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Abstract
RNA-directed DNA Methylation (RdDM) is a plant-specific de novo methylation pathway that

is responsible for maintenance of asymmetric methylation (CHH, where H=A, T, or G) in
euchromatin. Loci with CHH methylation are transcriptionally silent and produce 24-
nucleotide (nt) short interfering (si) RNAs. These siRNAs direct additional CHH methylation
to the locus, thereby maintaining methylation states through DNA replication. To understand
the necessary conditions to produce stable CHH methylation, we developed a stochastic
mathematical model of RADM. The model describes DNA target search of DNA or RNA by
siRNAs derived from CHH-methylated loci. When the siRNA (bound by an Argonaute
protein) finds the matching locus, the model uses the dwell time of the matched complex to
determine the degree of CHH reinforcing methylation. Reinforcing methylation occurs either
throughout the cell cycle (steady reinforcement), or immediately following replication (bursty
reinforcement). Each simulation occurs over 10 cell cycles, and for 7 bootstrapped replicates.
We use nonparametric statistics to compare initial and final CHH methylation distributions to
determine whether the simulation conditions produce stable maintenance. We apply this
method to the low CHH methylation case, wherein the median is only 8%, and many loci
have less than 8% methylation. The resulting model predicts that siRNA production must be
linearly proportional to CHH methylation levels at each locus, that bursty reinforcement
produces more stable systems, and that slightly higher levels of siRNA production are
required for DNA target search, compared to RNA target search.

Introduction
In eukaryotic genomes, cytosines are methylated to influence the behavior of DNA, and loss of
this methylation has profound effects on gene expression and genome stability [1,2]. DNA
methylation in animals is primarily on cytosines that are immediately 5’ to a guanine (a “CG”
site), whereas DNA methylation in plants occurs on cytosines regardless of the surrounding
sequence context. Distinct mechanisms maintain CG, CHG, and CHH methylation (where H=A,
T, or C) in plant genomes. Most DNA methylation occurs in large blocks of heterochromatin, the
highly condensed and gene-poor regions of the genome. This methylation persists following
DNA replication because the signals recruiting methyltransferases are encoded in histone
modifications, which are equally partitioned to the two daughter strands. The 50% reduction in
modified histones is sufficient to restore DNA methylation levels before the next round of DNA
replication. In contrast, CHH methylation in euchromatin, the portion of the genome containing
most protein-coding genes, is maintained by RNA-directed DNA Methylation (RdDM) [3].

RdDM employs a complex mechanism whereby 24-nucleotide (nt) small interfering (si)RNAs
are synthesized from methylated loci, processed and bound by Argonaute proteins (AGO) in the
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cytoplasm, and reimported to the nucleus before targeting DNA methylation based on the
sequence information encoded by the siRNA [4,5]. Binding of the AGO:siRNA complex to a
target locus recruits a de novo methyltransferase to place additional CHH methylation. Many of
the components necessary for RdADM have been identified via forward or reverse genetic
screens and biochemical characterization of these components has led to a complex schematic
model of this mechanism. RdDM begins when RNA Pol IV produces short non-coding
transcripts [6,7]. Pol IV then backtracks along DNA, releasing the 3’ end of the transcript and
passing this to RNA-DEPENDENT RNA POLYMERASE 2, which uses it as a template for
synthesis of a complementary strand [8]. The short double-stranded RNAs produced by these
polymerases are substrates for DICER-LIKE 3, which trims them to produce 24-nt siRNA
duplexes [9,10]. These siRNA duplexes are exported to the cytoplasm, possibly via TREX/THO
complex [11], where they are bound by an Argonaute (AGO) protein. The 24-nt siRNA produced
in RADM are bound by Argonautes in the AGO4-clade [12] and siRNA binding triggers nuclear
localization of AGO4:siRNA complexes [13]. In the nucleus, the AGO:siRNA complex uses the
sequence of its siRNA to identify complementary nucleic acids — probably non-coding
transcripts produced by RNA Pol V, or potentially single stranded DNA liberated during Pol V
transcription [14—17]. Localization of the AGO:siRNA complex at chromatin recruits DOMAINS
REARRANGED METHYLTRANSFERASE (DRM) which methylates cytosines regardless of
their sequence context [18—21]. The DNA methylation triggered by DRM causes methylation of
Histone H3 Lysine 9 (H3K9me), a mark that recruits Pol IV for further siRNA production
[20,22,23]. DRM has preference for double-stranded DNA, but preferentially methylates only
one of the two strands [19]. However, bidirectional siRNA production and Pol V transcription
results in methylation of both DNA strands at a target locus [24]. DNA methylation is therefore
distributed to both daughter strands following DNA replication; similarly, methylated histones are
randomly distributed to daughter strands, resulting in a strong feedback loop to maintain DNA
methylation through cell divisions [20,25].

Despite this detailed molecular model, there are a number of unanswered questions
regarding the mechanism of RADM. For example, although non-coding RNA produced by Pol V
is generally assumed to be the target of AGO:siRNA complexes, zero-distance crosslinking
localizes AGO4 to the DNA, suggesting that AGO:siRNA complexes directly bind to DNA [16].
The carboxy terminal domain of RNA Pol V also contains numerous AGO hook motifs, which
bind AGO proteins in a sequence-independent manner [26]; these motifs are required for
RdDM, but sequence-independent binding is not part of the canonical model. In addition to
unanswered questions regarding the mechanism, we also have no quantitative understanding of
RdDM and the parameters that enable maintenance of methylation and siRNA production
through many cell divisions. It is particularly notable that sites of RdDM differ in both the amount
of siRNA produced and level of methylation, yet these different levels are consistent between
individuals, indicating a system that is stable at a range of parameter values [27-29]. The
median levels of RADM methylation vary greatly, often around 20% methylation, and
occasionally as low as 8% [30].

In addition to diagrammatic models that describe the simple relationship between
components, biological processes can also be described by mathematical models that
incorporate dynamic and quantitative interactions between the components. Mathematical
models allow researchers to determine the quantitative parameters of the biological process,
and also to test characteristics of the system and discover new relationships or components
[31]. De novo and maintenance DNA methylation have been modeled using stochastic models
and coupled rate equations [32—40]. However, these models focus on CG methylation, whose
maintenance is fundamentally different from RdDM maintenance of CHH methylation. After
semi-conservative DNA replication, CG sites become hemi-methylated, and hemi-methylated
sites are directly recognized by DNMT1-type methyltransferases. In contrast, at CHH sites one
duplex remains methylated, while the other is unmethylated until acted upon by RdDM [3].

Dale and Mosher, 2023 2


https://doi.org/10.1101/2023.12.05.570286
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.570286; this version posted December 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Mathematical modeling has also been applied to RNA silencing mechanisms [41-43]; however,
these models have been limited to post-transcriptional silencing of mRNA transcripts in the
cytoplasm, rather than small RNA-mediated modification of DNA or chromatin.

Here, we produce the first quantitative mathematical model for RdADM and we investigate the
parameter values necessary to produce stable methylation across multiple cell divisions. We
focus on the necessary conditions to produce a stable system under the low methylation case,
where the median CHH methylation is only 8%. We demonstrate that the relationship between
methylation and siRNA production is linear and that RdDM is likely limited to a discrete portion
of the cell cycle for intermediate methylation states to exist. We also demonstrate that both
AGO4-RNA and AGO4-DNA associations are feasible in our model.

Methods

Model development

The RdDM maintenance model was developed in Matlab 2021a (The MathWorks Inc. (2021.
MATLAB version: 5.32.0 (R2021a), Natick, Massachusetts: The MathWorks Inc.
https://www.mathworks.com ), as described in the supplemental methods. Briefly, 1000 unique
loci were modeled and a randomly assigned a CHH methylation level drawn from the
distribution —log(1 — (1 — exp(—p)) * U / u, where u is the mean methylation fraction, and U is
uniformly-distributed noise, 1 —.9 = Unif (0,1). This distribution was chosen as it can take a
variety of forms (left or right skewed, symmetric, and uniformly distributed). A pool of siRNAs
are generated from the loci based on the methylation present at the locus; because the loci are
unique, each siRNA matches only a single locus. SiIRNAs compete for association with a limited
number of AGO proteins and these AGO:siRNA complexes then search for appropriate loci. If
an AGO:siRNA complex interacts with a non-matching locus, it will slide along the locus or
disassociate and potentially interact with a new locus.

Movement of siRNA:AGO complexes between loci was modeled based on established
parameters describing facilitated diffusion across RNA or DNA strands, such as short-distance
diffusion (i.e. sliding, hopping), longer jumps and strand transfer, and dissociation from the locus
(exit) [44—47] (Table 1, Supplemental Text 1). If an AGO:siRNA complex associates with its
matching locus, the time-to-disassociation is determined by the RNA-RNA or RNA-DNA
dissociation constant (kp). The total “dwell time” (sum of duration of association of all matching
AGO:siRNA complexes) at a given locus determines the amount of methylation placed during
the cell cycle. The level of methylation decreases by half at the start of each cell cycle due to
new DNA synthesis. Similarly, the AGO:siRNA population is randomly reduced by half and new
siRNAs are synthesized. A description of the model algorithm is provided as Supplemental
Text 1.

Model simulation workflow

The model was run across a range of parameters, including the siRNA production level (50-700
times methylation fraction); the methylation saturation point for sSiRNA production; steady or
bursty siRNA production; for different relationships between siRNA production and methylation
level (linear, sigmoid, Hill function); and for AGO:siRNA binding to RNA or DNA targets. Each
simulation was run for 10 generations with initial loci CHH methylation levels drawn from the
same starting methylation distribution. Each simulation condition had 7 bootstrapped runs.
During the first burn-in generation the dwell time (sum of duration of association of all matching
AGO:siRNA complexes) required to increase methylation by 1% was established based on the
average dwell time across all loci, assuming that the average dwell time was sufficient to
achieve CHH methylation maintenance. For example, as the median methylation was 8% prior
to replication, the average dwell time at loci beginning at 8% methylation was sufficient to
increase methylation by 4%, resulting in stable maintenance.
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Table 1. Model parameters and sources. The complete siRNA sequence consists of the seed

sequence with 3’ and 5’ supplementary sequences. *pb: photobleaching limit when determined by FRET.

produce 1%
increase in CHH
methylation

Dwell Time

Parameter Value Value in model Source
AGO:siRNA affinity | 1030 nM (AGO2:mRNA) | Ignored; Recycling of AGO:siRNA pool [48-52]
1080 nM (AGO2:miRNA) | done through replication events
7.2 nM (AGO2:siRNA)
AGO limiting Likely limiting (RISC) Typically 0.8 AGO : 1 siRNA; not (53]
significant influence (confounded with
siRNA production level)
AGO level Coupled to siRNA Coupled to siRNA abundance [53,54]
abundance
AGO degradation | Unstable AGO is limited in proportion to siRNA [54]
abundance
AGO:siRNA Very stable (0.0004/s Ignored; Recycling of AGO:siRNA pool | [52]
degradation degradation, AGO2) done through replication events
siRNA production | Unknown Several relationships tested
per unit CHH
methylation
siRNA production | Unknown Internally estimated using Median Total
rate Dwell Time
AGO:siRNA affinity | k..: 3.9 x 108 nM/s K.: 0.02 (less than seed + 3’ [44,52,55]
to RNA strand K.: 0.0036 (<pb*) supplementary)
10pm to 10 nM (RISC)
0.18 nM k;
(AGO2:siRNA)
AGO:siRNA affinity | k.,.: 1*10° nM/s K..is 0.03 for DNA (near detection limit | [44]
to DNA strand K. 0.41 /s (<pb) but higher than RNA)
AGO searching 50% to move left or right | 50% to move left or right [44,47]
RNA rate k..3.9*10"8 /Ms Shuttling every 1s (calculated - 3x faster
than DNA)
AGO searching 50% L/R 50% L/R [44,47]
DNA rate 1 x 109/Ms k., Shuttling every 0.3s (calculated - 3x
slower than RNA)
AGO searching: 10% 10% stochastic coinflip [47]
jumping
RNA off-targets 50% 50% chance of a transcript coming from
an siRNA-producing locus
DNA off-targets 90% 90% of DNA does not produce siRNAs
Dwell time to Internally estimated using Median Total

Assessment of solutions

To assess the stability of these simulations, the methylation distribution at the final (10th)
generation was compared to the 1st generation. Differences between starting and ending
methylation distribution across simulated loci were compared using the non-parametric
Kolmogorov-Smirnov test (kstest) in Matlab with a significance threshold of p<0.01. The

‘success’ condition for maintenance of methylation is then p-values greater than 0.01, indicating
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the final methylation distribution is not significantly different from the starting distribution. Due to
the stochastic nature of these simulations, bootstrap replicates might vary in whether they are
scored as non-significantly different, and therefore stable. Simulation conditions that had more
non-significantly different final distributions out of 7 bootstrap runs were considered more stable.
Since the DNA-binding condition requires approximately 3 times longer to run than RNA-
binding, only a reasonable fraction of RNA conditions were sampled (Table 2).

Table 2. Summary of simulation results. Number of simulations (out of seven) that are insignificantly
different from the starting distribution after 10 cycles.
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Results

A quantitative model for maintenance of DNA methylation via RdADM

Numerous components of RADM have been identified and the basic mechanism is well
understood [4,5]. When constructing our model, we therefore simplified the process to the most
critical components, namely siRNA production, siRNA:AGO association with target molecules,
induction of methylation, and DNA replication (Figure 1).

While 24-nt siRNAs engaged in RdDM are the most abundant class of small RNAs in most
plant tissues, the number of siRNAs produced from a given locus per cell is unknown. Similarly,
it is not clear whether all siRNAs are bound by AGO4, although there is some evidence to
suggest this. AGO4 protein does not accumulate in the absence of siRNAs [12], suggesting that
siRNAs might be limiting in vivo. However, exogenous siRNAs delivered to mammalian cell
culture compete for AGO binding [53], indicating that AGO levels can be limiting in some
circumstances. Limiting AGO would primarily influence the ability of loci with low CHH
methylation levels to be represented in the AGO:siRNA pool. In preliminary work, we found that
the influence of limiting AGO association was easily confounded by changing siRNA production
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methylation methylatlon levels, suggesting that the
ratio of AGO:siRNA

complexes to target

? ? molecules is a more
important parameter than
SiRNA SiRNA stochasticity derived from

production targettmg production targettlng competition between
siRNAs for AGO binding.
Figure 1. Schematic of CHH model system. Maintenance of DNA In the simulations

methylation by siRNAs is a self-reinforcing loop. SiRNAs are produced presented here, we

by RNA Pol IV and RDR2 (grey heptagon); these siRNAs integrate into | slightly limit AGO levels

AGO proteins (grey oval) and use the sequence of the siRNA to bind (0.8 AGO to 1 siRNA),

target DNA; successful association of the AGO:siRNA with a DNA and compare model

locus recruits a DNA methyltransferase (grey star) to induce havior acr ran

methylation, which causes additional siRNA production. Higher be -a oracross a ange
) : . of siRNA production

methylation causes greater siRNA production and subsequently more | Is (Table 2

DNA methylation (left), but the process is also stable at lower evels (Table 2).

methylation levels (right).

Bursts of siRNA production across the cell cycle is favored over constant production

One outstanding question regarding RdDM is when during the cell cycle siRNA production and
DNA methylation occur. In fission yeast, small RNA-directed chromatin modification occurs
immediately following DNA synthesis, perhaps because newly-synthesized histones lack
heterochromatic modifications and therefore are relatively permissive for Pol |l transcription
[56,57]. However, RdDM is initiated by RNA Pol IV transcription, which is enhanced, rather than
repressed, by silent heterochromatin marks [22,58]. To explore the kinetics of siRNA production
during the cell cycle, we compared two potential scenarios: “bursty” production, where siRNAs
are added to the siRNA pool based on a locus’ methylation level in a single burst immediately
after replication, and steady production, which was modeled by siRNA production at six
timepoints spread over the course of the cell cycle (e.g., every 4 hours). In both scenarios, we
assume CHH methylation is continuously updated throughout the cell cycle. We compared the
performance of these two scenarios across a range of siRNA production levels (100, 200, 300),
using a simple linear relationship between methylation level and siRNA production.

After simulating for 10 cycles, we quantified stability by a statistical comparison of the
starting methylation distribution and the methylation distribution after the tenth cell cycle.
Variation of individual loci might reflect true cell-to-cell variation in methylation that is averaged
when a tissue is measured. We therefore focused on whether the final methylation distribution
was centered around zero (no change). Each stochastic simulation was bootstrapped seven
times. We found that the bursty reinforcement scenario resulted in stable methylation
distributions, particularly at higher siRNA production levels. The steady reinforcement scenario
performed better at lower siRNA production levels, but remained inferior to bursty (Figure 2,
Table 2). Final methylation distributions under steady reinforcement demonstrate that some loci
become hypermethylated as a consequence of the positive feedback between siRNA production
and DNA methylation. We therefore conclude that siRNA production might be limited to a single
point within the cell cycle, although this need not be immediately following DNA synthesis, as
modeled here.
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Figure 2. Bursty siRNA production results in enhanced stability of CHH methylation
distribution. Varying levels of siRNA production were simulated across ten rounds of DNA replication
over seven bootstrap replicates (all linearly proportional to methylation level) for bursty and steady
conditions. Final methylation is plotted versus initial methylation for each locus in a representative
simulation (left) and the distribution of methylation change is reported for all seven simulation
replicates (right, shaded replicates overlap each other). In bursty conditions, final methylation
approximates initial methylation, and changes in methylation are centered at zero. In contrast, steady
reinforcement of methylation results in increased methylation relative to the starting distribution. In all
cases, higher levels of siRNA production reduced the variance in CHH methylation. The dashed line
represents 1:1 correspondence.

Linear relationships between CHH methylation and siRNA production stabilize RADM loci with
low methylation

Another unanswered question regarding RdDM is the quantitative relationship between DNA
methylation and siRNA production. DNA methylation triggers methylation of Histone H3 on
Lysine 9 (H3K9me), which in turn recruits siRNA production machinery [22,58,59]. This
connection suggests an underlying increasing relationship between siRNA production and CHH
methylation. Here, we consider four models: a linear relationship; a linear relationship with a
maximum siRNA production, or saturation point, that occurs at a level of methylation (here, we
looked at 5, 10, 15, and 50% methylation); a Hill function relationship; and a logarithmic
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relationship (Supplemental Figure S1). We ran the model with each of these relationships
across a range of siRNA production levels with both bursty and steady siRNA production and
quantified the stability of the methylation distribution (Figure 3, Supplemental Figure S2).

We found that regardless of bursty or steady methylation reinforcement, a linear relationship
between siRNA production and CHH methylation performed the best, with saturation at 15% or
higher CHH methylation (Figure 3). Note that median CHH methylation is at 8% methylation in
our simulations, with 94.8% of loci being less than 15% CHH methylated, and 84.4% being less
than 10% CHH methylated. Hill function and logarithmic relationships failed to maintain the
initial CHH methylation distribution due to their low coverage of loci with low methylation
(Supplemental Figure S1-S2).

We also explored high siRNA production levels (500-700) with bursty reinforcement, where
siRNA production saturates at 15% CHH methylation (Supplemental Figure S3). We found that
increasing the siRNA production level under these simulation conditions resulted in stable CHH
methylation. Similarly, in models of post-transcriptional RNA silencing, high degrees of stimulus
produce more stable behavior [41].

Although RdDM is primarily associated with CHH methylation, there is extensive crosstalk
between methyltransferases in plants [60], and the siRNA production machinery might respond
to other forms of methylation (i.e., CG or CHG). We therefore ran the model with the addition of
RdDM-independent CG methylation. A level of CG methylation was randomly assigned from a
uniform distribution between 0 and 20% methylation and siRNA production was set to be
linearly proportional to the total CHH and CG methylation at each locus. The addition of CG
methylation resulted in unrealistic CHH methylation distributions that mimic the uniform (0,20%)
distribution of CG methylation regardless of RNA production level (see Supplemental Figure
4). From these simulations we conclude that the most stable methylation patterns result from
siRNA production that is linearly related to the amount of CHH methylation at a locus, and is not
meaningfully influenced by the amount of CG methylation.

Stable methylation is possible with both RNA and DNA target sites

Although most models propose that siRNA:AGO4 complexes associate with non-coding RNA
produced by RNA Pol V [14,15,17], it remains possible that these complexes bind to single-
stranded DNA denatured by Pol V transcription [16]. Studies of related AGO proteins
demonstrate that AGO:siRNA complexes have high affinity for both DNA and RNA strands
[44,52,55]. We therefore modified appropriate parameters in the model to test the feasibility of
DNA as the AGO:siRNA target and measure systemic differences between DNA and RNA
target molecules (Table 1). The ko, of AGO to RNA is about 3 times slower than the ko, for DNA
[44,52,55]. We therefore used different timesteps when testing AGO:siRNA searching for RNA
or DNA targets — every 1 second for RNA and every 0.3 seconds for DNA [44,47]. The Ko was
also smaller for RNA than DNA, resulting in shorter dwell times for AGO:siRNA complexes
associated with their target DNA site versus a target RNA site. Finally, to account for the greater
number of non-RdDM DNA sites in a nucleus, siRNA:AGO complexes were allowed only a 10%
chance of encountering one of the RdADM loci in the DNA target scenario, compared to a 50%
chance in the RNA target scenario. As the DNA target search simulations take 3 times as long
to complete, we limited simulations to those conditions that were observed to be successful or
near-successful in RNA binding simulations.
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Figure 3: A linear relationship between CHH methylation and siRNA production with a high
saturation point is optimal for stable maintenance of CHH methylation. Bursty versus steady
reinforcement of methylation was tested with varying levels of saturation (all at RNA factor 300). The
saturation level reflects the percent of CHH methylation at which there is no corresponding increase in
siRNA production (i.e., for Saturating 10%, CHH methylation levels of 10% or greater will produce the
same number of siRNA). Final methylation is plotted versus initial methylation for each locus in a
representative simulation (left) and the distribution of methylation change is reported for all seven
simulations (right, shaded replicates overlap each other). In both bursty and steady conditions,
saturation results in a plateau of final methylation, however bursty reinforcement with 15% or greater
saturation level produces stable maintenance of CHH methylation across 10 rounds of DNA replication
and 7 bootstrapped replicates. Results based on non-linear relationships are in Supplemental Figure
S2.
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When the model was run with the siRNA:AGO complex binding DNA, we observed that the
steady siRNA production condition never produced stable CHH methylation distributions
(Figure 4). The bursty siRNA production condition maintained CHH methylation, but required a
higher siRNA saturation level in comparison to RNA simulation conditions. At higher siRNA
production levels (400-500), we found bursty siRNA production resulted in stable CHH
methylation distributions at a high rate, similar for both RNA and DNA search conditions. These
observations suggest that AGO:siRNA targeting of DNA remains a possible mechanism of
RdDM, and would require higher levels of siRNA production.

Bursty RADM, RNA binding Bursty RdDM, DNA binding

Saturating 15% Saturating 15%
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Figure 4. Similar features produce stable CHH methylation maintenance whether AGO searches
RNA or DNA. Methylation can be stably maintained bursty siRNA production at two saturation levels
when the model is run with either searching RNA or DNA targets. Final methylation is plotted versus
initial methylation for each locus in a representative simulation (left) and the distribution of methylation
change is reported for all seven simulation (right, shaded replicates overlap each other). See Table 2
for additional conditions.

Discussion

Here we describe the development of the first mathematical model describing maintenance of
CHH methylation by RADM. We validated the model's behavior by simulating over a range of
parameters and conditions and determined a set of configurations which are able to produce
stable maintenance of CHH methylation over a range of starting methylation levels that
approximate empirical observations [61]. Although most experimental evidence suggests that
CHH methylation due to RdDM is commonly around 20% [30], in this paper we focused on the
case of low CHH methylation, with a median of 8%, to determine the conditions required to
maintain such an extreme.

Several known features of the CHH methylation system were excluded from our current
model for simplicity. For example, we considered siRNA to have locus specificity, but not
sublocus site specificity. In reality, an AGO:siRNA complex would only match to a specific site
within a locus and might need to slide along the target locus before binding. We also modeled
all loci as unique, when many RdDM loci in a genome share homology and siRNAs produced at
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one locus might be functional at multiple sites. Homologous sites could introduce competition
between loci, which might reduce stability of methylation; alternatively, siRNA production at a
homologous locus could restore methylation levels that had been lost and thereby buffer the
system. Similarly, our model was completely cell autonomous, whereas siRNAs are known to
move intercellularly and function non-cell autonomously [62]. Intercellular movement of siRNAs
(or siRNA:AGO complexes) also offers the possibility of both competition and mutual support
between CHH methylated loci. Most importantly, we assumed that all AGO:siRNA complexes
disassociate during DNA replication and must randomly rediscover their target loci. Nothing is
known regarding the fate of RNA Pol V or its transcripts during DNA replication and it remains
possible that AGO:siRNA complexes might be preserved at their target locus in some manner,
perhaps in association with the Pol V carboxy terminal domain. Despite these simplifications,
the model provides insight into the quantitative features required for stable maintenance of CHH
methylation by RdDM.

Firstly, we find that bursts of siRNA production, wherein the pool of siRNA is filled right after
replication, results in more stable CHH methylation distributions under a range of simulation
conditions compared to steady reinforcement, where siRNAs are produced throughout the cell
cycle. Bursty siRNA reinforcement has been observed at the transcriptionally silent
pericentromeric repeats in fission yeast and might explain the paradox of Pol Il transcription
being required to establish transcriptionally silent chromatin [56,57]. Because DNA synthesis
reduces H3K9me, fission yeast pericentromeres become permissive for Pol Il transcription
allowing the production of siRNAs to reestablish H3K9me. However, such a compensatory
dynamic is not expected at RdDM loci in plants, because DNA methylation and H3K9me
promote siRNA production rather than inhibit it. A mechanism restricting siRNA production to a
single point of the cell cycle is unknown, but might involve other histone modification or the
density of linker histone [23]. Regardless of the mechanism, bursts of siRNA production would
answer at least one outstanding question: how transcription of the same locus by RNA Pol IV
and Pol V is coordinated. It might be that the functions of these polymerases are temporally
separated during the cell cycle.

Secondly, our simulation results strongly support a linear relationship between siRNA
production and CHH methylation, as alternative biologically-relevant relationships (Hill function
and sigmoid function) resulted in loss of methylation distribution. Under a linear relationship,
saturation of siRNA production at 15% CHH methylation or higher was also sufficient to
maintain CHH methylation. However, very few of the loci in our model existed at methylation
levels above this saturation point, and it is it not clear whether higher methylation can be
maintained under saturation. The simulations also suggest that the number of siRNA produced
per percent CHH methylation needs to be sufficiently high to achieve stable maintenance of
CHH methylation. The set of simulation conditions able to successfully maintain CHH
methylation suggest that it is critical to have siRNA coverage of those loci with low levels of
CHH methylation, while higher degrees of CHH methylation can be maintained with relatively
lower representation in the siRNA pool. Lower production of siRNA for loci with high degrees of
CHH methylation would reduce competition for the locus, and for AGO generally, by reducing
the total siRNA pool size.

Finally, stable maintenance of CHH methylation was possible whether the model was set for
AGO:siRNA searching of RNA or DNA. Although all characterized AGO:sRNA systems are
demonstrated or presumed to target RNA, including those that cause transcriptional silencing of
chromatin [17,63,64], there is also evidence for AGO4-DNA association during RdDM [16]. Our
model demonstrates that targeting of DNA by AGO:siRNA complexes is feasible and also that
the viable parameter space for these two targets overlaps, offering the possibility that cells
might enable targeting of DNA and RNA simultaneously.

Epigenetic pathways like RADM are inherently difficult to understand due to the nature of
their self-reinforcing states - once one aspect is disrupted, the entire system collapses. For
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many years, geneticists have used this fact to identify components of RADM and biochemists
have then investigated the physical interactions and enzymatic activities of these components in
isolation. Our mathematical model demonstrates the insight to be gained by applying
quantitative modeling to epigenetic systems. We hope it will serve as a launching point for
additional research in this area.
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