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Abstract

Single-cell transcriptomic analyses now frequently involve elaborate study designs including samples
from multiple individuals, experimental conditions, perturbations, and batches from complex tissues.
Dimensionality reduction is required to facilitate integration, interpretation, and statistical analysis.
However, these datasets often include subtly different cellular subpopulations or state transitions, which
are poorly described by clustering. We previously reported a Bayesian matrix factorization algorithm
called single-cell hierarchical Poisson factorization (scHPF) that identifies gene co-expression patterns
directly from single-cell RNA-seq (scRNA-seq) count matrices while accounting for transcript drop-out
and noise. Here, we describe consensus scHPF, which analyzes scHPF models from multiple random
initializations to identify the most robust gene signatures and automatically determine the number of
factors for a given dataset. Consensus scHPF facilitates integration of complex datasets with highly multi-
modal posterior distributions, resulting in factors that can be uniformly analyzed across individuals and
conditions. To demonstrate the utility of consensus scHPF, we performed a meta-analysis of a large-scale
scRNA-seq dataset from drug-treated, human glioma slice cultures generated from surgical specimens
across three major cell types, 19 patients, 10 drug treatment conditions, and 52 samples. In addition to
recapitulating previously reported cell type-specific drug responses from smaller studies, consensus
scHPF identified disparate effects of the topoisomerase poisons etoposide and topotecan that are highly

consistent with the distinct roles and expression patterns of their respective protein targets.
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Introduction

Advances in the scalability of single-cell RNA-seq (scRNA-seq) have motivated the development of
numerous computational methods for integrating data across multiple subjects and conditions. Common
analytical frameworks include clustering and trajectory or pseudo-temporal inference, often followed by
differential expression analysis or the identification of genes that are correlated with pseudo-time!'. These
methods have been augmented by various algorithms for batch correction and modeling inter-subject
variability to facilitate integration of datasets originating from complex experimental designs®3, so that cells
can be assigned to clusters following harmonization. While these are powerful approaches that have led to
numerous discoveries, they can also place problematic structural constraints on the data. For example, while
clustering is a facile approach to assigning single-cell profiles to major cellular lineages within a highly
diverse population, applying clustering to a more homogenous, individual lineage that is comprised of more

subtle subsets or undergoing a cell state transition often results in rather arbitrary segregation.

To address these issues, matrix factorization approaches have been developed to reduce dimensionality and
identify gene expression programs that contribute to cellular diversity without imposing such structural
constraints. Some of these methods are probabilistic and explicitly model the transcript drop-out and
technical noise that are intrinsic to scRNA-seq*®. We reported such a method that adapts the hierarchical
Poisson factorization (HPF) algorithm for scRNA-seq applications, which we called single-cell HPF
(scHPF)>. scHPF decomposes a scRNA-seq count matrix into K factors, each of which has a weight for
each cell and gene in the dataset. The probabilistic model that underlies scHPF enforces sparsity, leading
to highly interpretable factors where the top-ranked genes are often readily identifiable as markers of
specific cell types, genes involved in specific biological processes, or nuisance signatures that can be

removed prior to downstream analysis.

While scHPF has been used to great effect in numerous studies to identify T cell activation signatures in
human tissues’, acute responses to drugs®’, and drug resistance mechanisms in cancer'?, the algorithm has
some important shortcomings. Specifically, applying scHPF to datasets involving multiple subjects or
conditions can be challenging. Indeed, in one of our early applications to sScRNA-seq profiles of resting and
activated T cells from multiple tissue sites and organ donors, we constructed scHPF models of each sample
individually and identified relationships between the resultant factors rather than integrating the data with
a single model’”. While this approach is effective, it presents challenges for directly comparing gene
signatures across individuals or conditions. Another frustrating issue is the requirement that the user pre-
select a specific value of K. One approach to these problems that has been implemented in other algorithms

for non-negative matrix factorization is to construct factor models across a broad range of K-values and
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other parameters and identify factors that recur across these models!!. In this case, the final value of K
becomes the number of recurrent factors, which can be refined by a final round of training. In addition to
providing a robust approach to determining K, the resultant models are more effective for integrating
disparate sScCRNA-seq datasets. Here, we describe a consensus implementation of scHPF and apply it to
identify cell type-specific drug responses from patient-derived ex vivo models of high-grade gliomas and

glioblastoma (GBM) across multiple patients and classes of drugs.

Results

Consensus single-cell hierarchical Poisson factorization (scHPF)

scHPF is a generative, Bayesian algorithm for probabilistic factorization of sScCRNA-seq count matrices that
produces highly interpretable factors that indicate gene co-expression signatures’. The input to scHPF is an
un-normalized, N x M count matrix C where N is the number of cells and M is the number of genes. scHPF
associates each gene g and cell i with inverse budgets 7, and &, and models these latent variables with
Gamma distributions. In addition, we use a second set of Gamma distributions to model the gene and cell
loadings for each factor k, which we call S, and 64, respectively, with rates that depend on 73, and &. The
expression of each gene in each cell is assumed to follow a Poisson distribution with a rate given by the dot
product of the gene and cell loadings across factors. We estimate the posterior distributions of the budgets
and factors for a given count matrix using variational inference. Thus, scHPF effectively models the
generative process underlying the count matrix as a Gamma-Poisson mixture, which has been shown to be
an effective description of the noise in the scRNA-seq data when unique molecular identifiers (UMIs) are
applied to mitigate amplification noise and bias!2. To aid in the interpretation of scHPF factors, we
additionally compute gene scores for each gene in each factor and cell scores for each cell in each factor
that correct the S, and 6« loadings for coverage differences among genes and cells, respectively. We have
shown in numerous studies that ranking genes by their gene scores in each factor greatly aids in the
biological interpretation of each factor, while the cell scores enable embedding and visualization of scHPF

models>710,

Consensus scHPF uses the methodology described above to generate many independent models of a count
matrix and clusters the resultant factors to identify robust, recurrent factors from which it learns a single,
consensus model (Figure 1). This procedure overcomes the highly multi-modal posteriors that arise from
complex datasets that integrate multiple experimental runs, subjects, and conditions, and is analogous to

consensus methods used in previously reported methods like cNMF!! and scCoGAPS'®. Thus, we can
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capture highly robust co-expression patterns that appear consistently across scHPF training models with
different random initializations, while still preserving the ability to approximate the parameter values that

best explain the data.

After generating scHPF models across different values of K and multiple random initializations, we
concatenate the gene score matrices across models into a single matrix X with factors as columns, genes as
rows, and matrix elements as scHPF gene scores. We then identify a subset of genes with highly variable
gene scores and cluster the factors using the Walktrap algorithm (see Methods). Clustering allows us to
identify factors that recur across models, which gives us the value of K. Next, we initialize the variational
distributions for the gene weights S, to have shape and rate parameters (SBiape and Srae) equal to the
medians of the corresponding variational distributions of each cluster of factors. Similarly, we initialize the
variational distributions for 7, to have shape and rate parameters ( 77srqpe and 77,4) equal to the median values
across the corresponding distributions for all models. Cell-specific variational distributions for & and &
are initialized by performing a single round of scHPF updates, while fixing the gene-specific distributions
for f,r and 7,. Finally, we run training updates starting from this initialized consensus model until

convergence.

Identification of Recurrent Drug Responses among Malignantly Transformed Glioma Cells across

Diverse Classes of Drugs with Consensus scHPF

Glioblastoma (GBM) is the most common and deadly type of glioma in adults'®. Standard treatment for
GBM at primary diagnosis is surgical resection, but glioma cells infiltrate the brain, inevitably leading to
recurrence despite chemotherapy and radiation'*. GBM heterogeneity is a major obstacle to successful
treatment, but detailed studies using sScCRNA-seq have identified multiple transcriptional states that recur
across patients'>!¢, Thus, there is a need for drug screening platforms that can identify cell type-specific
drug responses in patient-derived models. We recently reported such a platform that combines drug-
perturbed, acute slice culture of GBM surgical specimens with sScRNA-seq for identifying cell type-specific
drug responses among transformed glioma cells and cells in the tumor microenvironment®. We performed
detailed studies to credential these ex vivo models, demonstrating that they recapitulate the cellular
composition and molecular profile of the originating tumor tissue with high fidelity®. Here, we combine
previously published®® and newly generated scRNA-seq data from GBM and high-grade glioma slice
cultures perturbed with diverse classes of drugs and apply consensus scHPF to identify common and drug-
specific gene signatures that occur across 19 patients, 10 treatment conditions, and ~400,000 individual
cells (Table S1). To do this, we constructed cell type-specific, consensus scHPF models that integrate the

data from all of the patients and drug perturbation conditions in the study for three major cell types — the
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transformed glioma cells, myeloid cells, and oligodendrocytes. The latter two are non-neoplastic cells in
the tumor microenvironment, with myeloid cells comprising the most common infiltrating immune cell
type in GBM. This integrated analysis allows us to categorize drugs based on their cell type-specific effects

in GBM.

We first performed a global analysis of consensus scHPF models obtained from each of the three major cell
types in the dataset. Figure 2 shows UMAP embeddings of the cell score matrices for each cell type
annotated by patient and drug treatment condition. While we expect some degree of clustering by patient
in this dataset, because different sets of drug treatments were applied to slice cultures from different
patients, there is particularly clear separation by patient for the transformed glioma cells (Figure 2A,D).
This is consistent with our previous studies and anticipated given the disparate genetic alterations,
particularly aneuploidies and other large copy number alterations, that significantly impact gene
expression'>. Similarly, Figure 3 shows a heatmap of the average cell scores for each scHPF factor in each
experimental condition (defined by a patient and a drug perturbation) for the scHPF models for all three
major cell types. The columns of the heatmap, which represent patient-drug combinations, are
hierarchically clustered, while the rows, which represent factors from the three cell type-specific scHPF
models, are grouped by cell type. While the distributions of myeloid cell and oligodendrocyte factors are
relatively uniform across patients and drug treatment conditions, there are many scHPF factors that are

highly patient- or treatment-specific for the model of transformed glioma cells.

We next sought to identify scHPF factors with cell scores that were consistently higher or lower across
patients for a given drug perturbation relative to the corresponding vehicle controls. To identify these
factors, we used the median absolute deviation (MAD) to identify subpopulations with high cell scores for
each factor relative to the appropriate control sample (the most adjacent slice culture treated with vehicle
control, see Methods). We highlight four particularly interesting signatures in Figure 4. Figure 4A shows
the treatment effect results across patients and drugs for a factor representing proliferation (CENPF,
TOP2A4, MKI67). As expected for a topoisomerase I poison and consistent with our earlier study?®, slice
cultures from five of the six patients that were treated with etoposide show a decrease in cell frequencies
with high cell scores for this factor. Surprisingly, we do not observe this decrease for slice cultures treated
with topotecan, which targets topoisomerase 1. Also consistent with our previous study®, we identify a factor
corresponding to metallothionein induction (MT1G, MTI1X, MTIH, MTIFE) that is uniformly elevated in
slice cultures treated with the HDAC inhibitor panobinostat (Figure 4B). We observe a similar, but slightly
attenuated effect, for givinostat, the other HDAC inhibitor in our study.

A third factor with markers of both astrocyte- and mesenchymal-like glioma cells decreases in most of the

slice cultures treated with topotecan, RSL3, and Anal2 (Figure 4C). Anal2 targets NTRK2, which is
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widely expressed across multiple glioma subtypes'’”. While we expected this result for the ferroptosis-
inducing GPX4 inhibitor RSL3 based on our prior work’, it is somewhat counter-intuitive for topotecan to
target a subpopulation that is typically quiescent in glioma. Nonetheless, targeting of astrocyte-like or
mesenchymal glioma cells by topotecan and the apparent increase in this factor in the etoposide-treated
slices are consistent with their opposite effects on cycling populations shown in Figure 4A. Furthermore,
we observed an even greater and highly significant impact of topotecan on cell frequencies for a second,

highly mesenchymal-like factor (Figure 4D).

To further interrogate the disparate effects of the two topoisomerase poisons topotecan and etoposide, we
examined the expression patterns of the genes encoding their targets, TOPI and TOP2A, respectively
(Figure 5). Interestingly, we observed that while TOP24 expression is highly restricted to proliferating
glioma cells as evidenced by its co-expression with MKI/67 (Figure 5D-F). Conversely, TOPI is more
pervasively expressed and strongly co-expressed with CD44, a marker of mesenchymal glioma cells
(Figure 5A-C). This finding is consistent with the broader functional role of topoisomerase I, which is
critical for both DNA replication during the cell cycle and transcription, regardless of whether or not the
cells are cycling'®. Thus, although etoposide and topotecan are both topoisomerase poisons, we might
expect etoposide’s effects to be restricted to proliferating cells, while topotecan is able to target broader

populations that include more quiescent astrocyte-like and mesenchymal glioma cells.

Identification of Cell Type-Specific Drug Responses in the Glioma Microenvironment with Consensus

scHPF

A critical advantage of ex vivo slice cultures is that they preserve the tumor microenvironment, allowing
for investigation of cell type-specific drug responses in non-neoplastic brain and infiltrating immune cells.
Myeloid cells are the most abundant infiltrating immune cell population in gliomas and can include both
brain-resident microglia and bone marrow-derived macrophages. Microglia tend to exhibit a more pro-
inflammatory phenotype in gliomas, whereas macrophages are thought to be more immunosuppressive
and are associated with recurrence and poor survival'>!®, Figure 6 shows the effects of each drug on four
key signatures derived from our myeloid-specific scHPF model. Similar to the transformed glioma cells,
treatment with the HDAC inhibitors panobinostat and givinostat leads to significant upregulation of the
highly inducible metallothionein gene cluster (Figure 6A). Consistent with our previous report,
panobinostat treatment also strongly downregulates two factors enriched in macrophage-specific markers
(Figure 6B-C)®. Thus, panobinostat may deplete or reprogram macrophages. Interestingly, while the
other HDAC inhibitor in our study, givinostat, does not have this same effect, topotecan does. On the
other hand, the effects of topotecan and panobinostat on a pro-inflammatory factor with genes that would

typically be associated with microglia show no significant alterations across drugs (Figure 6D). These
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findings raise the possibility that topotecan and panobinostat might be effective at reprogramming the

immune microenvironment of gliomas to a less immunosuppressive state.

Overall, we found that the nine drugs tested here have more moderated and less consistent effects on
oligodendrocytes, possibly because they are designed to target transformed cells. Nonetheless, we did
observe two interesting effects on oligodendrocytes from the two HDAC inhibitors panobinostat and
givinostat. Unlike in the transformed glioma cells and myeloid cells, where we observed metallothionein
induction by both HDAC inhibitors, this effect appears restricted to panobinostat in oligodendrocytes
(Figure 7A). More interestingly, we observed a consistent and significant upregulation of a factor marked
by several sterol biosynthesis-related genes (FAXDC2, DHCR7, TM7SF2, MVK) by both HDAC
inhibitors across all patients tested (Figure 7B). Cholesterol biosynthesis plays a key role in myelination
by oligodendrocytes, with several of genes and the pathway in general showing strong upregulation in

other neurological disorders such as multiple sclerosis, where remyelination is occurring.
Discussion

Consensus scHPF produces probabilistic factor models that integrate complex scRNA-seq datasets
including multiple individuals, experimental conditions, and replicates. By identifying factors that occur
reproducibly across models, consensus scHPF provides a principled approach to determining an
appropriate value of K, the number of factors in the final, consensus model. This results in robust and

interpretable factors that describe major gene co-expression patterns across a population of cells.

In developing consensus scHPF, we identified a number of measures that can improve performance in
some cases. For example, for datasets with highly disparate cell numbers or coverage across conditions,
balancing the cell numbers and counts per cell across the relevant covariate by random sub-sampling can

be beneficial. The consensus scHPF release (https://github.com/simslab/consensus scHPF wrapper)

provides scripts to assist users with these tasks along with a wrapper that parallelizes multi-model

generation using the original scHPF software and performs consensus clustering and model refinement.

We applied consensus scHPF to a large scRNA-seq dataset comprised of ~400,000 cells profiled from ex
vivo slice cultures of human glioma surgical specimens across 19 patients and 10 drug perturbations (for a
total of 52 unique samples). Because differences in cellular linages of these complex tumors are a
dominant source of gene expression variance, we constructed consensus scHPF models separately for
three major cellular populations — the transformed glioma cells, myeloid cells, and oligodendrocytes. As
described in detail above, these models corroborated results from two of our previous, more focused
studies®® and revealed some surprising findings, particularly with respect to the cell type-specific effects

of topotecan. We found that topotecan behaves very differently from etoposide, the other topoisomerase
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poison in our dataset, in both transformed glioma cells and myeloid cells. We further found that the
expression patterns of the genes encoding their respective targets, namely TOPI and TOP2A4, are
dramatically different and may explain the observed discrepancy. These findings are particularly timely,
because of the recently completed clinical trial testing local delivery of topotecan in GBM by chronic
convection enhanced delivery?!. RNA-seq analysis of the pre- and post-treatment specimens from this
trial suggested that long-term treatment with topotecan can also deplete proliferating cells. Thus, chronic
local delivery of topotecan may target a broad spectrum of cellular states in GBM, including both

transformed glioma cells and macrophages.

Overall, we anticipate that consensus scHPF will see widespread use for de novo gene signature
identification from complex, integrated scRNA-seq datasets. These models will greatly aid in
interpretation, particularly when the data are not well-described by clustering or contain multiple cell state
transitions. Finally, we hope that our large-scale drug perturbation dataset from experiments in complex
human surgical tissues will provide insights into cell type-specific drug responses beyond what we

describe here and serve as a valuable resource for further methods development.

Methods

Clustering Factors in Consensus scHPF

As described above, we run scHPF with multiple (typically 5-10) random initializations for multiple
values of K and select the top m models for each value of K with the lowest mean negative log likelihood
on the training data. For each of the NV,, models that resulted, we calculated each factors’ gene scores, and
concatenated all factors (columns) across all models into a matrix X with factors as columns, genes as
rows, and values set to sScHPF gene scores. We then reduced this to a submatrix Xcy, which contained the
1,000 rows (genes) with the highest coefficient-of-variation (CV). We note that the 1,000 genes with the
highest CV did not correspond to genes with the highest mean due to the built-in normalization in

scHPF’s gene scores.

To identify factors that were reproduced across multiple models, we clustered the factors using the Walktrap
algorithm on a k-nearest neighbors graph of the columns of Xcy. Reasoning that the patterns should be
reproduced across at least a quarter of randomly initialized models, we set the number of neighbors to be
int(0.25N,,), and constructed a k-nearest neighbors graph using Pearson’s correlation distance. We ran the
Walktrap algorithm on this graph using the community walktrap function (python-igraph v0.8.2) with

weights equal to the Jaccard similarity between adjacent nodes’ neighbors and default parameters


https://doi.org/10.1101/2023.12.05.570193
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.570193; this version posted December 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

otherwise. We selected the number of clusters by examining the partitions’ modularity (calculated using
igraph.clustering. VertexDendrogram.modularity) as a function of the number of clusters, and set the

number of partitions to the center of the peak in modularity.
Procurement of Human Glioma Surgical Specimens

All tumor specimens collected were de-identified and under the approval of the Columbia University

Irving Medical Center Institutional Review Board. Clinical metadata can be found in Table S1.
Ex vivo Slice Culture and Drug Perturbation in Human Glioma Surgical Specimens

Collected tumor specimens were prepared and processed for ex vivo slice culture followed by drug
perturbation as described previously (ref Zhao ef al. 2021). Briefly, tumor specimens were kept in ice-
cold artificial cerebrospinal fluid (ACSF) solution immediately after surgical removal and sliced using a
tissue chopper (Mcllwain) at a thickness of 500 um under sterile conditions. Generated slices were first
transferred to 6-well plates and kept in ice-cold ACSF solution followed by a 15 minute recovery to reach
room temperature. Then we placed each slice on top of a porous membrane insert (0.4 um, Millipore)
sitting in 6-well plates and added 1.5 mL maintenance medium consisting of F12/DMEM (Gibco)
supplemented with N-2 Supplement (Gibco) and 1% antibiotic-antimycotic (ThermoFisher) to the bottom
of each well and 10ul maintenance medium directly on top of each slice. After culturing slices in a
humidified incubator at 37°C and 5% CO, for 6hr, we replaced the medium with pre-warmed medium
containing drugs with desired concentration (listed in Table S2) or corresponding volume of vehicle

(DMSO) then cultured slices in a humidified incubator at 37°C and 5% CO, for 18 hrs.
Slice Culture Dissociation

At the end of drug treatment, tissue slices were dissociated into single cell suspensions for microwell-
based single-cell RNA-seq?. Tissue slices derived from TB5884, TB5886, TB5944, TB5966, TB5974,
TB5980, TB6140, TB6181, TB6224, TB6328, TB6393, and TB6458 were dissociated as described in
Zhao et al. using the Adult Brain Dissociation kit (Miltenyi Biotec) on gentleMACS Octo Dissociator
with Heaters (Miltenyi Biotec) according to the manufacturer’s instructions. Tissue slices derived from
TB6528, TB6534, TB6545 (1 RSL3 and 1 vehicle slice), TB6813, and TB6814 were dissociated as
described in Banu et al.’ using the Papain Dissociation System. TB6488, TB6505 and TB6545 (1
givinostat and 7 vehicle slices) were dissociated using the Adult Brain Dissociation kit (Miltenyi Biotec)
with modifications. Briefly, dissociation buffer was prepared freshly according to the manufacturer’s
instructions. Each tissue slice was collected into a well of a 12-well plate and washed in ice-cold

Dulbecco’s phosphate-buffered saline (D-PBS) with calcium, magnesium, glucose, and pyruvate (Lonza)
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following a 30 min incubation in 1ml of dissociation buffer at 37°C in a shaking incubator at 600rpm.
Dissociated cells of each slice were collected with 6ml cold D-PBS and apply to a MACS SmartStrainer
(70 um, Miltenyi Biotec) placed on one well of a deepwell 24-well plate following centrifugation at
300xg for 10 minutes at 4°C. The cell pellet was then processed for debris removal and red blood cell

removal according to the manufacturer’s instructions.
scRNA-seq in Microwell Platform

Following dissociation, we used our previously described microwell-based platform to perform scRNA-
seq from each slice culture?*?*. During library construction, pooled cDNA libraries from each slice
culture were associated with a unique Illumina index sequence to facilitate pooled sequencing of all of the
slice cultures from a given patient. The resulting pooled libraries were either sequenced an Illumina
NextSeq500/550 (8-cycle index read, 26-cycle read 1 containing the cell barcode (CB) and unique
molecular identifier (UMI), 58-cycle read 2 containing the transcript sequence) or an Illumina NovaSeq

6000 (8-cycle index read, 26-cycle read 1, 151-cycle read 2).
scRNA-seq Data Processing

scRNA-seq data were processed as described previously®. Briefly, after trimming and aligning the raw
reads, we corrected any datasets obtained using the Illumina NovaSeq 6000 for index swapping using the
algorithm of Griffiths et al**. We then assigned read addresses compressed of a CB, UMI, and aligned
gene to each read, collapsed reads with duplicate addresses, and corrected errors in the CB and UML.
Finally, we identified CBs that were likely to originate from cells using the EmptyDrops algorithm?® and
applied several quality control filters to the resulting CBs as described in Zhao et al® to arrive at a final

count matrix for each sample.
Identification of Major Cell Types from scRNA-seq

Major cell types were identified as described previously®. Briefly, we first merged scRNA-seq data of all
samples derived from the same patient for unsupervised clustering analysis
(www.github.com/simslab/cluster diffex2018)°. We used Louvain community detection as implemented
in Phenograph for unsupervised clustering with k=20 for all k-nearest neighbor graphs®’. The marker
genes was identified using the drop-out curve method as described in previously® for each individual
sample and took the union of the resulting marker sets to cluster and embed the merged dataset. We
defined putative malignant cells and non-malignant cells using the genes most specific to each cluster.
Putative tumor-myeloid doublet clusters were removed prior to malignant analysis. Next, we computed

the average gene expression on each somatic chromosome as described in Yuan et al”’. For data obtained
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from glioblastoma tissues (IDH1 wild type tissues), we define the malignancy score to be the log-ratio of
the average expression of Chr. 7 genes to that of Chr. 10 genes as described previously. For data obtained
from the TB6505, Chr. 2 amplification and Chr. 13 deletion were observed from the whole-genome
sequencing results, therefore we define the malignancy score to be the log-ratio of the average expression
of Chr. 2 genes to that of Chr. 13 genes. For data obtained from the TB6505, we define the malignancy
score to be the log-ratio of the average expression of Chr. 2 genes to that of Chr. 1 genes as described in
Banu et al.’. We plotted the distribution of malignancy score and fit a two-component Gaussian mixture
model to the malignancy score distribution and established a threshold at 1.96 standard deviations below
the mean of the Gaussian with the higher mean (i.e. 95% confidence interval). Putative malignant cells
with malignancy scores below this threshold and putative non-tumor cells with malignancy scores above
this threshold were discarded as non-malignant or potential multiplets. The malignant analysis of newly
reported tissues was shown in Figure S1. We further manually annotated non-malignant cells into
myeloid cells (CD14, AIF1, TYROBP, C1QA), oligodendrocytes (PLP1, MBP, MAG, SOX10), T cells
(TRAC, TRBCI, TRBC2, CD3D), endothelial cells (ESM1, ITM2A, CLDNS), and pericytes (PDGFRB,
COL3A41, RGS5) based on the highly enriched marker genes of each cluster.

Consensus scHPF Models of Drug-Perturbed Human Glioma Slice Cultures

For each major cell type (transformed glioma cells, myeloid cells, and oligodendrocytes), we constructed
a merged count matrix in loom format using loompy. Next, for each cell type, we used the

get training test looms.py script to generating a loom file for the cells from which the consensus scHPF
model would be trained and a smaller loom file for cells comprising the test set with 50 cells per patient.
We then reformatted the training and test set loom files to the appropriate sparse matrix format for
running scHPF using the scHPF prep and scHPF pre-like commands, respectively. For scHPF prep, we
used a white list comprising protein-coding genes and excluding T cell and immunoglobulin receptor
genes. We required genes to be detected in 1% cells to be included in the model. Finally, we used the
scHPF consensus.py script to run consensus scHPF. We generated scHPF models for each value of K
from 15-30 with five trials (parameter #) per value of K. For Walktrap clustering, we required clusters to
contain factors from at least two models (parameter m). This resulted in consensus scHPF models
containing 22, 24, and 17 factors for transformed glioma cells, myeloid cells, and oligodendrocytes,
respectively. We used the scHPF score command to compute cell and gene score matrices for each factor

in each of the three consensus models.

Analysis of Consensus scHPF Models to Identify Cell Type-Specific Drug Responses
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For each patient-drug sample, we compared the cell scores for each factor between the scRNA-seq data
for the drug-treated slice and the corresponding vehicle control-treated (DMSO) slice(s) from the same
patient. To make this comparison, we computed the median absolute deviation (MAD) cell score for each
factor and calculated the frequency of cells in each sample that were more than two MADs above the
median cell score for the factor. The values plotted in Figures 4, 6, 7 are the log-scaled fold-changes for
this cell frequency between the drug-treated slice and vehicle control-treated slice(s) for a given patient.
For each drug-factor combination, we calculated FDR-corrected p-values using a linear mixed model with
the log-scaled fold-change in cell frequency as the response variable and the drug treatment as a
categorical covariate. We treated patients as random effects. Coefficients and p-values for each covariate
were computed using the MixedLM function in the Python package statsmodels. P-values were corrected
for false discovery using the multipletests function in statsmodels with the Benjamini-Hochberg

procedure.

Data and Code Accessibility

The raw count matrix and metadata for the entire integrated dataset used in these studies is available as a

loom file at:

https://drive.google.com/file/d/18-KInmm43wKdBX95Gq9xbuzA QwtLjgE9/view?usp=sharing

The original source code with tutorials for scHPF, which is used to build individual models in consensus

scHPF can be found at https://github.com/simslab/scHPF. Code for running consensus scHPF along with

helper scripts and instructions can be found at https://github.com/simslab/consensus_scHPF _wrapper.
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Figure 1. Schematic of consensus scHPF. Starting with an scRNA-seq count matrix, we construct
multiple scHPF models with random initializations and different values of K. We then cluster the factors
across models using their gene score vectors to identify sets of recurrent factors or modules. Finally, we
refine a consensus scHPF model by initializing from the median parameters of those modules. The

number of modules or recurrent factors becomes the final value of K.
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Figure 2. UMAP embeddings of cell score matrices from consensus scHPF models colored by patient ID
for A) transformed glioma cells; B) myeloid cells; C) oligodendrocytes; and colored by drug treatment

condition for D) transformed glioma cells; E) myeloid cells; F) oligodendrocytes.
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Figure 4. Fold-changes in the frequencies of cells with high cell scores in drug-treated vs. vehicle
control-treated slice cultures in the transformed glioma cell scHPF model for A) a proliferation factor; B)
a metallothionein factor; C) an astrocyte/mesenchymal factor; and D) a mesenchymal factor. Here, each
dot represents an individual patient (i.e. biological replicates). For each drug, ** indicates FDR<0.05

based on a linear mixed model.
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Figure 6. Fold-changes in the frequencies of cells with high cell scores in drug-treated vs. vehicle
control-treated slice cultures in the myeloid cell scHPF model for A) a histone/metallothionein factor; B)
a monocyte/macrophage factor; C) a macrophage factor; and D) a pro-inflammatory factor. Here, each
dot represents an individual patient (i.e. biological replicates). For each drug, ** indicates FDR<0.05

based on a linear mixed model.
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Figure 7. Fold-changes in the frequencies of cells with high cell scores in drug-treated vs. vehicle
control-treated slice cultures in the oligodendrocyte scHPF model for A) a metallothionein factor and B) a

sterol biosynthesis factor. For each drug, ** indicates FDR<0.05 based on a linear mixed model.
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