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Abstract. Personalized computational simulations have emerged as a vital tool to understand the
biomechanical factors of a disease, predict disease progression, and design personalized interven-
tion. Material modeling is critical for realistic biomedical simulations, and poor model selection
can have life-threatening consequences for the patient. However, selecting the best model requires
a profound domain knowledge and is limited to a few highly specialized experts in the field. Here
we explore the feasibility of eliminating user involvement and automate the process of material
modeling in finite element analyses. We leverage recent developments in constitutive neural net-
works, machine learning, and artificial intelligence to discover the best constitutive model from
thousands of possible combinations of a few functional building blocks. We integrate all discov-
erable models into the finite element workflow by creating a universal material subroutine that
contains more than 60,000 models, made up of 16 individual terms. We prototype this workflow
using biaxial extension tests from healthy human arteries as input and stress and stretch profiles
across the human aortic arch as output. Our results suggest that constitutive neural networks
can robustly discover various flavors of arterial models from data, feed these models directly into
a finite element simulation, and predict stress and strain profiles that compare favorably to the
classical Holzapfel model. Replacing dozens of individual material subroutines by a single uni-
versal material subroutine—populated directly via automated model discovery-will make finite
element simulations more user-friendly, more robust, and less vulnerable to human error. Democ-
ratizing finite element simulation by automating model selection could induce a paradigm shift
in physics-based modeling, broaden access to simulation technologies, and empower individu-
als with varying levels of expertise and diverse backgrounds to actively participate in scientific
discovery and push the boundaries of biomedical simulation.
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1 Motivation

Computational simulations play a pivotal role in understanding and predicting the biomechanical
factors of a wide variety of cardiovascular diseases [8,60,61]. In vascular medicine, knowing the
precise stress and strain fields across the vascular wall is critical for understanding the formation,
growth, and rupture of aneurysms [28]; for identifying high-risk regions of plaque formation,
rupture, and thrombosis [48]; and for optimizing stent materials, structure, and deployment in
aortic stenosis [31]. The accurate simulation of cardiovascular disease is a complex challenge that
requires collective efforts across a multitude of disciplines including cardiovascular medicine, ap-
plied mathematics, biomechanics, and computer science [44]. Clearly, it is impossible that every-
one has a specialized training in material modeling and an in-depth knowledge in finite element
simulation [10]. However, selecting a poor material model does not only jeopardize the success
of the entire simulation, but can have life-threatening consequences for the patient. The objective
of this manuscript is to explore whether and how we can automate the process of material modeling and its
integration into a finite element analysis.

Constitutive neural networks autonomously discover material models from data. Through-
out the past couple of years, two alternative strategies have emerged to discover models directly
from data: non-interpretable and interpretable approaches. Non-interpretable approaches closely fol-
low traditional neural networks and typically discover functions of rectified linear unit, softplus,
or hyperbolic tangent type [19]. Representatives of this category are tensor basis Gaussian process
regression [14,15], plain constitutive artificial neural networks [26,32], and neural ordinary differ-
ential equations [54,56]. These approaches are straightforward to implement, provide an excellent
approximation of the data, and can be integrated manually within finite element software pack-
ages [19,55]. However, the models and parameters that these methods learn are non-interpretable,
meaning they provide little insight into the underlying material behavior [46]. Interpretable ap-
proaches discover models that are made up of a library of functional building blocks that resemble
traditional constitutive models. Representatives of this category are sparse regression [11,12],
symbolic regression [2], and custom-designed constitutive neural networks [34, 53], the method
we adopt here. These approaches a priori satisfy material objectivity, material symmetry, thermo-
dynamic consistency, and polyconvexity [30], and autonomously discover free energy functions
that feature popular constitutive terms and parameters with a clear physical interpretation. By
design, all three translate smoothly into user material subroutines for a finite element analysis [1],
and we could adopt any of these interpretable approaches. Here, for illustrative purposes, we use
a custom-designed constitutive neural network to discover the best constitutive model for aortic
tissue from thousands of possible combinations of a few functional building blocks [33]. We in-
tegrate all discoverable models into the finite element workflow by creating a universal material
subroutine that contains 21 = 65,536 constitutive models, made up of 16 individual terms [35].
We train and test our network with biaxial extension tests of the medial and adventitial layers of a
human aorta, and discover various flavors of arterial models from the experimental data [25,40].

Model discovery is a non-convex optimization problem with multiple local minima. Unfortu-
nately, in practice, the sixteen terms of the network tend to span a parameter space with multiple
local minima, the network often discovers non-sparse solutions, and model discovery can become
non-unique [38]. A successful strategy to address these limitations is L, regularization [11], a
powerful method to shrink the parameter space by penalizing the loss function with a penalty
term that consists of the L, norm of the parameter vector, weighted by a penalty parameter [5].
To illustrate the potential of L, regularization, we first use Lo regularization, or discrete combina-
torics [13], to discover the best-in-class one- and two-term models and then use L; regularization,
or lasso [58], to systematically reduce the number of terms. This allows us to discover a suite of
different models for the media and for the adventitia, and learn about their structural and me-
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chanical differences [21].

Mechanical differences in media and adventitia modulate the pathogenesis of cardiovascu-
lar disease. Understanding the subtle structural and mechanical distinctions between the media
and adventitia layers of the aorta is crucial for comprehending vascular health and disease [28].
The media is rich in smooth muscle cells and elastin fibers to provide elasticity and contractility,
and facilitate hemodynamic function, while the adventitia is made up primarily of fibroblasts and
collagen fibers to provide structural support [23]. Disruptions in the delicate structural and me-
chanical balance between the media and the adventitia contribute to pathological conditions such
as aortic aneurysms, thrombosis, or stenosis [24]. Mechanical heterogeneity plays a pivotal role
in the pathogenesis of these conditions: Alterations in the isotropic extracellular matrix can lead
to vessel dilation, while changes in the anisotropic collagen content can affect overall integrity.
Finite element models that account for layer-specific structural and mechanical properties are crit-
ical to accurately simulate disease progression, assess rupture risk, and develop targeted interven-
tions [16]. A comprehensive understanding of the interplay between the layers of the aorta can
inform strategies for early detection, risk stratification, and tailored therapeutic approaches in the
benefit of cardiovascular health.

Automated model discovery does democratize finite element simulations. For more than half
a century, scientists have developed constitutive models for biological tissues [22] and today’s fi-
nite element packages offer large libraries of material models to choose from [1,3,36,57,60]. How-
ever, the scientific criteria for appropriate model selection remain highly subjective and prone to
user bias. Importantly, the objective of our study is not to discover yet another marginally better
constitutive model. Instead, our goal is to prototype an intelligent and automated workflow—from
experiment to simulation— to robustly discover constitutive models from data [33], feed these
models directly into a finite element simulation [45], and reliably predict physically meaningful
stress and strain profiles. If successful, this new technology could make physics-based simulation
more user-friendly, more accessible, and less vulnerable to human error.

2 Experiment

We begin by briefly describing our experimental data from the healthy human aorta of a 56-year-
old male [40], collected as an intact tube within 24h of death, and stored in saline solution [25].
The sample was cleared, dehydrated in ethanol, and stored in benzyl alcohol-benzyl benzoate, all
at room temperature. For the structural characterization, second harmonic generation imaging
was used to quantify two microstructural parameters: the collagen fiber angle a with respect to
the circumferential direction, and the fiber dispersion x [49]. In the circumferential-axial plane, the
median collagen fiber angle was « = +7.00° with a fiber dispersion of x = 0.0737 for the media
and & = £66.78° with a fiber dispersion of ¥ = 0.0909 for the adventitia [25,41].

For the mechanical characterization, a squared 20x20 mm sample of the media and a cruciform-
shaped 35x35mm sample with a squared 5x5mm center testing region of the adventitia were
manually separated from the remaining tissue and tested in biaxial extension while submerged in
saline solution at 37°C. To ensure a homogeneous deformation state, both samples were mounted
with the collagen fibers oriented symmetrically with respect to the two loading directions, and
loaded at five different stretch ratios, Acr @ Ayq = {1.20 : 1.10,1.20 : 1.15,1.20 : 1.20,1.15 :
1.20,1.10 : 1.20}. Tables 1 and 2 summarize the resulting five pairs of datasets, {Air, 0cir } and
{Aaxt, Oax1 }, for the media and for the adventitia [40]. Figure 1 illustrates the circumferential and ax-
ial stress-stretch relations of the media, left, and of the adventitia, right, of the 56-year-old healthy
human aorta.
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Table 1: Biaxial testing of human aortic media. Samples are stretched biaxially in the circumferential and axial
directions at A, and A,y at five different stretch ratios. The mean fiber angle is £7.00° against the circumferential
direction. Stresses are reported as o, and o,,;, see Figure 1 [25,40].

media media media media media
off-x1.0 off-x1.5 equi-biax off-y1.5 off-y1.0
[ Adir 1 Aag = 120 : 100 [ Agir : Agyg = 120 : T.I5 [ Agir 1 Apgyg = 1.20:1.20 [ Agir : Apyg = 1.I5:1.20 | Agir : Ay = 1.10:1.20 |

Acir Ocir Taxl Acir Ocir Taxl Acir Ocir Taxl Acir Ocir Taxl Acir Ocir Taxl

[-1 [kPa] | [kPa] [-1 [kPa] | [kPa] [-1 [kPa] | [kPa] [-] [kPa] | [kPa] [-] [kPa] | [kPa]
1.000 | 0.00 0.00 1.000 | 0.00 0.00 1.000 0.00 0.00 1.000 | 0.00 0.00 1.000 | 0.00 0.00
1.013 | 1.92 0.20 1.013 | 1.67 0.05 1.013 1.92 0.64 1.009 | 1.27 0.16 1.006 | 0.33 0.53
1.025 | 3.98 0.47 1.025 | 3.07 0.40 1.025 3.93 1.43 1.019 | 2.70 1.09 1.013 | 0.57 1.47
1.038 | 7.14 0.89 1.038 | 6.01 0.79 1.038 7.57 3.85 1.028 | 4.82 2.82 1.019 | 1.76 2.56
1.050 | 11.15 2.54 1.050 | 10.01 2.88 1.050 12.11 6.75 1.038 7.63 5.26 1.025 3.76 4.10
1.063 | 15.75 451 1.063 | 14.36 5.53 1.063 17.11 10.24 1.047 | 11.09 8.17 1.031 6.12 6.24
1.075 | 20.86 7.05 1.075 | 19.07 | 8.76 1.075 | 2256 | 1443 | 1.056 | 1521 | 11.19 1.038 | 8.72 8.77
1.088 | 26.22 | 9.27 1.088 | 24.56 | 12.07 || 1.088 | 28.33 | 18.85 || 1.066 | 19.65 | 14.11 1.044 | 11.78 | 11.37
1.100 | 31.29 | 12.28 1.100 | 30.07 | 15.80 1.100 | 34.28 | 22.86 || 1.075 | 24.26 | 17.64 1.050 | 14.60 | 14.35
1.113 | 36.77 | 15.20 1.113 | 36.02 | 19.45 1.113 | 4044 | 27.00 || 1.084 | 28.87 | 21.54 1.056 | 17.62 | 17.54
1.125 | 42.62 | 18.12 1.125 | 42.04 | 23.59 1.125 | 47.08 | 32.27 || 1.094 | 33.78 | 25.73 1.063 | 20.78 | 20.95
1.138 | 48.84 | 21.17 || 1.138 | 48.54 | 27.75 1.138 | 5451 | 37.36 || 1.103 | 38.76 | 29.90 1.069 | 24.07 | 24.63
1.150 | 55.32 | 24.44 1.150 | 55.49 | 31.61 1.150 | 62.11 | 42.29 || 1.113 | 43.77 | 34.20 1.075 | 27.44 | 28.40
1.163 | 62.16 | 27.17 || 1.163 | 62.66 | 35.85 1.163 | 70.36 | 47.53 | 1.122 | 49.00 | 38.92 1.081 | 30.81 | 32.11
1.175 | 69.74 | 30.67 || 1.175 | 70.20 | 40.71 1.175 | 79.90 | 53.11 || 1.131 | 54.53 | 43.60 1.088 | 34.18 | 35.97
1.188 | 78.37 | 33.93 1.188 | 79.51 | 45.23 1.188 | 90.40 | 59.34 || 1.141 | 60.95 | 48.59 1.094 | 38.11 | 40.00
1.200 | 89.82 | 39.69 1.200 | 90.02 | 51.84 1.200 | 101.14 | 66.98 | 1.150 | 69.13 | 55.49 1.100 | 43.50 | 45.16

Table 2: Biaxial testing of human aortic adventitia. Samples are stretched biaxially in the circumferential and axial
directions at A, and A,y at five different stretch ratios. The mean fiber angle is +66.78° against the circumferential
direction. Stresses are reported as o, and o,,, see Figure 1 [25,40].

adventitia adventitia adventitia adventitia adventitia
off-x1.0 off-x1.5 equi-biax off-y1.5 off-y1.0
[Acir 1 Aaa = 120110 J[ Agir : Agyg = 120 : T.I5 [ Agir : Apyg = 1.20: T.20 [ Agir : Aga = 115 : 120 [ Agir : Ay = 1.10:1.20 |

)\cir Ocir Taxl )\cir Ocir Taxl )\cir Ocir Taxl )\cir Ocir Taxl /\cir Ocir Taxl

[-1 [kPa] | [kPa] [-] [kPa] | [kPa] [-1 [kPa] | [kPa] [-] [kPa] | [kPa] [-] [kPa] | [kPa]
1.000 | 0.00 0.00 1.000 | 0.00 0.00 1.000 | 0.00 0.00 1.000 | 0.00 0.00 1.000 | 0.00 0.00
1.013 | 0.42 0.12 1.013 | 0.28 0.71 1.013 | 1.12 0.16 1.009 | 0.88 0.60 1.006 | 0.53 0.12
1.025 | 0.90 0.33 1.025 | 1.00 1.11 1.025 | 1.68 1.08 1.019 | 1.45 1.51 1.013 | 0.99 1.50
1.038 | 1.51 0.94 1.038 | 1.59 1.63 1.038 | 2.52 2.28 1.028 | 2.22 2.57 1.019 | 1.53 2.00
1.050 | 2.31 1.58 1.050 | 2.20 2.23 1.050 | 3.41 3.26 1.038 | 3.03 3.52 1.025 | 2.02 2.34
1.063 | 3.08 2.21 1.063 | 2.78 292 1.063 | 4.18 3.97 1.047 | 3.63 4.48 1.031 | 2.42 2.86
1.075 | 3.73 2.80 1.075 | 3.62 3.73 1.075 | 4.95 4.73 1.056 | 4.07 5.45 1.038 | 2.90 3.84
1.088 | 4.58 3.29 1.088 | 4.47 440 1.088 | 5.78 5.84 1.066 | 4.66 6.00 1.044 | 3.39 456
1.100 | 5.12 414 1.100 | 5.32 5.29 1.100 | 6.62 7.10 1.075 | 4.88 7.04 1.050 | 3.98 5.43
1.113 | 6.28 4.66 1.113 | 6.28 6.24 1.113 | 7.48 8.64 1.084 | 5.52 8.90 1.056 | 4.40 6.11
1.125 | 6.99 5.52 1.125 | 7.19 7.45 1.125 | 8.49 10.19 1.094 | 5.88 10.74 1.063 | 5.06 7.01
1.138 | 7.99 6.32 1.138 | 8.23 8.67 1.138 | 9.82 11.81 1.103 | 6.63 12.55 1.069 | 5.87 8.08
1.150 | 9.28 7.01 1.150 | 9.48 10.05 1.150 | 11.26 | 1347 | 1.113 | 7.82 14.37 || 1.075 | 6.70 9.47
1.163 | 10.49 8.01 1.163 | 10.84 | 11.60 1.163 | 12.73 | 15.51 1.122 | 9.27 16.36 1.081 | 7.57 11.15
1.175 | 11.57 | 9.14 1.175 | 12.25 | 12.93 1.175 | 14.56 | 18.43 1.131 | 10.89 | 18.96 1.088 | 8.41 13.10
1.188 | 13.10 | 10.05 1.188 | 14.22 | 14.78 1.188 | 17.23 | 23.00 1.141 | 12.74 | 23.06 1.094 | 9.82 16.50
1.200 | 15.59 | 12.13 1.200 | 17.03 | 17.51 1.200 | 2092 | 29.77 || 1.150 | 17.21 | 32.69 1.100 | 11.41 | 23.63

3 Model

Kinematics. During testing, particles X of the undeformed sample map to particles x = ¢(X)
of the deformed sample via the deformation map ¢. Its gradient with respect to the undeformed
coordinates X is the deformation gradient, F = V x¢. Its spectral representation introduces the
principal stretches A; and the principal directions N; and n; in the undeformed and deformed
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Figure 1: Biaxial testing of human aortic media and adventitia. Samples are stretched biaxially in the circumferen-
tial and axial directions at A, and A, at five different stretch ratios, from dark red to dark blue. The mean fiber angles
of the media and adventitia are +7.00° and +66.78° against the circumferential direction. Stresses are reported as o,
and o,,), see Tables 1 and 2 [25, 40].

configurations, where F - N; = A; n;, and
F=Vxp=Y7,Ain®N;. 1)

We assume that the vascular tissue has two pronounced fiber directions [21], ng; and np, with
unit length, || np; || = 1 and || ng2 || = 1, in the undeformed configuration, which map onto the
pronounced directions, ny = F -ny and np = F - nyy, with fiber stretches, ||n1|| = Ay and
||n2|| = Anz, in the deformed configuration. We characterize its deformation state through the
three principal invariants I, I, I3, and six additional invariants Iy, Is, Is, I7, I3, Iy [51],

L= [F*-F]: 1 =M1+ A+ A3

L=3[§—[F-F]:[FF]] = A3 + 305 + A3

L= det(F F) — NN =P o
14: n01-[Ft-F] -1101:/\%1 15 :n01-[ Ft-F ]Z-nm

16: noz'[Pt'F] '1102:)\%2 17 :1102'[ Ft'P ]2'}’102

Is= ny - [F'-F] -nop|[ne-nop] Iy = [n01 - 12| = cos?(2a) .

A perfectly incompressible material has a constant Jacobian equal to one, I3 = J> = 1, the ninth
invariant is constant by definition, Iy = const., and the set of independent invariants reduces to
seven, Iy, Ip, Iy, Is, Ig, I7, Is.

Biaxial extension. For the special homogeneous deformation of biaxial extension, we apply
stretches Ay > 1 and Ay > 1 in the circumferential and longitudinal directions, and adopt the
incompressibility condition, I; = A2A3A% = 1, to express the stretch in the radial direction,
Az = (A1 A2)71 < 1. We assume that the fiber pairs, initially oriented at an angle +a to the
circumferential direction, nyp = [cos(a), +sin(a),0]!, remain symmetric with respect to the stretch
directions, such that the deformation remains homogeneous and shear free, and the deformation
gradient,

F = dlag{ A1, Ag, ()L1/\2)71} (3)
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remains diagonal at all times. We now use the the principal stretches A; and A, to express the
invariants (2),

L = A2+ A%+ (MAg) 2

L = A2+ A%+ (MAg) ™2
Iy = A?cos’a + A]sina = I (4)
Is = Afcos’a+ Ajsin®a = Iy

Is = (A?cos’a — A]sin’a) cos(2a)
and their derivatives,

oIy = 2diag {A1, Az, (A1A2) 71}
opl = 2diag {(A1A% + A7 1A52), (A3A2 + AT2ALT), (MAS T +A71A2)}
orl, = 2diag {Acos?a, Apsin®a, 0} = drls (5)
drls = 2 diag {2A3cos?a, 2A3sin’a, 0} = Orl;
orly = 2diag {A1cosa, —Apsina, 0} cos(2«).
We conclude that the case of biaxial extension probes both fiber directions equally, I = I and
Is =1I7.

Constitutive equations. A hyperelastic material satisfies the second law of thermodynamics, and
its Piola stress P = 9y(F)/0F is the derivative of the free energy y(F') with respect to the de-
formation gradient F'. A perfectly incompressible hyperelastic material uses this stress definition
modified by a pressure term, —p F* [37],

Iy
P=_-L —pF", 6
oF P (©)
where the hydrostatic pressure, p = —1 P : F, acts as a Lagrange multiplier that we determine

from the boundary conditions. We express the free energy function in terms of the seven invari-
ants, Y(I1, I, I, I, Is, I, Is), and obtain the following explicit expression for the Piola stress,
_opdl;  dypdl, JYPodly JdYpdls  JdPpdlg  dPdl; IyPdlg —¢

Biaxial extension. For homogeneous and shear free biaxial extension, the Piola stress P remains
diagonal at all times,

P = diag { Py1,P»,0}, (8)
and we can use the zero-normal-stress condition, P33 = 0, to determine the pressure p,

2 9y 2 2] oy
_ ——— -y A - . 9
P= o [A% Ag] F)2 ®)
Equation (7) then provides explicit analytical expressions for the Piola stresses P; and P, in terms
of the stretches A and A,, In what follows, we assume that the mechanical behavior of the two
fiber families is identical and combine their effects in the fourth and fifth invariants, I and I5.
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In addition, we assume that the two fiber families do not interact and drop the eighth invariant
I [39]. This results in the following expressions,

_ 1 ]y ) M- oy oy oy
P1—2|:)L1 /\%)\%] ol +2[/\1)\2+ )\%/\% ] a12—|—4)L1cos oca —I—SA cos’ "‘315 .
_ 1 Joyp 2y M= AT —A3] oy oy oY
P2—2|:A2—)%:| aI +2|:/\ AZ‘}‘W 812+4/\ Slnﬂ(aiLL—f—S/\slnﬂlaiIS
Finally, we translate these nominal stresses P; and P; into the true stress 07 and o7,
1 a¢ 1 a¢ , oY oY
_ 2 L 2,2 oy gy
01—2[/\1 /\%/\%} oL +2[)\ A+ } ol +4 A3cos? “az +8 Ajcos’a oL o
1 a¢ 1 a¢ oY 81/1
_ 2 2,2 oay
02—2[/\2 /\%/\%} oL +2[)\ A+ } oL +4A2smrxal +8 Ajsin’a 3L’

that are reported in the experiment [40].

Constitutive neural network. To discover the best model and parameters to explain the biax-
ial testing data, we adopt the concept of constitutive neural networks, a special class of neural
networks that satisfy the conditions of thermodynamic consistency, material objectivity, material
symmetry, perfect incompressibility, polyconvexity, and physical constraints by design [33].

Figure 2: Constitutive neural network. Perfectly incompressible hyperelastic constitutive neural network with two
hidden layers to approximate the free-energy function ¢ (11, I, Iy, Is) as a function of the invariants of the deformation
gradient F using sixteen terms. The first layer generates powers (o) and (o)? of the network input and the second layer
applies the identity (o) and exponential function (exp(o)) to these powers.

Figure 2 illustrates our neural network with two hidden layers and eight and sixteen nodes [35].
The first layer generates powers (o) and (o)2 of the network input, the four invariants Iy, I, Iy,
I5, and the second layer applies the identity, (o) and the exponential function (exp(o)) to these
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powers. The free energy function of this networks takes the following explicit form,

Y =wy1 wig [l —3] +wap [exp(wip [ —3] ) —1]
+ was wis [ — 3P+ was [exp(wiy [ —3]%) —1]
+ w5 w5 [ —3] +wae [exp(wie [I2—3] ) —1]
+wpy wiy [ —3]P4wys [exp(wig [ —3]?) —1] 12)
+ w9 Wiy [Is — 1] +woi0[exp(wio[ls —1] ) —1]
+ wp 11 w11 [Is — 12+ w12 [exp(wri2 [Is — 1)) — 1]
+ wp13w1,13 [I5s — 1] +wz 14 [exp(wyi4[ls — 1] ) — 1]
+ wa 15 w,15 [ I5 — 12 +wa 16 [ exp(wi,16 [I5 — 12) — 1],
corrected by the pressure term ¢ = ¢ — p [J — 1]. Its derivatives with respect to the four invariants,

d
a;li: W1 Wi +Woo Wi exp(wm [[1 — 3] ) +2 [Il — 3] [w2,3 W13 +Wo4 Wig exp(w1,4 [11 — 3]2)
d
BZZ Wy5 W15 +Wae Wi exp(wis [ —3])+2[L —3][wyy w1y +wrs wigexp(wis [L—3]%)

]
BZJ;: Wa9 W9 +wW 10w 10exp (w110 [la — 1]) 42 [Is — 1] [wa 11 w111 + w12 w1 12exp(wr 12 [La — 1]?)

d

87152 W213W1,13 +Wo 14 W1 1aexp( w1 14[ls — 1)) +2 [Is — 1][wa 15 w1 15 + wa 16 w1 16€xp( W1 16 [I5 — 1]2)

(13)

complete the definition of the principal Cauchy stresses in equations (11). The network has two
times sixteen weights w, which we constraint to always remain non-negative, w > 0. We learn the
network weights w by minimizing a loss function L that penalizes the error between model and
data. We characterize this error as the mean squared error, the L,-norm of the difference between
the stresses predicted by the network model, 01, 02, and the experimentally measured stresses, 07 ;,
0, ;, divided by the number of training points 14y, and add a penalty term, « ||w| |§, to allow for
L, regularization,

1 Mirn Mrn

Y o1 Azi) — ZHUz M, Azi) —

Nirn i=1 trn j—

L=

+ af|w|[h, = min.  (14)

Here « > 0 is a non-negative penalty parameter and ||w]||}, = Y lwi|? is the L, norm of the

vector of the network weights w. We train the network by minimlzmg the loss function (14) using
the ADAM optimizer, a robust adaptive algorithm for gradient-based first-order optimization.

Universal material subroutine. To seamlessly integrate our discovered model and parameters
into a simulation, we create a universal material subroutine [45]. This subroutine operates on
the integration point level of the finite element analysis and translates the local deformation, for
example in the form of the deformation gradient F, into the current stress, for example the Piola
stress P [1]. We reformulate the free energy function ¢ from equation (12) as the sum of all k nodes
of the final hidden layer,

= faofiofo(F Zw2kf2k frj (foi)iwik), (15)
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where f5, f1, fo are the nested activation functions associated with the second, first, and zeroth

layers,
w1 (0) (©)! )
explwn (o) -1 O ne y
fz— —ln(l—w1 (o)) an f1 = (0)3 an fo = [13—1] . ( )
: : [l —1]
[I5—1]
Here f) maps the deformation gradient F onto a set of invariants, [I; — 3], [I, — 3], [Iz — 1], [s — 1],

[Is — 1], f1 raises these invariants to the first, second, or any higher order powers, (o)!, (0)?, (0)3,
and f, applies the identity, exponential, or natural logarithm, (o), (exp(o) — 1), (—In(1 — ( ),
or any other thermodynamically admissible function to these powers. The material subroutine
calculates the Piola stress following equation (13),

L ) 0 )
P= Y g ST 7

in terms of the first derivatives of the activation functions f, and fi,

w1 1(0)0
fs wiexp(wi (o)) R ofr 2(o)!
d(0) | wi/(1-wi(o)) (o) |3(e)?

(18)

and the tensor basis, dfy/dF = dI;/dF. In implicit finite element algorithms with a global New-
ton Raphson iteration, the material subroutine also calculates the tangent moduli,

dP_ Pfox [3fix 1%, fax Pfik | Aok . fox | [ 3ok fik |9*fok
dF ZZ"“”a( )2 [a(o) T 3(0)a(0)2| 9F ©oF T |3(0)a(0)] o2 19)
in terms of the second derivatives of the activation functions f, and f,
0 0
2f, | wiexp(wi(o)) 2f )2
or  |wh/a-wm(e)p ™ 3R |e(e) .

and the tensor basis, 92 fox/ OF? = 9%I;,/OF ® oF. We translate our discovered model into a mod-
ular universal material subroutine within the Abaqus finite element analysis software suite [1].
We leverage the UANISOHYPER_INV subroutine to introduce our strain energy function (12) or (16)
in terms of the discovered pairs of network weights and activation functions. Our universal ma-
terial subroutine uses the strain energy density, UA(1) = 1, and its first and second derivatives,
UI1(NINV) = 0y /dl;, and UT2(NINV* (NINV+1)/2) = a2¢/alialj, with respect to the invariants. Fol-
lowing the Abaqus convention, we introduce an array of generalized invariants, aInv (NINV) = [
with i = 1,..., NINV, where NINV is the total number of isotropic and anisotropic invariants. In our
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case, for a material with two fiber families, 7y = [cos(«), +sin(a),0]t, we introduce four addi-
tional invariants, Iy, Is, Is, I, where 14, I and I5, Iy share the same parameters [1].

Algorithm 1 illustrates the UANISOHYPER_INV pseudocode to compute the arrays, UA(1),
UI1(NINV), UI2(NINV *(NINV+1)/2), at the integration point level during a finite element anal-
ysis. First, we initialize all relevant arrays and read the activation functions kf; x and kf,; and
weights w;  and w, ;. of the n color-coded nodes of our network in Figure 2 from our user-defined
parameter table UNIVERSAL_TAB. Then, for each node, we evaluate its row in the parameter table
UNIVERSAL_TAB and additively update the strain energy density function and its first and second
derivatives, UA, UI1, UI2. Algorithm 2 summarizes the additive update of the free energy and its
tirst and second derivatives, UA, UI1, UI2, within the universal material subroutine uCANN. Algo-
rithms 3 and 4 summarize the two subroutines uCANN_h1 and uCANN_h2 that evaluate the first and
second network layers for each network node with its activation functions and weights.

Algorithm 1: Pseudocode for universal material subroutine UANISOHYPER_INV
subroutine UANISOHYPER_INV(aInv,UA,UI1,UI2)

// initialize variables

set initial array values for UA, UI1l,UI2;

set reference configuration UANISOHYPER_INV;
set discovered parameters UNIVERSAL_TAB;

// evaluate all n rows in parameter table

fork in ndo

// invariant, activationfunctions, weights

extract invariant kf0(k);

extract activation functions kf1(k),kf2(k); extract weights wi(k), w2(k);

// invariant minus 3 or 1
xInv = aInv(kf0(k))-aInv0(kf0o(k)) ;

// energyandderivatives UA, UI1, UI2

call uCANN (xInv,kf1(k) ,kf2(k),wl(k), w2(k),UA,UI1,UI2);
end

// return updated arrays
return UA, UI1, UI2

Algorithm 2: Pseudocode to update energy and its derivatives UA, UI1, UI2
subroutine uCANN (xInv,kf1,kf2,wl,w2,UA,UI1,UI2)

// first layer: calculate f1,df1,ddf1
w0 = 1;
call uCANN_h1(xInv,w0,kf1,f1,df1,ddf1);

// second layer: calculate £2,df2,ddf2
call uCANN_h2(f1,wl,kf2,f2,df2,ddf2);

// update energy and derivatives UA,UI1,UI2
UA =TUA + w2 *x £2;

UI1l = UIl + w2 * df2x*df1l;

UI2 UI2 + w2 *(ddf2xdfi1*dfl + df2*ddfl);
return UA, UI1, UI2

10
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Algorithm 3: Pseudocode to evaluate output of first network layer f,df ,ddf

subroutine uCANN_h1(x,w,kf,f,df,ddf)
// calculate first layer output f,df,ddf for activation function kf

if kf = 1 then
f=wx x;
df = w x 1;
ddf = w * O;

else if kf = 2 then

f = wkx2 * x*x2;
df = w**x2 * 2%x;
ddf = wkxx2 *x 2;

return f,df ,ddf

Algorithm 4: Pseudocode to evaluate output of second network layer f,df ,ddf

subroutine uCANN_h2(x,kf ,w,f,df,ddf)
// calculate second layer output f,df,ddf for activation function kf

if kxf = 1then
f =w *x x;
df = w x 1;
ddf = w * 0;

elseif kf = 2 then

f = exp(wxx)-1;

df = w * exp(wkx);

ddf = w¥*2 * exp(wkx);
elseif kf = 3 then

f = -In(1-w*x);

df = w / (1-w*x);

ddf = wx*x2 / (1-wkxx)**2;
return f,df ,ddf

Finite element simulation. We implement the universal material subroutine in Abaqus FEA, and
make it publicly available on Github. To integrate it into a finite element simulation, we need
to define our discovered model and parameters in a parameter table [1]. Each row of this table
represents one of the color-coded nodes in Figure 1 and consists of five terms: an integer kf0 that
defines the index of the pseudo-invariant xInv, two integers kf1 and kf2 that define the indices
of the first- and second-layer activation functions, and two float values w1 and w2 that define the
weights of the first and second layers. We declare this input format using the parameter table type
definition in the UNIVERSAL_PARAM_TYPES. INC file.

*PARAMETER TABLE TYPE, name="UNIVERSAL_TAB", parameters = 5
INTEGER, ,"index pseudo-invariant, kfO,o"

INTEGER, ,"index 1st activ function, kfl,o0"

INTEGER, ,"index 2nd activ function, kf2,0"

FLOAT , ,"weight 1st hidden layer, wil,o0"

FLOAT , ,"weight 2nd hidden layer, w2,0"

11
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Within Abaqus FEA, we include the parameter table type definition using
*INCLUDE, INPUT=UNIVERSAL_PARAM_TYPES.INC

at the beginning of the input file. We activate our user-defined material model through the com-
mand

*ANTISOTROPIC HYPERELASTIC, USER, FORMULATION=INVARIANT

followed by the discovered parameters. From the constitutive neural network in Figure 2,
we obtain sixteen entries for the parameter table, four for each isotropic invariant, I; and
I, and four for each anisotropic invariant, Iy and Is, associated with the first fiber family,
nyg = [cos(a),+sin(a),0]'. We add eight entries, four for each anisotropic invariant, I and
I7, indexed in Abaqus as invariants 8 and 9, associated with the second fiber family, ny =
[cos(a), —sin(a),0]", with the same parameters as 4 and Is. The header and the twenty-four
lines of our parameter table take the following format,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"

1,1,1,W1,1,W2,1
2,1,1,W1/5,W2/5
4,1,1,W1,9,W2,9
5,1,1,wy,13,W13
8,1,1,W1/9,W2,g
9,1,1,wy,13,Wo,13

1,1,2,W1/2,W2/2
2,1,2,W1,6,W2,6
4,1,2,w1,10,W2,10
5,1,2,W1,14,W14
8,1,2,wq,10,Wa,10
9,1,2,W1,14,W2,14

1,2,1,W1,3,W2,3
2,2,1,W1,7,W2/7
4,2,1,W111,Wo 11
5,2,1,W1,15,W,15
8,2,1,W1,11,Wo,11
9,2,1,wy,15,Wa,15

1,2,2,W1/4,W2/4
2,2,2,W1,8,W2,8
4,2,2,W1,12,Wa 12
5,2,2,W1,16,W2,16
8,2,2,Wq,12,Wa,12
9,2,2,W1,16,W2,16

The first index of each row selects between the first, second, fourth, fifth, sixth, and seventh in-
variants, I1, I, 1s, Is, Is, I7, the second index raises them to linear or quadratic powers, (o)1, (0)?,
and the third index selects between the identity or the exponential function, (o), (exp(o) —1). For
brevity, we can simply exclude terms with zero weights from the list.

4 Results

To demonstrate how we can translate information seamlessly from experiment to simulation, we
perform three types of examples: First, we discover the best model and parameters to explain the
experimental data with a limited number of model terms. We discover the best-in-class one- and
two-term models, interpret their terms, and discuss their model parameters. For the four best-in-
class two-term models, we illustrate the fit to the data, and perform a direct comparison with the
widely used classical Holzapfel model. Second, we discover the best model and parameters to ex-
plain the data, but now without restricting the number of terms. We demonstrate how to embed
the model into our universal material subroutine, and validate its implementation by compar-
ing its finite element simulations against the experimental data and against the stress plots from
our initial model discovery. Third, we predict the diastolic and systolic wall stretches and stresses
across a human aortic arch, and compare the simulations with our newly discovered model against
the classical Holzapfel model. We illustrate how to parameterize the two models and discuss their
similarities and differences, locally at the integration point level and globally at the structural
level.

Discovering the best-in-class models. First, to gain a better intuition of our data, we discover
the best families of models with a limited number of terms. In the most general sense, our sixteen-
node network in Figure 2 introduces the sixteen-term model in equation (12) parameterized in
terms of sixteen pairs of weights, {w; ., w>,. }. In the most naive approach, we could test all pos-
sible models. From combinatorics, we know that this is a total of 21© — 1 = 65,535 models, 16
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Figure 3: Discovering the best-in-class models. Best-in-class one- and two-term models of the media and adventitia.
Remaining loss of the 16 one-term models and 120 two-term models of the constitutive neural network from Figure 2,
trained with all ten datasets from Table 1 for the media, left, and Table 2 for the adventitia, right. Terms 1 through 8 are
associated with the isotropic invariants I; and I, terms 9 through 16 are associated with the anisotropic invariants I
and Is. Squares on the diagonale indicate the losses of the 16 one-term models, all other squares indicate the losses
of the 120 two-term models. Best-in-class models are the models with the lowest remaining loss, highlighted in dark
blue.

with a single term, 120 with two, 560 with three, 1,820 with four, 4,368 with five, 8,008 with six,
11,440 with seven, 12,870 with eight, 11,440 with nine, 8,008 with ten, 4,368 with eleven, 1,820 with
twelve, 560 with thirteen, 120 with fourteen, 16 with fifteen, and 1 with all sixteen terms. To un-
derstand the relevance of these sixteen terms, we begin with a simplified analysis that constrains
the number of non-zero terms to either one or two [38]. We train the network in Figure 2 by mini-
mizing the loss function (14) with the stress definitions (11) using the biaxial test data of the media
and adventitia in Tables 1 and 2, and explicitly set the weights of the remaining terms to zero.

Figure 3 summarizes the discovery of the best-in-class one- and two-term models for the human
aortic media and adventitia in two 1616 heat maps. Terms 1 through 8 are associated with the
isotropic invariants I; and I, terms 9 through 16 are associated with the anisotropic invariants Iy
and Is. The squares on the diagonale indicate the goodness of fit of the 16 one-term models for the
media and the adventitia. All other squares indicate the goodness of fit of the 120 two-term mod-
els. The color code represents the remaining loss after training, and is a measure for the goodness
of fit of each model. The best-in-class models are the models with the lowest remaining loss, high-
lighted in dark blue. At first glance, we observe four distinct blocks, the iso-iso block in the upper
left, the aniso-aniso block in the lower right, and the iso-aniso blocks in the upper right and lower
left. The color code confirms our intuition, that a combination of two isotropic or two anisotropic
terms does not provide a good explanation of the data. Instead, the best-in-class models with the
lowest remaining loss and the dark blue colors are all located in the iso-aniso blocks.

Best-in-class one-term models. The squares on the diagonales of Figure 3 indicate the good-
ness of fit of the 16 one-term models for the media and the adventitia. Table 3 summarizes the
four best-in-class one-term models: the exponential linear first invariant Demiray model [9], the
linear second invariant Blatz Ko model [4], the exponential linear second invariant model, and the
linear first invariant neo Hooke model [59]. Each block summarizes the constitutive model, the in-
put to the universal material subroutine, their parameterizations for the media, top, and adventita,
bottom, and their overall ranking, right. Since our constitutive neural network uses parameters
with a clear physical interpretation, we can translate the network weights into the classical shear
modulus y, the stiffness-like parameter a, and the unitless exponential weighting factor b. From
comparing the discovered parameters for both tissue types across all four models, we conclude
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Table 3: Best-in-class one-term models. Models and parameters of the constitutive neural network from Figure 2,
trained with data from Table 1 for the media and Table 2 for the adventita. The four models are the best-in-class one-term
models from Figure 2. Each block summarizes the constitutive model, the input to the universal material subroutine,
their parameterizations for the media, top, and adventita, bottom, and their overall ranking.

| node 2 - exponential linear first invariant - Demiray |

¥ = 3a/blexp(b[l; —3]) = 1] || 1,1,2,w12,w22

a = 30.46kPa, b = 3.09 w12 =3.09, wg o =4.93kPa #1

a= 9.65 kPa, b=259 W12 = 259, W22 = 1.87 kPa #1
| node 5 - linear second invariant - Blatz Ko

y =5l -3 2,1,1,u15,W5

u = 45.93kPa w15 =22.96,wy5 =1.00kPa || #2

u = 12.67 kPa wis = 6.34,wys=1.00kPa || #3
| node 6 - exponential linear second invariant

1‘/): %a/b[exp(b[12—3])—1] 2,1,2,w16,W26

a =2455kPa, b =225 w16 =2.25,wo g = 5.46 kPa #3

a= 852kPa, b =157 wie = 1.57, wo g =2.71kPa #2
| node 1 - linear first invariant - neo Hooke

p=gu[h—3 1,1,1,w1,1,wW

i = 58.24kPa wi1=29.12,wp, = 1.00kPa || #4

u = 16.04kPa wi1 = 8.02,wy1 =1.00kPa || #5

that the media, in each top row, is about three to four times stiffer than the adventitia, in each bot-
tom row. Interestingly, the exponential first invariant Demiray model [9] is the best of all sixteen
models, both for the media and adventitia. The linear second invariant Blatz Ko model [4] is the
second best model for the media, and the third best for the adventitia. Strikingly, the widely used
linear first invariant neo Hooke model [59] is not among the three best-in-class one-term models,
neither for the media nor for the adventitia.

Best-in-class two-term models of the media. All squares that are not located on the diagonale of
Figure 3 illustrate the goodness of fit of the 120 two-term models. Notably, for the media, the
four best-in-class two-term models are all located in the second row and column of Figure 3, left.

Table 4 summarizes the four best-in-class two-term models for the media. They all contain the
isotropic exponential linear first invariant Demiray term [9] from the best-in-class one-term model,
combined with an anisotropic term: the quadratic fifth invariant term, the quadratic fourth in-
variant term, the exponential quadratic fourth invariant term, or the exponential quadratic fifth
invariant term. For comparison, Table 4 also reports the classical two-term Holzapfel model [21]
that contains the isotropic linear first invariant term and the anisotropic exponential quadratic
fourth invariant term. Each block of the table summarizes the constitutive model, the input to the
universal material subroutine, and their parameterizations.

Figure 4 illustrates the performance of the four best-in-class two-term models for the media from
Figure 2, left, summarized in Table 4, and for comparison, the classical Holzapfel model [21]. The
circles represent the equibiaxial testing data from Table 1. The reported loss quantifies the good-
ness of fit for a simultaneous training with all all ten stress-stretch pairs. The color coded regions
highlight the contributions of the individual model terms to the circumferential and axial stresses,
Oeir and 0,4, as functions of stretches Ay and A,y. The red regions represent the isotropic expo-
nential linear first invariant term. The blue, green, turquoise, and dark blue regions represent the
anisotropic fourth and fifth invariant terms. With a median collagen fiber orientation of 7.00°, the
fibers in the media are almost aligned with the circumferential direction. This implies that the
axial direction, bottom, only sees the red isotropic response, while the circumferential direction,
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Table 4: Best-in-class two-term models of the media. Models and parameters of the constitutive neural network from
Figure 2, trained with all ten datasets from Table 1 simultaneously. The first four models are the best-in-class two-term
models from Figure 2, left; the fifth model is the classical Holzapfel model. Each block summarizes the constitutive
model, the input to the material subroutine, and their parameters.

node 2 - exponential linear first invariant
node 15 - quadratic fifth invariant

Y= %a/b[exp(b[[l—?,])—l] 1,1,2,wy2,W22
+%P‘[%*l]z 5,2,1,w1,15,W2 15

a=27.26kPa, b =2.86 Wig = 2.86,wsq = 4.77KPa

yu =217kPa w15 = 1.09, wp 15 = 1.00kPa

node 2 - exponential linear first invariant
node 11 - quadratic fourth invariant

= 3a/blexp(b[l - 3]) 1] 1,1,2,012,w2
+%V[I4_1]2 4,2,1,w1,11,W2,11

a =26.20kPa, b = 3.02 Wig =3.02, Wy g = 4.34KkPa

H= 13.71 kPa w111 = 6.85, Wo,11 = 1.00kPa

node 2 - exponential linear first invariant
node 12 - exponential quadratic fourth invariant

Y= %ﬂl/bl[exp(bl[ll—ﬂ)—l} 1,1,2,w1,2,w2
+%a4/b4[exp(b4[14 — 1]2) —1} 4,2,2,W1/12,W2,12
a, = 26.80kPa, by = 2.93 w1 =293, wp o =4.57kPa
ay = 10.30 kPa, b4 =215 Wi,12 = 2.15, W2,12 = 2.40 kPa
node 2 - exponential linear first invariant
node 16 - exponential quadratic fifth invariant

p= %ﬂl/bl[eXp(bl[h*ﬂ)*l} 1,1,2,w1,0,wW22
+1%as/bs[exp(bs[Is — 1]2) — 1] || 5,2,2,w1,16,W2,16
ap = 27.68 kPa, bl =284 Wi,2 = 2.84, W22 = 4.87 kPa
as = 1.49 kPa, b5 =0.40 Wi,16 = 040, W2,16 = 1.86 kPa
node 1 - linear first invariant - Holzapfel
node 12 - exponential quadratic fourth invariant

lr/):%]/l[ll—:}] 1,1,1,W1/1,W2/1
+%a/b[exp(b[14fl]2) *1] 4,2,2,W1,12,W2,12

yu = 48.81kPa w1 = 24.40, wa 1 = 1.00 kPa

a= 8.23kPa, b =443 w112 = 443, wy12 = 0.93kPa

top, sees a superposition of both, the red isotropic and the green-to-blue anisotropic responses.
For the sake of compactness, we only display the equibiaxial response, but note that the other four
curves provide an equally good fit to the experimental data. The classical Holzapfel model [21] in
Figure 4, right, combines the isotropic linear first invariant term in dark red and the anisotropic
exponential quadratic fourth invariant term in turquoise. While it performs well in the circumfer-
ential direction, top right, its linear isotropic term is incapable of capturing the nonlinear isotropic
matrix behavior in the axial direction, bottom right. Its loss is about three times higher than the
loss of the discovered best-in-class two-term-model, Figure 4, left.

Best-in-class two-term models of the adventitia. All squares that are not located on the diag-
onale of Figure 3 illustrate the goodness of fit of the 120 two-term models. Interestingly, for the
adventitia, the four best-in-class two-term models are located in the second and sixth rows and
columns of Figure 3, right. Table 5 summarizes the four best-in-class two-term models for the
adventitia. They contain the isotropic exponential linear first or second invariant term from the
best-in-class one-term models, combined with the anisotropic exponential linear or quadratic fifth
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Table 5: Best-in-class two-term models of the adventitia. Models and parameters of the constitutive neural network
from Figure 2, trained with all ten datasets from Table 2 simultaneously. The first four models are the best-in-class
two-term models from Figure 2, right; the fifth model is the classical Holzapfel model. Each block summarizes the
constitutive model, the input to the material subroutine, and their parameters.

node 2 - exponential linear first invariant
node 16 - exponential quadratic fifth invariant

¥ = 2a1/bi[exp(b1 [l — 3]) — 1]
+3as/bs[exp(bs[I5 — 1]2) — 1]

1,1,2,wy0,Wo2
5,2,2,w1,16,W2,16

a
as

=9.63kPa, by =1.95
= 0.14kPa, b5 = 1.65

[y

Wi = 1.95,wy 0 =2.47kPa
w116 = 1.65, wp,16 = 0.04kPa

node 6 - exponential line

ar second invariant

node 16 - exponential quadratic fifth invariant

p = 3ay/by[exp(ba[Ir — 3]) — 1]
+%as/bs[exp(bs[I5 — 1]%) — 1]

2,1,2,W1,6 sW2,6
5,2,2,W1,15, W2,16

ay = 8.30 kPa, b2 =1.15
a5 = 0.14kPa, bs = 1.64

wie =1.15,wpe = 3.62kPa
W1,16 = 1.64, W2 16 = 0.04 kPa

node 6 - exponential line
node 14 - exponential li

ar second invariant
near fifth invariant

= 3a2/bafexp(ba[lr —3]) — 1]
o /tslexpltslis— 1)~ 1

2,1,2,W1,6 »W2,6
5,1,2,w1,14,W214

1, — 821KkPa, b, = 1.16
a5 = 0.04kPa, by = 3.49

W12 = 116, W22 = 3.54kPa
Wi,14 = 3.4:9, W2,14 = 0.01 kPa

node 2 - exponential linear first invariant

node 14 - exponential li

near fifth invariant

¥ = ja1/biexp(br[I; —3]) — 1]
+3as5/bslexp(bs[Is — 1]) — 1]

1,1,2,w10,W2
5,1,2,w1,14,W214

1, = 8.62kDa, b; = 2.38
a5 = 0.13kPa, b5 = 2.21

Wi,6 = 238, W26 = 1.81kPa
W1,14 = 2.21, W2,14 = 0.03 kPa

node 1 - linear first inv

ariant - Holzapfel

node 12 - exponential quadratic fourth invariant

lr/):%]/l[ll—:}] 1,1,1,W1/1,W2/1
+%a/b[exp(b[14f3]2) *1] 4,2,2,W1,12,W2,12

= 12.90kPa Wi =645, ws; = 1.00KPa

a= 198kPa, b =6.59 w12 = 6.59, wy 12 = 0.15kPa

invariant term. For comparison, Table 5 also reports the classical two-term Holzapfel model [21].
Figure 5 illustrates the performance of the four best-in-class two-term models for the adven-
titia from Figure 2, right, summarized in Table 5, and for comparison, the classical Holzapfel
model [21]. The circles represent the equibiaxial testing data from Table 2. The red and light or-
ange regions represent the isotropic exponential linear first and second invariant terms. The blue
and dark blue regions represent the anisotropic exponential linear and quadratic fifth invariant
terms. With a median collagen fiber orientation of 66.78°, the fibers in the adventitia are much
closer to the axial direction than for the media. As a result, both circumferential and axial di-
rections see the red and and orange isotropic response and the blue anisotropic response, with a
pronounced anisotropy in the axial stresses, bottom. Similar to the media, Figure 4, the classical
Holzapfel model [21] for the adventitia, Figure 5, right, has a loss that is about three times higher
than the loss of the discovered best-in-class two-term-model, Figure 5, left.

Discovering the best model and parameters. Next, we discover the best model and
parameters-but now without prescribing the number of terms—and use the model to validate sim-
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Figure 4: Best-in-class two-term models of the media. True stresses o, and o,,; as functions of stretches A, and
Aax for the constitutive neural network from Figure 2, trained with all ten datasets from Table 1 simultaneously. The first
four columns illustrate the best-in-class two-term models from Figure 2, left; the right column illustrates the Holzapfel
model [21] for comparison. Circles represent the equibiaxial testing data from Table 1. Color-coded regions represent
the discovered model terms. The remaining loss indicates the quality of the overall fit.
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Figure 5: Best-in-class two-term models of the adventitia. True stresses o, and o, as functions of stretches A,
and A, of the constitutive neural network from Figure 2, trained with all ten datasets from Table 2 simultaneously.
The first four columns illustrate the best-in-class two-term models from Figure 2, right; the right column illustrates the
Holzapfel model [21] for comparison. Circles represent the equibiaxial testing data from Table 2. Color-coded regions
represent the discovered model terms. The remaining loss indicates the quality of the overall fit.

ulations with our universal material subroutine against the experimental data and against the
stress plots from our model discovery. Model discovery is a sophisticated trade-off between the
number of discovered terms and the accuracy of the fit [38]. Fortunately, we can fine-tune this
trade-off by adding an L, regularization term to the loss function in equation (14). Specifically,
with L regularization and a penalty parameter « varying between a = [0.000, 0.001,0.010,0.100 ],
we observe that we can tune the number of discovered model terms between five and one. For our
example, a penalty parameter of « = 0.001 provides a good balance between the number of terms
and the accuracy of the fit. Strikingly, for this penalty parameter, the network discovers exactly
the same model for the media and the adventitia: a three-term model with the isotropic linear and
exponential first invariant terms and the anisotropic quadratic fifth invariant term,

= 1[Il — 3]+ Sa/blexp(b[ly — 3]) — 1] + 5 ps [I5 — 1]*.
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Figure 6: Discovered model and finite element simulation of the media. True stresses o, and o,,; as functions
of stretches A, and A,y of the constitutive neural network from Figure 2, trained with all ten datasets from Table
1 simultaneously. Circles illustrate the biaxial testing data from Table 1. Top graphs display the discovered model,
¥ = Sy [l — 3] + $a/blexp(b[l — 3]) — 1] + % ps [Is — 1]?; bottom graphs display the finite element simulation with
the discovered parameters y; = 33.45kPa, a = 3.74kPa, b = 6.66, 15 = 2.17 kPa.

While the discovered model is the same for both tissue types, the discovered parameters are different,
with y; = 33.45kPa, a = 3.74kPa, b = 6.66, u5 = 2.17kPa for the media and y; = 8.30kPa,
a = 142kPa, b = 6.34, us = 0.49kPa for the adventitia. These parameters reflects the different
tissue compositions [23], with the media about three to four times stiffer than the adventitia. The
discovered model translates into the following four-line parameter table for our universal material
subroutine,

*PARAMETER TABLE,TYPE="UNIVERSAL_TAB"
1,1,1,wy,10,We1 1,1,2,w10,Wap 5,2,1,wy15,W215 9,2,1,W115,Wo15

Wlth Wi,1 = 3801, Wo1 = 0.44 kPa, W12 = 666, W2 = 0.28 kPa, Wi,15 = 2468, W2,15 = 0.04 kPa fOI' the
media and W11 = 3428, Wo,1 = 0.12 kPa, Wi2 = 634., W22 = 0.11 kPa, Wi,15 = 1532, W2,15 = 0.02 kPa for
the adventitia.

Figures 6 and 7 illustrate the discovered model for the media and the adventita, top, and, for vali-
dation, the finite element simulations with our universal material subroutine, bottom. The circles
illustrate the biaxial testing data from Tables 1 and 2. The color coded regions highlight the con-
tributions of the individual model terms to the circumferential and axial stresses, 0. and 0y, as
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Figure 7: Discovered model and finite element simulation of the adventitia. True stresses o, and o,,; as functions
of stretches A, and A,y of the constitutive neural network from Figure 2, trained with all ten datasets from Table
2 simultaneously. Circles illustrate the biaxial testing data from Table 2. Top graphs display the discovered model,
¥ = Su [l — 3] + $a/blexp(b[ly — 3]) — 1] + 4 ps [I5 — 1]?; bottom graphs display the finite element simulation with
the discovered parameters y; = 8.30kPa, a = 1.42kPa, b = 6.34, 5 = 0.49kPa.

functions of stretches, Aqr and A,y. The dark red and red regions represent the isotropic linear
tirst invariant neo Hooke term [59] and the exponential first invariant Demiray term [9]. The blue
regions represent the anisotropic quadratic fifth invariant term. Overall, the discovered model
provides an excellent fit to the data, both for the media and the adventitia. In both examples, in
Figures 6 and 7, the finite element simulations with our universal material subroutine, bottom,
agree well with the experimental data and with the model discovery plots, top.

Predicting wall stresses in the human aortic arch. To explore whether our finite element sim-
ulations generalize robustly, from the material point level to the structural level, we now use
our universal material subroutine to predict the wall stresses across the human aortic arch and
compare our results against the Holzapfel model [17]. We explore the aortic arch during dias-
tole, at a blood pressure of 80 mmHg, and during systole, at 120 mmHg, and visualize the pre-
dicted stresses and stretches in the media, in the adventitia, and in selected cross sections. Fig-
ure 8 shows our finite element model of the aortic arch, created from high-resolution magnetic
resonance images of a healthy, 50th percentile U.S. male [43, 44]. We assume an average aor-
tic wall thickness of 3.0 mm, where the inner 75% of the wall make up the media and the outer
25% make up the adventitia. The finite element discretization uses 60,684 linear tetrahedral ele-
ments for the media and 30,342 linear tetrahedral elements for the adventitia, and has a total of
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Figure 8: Human aortic arch model and wall stresses in the media and adventitia. The finite element discretization
uses linear tetrahedral elements, 60,684 for the media and 30,342 for the adventitia, and has a total of 61,692 degrees
of freedom. The color code highlights the maximum principal stresses in the media and adventitia of the human aortic
arch predicted by the newly discovered three-term model, left, and by the Holzapfel model, right, both trained with the
media and adventitia datasets from Tables 1 and 2.

61,692 degrees of freedom. The local collagen fiber angles against the circumferential direction
are £ 7.00° in the media and +66.78° in the adventitia. The simulation in Figure 8, left, uses our
newly discovered three-term model with an isotropic linear first invariant neo Hooke term, an
isotropic exponential first invariant Demiray term, and an anisotropic quadratic fifth invariant
term, ¢ = 11 [ — 3] + 2a/blexp(b[ly — 3]) — 1] + 1 us [Is — 1]?, with the discovered parame-
ters 1 = 33.45kPa, a = 3.74kPa, b = 6.66, us = 2.17kPa for the media and y; = 8.30kPa,
a = 142kPa, b = 6.34, ys = 0.49kPa for the adventitia. The simulation in Figure 8, right, uses
the Holzapfel model with an isotropic linear first invariant neo Hooke term and an anisotropic
exponential term that couples the first and fourth invariants through the dispersion parameter «,
= su[h —3]+3a/blexp(blx[ 1 —3] + [1 — 3«][ Ly — 1]?]) — 1] with the best-fit parameters
u = 48.68kPa, a = 6.67kPa, b = 23.17, k = 0.074 for the media and y = 13.22kPa, a = 0.93kPa,
b =12.06, xk = 0.091 for the adventitia.

Figure 8 illustrates four stress profiles that provide a first glance at the performance of both mod-
els: First, we emphasize that all large scale structural simulations with our universal material
subroutine run and converge robustly, and predict physically reasonable, smooth stress profiles
across the entire aortic arch. Second, we observe that, for both constitutive models, the maxi-
mum principal stresses in the media are about three times higher than in the adventitia, which
agrees well with the recorded stresses in the experiment in Tables 1 and 2 and with the discovered
stiffness-like parameters in Tables 3 through 5. Third, and most interestingly, the direct side-by-
side comparison of the two different models reveals an excellent agreement of the stress profiles
in the low-stress regimes of the adventitia, and a very good agreement in the high-stress regimes
of the media, with only a few minor local discrepancies. Overall, we conclude that our universal
material subroutine generalizes well from the local material point level to the global structural
level and that the simulations with our newly discovered three-term model perform similar to the
widely used Holzapfel model [17].

Predicting aortic arch mechanics with the newly discovered model. Figure 9 illustrates the
circumferential and radial stresses and stretches in the media, in the adventita, and in selected
cross sections, during diastole, top, and systole, bottom. All simulations use the newly discovered
model, ¥ = % uq [l — 3] + 3a/blexp(b[ly — 3]) — 1] + 3 ps [Is — 1], with the discovered param-
eters 1 = 33.45kPa, a = 3.74kPa, b = 6.66, u5 = 2.17kPa for the media and y; = 8.30kPa,
a = 142kPa, b = 6.34, us = 0.49kPa for the adventitia. The simulations provide a nuanced
perspective of the mechanics of the aortic arch and detailed insights into the performance of the
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Figure 9: Diastolic and systolic stresses and stretches in the human aortic arch predicted by the newly dis-
covered model. Circumferential and radial stresses, o, and o,,;, and stretches, Aq, and A,,, in the media, in the
adventita, and in selected cross sections, during diastole, top, and systole, bottom. Simulations use the discovered
model, ¥ = 3 pq [I; — 3] + Ya/blexp(b[l; — 3]) — 1] + % us [Is — 1], with the discovered parameters y; = 33.45kPa,
a = 3.74kPa, b = 6.66, us = 2.17kPa for the media and yy = 8.30kPa, a = 1.42kPa, b = 6.34, 5 = 0.49kPa for the
adventitia.

new three-term model: First, we note that both, stresses and stretches, are larger during systole
than during diastole, larger in the the media than in the adventitia, and larger circumferentially
than axially. Second, in the stresses profiles, we observe a significant jump between the media and
adventita layers, which is most visible in the cross sectional view, and most pronounced during
systole. These intra-layer stress discontinuities could play a critical role in the pathogenesis of aor-
tic dissection and aortic aneurysm formation. Third, in the stretch profiles, we observe regional
peaks beyond the experimental testing and network training regime of 1.0 < A < 1.2, which are
highlighted in bright yellow and most prominent in the circumferential stretch during systole. The
smooth stress and stretch profiles beyond the training regime suggest that the discovered model
generalizes well to larger stretch regimes, 1.2 < A, and to higher blood pressures. Overall, we
conclude that our newly discovered model can predict physically meaningful stretch and stress
profiles in complex biological structures and accurately capture the local and global mechanics of
the aortic wall.

Predicting aortic arch mechanics with the Holzapfel model. Figure 10 illustrates the stresses
and stretches in the in the media, in the adventita, and in selected cross sections, during di-
astole and systole similar to Figure 9, but now using the Holzapfel model [17], ¢ = Jpu[L —
3]+ %a/blexp(blx[ L — 3]+ [1 — 3«][ Is — 1]?]) — 1], with the best-fit parameters, u = 48.68 kPa,
a = 6.67kPa, b = 23.17, x = 0.074 for the media and y = 13.22kPa, a = 0.93kPa, b = 12.06,
x = 0.091 for the adventitia. The simulations provide additional insight into the similarities and
differences of both constitutive models: First, within the experimental testing and network train-
ing regime, 1.0 < A < 1.2, the predictions with the Holzapfel model in Figure 10 are virtually
identical to the predictions with our new three-term model in Figure 9. This is particularly ev-
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Figure 10: Diastolic and systolic stresses and stretches in the human aortic arch predicted by the Holzapfel
model. Circumferential and radial stresses, o, and o,,;, and stretches, Ay, and A,, in the media, in the adventita,
and in selected cross sections, during diastole, top, and systole, bottom. Simulations use the Holzapfel model, ¢ =
Tull —3]+1a/blexp(b[x[I; —3] +[1 —3«][ I, — 1]?]) — 1], with the best-fit parameters, i = 48.68 kPa, a = 6.67 kPa,
b =23.17, x = 0.074 for the media and u = 13.22kPa, 2 = 0.93kPa, b = 12.06, x = 0.091 for the adventitia.

ident during diastole, and across the entire adventita during both diastole and systole. Second,
beyond the experimental testing and network training regime, 1.2 < A, we observe small dis-
crepancies between both models, which are located primarily in the bright yellow regions of the
high-stretch regime. This agrees with our intuition that the exponential term of the Holzapfel
model introduces a more pronounced stiffening than the quadratic term of our newly discovered
model, especially in the high-stretch regime. Overall, we conclude that both models perform al-
most identically during diastole, within their training regime, and very similarly during systole,
beyond their training regime, where the stresses of the Holzapfel model are locally slightly higher
than those of the new three-term model, while its stretches are locally slightly lower.

5 Discussion

Computational modeling is vital for unraveling the biomechanics of the aorta and offering insights
into its disease mechanisms. Finite element analyses enable a precise identification of regions of
non-physiological deformations or stresses, which could indicate the onset of vascular diseases
such as aortic dissection or aneurysm formation. Constitutive modeling lies at the heart of any
finite element analysis, and selecting the best model and parameters is crucial for its success.
Common finite element analysis tools offer a wide variety of constitutive models to choose from,
but selecting the best model remains a matter of user experience and personal preference. The
objective of this study is to eliminate user bias and fully automate the process of model selection using con-
stitutive neural networks. We train these networks with experimental data from biaxial extension
tests on the human aortic media and adventita, and discover the best models and parameters to
explain the data. Our model discovery workflow automatically generates an input file for a uni-
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versal material subroutine that can represent more than 60,000 different constitutive models and
is seamlessly embedded in the finite element analysis pipeline. In this manuscript, we rationalize
the process of model discovery, discuss models of different complexity, demonstrate their perfor-
mance on the experimental data, compare them against the current gold standard model, and use
the best model and parameters to predict stress and stretch profiles across the aortic arch during
diastole and systole.

Model discovery is a balance between complexity and accuracy. The universal approximation
theorem states that a neural network with a single hidden layer-with a sufficient number of nodes
and appropriate activation functions—can approximate any continuous function on a compact subset
of its domain to arbitrary precision [27]. This implies that, with a sufficient number of nodes, our
network should be able to approximate any of the stretch-stress pairs of our biaxial tests. How-
ever, in constitutive modeling, we are not interested in just learning any function. Instead, we
seek to discover the best function that not only approximates the data, but also satisfies common
thermodynamic principles and physical constraints [33]. These include material objectivity, mate-
rial symmetry, incompressibility, polyconvexity [30,54], and thermodynamic consistency [32,56].
Conveniently, we hardwire these principles into our constitutive neural network in Figure 2 to en-
sure that our discovered functions satisfy these constraints a priori. Specifically, our network has
two hidden layers and represents the free energy function as the sum of the contributions of the
sixteen nodes of its second layer [35]. Naturally, activating all sixteen nodes is the best strategy
to fine-tune the fit to the data and achieve the highest level of accuracy. At the same time, the
resulting sixteen-term model is inherently complex and difficult to interpret [52]. Nonetheless, if
we are only interested in finding the best-fit model and parameters for a finite element analysis, this
is probably just fine. We can feed all sixteen terms directly into our universal material subroutine
and perform our engineering analysis. Undoubtedly, this will make the best and most explicit use
of the available data.

Model discovery can be non-robust and non-interpretable. In many practical applications,
we are not just interested in finding the best-fit model with an arbitrarily large number of terms.
Instead, we want to discover the most relevant terms to best describe experimental data. This can
have multiple reasons: First, minimizing the loss function (14) with 16 terms and 24 indepen-
dent weights translates into a complex non-convex optimization problem with flat gradients and
multiple local minima [38]. It is computationally expensive, if not impossible, to find its global
minimum. Second, with so many degrees of freedom, there is a risk of overfitting. Even if we
found the global minimum, it might be highly sensitive to outliers or measurement errors [6]. In
other words, we might find the best-fit model for a specific data set, but this model tends to be
non-robust and non-generalizable to unseen data. Third, and probably most importantly for our pur-
poses, a sixteen-term model is virtually non-interpretable [11]. We cannot interpret the relevance of
its terms, compare the meaning of its parameters, and identify the underlying mechanisms associ-
ated with individual terms. A fully activated model provides virtually no microstructural insights
into the material response. This raises the holy grail question in model discovery: How can we
fine tune the number of terms?

Lp regularization promotes robust and interpretable models. The concept of L, regulariza-
tion or bridge regression dates back more than three decades and was introduced to shrink the
parameter space in a data analysis [13]. It has re-gained attention as a powerful tool to promote
sparsity in system identification [5], and, most recently, in discovering constitutive models from
data [11,38]. L, regularization adds a penalty term, «|| w ||},, to the loss function (14), where > 0

is a non-negative penalty parameter and || w ||, = [0 | w; |P]1/? is the L, norm of the vector

of network weights w. L, regularization introduces two hyperparameters, the power p by which
it penalizes the individual model parameters, and the penalty parameter a by which it scales the
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relative importance of the regularization term compared to the network loss [38]. Both parame-
ters enable a precise control of model discovery and it is crucial to understand their mathematical
subtleties, computational implications, and physical effects: Ly regularization or subset selection
directly penalizes the number of non-zero terms by solving the discrete combinatorial problem,
which is a simple and unbiased method to explicitly prescribe the number of terms [29]. L; regu-
larization or lasso enables feature selection and induces sparsity by reducing some weights exactly
to zero, which effectively reduces model complexity and improves interpretability [58]. L, regular-
ization or ridge regression seeks to reduce outliers and improve predictability by reducing absolute
values while maintaining all parameters [18], which essentially does the opposite of what we seek
to accomplish here.

LO regularization identifies the best-in-class models. L regularization or subset selection turns
the continuous model selection problem into a discrete combinatorial problem with (2"-1) possible
combinations of terms [29]. This makes this type of regularization computationally intractable for
models with a large number of terms. However, instead of performing a subset selection from
all possible 65,535 models, we use it to discover the best-in-class one- and two-term models—out
of subsets of 16 and 120 possible models-and gain insight into the relevant terms and model
parameters [38]. Interestingly, in our example, for both media and adventitia, the best-in-class
one-term model in Table 3, with the lowest remaining loss of 84.49 for the media and 3.29 for the
adventita, is the classical exponential linear first invariant Demiray model [9]. The best-in-class
two-term models in Table 4 for the media and Table 5 for the adventitia expand this term by either
the quadratic fifth invariant or the exponential quadratic fifth invariant, with remaining losses
of 8.84 for the media and 0.79 for the adventitia. Since L regularization explicitly penalizes ev-
ery additional term in the loss function (14) by «, it favors the two-term model for the media for
a < 84.49/8.84 = 9.56 and for the adventitia for « < 3.29/0.79 = 4.17, and only selects the purely
isotropic one-term Demiray model [9] for penalty parameters larger than these values. This sim-
ple example illustrates the role of the penalty parameter « as a hyperparamter to fine-tune subset
selection by modulating the number of non-zero terms.

L1 regularization induces sparsity and improves interpretability. A less invasive approach
to regularize the loss function without having to explicitly probe all combinations of terms is L;
regularization or lasso [58]. Here we apply L, regularization with varying penalty parameters «
and monitor the remaining loss. We find a reasonable balance of complexity and accuracy for a
penalty parameter of & = 0.001. Strikingly, for this parameterization, out of all 65,535 combina-
tions of terms, our network discovers exactly the same model for the media and the adventitia: a
three-term model with an isotropic linear first invariant neo Hooke term [59], an exponential linear
tirst invariant Demiray term [9], and the anisotropic quadratic fifth invariant term. Its non-zero
network weights translate into interpretable material parameters in the form of a shear modulus,
a stiffness-like parameter, an exponential coefficient, and a shear-type modulus, all with physi-
cally meaningful units. Our newly discovered model is sparse, robust, and interpretable, its contains
terms of popular constitutive models, and is a natural generalization of our discovered best-in-class one-
and two-term models. We feel that it strikes an excellent balance between complexity and accuracy.
From Figures 6 and 7, we conclude that it approximates our experimental data well and integrates
seamlessly into our universal material subroutine.

Our discovered model generalizes from the material point level to structural analysis. One
of the main reasons to develop constitutive models for biological tissues is to perform realistic
biomedical simulations [42,44]. The ultimate test of our discovered model is to probe its perfor-
mance in realistic finite simulations, beyond the material point level. Here we use the example
of stress analysis in the aortic arch. Understanding the structural and mechanical distinctions be-
tween the media and adventitia layers of the aorta is crucial for comprehending vascular health
and disease [23,28]: The media is rich in elastin fibers and smooth muscle cells, it provides elas-
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ticity and contractility, and enables hemodynamic function. The adventitia consists primarily of
collagen fibers and fibroblasts and provides structural support and integrity. By building our
model directly from data—without user bias through model selection-we can precisely capture the
nuances between the load carrying capacity of the media and the adventitia [40,41]. Disruptions
in the delicate balance between these layers contribute to pathological conditions such as aortic
dissection or aneurysms formation [47,50]. Mechanical heterogeneity and regional stress varia-
tions play a pivotal role at the onset of these conditions. Our finite element model is built around
our new universal material subroutine [45] that can account for these layer-specific properties and
aid in predicting disease progression, assessing rupture risk, and developing targeted interven-
tions. This subroutine not only includes our discovered three-term model, but all 65,535 possible
models of our constitutive neural network in Figure 2 [35], simply by twenty-four lines of its input
file. A side-by-side comparison with the popular Holzapfel model in Figures 9 and 10 suggests
that our discovered model not only performs identically during diastole, within the stretch range of
the training regime, and but also performs nearly similarly during systole, beyond the initial train-
ing regime. The small local discrepancies between both models are not a flaw of our new model,
but rather a result of the limited experimental test range within stretches of only 1.0 to 1.2. From
the experimental stretch-stress curves in Figure 1, we conclude that within this range, the stress
response of the fibers is neither fully quadratic as in our discovered model, nor fully exponential
as in the Holzapfel model [17]. Overall, we believe that newly discovered model performs well in
realistic structural simulations and can provide a comprehensive understanding of the interplay
between the layers of the aorta to informs strategies for early disease detection, risk stratification,
and tailored therapeutic approaches in the benefit of cardiovascular health.

Limitations. While our results solidly suggest that we can discover interpretable models with
physically meaningful parameters from data and integrate these models into a finite element sim-
ulation via our new universal material subroutine, a few limitations remain: First, here we have
prototyped our approach for discovering a personalized arterial model of a healthy 56-year-old
male. We are currently expanding our method to include all n = 17 healthy and n = 11 aneurys-
matic aortas of the initial study [40]. Second, while our study shows that L, regularization is a
robust method to control the number of model terms through the penalty parameter &, especially
the low-penalty models with a large number of discovered terms remain sensitive to the initial
conditions. If the goal is to discover the best model with a small number of interpretable terms, we
recommend to always perform an Ly regularization first, and solve for the discrete combinatorics
problem-at least for the best-in-class one- and two-term models—to gain a feeling for the relevant
terms [38]. If the goal is to discover a viable model for a finite element simulation, the sparseness
of the solution is less relevant, since we can feed any discovered model into our universal mate-
rial subroutine and obtain comparable results. Third, while different discovered models perform
similarly within the training range, they may deviate outside the training regime. For finite el-
ement simulations, this may occur in regions of local stress concentrations, where the simulated
stretches and stresses exceed the experimental measurement range. This is not a flaw of the model
discovery itself, but rather a limitation of the available training data, which, in our example, did
not properly tease out the stretch-stiffening regime. As a result, the discovered anisotropic term
that best explains our available data turns out to be quadratic, and not exponential like in the
classical Holzapfel model [17,21]. Fourth, for illustrative purposes, the neural network and the
material subroutine we propose here are intentionally invariant-decoupled. We are currently fi-
nalizing an advanced material subroutine that can handle coupled invariants like I; and I4 [17],
selective activation under tension only [17], and account for quasi-incompressibility through the
third invariant I3. Finally, to address the current limitation to hyperelastic materials, we have re-
cently expanded the concept of constitutive neural networks to viscoelasticity [62] and to general
inelasticity [20].
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6 Conclusion

Personalized computational simulations can help us understand the biomechanics of cardiovas-
cular disease, predict patient-specific disease progression, and personalize treatment and inter-
vention. Material modeling is critical to realistic physics-based simulations, but selecting the
best model is limited to a few highly trained specialists in the field. In biomedical applications,
poor model selection does not only jeopardize the success of the entire simulation, but can have
life-threatening consequences for the patient. Here we explore the feasibility of removing user
involvement and automating material modeling in finite element analyses. We leverage recent
developments in constitutive neural networks, machine learning, and artificial intelligence to dis-
cover the best constitutive model from thousands of possible combinations of a few functional
building blocks. We seamlessly integrate all discoverable models into the finite element workflow
by creating a universal material subroutine that contains more than 60,000 models, made up of
16 individual terms. Our results suggest that constitutive neural networks can robustly discover
various flavors of arterial models from data, feed these models directly into a finite element sim-
ulation, and predict stress and strain profiles that compare favorably to the classical Holzapfel
model. Replacing dozens of individual material subroutines by a single universal material sub-
routine will make finite element simulations more accessible and user-friendly, more robust and
reliable, and less vulnerable to human error. Democratizing biomedical simulation by automat-
ing model selection could induce a paradigm shift in physics-based simulation, broaden access to
simulation technologies, and empower individuals with varying levels of expertise and diverse
backgrounds to actively participate in scientific discovery in the benefit of human health.
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