

1 Early-stage idiopathic pulmonary fibrosis is characterized by bronchoalveolar
2 accumulation of SPP1⁺ macrophages

3 Jiangyan Yu^{1,*}, Jake Thomas^{1,*}, Jessica Haub¹, Carmen Pizarro², Miaomiao Zhang¹, Leonie Bie-
4 ner², Matthias Becker³, Lili Zhang⁴, Theodore S. Kapellos³, Wolfgang Schulte⁵, Joachim L.
5 Schultze³, Jan Hasenauer^{6,7}, Dirk Skowasch², Andreas Schlitzer^{1,#}

6

7 ¹Quantitative Systems Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn,
8 Germany.

9 ²Medizinische Klinik und Poliklinik II, Sektion Pneumologie, Universitätsklinik Bonn,
10 Germany.

11 ³German Center for Neurodegenerative Diseases, University of Bonn, Germany.

12 ⁴Lydia Becker Institute of Immunology and infection, The University of Manchester, United
13 Kingdom.

14 ⁵GFO Clinics Bonn, Marien-Hospital Bonn, Germany.

15 ⁶Faculty of Mathematics and Natural Sciences, University of Bonn, Germany.

16 ⁷Institute for Computational Biology, Helmholtz Center Munich – German Research Center
17 for Environmental Health, Germany

18 * These authors contribute equally to this work.

19 # Correspondence to Andreas Schlitzer. (andreas.schlitzer@uni-bonn.de)

20 **Highlights**

21 1. IPF patients can be stratified into early and advanced disease groups based on clinical
22 features.

23 2. Single cell transcriptomic and high dimensional flow cytometry enabled mapping of the
24 myeloid compartment across the continuum of idiopathic pulmonary fibrosis associated
25 disease states.

26 3. SPP1⁺Mφ accumulated during early clinical stage of IPF.

27 4. Development of a clinically applicable SPP1⁺Mφ identification panel.

28 **Abstract**

29 Patients affected by idiopathic pulmonary fibrosis (IPF), a progressive chronic and eventually
30 fatal lung disease with unknown cause, suffer from delayed diagnosis and limited
31 personalized treatment options due to the lack of predictive and staging relevant disease
32 markers. Prior studies focused on the cellular and transcriptomic changes found in lung
33 tissue during terminal IPF-associated lung fibrosis. In clinical routine, bronchoscopy is
34 applied for diagnosis and staging of suspected IPF affected individuals, thus providing us
35 with a clinically applicable window, to study the cellular and transcriptional changes within
36 affected individuals at the time of diagnosis. Here we study a cohort consisting of 11 IPF
37 affected individuals and 11 healthy controls. We investigate their single cell transcriptomic
38 profile alongside the surface phenotype of alveolar-resident immune cells. Single cell
39 transcriptional analysis reveals accumulation of $SPP1^+$ macrophages ($SPP1^+M\phi$) within the
40 alveolar space during early stage diagnosed IPF, in the absence of a decline in lung function.
41 $SPP1^+M\phi$ were characterized by high expression of lipid storage and handling genes,
42 accumulation of intracellular cholesterol and expression of proinflammatory cytokine
43 expression. *In silico* developmental trajectory analysis revealed that $SPP1^+M\phi$ are likely
44 derived from classical monocytes. Finally, to confirm the clinical diagnostic value of $SPP1^+$
45 $M\phi$, we developed a flow cytometry panel to rapidly identify and test for the presence of
46 $SPP1^+ M\phi$ in bronchoalveolar lavage samples. The new panel has confirmed the increased
47 frequency of $SPP1^+ M\phi$ in early-IPF in an independent validation cohort. Taken together, we
48 show that $SPP1^+ M\phi$ are associated with early IPF pathogenesis in the absence of a decline
49 in lung function, thus providing a clinically valuable markers for diagnosis of early IPF in
50 clinical practice.

51 **Introduction**

52 Idiopathic pulmonary fibrosis (IPF) is a rare progressive fibrotic lung disease with limited
53 treatment options and a median survival of 2-5 years after definite diagnosis (Kaunisto et al.,
54 2019; Lederer and Martinez, 2018). Due to the poor understanding of disease pathogenesis
55 and lack of diagnostic molecular markers, diagnosis of IPF often follows an exclusion process
56 of other known causes of lung fibrosis (Martinez et al., 2017; Raghu et al., 2018). Despite
57 recent advances in clinical imaging and multidisciplinary evaluation of cases, median time to
58 diagnosis is 2 years, leading to a considerable delay in the start of treatment significantly
59 lowering patient survival (Hoyer et al., 2019; Martinez et al., 2017). Thus, a high clinical need
60 exists for the identification of cellular and molecular markers useful for early IPF diagnosis.

61 Recent single-cell transcriptional analysis of end-stage IPF-associated lung transplant tissue
62 has revolutionized our understanding of the molecular pathogenesis of IPF (Adams et al.,
63 2020; Carraro et al., 2020; Habermann et al., 2020; Xu et al., 2017). These studies detailed
64 both immune and non-immune compartments and revealed an unappreciated macrophage
65 heterogeneity within fibrotic foci of affected lungs. Further single-cell transcriptomic studies
66 could shed further light on the interplay of non-immune cells, such as KRT17⁺ basal cells as
67 drivers of myofibroblast differentiation and proliferation (Jaeger et al., 2022). Additionally
68 mouse models have indicated macrophages as major regulators of fibrotic disease (Ucero et
69 al., 2019; Zhang et al., 2020). Similarly in terminal lung tissue samples of IPF affected
70 individuals profibrotic macrophages, marked by the expression of *MERTK* and *SPP1* were
71 found indicating a possible disease driving or modifying role in human disease (Adams et al.,
72 2020; Morse et al., 2019; Reyfman et al., 2019). However, diagnostic value and the
73 immediate benefit to patients of these findings remains low as lung tissue biopsy material is
74 not obtained in routine clinical practice anymore (Hutchinson et al., 2015).

75 Bronchoscopy is a minimally invasive procedure to flush the lung with saline solution via a
76 bronchoscope, and is used to diagnose IPF in clinical routine (Pesci et al., 2010).
77 Bronchoscopy obtained patient material has recently been used to identify CCR5, CCR6,
78 CXCR3 and CXCR5 as biomarkers for transplant-stage IPF (Sivakumar et al., 2019).
79 Additionally, broncho-alveolar resident CD71⁺ macrophages were identified to be enriched
80 in IPF-affected individuals but not in control subjects (Allden et al., 2019). Thus, analysis of

81 bronchoalveolar lavage samples yields tangible and clinically applicable results to further
82 understand IPF pathogenesis.

83 Here, using cellular specimens obtained from IPF or control patients we characterize the
84 transcriptomic and phenotypic landscape of broncho-alveolar resident mononuclear
85 phagocytes and link the abundance of SPP1⁺ macrophages (SPP1⁺Mφ) to an early IPF-
86 disease stage which presents clinically without any obvious lung function decline. Further
87 analyses of SPP1⁺Mφ revealed upregulated lipid handling and storage pathways alongside
88 the accumulation of intracellular cholesterol. Transcriptional developmental trajectory
89 analysis suggests a monocyte-to-macrophage differentiation trajectory within the
90 bronchoalveolar space. Lastly, we develop and test a clinically applicable flow cytometry
91 panel confirming the association of SPP1⁺Mφ with early IPF pathogenesis in an independent
92 cohort. Collectively we show that accumulation of lipid-laden bronchoalveolar-resident
93 monocyte-derived SPP1⁺Mφ is a clinically tangible feature of early stage IPF, enabling a
94 faster diagnosis and treatment onset in at-risk patients.

95 **Results**

96 **Single-cell transcriptomic analysis determined 8 distinct types of macrophages in the**
97 **human alveolar space**

98 Clinically newly diagnosed IPF patients are not staged as per their disease progression due
99 to the lack stratification criteria informing disease management. However, lack of
100 knowledge related to disease progression leading to terminal fibrotic outcomes hamper our
101 understanding of available treatment windows in early patients. To determine IPF stage
102 specific cellular states and according molecular markers, we stratified IPF patients into
103 subgroups using available clinical parameters. To achieve this, we classified 12 subjects with
104 chronic cough but without any sign of fibrosis in the lung (hereafter referred to as “control”)
105 and 50 IPF patients, using unsupervised hierarchical clustering of all available lung function
106 parameters (**Figure 1A, Table S1**). After exclusion of highly correlated parameters (**Figure**
107 **S1A**), six lung function parameters were subjected for cluster analysis, yielding two major
108 clusters of patients: cluster-I contained mostly IPF patients while cluster-II consisted of IPF
109 patients and controls (**Figure 1B**). In order to understand why cluster-I showed a mixed

110 phenotype between control and IPF-affected patients, we realized a strong correlation
111 between cluster identity and FEV1 and DLco predicted values (**Figure 1C-D**), suggesting that
112 IPF patients within cluster-I displayed a similar degree of lung function as unaffected control
113 individuals. Taken together these findings prompted us to define IPF affected individuals
114 within cluster-I as early-IPF, whereas patients in cluster-II, showing a strong decline in FEV1
115 and DLco, as advanced-IPF group. This lung-function based stratification was further
116 consistent with the level of lung fibrosis as measured by high-resolution computed
117 tomography (HRCT) imaging data, which indicated that patients in the advanced-IPF group
118 had significantly higher proportions of reticular and areas of ground glass opacity within
119 their lungs as compared to early-IPF group individuals, indicating more advanced fibrosis
120 (**Figure S1B**). Collectively using these stratification criteria we reveal early and advanced IPF
121 phenotypes within our cohort.

122 To link clinical parameter enabled patient stratification to cellular and molecular
123 phenotypes we probed the cellular composition of the according BALF samples of early and
124 advanced IPF group patients (n=19) using high-dimensional flow cytometry (**Figure S1C**). We
125 observed that the human bronchoalveolar space is mainly composed of myeloid cells
126 (**Figure S1D**). Within myeloid cells CD169⁺CD206⁺ alveolar macrophages dominated the
127 human bronchoalveolar space (64.3% - 96.5%, **Figure S1E**), in line with previous reports
128 (Baßler et al., 2022; Yu et al., 2016). Furthermore, we found that advanced-IPF group
129 individuals has significantly increased abundance of eosinophils ($p < 0.01$) and DC1 ($p < 0.05$)
130 as compared to patients in the early-IPF group or the control group (**Figure S1E**), suggesting
131 these cells might play a central role during the later stages of IPF progression.

132 Next to further understand early and advance-IPF associated transcriptomic programs and
133 to provide an unbiased characterisation of cell types in the bronchoalveolar space we
134 performed single-cell RNA sequencing (scRNA-seq) analysis broncho-alveolar associated
135 cells in 11 IPF patients and 5 controls. To increase the statistical power, we integrated our
136 scRNA data with a recently published dataset that contains 6 BALF samples from controls
137 (**Figure 1E**) (Baßler et al., 2022). Cluster analysis determined a total of 20 distinct cell
138 populations including monocytes/macrophages (9 clusters), dendritic cells (2 clusters), T/NK
139 cells (3 clusters), granulocytes (3 clusters) and epithelial cells (3 clusters, **Figure 1F**, **Figure**
140 **S2A-B**), annotations of which were consistent with previous report (**Figure S2C-D**)

141 (Travaglini et al., 2020). In line with our flow cytometry data, scRNA analysis revealed that
142 macrophages were the most abundant cells in the human alveolar space (**Figure 1F, Figure**
143 **S2E**). Re-clustering of the monocytes/macrophage cluster at an increased resolution yielded
144 9 sub-clusters, including one cluster of monocytes and 8 transcriptionally distinct
145 macrophage subpopulations in BALF samples (**Figure 1G**).

146 To assess the heterogeneity of macrophages we performed differentially expressed gene
147 (DEG) analysis (**Figure 1H, Table S2**). Cells in cluster 0 expressed classical alveolar
148 macrophage genes including *FABP4* and *FTL* (**Figure S2D**). Three clusters (7, 13 and 20) were
149 characterized by proliferating-associated genes including *TOP2A*, *MKI67* and *NUSAP1* as well
150 as histone-related genes such as *HIST1H1D*, thus we grouped these three cluster into one
151 population as *MKI67*⁺Mφ (**Figure S2D**). Cluster 4_1 (RNASE1⁺Mφ) was defined by *RNASE1*
152 and *SELENOP* expression, resembling interstitial macrophages typically found within the
153 lung parenchyma (Chakarov et al., 2019; Schyns et al., 2019), while cluster 4_2 (SPP1⁺Mφ)
154 highly expressed *SPP1*, a gene that encodes for osteopontin, an integrin-binding glyco-
155 phosphoprotein. *SPP1*-expressing macrophages have been previously described in a range
156 of chronic fibrotic diseases and within the tumour microenvironment (Fabre et al., 2023;
157 Ramachandran et al., 2019). Furthermore, DEG analysis revealed four types of activated
158 macrophage subpopulations. Cluster 6 (S100A11⁺Mφ) was highly enriched for *S100A11*
159 together with genes related to immune response activation signalling pathways (*C1QC*,
160 *LGALS3*, *TYROBP* and *FCER1G*). Cluster 8 (CXCL10⁺Mφ) featured genes related to interferon γ
161 response (*CXCL10*, *CXCL9*, *IFIT2* and *IFIT3*). Cluster 10 (TNFAIP6⁺Mφ) exhibited strong
162 expression of genes related to inflammatory response including *TNFAIP6*, *CCL3* and *CCL4*
163 (Mittal et al., 2016). Cluster 11 (NEAT1⁺Mφ) was characterized by expression of *NEAT1*, a
164 lncRNA previously linked to regulation of the macrophage inflammatory response (Zhang et
165 al., 2019).

166 Together these analyses revealed a highly diverse macrophage ecosystem within the human
167 bronchoalveolar space from healthy and IPF patients.

168 **SPP1⁺Mφ accumulate in the broncho-alveolar space of early stage IPF patients**

169 With the cell populations determined from whole transcriptome analysis, we next sought to
170 assess disease state related cell types. In line with the afore described flow cytometry
171 results we observed that macrophages are the most redundant population in the
172 bronchoalveolar space (**Figure S3A, Table S4**). Given the remarkable heterogeneity of
173 macrophages within the human alveolar space, we investigated whether any macrophage
174 subpopulations were related to IPF progression (**Figure 2A-B**). Three subpopulations
175 ($\text{RNASE1}^+ \text{M}\phi$, $\text{TNFAIP}^+ 67 \text{M}\phi$ and $\text{MK1}^+ 67 \text{M}\phi$) were found to be enriched in the advanced-IPF
176 group, but this difference might be due to the low frequency in control samples from the
177 published dataset (**Figure 2B, Figure S3B**). Nevertheless, quantification the frequency of
178 macrophage subpopulations out of all macrophages revealed a predominant enrichment of
179 $\text{SPP1}^+ \text{M}\phi$ in the early-IPF group, and this difference is irrelevant to the source of control
180 samples (**Figure 2C, Figure S3B**). Together this data has revealed that $\text{SPP1}^+ \text{M}\phi$ were
181 predominantly enriched in early-stage IPF patients.

182 **$\text{SPP1}^+ \text{M}\phi$ were characterized by genes related to lipid metabolism and are likely derived
183 from monocytes upon fatty acid stimulation**

184 Previous studies in mice have shown that macrophages in the lung are comprised of two
185 ontogenically distinct populations: tissue-resident macrophages seeded during embryonic
186 development and macrophages derived from adult blood monocytes (Guilliams et al., 2013;
187 Mass et al., 2016; Schyns et al., 2019). Therefore, we sought to assess the origin of
188 macrophage subpopulations identified in our study. To achieve this we made use of the
189 MoMac-VERSE database that integrated mononuclear phagocytes from 13 human tissues
190 and determined monocyte-derived macrophages and tissue-resident macrophages (**Figure
191 3A**) (Mulder et al., 2021). After transferring cluster labels from MoMac database to our
192 macrophage subpopulations, we observed a vast majority of the macrophages were
193 predicted to be tissue-resident macrophages, consistent with their identity as alveolar
194 macrophages (**Figure 3B**). Meanwhile, we observed a strong transcriptional similarity
195 between BALF $\text{SPP1}^+ \text{M}\phi$ and monocyte-derived $\text{TREM2}^+ \text{M}\phi$ from the MoMac database
196 (**Figure 3B, Figure S4A**). To assess whether $\text{SPP1}^+ \text{M}\phi$ are derived from monocytes, we
197 performed trajectory analysis by embedding all BALF classical monocytes and monocyte-
198 derived macrophages on the diffusion map also confirmed the differentiation process of

199 monocytes to SPP1⁺Mφ (**Figure 3C**). Along the pseudotime developing from monocyte to
200 SPP1⁺Mφ, genes related to monocyte identity including *VCAN*, *FCN1* and *S100A8* are down-
201 regulated while macrophage related genes such as *APOE*, *FBP1* and *FTL* are up-regulated
202 (**Figure 3D**), suggesting the recruitment of infiltrating monocytes and subsequent
203 macrophage differentiation.

204 As SPP1⁺Mφ are enriched during early-IPF, we next sought to explore which extracellular
205 cues would specify monocyte to SPP1⁺Mφ development. We made use of a previously
206 published resource that profiled the transcriptomes of human monocyte-derived
207 macrophages under 28 different stimuli *in vitro* (**Figure 3E**) (Xue et al., 2014). Comparison of
208 the transcriptomic similarity between our BALF macrophage subpopulations and this
209 macrophage polarisation spectrum revealed that CXCL10⁺Mφ and S100A11⁺Mφ shared
210 similar profiles to macrophages stimulated by IFN-γ. Notably, SPP1⁺Mφ were predicted to be
211 similar to macrophages stimulated with fatty acids such as lauric acid (LA), oleic acid (OA),
212 linoleic acid (LiA), palmitic acid (PA) and stearic acid (SA) (**Figure 3F**). Consistent with their
213 predicted polarisation via exposure to fatty acids, gene enrichment analysis revealed
214 upregulated lipid localization and lipid storage pathways in SPP1⁺Mφ (**Figure 3G**, **Figure S4B**,
215 **Table S5**). Furthermore, BODIPY staining analysis of BALF cells also showed the significant
216 accumulation of lipid droplets in the SPP1⁺Mφ comparing to the SPP1⁻Mφ (**Figure 3H**, **Figure**
217 **S4C**).

218 Together, these data suggest that monocytes are exposed to local lipid-mediated signals in
219 the lung or bronchioalveolar space during differentiation, resulting in the acquisition of the
220 SPP1⁺Mφ transcriptional state, which is associated with lipid metabolism.

221 **The significant enrichment of SPP1⁺Mφ in the early-IPF was validated in an independent
222 cohort**

223 Previous studies characterizing lung biopsy samples have reported a profibrotic macrophage
224 population enriched in the end stage of IPF compared to controls (Adams et al., 2020;
225 Morse et al., 2019). Accordingly, we sought to assess whether SPP1⁺Mφ identified in the
226 bronchioalveolar space are analogous to those profibrotic macrophages previously reported.
227 We integrated macrophages from our study along with macrophages from three published

228 IPF datasets (**Figure S5A-B**) (Adams et al., 2020; Habermann et al., 2020; Morse et al., 2019).
229 This joint embedding of 260,747 macrophages revealed the similarity between SPP1⁺Mφ
230 identified in present study and the cluster 3 from the integration analysis, of which was
231 previously determined as SPP1^{hi} macrophage or IPF-expanded macrophage (IPFeMφ) (**Figure**
232 **S5C-D**). In line with previous studies, quantification of macrophages from lung samples
233 revealed significant enrichment of SPP1⁺Mφ in IPF comparing to control (**Figure S5E**).
234 Given the strong association of SPP1⁺Mφ and IPF, we sought to quantify the SPP1⁺Mφ in
235 bronchoalveolar lavage liquid samples using flow cytometry analysis, a routine technique
236 used to characterize BALF samples in clinical practice. To determine FACs surface markers
237 for the SPP1⁺Mφ we made use of a recently published CITE-seq data that profiled whole
238 transcriptome and 277 antibodies of BAL cells from COVID-positive patients as well as
239 control samples (**Figure 4A**) (Bosteels et al., 2022). Integration of our macrophage
240 subpopulations to the CITE-seq has revealed that RNASE1⁺Mφ and SPP1⁺Mφ showed strong
241 similarity to cluster 1 and cluster 10 from the CITE-seq dataset, respectively (**Figure S5F-H**).
242 These two populations could be potentially separated from alveolar macrophages by
243 antibody CD10 (**Figure 4B**). In addition, DEG analysis has revealed that FOLR2 and ALCAM
244 (CD166) is uniquely highly expressed in RNASE1⁺Mφ and SPP1⁺Mφ, respectively (**Figure 4C**,
245 **Figure S5G**). Therefore, we designed a modified spectral flow cytometry panel to
246 characterize macrophages subsets within BALF samples. This panel, for the first time,
247 allowed for the effective isolation of true alveolar macrophages
248 (CD169⁺CD206⁺CD10⁺FOLR2⁻), RNASE1⁺Mφ (interstitial macrophages, CD169⁺CD206⁺CD10⁻
249 FOLR2⁺) and SPP1⁺Mφ (CD169⁺CD206⁺CD10⁻FOLR2⁺CD166⁺⁻) within human BALF (**Figure 4D**).
250 With this newly developed panel we profiled a validation cohort which contains 7 IPF
251 patients and 7 control samples. We first applied machine-learning based analysis to predict
252 disease stage of IPF patients in the validation cohort, by using patients listed in the Figure 1
253 as the training data, termed as discovery cohort (**Figure 4E**). This analysis has determined 1
254 early-IPF and 6 advanced-IPF patient. Embedding patients from both discovery and
255 validation cohort has further supported that the early-IPF patient is at early stage of disease
256 development (**Figure S6A**). Despite of the low number of patients in the early-IPF,

257 quantification of CD10⁻macrophage populations we indeed observed a promising increased
258 trend of SPP1⁺Mφ at the early stage of disease development (**Figure 4F, Table S6**).

259 In summary, these data have shown that the SPP1⁺Mφ identified in the bronchoalveolar
260 space in our study showed similar transcriptional profile as one profibrotic macrophage
261 population previously reported in the lung tissue samples from patients with end stage of
262 IPF. Moreover, we were able to quantify this population in BALF samples using a novel FACs
263 panel, providing an interesting possibility to detect SPP1⁺Mφ in clinical practice.

264 **Discussion**

265 IPF is a rare fibrotic lung disease with unfavourable treatment outcomes. Previous studies
266 profiled the end stage of transplanted lung samples have demonstrated cellular markers
267 related to IPF (Adams et al., 2020; Ayaub et al., 2021; Habermann et al., 2020; Morse et al.,
268 2019). However, due to the significant morbidity and mortality caused by surgical lung
269 biopsy procedures, these markers were difficult to be applied in the clinical practice
270 (Hutchinson et al., 2015). Hence, cellular markers from easy to access samples to determine
271 IPF at the early stage are urgently demanded.

272 Here, we used unsupervised hierarchical clustering to determine patients at early stage of
273 the disease, of which showed similar lung function as control patients but with fibrosis in
274 the lung. Single-cell whole transcriptome analysis of the BALF samples has demonstrated
275 the great macrophage heterogeneity in the IPF bronchoalveolar space. Quantification of
276 macrophage subpopulations has revealed that SPP1⁺Mφ were prominently enriched at the
277 early stage of IPF. Functional analysis *in silico* has suggested that SPP1⁺Mφ were derived
278 from monocytes upon fatty acid stimulation. Additionally, we have established a FACs panel
279 to quantify SPP1⁺Mφ in BALF samples, of which was used to profile a validation cohort and
280 confirmed the pronounced accumulation of SPP1⁺Mφ at the early stage of IPF. Together
281 these data have shown that SPP1⁺Mφ could be potentially used as a cellular marker to
282 determine patients at the early stage of IPF in clinical practice.

283 SPP1⁺Mφ were featured by gene *TREM2* and were previously termed as TREM2⁺Mφ,
284 accumulation of which occurs at early/mild stage of development in other diseases. For
285 instance, by mapping the macrophages from BALF samples from COVID patients into the

286 MoMac-VERSE, Mulder and colleagues have demonstrated that TREM2⁺Mφ are enriched in
287 patients with mild COVID symptoms (Liao et al., 2020; Mulder et al., 2021). Additionally, a
288 recent work on murine heart failure model has suggested that the frequency of
289 TREM2^{hi}SPP1^{hi}Mφ was gradually increased after the induction of myocardial infarction and
290 was peaked at day 5, but was decreased at day 7 (Jung et al., 2022). In line with this work,
291 here we have shown that SPP1⁺Mφ were found at low levels in the control patients but
292 were significantly enriched in the early-IPF group. These data suggested that SPP1⁺Mφ
293 might play an important role in responding to, or driving, the pathological factors at early
294 stage of the disease progression.

295 Analogues of SPP1⁺Mφ have been determined in multiple human and murine diseases and
296 tumors, however the impact of SPP1⁺Mφ on disease and tumor response is context specific.
297 For example, in the murine carcinoma and ovarian cancer, TREM2⁺Mφ are associated with
298 increased tumor growth and immunosuppressive response (Binnewies et al., 2021;
299 Katzenelenbogen et al., 2020; Molgora et al., 2020; Park et al., 2023). In contrast, recent
300 work in hepatocellular carcinoma and skin transplantation demonstrated that TREM2⁺Mφ
301 might limit tissue fibrosis and promote wound healing (Esparza-Baquer et al., 2021; Henn et
302 al., 2023). The pathological function of SPP1⁺Mφ in human IPF remains largely unknown. In
303 our study we have suggested that SPP1⁺Mφ were derived from monocytes upon fatty acid
304 stimulation. This result is in agreement with previous proteomic analysis of BALF samples
305 showing that IPF bronchoalveolar space is enriched with palmitic acid and stearic acid fatty
306 acids (Chu et al., 2019; Mayr et al., 2020). Therefore future studies to investigate how the
307 microenvironment at early state of IPF induced the accumulation of the SPP1⁺Mφ would
308 help to understand the pathogenic mechanisms of IPF progression.

309 One limitation in our study is that the low number of IPF patients might impair the statistical
310 comparison of SPP1⁺Mφ among the groups. However, by integrating datasets from three
311 published studies we were able to confirm that SPP1⁺Mφ were indeed significantly
312 increased in IPF samples, although quantification of SPP1⁺Mφ in early-IPF is not possible due
313 to the lack of early-IPF samples in the literature. Future collaborative studies from multiple
314 centres could offer the opportunity to systematically investigate the prognostic value of
315 SPP1⁺Mφ.

316 Collectively in this study we have shown that monocyte derived SPP1⁺Mφ were
317 predominantly enriched in the early stage of IPF. We have also provided a FACS panel to
318 quantify SPP1⁺Mφ in BALF samples, which could be applied in future clinical practice to
319 facilitate early diagnosis, and aid patient prognosis.

320

321 **Resource Availability**

322 **Lead Contact**

323 Further information and requests for resources and reagents should be directed to and will
324 be fulfilled by the Lead Contact, Andreas Schlitzer (andreas.schlitzer@uni-bonn.de).

325 **Material Availability**

326 This study did not generate new unique reagents.

327 **Data and code availability**

328 scRNA-seq data generated during this study are deposited at the National Center for
329 Biotechnology Information (NCBI) under the number GEO xxx. R scripts used for the analysis
330 have been deposited on GitHub (https://github.com/jiangyanyu/IPF_2023). Scripts were
331 executed in the docker image: https://hub.docker.com/r/jiangyanyu/jyu_r4.1.2. Seurat
332 object for the analysis has been deposited on GEO xxx.

333 **Experimental Model and Subject Details**

334 This study was approved by the Institutional Review board of the University Hospital Bonn.
335 All individuals provided written informed consent according to the Declaration of Helsinki
336 before samples were collected.

337 **Method Details**

338 **Isolation of cells from bronchoalveolar lavage fluid (BALF)**

339 Human BALF samples were obtained from University Hospital of Bonn and Marien Hospital
340 Bonn. All samples were processed within two hours after collection and all steps were
341 performed at 4°C. The fluid was filtered through a 100 µM cell strainer (Merck) and was
342 centrifuged at 350 g for 7 min. The supernatant was immediately frozen in liquid nitrogen
343 and was later stored in -80 °C. BALF cell pellets were washed once with flow cytometry
344 staining buffer (FACS buffer, PBS supplemented with 2 mM EDTA and 0.5% fetal calf serum).
345 Erythrocytes were removed using the red blood cells lysis buffer (Biolegend). Cells were
346 washed once and resuspended in FACS buffer for further analysis.

347 **Flow cytometry analysis of BALF samples from the discovery cohort**

348 BALF cells were isolated and prepared as described above, then were incubated with fixable
349 viability dye (1:1000, BioLegend) for 15 min at room temperature in the dark. After a
350 washing step, cells were stained with the antibody cocktail for one hour on ice in the dark
351 (Table S7). Later cells were washed once and were incubated with streptavidin-PE (1:200,
352 BioLegend) for 20 min on ice in the dark. After another washing step, cells were
353 resuspended in FACS buffer and were acquired using the FACSymphony Cell Analyzer (BD
354 Biosciences). Data were analyzed using FlowJo software (v10.8.1, BD Biosciences).

355 **Flow cytometry analysis of BALF samples from the validation cohort**

356 BALF cells were isolated and prepared as described above. After one washing step cells were
357 resuspended in the blocking buffer and were incubated at 37°C for 15 min. Then cells were
358 stained with CCR7 (3:100, BioLegend) and CADM1 (2:100, BioLegend) at 37°C for 25 min.
359 After one step washing with cold PBS, cells were incubated with fixable viability dye (1:1000,
360 BioLegend) for 20 min at room temperature in the dark. Later cells were washed with cold
361 PBS and were incubated with antibody cocktail for 30 min on ice in the dark (Table S8). After
362 another washing step cells were resuspended in cytofix buffer (BioLegend) and were
363 incubated on ice for 20min. Finally after removing the cytofix buffer, cells were resuspended
364 in FACS buffer and were acquired using the SA3800 Spectral Analyzer (SONY). Data were
365 analyzed using FlowJo software (v10.8.1, BD Biosciences).

366 **Seq-Well based scRNA-seq**

367 Seq-Well based scRNA-seq was performed as previously reported (Hughes et al., 2020). The
368 Seq-Well arrays were generated and functionalized in the PRECISE platform for single cell
369 genomics and epigenetics in the Deutsches Zentrum für Neurodegenerative Erkrankungen
370 (DZNE) according to steps previously described (Bassler et al., Frontiers in Immunology,
371 2022). After loading 110,000 mRNA capture beads (Chemgenes Corp) to the functionalized
372 array, 20,000 BALF cells were loaded into the array. Once cells were settled into wells, the
373 array was washed five times with cold PBS and was subsequently sealed with hydroxylated
374 polycarbonate membrane (Stereitech) with a pore size of 10 nm. The sealed array with
375 loaded cells was incubated at 37°C for 30 min and was later placed in lysis buffer (5 M
376 guanidine thiocyanate, 1 mM EDTA, 0.5% Sarkosyl and 1% β-mercaptoethanol in H₂O) for 20
377 min at room temperature. After cell lysis the array was placed in hybridization buffer (2 M

378 NaCl, 3 mM MgCl₂ and 0.5% Tween-20 in PBS) at 4°C for 40 min. The mRNA capture beads
379 were collected by centrifuging at 2,000 g for 5 min, and was immediately subjected for
380 reverse transcription reaction (Maxima RT buffer, 12% PEG8K, 1 mM dNTPs, 1 U/μL RNase
381 inhibitor, 2.5 μM template switch oligo (TSO) and 10 U/μL Maxima H-RT enzyme in H₂O) for
382 30 min at room temperature and 90 min at 52°C with end-over-end rotation. The obtained
383 bead-bound cDNA product was washed once with TE-TW (0.1% Tween-20, 1 mM EDTA and
384 10 mM Tris-HCl pH 8.0 in H₂O), once with TE-SDS (0.5% SDS, 1 mM EDTA and 10 mM Tris-
385 HCl pH 8.0 in H₂O) and twice with TE-TW, and was resuspended in TE-TW solution for
386 following steps.

387 A second-strand synthesis was performed before cDNA amplification and sequencing. First,
388 to remove excess primers the bead-bound cDNA was treated with exonuclease I
389 (Exonuclease buffer and 1 U/μL Exonuclease in H₂O) for 50 min at 37°C. After washing once
390 with TE-SDS and twice with TE-TW, the beads were solvated in 0.1 M NaOH for 5 min at
391 room temperature with end-over-end rotation. Following another sequential wash once
392 with TE-TW and once with TE buffer (1 mM EDTA and 10 mM Tris-HCl pH 8.0 in H₂O), beads
393 were subjected for the second-strand synthesis reaction (Maxima RT buffer, 12% PEG8K, 1
394 mM dNTPs, 2 μM dN-Smart randomer and 1 U/μL Klenow Fragment in H₂O) for 1 hour at
395 37°C with over-end-over rotation. Next the beads were washed twice with TE-TW and once
396 with TE, and were resuspended in water for following steps.

397 After second-strand synthesis the beads underwent whole transcriptome amplification
398 (WTA) reaction. Briefly, beads were first counted with Fuchs-Rosenthal cytometer (Merck).
399 Parallel PCR reactions were performed to make sure to amplify all beads from the entire
400 array. A portion of 5,000 beads were subjected for each reaction (KAPA HiFi Hotstart
401 readmix and SMART primer in H₂O) using cycling conditions: 95°C for 3 min, then 4 cycles of
402 98°C for 20 seconds, 65°C for 45 seconds, and 72°C for 3 min, followed by 12 cycles of 98°C
403 or 20 seconds, 67°C or 20 second, and 72°C for 3 min, and lastly a final extension of 72°C for
404 5 min. The PCR products were combined into small pools, with each pool containing 10,000-
405 12,000 beads. Usually an array generated 3 to 4 WTA pools, which were subjected to
406 following purification and sequencing steps in parallel. Next the pooled products underwent

407 two sequential purification steps using AMPure XP beads (Beckman Coulter) with 0.6x and
408 0.8x volumetric ratio according to the manufacture's instruction. The quality of purified
409 WTA products was assessed using Tapestation 2200 (Agilent) with high sensitivity D5000
410 assay, and WTA products were quantified using Qubit 4 Fluorometer (Thermo Fisher
411 Scientific) with high-sensitivity dsDNA assay.

412 Next purified WTA products were subjected for library construction and sequencing. In brief,
413 200 pg of purified WTA products from each pool were subjected for library construction
414 with custom designed New-P5-SMART-PCR primer using the Nextera XT DNA library
415 preparation kit (Illumina) following the detailed protocol provided by the manufacture. After
416 purification and quantification the sequencing library was diluted to 1.25 nM for sequencer
417 loading. Sequencing was performed in paired-end mode (21 cycles for read 1 using custom
418 designed read 1 primer, 8 cycles for i7 index and 61 cycles for read 2) with Novaseq S2 flow
419 cells (100 cycles) using Novaseq 6000 sequencer (Illumina) in the Life and Brain Center, Bonn.

420 **Immunofluorescence assay to quantify cholesterol levels**

421 After isolated from BALF samples as mentioned above, 100, 000 BALF cells were
422 resuspended in 1.5 mL RPMI medium (PNA-Biotech), and were seeded on the coverslip that
423 was placed in one well of the 6-cell culture dish. After seeding, cells were incubated at 37°C
424 for 2 hours and were washed once with PBS. Then cells were fixed with 4% PFA (Thermo
425 Fisher Scientific) for 20 min at room temperature and were transferred to a humid chamber.
426 After 3 times washing steps with PBS, cells were incubated in the blocking buffer (3% BSA in
427 PBS) for 1 hour at room temperature. Later cells were stained with SPP1 (1:200, Sigma-
428 Aldrich) and CD206 (1:100, Bio-Rad) at 4°C overnight. After 3 steps of washing with PBS and
429 one step washing with HBSS, cells were stained with BODIPY-cholesterol (2.5 μM in HBSS)
430 and secondary antibodies at 4°C for one hour. After 3 steps of washing with PBS, cells were
431 stained with DAPI (1:2000, BioLegend) for 20 min at room temperature and later were
432 washed 3 times with PBS. After removing residual solutions on the coverslip, samples were
433 mounted with FluoromountG (Thermo Fisher Scientific) medium. Cells were imaged using
434 405 nm, 488 nm, 561 nm and 640 nm laser lines from the Zeiss LSM 889 Airyscan system
435 (Zeiss). Fluorescent intensities of each marker for each BALF cell were quantified using Fiji
436 (v2.9.0).

437 **Quantification and Statistical Analysis**

438 **Unsupervised hierarchical clustering of the discovery cohort**

439 Pulmonary function test parameters were used to perform the cluster analysis. After
440 removing the highly correlated parameters, six pulmonary function test parameters were
441 selected for the following cluster analysis. Missing values were imputed by R package
442 Amelia (v1.8.1). The imputed matrix was subjected to compute Euclidean distances by dist
443 from R package stats (v4.1.3). Simultaneously, the distance matrix was used to generate a
444 cluster dendrogram using hclust from R package stats (v4.1.3).

445 **Pre-processing of scRNA-seq data**

446 Demultiplexed fastq files from sequencer were loaded to a snakemake-based data pre-
447 processing pipeline (v0.31) which was provided by the McCarrol lab (Macosko et al., 2015).
448 Reads were aligned to human reference genome (Ensembl build 38 release 91). Count
449 matrices generated from the pipeline were imported into R (v4.1.3) for further analyses.
450 Before data integrating cells with low quality (UMIs per cell < 700 or mitochondrial gene
451 percentage > 40% or genes per cell < 500) were removed according to the filtering criteria
452 previously reported in the Seq-Well paper (Hughes et al., 2020).

453 **Integration of cells from present study and cells from Bassler et al.**

454 Reciprocal PCA based approach wrapped in Seurat package (Hao et al., 2021) was used to
455 integrate cells from present study and BALF cells from six healthy individuals generated by
456 Seq-Well pipeline from a recently published study (Baßler et al., 2022). For dataset from
457 each patient or control individual, normalization and feature genes (top 2,000)
458 determination were performed independently using default settings of NormalizaData and
459 FindVariableFeatures, respectively. Then independent scaling and PCA analysis of each
460 dataset were performed using features that were repeatedly variable across all datasets
461 defined by SelectIntegrationFeatures. After identifying anchors across all datasets using
462 FindIntegrationAnchots by setting reduction as rpca, integration was performed by
463 IntegrateData.

464 Downstream dimension reduction and clustering were performed on the corrected data
465 stored in the integrated assay. In short, after scaling and PCA analysis of corrected data, first

466 30 PCs were used to construct a shared nearest-neighbor graph which was loaded for
467 clustering that was performed with resolution of 1 to generate 26 clusters. Two clusters
468 (cluster 1 and 18) featured only by mitochondrial genes were removed from downstream
469 analysis. Doublet cells (cluster 2, 3, 23 and 25) were identified using R package scDblFinder
470 (v1.8.0) and were removed from downstream analysis. The UMAP based dimension
471 reduction was performed to visualize cells and clusters in a low dimension, by using the first
472 30 PCs. To gain a better overview of macrophage subpopulations, all macrophage clusters
473 were selected for UMAP analysis using RunUMAP with the embedding parameter b as 0.9.

474 **Cell type annotation comparison between present study and human lung atlas**

475 Cell types annotated by canonical markers were compared to annotations from the human
476 lung atlas (Travaglini et al., 2020). In brief, we first downloaded the list (Table S4 from the
477 Travaglini et al. study) containing marker genes of all clusters. Marker genes (avg_logFC > 1)
478 derived from 10x Chromium (sheets name without "SS2") were subjected to
479 AddModuleScore function from Seurat package, to calculate average expression (prediction
480 score) of these marker genes in each cell from present study. The average prediction score
481 was scaled and visualized in heatmap using ComplexHeatmap package (v2.10.0) (Gu et al.,
482 2016).

483 **Differentially expressed genes identification**

484 Differentially expressed genes (DEGs) between clusters were determined by performing a
485 Wilcox test on normalized data before integration using FindAllMarkers function in Seurat.
486 DEGs were defined as avg_log2FC > 0.5 and p_val_adj < 0.001.

487 **GO enrichment analysis**

488 To identify whether cluster is enriched with genes related to certain biological pathways, GO
489 enrichment analysis was performed using the R package clusterProfiler (v.4.2.2). In brief,
490 DEGs for each cluster were submitted to enrichGo function. All genes present in the count
491 matrix were served as background genes. GO terms with p-adjust < 0.001 were considered
492 as enriched in the cluster.

493 **Label transferring between macrophages from present study and cells from MoMac-**
494 **VERSE**

495 To transfer the labels from the MoMac-VERSE database to macrophages from present study,
496 TransferData function from Seurat package was used. In brief, macrophages from lung
497 samples in the MoMac-VERSE were isolated and were used as the reference. Then
498 FindTransferAnchors function was used to find anchors between the reference and query
499 dataset (macrophages from present study) using the first 30 PCs. After finding anchors,
500 TransferData function was used to classify the query cells based on the reference data.
501 Prediction scores from last step was added to the query metadata. The average prediction
502 score per cluster was visualized in heatmap using ComplexHeatmap package (v2.10.0).

503 **Transcriptional similarity comparison between macrophages from present study and**
504 **macrophages from human activated macrophage spectrum**

505 To determine the condition that would differentiate monocyte into the SPP1⁺Mφ, we
506 compared the transcriptional similarity between macrophages from current study to
507 activated macrophages from Xue et al. In brief, we first downloaded the list containing
508 marker genes for each activated macrophage population from the paper. Marker genes for
509 each activate macrophage population were subjected to AddModuleScore function from
510 Seurat package, to calculate average expression (prediction score) of these marker genes in
511 each cell from present study. The average prediction score was scaled and visualized in
512 heatmap using ComplexHeatmap package (v2.12.1).

513 **Integration of macrophages from present study and macrophages from four previous**
514 **studies**

515 To determine whether SPP1⁺Mφ present in lung biopsy samples, we integrated
516 macrophages from present study to macrophages from three previously published studies
517 (Adams et al., Haberman et al., Morse et al.). First, we selected macrophages from IPF
518 patients and control samples from Adams et al. (“Manuscript_Identify” as “Macrophage” or
519 “Macrophage_Alveolar”), Haberman et al. (“celltype” as “Macrophages” or “Proliferating
520 Macrophages”) and Morse et al. (clusters expressing MARCO, CD68 and FABP4). The
521 integration process was performed using Seurat package. In short, for each of the four
522 datasets, normalization and feature genes (top 2,000) determination were performed
523 independently using default settings of NormalizaData and FindVariableFeatures,
524 respectively. Then independent scaling and PCA analysis of each dataset were performed

525 using features that were variable across all datasets defined by SelectIntegrationFeatures.
526 After identifying anchors across all datasets using FindIntegrationAnchors by setting
527 reduction as rpca, integration was performed by IntegrateData. Downstream dimension
528 reduction and clustering were performed on the corrected data stored in the integrated
529 assay. In short, after scaling and PCA analysis of corrected data, first 30 PCs were used to
530 construct a shared nearest-neighbor graph which was loaded for clustering that was
531 performed with resolution of 0.3 to generate 18 clusters.

532 To determine the transcriptional similarity between SPP1⁺Mφ and previously reported
533 profibrotic macrophage, we downloaded the feature genes of these macrophage
534 populations (sheet 3 of Table S3 from Wendisch et al., Cell, 2021). Then the list of feature
535 genes was subjected to the AddModuleScore function from Seurat package, to calculate
536 average expression (prediction score) of these marker genes in each cell from the integrated
537 dataset.

538 **Reanalysis of CITE-seq dataset**

539 The CITE-seq data was downloaded from the link provided by the recently published study
540 (Bosttels et al., Cell reports medicine, 2022). First, we selected mononuclear phagocytes
541 from the CITE-seq dataset (“Annotation” as “cDC”, “Macrophage” or
542 “Macrophage:Alveolar”). Analysis of the CITE-seq data was performed by using Seurat
543 package. In brief, we first generated a Seurat object containing the gene expression matrix
544 and antibody expression matrix for each patient from the CITE-seq dataset. Then the list of
545 objects was subjected to RunFastMNN function from the SeuratWrappers package to
546 remove batch effects. Later, first 30 PCs were used to construct a shared nearest-neighbor
547 graph which was loaded for clustering that was performed with resolution of 0.6 to
548 generate 11 clusters.

549 To identify the SPP1⁺Mφ in the CITE-seq dataset, we transferred the labels of macrophages
550 from the present study (reference) to the CITE-seq dataset (query) by using
551 FindTransferAnchors and TransferData functions from Seurat package, as described above.
552 Prediction score for each cell was added to the query metadata. The average prediction
553 score per cluster was visualized in heatmap using ComplexHeatmap package (v2.12.1).

554 To determine surface markers for SPP1⁺Mφ for FACs analysis, we used FindMarkers function
555 from Seurat package. Cells in the cluster 10 were set as ident.1, while rest of the cells were
556 set as ident.2. Differentially expressed antibodies were visualized in a volcano plot.

557 **Trajectory analysis**

558 To infer the trajectory from monocytes to macrophages, monocytes and monocyte derived
559 macrophages from present study were embedded on a diffusion map using the Destiny
560 package (v3.14.0). Briefly, the first 50 PCs were subjected to find_sigmas function to find
561 optimal sigma. Then DiffusionMap function was used to compute diffusion components and
562 corresponding eigenvectors with k set as 5. Cells were embedded on 2D space using
563 diffusion component 2 and 4.

564 **Machine-learning based analysis to stratify the validation cohort**

565 To stratify the IPF patients from the validation cohort, machine learning based analysis was
566 performed using caret package (v6.0.94). In short, 75% of the IPF patients from the
567 discovery cohort was used to train the model and the rest of 25% was used to test the
568 accuracy of prediction. Decision tree (rpart) based method was used for the model training.
569 Lastly, the validation cohort was subjected to predict function of the caret package.

570 **Quantification and statistical analysis**

571 Statistical analysis of flow cytometry data was performed using Prism 9 (Graphpad) and R
572 (v4.1.3). respectively. If not otherwise stated, the statistical analysis was performed
573 according to total sample size. A t-test was used if samples are less than 10, otherwise a
574 Wilcoxon rank-sum test was used. All workflow figures were created with Biorender.com.

575 **Acknowledgments**

576 We thank all patients and families involved in this study. We thank Jonas Schulte-Schrepping,
577 Kristian Händler, André Heimbach, Collins Osei-Sarpong and Heidi Theis for sequencing
578 assistance. We thank Marie Vandestienne and Wenming Huang for critical feedback on the
579 manuscript. This work was supported by the German Research Foundation to D.S., J.Y. and
580 A.S.; EXC ImmunoSensation2 to J.Y., J.T., J.H. and A.S.; Emmy Noether Research Grant to A.S.;

581 EXC Hausdorff Center for Mathematics to J.H.; the SFB 1454 for A.S., and J.H; and the
582 University of Bonn via the Schlegel professorship to J.H.

583 **Author contributions**

584 Conceptualization, J.Y. and A.S.; methodology, J.Y., J.T., J.H., M.Z., and L.Z.; data analysis, J.Y.,
585 J.T., and M.B.; resources, C.P., L.B., T.S., W.S., J.S., J.H. and D.S.; writing, J.Y. and A.S.

586 **Declaration of interests**

587 The authors declare no competing interests.

588 References

589 Adams, T.S., Schupp, J.C., Poli, S., Ayaub, E.A., Neumark, N., Ahangari, F., Chu, S.G., Raby,
590 B.A., Deluliis, G., Januszyk, M., et al. (2020). Single-cell RNA-seq reveals ectopic and aberrant
591 lung-resident cell populations in idiopathic pulmonary fibrosis. *Sci. Adv.* 6, eaba1983.
592 <https://doi.org/10.1126/sciadv.aba1983>.

593 Allden, S.J., Ogger, P.P., Ghai, P., McErlean, P., Hewitt, R., Toshner, R., Walker, S.A., Saunders,
594 P., Kingston, S., Molyneaux, P.L., et al. (2019). The Transferrin Receptor CD71 Delineates
595 Functionally Distinct Airway Macrophage Subsets during Idiopathic Pulmonary Fibrosis. *Am.*
596 *J. Respir. Crit. Care Med.* 200, 209–219. <https://doi.org/10.1164/rccm.201809-1775OC>.

597 Ayaub, E., Poli, S., Ng, J., Adams, T., Schupp, J., Quesada-Arias, L., Poli, F., Cosme, C.,
598 Robertson, M., Martinez-Manzano, J., et al. (2021). Single Cell RNA-seq and Mass Cytometry
599 Reveals a Novel and a Targetable Population of Macrophages in Idiopathic Pulmonary
600 Fibrosis. *BioRxiv*.

601 Baßler, K., Fujii, W., Kapellos, T.S., Dudkin, E., Reusch, N., Horne, A., Reiz, B., Luecken, M.D.,
602 Osei-Sarpong, C., Warnat-Herresthal, S., et al. (2022). Alveolar macrophages in early stage
603 COPD show functional deviations with properties of impaired immune activation. *Front.*
604 *Immunol.* 13. .

605 Binnewies, M., Pollack, J.L., Rudolph, J., Dash, S., Abushawish, M., Lee, T., Jahchan, N.S.,
606 Canaday, P., Lu, E., Norng, M., et al. (2021). Targeting TREM2 on tumor-associated
607 macrophages enhances immunotherapy. *Cell Rep.* 37.
608 <https://doi.org/10.1016/j.celrep.2021.109844>.

609 Bosteels, C., Van Damme, K.F.A., De Leeuw, E., Declercq, J., Maes, B., Bosteels, V., Hoste, L.,
610 Naesens, L., Debeuf, N., Deckers, J., et al. (2022). Loss of GM-CSF-dependent instruction of
611 alveolar macrophages in COVID-19 provides a rationale for inhaled GM-CSF treatment. *Cell Reports Med.* 3. <https://doi.org/10.1016/j.xcrm.2022.100833>.

613 Carraro, G., Mulay, A., Yao, C., Mizuno, T., Konda, B., Petrov, M., Lafkas, D., Arron, J.R.,
614 Hogaboam, C.M., Chen, P., et al. (2020). Single-Cell Reconstruction of Human Basal Cell
615 Diversity in Normal and Idiopathic Pulmonary Fibrosis Lungs. *Am. J. Respir. Crit. Care Med.*
616 202, 1540–1550. <https://doi.org/10.1164/rccm.201904-0792OC>.

617 Chakarov, S., Lim, H.Y., Tan, L., Lim, S.Y., See, P., Lum, J., Zhang, X.-M., Foo, S., Nakamizo, S.,
618 Duan, K., et al. (2019). Two distinct interstitial macrophage populations coexist across
619 tissues in specific subtissular niches. *Science* (80-.). 363, eaau0964.
620 <https://doi.org/10.1126/science.aau0964>.

621 Chu, S.G., Villalba, J.A., Liang, X., Xiong, K., Tsoyi, K., Ith, B., Ayaub, E.A., Tatituri, R. V., Byers,
622 D.E., Hsu, F.-F., et al. (2019). Palmitic Acid–Rich High-Fat Diet Exacerbates Experimental
623 Pulmonary Fibrosis by Modulating Endoplasmic Reticulum Stress. *Am. J. Respir. Cell Mol.*
624 *Biol.* 61, 737–746. <https://doi.org/10.1165/rcmb.2018-0324OC>.

625 Esparza-Baquer, A., Labiano, I., Sharif, O., Agirre-Lizaso, A., Oakley, F., Rodrigues, P.M.,

626 Zhuravleva, E., O'Rourke, C.J., Hijona, E., Jimenez-Agüero, R., et al. (2021). TREM-2
627 defends the liver against hepatocellular carcinoma through multifactorial protective
628 mechanisms. *Gut* *70*, 1345. <https://doi.org/10.1136/gutjnl-2019-319227>.

629 Fabre, T., Barron, A.M.S., Christensen, S.M., Asano, S., Bound, K., Lech, M.P., Wadsworth,
630 M.H., Chen, X., Wang, C., Wang, J., et al. (2023). Identification of a broadly fibrogenic
631 macrophage subset induced by type 3 inflammation. *Sci. Immunol.* *8*, eadd8945.
632 <https://doi.org/10.1126/sciimmunol.add8945>.

633 Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations
634 in multidimensional genomic data. *Bioinformatics* *32*, 2847–2849.
635 <https://doi.org/10.1093/bioinformatics/btw313>.

636 Guilliams, M., De Kleer, I., Henri, S., Post, S., Vanhoutte, L., De Prijck, S., Deswarthe, K.,
637 Malissen, B., Hammad, H., and Lambrecht, B.N. (2013). Alveolar macrophages develop from
638 fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. *J. Exp. Med.* *210*, 1977–1992. <https://doi.org/10.1084/jem.20131199>.

640 Habermann, A.C., Gutierrez, A.J., Bui, L.T., Yahn, S.L., Winters, N.I., Calvi, C.L., Peter, L.,
641 Chung, M.-I., Taylor, C.J., Jetter, C., et al. (2020). Single-cell RNA sequencing reveals
642 profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. *Sci. Adv.* *6*, eaba1972. <https://doi.org/10.1126/sciadv.aba1972>.

644 Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk, A.J.,
645 Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. *Cell* *184*,
646 3573-3587.e29. <https://doi.org/10.1016/J.CELL.2021.04.048>.

647 Henn, D., Chen, K., Fehlmann, T., Trotsuk, A.A., Sivaraj, D., Maan, Z.N., Bonham, C.A.,
648 Barrera, J.A., Mays, C.J., Greco, A.H., et al. (2023). Xenogeneic skin transplantation promotes
649 angiogenesis and tissue regeneration through activated Trem2+ macrophages. *Sci. Adv.* *7*,
650 eabi4528. <https://doi.org/10.1126/sciadv.abi4528>.

651 Hoyer, N., Prior, T.S., Bendstrup, E., Wilcke, T., and Shaker, S.B. (2019). Risk factors for
652 diagnostic delay in idiopathic pulmonary fibrosis. *Respir. Res.* *20*, 103.
653 <https://doi.org/10.1186/s12931-019-1076-0>.

654 Hughes, T.K., Wadsworth, M.H., Gierahn, T.M., Do, T., Weiss, D., Andrade, P.R., Ma, F., de
655 Andrade Silva, B.J., Shao, S., Tsoi, L.C., et al. (2020). Second-Strand Synthesis-Based
656 Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human
657 Inflammatory Skin Pathologies. *Immunity* *53*, 878-894.e7.
658 <https://doi.org/10.1016/J.IMMUNI.2020.09.015>.

659 Hutchinson, J.P., Fogarty, A.W., McKeever, T.M., and Hubbard, R.B. (2015). In-Hospital
660 Mortality after Surgical Lung Biopsy for Interstitial Lung Disease in the United States. 2000
661 to 2011. *Am. J. Respir. Crit. Care Med.* *193*, 1161–1167.
662 <https://doi.org/10.1164/rccm.201508-1632OC>.

663 Jaeger, B., Schupp, J.C., Plappert, L., Terwelbeck, O., Artysh, N., Kayser, G., Engelhard, P.,
664 Adams, T.S., Zweigerdt, R., Kempf, H., et al. (2022). Airway basal cells show a

665 dedifferentiated KRT17highPhenotype and promote fibrosis in idiopathic pulmonary fibrosis.
666 *Nat. Commun.* **13**, 5637. <https://doi.org/10.1038/s41467-022-33193-0>.

667 Jung, S.-H., Hwang, B.-H., Shin, S., Park, E.-H., Park, S.-H., Kim, C.W., Kim, E., Choo, E., Choi,
668 I.J., Swirski, F.K., et al. (2022). Spatiotemporal dynamics of macrophage heterogeneity and a
669 potential function of Trem2hi macrophages in infarcted hearts. *Nat. Commun.* **13**, 4580.
670 <https://doi.org/10.1038/s41467-022-32284-2>.

671 Katzenelenbogen, Y., Sheban, F., Yalin, A., Yofe, I., Svetlichnyy, D., Jaitin, D.A., Bornstein, C.,
672 Moshe, A., Keren-Shaul, H., Cohen, M., et al. (2020). Coupled scRNA-Seq and Intracellular
673 Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer. *Cell* **182**, 872-
674 885.e19. <https://doi.org/10.1016/j.cell.2020.06.032>.

675 Kaunisto, J., Salomaa, E.-R., Hodgson, U., Kaarteenaho, R., Kankaanranta, H., Koli, K.,
676 Vahlberg, T., and Myllärniemi, M. (2019). Demographics and survival of patients with
677 idiopathic pulmonary fibrosis in the FinnishIPF registry. *ERJ Open Res.* **5**, 170–2018.
678 <https://doi.org/10.1183/23120541.00170-2018>.

679 Lederer, D.J., and Martinez, F.J. (2018). Idiopathic pulmonary fibrosis. *N. Engl. J. Med.* **378**,
680 1811–1823. <https://doi.org/10.1056/NEJMra1705751>.

681 Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., Cheng, L., Li, J., Wang, X., Wang, F., et al.
682 (2020). Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.
683 *Nat. Med.* <https://doi.org/10.1038/s41591-020-0901-9>.

684 Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas,
685 A.R., Kamitaki, N., Martersteck, E.M., et al. (2015). Highly Parallel Genome-wide Expression
686 Profiling of Individual Cells Using Nanoliter Droplets. *Cell* **161**, 1202–1214.
687 <https://doi.org/10.1016/j.cell.2015.05.002>.

688 Martinez, F.J., Chisholm, A., Collard, H.R., Flaherty, K.R., Myers, J., Raghu, G., Walsh, S.L.F.,
689 White, E.S., and Richeldi, L. (2017). The diagnosis of idiopathic pulmonary fibrosis: current
690 and future approaches. *Lancet Respir. Med.* **5**, 61–71.
691 [https://doi.org/https://doi.org/10.1016/S2213-2600\(16\)30325-3](https://doi.org/https://doi.org/10.1016/S2213-2600(16)30325-3).

692 Mass, E., Ballesteros, I., Farlik, M., Halbritter, F., Günther, P., Crozet, L., Jacome-Galarza, C.E.,
693 Händler, K., Klughammer, J., Kobayashi, Y., et al. (2016). Specification of tissue-resident
694 macrophages during organogenesis. *Science* (80-). **353**, aaf4238.
695 <https://doi.org/10.1126/science.aaf4238>.

696 Mayr, C.H., Simon, L.M., Leuschner, G., Ansari, M., Geyer, P.E., Angelidis, I., Strunz, M., Singh,
697 P., Kneidinger, N., Reichenberger, F., et al. (2020). Integrated Single Cell Analysis of Human
698 Lung Fibrosis Resolves Cellular Origins of Predictive Protein Signatures in Body Fluids. *SSRN*
699 *Electron. J.* <https://doi.org/10.2139/ssrn.3538700>.

700 Mittal, M., Tiruppathi, C., Nepal, S., Zhao, Y.-Y., Grzych, D., Soni, D., Prockop, D.J., and Malik,
701 A.B. (2016). TNF α -stimulated gene-6 (TSG6) activates macrophage phenotype transition to
702 prevent inflammatory lung injury. *Proc. Natl. Acad. Sci.* **113**, E8151–E8158.
703 <https://doi.org/10.1073/pnas.1614935113>.

704 Molgora, M., Esaulova, E., Vermi, W., Hou, J., Chen, Y., Luo, J., Brioschi, S., Bugatti, M.,
705 Omodei, A.S., Ricci, B., et al. (2020). TREM2 Modulation Remodels the Tumor Myeloid
706 Landscape Enhancing Anti-PD-1 Immunotherapy. *Cell* **182**, 886-900.e17.
707 <https://doi.org/10.1016/j.cell.2020.07.013>.

708 Morse, C., Tabib, T., Sembrat, J., Buschur, K.L., Bittar, H.T., Valenzi, E., Jiang, Y., Kass, D.J.,
709 Gibson, K., Chen, W., et al. (2019). Proliferating SPP1/MERTK-expressing macrophages in
710 idiopathic pulmonary fibrosis. *Eur. Respir. J.* **54**, 1802441.
711 <https://doi.org/10.1183/13993003.02441-2018>.

712 Mulder, K., Patel, A.A., Kong, W.T., Piot, C., Halitzki, E., Dunsmore, G., Khalilnezhad, S., Irac,
713 S.E., Dubuisson, A., Chevrier, M., et al. (2021). Cross-tissue single-cell landscape of human
714 monocytes and macrophages in health and disease. *Immunity*
715 <https://doi.org/10.1016/j.jimmuni.2021.07.007>.

716 Park, M.D., Reyes-Torres, I., LeBerichel, J., Hamon, P., LaMarche, N.M., Hegde, S., Belabed,
717 M., Troncoso, L., Grout, J.A., Magen, A., et al. (2023). TREM2 macrophages drive NK cell
718 paucity and dysfunction in lung cancer. *Nat. Immunol.* **24**, 792–801.
719 <https://doi.org/10.1038/s41590-023-01475-4>.

720 Pesci, A., Ricchiuti, E., Ruggiero, R., and De Micheli, A. (2010). Bronchoalveolar lavage in
721 idiopathic pulmonary fibrosis: What does it tell us? *Respir. Med.* **104**, S70–S73.
722 <https://doi.org/https://doi.org/10.1016/j.rmed.2010.03.019>.

723 Raghu, G., Remy-Jardin, M., Myers, J.L., Richeldi, L., Ryerson, C.J., Lederer, D.J., Behr, J.,
724 Cottin, V., Danoff, S.K., Morell, F., et al. (2018). Diagnosis of idiopathic pulmonary fibrosis.
725 An official ATS/ERS/JRS/ALAT clinical practice guideline. *Am. J. Respir. Crit. Care Med.* **198**,
726 e44–e68. <https://doi.org/10.1164/rccm.201807-1255ST>.

727 Ramachandran, P., Dobie, R., Wilson-Kanamori, J.R., Dora, E.F., Henderson, B.E.P., Luu, N.T.,
728 Portman, J.R., Matchett, K.P., Brice, M., Marwick, J.A., et al. (2019). Resolving the fibrotic
729 niche of human liver cirrhosis at single-cell level. *Nature* **575**, 512–518.
730 <https://doi.org/10.1038/s41586-019-1631-3>.

731 Reyfman, P.A., Walter, J.M., Joshi, N., Anekalla, K.R., McQuattie-Pimentel, A.C., Chiu, S.,
732 Fernandez, R., Akbarpour, M., Chen, C.-I., Ren, Z., et al. (2019). Single-cell transcriptomic
733 analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. *Am. J.*
734 *Respir. Crit. Care Med.* **199**, 1517–1536. <https://doi.org/10.1164/rccm.201712-2410OC>.

735 Schyns, J., Bai, Q., Ruscitti, C., Radermecker, C., De Schepper, S., Chakarov, S., Farnir, F.,
736 Pirottin, D., Ginhoux, F., Boeckxstaens, G., et al. (2019). Non-classical tissue monocytes and
737 two functionally distinct populations of interstitial macrophages populate the mouse lung.
738 *Nat. Commun.* **10**, 3964. <https://doi.org/10.1038/s41467-019-11843-0>.

739 Sivakumar, P., Thompson, J.R., Ammar, R., Porteous, M., McCoubrey, C., I, E.C.I.I., Ravi, K.,
740 Zhang, Y., Luo, Y., Streltsov, D., et al. (2019). RNA sequencing of transplant-stage idiopathic
741 pulmonary fibrosis lung reveals unique pathway regulation. *ERJ Open Res.* **5**, 00117–02019.
742 <https://doi.org/10.1183/23120541.00117-2019>.

743 Travaglini, K.J., Nabhan, A.N., Penland, L., Sinha, R., Gillich, A., Sit, R. V., Chang, S., Conley,
744 S.D., Mori, Y., Seita, J., et al. (2020). A molecular cell atlas of the human lung from single-cell
745 RNA sequencing. *Nature* <https://doi.org/10.1038/s41586-020-2922-4>.

746 Ucero, A.C., Bakiri, L., Roediger, B., Suzuki, M., Jimenez, M., Mandal, P., Braghetta, P.,
747 Bonaldo, P., Paz-Ares, L., Fustero-Torre, C., et al. (2019). Fra-2-expressing macrophages
748 promote lung fibrosis. *J. Clin. Invest.* **129**, 3293–3309. <https://doi.org/10.1172/JCI125366>.

749 Xu, Y., Mizuno, T., Sridharan, A., Du, Y., Guo, M., Tang, J., Wikenheiser-Brokamp, K.A., Perl,
750 A.-K.T., Funari, V.A., Gokey, J.J., et al. (2017). Single-cell RNA sequencing identifies diverse
751 roles of epithelial cells in idiopathic pulmonary fibrosis. *JCI Insight* **1**,
752 <https://doi.org/10.1172/jci.insight.90558>.

753 Xue, J., Schmidt, S. V., Sander, J., Draffehn, A., Krebs, W., Quester, I., DeNardo, D., Gohel,
754 T.D., Emde, M., Schmidleithner, L., et al. (2014). Transcriptome-Based Network Analysis
755 Reveals a Spectrum Model of Human Macrophage Activation. *Immunity* **40**, 274–288.
756 <https://doi.org/10.1016/J.IMMUNI.2014.01.006>.

757 Yu, Y.-R.A., Hotten, D.F., Malakhau, Y., Volker, E., Ghio, A.J., Noble, P.W., Kraft, M.,
758 Hollingsworth, J.W., Gunn, M.D., and Tighe, R.M. (2016). Flow Cytometric Analysis of
759 Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues. *Am. J. Respir. Cell
760 Mol. Biol.* **54**, 13–24. <https://doi.org/10.1165/rcmb.2015-0146OC>.

761 Zhang, F., Ayaub, E.A., Wang, B., Puchulu-Campanella, E., Li, Y.-H., Hettiarachchi, S.U.,
762 Lindeman, S.D., Luo, Q., Rout, S., Srinivasarao, M., et al. (2020). Reprogramming of
763 profibrotic macrophages for treatment of bleomycin-induced pulmonary fibrosis. *EMBO Mol.
764 Med.* **12**, e12034. <https://doi.org/https://doi.org/10.15252/emmm.202012034>.

765 Zhang, P., Cao, L., Zhou, R., Yang, X., and Wu, M. (2019). The lncRNA Neat1 promotes
766 activation of inflammasomes in macrophages. *Nat. Commun.* **10**, 1495.
767 <https://doi.org/10.1038/s41467-019-09482-6>.

768

769

770 **Figure legends**

771 **Figure 1.** Single cell transcriptomic analysis revealed macrophage heterogeneity in the
772 bronchoalveolar space. (A) Schematic workflow of the cluster analysis to stratify IPF patients.
773 (B) Heatmap of lung function parameters of patients. FVC: forced vital capacity; FEV₁: forced
774 expiratory volume in 1 second; TLC: total lung capacity; D_{LCO}: carbon monoxide diffusion
775 capacity; pO₂: partial pressure of oxygen; pCO₂: partial pressure of carbon dioxide. (C)
776 Percentage of predicted FEV₁ value in controls and two IPF groups. (D) Percentage of
777 predicted D_{LCO} value in controls and two IPF groups. (E) Schematic workflow of Seq-Well
778 based single-cell sequencing analysis. (F) Major cell populations determined in BALF samples.
779 (G) UMAP embedding of macrophage subpopulations. (H) Top 5 feature genes for each
780 macrophage subpopulation by DEG analysis.

781
782 **Figure 2.** SPP1⁺Mφ were predominantly accumulated at the early stage of IPF development.
783 (A) UMAP embedding of macrophage subpopulations separated by disease groups. To have
784 an intuitive view of cell composition in each group, same number of cells (n=1000) were
785 shown in each group. (B) Frequency of each subpopulation in the control and two disease
786 groups. *p < 0.05, **p < 0.01, Wilcox-test. (C) Frequency of SPP1⁺Mφ in the control and
787 disease groups. *p < 0.05, Wilcox-test.

788
789 **Figure 3.** Monocyte derived SPP1⁺Mφ were characterized by up-regulated metabolic
790 pathway. (A) Schematic workflow of transferring the macrophage labels from MoMac
791 dataset to macrophages from present study. (B) Heatmap of transcriptional similarity
792 between macrophages determined in present study and macrophages from the MoMac
793 dataset. (C) Diffusion map embedding of monocyte and monocyte derived macrophages. (D)
794 Differentially expressed genes along pseudotime from monocyte to SPP1⁺Mφ. (E) Schematic
795 workflow of comparing the transcriptional similarity between macrophages from present
796 study and activated macrophages from Xue et al. (F) Heatmap of transcriptional similarity
797 between macrophages determined in present study and activated macrophages from Xue et
798 al. (G) Enriched pathways in SPP1⁺Mφ. (H) Comparison of bodipy intensity in SPP1⁻Mφ and
799 SPP1⁺Mφ. *p < 0.05, t-test.

800
801 **Figure 4.** Enrichment of SPP1⁺Mφ in the early-IPF group was validated in an independent IPF
802 cohort. (A) Schematic workflow of integrating macrophages from present study to the CITE-
803 seq dataset to determine antibodies for SPP1⁺Mφ. (B) Antibody (CD10, CD169 and CD206)
804 expression level in all clusters from the CITE-seq dataset. (C) Gene (ALCAM and FOLR2)
805 expression level in all clusters from the CITE-seq dataset. (D) Strategy to gate macrophage
806 subpopulations in BALF samples for the Spectrum CD10 + Extended mac panel. (E)
807 Schematic workflow of machine learning based analysis to stratify IPF patients from the
808 validation cohort into early- and advanced-IPF groups. (F) Frequency of CD10- populations in
809 the validation cohort separated by disease stage groups. *p < 0.05, **p < 0.01, *** p < 0.001,
810 paired t-test.

811
812 **Figure S1.** Unsupervised hierarchical clustering stratified IPF patients into two groups. (A)
813 Pearson's correlation coefficient of lung function parameters. (B) Boxplot of lung function
814 parameters from high-resolution computed tomography (HRCT) images between early- and

815 advanced-IPF groups. ** $p < 0.01$, paired t-test. (C) Strategy to gate immune cells in BALF
816 samples. (D) Composition of cells in BALF samples determined by flow cytometry analysis. (E)
817 Composition of myeloid cells in all samples grouped by stages.

818

819 **Figure S2.** Single cell transcriptomic analysis revealed macrophage heterogeneity in the
820 bronchoalveolar space. (A) UMAP embedding of cells from BALF samples grouped by source
821 of control samples and disease groups. (B) UMAP embedding of cell populations determined
822 in BALF samples. (C) Transcriptional similarity between cell types determined in present
823 study and human lung cell atlas. (D) Top 5 feature genes of each cluster. Feature genes
824 threshold: avg_log2FC > 1, p_val_adj < 0.001.

825

826 **Figure S3.** SPP1⁺Mφ were predominantly accumulated at the early stage of IPF development.
827 (A) Frequency of major cell population in the control and disease groups. (B) Frequency of
828 each subpopulation in the control and disease groups. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$,
829 Wilcoxon-test.

830

831 **Figure S4.** Monocyte derived SPP1⁺Mφ were characterized by up-regulated metabolic
832 pathway. (A) Transcriptional similarity between macrophage subpopulations in current
833 study and TREM2⁺Mφ from the MoMac database. (B) Enriched GO terms in macrophage
834 subpopulations. (C) Quantification of bopidy intensity in SPP1⁻Mφ and SPP1⁺Mφ. Examples
835 of SPP1⁻Mφ and SPP1⁺Mφ are shown on the right.

836

837 **Figure S5.** SPP1⁺Mφ were significantly enriched in lung biopsy samples from patients with
838 end-stage of IPF. (A) Schematic workflow of integrating macrophages from present study to
839 macrophages from three other published studies. (B) UMAP embedding of macrophages
840 grouped by studies. (C) Expression of feature genes of SPP⁺Mφ from present study on the
841 clusters from the integrated dataset. (D) Transcriptional similarity of SPP^{hi}Mφ and IPFeMφ
842 from previous studies on clusters from the integrated dataset. (E) Frequency of cluster 3
843 from the integrated dataset in control and IPF samples. (F) UMAP embedding of monocytes
844 and macrophages from Bosteels et al. (G) Differentially expressed genes for clusters from
845 Figure S5F. (H) Heatmap of transcriptional similarity between macrophages determined in
846 present studies and clusters from Figure S5F.

847

848 **Figure S6.** Enrichment of SPP1⁺Mφ in the early-IPF group was validated in an independent
849 IPF cohort. (A) Diffusion map embedding of discovery and validation cohort. (B) Strategy to
850 gate macrophage subpopulations in BALF samples for the Spectrum CD10 panel.

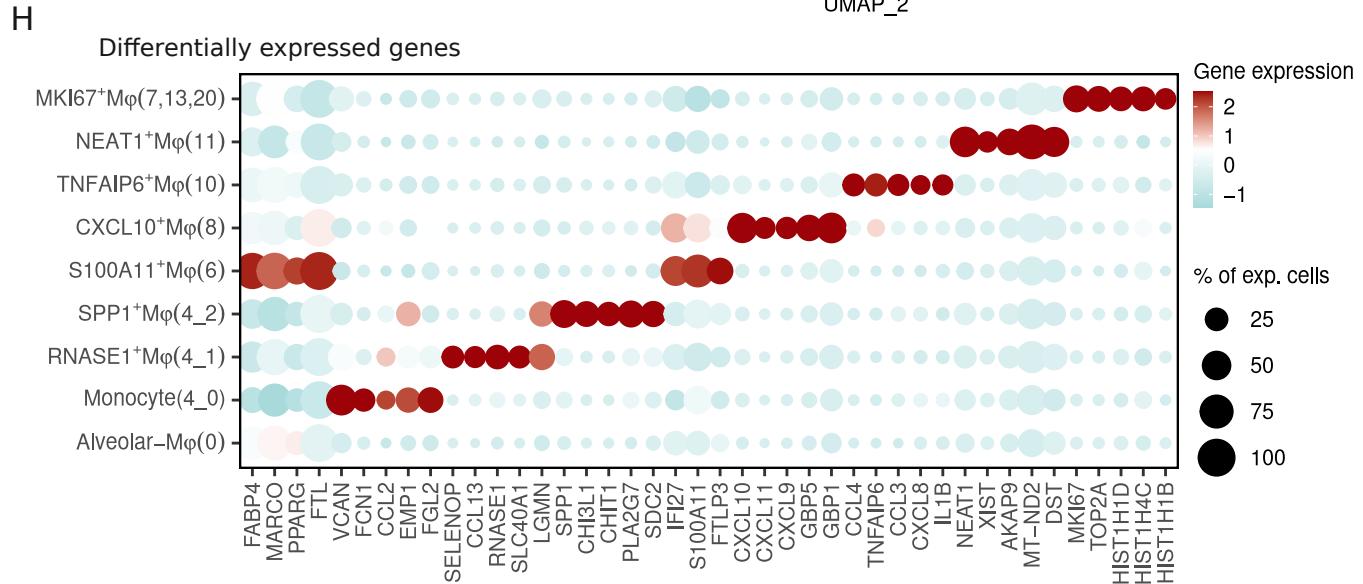
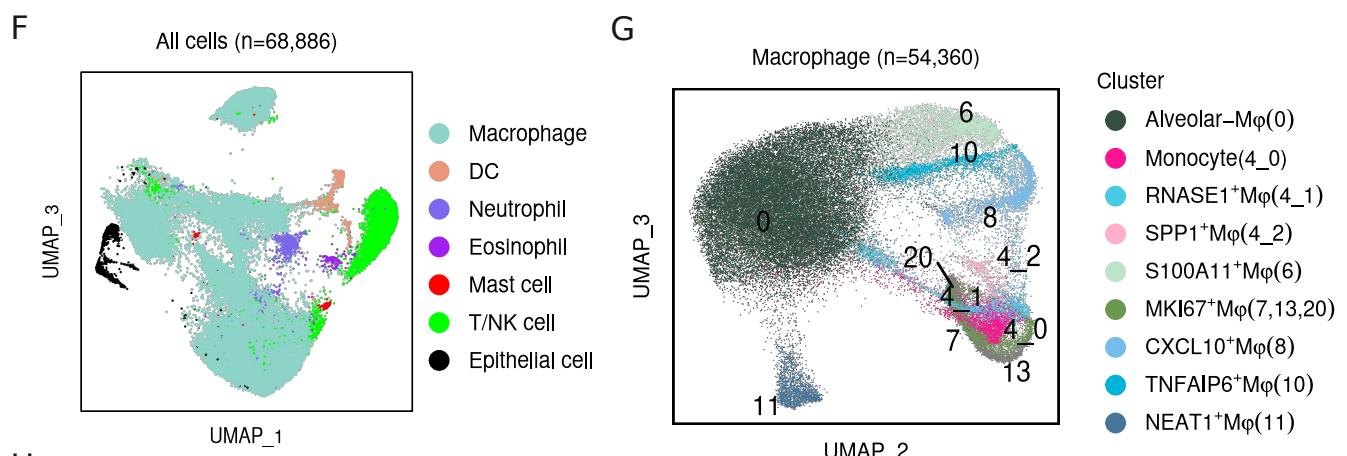
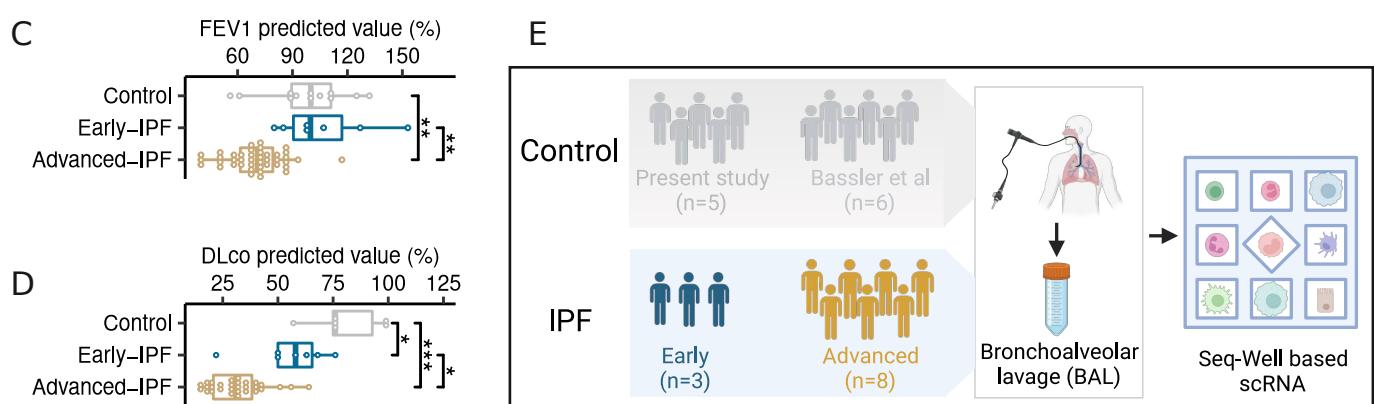
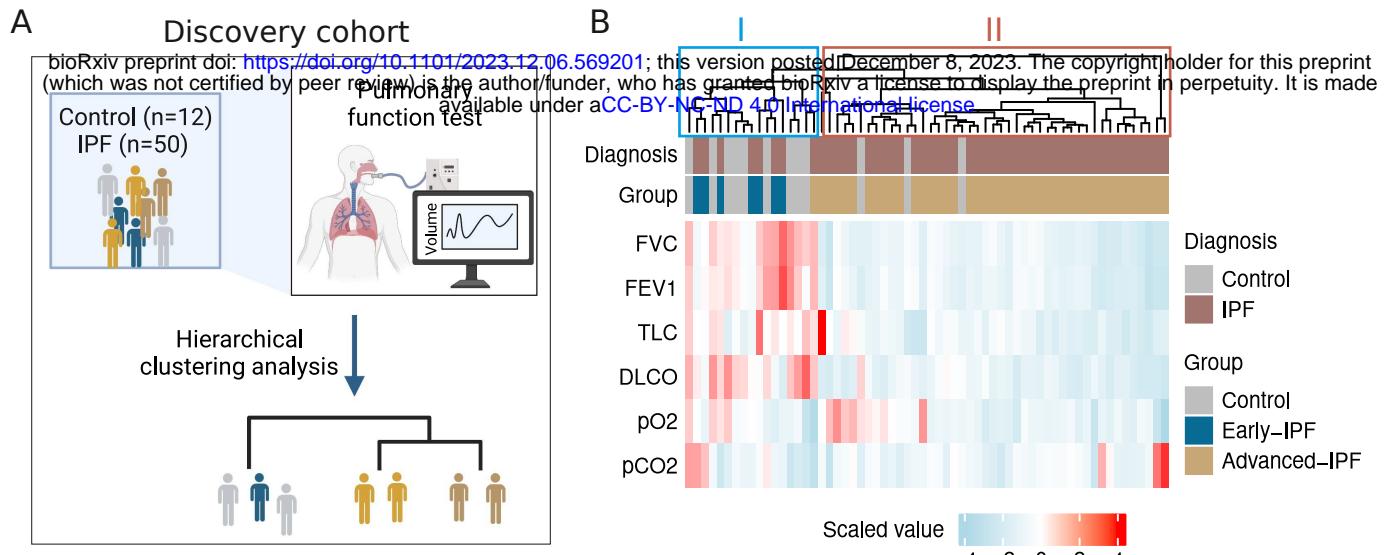
851

852 Table S1: Clinical parameters of patients used in present study.

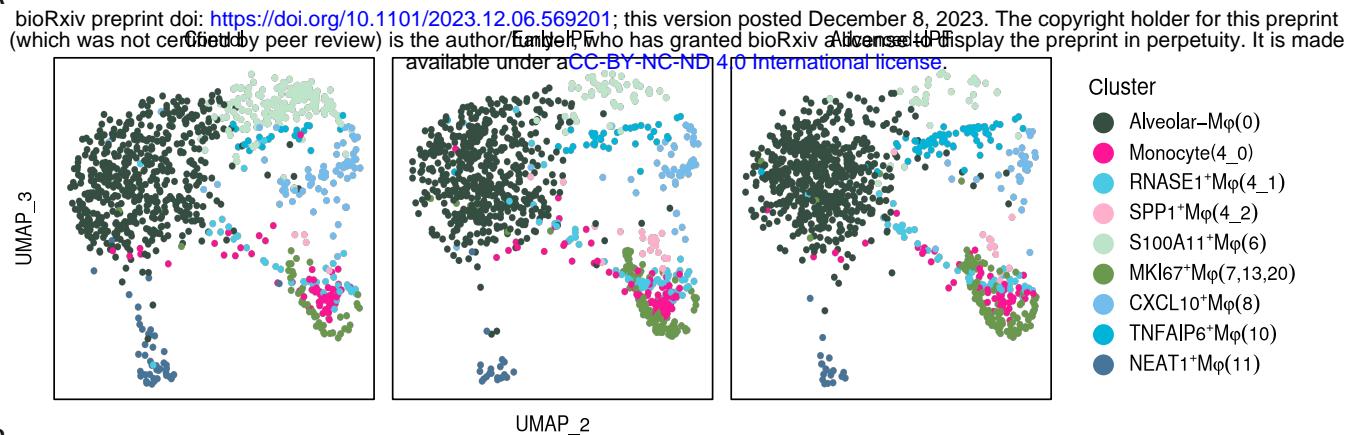
853 Table S2: Differentially expressed genes per cluster.

854 Table S3: Differential gene regulatory networks in each subcluster.

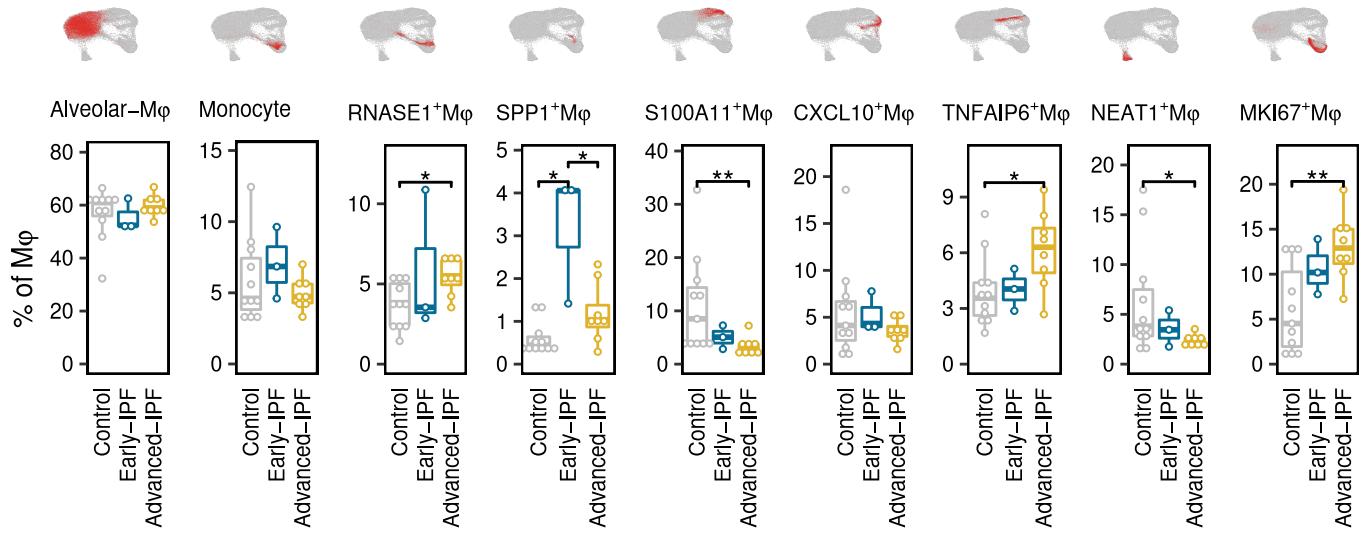
855 Table S4: Number of cells per cluster per sample.

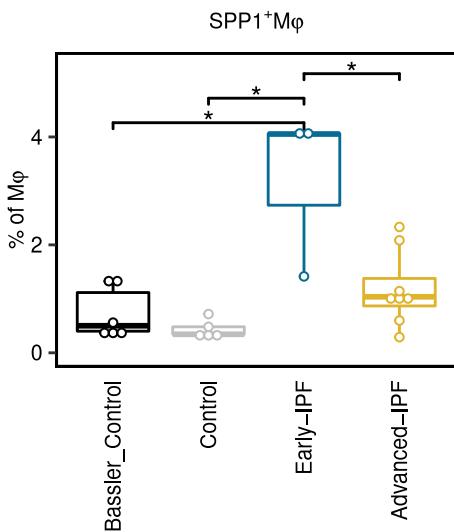




856 Table S5: Enriched GO terms in all macrophage subpopulations.

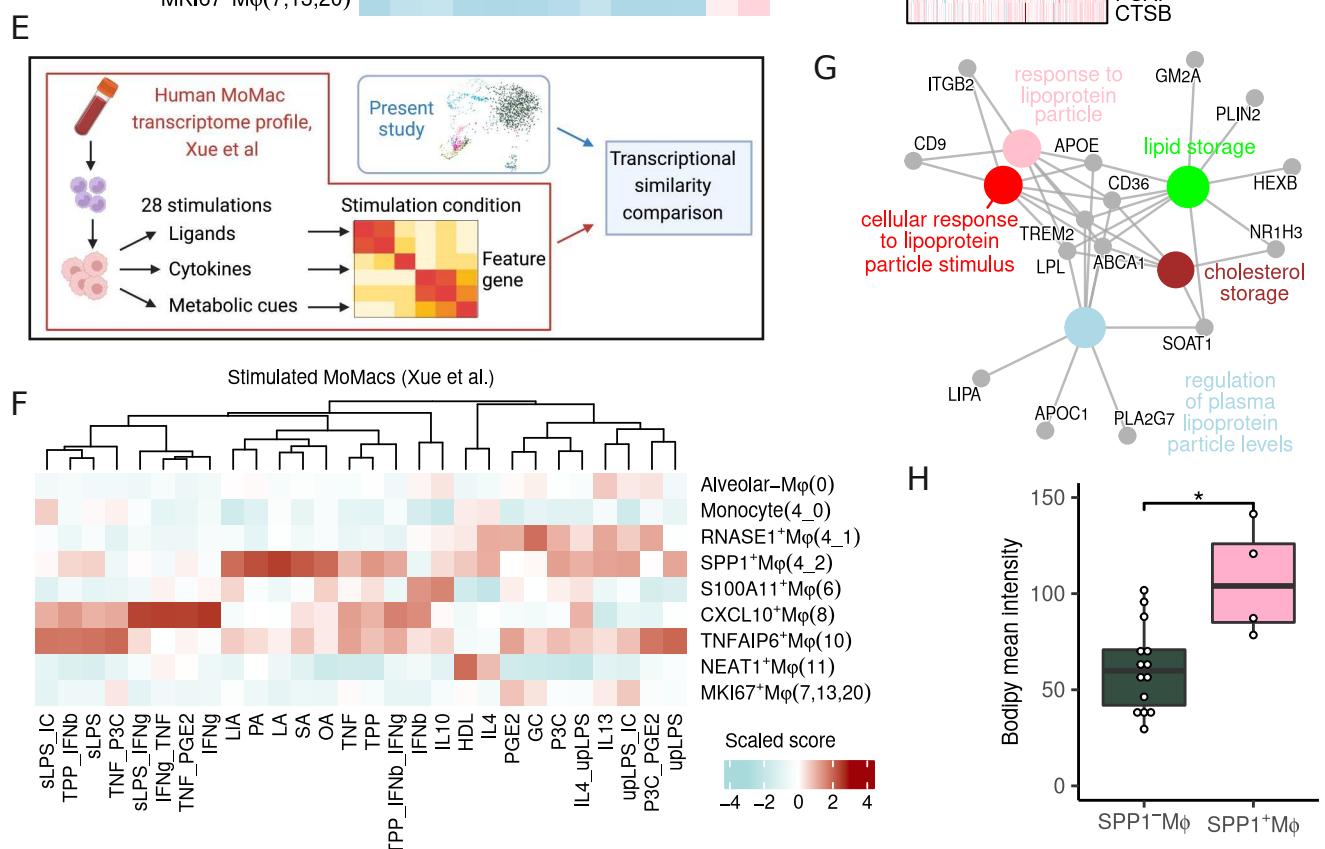
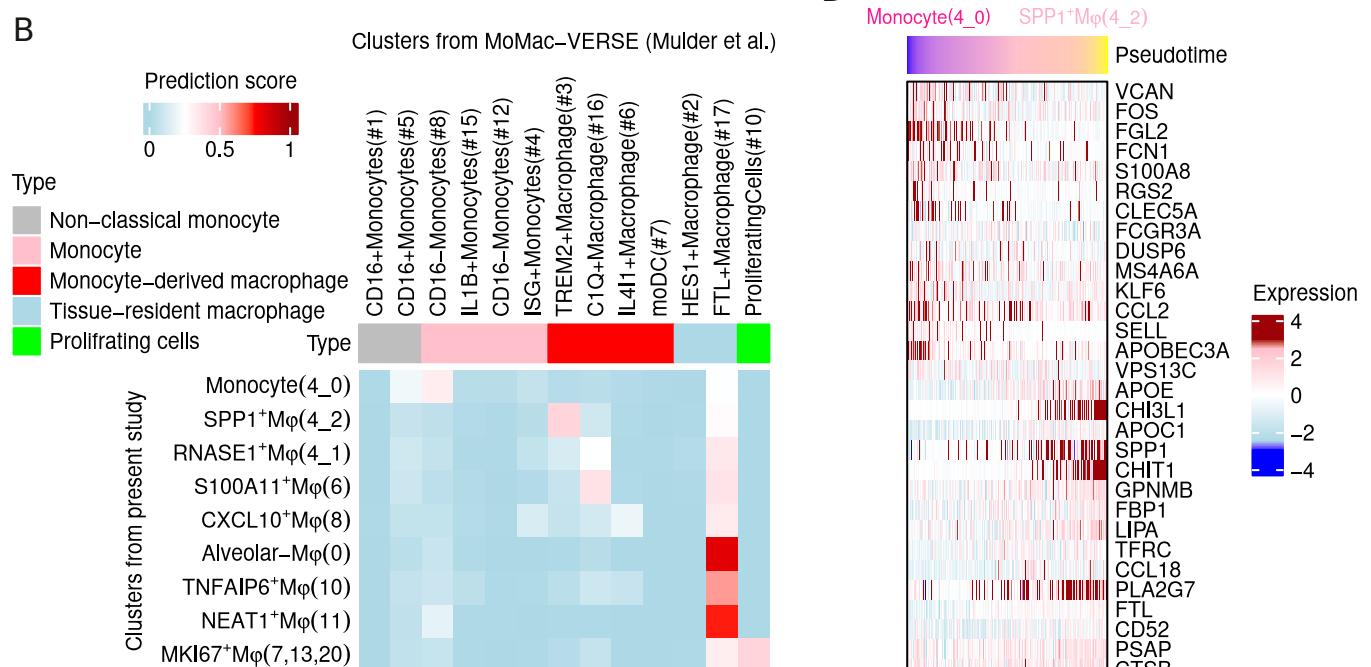
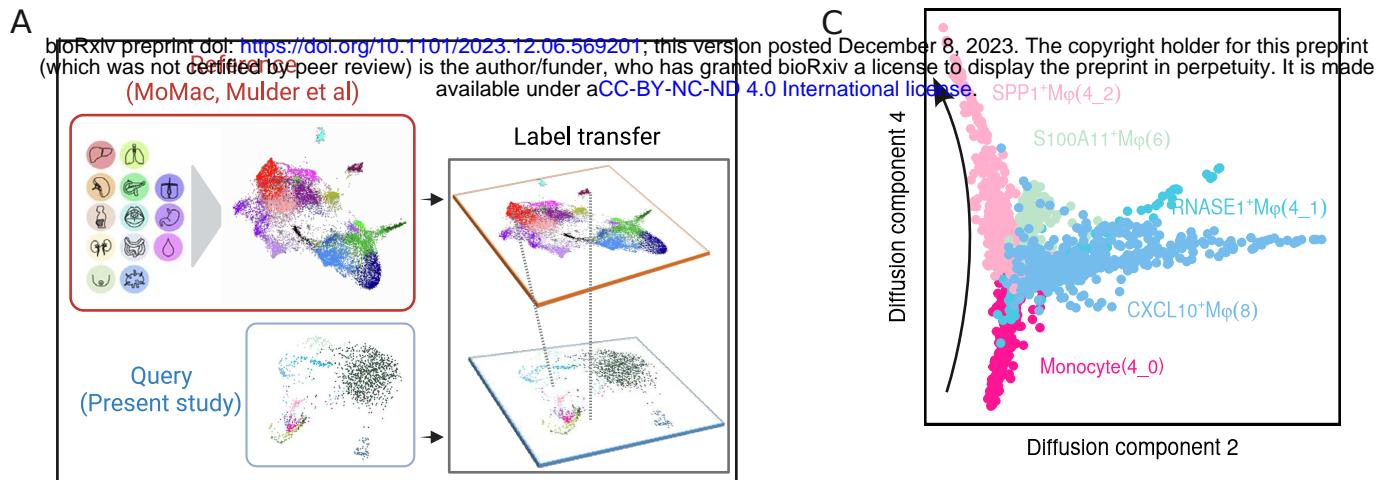
857 Table S6: Number of cells determined by Spectrum FACs panels

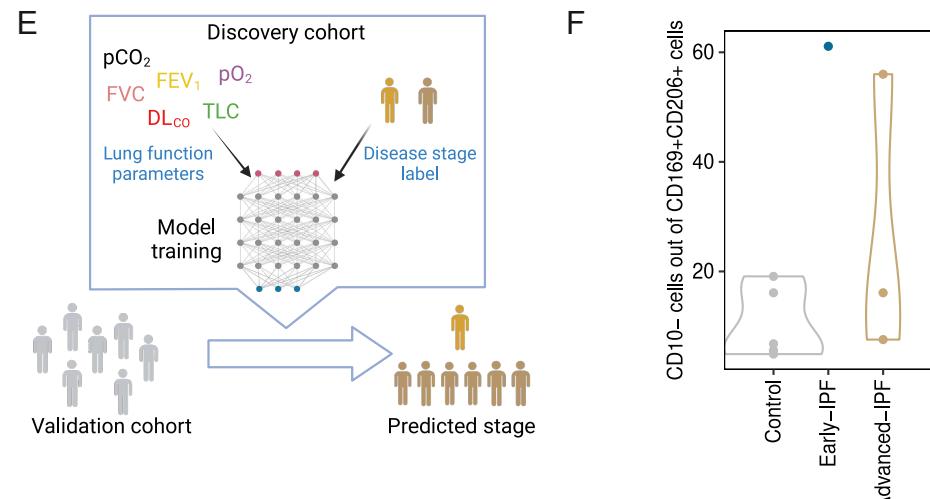
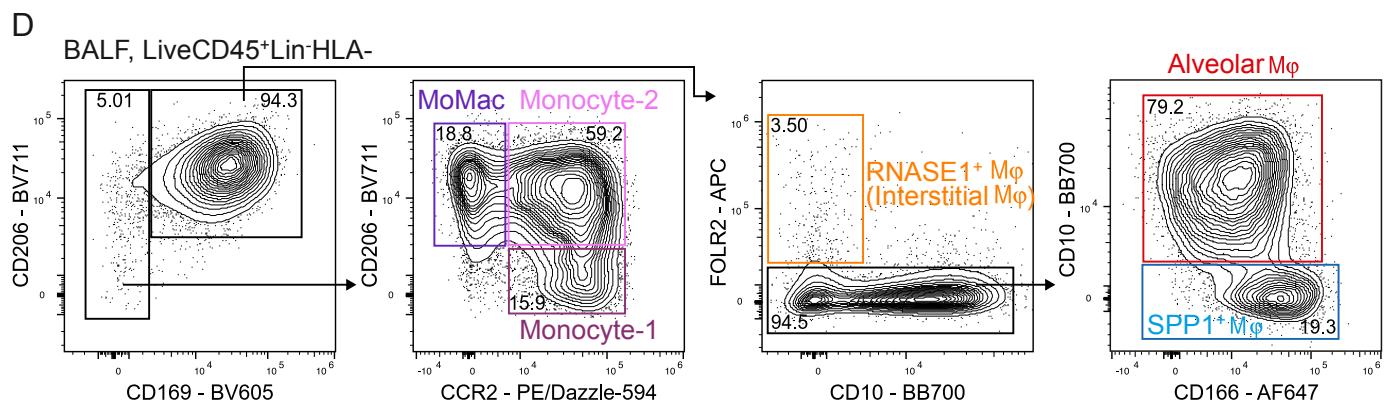
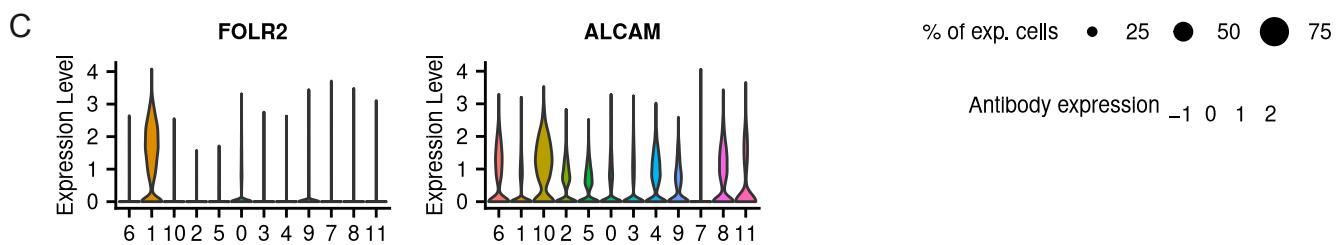
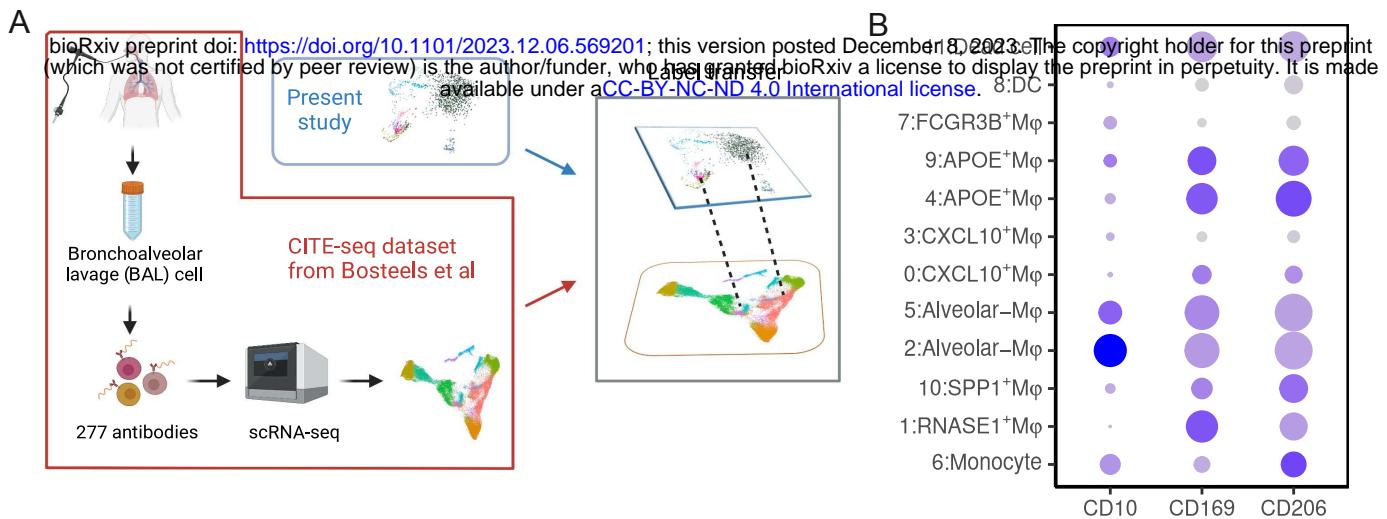

858 Table S7: List of antibodies used for the discovery cohort.

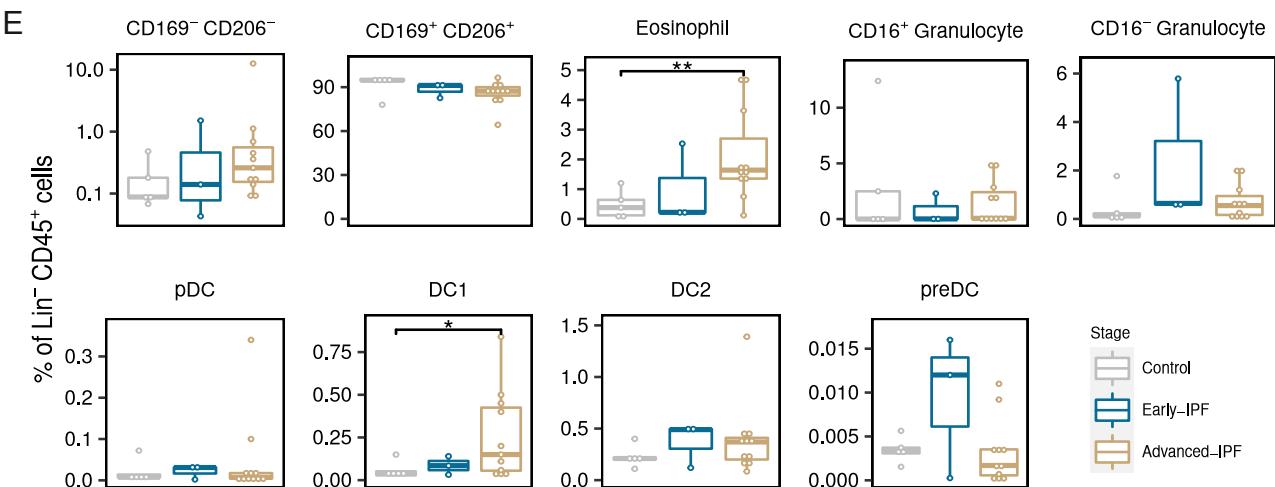
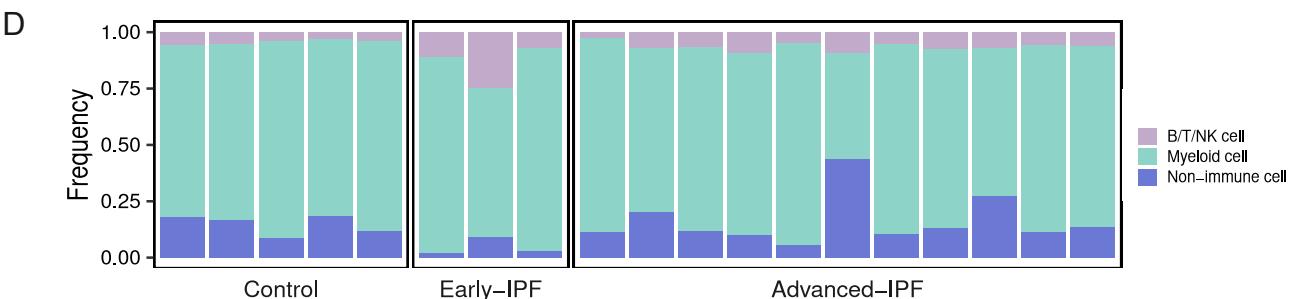
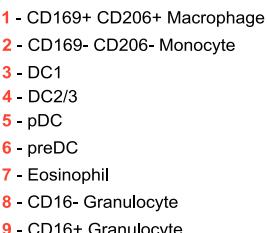
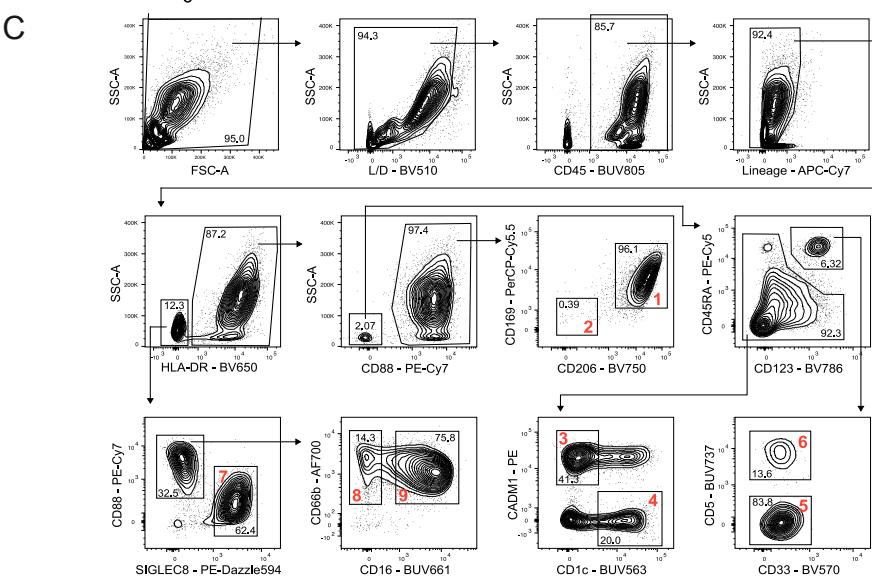
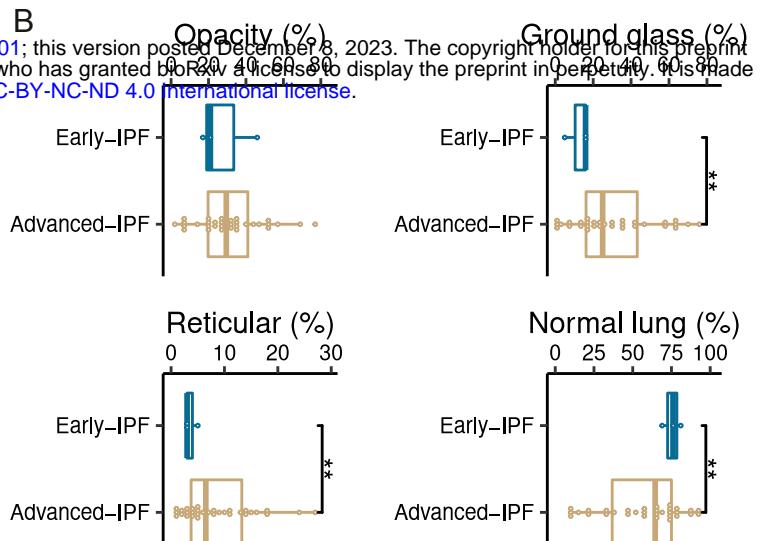
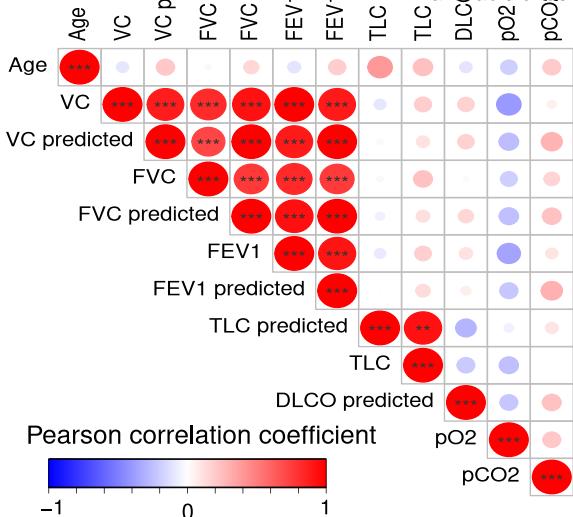
859 Table S8: List of antibodies used for the validation cohort.

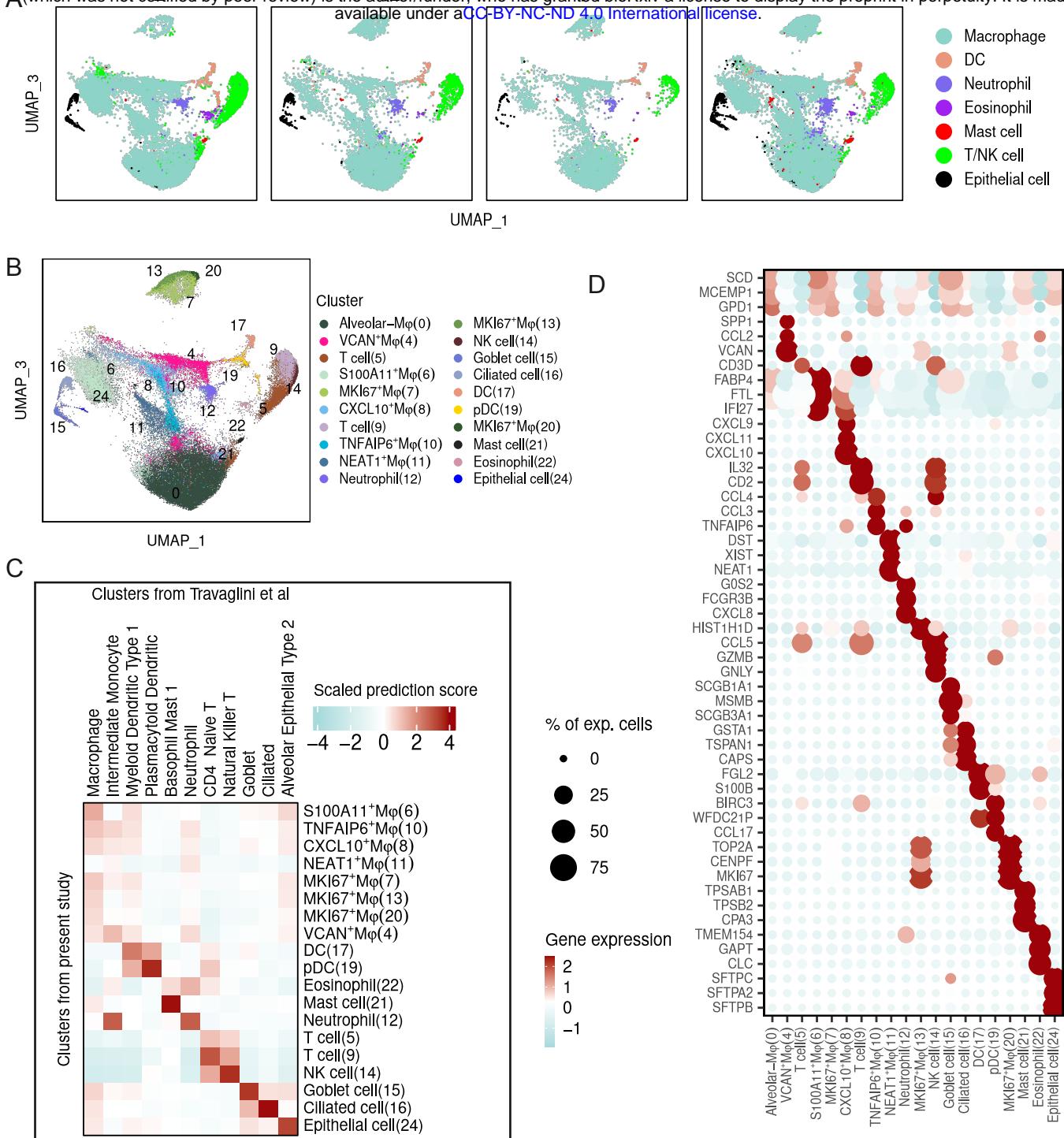

860

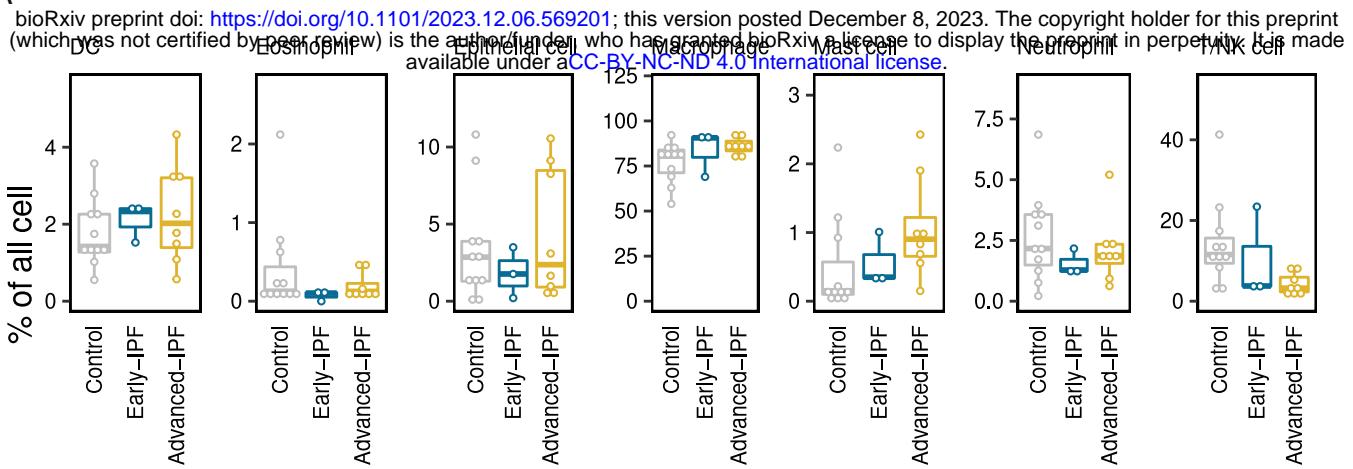

A

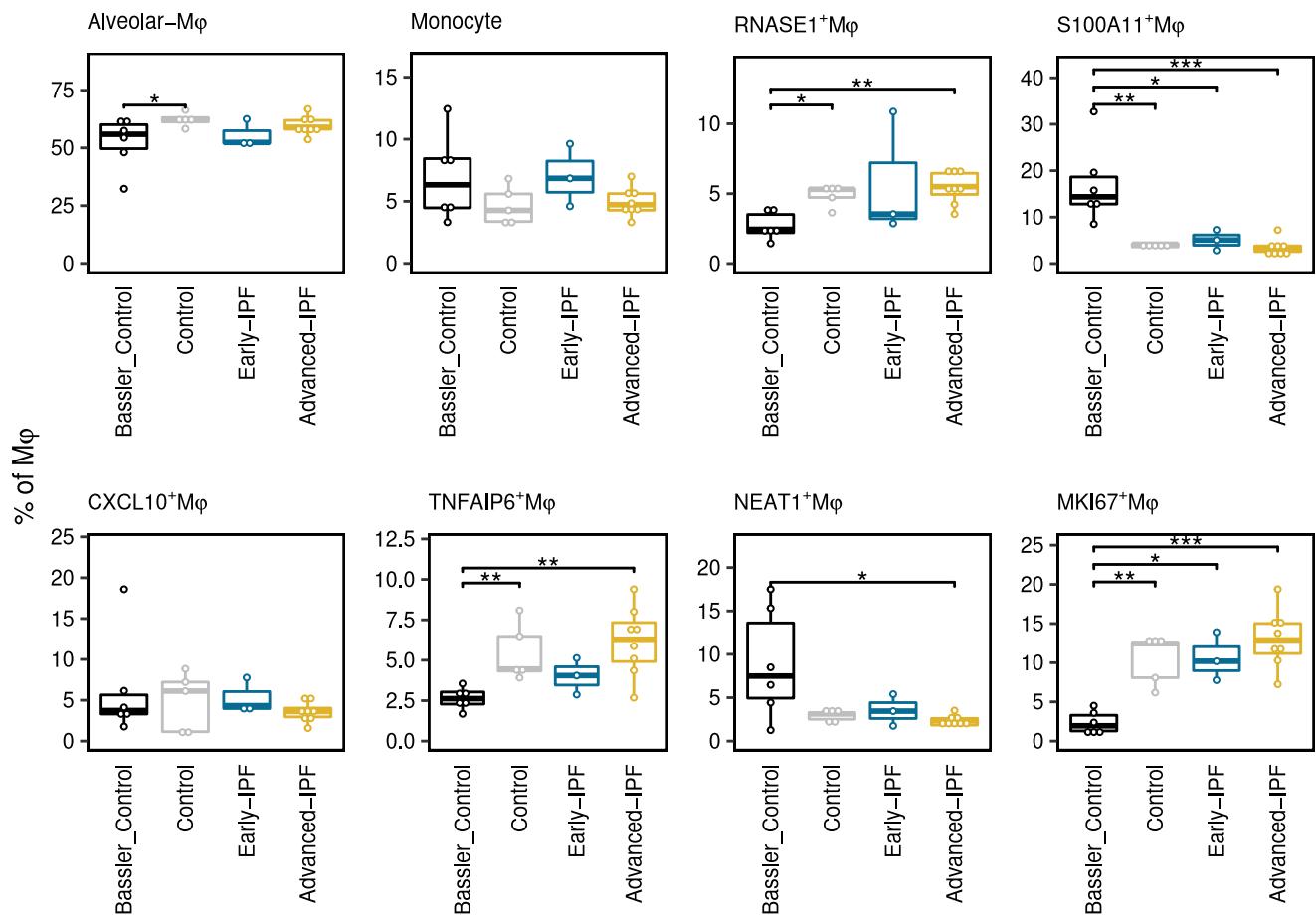




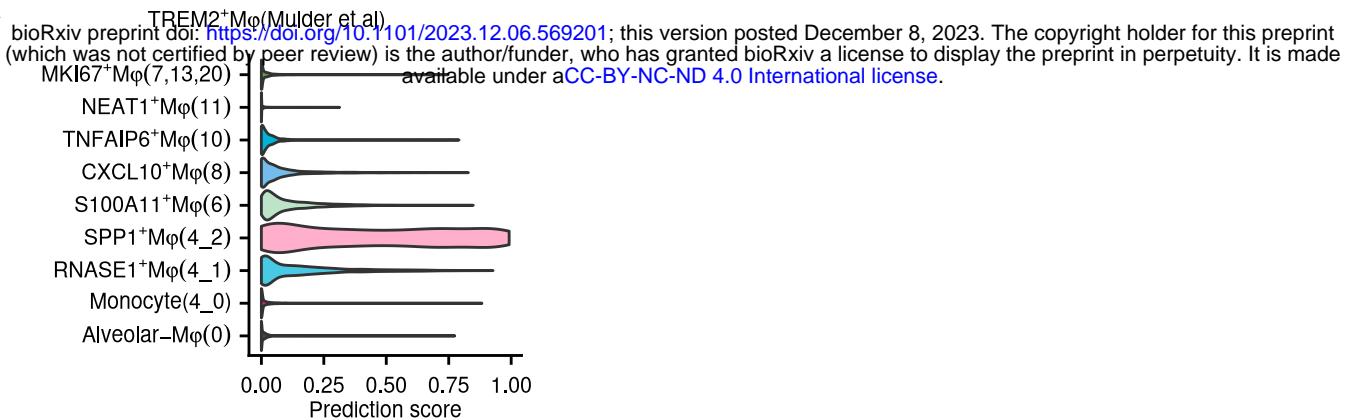




B

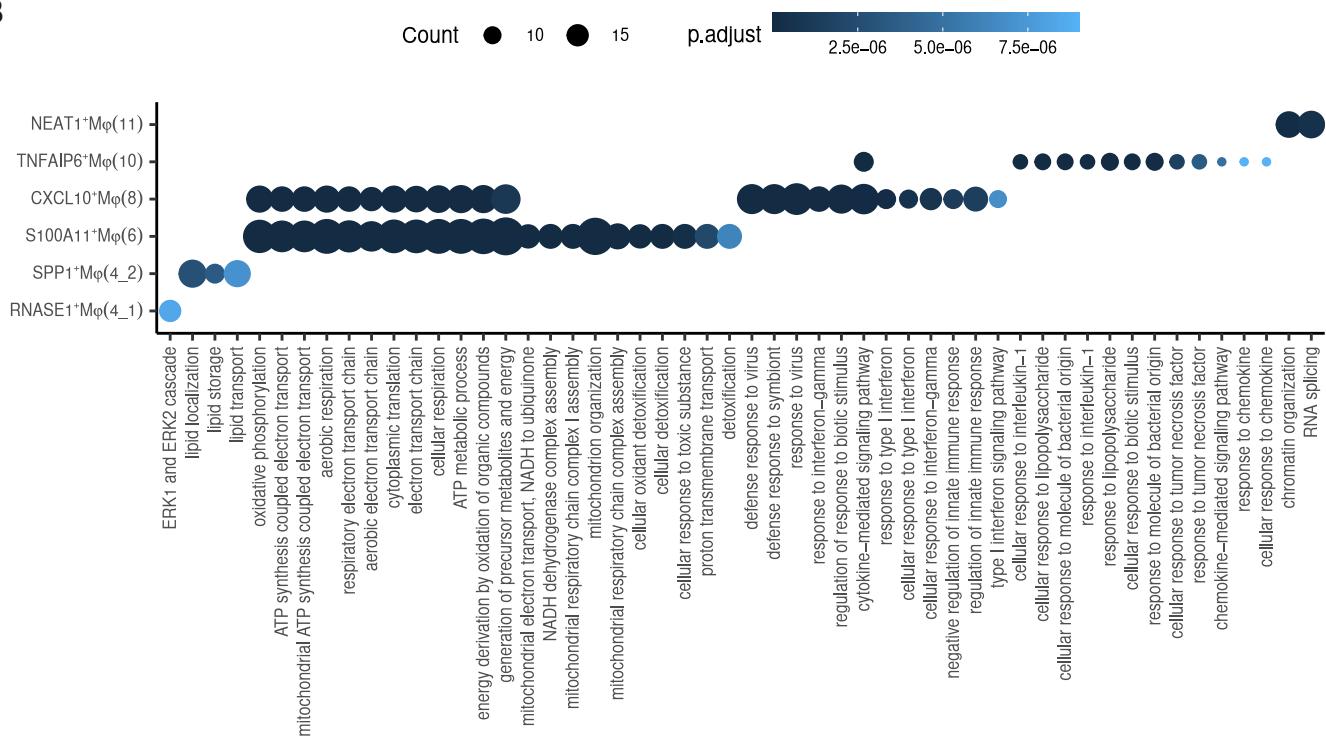








C

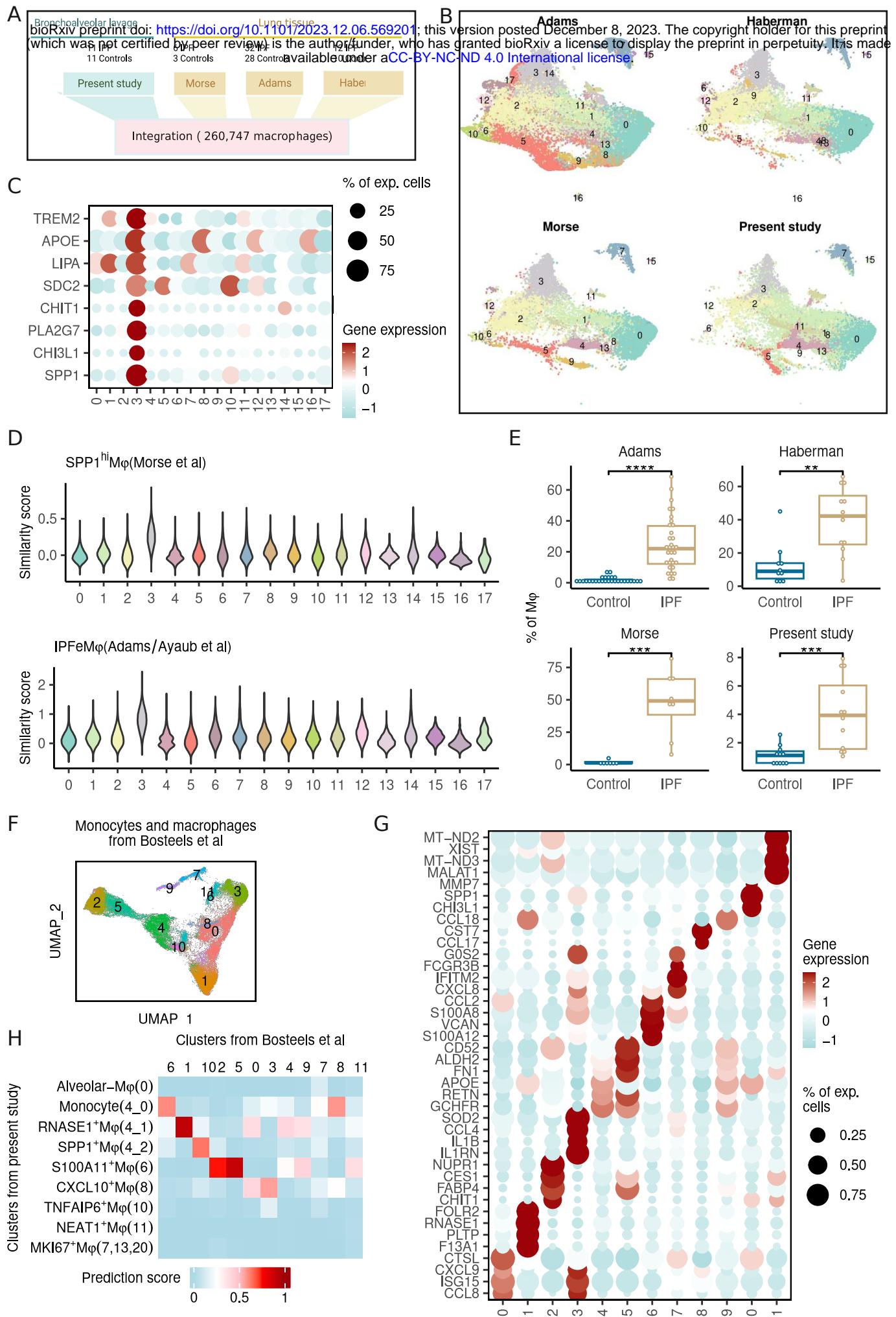




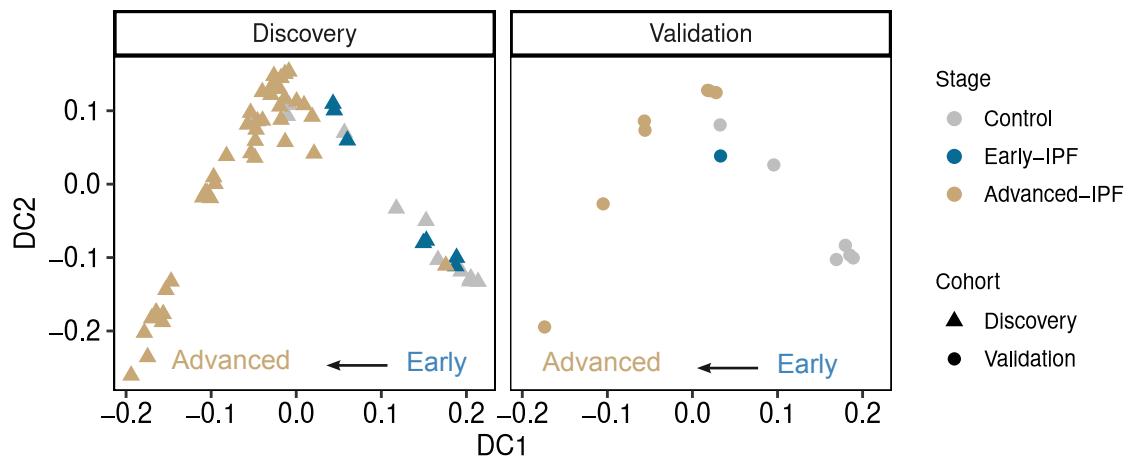

A


B

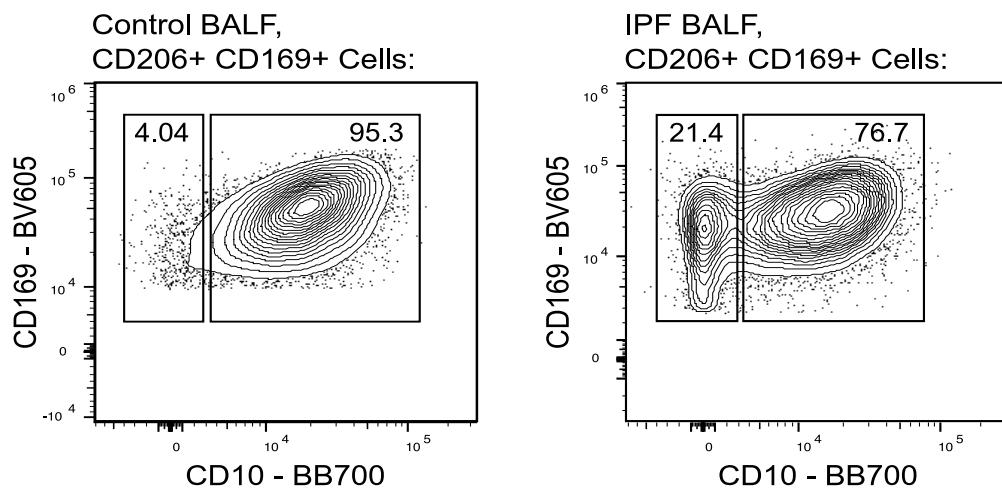
A



B



C



A

B

