 may influence infection, there are 

advantages in performing studies in live animals so that the entire host response to the disease can 

be considered. We show here that Adar+/- mice are a robust model to investigate the impact of 

Adar1 on infection. Despite having only mild inflammation and a normal life span, they have 

significant protection from malaria. Promisingly, this suggests that a just a 50% decrease in Adar 

can be beneficial, and that there is ample therapeutic window for targeting ADAR1. In this context, 
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it is timely to investigate the role of ADAR1 in different infections, and to identify the mechanisms 

through which it confers protection.  
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Fig. 1. A reduced level of A-to-I RNA editing by ADAR1 following Plasmodium infection is 

associated with protection from malaria. (A) ADAR1 prevents activation of cytopsolic dsRNA 

receptors and downstream anti-viral immune responses. (B-E) Global A-to-I RNA editing levels 

in human blood determined by analyses of RNA-sequencing data. (B) CD14+ PBMCs of protected 

Fulani and sympatric Mossi individuals uninfected or infected with P. falciparum. Hyperediting 

index (total edited sites/uniquely mapped reads). (Mossi – P. fal (n=4 179.4 +/-62.9 s.d.); Mossi + 

P. fal (n=3 170.1 +/-62.7 s.d.); Fulani – P. fal (n=7 193.4 +/-55.9 s.d.); Fulani + P. fal (n=2 72.0 

+/-5.9 s.d.). (C) Whole blood of malaria-naive Dutch adults following CHMI with P. falciparum 

(GSE50957). Alu editing index (n=5. Pre-challenge vs post-challenge *P=0.0477 paired t-test). 

(D) Whole blood of Malian adults after five rounds of immunization with attenuated P. falciparum 

sporozoites (Sanaria PfSPZ) every 4 weeks (GSE86308). Alu editing index (n=17. Pre-vaccination 

(day -7) vs post-vaccination (day 143) *P=0.0203 paired t-test). (E) PBMCs isolated from malaria-

naive Columbian volunteers, at baseline (T1), after seven rounds of immunization with attenuated 

P. vivax sporozoites (PvRAS) every 8 weeks (T2), and at first diagnosis of infection after a 

subsequent P. vivax challenge (T3) (GSE85263). Alu editing index. (n=15-17. Mean +/- s.d. T1 vs 

T2 *P=0.0291, T1 vs T3 *P=0.0100 ordinary one-way ANOVA with Dunnett9s test for multiple 

comparisons). 
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Fig. 2. Adar+/-  heterozygous mutant mice have a benign Type I IFN phenotype and are 

protected from P. yoelii parasitemia. (A-B) RNA-sequencing analysis of whole blood of adult 

wild-type and Adar+/- mice (n=4 age-matched pairs). (A) Table of differentially expressed (DE) 

genes (27 genes, Adjusted p-value <0.05, Log2 FoldChange>1).  (B) Volcano plot of DE genes. 

Significantly DE genes are shown in red (65 genes, Adjusted p-value <0.05). Gene Rps3a3 is not 

shown. (C) Peripheral blood plasma levels of CXCL10 in wild-type and Adar+/- adult mice (n=12 

age-matched pairs. Mean +/- s.d. **P=0.0019 paired t-test). (D) Western blot analysis of liver of 

wild-type and Adar+/- adult mice (Representative n=2 age-matched pairs). (E) P. yoelii parasitemia 

(% of P. yoelii iRBCs) following tail vein injection with 105 P. yoelii 17XNL:PyGFP infected 

RBCs monitored until resolution of infection (by 30 days) (n=6 age-matched female mice, mean 

+/- s.e.m *P=0.118, Two-way ANOVA with Geisser-Greenhouse correction).  
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Fig. 3. Adar+/- mice are protected from P. yoelii parasitemia independently of the RLR 

pathway. (A-B) RNA sequencing analysis of whole blood of wild-type and Adar+/- adult mice on 

day 7 following infection with P. yoelii (n=3 age-matched pairs). (A) Table of differentially 

expressed (DE) genes comparing day 7 P. yoelii-infected Adar+/- mice with d7 P. yoelii-infected 

wild-type mice. (6 genes, Adjusted p-value <0.05, Log2 FoldChange>1). Genes that are also DE 

when comparing uninfected Adar+/- mice with uninfected wild-type mice are shown in grey, genes 

that are uniquely DE in this data set are shown in black. (B) Volcano plot of differentially 

expressed genes comparing d7 P. yoelii Adar+/- mice with d7 P. yoelii wild-type mice. 

Significantly DE genes shown in red (Adjusted p-value <0.05). (C) A-to-I RNA editing analysis 

of wild-type and Adar+/- adult mice from RNA-sequencing (n=4-5 age-matched pairs. Mean +/-

s.d. (Left) B1 SINE A to G editing index. Wild-type n.s. P=0.3829, paired t-test (n=4); Adar+/- n.s. 

P=0.0549, paired t-test (n=5). (Right) ADAR1 p150 target mRNA A to G editing index. Wild-type 

n.s. P=0.5098, paired t-test (n=4); Adar+/- *P=0.0249, paired t-test (n=5)). (D) Cytokine levels of 

wild-type and Adar+/- mice following P. yoelii infection (d7). (n=8 age-matched pairs. Mean +/- 

s.d. CXCL10 wild-type n.s. P=0.0580, Adar+/-*P=0.0200; TNF³ wild-type n.s. P=0.3317, Adar+/-

*P=0.0485. One-way ANOVA with Tukey9s multiple comparison test). (E) P. yoelii parasitemia 

(% of P. yoelii iRBCs) following tail vein injection with 105 P. yoelii 17XNL:PyGFP iRBCs 

monitored until resolution of infection (by 30 days) (n=3-5 age-matched female mice, mean +/- 

s.e.m. Day14: wt vs Adar+/- *P=0.0277. wt vs Mavss-/- Adar+/- *P=0.0280. Two-way ANOVA with 

Tukey9s multiple comparison test). 
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Fig. 4. Adar+/- mice display T cell phenotypes associated with protection from malaria. (A) 

Percentage (%) of T cells in circulating blood of wild-type and Adar+/- mice (n=6 age-matched 

pairs. Mean +/- s.d. Unpaired t-test.*P<0.05, **P<0.005). (B) Percentage (%) of T cells in spleen 

of wild-type and Adar+/- mice (n=6 age-matched pairs. Mean +/- s.d. Unpaired t-test). (C) Spleen 

weights of uninfected wild-type (n=9) and Adar+/- (n=9) mice (n.s), and P.yoelii infected (day 5) 

wild-type (n=4) and Adar+/- (n=6) mice (*P=0.0361, One-way ANOVA with Tukey9s multiple 

comparison test). (D) Percentage (%) (upper panel) and total number of T cells per g spleen weight 

(lower panel) of P.yoelii infected (day 5) wild-type (n=4) and Adar+/- (n=6) mice (Mean +/- s.d. 

Unpaired t-test. *P<0.05, **P<0.005, ***P<0.0005). 
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