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Abstract  

 

Multispecific antibodies are prominent therapeutic agents, but many molecular formats and drug 

candidates that show promise during molecular discovery stages cannot be scaled up and 

developed into drugs due to inadequate developability. During the discovery stages, the selection 

of molecule format(s), molecule design, purity, and initial physiochemical stability testing criteria 

largely rely on scientists' experience. Machine learning, however, can identify hidden trends in 

large datasets, aiding in the selection of drug candidates with improved developability. In this 

study, we present a machine learning approach to predict antibody purity, measured by the 

percentage of monomer after protein A purification. Using the amino acid sequences of variable 

regions, molecular formats, germlines and germline pairings, and calculated physiochemical 

properties as inputs, machine learning models were trained to predict the percentage of monomer 

for a given multispecific antibody (Figure 1). The dataset employed in this study consists of ~500 

multi-specific antibodies generated during BI’s internal drug discovery programs. Our results 

indicate that machine learning, when applied to sequence, germline, and format data, can 

effectively predict antibody percentage of monomer. Incorporating this approach into high-

throughput multispecific antibody screening processes can save time and resources by reducing 

the need to test a large subset of potentially unstable antibodies. While this study focused on 

percentage of monomer as a test case, similar approaches can be employed to predict other 

antibody properties, such as melting temperature (Tm), hydrophobicity (aHIC), and solution 

stability properties (AC-SINS). 

 

Index Terms – Machine Learning, antibody, %monomer, percentage of monomer, titer, amino acid 

sequences, germlines, germline pairings, antibody format, Boehringer Ingelheim (BI) 
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1. INTRODUCTION 

Bispecific and multispecific antibodies are increasingly becoming commonplace as therapeutic 

modalities, particularly in Oncology1. Despite their widespread applications, multispecific 

antibodies suffer from developability and manufacturability issues. Several molecules that have 

shown potential in preclinical studies could not proceed to the clinic as they could not be scaled 

up, manufactured, or developed as a drug for patients2. 

 

Typically, for a bispecific antibody to proceed to the clinic, it must have titers and monomer 

content that can ensure yields and quality3. Most multispecific antibodies that do not meet 

manufacturability threshold suffer from low yields and preclude their development into viable 

drugs4. Researchers often rely on empirical high throughput screening approaches to identify 

antibodies with the best developability profile. While it has been possible to produce and screen a 

relatively large panel of monoclonal antibodies, mixing and matching antibodies corresponding to 

2 target binding arms to generate a bispecific is often limited by capacity issues of how many 

constructs can be cloned, expressed, purified, and tested5. Furthermore, while molecules may be 

very well behaved and show good developability properties as a monoclonal antibody (IgG), when 

these same sequences are paired together in a multispecific, it has been observed that the 

developability parameters of the monoclonal antibody do not always translate to the multispecific. 

Due to these limitations, researchers have largely relied on trial-and-error to empirically design 

and construct bispecific antibodies from parent IgG molecules which are then evaluated 

individually for their developability and function. These restrictions significantly limit 

multispecific antibody discovery and turnaround time to identify a viable lead candidate. These 

issues makes the design and testing of multispecific antibodies even more complicated5. 

 

Machine learning has recently been incorporated into research and development, and specifically 

over the last few years in the realm of antibodies. Chen et al used machine learning to predict 

antibody developability from sequence. In order to do this, the authors looked at the antibody’s 

hydrophobic and electrostatic interactions as inferred from its three-dimensional structure and tried 

to correlate this to the antibody’s developability6. Liu et al used machine learning to generate 

models of antibody affinity that can create novel sequences with increased target specificity7. Li 
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et all used machine learning to address the challenge of identifying features of antibodies that may 

influence antibody function8. 

 

In this work, we present a machine learning approach to predict multispecific antibody purity, 

defined in terms of its percent monomer after Protein A purification, from the antibody sequence, 

format, physiochemical properties, and germline combinations. We designed this project as a 

simple classification problem and created a cutoff for a passing and failing percent monomer at 

90%. Anything equal to or above 90% monomer is considered a passing antibody (<normal risk=), 

and anything below 90% monomer is considered a failing antibody (<high risk=). This process is 

illustrated in Figure 1. 

 

We first trained our model on a training set consisting of percent monomer data for ~500 

multispecific antibodies. In addition to regular train-test split testing on this data, we further 

evaluated our model on three real world test sets and our models achieved 81-86% accuracy.  

 

While our current analysis may be confounded by limited size of the data set and data bias, this 

study suggests that machine learning applied to sequence, germline, and format has the potential 

to be predictive of percent monomer and other biophysical properties such as melting temperature 

(Tm), hydrophobicity (aHIC), and solution stability properties.  

2. METHODS 

The methods and calculations described in the following sections are demonstrated in the 

provided GitHub resource (amazurek1/ppma (github.com)). 

This project was formulated as a supervised machine learning problem, utilizing sequence, 

physiochemical properties derived from homology modeling9, germline information, and 

antibody format as input features. The output is binary, represented by either "0" or "1", where 

"1" signifies that the antibody has a monomer percentage equal to or greater than 90%, and "0" 

indicates a monomer percentage below 90%. We mined our internal production dataset to collect 

information on multispecific antibodies that have been produced at BI. The dataset comprises 

212 antibodies with a monomer percentage equal to or greater than 90% (<normal risk=) and 271 
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antibodies with a monomer percentage below 90% (high risk). The information that was used as 

input to the model to train it to predict the percent monomer are described below. 

2.1 ANTIBODY FORMAT 

 Multispecific antibodies can come in many different formats. At BI, our multispecific largely fall 

into 2 format categories – <Doppelmabs= and <Zweimabs=10. For this effort we focused on 2 

Zweimab formats – Format A and Format B, and 1 Doppelmab format – Format C (Figure 1).  

 

The Zweimab formats A and B represents an asymmetric format comprising 2 pairs of heavy and 

light chains which are brought together by knob-in-hole (KIH) mutations in the Fc. Format A has 

single chain Fab (scFab) domains on the knob and hole that comprise of the light chain region 

attached to the heavy chain region by a 38 amino acid flexible linker. Format B has a scFab on the 

knob and a single chain Fv (scFv) on the hole. They are typically monovalent for each target 

binder11.  

 

The Doppelmab format, Format C, comprises of 2 Fabs that bind to the first target and 2 scFv that 

bind the second target. The scFv is appended to the C-terminus of the heavy chain. It is a symmetric 

format and is typically bivalent for each target binder12. 

 

Each of these antibody formats were transformed into features, and the value for each of these 

features represents whether that antibody is embodied in that format (value of <1= or <0= depending 

on the formats presence or absence). Also known as <dummy variables=13. 

 

In this dataset, there were 257 antibodies with Zweimab formats and 226 antibodies with 

Dopplemab formats (Figure 3a). The Zweimab formats were further categorized into Format A 

and Format B (Figure 3b). 

2.2 SEQUENCE 

In order to extract features representing the amino acid distribution across the various chains of 

the antibody, we divided the antibody sequence into multiple features. First, the overall amino acid 

percentage of the 20 amino acids were computed and transformed into features for each antibody 

entry in the dataset, defined as <a= in Table 1. Twenty features were added into the dataset 
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representing the 20 amino acids. For each antibody in the dataset, a value for each of these 20 

features was calculated as a percentage between 0 and 100. This represents the frequency that each 

amino acid is present in the entire antibody. 

 

Additionally, each variable heavy and light chain was annotated according to its individual 

framework and CDR components using the Kabat nomenclature14. The antibody sequence was 

split up based on the individual framework and CDR components and was designated as <v= in 

Table 1. The amino acid percentages were computed for each of the framework and CDR regions 

across all of the variable domains (2xHeavy Chains, 2xLight Chains) of the multispecific antibody 

which resulted in 560 features per antibody (4 sequences * 7 regions (Framework 1-4, CDR1-3) * 

20 amino acids).   

2.3  GERMLINES 

Antibody molecules are encoded by several recombined germline gene segments that provide 

antibodies with conformational flexibility and allows them to bind to many different antigens much 

like how one glove can fit the shape of many hands15.16 Each variable region in a given antibody 

sequence is wrapped in a generalized <germline= category16.  The germlines corresponding to the 

variable heavy and light chain sequences were derived from IgBlast and incorporated into our 

model by converting them into <dummy variables=13. These values are either a <0=, <1=, or <2= in 

our dataset because a given germline is either not in the antibody (<0=), is present once in the 

antibody (<1=), or is present twice in the antibody(<2=). The overall value of the feature in the data 

frame for each multispecific antibody reflects how many times that germline was present in that 

antibody (referred to as <s= in Table 1).  

 

For each multispecific antibody, the <Germline Pair= information was also computed. The 

<Germline Pair= corresponds to the exact pairing of the heavy and light chain germlines in the 

antibody. The germline pairing information was converted into dummy variables where a given 

multispecific antibody was either assigned a <0= (germline pair not present) or a <1=(germline pair 

present) in the feature set, referred to as <p= in Table 1. 
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For our training data set, the germline pairings and the frequency of occurrence of these germline 

pairs are shown in Figure 4a.11 

3. EXPERIMENTAL SETUP FOR MACHINE LEARNING 

The data corresponding to <v=, <a=, <s= and <f= described above were categorized into 6 distinct 

datasets: 1) the percentage of amino acids in the entire antibody (<v=), 2) the percentage of amino 

acids in individual framework and CDR components, as per the Kabat definition (<a=), 3) 

germlines (<s=) 4) germline pairs (<p=), 5) format (<f=). We also included an additional parameter 

6) <physicochemical properties – <b= which corresponds to the  physiochemical descriptors as 

described in Ahmed et al 20219. These descriptors are listed in supplementary Table 1. 

 

These datasets were amalgamated into all feasible combinations for 1,2,3,4,5, and 6 combinatorics, 

yielding 63 combinatoric datasets for testing (6 datasets for 1 combinatoric, 15 for 2 combinatoric, 

20 for 3 combinatoric, 15 for 4 combinatoric, 6 for 5 combinatoric, and 1 for 6 combinatoric). 

These 63 dataset combinations are illustrated in the rows of Figure 5. 

 

To train and assess these 63 dataset combinations, we initially executed an 80/20 stratified train-

test split on each combination. Subsequently, each combination was trained using scikit-learn with 

RandomForest, XGBoost, Logistic Regression, and Support Vector Machine models. The 

performance of each model was evaluated using a 10-fold cross-validation accuracy for 

comparison. This experiment facilitated the comparison of the performance of various models and 

dataset combinations, enabling us to identify the most predictive models and dataset combinations 

(Figure 5). 

1718,19 

In addition, subsequent to the production phase, we subjected our final model to three real-world 

test sets. These test sets served to evaluate the performance of our model in a real-world context.  

3.1 Pressure test datasets 

In order to pressure test the ML algorithm, we ran 3 real world test sets. The first test set consisted 

of 15 multispecific antibodies, the second incorporated 75 multispecific antibodies, and the third 

encompassed 90 multispecific antibodies. For all 3 test sets, we used different combinations of 
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Formats A, B and C and produced the molecules in the lab and tested them for percent Monomer 

after Protein A purification.  

 

The germlines used in the first two test sets were more similar to our training data, providing a 

more direct comparison of the model's predictive capabilities. 

 

To further pressure test the ML algorithm, we combined the variable heavy and light chain 

sequences of 37 clinically validated bispecific antibodies to generate over 4,000 unique 

combinations in Format X and Y. We then applied the ML algorithm to analyze these antibodies 

and based on the predictions of high and low risks, selected a diverse set of 90 antibodies for 

laboratory testing to validate the results. This test set included 122 new germline combinations and 

58 combinations that the model had previously encountered during training. Test set 3 represents 

45 antibodies where both germline pairings that were not present in the training set, 77 antibodies 

that had at least one germline pairing that was not present in the training set, and 13 antibodies 

where both germline pairings were present in the training set. 

 

This diversity enabled us to further investigate the model's performance across a broader spectrum 

of  germline pairings and effectively test it in varying scenarios. The germline diversity used in 

test set 3 is shown in Figure 4b.  

 

4. EXPERIMENTAL SETUP FOR ANTIBODY PRODUCTION AND CHARACTERIZATION 

 

Multispecific antibody design: All multispecific antibodies in Formats A, B or C were constructed 

by recombinant DNA technology. Genes encoding variants of binders to Target 1 or Target 2 were 

obtained by gene synthesis of light chain and heavy chain variable domains (Genewiz). The human 

IgG1 Fc with effector function knock-out (LALA) mutations was used as Fc-region for all 

multispecific antibodies. The molecules in Formats A and B contained Genentech’s knob-in-hole 

mutations in the CH3 domain to promote heterodimerization20.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.05.570217doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.570217
http://creativecommons.org/licenses/by/4.0/


   

 

   

 

Multispecific antibody expression and purification: All multispecific antibodies were expressed 

from transfected Chinese hamster ovary (CHO) cells and expressed and purified using Protein A 

chromatography as previously described21.  

Size exclusion chromatography (SEC): In order to determine the % monomer of the multispecific 

antibodies, analytical size exclusion chromatography was carried out using the Agilent HPLC 

system as previously described22. 10µg of sample were injected onto two tandemly connected 

Acquity BEH200 columns (Waters, 1.7 µm, 4.6 X 150 mm) at a flow rate of 0.25 mL/min. The 

mobile phase contained 50 mM sodium phosphate, 200 mM arginine chloride, 0.05% sodium 

azide, pH 6.8. The elution profile was monitored at 280 nm and manually integrated to calculate 

the level of high molecular weight (HMW) and low molecular weight (LMW) species. 

Representative SEC chromatograms are shown in Figure 6.  

 

5. RESULTS AND DISCUSSION 

The studies described herein have been designed to determine if machine learning could assist in 

identifying antibody combinations which would be manufacturable in the lab. 

 

First, we tried to determine if the format or germline by themselves influenced the risk profile of 

the multispecific antibodies used in the learning data set. 

  

Figure 7 displays representative examples of monomer % of multispecific antibodies across a pair 

of germlines and different formats. This data indicates that for a given pair of germlines and a 

given format (Doppelmab or Zweimab), there is a range of monomer %, indicating that the 

germline and format definitions alone does not seem to be predictive of the purity, or indicative of 

a trend for %monomer. 

 

The monomer distribution does not also exhibit any clear trend when particular germline pairs are 

analyzed together for a given format. For e.g. IGKV4-1 and IGKV1-39 are among the more 

prevalent germlines in the dataset, and the data for Zweimab and Doppelmab molecules across 

these germlines cover a range of monomer % indicating the absence of a specific trend that is 

governed by the germlines used in the dataset (Figure 7). 
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Given the lack of a clear trend in the %monomer distribution when specific germline pairs and 

formats are combined, it was necessary to implement machine learning models that take into 

account multiple features. This approach helps identify trends that incorporate various aspects of 

the data, which may not be immediately apparent through human analysis. 

 

 

To better understand the performance of individual features, feature combinations, and the 

predictive power of the various machine learning (ML) models, we generated a heatmap 

illustrating the cross-validation (CV) accuracy scores for each feature, feature combination 

(ranging from 1 to 6), using four ML models for each dataset (Figure 5). The ML models evaluated 

included RandomForest, XGBoost, Logistic Regression, and Support Vector Machine. 

 

In Figure 5, each dataset is represented by an abbreviation: "v" for the amino acid percentages in 

each individual framework and CDR component (using the Kabat definitions), "a" for the overall 

amino acid percentages in the entire antibody dataset, "s" for the germlines dataset, "p" for the 

germline pairs dataset, "f" for the format of the antibody dataset, and <b= refers to physiochemical 

descriptors that have previously defined in Ahmed et al 20219. 

 

To further clarify these abbreviations, a table detailing the dataset names corresponding to each 

abbreviation is provided in Table 2. This table serves as a quick reference guide, aiding in the 

interpretation of the heatmap and the understanding of the performance of the different features 

and ML models across the six datasets. 

 

When comparing the results of the individual datasets, the amino acid percentages in the 

individual frameworks and CDR components perform the best on their own in predicting the risk 

for precent monomer. While the Format of the antibody has very low predictive power on its 

own, when combined in a two combinatoric with any other dataset it improves the accuracy more 

than any other pair. 
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Figure 5b illustrates all two-way combinations of datasets and the four ML model results. It is 

particularly noticeable in the Random Forest and XGBoost models that any combination 

involving the Format dataset results in higher accuracy. 

 

Considering the overall results of Figure 5 we decided to proceed with Random Forest for several 

reasons. Firstly, it demonstrated the best overall performance. Random Forest outperforms the 

other models by a large majority. A summary of how often each model outperforms all other 

models is summarized in Table 3. 

 

Random Forest outperforms all other models in each dataset combination by 63%. More 

importantly, it exhibits the highest level of consistency across various combinations of datasets, 

which is crucial for our project as the input data and the number of features will vary depending 

on the specific project circumstances. This consistency, coupled with its superior performance, 

reinforces our decision to proceed with the Random Forest model. 

 

RandomForest is a robust ML technique that utilizes bagging and feature randomness23. It handles 

outliers very well by binning them, maintains a low bias in its decision trees, and handles high 

dimensionality well. Our training dataset has 447 datapoints, and up to 700 features depending on 

which features are included, which means it contains high dimensional data. Not only does 

RandomForest handle this type of data well, since it works with subsets of data, but in many cases 

it can actually improve the model with this type of data23. 

 

We focused our research on the RandomForest model and feature combinations that align more 

closely with our ultimate goal or use case. We trained and fine-tuned the hyperparameters of the 

RandomForest model on ten different dataset combinations. We then calculated the cross-

validation accuracies and test accuracies for each of these combinations. The results of these 

computations are illustrated in Figure 8. The overall trend indicates that the inclusion of more 

features from our dataset leads to an increase in accuracy. 

 

The general trend in Figure 8 is that combining the germline, amino acid percent, format, and 

amino acid percentages of the Kabat regions data produces a more accurate model. This implies 
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that distinct features within the model contribute unique information, thereby enhancing the 

model's overall accuracy. 

 

The model that incorporates all the features (safv) achieves an F1 score of approximately 83.3%. 

The confusion matrix for the test set from a random train-test split corresponding to this model is 

illustrated in Figure 9a. A confusion matrix is often used in the Machine Learning world to 

represent the performance of a classification model by displaying the number of true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) predictions in each quadrant. The 

top-left quadrant contains the TP values, the top-right quadrant contains the FP values, the bottom-

left quadrant contains the FN values, and the bottom-right quadrant contains the TN values. This 

matrix provides a clear visualization of the model's accuracy and potential areas for improvement. 

 

Finally, we applied the model to three real-world test sets. For all 3 real-world tests, we first 

predicted the outcome using the ML algorithm and then went ahead to produce and test these 

multispecific antibodies in the lab. We then compared the empirical data to the predictions, the 

results of which are represented by the three confusion matrices. 

 

The first test was a small set of 15 molecules in Format B  and yielded a confusion matrix with 7 

true positives, 1 false positive, 0 false negatives, and 7 true negatives  (Figure 9b). 

 

The second test set was a larger set in Format B where one of the arms of the bispecific antibody 

was <fixed= to a sequence that had previously been used in the training set, and thus exposed to 

the ML algorithm, but the 2nd arm comprised of new antibody sequences from very similar 

germlines. This set produced a confusion matrix with 55 true positives, 8 false positives, 9 false 

negatives, and 3 true negatives (Figure 9c). 

 

Both test sets contained sequences that were similar to those in the training sets and had highly 

represented germlines in the training dataset. Therefore, the excellent performance of the model 

on these test sets was expected. 
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The third test set was more challenging. We designed 90 multispecific antibodies comprising of 

sequences that had not been used in the training set, and thus comprised of more diverse germlines 

than those in the previous test sets. Test set 3 represents 45 antibodies where both germline pairings 

were not present in the training set, 77 antibodies that had at least one germline pairing that was 

not present in the training set, and 13 antibodies where both germline pairings were present in the 

training set. 

 

We ran them through the model before testing the percent monomer in the lab. The resulting 

confusion matrix had 68 true positives, 1 false positive, 16 false negatives, and 5 true negatives   

(Figure 9d). Of the six antibodies that were classified as normal risk, the model accurately 

predicted five of these as normal risk. Among these five antibodies, there were 10 germline 

combinations due to two branches. Eight of these combinations were entirely new, while two were 

combinations that the model had previously seen during training. Interestingly, the two antibodies 

with previously seen combinations also had a germline pairing that was new to the model. 

 

The lower test accuracy for the third test set, can be attributed to the increased diversity of the 

sequences used in this dataset compared to the data used for training the model and in the first 2 

test sets. This is a common challenge in machine learning and underscores the importance of 

having diverse and large training data sets. 

  

Despite this, the model's performance on the third test set demonstrates its potential to handle 

diverse antibody sequences. This model is still in its early stages. As we continue to collect more 

diverse data and continue retraining, it will progressively become more robust and reliable. 

  

Overall, this approach has the potential to efficiently screen a vast number of multispecific 

antibody combinations, allowing us to eliminate candidates that would otherwise be unsuitable for 

testing in the lab. The ability to predict the suitability of an antibody for lab testing based on its 

sequence is a powerful tool that can save significant time and resources in the development of new 

therapeutics. 
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In conclusion, our model has shown promising results in its ability to accurately predict the 

suitability of antibodies for lab testing. As we continue to refine the model and expand our training 

data, we anticipate that its performance will continue to improve, making it an invaluable tool in 

the field of multispecific antibody development. 
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