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Abstract

Studying range expansions (REs) is central for understanding genetic variation through space
and time as well as for identifying refugia and biological invasions. Range expansions are
characterized by serial founder events causing clines of decreasing diversity away from the

center of origin and asymmetries in the two-dimensional allele frequency spectra. These
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asymmetries, summarized by the directionality index (), are sensitive to REs and persist for
longer than clines in genetic diversity. In continuous and finite meta-populations, genetic drift
tends to be stronger at the edges of the species distribution. Such boundary effects (BEs) are
expected to affect geographic patterns in y as well as genetic diversity. With simulations we
show that BEs consistently cause high false positive rates in equilibrium meta-populations when
testing for REs. In the simulations, the absolute value of y (Jy]) in equilibrium data sets was
proportional to the fixation index (Fsr). By fitting signatures of REs as a function of e=|y|/Fsr and
geographic clines in v, strong evidence for REs could be detected in data from a recent rapid
invasion of the cane toad, Rhinella marina, in Australia, but not in 28 previously published
empirical data sets from Australian scincid lizards or the Indo-Australasian blacktip shark that
were significant for the standard RE tests. Thus, while clinal variation in v is still the most
sensitive statistic to REs, in order to detect true signatures of REs in natural populations, its
magnitude needs to be considered in relation to the overall levels of genetic structuring in the

data.

Keywords: non Wright-Fisher, spatially explicit, non-equilibrium populations, time difference

of arrival, central-marginal hypothesis
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Introduction

Species ranges are seldom static through time. For instance, when new suitable habitat becomes
available a species may colonize previously unpopulated areas through range expansions (RE).
Studying the expansion of populations across a landscape is not only central for understanding
the demographic histories of natural populations (including humans), but is also necessary for
understanding and predicting disease outbreaks, biological invasions and the spread of a native
species across novel geographic regions made newly suitable by climate change (O’Reilly-
Nugent et al. 2016; Ogden et al. 2019; Poland et al. 2021; Alves et al. 2022; Selechnik,
Richardson, Shine, DeVore, et al. 2019; Ioannidis et al. 2021; Zhan et al. 2014; Zhang et al.
2022; Finch et al. 2021). Range expansions imply sequential founder events and leave transient
signatures on the distribution of genetic diversity across the meta-population including clines of
decreasing genetic diversity (e.g. expected heterozygosity, Hr) away from the center of origin
(Ramachandran et al. 2005) and asymmetries in the two-dimensional site frequency spectra (2D-

SFS) between populations (Peter and Slatkin 2015, 2013).

Due to the increased genetic drift associated with founder events, newly colonized geographic
locations are expected to have an excess of intermediate frequency allelic variants compared to
the population they originated from. This can be estimated as the directionality index, vy, defined
for pairs of populations (P; and P;) as the number of SNP fixed for the derived allele in P; and
heterozygous in P, minus the number of SNP fixed for the derived allele in P, and heterozygous
in P; divided by the total number of sites segregating in both populations. Previous simulation
work has shown clines in y to be more sensitive and robust to detecting signatures of REs and

estimating their origins compared to methods based on clines in genetic diversity (Peter and
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Slatkin 2015, 2013), where the expansion origin is expected to be the location with the strongest
positive correlation between geographic distance and . This approach has been increasingly
applied in recent population genetic studies as it only requires one diploid individual to be
sampled per population (Zhan et al. 2014; Maisano Delser et al. 2019; Prior et al. 2020; Fifer et
al. 2022; Hemstrom et al. 2022; Lesturgie et al. 2023; Singhal, Wrath, and Rabosky 2022; Walsh
et al. 2022; loannidis et al. 2021; He, Prado, and Knowles 2017; Jaya et al. 2022). A further
potential benefit of the methodology introduced in Peter and Slatkin (2013, 2015) is the use of
the Time Difference of Arrival (TDoA) - a ranging technique regularly used in the Global
Positioning System (GPS) that allows for the inference of range expansion origins also from
unsampled geographic regions. A more advanced method to estimate the origins of REs based on
Approximate Bayesian Computation (ABC) is also now available (He, Prado, and Knowles

2017)

Range expansions, however, are not the only process to produce asymmetries in the 2D-SFS.
Differences in effective population sizes (N.’s) and/or asymmetric migration can produce similar
patterns (Gutenkunst et al. 2009; Marchi and Excoffier 2020). More importantly, because
population centers on average receive a more genetically diverse set of migrants (from all
directions of the distribution range), range margins typically exhibit lower genetic diversity,
resulting in clines of decreasing diversity away from the center of a species range (Eckert, Samis,
and Lougheed 2008; Wilkins and Wakeley 2002). Since such boundary effects (BEs) are
ultimately driven by increased levels of genetic drift (smaller N.’s) at the edges, BEs will cause
asymmetries in 2D-SFS as well (Gutenkunst et al. 2009). Despite the fact that clear signatures of
BEs were observed in the geographic patterns of genetic diversity in simulated equilibrium

isolation-by-distance populations in Peter and Slatkin (2013, 2015; and to some extent also in
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82  spatial patterns in y), no excessive false positive rates for statistical tests for REs were reported

83 in these studies. However, the original simulations in Peter and Slatkin (2013, 2015) were based

84  on simple Wright-Fisher models and employed a limited range of parameter values. Since the

85 power of the tests used for rejecting the null-hypothesis of y#0 depends on the number of

86  segregating sites and only 1000 independent SNPs were used (Peter and Slatkin 2013), the lack

87 of elevated false positives rates despite signs of BEs may also have been a matter of statistical

88 power. Furthermore, the TDoA method relies on testing for correlations between two matrices

89  (geographic distance and y) not accounting for the non-independence among the pairwise

90 measures raising the possibility of severe p-value inflation (Peter and Slatkin 2015). Yet once the

91 null-hypothesis of y#0 has been rejected, finding significant correlations in TDoA have regularly

92  been used to further support REs in population genomic data (Maisano Delser et al. 2019; Jaya et

93 al. 2022; Peter and Slatkin 2015, 2013; Singhal, Wrath, and Rabosky 2022).

94 In this study, we tested the extent to which BEs under equilibrium conditions result in similar
95 clinal variation in y and genetic diversity as expected during REs. We used spatially explicit,
96 individual based non-Wright-Fisher 1D and 2D stepping stone simulations as well as simulations
97 in two-dimensional continuous space with age structure and overlapping generations in
98 heterogeneous seascapes modeled after the grey reef sharks in the coral-triangle (Robbins et al.
99  2006; Boussarie et al. 2022). We further demonstrate that the mean |y|-values in equilibrium
100  populations is proportional to the overall levels of genetic structuring in the data as measured by
101  the fixation index (F’sr) and test to what extent the levels of y, Fsr and clinal variation y
102 independently and jointly can predict genetic signatures of REs in the simulated data using linear
103 models. These models were then tested on 28 empirical data sets of Australian scincid lizards

104  with large numbers of significant y-values and strong geographic clines in y but with no known
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105  historical records of range expansions (Singhal et al. 2022), on a previously analysed blacktip
106 reef shark data from the Indian and Pacific Oceans (Maisano Delser et al. 2019), as well as on

107  data from the recent and rapid invasion of the cane toad in Australia (Selechnik et al. 2019) that

108  functioned as a positive control.

109

110 Materials and methods

111 ID and 2D simulations

112 For the first set of simulations we aimed to add biological realism to the 1D and 2D stepping

113 stone simulations presented in Peter and Slatkin (2013, 2015) by using individual based non-

114 Wright fisher models implemented in SLiM 4 (Haller and Messer 2023). Based on recipe 16.19
115  in the SLiM manual (v. 4.0.1), we modeled a sexually reproducing hermaphroditic species with
116 no selfing and non-overlapping generations, and with population size determined by negative

117 frequency dependence (simulation parameters are summarized in Table 1). The models consisted
118 of N=81 demes (d;,d>,.. ds;) connected either as a single chain (1D) or arranged in a 9x9 matrix
119 of demes (2D), with each deme connected by migration with adjacent demes (Fig. 1 a,b). The

120 number of migrants between adjacent demes were drawn from a binomial distribution with a

121  probability M for each individual in the source deme, with three levels resulting in low, medium
122 or high gene flow between demes (Table 1). Since each deme in the 1D models can be connected
123 to a maximum of two other demes, whereas in the 2D models a deme can be connected to a

124  maximum of four demes (Fig. 1 a,b), the levels of M were chosen so that patterns of genetic

125 isolation-by-distance (IBD) in 1D and 2D models would be more comparable (Table 1). Initially

126  asingle deme was allowed to reach mutation drift equilibrium either at the beginning or the
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127 middle of the stepping stone chain (1D) or in one of the corners or the middle of the 2D matrix

128  (d)), after which the remaining (previously empty) populations were allowed to be colonized.

129  The number of offspring per individual was drawn from a Poisson distribution with mean=1.04

130 such that after initial colonization the population size in a given deme would increase until

131 limited by negative density dependence to its carrying capacity of K=1000. Thus, the speed of

132 the RE was proportional to M. A single chromosome was simulated with a size L and mutation

133 rate p adjusted (Table 1) such that a minimum of 50k polymorphic SNPs would be available for

134 analyses after REs were completed (at ty), when the total number of individuals in the meta-

135 population reached 98% of K*N. Recombination rate r was uniform across the chromosome with

136 r=p which allowed linkage disequilibrium (LD) to decline rapidly with distance along the

137 chromosome. After t,, genotypic data were saved for five individuals from each deme for

138 downstream analyses at 11 time points ranging from 100 to 128k simulation cycles (equal to

139  generations and years) post to. While 128k generations was not sufficient for genetic diversity to

140 reach equilibrium (overall genetic diversity did not reach a plateau at the end of the simulations)

141 it was nevertheless sufficient to eliminate all signals of the REs (i.e. Fsr and ¢ reached

142 equilibrium). Thus, here we consider the population at the end of each simulation as the null

143 model for REs, where the balance between mutation, drift and gene-tflow outweighs the effects

144  on patterns of genetic variation relative to the RE. As a contrast, we further included a fully

145  panmictic model where all 81 demes had an equal probability of M=0.25 to exchange migrants

146 with any other deme in the meta-population. All segregating SNPs were initially saved for

147 downstream analyses but only 50k SNPs were subsequently sampled for the final data set (minor

148 allele frequency, maf=1/2n where n is the number of individuals). Ten replicate simulations were

149  run for each parameter combination of origin O (edge or center) and M (Table 1) for both 1D and

150 2D models as well as for the single parameter combination for the panmictic model.
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151

152 2D continuous-space simulations

153 Based on y and geographic clines of genetic diversity, several recent papers on blacktip

154 (Carcharhinus limbatus) and grey reef sharks (Carcharhinus amblyrhynchos) throughout the
155 Indian and Pacific oceans, have inferred that there is sufficient evidence for REs in these two
156  species (Maisano Delser et al. 2019; Lesturgie et al. 2023; Walsh et al. 2022; Boussarie et al.
157 2022) in support for the hypothesis that the Indo-Australasian archipelago is a center of origin
158  for marine biodiversity. To test to what extent boundary effects may cause similar geographic
159 patterns of genetic diversity, we loosely modeled 2D continuous-space simulations of the grey
160 reef sharks in the coral triangle based on recipes 15.11 (biogeographic landscape model), 16.10
161  (spatial competition and mate choice), 16.2 (age structure) and 6.1.2 (heterogeneous

162 recombination rates) in the SLiM manual. This allowed us to simulate a dioecious and

163 iteroparous organism with overlapping generations in a heterogeneous seascape (with realistic
164 recombination rate variation across a chromosome), where both the fitness and dispersal distance

165 was proportional to the habitat quality in which the individual resides in.

166  Because the TDoA approach used to estimate the origins of range expansions assumes equal
167  habitat suitability across space and time it is important to assess how isolation-by-resistance
168  (IBR) models that incorporate the effects of heterogeneous habitats on gene flow (McRae and
169 Beier 2007) may affect the accuracy of this method. Boussarie et al. (2022) showed that both
170 bathymetry (sea depth) and distance from the closest coral reef best explained the patterns of
171  genetic connectivity among populations of grey reef sharks in the coral triangle (samples

172 collected across the Indian and Pacific oceans). The heterogeneous fitness landscape in our 2D
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173 continuous-space model was therefore based on the resistance map (398 by 855 matrix) from
174  Boussarie et al. (2022) that produced the best IBR fit in the grey reef shark data (Fig. 1c) where
175  the value of each grid point (physical position on the map) gives the habitat quality q=[1,0],

176 ~ where 0 represents land or depths <4km and 1 represents coral reef. With age structure, negative

177  density dependence and spatial competition the individual fitness is given by:

178 f=lkql/c(1—m) (1)

179 where m=[0.7, 0.0, 0.0, 0.25, 0.5, 0.75, 1.0] is the normalized age specific mortality, for ages 0-6
180  (reproduction starting at age one), c is the rescaled strength of competition felt by the individual
181  (see recipe 16.10 for details) and k is a scaling parameter to control the total number of

182  individuals in the simulations in order to keep run times manageable. When the population is at
183  equilibrium i.e. when census population size (N,) is approximately equal to K, ¢ will also be

184 approximately equal to k. In all simulations k=100 which resulted in K~7¢°. Thus, the highest
185  fitness could be reached for 1-2 year old (1-m=1) individuals residing in coral reefs (q=1), at an
186  expansion front where population density was still low (c<k). The number of offspring was

187  drawn from a Poisson distribution with mean 1, but since the organism was iteroparous, this

188  ensured population growth whenever N.<K, for instance at the edges of an expansion, thus

189  simulating a large species with slow reproduction.

190  The dispersal of individuals was modeled as follows. First, the direction of the dispersal was

191 determined by randomly drawing eight directions. Second, for all directions the dispersal

192 distance d was drawn from a standard uniform distribution multiplied by ¢ and d,..., the

193  maximum possible distance an individual can disperse each simulation cycle (here equivalent to

194  years but not generations), resulting in eight potential new positions to choose from. Third, the
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195 total resistance (s) for each new position was calculated as the sum of all grid points along the

196  straight path from the old position to the new positions (the maximum resistance allowed was

197  s..=8). If any of the grid points crossed by this line included land or deep sea (g=1) the new

198 position was disregarded, likewise when the new position was outside the boundaries of the map

199 (indicated by red in Fig. 1g). This kept individuals from crossing land and avoided severe BE’s

200 around the map borders and borders between sea and land (or deep sea). From the remaining

201  potential new positions for an individual (indicated in blue in Fig. 1g), one was selected using

202 w=1-s/s,4 as a weight, i.e. the most likely new position was the one with the lowest total

203  resistance on the path from the old position to the new position. If, among the eight possible new

204 positions none were viable options (all paths crossing land or deep sea, or $>5,..), the fitness of

205 the individual was set to zero in effect killing the individual. This equates to absorbing

206 boundaries, which ensures that population density remains proportional to habitat quality in the

207 simulations across the whole map (with reprising/reflective boundaries, population density at

208 edges would have been higher, which is not desirable) and is expected to result in BEs (Wilkins

209 and Wakeley, 2002). The strength of IBR was ultimately determined by the parameter d,,.. with

210 three levels resulting in low, medium and high gene flow (Table 1), that also determined the

211 speed of expansions, i.e. lower gene flow resulting in slower expansions.

212 As a contrast to the IBR model described above, we also simulated data using a map where

213 resistance was uniform (UL) i.e., a standard IBD model. The census population in the

214  simulations was a function of the mean resistance of all grid points on the map. Therefore, using
215  the mean of all grid points (0.516) from the HL map in UL ensured that K would be similar, with
216  the difference that population density in HL was highly patchy and centered around coral reefs

217  and corridors of shallow areas along coastlines, whereas in UL the average local population

10


https://doi.org/10.1101/2023.12.06.570483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.06.570483; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
218  density was uniform across the map. The simulations began with an equilibrium population
219  (generated by using 20k cycle burn-ins) with approximately 1/10th of the map (K~7¢*, Fig. 1e)
220 being populated before allowing for individuals to expand across the remainder of the map. As a

221  contrast to the RE model, we also allowed the individuals from the burn-in to immediately seed

222 the entire map simulating a demographic expansion (DE) without a spatial component.

223 All polymorphic SNPs from 2000 randomly chosen individuals were saved at 600, 800, 1000,
224 2500, 5000, 10000, 20000, 40000 and 80000 cycles after expansions started for downstream

225 analyses. This was sufficient for RE and DE models to converge to similar estimates (as

226  simulations proceeded) for all population genetic summary statistics except genetic diversity.

227  Therefore, the data set sampled at the end of the simulations were appropriate as a null model for
228 testing REs. Based on general patterns of genetic diversity and population densities, 20

229  population cores (coordinates) were selected (Fig. 1 b) and for each of them the 10 closest

230 individuals were chosen as the population sample for the final data set (n=200).

231 In order to add some level of realism to the recombination landscape, in the absence of accurate
232 recombination maps for shark genomes, the recombination map followed that of Drosophila

233 melanogaster Chrll (Comeron, Ratnappan, and Bailin 2012) and p was adjusted such that a

234 minimum of 50k polymorphic SNPs could be sampled for all data sets, also here with r=p (Table
235 1). Ten replicate simulations were run for each parameter combination of d,.., type of expansion

236  (RE or DE) and habitat heterogeneity (HL or UL; Table 1).

237

238  Testing range expansions and finding origins

11
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239  Tests for range expansions and estimation of the center of origin followed the same approach for

240 the stepping stone models and the continuous space models unless otherwise stated. As in recent

241  studies (Singhal, Wrath, and Rabosky 2022; Jaya et al. 2022; He, Prado, and Knowles 2017), we

242 used the original functions and pipelines from the R-package rangeExpansion (v.0.0.0.9000;

243 Peter and Slatkin 2013, 2015; https://github.com/BenjaminPeter/rangeexpansion) to estimate

244 and the centers of origin. Some modifications of the original code were, however, necessary to

245  correct some bugs, streamline the pipelines and improve computational speed. Most importantly,

246  the polarity of the y-matrix produced by the original code is reversed, resulting in the most likely

247  origin to be estimated where the genetic diversity is the lowest (i.e. the most recently colonized

248  population), instead of the highest (Supplementary File 1). From the simulation output we

249  prepared a genotype and a coordinate file and used the function preparedload.data.snapp

250 followed by make.pop to prepare the raw data for range expansion analyses. To check

251 independence of SNPs, LD between all pairs of adjacent SNPs was estimated using function

252 snpgdsLDMat from the R-package SNPrelate as the squared correlation coefficient 7° (Zheng et

253 al. 2012). While in Peter and Slatkin (2013) a block jackknifing approach was used to account

254 for the non-independence of loci when estimating the significance of y, R-package

255 rangeExpansion does not include any function to perform this operation. However, since only

256  ~0.5% (stepping stone models) or ~5% (continuous space models) of all adjacent SNPs along the

257 chromosome showed 7°>0.2 in of the simulated data sets, SNPs could to a large extent be

258 considered as independent. Therefore, we tested significance of y by first projecting down the

259  2D-SFS to one diploid individual per population and testing whether absolute frequencies of

260 alleles polymorphic in both populations deviated from 0.5 using a binomial test (Peter and

261  Slatkin 2013). We used the custom function get.all.psi.mc.bin (a modification of get.all. psi from

12
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262 rangeExpansion), that performed the binomial test but also improved the speed of the

263 estimations by a minimum of one order of magnitude.

264  Next, the function prep.tdoa.data was used to prepare data for the TDoA estimations of range
265 expansion origins using the function single.origin (Peter and Slatkin 2015) as described in

266  Supplementary File 2. In short, the map was divided into a 100x100 grid of evenly spaced

267 coordinates and a linear regression was used to find the grid point that shows the strongest

268  positive correlation between y and the difference in the geographic distance from this grid point
269  to each of the two populations (for which the y was estimated). As an alternative to y, we used
270  the same approach using the difference in Hy between pairwise populations (Ay,) where the

271  correlation is instead expected to be negative (Ramachandran et al. 2005). Note that TDoA, as it
272 is implemented in the rangeExpansion package is not equivalent to the original implementation
273 given in Peter and Slatkin (2013) and relies on correlations between two pairwise distance

274  matrices (geographic distance and ) without correcting for non-independence among the data
275 points and is thus expected to lead to high false positive rates (by overestimating the degrees of
276  freedom; Supplementary File 2). Therefore, we also used the more traditional and conservative
277  (non-TDoA) approach where a linear regression was used for the correlation between the

278  pairwise distances from a focal population and all other populations in the data set and the

279  corresponding y (or negative correlation with A,.; Ramachandran et al. 2005) where the degrees
280 of freedom are not overestimated. In the stepping-stone models (but not for the continuous space
281 models), the grid points for the TDoA analyses corresponded to the coordinates for the

282  populations so the estimated origin always overlapped with a sampled population for both the
283  TDoA and the non-TDoA approaches. As in Peter and Slatkin (2013) we used the root mean

284  squared error (RMSE) of the Euclidean distance between the estimated and the true origins to
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285 determine the accuracy of the TDoA and the non-TDoA methods. Since the 2D models were
286  symmetric with range expansion starting from one of the corners (or from the middle), we used
287 the mean across the x and y coordinates of the population matrix for comparing spatial patterns
288  of y and H; with the 1D models. In the continuous space simulations, the center of the

289  geographic regions populated during the burn-ins was used as the true range expansion origin for

290 the RMSE estimates.

291

292 Predicting boundary effects at equilibrium in simulated data

293 Since BEs in equilibrium populations are caused by increased genetic drift (declining N.’s)

294  towards the edges of finite populations (Wilkins and Wakeley 2002), we expect them to affect
295  geographic patterns of y across the meta-population as well (Gutenkunst et al. 2009; Peter and
296  Slatkin 2015, 2013). The strength of the correlation between geographic distance from the

297  population center and genetic diversity due to BEs in equilibrium populations is proportional to
298  the genetic structuring in the data (Wilkins and Wakeley 2002). It is thus reasonable to expect a
299  similar relationship between geographic clines in y and population connectivity as well. If this is
300 true, rescaling y by Firis expected to normalise the levels of y in equilibrium meta-populations
301 across different levels of genetic structuring. We thus define the scaled y as € = \(/1\/ F ., where
302 Fg (hereafter simply F;) is the mean pairwise Fs; (Weir and Cockerham 1984) as estimated by
303 function snpgdsFst from R-package SNPRelate (Zheng et al. 2012). Because when

304 Fgy - 0,€ - oo, all Fgrvalues were censored to a minimum value of F;=0.001 across the

305 panmictic simulations (Fsywas above 0.001 in all other simulations). The expected ¢ for a

306 population at equilibrium is here defined as €, and while €, cannot be known in empirical data,

14


https://doi.org/10.1101/2023.12.06.570483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.06.570483; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

307 it can be estimated from the data sets sampled at the end of our simulations where |y| and Fir
308 (although not necessarily genetic diversity) are expected to be at (or close to) equilibrium. Thus,
309 the €,, estimator can here be considered as the null-distribution and we are interested in testing
310 the hypothesis that e>€,, in a given data set. Assuming that no other evolutionary phenomena
311 except BEs cause elevated levels of y at equilibrium across the meta-population, we define the
312 effect size for the genetic signature of a RE as E=€/€,, where E>1 indicates that the observede
313 is higher than what can be expected at equilibrium due to BEs. Based on the simulated data,

314  where the true e, can be estimated with some confidence, we can thus model £ as:

315 E=B,+ef+1B, +erf +¢€ 2)

316 wherer is the effect size (strongest positive 7° between any population pair in the data) from

317 TDoA or the non-TDoA methods, f3, is the intercept, S.and f3, are the regression coefficients for
318 € and T, respectively, et B, represents the interaction between these two variables and ¢ is the

319 residual variance. Due to heteroscedasticity in ¢, the estimation of standard errors were weighted
320 by l/e. Since only € and 1 can be estimated from empirical data, the primary focus of the model
321 was to determine how well E can be predicted across multiple simulation models,

322 migration/dispersal parameters and type of expansion (a function of how consistent €, is across
323 the different simulation models). To test to what extent there is a significant genetic signature of
324 REs in the data - beyond what can be expected by BEs at a given level of genetic structuring - we

325 can find the lower boundaries for the prediction intervals satisfying £>1 from this model, for

326 given confidence levels, a.

327
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328  Re-analyses of 30 empirical data sets

329  We re-analysed reduced representation sequencing data from 8-73 individuals (mean=16.5) and
330 3821-87570 SNPs from 28 empirical scincid lizards data sets with various distribution ranges
331 across the Australian continent, where previous studies have found evidence of REs based on
332 and clines thereof (Singhal et al. 2022). Second, we re-analysed a population genomic data from
333 the blacktip shark sampled across the Indian and Pacific from Masano Delser et al. (2019) - a
334 study supporting the hypothesis of the Indo-Australasian archipelago being a center of origin for
335 marine biodiversity (431257 SNPs from 144 individuals and 13 populations). Lastly, we

336 analysed population genomic data from a recent rapid range expansion with a known origin from
337 historical data: the invasion of the cane toad, Rhinella marina, in Australia. Historical records
338  document the introduction of the cane toad to Gordonvale, North Queensland, in 1935 (Sabath,
339  Boughton, and Easteal 1981; Easteal 1981), and they have since spread rapidly across the

340 northern half of the continent to become a widespread and destructive pest species (Phillips and
341  Shine 2004). Raw reads from RNAseq data from cane toad brains sampled across northern

342 Australia (Selechnik, Richardson, Shine, Brown, et al. 2019) were accessed from the NCBI Short
343 Read Archive PRINA479937 and trimmed for quality and adapter contamination using

344  Trimmomatic v.0.32 (Bolger, Lohse, and Usadel 2014). Reads were then mapped to the

345 reference transcriptome of the closely related species Rhinella arenarum, the Argentine toad

346  (Ceschin et al. 2020) with bwa mem (Li and Durbin 2009). SNPs were called with bcftools

347 mpileup (Danecek et al. 2021) and polarised against the outgroup reference transcriptome to

348  obtain the ancestral state. SNPs were filtered for quality and individuals with less than 90% call
349 rate were excluded, after which one SNP per reference transcript was randomly chosen to

350 minimise LD between SNPs. Following filtering, the dataset included 58 individuals and 18658
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351 SNPs. All summary statistics for the empirical data were then estimated as for the simulated

352 data.

353

354 Results
355 1D and 2D stepping stone models

356  The mean Fir for the two most distant populations in the 1D simulations were 0.17, 0.29 and
357  0.63 for high, medium and low levels of gene flow, respectively and the corresponding values for
358 the 2D simulations were 0.13, 0.21, and 0.42. The simulations confirmed that y is more sensitive
359 and retains the signal of a RE longer than Hy (Fig. 2), but, in contrast to Peter and Slatkin (2013,
360 2015), we also found clear patterns consistent with BEs not only for Hj, but also for v (Fig. 2).
361  The population with the highest genetic diversity and lowest y at equilibrium (>10k cycles post
362 tp) was always found at the center of the meta-population, even when the expansion started from
363 the edge (Fig. 2b). Furthermore, when the expansion started from the edge, the lowest y and

364 highest Hr were never found where the expansion started (d;), but was instead increasingly

365 biased towards the center with increasing times in a “wave like” manner (Fig. 2). Furthermore,
366 the stronger the range expansion signal was in the beginning (t,+100 cycles), the stronger the

367 boundary effect was at the end of the simulations (t;+128k cycles; measured as the maximum

368 difference in y or Hg between any two populations; r2w=0.82; r2,=0.68; Fig. 2).

369 Using 50k SNPs, the binomial test for y was always significant for >5% of comparisons
370  (subsequently also resulting in non-zero significant y-values after Bonferroni correction for

371 multiple testing), with the exception of the scenarios with high gene flow, and only for the short

17


https://doi.org/10.1101/2023.12.06.570483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.06.570483; this version posted December 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

18

available under aCC-BY-NC-ND 4.0 International license.

time interval where the signature of the REs diminished but the signature of the BEs was not yet
strong (Supplementary Fig. 1). No y-values were significant under the panmictic scenarios. After
an initial reduction (approximately after 10-40k cycles post ty), the proportion of rejected null-
hypotheses increased (Supplementary Fig. S1a). This was not a function of increasing levels of
asymmetries in the data (Supplementary Fig. S1b), but instead a function of increased statistical
power due to larger numbers of SNPs segregating in both populations available for the binomial
test (Supplementary Fig. S1c). This pattern was true also for medium and low levels of gene
flow, such that the proportion of significant y values was a poor predictor of whether a signal of

RE still remained in the data or if the signal was solely caused by a BE.

Once the null hypothesis of y#0 has been rejected, to find support for REs, clinal variation in y
should also be demonstrated (Peter and Slatkin 2013, 2015). However, it is important to note that
significant correlations between geographic distance and y will almost always be found with the
TDoA approach (Peter and Slatkin 2013). Indeed, close to 100% of all TDoA regressions were
significant for all data sets, except when the meta-population was panmictic, in which case on
average ~50% of all tests were significant (Supplementary Fig. S2a). In the panmictic

simulations the strongest positive correlation between geographic distance and y was significant

in 82% of the data sets at «=0.05. When using a=1e-07, this number was still >50%. Except
when populations were panmictic, the non-TDoA approach resulted in >50% significant
regressions, regardless of whether the test was applied directly after the expansion or much later
when no signal of RE remained. This was also true, although to a lesser degree, in cases where
the population was panmictic, particularly early in the simulations (Supplementary Fig. S2a).
Since the power of linear regressions depend on the number of populations, there was no

increase in the proportion of rejected null hypotheses with increasing number of cycles.
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As indicated in Figure 2, when expansions started from d;, the lowest y and the highest
heterozygosities were never found at the edge, even at the first time point after the expansions
had finished (to). This is reflected in the accuracy of both the TDoA and the non-TDoA, which is
low from the beginning, and continues to decrease until the estimated origin coincides with the
center of diversity caused by BEs (Supplementary Fig. S2b). When the expansion starts from the
center, RMSE is low throughout the simulations (Supplementary Fig. S2b). Since the signal of a
RE declines slower for y than genetic diversity, we also observed that the (negative) correlation
between these two statistics started out strong, temporarily declined and again increased as the
signal of the RE in y had diminished and both statistics were equally affected by BEs

(Supplementary Fig. S3).

Continuous space simulations in heterogeneous landscapes

In the continuous space simulations, the mean Fsr between the two most distant populations at
the end of the simulations were 0.12, 0.32, and 0. 62 (HL models) and 0.13, 0.40 and 0.73 (UL
models) for high, medium and low levels of gene flow, respectively. The slightly higher levels of
genetic differentiation in the UL models resulted from the populations in the HL. models being

connected by corridors of lower resistance along shallow areas along coasts (Fig. 1c¢).

The results from the continuous space simulations were concordant with the results observed in
the stepping-stone models. For instance, following REs, the proportions of significant y first
declined and then increased (Supplementary Fig. S4). The proportion of rejected null-hypotheses
converged to similar values 2k-20k generations after the expansions started in both RE and DE

models (depending on simulation parameter settings; Supplementary Fig. S4). The main
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417  difference is that the RE models started from a high proportion of rejected null-hypotheses (and
418  then declined before increasing again), whereas the RE started from lower values and continually
419 increased. When only 10k SNPs were sampled for these analyses and gene flow was low, there
420 was not enough power in the binomial test to reject the null-hypothesis after the initial signal of

421  RE had disappeared, even when geographic clines in y due BEs clearly existed, as was evident

422 when using larger numbers of SNPs (50k; Supplementary Fig. S4).

423 As with the stepping stone models, p-values from TDoA analyses were highly inflated relative to
424 non-TDoA results, where the latter could to some extent distinguish a range expansion from a
425 demographic expansion or an equilibrium situation (with both y and A,.,) but only when gene
426 flow was low (top panels in Supplementary Fig. S5 a,b). However, when gene flow was medium
427  or high, the non-TDoA method could only reliably detect range expansions when the landscape
428  was uniform (UL; left vs. right panels in Supplementary Fig. S5 a,b). In contrast to non-TDoA
429 analyses, the proportion of significant correlations for the TDoA analyses was a positive function
430 of time in both the RE and DE simulations suggesting BEs have an even stronger influence on
431 TDoA than REs (Supplementary Fig. S5). A similar bias of estimated origins towards the meta-
432 population center as seen for the stepping-stone models was observed for the continuous space
433 models (based on the TDoA method; Supplementary Fig. S5 b; the estimated origins are shown
434 in Supplementary Fig. S6). The correlation between y and Hr was much stronger across time in
435  the continuous space RE simulations (min °~0.6) compared to the stepping stone simulations
436  (min 7”~0.25), especially when gene flow was high (min *>0.8; Supplementary Fig. S3 and

437  Supplementary Fig. S7 ). The correlation between y and H was high across all levels of

438  population connectivity in DE simulations (min 7>0.8).

439
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440  Predicting boundary effects at equilibrium in simulated data

441  Across all simulated data sets, p-values from the TdoA were inflated by a factor of 38 relative to
442 p-values from the non-TdoA approach (in a quantile-quantile plot on a log;, scale). Despite this,
443 the relationships between their effect sizes, Tipx and T,,,_1poa, TeSpectively, were close to unity
444  (Supplementary Fig. S8). However, in the empirical data, 7,,,, was inflated relative to 7,,,_rpoa

445 by a factor of 1.25, possibly due to more heterogeneous N,’s among natural populations affecting

446 Typ,, more than 7;,,,. We therefore used t=1,,,_p,4 in the following analyses.

447 Below we considered 1D, 2D, and the continuous space simulations: RE-UL, RE-HL, DE-UL
448 and DE-HL as different “simulation data sets”. Figure 3 illustrates the relationships between
449  mean |y|, Fsr and e=|y|/Fsr showing that for the simulation data sets where Res occurred (all but
450  DE simulations), € declines with time and reaches a background level where e~¢, (in DE

451  simulations e~¢.throughout all simulation cycles). As also seen in Figure 3, € normalizes the
452  variance in |y| such that gene flow only explains <2% of the variation in €., and instead most of
453  the variation was found between the different simulation data sets (77%; Supplementary Fig.
454 S9). Within each of them, some differences between levels of gene flow were also found as the
455 interaction term between gene flow and data set explained 91% of the variation (Supplementary

456  Fig. S9).

457  In addition to the simulation data sets considered above, we further consider all data sets pooled
458  (“All”), all data sets that include Res pooled (1D, 2D, RE-UL and RE-HL) and all data sets

459  except the panmictic data (“Excl. panm.”) separately in the following analyses. Among these
460 data sets, Tpp,, and |y| explained <40% (mean 15%) and <1%-89% (mean 48%) of the variation

461 in E, respectively. However, when normalizing || with Fsr (e=|y|/Fsr), the amount of variation
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462  explained increased to a minimum of 27% for all data sets (mean 65%) with 81%-95% of the

463  variation in £ explained in 4/7 data sets (Excl. panm., 2D, RE-UL and RE-HL). When

464  considering each RE simulation data set independently (1D, 2D, RE-UL and RE-HL), 91%-99%

465  of the variation in £ could be explained by the full model (E~¢*t, equation 2) but when

466  considering all data sets jointly (including the panmictic data), this number dropped to 78%. This

467  1s because of the slightly different background levels of €., (see above) in the different

468  simulations increasing the residual.

469  When excluding the panmictic data, € explained 81% of the variation and the fit did not improve

470 by adding 7 to the model (Fig. 4) in contrast to the full data set where € only explained 33%. This
471  difference stems from low F¢; in the panmictic data sets resulting in high € but weak geographic

472  clines in y. As range expansions require clinal variation in y, when predicting £ from y, Fsr and

473 1, the full model (E=1.00 + 0.0914¢ - 0.8941 + 3.38¢€7) fitted using all the simulated data was
474  used, unless otherwise stated. We further considered data sets from RE models with €/e.;>1.2 as
475 non-equilibrium data sets (true positives). Because of lower than average €. (Fig. 3 and

476  Supplementary Fig. S9 ), the power to detect Res in these data sets (the proportion of data sets
477  exceeding the lower prediction boundary for £>1) was lower in 2D and RE-UL data sets (7%
478  and 52%, respectively) compared to RE-HL data sets (86%). In our simulations, all data sets
479  deriving from DE simulations as well as those sampled from the second half of the simulations
480  (<72k and <40k cycles for the stepping stone and continuous space models) are subsequently
481 considered as equilibrium data sets (where e~€.;). Among these, none exceeded the lower

482  prediction boundary for £>1 (Figure 5).
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483  The mean effect sizes for TdoA and non-TdoA were Tp,,=0.47 and 7,,,_1p,,n=0.45 for
484  equilibrium data sets and t,,=0.71and 7,,,_7p,,=0.76 for non-equilibrium data sets,

485 respectively and the mean ¢ was 2.2x higher in the non-equilibrium data sets (¢=0.69) compared

486  to equilibrium data sets (¢=0.32).

487

488  Is there any evidence for range expansions in the empirical data?

489  Population structuring was generally high among the 28 Australian scincid lizards datasets

490 ranging from Fs;=0.10 to F's7=0.72 between the two most differentiated populations, covering a
491 similar range of values as our simulated data. Among these, a minimum of 33% significant

492  pairwise y-values were found for all data sets, ranging up to 100% (mean=65%). Significant
493 clines in y were found in 27/28 data sets with TdoA method and in 14/28 data sets with non-
494  TdoA method. Notably, however, many of these data sets had weaker clinal variation in y (

495 Typ,x=0.55 and 7,,,_7p,,=0.35) than in the equilibrium data sets from the simulations (see

496 above). In addition, the data sets with high € tended to be those with the lowest 7 (Fig. 5¢) and
497  consequently, while only a single data point exceeded the lower boundary for £>1 at the 95%
498  confidence limit, no tests were significant after accounting for multiple testing (dashed lines in
499  Fig. 5). Furthermore, these empirical data sets tended to cluster more with equilibrium data sets,
500 except for one data set where €=3.3. However, for this data the geographic cline in y was also
501 weak (T,,,—m,a=0.071) and this was also the data set with the lowest level of genetic

502  differentiation. The high € in this data point could thus have resulted from a combination of low
503 Fsrand relatively high (given the level of population structuring), but non-clinal, variation in N,.

504 Notably, if panmictic data were not included in the model fitting, four of the data sets exceed the
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Bonferroni corrected lower boundary for £>1 (dotted lines in Fig. 5) due to their relatively high
€. In the blacktip shark data F's;=0.77 between the two most differentiated populations. The
scaled v for this data set was estimated to e=1.05 and the strongest correlation between
geographic distance and y was estimated to 7,,,_rp,, =0.58 resulting in an estimated £=2.63
which only exceeded the lower prediction boundary for £>1 when not correcting for multiple

testing (Fig. 5 c).

In contrast to the above data sets, the genetic structuring among the cane toad populations was
much lower (F5=0.039 between the two most differentiated populations). Since the mean F;<0
between all pairwise comparisons, as for the panmictic data from the simulations F;=0.001 was
used to calculate €. With |y]|=0.0134, €=13.4 and 1,,,,_1p,s=¢0.76, E was estimated to be 4.5.
Such high predicted values for £ were only observed in the 1D-stepping stone simulations where
the difference between equilibrium and non-equilibrium data sets were the highest (£,,,=9.9;
E,»=4.2 for any of the other simulations). Consistent with the historical records of a rapid RE
from Gordonvale, North Queensland since its introduction in 1935, the estimated origin using

TdoA was highly accurate for both y and A, (Supplementary Fig. S10).

Discussion

Using individual based spatially explicit forward-in-time simulations we demonstrate that y and
Hp are similarly affected by Bes under mutation-drift and gene flow equilibrium scenarios,
resulting in clines of decreasing diversity and increasing y from the meta-population center
towards the edges. This is because the same processes that lead to Bes in genetic diversity

(Wilkins and Wakeley 2002) also cause asymmetries in the SFS (Gutenkunst et al. 2009). As a
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consequence, not knowing a priori the underlying population demographic model and level of
connectivity, it is not possible to specify a threshold value of y that can reliably differentiate a
RE from a BE in population genomic data. This is particularly true since we show that detecting
significant asymmetries in 2D-SFS is only a matter of statistical power and thus, in contrast to
what was previously proposed by Peter and Slaktin (2013, 2015), rejecting the null-hypothesis of
y#0 cannot be taken as evidence of Res even when there also are significant geographic clines in
y. Thus, the relevant question is not whether significant asymmetries in the SFS exist, but rather
whether they are stronger than can be expected due to Bes under a specific population

demographic scenario and level of population connectivity.

Our results suggest we should be careful when interpreting the results from recent population
genetic studies that used clines of genetic diversity and v to test for Res and identify their centers
of origin. For example, Maisano-Delser et al. (2019), Walsh et al. (2022) and Lesturgie et al.
(2023) identified range expansions of coral-reef associated sharks originating from the Malay
Archipelago and speculated on the potential role of this region as a refugium for coral-reef
associated organisms from which recolonization started. Given that we could not reject the null-
hypothesis of E<I (after corrections for multiple testing) in the blacktip shark data, and the fact
that the Malay archipelago is located close to the center of the distribution of Indo-Pacific coral-
reef associate sharks, indicates that the observed geographic patterns in genetic diversity and y
could also have been caused by Bes. Similarly, we show that previous work that identified the
center of origin of several lizard species in Australia was biased both by the limitation of these
methods as well as by a coding error in the R package that implemented them (which resulted in
y-matrices with inverted polarities), leading to the incorrect conclusion that many Australian

lizard species had a center of origin at the periphery of their range. The same bug has likely
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550 affected the results of several other papers as well, such as Jaya et al. (2022), where an origin of
551 range expansion was estimated to be at the very edge of the distribution range despite the fact

552 that the highest levels of genetic diversity was seen at the center, and He et al. (2017), where

553 TDoA performed suspiciously poorly in simulated data (see also below).

554  Consistent with the literature (Ioannidis et al. 2021; He, Prado, and Knowles 2017; Peter and
555  Slatkin 2015, 2013), v and clines thereof were more sensitive to REs than statistics based on
556  genetic diversity, yet in most cases they remained highly correlated in equilibrium and non-

557  equilibrium meta-populations alike. Nevertheless, how these statistics have been utilized and
558 interpreted in the context of REs in various studies has varied dramatically, with no clear

559  consensus. Because no readily available software or R-function exists for rejecting the null-
560 hypothesis of y#0, most previous studies have not attempted to do so (but see data availability
561  for access to the updated R-functions used in this study). Instead, the geographic patterns in the
562  magnitude of y (or similar statistics that reflect asymmetries in SFS) have been interpreted in
563  relation to other summary statistics (e.g. Hg, Tajima's D and IBD and overall patterns of genetic
564  structuring) and independent sources of information regarding range expansions, such as

565 historical records (Jaya et al. 2022; Ioannidis et al. 2021; Mestre et al. 2022; Pierce et al. 2014;

566  Bringloe et al. 2022; Hemstrom et al. 2022).

567 While many of the limitations of y are often discussed (Ioannidis et al. 2021; He, Prado, and

568 Knowles 2017; Mestre et al. 2022; Riginos et al. 2016), the possibility of BEs causing high false
569 positive rates when testing for REs has, until now, been largely ignored. More importantly, while
570  the effects of BEs on spatial patterns of y were reported in Peter and Slatkin (2013; 2015), the
571 problem of BEs, as demonstrated here, appears to be much more severe than originally claimed.

572 Even in a much more recent simulation study used to compare the performance of TDoA with
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573  the ABC based X-ORIGIN, the problems of BEs were not detected since the method was never

574  evaluated under equilibrium conditions (He et al. 2017).

575  While the TDoA approach was never intended as a stand-alone test for REs in population

576  genomic data, it has nevertheless been used to support REs, sometimes even without first

577 formally rejecting the null-hypothesis of y#0 (Maisano Delser et al. 2019; Singhal, Wrath, and
578  Rabosky 2022; Peter and Slatkin 2015; Jaya et al. 2022; He, Prado, and Knowles 2017). Here we

579  show that the p-values from TDoA are in practice meaningless since this test was significant at

580 a=le-07 in ~50% of the panmictic data, where no clines in y could exist. While the TDoA

581 approach can infer an origin also in unsampled geographic regions, we have here shown that this
582  estimate can only be accurate immediately after a range expansion has finished, or when the

583 origin already coincides with the center of the species range. We also urge caution when the

584  estimated origin is inferred to be outside the convex hull of the sampling locations (at least using
585 the implementation of TDoA available from the rangeExpansion R-package), since in the

586  panmictic data sets the origin was estimated to be at d, or ds; (the two most extreme demes in a
587 1D stepping stone chain) in 22% of the data sets instead of the expected 2% (assuming the

588 estimated origin is randomly distributed among all 81 demes). The most reliable of the explicit
589 tests for REs explored here was thus the more conservative non-TDoA approach that showed
590 reasonable power to detect true REs with no false positive, but only in the RE-UL simulations or

591 in the RE-HL simulations when gene flow was low; in all other simulations (except the

592 panmictic data) >>5% significant tests were observed in equilibrium populations as well as in
593  simulated data where no REs occurred. The method X-ORIGIN (He, Prado, and Knowles 2017)
594 has thus potentially several advantages over the TDoA and non-TDoA methods tested here -

595 since it is based on ABC framework and relies on simulations, any influence of BEs are expected
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596  to be reflected in the uncertainties associated with the point estimates from this method,

597  equilibrium data sets are also included.

598  The high generality of the model E~€*t across a wide range of simulation approaches and

599 parameter settings as well as its robustness against false positives in the simulated data opens up
600 the possibility to also predict and test for £>1 in empirical data sets. This relies on the premise
601 that the true €.qin empirical data has a similar distribution as in the simulated data here. The

602 upper 95% quantiles of the distribution of €., among all the simulated data was €,,~=0.48. Even
603  though a minimum of 33% significant y values were observed for each of the empirical lizard
604 data sets, all except one also with significant clines in y (based on the TDoA approach), €

605 exceeded 0.48 in only seven (out of 28) of these data sets. Notably, the upper 95% quantile for
606  Taontpoa fOr all equilibrium data sets from the simulations was 0.75 while the maximum observed

607  Tuon-Tpoa @among the lizard data sets was 0.55. Thus, the levels of |y|, Fisr and Tuen-tnoa Observed in
608 the empirical data are indistinguishable from those observed among the equilibrium data sets and
609 consequently, none of the predicted £’s for these data sets exceeded the lower prediction

610 boundary for E>1 (after accounting for multiple testing). Since the null hypothesis of £<1 could
611 not be rejected in any of the empirical lizard data sets the possibility of false positives is not a
612  concern. It is, however, possible that the BEs in our simulations were exacerbated relative to the
613 lizard populations, resulting in low statistical power to reject E<1. Since both asymmetric gene
614 flow as well as non-clinal variation in N, are expected to increase €., both of which are likely to
615 be common in natural populations but were not considered here, we regard this as highly

616 unlikely. We are also not accounting for the fact that habitat quality may decrease towards the
617 edges of a species distribution in natural populations (Sexton et al. 2009; Gaston 2009),

618 increasing the clinal variation in N, beyond what can be expected by BEs alone. More generally,
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619  whenever habitat quality affects local population densities (and thus levels of genetic drift) and
620 varies predictably in space, the highest diversity and lowest y are expected where the habitat
621 quality is the highest, something that also needs to be considered when interpreting spatial
622 patterns in y. In contrast to the lizard data sets, the null hypothesis that £<1 could clearly be
623 rejected in the cane toad data set, with an estimated €=13.4 that is >4x higher than for any of the
624  simulated data sets (€..x=3.18) and strong clinal variation in both y and H;. This is entirely

625  consistent with the recent introduction (1935) in Gordonvale, North Queensland followed by a

626  westward range expansion.

627 Using simulated data to predict signatures of REs in empirical data is predominantly presented
628 here as an example of what can still be done, when the true null distribution (e€.q) in natural

629 populations cannot be known. For instance, the number of replicates in our simulated data for
630 each parameter combination was only n=10 but we still used all data sampled at multiple

631 different time points from the simulations as data points in the models. Furthermore, we did not

632 include any simulation with non-clinal variation in N,, asymmetric migration rates nor declining

633 habitat quality toward the range boundaries. However, understanding the range of € and 7 that
634 can be generated under equilibrium scenarios in the simulations can nevertheless greatly help us
635 to evaluate how likely a true signal of REs exists in an empirical data set. For example, in the

636 analyses of the five populations of Arabidopsis thaliana in Peter and Slatkin (2015) used to
637 demonstrate the merits of y-based test for REs, the p-values reported for 7rp.a ranged between

638  6.8e-6 and 4.2e-55, but the effect sizes for this test (7tp.a) ranged only between 0.12 and 0.26.
639  Such weak clines in y were observed in 78% of our equilibrium data sets and in <5% of our non-

640  equilibrium data sets.
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641  In conclusion, there are several practical implications emerging from our study. First, it is clear
642 that although a strong correlation between geographic distance and v is expected from REs, the
643  strengths of y-clines alone is not sufficient to determine whether a RE occurred. Second, the

644  upper 95% quantile for €., in our simulated data (e.,=0.48) suggest that strong clinal variation in

645  is likely to reflect a true signature of REs only if the overall strength of v also is at least 50%

646  of the mean pairwise Fisr in the data. Third, predicting £ only requires knowing ||, Fsr and Tnon-
647  Tpoa, Which can easily be estimated from population genomic data from natural populations and
648 using this approach, our analyses suggest that the initial signatures of REs detected in the 28
649 lizard data sets and in the blacktip shark data set (using only y and clines thereof), likely are
650 false positives. In the cane toad data, however, our analyses were highly concordant with the
651 known history of a range expansion in this species, indicating that geographic clines in both y

652 and Hr can indeed be informative of REs provided the effects of BEs are accounted for.

653
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656  been accepted for publication.
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Tables

Table 1 | Simulation parameters

1D and 2D stepping-stone

N Number of demes 81
K Carrying capacity per deme 1000
D Number of dimensions 1;2
M Migration probability ID: 0.01; 0.05; 0.1
2D: 0.002; 0.005; 0.01
O Origin of expansion 1; 41
u Mutation rate 1.5e-7
L Chromosome length (bps) le6
(Uniform recombination)
r Recombination rate 1.5e-7
2D continuous-space
inax Maximum dispersal distance 20; 10; 5
R Resistance map Heterogeneous (HL); Uniform
(UL)
X Type of expansion RE (range expansion);
DE (demographic expansion)
u Mutation rate le-8
L Chromosome length (bps) 2.3e6
(recombination map:
D. melanogaster Chrll)
r Recombination rate le-8
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809 Figure 1 | Simulation overview. The layout of demes in the 1D and 2D stepping stone

810 simulations are shown in (a) and (b), respectively. The heterogeneous (HL) and uniform (UL)
811 landscapes for the continuous space simulations for the coral triangle are shown in (¢) and (d)
812  with the population coordinates indicated. In () and (f) the distribution of individuals in HL are
813  shown for an equilibrium population before range expansion (boundaries shown by the black

814 box) and after range expansion, respectively. To model dispersal in the continuous space

815 simulations, eight possible new positions for each individual were drawn a maximum of d..

816 away from the old position (at the center of the circle). Any paths crossing land and any new

817 position outside the map (c) were disregarded (red paths) and among the remaining possible new
818  positions (blue), one was selected as the new position using the inverse of total resistance across

819  the path as weight.
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Figure 2 | Spatial variation in y and genetic diversity in 1D and 2D stepping-stone

simulations. Shows (a) mean standardized H; (n=10) and (b) v for demes d, to ds, for 1D

logio(gen)
[

4

3

o,

models and the mean of the x and y dimensions for the symmetric 2D models. Color represents

the number of cycles (generations) since expansion was completed on a log;, scale. Simulation

parameters are indicated above each panel (low, medium and high gene flow with expansions

starting from the center or from the edge, for 1D and 2D simulations, respectively). Results for

panmictic simulation are shown for reference (here dimensionality and origin of expansion are

irrelevant). Note the different y-scales for each row of panels.
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830 Figure 3 | Fsr normalized |y

. Shows the change of mean |y| (a), Fsr (b) and e=|y|/Fsr (c) as a
831 function of time in the simulations for three levels of gene flow; low (green), medium (red) and
832 high (blue) for 1D and 2D stepping stone simulations as well as for the continuous space

833  simulations with RE (RE) and when the expansion did not include a spatial component

834  (demographic expansion, DE) in heterogeneous (HL) and uniform landscapes (UL). For 1D and
835 2D simulations the x-axis represents the number of cycles after the range expansion finished and
836  for the continuous space simulations the x-axis shows the number of cycles after expansions

837 started. In (c¢) the horizontal dashed line shows the mean € at the end of the simulations

838  representing the mean €. (the value of € at the end of each simulation replicate) across all the

839  simulated data set (see also Supplementary Fig. S9).
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a | Proportion variance explained when predicting E from v, Fsr and t
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840

841  Figure 4 | Predicting E from v, Fgr and 7. Shows the proportion of variance explained ()

842  when fitting the models E~7, E~y, E~€ and E~e*t to different combinations of simulated data

843  sets, where E=¢/e,,, e=|y|/Fsr for a given data set and ¢,, 1s the same value at equilibrium (for a

844  given simulation replicate) and 7 is the strongest positive 7~ for a linear regression between

845 geographic distance and y for any population in the data (i.e. the most likely expansion origin).
846  The data sets are: “All”-all data simulated data; “Excl. panm.”-all data except panmictic; “1D” -
847 1D stepping stone simulations; “2D” - 2D stepping stone simulations; “RE-UL” - continuous
848  space simulations with uniform landscape and “RE-HL” - continuous space simulations with
849  heterogeneous landscape and “RE” - all data sets where REs occurred (1D, 2D, RE-UL and RE-

850 HL).
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a | Predicting genetic singnatures of range expansions
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Figure S | Predicting genetic signatures of range expansions. (a) Shows the effect size (1)

from non-TDoA analyses (the strongest positive 7 for a linear regression between geographic

distance and y for any population in the data) as a function of e=|y|/Fsz. Color represents E=¢/e,,

in the simulated data (where €., can be known) on a log scale and the dashed lines indicate the

lower limits of the prediction interval for £>1 for a=0.05 (red) a=0.05/30 (blue; the Bonferroni

corrected significance level for the empirical data) and a=0.0001 (grey) when fitting E~e*t to

data set “All” (see Fig. 4) explaining 77% of the variation in the data. The dotted lines are the

same lower boundary limits as above except for a model fitted for data set “Excl. Panm.” (see

Fig. 4) that explains 81% of the variation in the data. (b) shows the same data as in (a) but also

including the panmictic data sets (triangles; Fsr fixed at 0.001) where color represents the

number of cycles since range expansion finished (stepping-stone models) or since range
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863  expansion started (continuous space simulations). In (c) results from 30 empirical data sets from

864  scincid lizards (violet, n=28), blacktip shark (orange, n=1) and the invasive cane toad (green,

865 n=1) are shown.
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