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Abstract

The structures of metalloproteins are essential for comprehending their functions and

interactions. The breakthrough of AlphaFold has made it possible to predict protein structures

with experimental accuracy. However, the type of metal ion that a metalloprotein binds and the

binding structure are still not readily available, even with the predicted protein structure. In this

study, we present DisDock, a physics-driven deep learning method for predicting protein-metal

docking. DisDock takes distogram of randomly initialized protein-ligand configuration as input

and outputs the distogram of the predicted binding complex. It combines the U-net architecture

with self-attention modules to enhance model performance. Taking inspiration from the physical

principle that atoms in closer proximity display a stronger mutual attraction, this predictor

capitalizes on geometric information to uncover latent characteristics indicative of atom

interactions. To train our model, we employ a high-quality metalloprotein dataset sourced from

the Mother of All Databases (MOAD). Experimental results demonstrate that our approach

outperforms other existing methods in prediction accuracy for various types of metal ions.

Introduction 1

Comprehending the interactions between metals and proteins is crucial for grasping the intricate 2

molecular mechanisms underlying physiological processes. Proteins that bind to metal ions, 3

known as metalloproteins, perform many functions within cells, including the storage and 4

transport of metal ions (1). Moreover, it is noteworthy that approximately 38% of entries in the 5

Protein Data Bank (PDB) involve at least one metal ion, and nearly half of all enzymes depend 6

on specific metal associations for their functionality (2; 3). Since the functions of proteins are 7

determined by their structures, understanding the structures of protein-metal complexes will 8

provide scientists with a deeper insight into the functional roles and mechanisms of action of 9

metalloproteins. Experimentally solving protein structures is highly time- and 10

resource-consuming and can pose significant challenges for certain proteins. Consequently, 11

researchers have turned to computational approaches to determine protein structures, achieving 12

significant successes in recent years (4). Previous studies on the computational prediction of 13

metalloprotein structures can be classified into two types. 14

The first type of study involves sequence- and structure-based methods that primarily focus 15

on predicting the protein residues that bind to metal ions (5; 6; 7). These approaches utilize prior 16

knowledge to design amino acid features. Sequence-based methods incorporate composition, 17

position, structural, and physiochemical information as features. On the other hand, 18

structure-based methods utilize features derived from structural motif analogies, such as 19

backbone geometry and 3D arrangement of amino acids. These pre-designed features then 20

served as input for machine learning or deep learning models to identify binding residues in 21
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proteins. While these methods have achieved high accuracy in predicting potential binding 22

residues, few of them can reconstruct the three-dimensional structure of metal-protein 23

complexes. 24

The second kind of method is designed to predict metal ion binding location while providing 25

the metal-protein complex structure (8; 9; 10). One of the current state-of-the-art predictors for 26

metal location is BioMetAll (11), which creates a spherical grid of equidistributed metal probes 27

that embed the entire protein. Then, probes that satisfy several constraints are kept and grouped 28

based on coordinating amino acids. However, it cannot guarantee the existence of a solution 29

when a search region actually contains a metal ion. Another method MIB2 (10) constructs metal 30

ion-binding templates, and utilizes a fragment transformation method to assess the structural 31

similarity between these templates and a given protein structure. The alignment score ranks each 32

prediction, and only those exceeding the set threshold are retained. Despite its advancements, 33

MIB2 still has certain limitations, including reliance on input data quality, considerable 34

computational time for processing, and the inability to carry out a batch of local searches using 35

the web server. 36

Two newly-developed methods, Metal1D and Metal3D (12) were shown to improve the 37

location prediction of zinc ions in protein structures using coordination motifs and 3D 38

convolutional neural networks, respectively. However, structures larger than 3000 residues were 39

not considered, and the models were trained solely on zinc ions, which limits their practical 40

applications. 41

In this paper, we introduce DisDock, a distance-based model that incorporates the U-Net 42

architecture (13) with self-attention modules to predict protein-metal docking. Inspired by the 43

physical principle that atoms in closer proximity exhibit stronger mutual attraction, this predictor 44

leverages input distances to extract hidden features representing the physical interactions among 45

atoms. Importantly, by design DisDock has the potential to accommodate the flexibility of both 46

ligands and proteins. In this study, we focus on docking metal ions to rigid protein structures for 47

16 metal ions commonly seen in protein structures. 48

The rest of this paper is structured in the following way: Section 2 provides details on our 49

dataset and preprocessing procedure. Section 3 outlines the development of our training 50

pipelines, model architectures, and postprocessing procedure. Section 4 presents the main 51

results, focusing on docking accuracy. Finally, in Section 5, we summarize the paper and discuss 52

potential directions for future work. 53

Data 54

In this study, we focus on a dataset called the Mother of All Databases (MOAD) (14; 15; 16), a 55

subset of the Protein Data Bank (PDB) (17). This dataset has the largest ligand-protein binding 56

collections that involve protein crystal structures with a resolution of at least 2.5 Å to clearly 57

identify biologically relevant ligands. In total, there are 331,372 protein-metal binding 58

structures. 59

Data Selection 60

To obtain valid results, our study restricts to high-quality protein-ligand pairs by excluding 61

invalid raw data, such as proteins with missing parts or unknown amino acids. That is, we only 62

focus on metal ions that are investigated in AlphaFill (18), MIB2 (10), or MetalPDB (19). As 63

shown in Table S2 Table, we included 16 types of metal ions in our study: Mg2+, Zn2+, Ca2+, 64

Na+, Mn2+, K+, Fe3+,Ni2+, Co2+, Fe2+, Cu2+, Ba2+, Mo, W 6+, Cu1+, and Cd2+. To prevent 65

information leakage between training and testing datasets, similar pairs are grouped as closely as 66

possible to stay within either the training or test part. we start by using T-Coffee (20; 21) to 67

align protein sequences with structural information and calculate similarity scores between pairs. 68

We then employ the Farthest point algorithm for hierarchical clustering to update distances 69
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between clusters and combine sequences that are alike. Our objective is to ensure that the initial 70

observations in each cluster have a dissimilarity value of 0.3 or lower. Finally, we randomly 71

merge clusters until we have three parts of the data, namely, training, validation and test, with a 72

proportion of 70%, 10%, and 20% of the total pairs, respectively. S2 Table in the Supporting 73

information provides an overview of the occurrence rate for each metal ion. 74

Preprocessing 75

Fig 1. Left: The pairwise distance matrix D. Right: Indicator channel for Carbon. There are 21

channels that signify the atom types of proteins, determined by the specific residue and atom

types they correspond to. Additionally, there is a separate channel dedicated to representing ions.

Thus, they form inputs of size 23 × 256 × 256.

Fig 2. The distribution of Euclidean distances between metal ion to the farthest atom within a

255-atom local region. The majority of distances are less than 18Å.

Pairwise distance matrix: In this study, we assume protein structures are rigid bodies. 76

Given 3D coordinates for ligand of interest, we define a local region containing the closest 255 77

heavy atoms in the protein structures and compute a symmetric pairwise distance matrix D with 78

size 256×256 for a metal ion and the chosen 255 protein atoms in the local region. In Figure 2, 79

we show the Euclidean distance between the real metal binding location and the farthest atom 80

among its closest ones in protein that ranges from 10 Å to 50.7 Å with median being 11.9 Å. 81

The environment with 255 atoms strikes a good balance between including enough information 82

about protein-metal binding and reasonable computational complexity. In mFASD (22), atoms 83

within 5 Å of the bound metal are considered to be its neighborhood, and Wang’s method (23) 84

instructs a probe to move within a box of size 18Å×18Å×18Å. 85

An example of an input data point is shown in the left panel of Figure 1, where the binding 86

location of a magnesium ion is to be predicted. The left plot represents the distance matrix with 87

all diagonal elements being 0. Two green bars indicate distances between Mg2+ and local atoms 88

in the protein. The blue region shows pairwise distances among atoms on the corresponding 89

protein structure. Because each metal ligand only has one atom, the size of D is 256×256. For 90
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the current study where proteins are fixed as rigid objects, only the distances between the metal 91

and protein atoms (the green region) need to change during the training process and distances 92

among the protein atoms (blue region) are invariant. 93

An example of atom type channels, a channel for the C atom of amino acids, is shown in the 94

right panel of Figure 1. A value of 1 is assigned to any row or column corresponding to the C 95

atom, and a value of 0 to all other positions. The encoding of each atom is based on its amino 96

acid residue and type, and additional information can be found in Supporting information S1 97

Table. The input consists of a distance matrix on the first channel, followed by 21 channels 98

indicating atom types, and one channel representing the metal ion. The resulting output has the 99

size of 23×256×256. To generate inputs, we simulated initial metal ion locations using 100

Algorithm 1 to mimic 3D random walk affected by a large temperature parameter T to ensure a 101

random initial state. Then, given rigid proteins and simulated metal ion initial locations, we 102

produce corresponding input boxes of size 23×256×256 for each ligand-protein pair. 103

Data Augmentation: Our goal is to predict the protein-metal complex of a protein and its 104

metal ligand by moving the metal ion to its binding position in a chosen local region of the 105

protein (a subset of atoms close to a location on the protein surface). In practice, the local region 106

is not known since the binding position of the metal is not known. A plausible approach to 107

address this is to predict the local region (or binding residues) first, and then predict the binding 108

position of the metal with the predicted local region. As the predicted local region may have 109

various degrees of overlap with the true local region, to simulate this situation of non-ideal local 110

regions, we select multiple local regions from each protein-metal complex by varying the degree 111

of overlap of selected local regions with the true local region. We expand our testing data by first 112

randomly selecting five atoms from the 30 closest protein atoms to the metal ion. Using each of 113

these neighboring atoms as a center, we then select 255 atoms closest to that center to form the 114

local region. 115

Algorithm 1 Generating initial location

Given CrtLoc: Current location for metal ion;

Atoms: protein atoms’ axes;

Direction = [left, right, forward, backward, up, down]

NumSteps ∼Uni f orm(1,100)
for step in NumSteps do

T = 700
step+1

for direction j in Direction do

LenStep j ∼ N(0.5, 0.1)

Move CrtLoc along j by LenStep j as candidate C j

S j =
∑m ∥C j−Atomm∥

2
2

T

end for

Choose a direction d with pd = 1
∑i exp(Si−Sd)

CrtLoc = Cd

end for

Methods 116

The process of predicting protein-metal ion binding locations is presented in Figure 3 (a). The 117

metal ion-protein complex is represented as a matrix of size 23×256×256. Then the DisDock 118

model predicts a pairwise distance matrix with size 1×256×256, and the estimated metal ion 119

coordinates are provided after the postprocessing procedure. 120
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Fig 3. The overview of the redocking procedure. In the metal ion-protein complex, the true location of the metal ion is

marked in red, while the randomly generated metal ion is represented in pink within the green protein environment. The

complex is then encoded as an input including the relative distance between the actual protein and the initialized metal

ion (pink), as well as the types of atoms in the local pocket environment. The DisDock model is used to learn atom-atom

protein-metal ion interaction. Eventually, the predicted interaction is processed to estimate the metal ion location.

Network Architecture 121

Prior work commonly employs an encoder-decoder network (24), comprising downsampling 122

layers followed by a bottleneck layer and subsequent upsampling. Given the significant overlap 123

of input and output distance matrices, direct information transfer offers notable benefits. In light 124

of the premise, our foundational model is inspired by the ’U-net’ architecture (25), 125

implementing skip connections that interlink the i-th and (n− i)-th layers (with n layers total) to 126

augment information dissemination. Alongside these connections, the ’U-net’ structure 127

integrates two modules: Ck for gradual downsampling and CDk for upsampling. The former 128
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employs Convolution-Instance Norm-Leaky ReLU layers with k filters, while the latter employs 129

Convolution-Instance Norm-Dropout-ReLU layers, also with k filters. Additional details can be 130

found in the GitHub repository (26). 131

Fig 4. The axial-attention block comprises two successive axial-attention layers, which are applied

sequentially along the height and width axes. The input is directed into these axial-attention layers, and the

ensuing output undergoes processing by a convolutional layer to reorganize the latent features. To facilitate

seamless information and gradient propagation during training, a skip connection is employed. Notably, the

model integrates 8 attention heads. The illustration is derived from the architectural diagram presented in the

paper ”Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation” (27).

Axial-attention module (28): Ever since its inception, the attention mechanism has gained 132

widespread utilization for capturing and encoding long-range interactions, leading to numerous 133

instances of cutting-edge performance (29; 30; 31). Nonetheless, the utilization of global 134

self-attention encounters limitations when dealing with high-resolution images due to its 135

computationally intensive nature, as it necessitates calculating relationships between every pixel 136

and all others. A solution to this predicament involves decomposing 2D self-attention into two 137

separate 1D self-attentions. This method is exemplified through the integration of axial attention 138

module denoted as Ak, with k denoting the number of filters. The architecture of this 139

self-attention module draws inspiration from (27). As showcased by Figure 4, each 140

axial-attention block encompasses a convolutional layer, succeeded by two consecutive 141

axial-attention blocks applied sequentially along the height and width axes. Subsequently, the 142

outputs undergo an additional convolutional layer, followed by the integration of a skip 143

connection to amplify performance. Further details are accessible at GitHub repository (32). 144

Atom-atom U-net with attention (DisDock): In order to take more information from 145

protein atoms, we use both height- and width-axial self-attention blocks in the U-net 146

architecture, which calculate weights by incorporating the distances among protein atoms. 147

Specifically, our model can break down into multiple modules: a U-net encoder which contains: 148

C128-A128-A128-A128-C256-A256-C512-C1024-C2048-C4096, and a decoder consists of 149

CD2048-CD1024-CD512-CD256-CD128. After the last layer in the decoder, a convolution is 150

applied and followed by a Tanh to provide a predicted pairwise distance matrix D̂ that captures 151

the interaction between environmental protein atoms and the metal ion. The whole model is also 152

elaborated in Figure 3 (b). The yellow, red, and blue blocks represent the features obtained after 153

the convolutional layer, axial-attention layer, and skip connection, respectively. The labeled 154

numbers indicate the dimensions of the hidden features. 155

Hyperparameters: The working environment is NVIDIA Quadro RTX 8000. In the training 156

process, we choose Adam optimizer with β1 = 0.5 and β2 = 0.999. We trained our model for 60 157

epochs, the first 30 epochs have a learning rate of 0.0001, and it decays linearly in the following 158

30 epochs. 159
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Methods Percentiles % Below Threshold

25% 50% 75% Mean 2 Å 4 Å

DisDock 1.7 2.7 4.5 3.3 32.7 69.0

BioMetAll 4.4 6.2 8.0 6.2 1.7 17.0

Wang et al. 3.3 5.5 7.6 5.5 5.3 19.2

AutoDock Vina 3.7 4.7 5.6 4.7 0 31.0

Wang et al. (Cu) 3.4 5.0 6.7 5.1 4.7 34.5

Table 1. Performance comparison is conducted across various methods, with a focus on

predictions that are within a Euclidean distance of less than 10 Å from the true location.

AutoDock Vina: PDB files are handled through multiple preprocessing steps, and 34% of testing

data are applicable and shown. More details of AutoDock Vina and related tools can be found in

the document (33; 34; 35; 36) . Wang et al. (Cu): While their model can be applied to all metal

ions, it is solely trained on the copper ion. Therefore, model performances on the entire set and

copper subset are shown on the third and last row, respectively.

Postprocessing 160

Given the coordinates of neighboring protein atoms and predicted pairwise distance matrix D̂,

the location of the metal ion can be estimated. First, vectors located in the green region, in

Figure 3 (c), are averaged r = (rrow +rcolumn)/2, which represents the estimated distance

between each atom in protein and the metal ion. The coordinates of metal ion and the i-th atom

in protein are x= (x1,x2,x3)
T and pi = (pi,1, pi,2, pi,3)

T , respectively. Then the Euclidean

distance between them is

d(pi,x) =

√

√

√

√

3

∑
j=1

(pi, j − x j)2 = ri

where ri is the i-th element in r. 161

Thus, the difference of squared distance with respect to the baseline p1 becomes 162

d2(pi,x)−d2(p1,x) = r2
i − r2

1, which can be reformulated as: 163

2
3

∑
j=1

x j(pi, j − p1, j) = r2
i − r2

1 +
3

∑
j=1

(p2
i, j − p2

1, j)

for i=2,3,. . . ,255. 164

In a matrix form, it can be rewritten as

Ax= b

where A =
[

2(pi, j − p1, j)
]

i=2,3,...,255; j=1,2,3
and the i-th element of b is

bi = r2
i − r2

1 +∑3
j=1(p2

i, j − p2
1, j). The best estimation of ligand coordinates can be obtained by

minimizing mean squared error, in the following form:

x̂= (AT A)−1ATb.

Results 165

Table 1 displays the performance of various models, evaluated using two criteria: Euclidean 166

distance between the predicted and actual locations, and the proportion of predicted locations 167

that fall within a specified search region. Two commonly used thresholds are 2 Å and 4 Å. To 168

ensure a fair comparison, BioMetAll and AutoDock Vina (37) use the same center of the local 169

region that was used during data augmentation, investigating potential binding within a sphere of 170

a 10 Å radius, which is the minimal search region in our model (Figure 2). Narrowing the search 171
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Fig 5. An example of redocking shown by 1PL8, specifically chain C at position 402 with Zn2+.

The true location of the metal ion is depicted in red, while the blue and gray dots represent the

predicted and initial locations, respectively. Three predictions, referred to as cases 1 through 3,

were conducted using different initial locations and search environments. These search

environments were centered around three residues: ASER at position 46 (highlighted in yellow),

LYS at position 344 (highlighted in pink), and GLU at position 155 (highlighted in green). The

colors in the shared area are blended together.

region can lead to improved results due to the integration of additional prior knowledge, thus a 172

10-angstrom search area is suggested to yield the most optimal results. Wang et al. choose a 173

search radius of 18 Å after fine-tuning. Besides, BioMetAll yields multiple putative metal 174

coordinates, and the group center includes the most candidate probes is chosen for each instance. 175

Furthermore, grid sizes of 1 and 0.5 have been explored, as they do not exhibit a significant 176

difference and the latter is considerably more time-intensive, the presented results utilize the 177

default grid size 1. Our model was selected based on validation performance and tested on 178

augmented testing data with 49,300 instances. 179

The results for the three methods evaluated on all augmented testing data are shown in the 180

first three rows. Our DisDock model demonstrates better performance by achieving higher 181

precision compared to the other models, and the median and mean Euclidean distance are 2.7 Å 182

and 3.3 Å, respectively. Using commonly used thresholds of 2 Å and 4 Å as measures for 183

success, our model successfully redock about 30% and 70% of cases, respectively, while other 184

models have rates of less than 20%. Regarding AutoDock Vina, which is designed for docking 185

with multi-atom ligands, not all metal-binding complexes can be properly preprocessed. In the 186

fourth row, the results are limited to 34% of the testing data that remain after preprocessing. In 187

addition, Wang et al. trained their model specifically for copper ions, so the last row illustrates 188

their model performance on a subset of all copper ions. For these two subsets, our model 189

maintains predictive power as it is in the entire data and still outperforms the other models. 190

Detailed measurements are excluded here, with the full table accessible in Supporting 191

information S3 Table. 192

Figure 5 demonstrates the performance of the DisDock model for predicting the precise 193

location of Zn2+ on chain C of 1PL8. The actual location of the metal ion is indicated by the red 194

point. Utilizing DisDock, three predictions were carried out, each with a distinct initial location 195

and search region. These search regions are depicted as yellow (centered on residue ASER at 196

position 46), pink (centered on residue LYS at position 344), and green (centered on residue 197

GLU at position 155) for cases 1 through 3, while the corresponding initial metal locations are 198

represented as gray dots in the figure. Despite the relatively large search regions encompassing 199

neighboring atoms of the centered residues, the DisDock model achieves accurate predictions 200
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for the precise location of Zn2+ in all cases. Notably, the model’s performance remains 201

consistent irrespective of the chosen initial locations and search regions. 202

Discussion 203

In this study, we developed DisDock, a deep learning method to predict protein-metal binding 204

complex structures given the protein structure and the type of metal ion. DisDock has achieved 205

significantly better performance than existing methods in terms of two commonly used metrics 206

on a large dataset. DisDock combines the U-net architecture with self-attention modules, 207

thereby more effectively encoding geometric features using atom-atom distance information as 208

input. DisDock aims to learn the atom-atom distance matrix of the true protein-metal complex, 209

mimicking the real protein-metal binding process. In this process, the metal ion starts from a 210

location away from the true binding position and ”finds” its way to the true binding position 211

driven by the physical interactions between the metal ion and protein atoms around the binding 212

site. By mimicking the physical process, our model therefore may learn the parameters that 213

resemble the actual physical interactions among the atoms. Future works that analyze the 214

learned parameters may shed lights on the real physics of protein-metal binding. 215

Metal1D and Metal3D mentioned earlier take the entire protein as input and only predict 216

zinc binding. Therefore, we did not compare our method with Metal1D and Metal3D. Moreover, 217

certain techniques developed for multi-atom ligands (37; 38) also fall short when applied to 218

metal ions. For instance, GNINA (38) excludes ligands with weights less than 150 Da during 219

training, and most metal ions are lighter than 150 Da. Considering docking engines, such as 220

AutoDock Vina, that require multiple preprocessing steps, the proper handling of all 221

metal-binding complexes becomes a challenge. It is even more complicated when taking 222

experimental structures (for instance, from the Protein Data Bank) as input because waters, 223

co-factors, and ions seemed unnecessary for the docking need to be removed beforehand. Then 224

receptors and ions need to be prepared separately. 225

In this study, we have generated the data with the knowledge of the protein-metal binding 226

complex structures. While being a limitation for the current setting, the framework has the 227

potential to handle the flexibility of proteins, thanks to the computational efficiency gained by 228

including only a subset of protein atoms. By augmenting the data to generate local regions 229

partially overlapping with the true local region formed by the subset of atoms closest to the 230

metal ion, the augmented data resembles the realistic scenario where we predict the local region 231

and start from a predicted local region. Our result showed that even if starting from a local 232

region partially overlaps with the true local region, very satisfactory performance can be 233

achieved, indicating that an end-to-end pipeline can be successfully built. This pipeline will start 234

from whole proteins by first predicting a subset of atoms close to the metal binding site and then 235

using that subset of atoms to predict the protein-metal binding. Some methods have been 236

developed for this purpose, which can be used to build the end-to-end pipeline. 237

Future work will focus on investigating increasingly complex scenarios to advance the 238

accuracy and capacity for generalization of the technique. This includes exploring the docking 239

of multi-atom ligands, accommodating the flexibility of proteins during the docking process, and 240

tackling blind docking challenges. Furthermore, the exploration of cutting-edge architectures 241

will be conducted to enhance the capabilities of molecular docking algorithms and elevate their 242

performance in a wide range of molecular docking scenarios. 243
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Supporting information 244

S1 Table. Specification of protein atom channel. When generating input of size 245

23×256×256, each environment atom is encoded based on its amino acid residue and type. 246

For instance, the rows and columns corresponding to nitrogen will be assigned a value of 1 on 247

the 17th channel if this nitrogen atom comes from residues ARG. 248
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Metal ions train val test total

MG 8273 1418 2723 12414

ZN 8550 1061 2236 11847

CA 6570 649 2122 9341

NA 3267 382 1296 4945

MN 2555 732 465 3752

K 1980 200 443 2623

FE 721 122 175 1018

NI 537 148 55 740

CO 399 53 124 576

FE2 341 39 167 547

CU 207 46 25 278

BA 66 1 7 74

MO 18 16 26 60

W 36 16 0 52

CU1 8 9 2 19

CD 5 1 0 6

Total 33533 4893 9866 48292

S2 Table. Metal ions investigated in this study and their sample sizes in the training, 249

validation, and test data. 250

S1 Fig. Model performance by distance from metal ion. Figure illustrates the performance 251

of our model with respect to translations of the environment center relative to the metal ion. The 252

x-axis of the plot shows the Euclidean distance between the metal ion and the augmentation 253

center, represented by dcenter and divided into discrete intervals. The y-axis of the top panel 254

represents the precision of the model’s predictions, and the bottom panel shows a histogram of 255

the number of instances. Our model performs well when dcenter is less than or equal to 6 Å, with 256

a mean and median around 2.5 Å or less. However, as the augmentation center moves away from 257

the metal ion, the task of accurately predicting the true metal binding conformation becomes 258

more challenging. . 259
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S2 Fig. Model performance by metal ion type. The performance of the model for different 260

types of metal ions is demonstrated in Figure . The horizontal axis of the figure shows 14 types 261

of metal ions, excluding W 6+ and Cd2+ which were not present in the testing data. The vertical 262

axis shows the conformational precision measured in Euclidean distance. While the prediction 263

accuracy varies across different types of metal ions, the majority of them have a median 264

Euclidean distance of less than 3 Å. 265

Methods Percentiles % Below Threshold

25% 50% 75% Mean 2 Å 4 Å

DisDock 1.7 2.7 4.5 3.3 32.7 69.0

BioMetAll 4.4 6.2 8.0 6.2 1.7 17.0

Wang et al. 3.3 5.5 7.6 5.5 5.3 19.2

DisDock 1.6 2.4 3.9 3.0 37.6 75.6

AutoDock Vina 3.7 4.7 5.6 4.7 0 31.0

DisDock 2.1 2.6 3.8 3.3 20.1 76.1

Wang et al. (Cu) 3.4 5.0 6.7 5.1 4.7 34.5

S3 Table. A detailed performance comparison across various computational methods. The 266

DisDock method exhibits notably superior performance in prediction precision across multiple 267

metrics, including different percentile measures and percentages below given distance thresholds, 268

relative to other methods. Two additional subset performances are included: results utilizing 269

DisDock on AutoDock Vina processed testing data, and results specifically for copper ions. 270
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