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Abstract 

Single-cell transcriptomic analyses now frequently involve elaborate study designs including samples 

from multiple individuals, experimental conditions, perturbations, and batches from complex tissues. 

Dimensionality reduction is required to facilitate integration, interpretation, and statistical analysis. 

However, these datasets often include subtly different cellular subpopulations or state transitions, which 

are poorly described by clustering. We previously reported a Bayesian matrix factorization algorithm 

called single-cell hierarchical Poisson factorization (scHPF) that identifies gene co-expression patterns 

directly from single-cell RNA-seq (scRNA-seq) count matrices while accounting for transcript drop-out 

and noise. Here, we describe consensus scHPF, which analyzes scHPF models from multiple random 

initializations to identify the most robust gene signatures and automatically determine the number of 

factors for a given dataset. Consensus scHPF facilitates integration of complex datasets with highly multi-

modal posterior distributions, resulting in factors that can be uniformly analyzed across individuals and 

conditions. To demonstrate the utility of consensus scHPF, we performed a meta-analysis of a large-scale 

scRNA-seq dataset from drug-treated, human glioma slice cultures generated from surgical specimens 

across three major cell types, 19 patients, 10 drug treatment conditions, and 52 samples. In addition to 

recapitulating previously reported cell type-specific drug responses from smaller studies, consensus 

scHPF identified disparate effects of the topoisomerase poisons etoposide and topotecan that are highly 

consistent with the distinct roles and expression patterns of their respective protein targets. 
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Introduction 

Advances in the scalability of single-cell RNA-seq (scRNA-seq) have motivated the development of 

numerous computational methods for integrating data across multiple subjects and conditions. Common 

analytical frameworks include clustering and trajectory or pseudo-temporal inference, often followed by 

differential expression analysis or the identification of genes that are correlated with pseudo-time1. These 

methods have been augmented by various algorithms for batch correction and modeling inter-subject 

variability to facilitate integration of datasets originating from complex experimental designs2,3, so that cells 

can be assigned to clusters following harmonization. While these are powerful approaches that have led to 

numerous discoveries, they can also place problematic structural constraints on the data. For example, while 

clustering is a facile approach to assigning single-cell profiles to major cellular lineages within a highly 

diverse population, applying clustering to a more homogenous, individual lineage that is comprised of more 

subtle subsets or undergoing a cell state transition often results in rather arbitrary segregation.   

To address these issues, matrix factorization approaches have been developed to reduce dimensionality and 

identify gene expression programs that contribute to cellular diversity without imposing such structural 

constraints. Some of these methods are probabilistic and explicitly model the transcript drop-out and 

technical noise that are intrinsic to scRNA-seq4-6. We reported such a method that adapts the hierarchical 

Poisson factorization (HPF) algorithm for scRNA-seq applications, which we called single-cell HPF 

(scHPF)5. scHPF decomposes a scRNA-seq count matrix into K factors, each of which has a weight for 

each cell and gene in the dataset. The probabilistic model that underlies scHPF enforces sparsity, leading 

to highly interpretable factors where the top-ranked genes are often readily identifiable as markers of 

specific cell types, genes involved in specific biological processes, or nuisance signatures that can be 

removed prior to downstream analysis.  

While scHPF has been used to great effect in numerous studies to identify T cell activation signatures in 

human tissues7, acute responses to drugs8,9, and drug resistance mechanisms in cancer10, the algorithm has 

some important shortcomings. Specifically, applying scHPF to datasets involving multiple subjects or 

conditions can be challenging. Indeed, in one of our early applications to scRNA-seq profiles of resting and 

activated T cells from multiple tissue sites and organ donors, we constructed scHPF models of each sample 

individually and identified relationships between the resultant factors rather than integrating the data with 

a single model7. While this approach is effective, it presents challenges for directly comparing gene 

signatures across individuals or conditions.  Another frustrating issue is the requirement that the user pre-

select a specific value of K.  One approach to these problems that has been implemented in other algorithms 

for non-negative matrix factorization is to construct factor models across a broad range of K-values and 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.05.570193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.570193
http://creativecommons.org/licenses/by-nc/4.0/


other parameters and identify factors that recur across these models11.  In this case, the final value of K 

becomes the number of recurrent factors, which can be refined by a final round of training. In addition to 

providing a robust approach to determining K, the resultant models are more effective for integrating 

disparate scRNA-seq datasets. Here, we describe a consensus implementation of scHPF and apply it to 

identify cell type-specific drug responses from patient-derived ex vivo models of high-grade gliomas and 

glioblastoma (GBM) across multiple patients and classes of drugs. 

 

Results 

Consensus single-cell hierarchical Poisson factorization (scHPF) 

scHPF is a generative, Bayesian algorithm for probabilistic factorization of scRNA-seq count matrices that 

produces highly interpretable factors that indicate gene co-expression signatures5. The input to scHPF is an 

un-normalized, N x M count matrix C where N is the number of cells and M is the number of genes. scHPF 

associates each gene g and cell i with inverse budgets ηg and ξi, and models these latent variables with 

Gamma distributions. In addition, we use a second set of Gamma distributions to model the gene and cell 

loadings for each factor k, which we call βg,k and θi,k, respectively, with rates that depend on ηg and ξi. The 

expression of each gene in each cell is assumed to follow a Poisson distribution with a rate given by the dot 

product of the gene and cell loadings across factors. We estimate the posterior distributions of the budgets 

and factors for a given count matrix using variational inference. Thus, scHPF effectively models the 

generative process underlying the count matrix as a Gamma-Poisson mixture, which has been shown to be 

an effective description of the noise in the scRNA-seq data when unique molecular identifiers (UMIs) are 

applied to mitigate amplification noise and bias12. To aid in the interpretation of scHPF factors, we 

additionally compute gene scores for each gene in each factor and cell scores for each cell in each factor 

that correct the βg,k and θi,k loadings for coverage differences among genes and cells, respectively. We have 

shown in numerous studies that ranking genes by their gene scores in each factor greatly aids in the 

biological interpretation of each factor, while the cell scores enable embedding and visualization of scHPF 

models5,7-10. 

Consensus scHPF uses the methodology described above to generate many independent models of a count 

matrix and clusters the resultant factors to identify robust, recurrent factors from which it learns a single, 

consensus model (Figure 1). This procedure overcomes the highly multi-modal posteriors that arise from 

complex datasets that integrate multiple experimental runs, subjects, and conditions, and is analogous to 

consensus methods used in previously reported methods like cNMF11 and scCoGAPS13. Thus, we can 
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capture highly robust co-expression patterns that appear consistently across scHPF training models with 

different random initializations, while still preserving the ability to approximate the parameter values that 

best explain the data. 

After generating scHPF models across different values of K and multiple random initializations, we 

concatenate the gene score matrices across models into a single matrix X with factors as columns, genes as 

rows, and matrix elements as scHPF gene scores. We then identify a subset of genes with highly variable 

gene scores and cluster the factors using the Walktrap algorithm (see Methods). Clustering allows us to 

identify factors that recur across models, which gives us the value of K. Next, we initialize the variational 

distributions for the gene weights βg,k to have shape and rate parameters (βshape and βrate) equal to the 

medians of the corresponding variational distributions of each cluster of factors. Similarly, we initialize the 

variational distributions for ηg to have shape and rate parameters (ηshape and ηrate) equal to the median values 

across the corresponding distributions for all models. Cell-specific variational distributions for θi,k and ξi 

are initialized by performing a single round of scHPF updates, while fixing the gene-specific distributions 

for βg,k and ηg. Finally, we run training updates starting from this initialized consensus model until 

convergence. 

Identification of Recurrent Drug Responses among Malignantly Transformed Glioma Cells across 

Diverse Classes of Drugs with Consensus scHPF 

Glioblastoma (GBM) is the most common and deadly type of glioma in adults14. Standard treatment for 

GBM at primary diagnosis is surgical resection, but glioma cells infiltrate the brain, inevitably leading to 

recurrence despite chemotherapy and radiation14. GBM heterogeneity is a major obstacle to successful 

treatment, but detailed studies using scRNA-seq have identified multiple transcriptional states that recur 

across patients15,16. Thus, there is a need for drug screening platforms that can identify cell type-specific 

drug responses in patient-derived models. We recently reported such a platform that combines drug-

perturbed, acute slice culture of GBM surgical specimens with scRNA-seq for identifying cell type-specific 

drug responses among transformed glioma cells and cells in the tumor microenvironment8. We performed 

detailed studies to credential these ex vivo models, demonstrating that they recapitulate the cellular 

composition and molecular profile of the originating tumor tissue with high fidelity8. Here, we combine 

previously published8,9 and newly generated scRNA-seq data from GBM and high-grade glioma slice 

cultures perturbed with diverse classes of drugs and apply consensus scHPF to identify common and drug-

specific gene signatures that occur across 19 patients, 10 treatment conditions, and ~400,000 individual 

cells (Table S1). To do this, we constructed cell type-specific, consensus scHPF models that integrate the 

data from all of the patients and drug perturbation conditions in the study for three major cell types – the 
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transformed glioma cells, myeloid cells, and oligodendrocytes. The latter two are non-neoplastic cells in 

the tumor microenvironment, with myeloid cells comprising the most common infiltrating immune cell 

type in GBM. This integrated analysis allows us to categorize drugs based on their cell type-specific effects 

in GBM.  

We first performed a global analysis of consensus scHPF models obtained from each of the three major cell 

types in the dataset. Figure 2 shows UMAP embeddings of the cell score matrices for each cell type 

annotated by patient and drug treatment condition. While we expect some degree of clustering by patient 

in this dataset, because different sets of drug treatments were applied to slice cultures from different 

patients, there is particularly clear separation by patient for the transformed glioma cells (Figure 2A,D). 

This is consistent with our previous studies and anticipated given the disparate genetic alterations, 

particularly aneuploidies and other large copy number alterations, that significantly impact gene 

expression15. Similarly, Figure 3 shows a heatmap of the average cell scores for each scHPF factor in each 

experimental condition (defined by a patient and a drug perturbation) for the scHPF models for all three 

major cell types. The columns of the heatmap, which represent patient-drug combinations, are 

hierarchically clustered, while the rows, which represent factors from the three cell type-specific scHPF 

models, are grouped by cell type. While the distributions of myeloid cell and oligodendrocyte factors are 

relatively uniform across patients and drug treatment conditions, there are many scHPF factors that are 

highly patient- or treatment-specific for the model of transformed glioma cells. 

We next sought to identify scHPF factors with cell scores that were consistently higher or lower across 

patients for a given drug perturbation relative to the corresponding vehicle controls. To identify these 

factors, we used the median absolute deviation (MAD) to identify subpopulations with high cell scores for 

each factor relative to the appropriate control sample (the most adjacent slice culture treated with vehicle 

control, see Methods). We highlight four particularly interesting signatures in Figure 4. Figure 4A shows 

the treatment effect results across patients and drugs for a factor representing proliferation (CENPF, 

TOP2A, MKI67).  As expected for a topoisomerase II poison and consistent with our earlier study8, slice 

cultures from five of the six patients that were treated with etoposide show a decrease in cell frequencies 

with high cell scores for this factor. Surprisingly, we do not observe this decrease for slice cultures treated 

with topotecan, which targets topoisomerase I. Also consistent with our previous study8, we identify a factor 

corresponding to metallothionein induction (MT1G, MT1X, MT1H, MT1E) that is uniformly elevated in 

slice cultures treated with the HDAC inhibitor panobinostat (Figure 4B). We observe a similar, but slightly 

attenuated effect, for givinostat, the other HDAC inhibitor in our study.   

A third factor with markers of both astrocyte- and mesenchymal-like glioma cells decreases in most of the 

slice cultures treated with topotecan, RSL3, and Ana12 (Figure 4C). Ana12 targets NTRK2, which is 
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widely expressed across multiple glioma subtypes17. While we expected this result for the ferroptosis-

inducing GPX4 inhibitor RSL3 based on our prior work9, it is somewhat counter-intuitive for topotecan to 

target a subpopulation that is typically quiescent in glioma.  Nonetheless, targeting of astrocyte-like or 

mesenchymal glioma cells by topotecan and the apparent increase in this factor in the etoposide-treated 

slices are consistent with their opposite effects on cycling populations shown in Figure 4A. Furthermore, 

we observed an even greater and highly significant impact of topotecan on cell frequencies for a second, 

highly mesenchymal-like factor (Figure 4D).  

To further interrogate the disparate effects of the two topoisomerase poisons topotecan and etoposide, we 

examined the expression patterns of the genes encoding their targets, TOP1 and TOP2A, respectively 

(Figure 5). Interestingly, we observed that while TOP2A expression is highly restricted to proliferating 

glioma cells as evidenced by its co-expression with MKI67 (Figure 5D-F).  Conversely, TOP1 is more 

pervasively expressed and strongly co-expressed with CD44, a marker of mesenchymal glioma cells 

(Figure 5A-C).  This finding is consistent with the broader functional role of topoisomerase I, which is 

critical for both DNA replication during the cell cycle and transcription, regardless of whether or not the 

cells are cycling18. Thus, although etoposide and topotecan are both topoisomerase poisons, we might 

expect etoposide’s effects to be restricted to proliferating cells, while topotecan is able to target broader 

populations that include more quiescent astrocyte-like and mesenchymal glioma cells.  

Identification of Cell Type-Specific Drug Responses in the Glioma Microenvironment with Consensus 

scHPF 

A critical advantage of ex vivo slice cultures is that they preserve the tumor microenvironment, allowing 

for investigation of cell type-specific drug responses in non-neoplastic brain and infiltrating immune cells. 

Myeloid cells are the most abundant infiltrating immune cell population in gliomas and can include both 

brain-resident microglia and bone marrow-derived macrophages. Microglia tend to exhibit a more pro-

inflammatory phenotype in gliomas, whereas macrophages are thought to be more immunosuppressive 

and are associated with recurrence and poor survival15,19. Figure 6 shows the effects of each drug on four 

key signatures derived from our myeloid-specific scHPF model. Similar to the transformed glioma cells, 

treatment with the HDAC inhibitors panobinostat and givinostat leads to significant upregulation of the 

highly inducible metallothionein gene cluster (Figure 6A). Consistent with our previous report, 

panobinostat treatment also strongly downregulates two factors enriched in macrophage-specific markers 

(Figure 6B-C)8. Thus, panobinostat may deplete or reprogram macrophages. Interestingly, while the 

other HDAC inhibitor in our study, givinostat, does not have this same effect, topotecan does. On the 

other hand, the effects of topotecan and panobinostat on a pro-inflammatory factor with genes that would 

typically be associated with microglia show no significant alterations across drugs (Figure 6D).  These 
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findings raise the possibility that topotecan and panobinostat might be effective at reprogramming the 

immune microenvironment of gliomas to a less immunosuppressive state. 

Overall, we found that the nine drugs tested here have more moderated and less consistent effects on 

oligodendrocytes, possibly because they are designed to target transformed cells. Nonetheless, we did 

observe two interesting effects on oligodendrocytes from the two HDAC inhibitors panobinostat and 

givinostat.  Unlike in the transformed glioma cells and myeloid cells, where we observed metallothionein 

induction by both HDAC inhibitors, this effect appears restricted to panobinostat in oligodendrocytes 

(Figure 7A). More interestingly, we observed a consistent and significant upregulation of a factor marked 

by several sterol biosynthesis-related genes (FAXDC2, DHCR7, TM7SF2, MVK) by both HDAC 

inhibitors across all patients tested (Figure 7B). Cholesterol biosynthesis plays a key role in myelination 

by oligodendrocytes, with several of genes and the pathway in general showing strong upregulation in 

other neurological disorders such as multiple sclerosis, where remyelination is occurring20.  

Discussion 

Consensus scHPF produces probabilistic factor models that integrate complex scRNA-seq datasets 

including multiple individuals, experimental conditions, and replicates. By identifying factors that occur 

reproducibly across models, consensus scHPF provides a principled approach to determining an 

appropriate value of K, the number of factors in the final, consensus model. This results in robust and 

interpretable factors that describe major gene co-expression patterns across a population of cells. 

In developing consensus scHPF, we identified a number of measures that can improve performance in 

some cases.  For example, for datasets with highly disparate cell numbers or coverage across conditions, 

balancing the cell numbers and counts per cell across the relevant covariate by random sub-sampling can 

be beneficial. The consensus scHPF release (https://github.com/simslab/consensus_scHPF_wrapper) 

provides scripts to assist users with these tasks along with a wrapper that parallelizes multi-model 

generation using the original scHPF software and performs consensus clustering and model refinement. 

We applied consensus scHPF to a large scRNA-seq dataset comprised of ~400,000 cells profiled from ex 

vivo slice cultures of human glioma surgical specimens across 19 patients and 10 drug perturbations (for a 

total of 52 unique samples). Because differences in cellular linages of these complex tumors are a 

dominant source of gene expression variance, we constructed consensus scHPF models separately for 

three major cellular populations – the transformed glioma cells, myeloid cells, and oligodendrocytes. As 

described in detail above, these models corroborated results from two of our previous, more focused 

studies8,9 and revealed some surprising findings, particularly with respect to the cell type-specific effects 

of topotecan. We found that topotecan behaves very differently from etoposide, the other topoisomerase 
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poison in our dataset, in both transformed glioma cells and myeloid cells. We further found that the 

expression patterns of the genes encoding their respective targets, namely TOP1 and TOP2A, are 

dramatically different and may explain the observed discrepancy. These findings are particularly timely, 

because of the recently completed clinical trial testing local delivery of topotecan in GBM by chronic 

convection enhanced delivery21. RNA-seq analysis of the pre- and post-treatment specimens from this 

trial suggested that long-term treatment with topotecan can also deplete proliferating cells. Thus, chronic 

local delivery of topotecan may target a broad spectrum of cellular states in GBM, including both 

transformed glioma cells and macrophages. 

Overall, we anticipate that consensus scHPF will see widespread use for de novo gene signature 

identification from complex, integrated scRNA-seq datasets. These models will greatly aid in 

interpretation, particularly when the data are not well-described by clustering or contain multiple cell state 

transitions. Finally, we hope that our large-scale drug perturbation dataset from experiments in complex 

human surgical tissues will provide insights into cell type-specific drug responses beyond what we 

describe here and serve as a valuable resource for further methods development. 

 

Methods 

Clustering Factors in Consensus scHPF 

As described above, we run scHPF with multiple (typically 5-10) random initializations for multiple 

values of K and select the top m models for each value of K with the lowest mean negative log likelihood 

on the training data. For each of the Nm models that resulted, we calculated each factors’ gene scores, and 

concatenated all factors (columns) across all models into a matrix X with factors as columns, genes as 

rows, and values set to scHPF gene scores. We then reduced this to a submatrix XCV, which contained the 

1,000 rows (genes) with the highest coefficient-of-variation (CV). We note that the 1,000 genes with the 

highest CV did not correspond to genes with the highest mean due to the built-in normalization in 

scHPF’s gene scores. 

To identify factors that were reproduced across multiple models, we clustered the factors using the Walktrap 

algorithm on a k-nearest neighbors graph of the columns of XCV. Reasoning that the patterns should be 

reproduced across at least a quarter of randomly initialized models, we set the number of neighbors to be 

int(0.25Nm), and constructed a k-nearest neighbors graph using Pearson’s correlation distance. We ran the 

Walktrap algorithm on this graph using the community_walktrap function (python-igraph v0.8.2) with 

weights equal to the Jaccard similarity between adjacent nodes’ neighbors and default parameters 
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otherwise. We selected the number of clusters by examining the partitions’ modularity (calculated using 

igraph.clustering.VertexDendrogram.modularity) as a function of the number of clusters, and set the 

number of partitions to the center of the peak in modularity. 

Procurement of Human Glioma Surgical Specimens 

All tumor specimens collected were de-identified and under the approval of the Columbia University 

Irving Medical Center Institutional Review Board. Clinical metadata can be found in Table S1.  

Ex vivo Slice Culture and Drug Perturbation in Human Glioma Surgical Specimens 

Collected tumor specimens were prepared and processed for ex vivo slice culture followed by drug 

perturbation as described previously (ref Zhao et al. 2021). Briefly, tumor specimens were kept in ice-

cold artificial cerebrospinal fluid (ACSF) solution immediately after surgical removal and sliced using a 

tissue chopper (McIlwain) at a thickness of 500 µm under sterile conditions. Generated slices were first 

transferred to 6-well plates and kept in ice-cold ACSF solution followed by a 15 minute recovery to reach 

room temperature. Then we placed each slice on top of a porous membrane insert (0.4 µm, Millipore) 

sitting in 6-well plates and added 1.5 mL maintenance medium consisting of F12/DMEM (Gibco) 

supplemented with N-2 Supplement (Gibco) and 1% antibiotic-antimycotic (ThermoFisher) to the bottom 

of each well and 10µl maintenance medium directly on top of each slice. After culturing slices in a 

humidified incubator at 37℃ and 5% CO2 for 6hr, we replaced the medium with pre-warmed medium 

containing drugs with desired concentration (listed in Table S2) or corresponding volume of vehicle 

(DMSO) then cultured slices in a humidified incubator at 37℃ and 5% CO2 for 18 hrs. 

Slice Culture Dissociation 

At the end of drug treatment, tissue slices were dissociated into single cell suspensions for microwell-

based single-cell RNA-seq22. Tissue slices derived from TB5884, TB5886, TB5944, TB5966, TB5974, 

TB5980, TB6140, TB6181, TB6224, TB6328, TB6393, and TB6458 were dissociated as described in 

Zhao et al. using the Adult Brain Dissociation kit (Miltenyi Biotec) on gentleMACS Octo Dissociator 

with Heaters (Miltenyi Biotec) according to the manufacturer’s instructions. Tissue slices derived from 

TB6528, TB6534, TB6545 (1 RSL3 and 1 vehicle slice), TB6813, and TB6814 were dissociated as 

described in Banu et al.9 using the Papain Dissociation System. TB6488, TB6505 and TB6545 (1 

givinostat and 7 vehicle slices) were dissociated using the Adult Brain Dissociation kit (Miltenyi Biotec) 

with modifications. Briefly, dissociation buffer was prepared freshly according to the manufacturer’s 

instructions. Each tissue slice was collected into a well of a 12-well plate and washed in ice-cold 

Dulbecco’s phosphate-buffered saline (D-PBS) with calcium, magnesium, glucose, and pyruvate (Lonza) 
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following a 30 min incubation in 1ml of dissociation buffer at 37°C in a shaking incubator at 600rpm. 

Dissociated cells of each slice were collected with 6ml cold D-PBS and apply to a MACS SmartStrainer 

(70 μm, Miltenyi Biotec) placed on one well of a deepwell 24-well plate following centrifugation at 

300×g for 10 minutes at 4°C. The cell pellet was then processed for debris removal and red blood cell 

removal according to the manufacturer’s instructions. 

scRNA-seq in Microwell Platform 

Following dissociation, we used our previously described microwell-based platform to perform scRNA-

seq from each slice culture23,24.  During library construction, pooled cDNA libraries from each slice 

culture were associated with a unique Illumina index sequence to facilitate pooled sequencing of all of the 

slice cultures from a given patient.  The resulting pooled libraries were either sequenced an Illumina 

NextSeq500/550 (8-cycle index read, 26-cycle read 1 containing the cell barcode (CB) and unique 

molecular identifier (UMI), 58-cycle read 2 containing the transcript sequence) or an Illumina NovaSeq 

6000 (8-cycle index read, 26-cycle read 1, 151-cycle read 2). 

scRNA-seq Data Processing 

scRNA-seq data were processed as described previously8. Briefly, after trimming and aligning the raw 

reads, we corrected any datasets obtained using the Illumina NovaSeq 6000 for index swapping using the 

algorithm of Griffiths et al25. We then assigned read addresses compressed of a CB, UMI, and aligned 

gene to each read, collapsed reads with duplicate addresses, and corrected errors in the CB and UMI. 

Finally, we identified CBs that were likely to originate from cells using the EmptyDrops algorithm26 and 

applied several quality control filters to the resulting CBs as described in Zhao et al8 to arrive at a final 

count matrix for each sample. 

Identification of Major Cell Types from scRNA-seq 

Major cell types were identified as described previously8. Briefly, we first merged scRNA-seq data of all 

samples derived from the same patient for unsupervised clustering analysis 

(www.github.com/simslab/cluster_diffex2018)5. We used Louvain community detection as implemented 

in Phenograph for unsupervised clustering with k=20 for all k-nearest neighbor graphs27. The marker 

genes was identified using the drop-out curve method as described in previously5 for each individual 

sample and took the union of the resulting marker sets to cluster and embed the merged dataset. We 

defined putative malignant cells and non-malignant cells using the genes most specific to each cluster. 

Putative tumor-myeloid doublet clusters were removed prior to malignant analysis. Next, we computed 

the average gene expression on each somatic chromosome as described in Yuan et al15. For data obtained 
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from glioblastoma tissues (IDH1 wild type tissues), we define the malignancy score to be the log-ratio of 

the average expression of Chr. 7 genes to that of Chr. 10 genes as described previously. For data obtained 

from the TB6505, Chr. 2 amplification and Chr. 13 deletion were observed from the whole-genome 

sequencing results, therefore we define the malignancy score to be the log-ratio of the average expression 

of Chr. 2 genes to that of Chr. 13 genes. For data obtained from the TB6505, we define the malignancy 

score to be the log-ratio of the average expression of Chr. 2 genes to that of Chr. 1 genes as described in 

Banu et al.9. We plotted the distribution of malignancy score and fit a two-component Gaussian mixture 

model to the malignancy score distribution and established a threshold at 1.96 standard deviations below 

the mean of the Gaussian with the higher mean (i.e. 95% confidence interval). Putative malignant cells 

with malignancy scores below this threshold and putative non-tumor cells with malignancy scores above 

this threshold were discarded as non-malignant or potential multiplets. The malignant analysis of newly 

reported tissues was shown in Figure S1. We further manually annotated non-malignant cells into 

myeloid cells (CD14, AIF1, TYROBP, C1QA), oligodendrocytes (PLP1, MBP, MAG, SOX10), T cells 

(TRAC, TRBC1, TRBC2, CD3D), endothelial cells (ESM1, ITM2A, CLDN5), and pericytes (PDGFRB, 

COL3A1, RGS5) based on the highly enriched marker genes of each cluster. 

Consensus scHPF Models of Drug-Perturbed Human Glioma Slice Cultures 

For each major cell type (transformed glioma cells, myeloid cells, and oligodendrocytes), we constructed 

a merged count matrix in loom format using loompy. Next, for each cell type, we used the 

get_training_test_looms.py script to generating a loom file for the cells from which the consensus scHPF 

model would be trained and a smaller loom file for cells comprising the test set with 50 cells per patient. 

We then reformatted the training and test set loom files to the appropriate sparse matrix format for 

running scHPF using the scHPF prep and scHPF pre-like commands, respectively. For scHPF prep, we 

used a white list comprising protein-coding genes and excluding T cell and immunoglobulin receptor 

genes. We required genes to be detected in 1% cells to be included in the model. Finally, we used the 

scHPF_consensus.py script to run consensus scHPF. We generated scHPF models for each value of K 

from 15-30 with five trials (parameter n) per value of K. For Walktrap clustering, we required clusters to 

contain factors from at least two models (parameter m). This resulted in consensus scHPF models 

containing 22, 24, and 17 factors for transformed glioma cells, myeloid cells, and oligodendrocytes, 

respectively. We used the scHPF score command to compute cell and gene score matrices for each factor 

in each of the three consensus models. 

Analysis of Consensus scHPF Models to Identify Cell Type-Specific Drug Responses 
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For each patient-drug sample, we compared the cell scores for each factor between the scRNA-seq data 

for the drug-treated slice and the corresponding vehicle control-treated (DMSO) slice(s) from the same 

patient. To make this comparison, we computed the median absolute deviation (MAD) cell score for each 

factor and calculated the frequency of cells in each sample that were more than two MADs above the 

median cell score for the factor. The values plotted in Figures 4, 6, 7 are the log-scaled fold-changes for 

this cell frequency between the drug-treated slice and vehicle control-treated slice(s) for a given patient. 

For each drug-factor combination, we calculated FDR-corrected p-values using a linear mixed model with 

the log-scaled fold-change in cell frequency as the response variable and the drug treatment as a 

categorical covariate. We treated patients as random effects. Coefficients and p-values for each covariate 

were computed using the MixedLM function in the Python package statsmodels. P-values were corrected 

for false discovery using the multipletests function in statsmodels with the Benjamini-Hochberg 

procedure. 

 

Data and Code Accessibility 

The raw count matrix and metadata for the entire integrated dataset used in these studies is available as a 

loom file at: 

https://drive.google.com/file/d/18-KInmm43wKdBX95Gq9xbuzAQwtLjgE9/view?usp=sharing 

The original source code with tutorials for scHPF, which is used to build individual models in consensus 

scHPF can be found at https://github.com/simslab/scHPF.  Code for running consensus scHPF along with 

helper scripts and instructions can be found at https://github.com/simslab/consensus_scHPF_wrapper. 
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Figure 1. Schematic of consensus scHPF. Starting with an scRNA-seq count matrix, we construct 

multiple scHPF models with random initializations and different values of K. We then cluster the factors 

across models using their gene score vectors to identify sets of recurrent factors or modules. Finally, we 

refine a consensus scHPF model by initializing from the median parameters of those modules. The 

number of modules or recurrent factors becomes the final value of K. 
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Figure 2. UMAP embeddings of cell score matrices from consensus scHPF models colored by patient ID 

for A) transformed glioma cells; B) myeloid cells; C) oligodendrocytes; and colored by drug treatment 

condition for D) transformed glioma cells; E) myeloid cells; F) oligodendrocytes. 
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Figure 3. Hierarchically clustered heatmap showing the average cell scores for each patient-drug 

combination across all factors in the three cell type-specific, consensus scHPF models (glioma cells, 

myeloid cells, oligodendrocytes). 
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Figure 4. Fold-changes in the frequencies of cells with high cell scores in drug-treated vs. vehicle 

control-treated slice cultures in the transformed glioma cell scHPF model for A) a proliferation factor; B) 

a metallothionein factor; C) an astrocyte/mesenchymal factor; and D) a mesenchymal factor.  Here, each 

dot represents an individual patient (i.e. biological replicates). For each drug, ** indicates FDR<0.05 

based on a linear mixed model. 
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Figure 4. A) UMAP embeddings of the cell score matrix for the consensus scHPF model of transformed 

glioma cells colored by log(CPM+1) expression of TOP1; B) same as A) but for CD44; C) correlation 

between binned expression of TOP1 and CD44; D) same as A) but for TOP2A; E) same as A) but for 

MKI67; F) same as C) but for TOP2A and MKI67. 
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Figure 6. Fold-changes in the frequencies of cells with high cell scores in drug-treated vs. vehicle 

control-treated slice cultures in the myeloid cell scHPF model for A) a histone/metallothionein factor; B) 

a monocyte/macrophage factor; C) a macrophage factor; and D) a pro-inflammatory factor.  Here, each 

dot represents an individual patient (i.e. biological replicates). For each drug, ** indicates FDR<0.05 

based on a linear mixed model. 
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Figure 7. Fold-changes in the frequencies of cells with high cell scores in drug-treated vs. vehicle 

control-treated slice cultures in the oligodendrocyte scHPF model for A) a metallothionein factor and B) a 

sterol biosynthesis factor. For each drug, ** indicates FDR<0.05 based on a linear mixed model. 
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