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Abstract

Genome-wide association studies (GWAS) are a ubiquitous tool for identifying genetic variants
associated with complex traits in structured populations. During the past 15 years, many fast GWAS
algorithms based on a state-of-the-art model, namely the linear mixed model, have been published to
cope with the rapidly growing data size. In this study, we provide a comprehensive overview and
benchmarking analysis of 33 commonly used GWAS algorithms. Key mathematical techniques
implemented in different algorithms were summarized. Empirical data analysis with 12 selected
algorithms showed differences regarding the identification of quantitative trait loci (QTL) in several
plant species. The performance of these algorithms evaluated in 10,800 simulated data sets with
distinct population size, heritability and genetic architecture revealed the impact of these parameters
on the power of QTL identification and false positive rate. Based on these results, a general guide on
the choice of algorithms for the research community is proposed.
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Introduction

Genome-wide association studies (GWAS) are an important tool for dissecting the genetic architecture
of complex traits in human, animal and plant populations * > 3. Population structure and genetic
relatedness affect the accuracy of GWAS and usually cause inflated test statistics resulting in high false
positive rate (FPR). Early approaches to reduce inflation include genomic control 4, structured
association ® and principal component analysis®. The Q+K linear mixed model (LMM) 7 has become the
gold standard for GWAS because it is assumed to strike a good comprise between FPR and statistical
power & °. In this model, population structure is controlled by covariates (Q) and the kinship
relatedness is accounted for by random polygenetic effects with a covariance matrix (K) derived from
pedigree or genomic data.

A standard GWAS algorithm based on the Q+K model involves two steps: 1) solving the LMM and 2)
generating the test statistics. These two steps are repeated for each marker (Fig. 1A). The first step is
usually implemented by the maximum likelihood (ML) or restricted maximum likelihood (REML)
method %, both requiring iterations to estimate the unknown parameters. The most time-consuming
parts are matrix multiplications and inverting matrices of size n X n, where n is the number of
genotypes. Without specific mathematical techniques to improve the efficiency, the time complexity
of this step is about O(tpn®), where p is the number of markers and t is the average number of
iterations. The second step is usually performed by the likelihood ratio (LR) test, the Wald test or the
F-test. The calculation of the LR test statistic is straightforward as the likelihood values are obtained
in the first step. The Wald test or F-test statistics require extra computations involving multiplications
of n X n matrices with n-dimensional vectors for each marker and the complexity is O(pn?). Thus,
the complexity of the entire GWAS algorithm is dominated by the first step, namely O(tpn?). As the
size of datasets increases rapidly with the advances in genomics technology, computational efficiency
has become a bottleneck for the standard algorithm. Therefore, it is indispensable for the research
community to improve the efficiency of GWAS algorithms without losing power or inflating FPR.

In the last decade and a half, many different fast GWAS algorithms have been developed. Some
applied elegant mathematical techniques to accelerate the standard algorithm 1% 1213141516 gthers
introduced different approximations in solving the LMM and/or generating test statistics 14 17-18 19, 20,
222 and still others modified the standard Q+K model with the aim of increasing the statistical power
23,24,25,26,27, 28, 29(Fjg 1 A). These algorithms do not necessarily yield consistent results for the same data
set. In 2014, a study compared several methods using human family-based data and highly concordant
results were found for the different approaches3°. However, the underlying algorithms of the methods
included in this study were similar. Since then, many new algorithms implementing diverse
mathematical techniques have appeared and an up-to-date comprehensive comparison is lacking.
Therefore, a deep understanding how the algorithms shape QTL identification is required to interpret
the outcome of different GWAS algorithms for the same data set.

A practical problem faced by scientists is how to choose an appropriate algorithm for their research.
In this study, we first review GWAS algorithms commonly used by the research community in the past
decade and a half. Then, we select 12 representatives to perform a comprehensive benchmarking
analysis in which the statistical power and false-discovery rate of the algorithms are compared
through a large-scale simulation study with 10,800 data sets. In the end, we provide practical
recommendations to scientists on the pros and cons of these algorithms.
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80 Results
81  An overview of fast GWAS algorithms based on LMM

82  The computational complexity of fast GWAS algorithms is dominated by the step of solving the LMM.
83  Consequently, the first few fast algorithms aimed directly at improving the efficiency of this step. The
84  algorithm EMMA™, also implemented in the software TASSEL3!, avoided repeatedly inverting matrices
85 in each iteration by applying spectral decomposition to certain n X n matrices and reduced the time
86  complexity from O(tpn®) to O(pn3 + tpn). However, the decomposition had to be applied for each
87  marker in EMMA. This was further improved by two algorithms FaST-LMM *? and GEMMA 13, in which
88  the decomposition was performed only once for the kinship matrix (the n X n covariance matrix of
89 random polygenic effects in the Q+K model) throughout the whole testing procedure. Then, the
90  complexity was reduced to O(n® + pn? + tpn), where the pn? term came from generating the
91 marker-derived kinship matrix. These two algorithms produced exact test statistics up to machine
92 precision and possible convergence to local maxima. Hence, they were classified as exact algorithms.
93  Recently, another exact method MM4LMM ! exploiting a minorize-maximization algorithm 32to solve
94  the LMM was published. Instead of solving the LMM by numerical optimization methods, Grid-LMM
95 15 directly searched for solutions in a pre-defined grid spanning all valid values with complexity
96  0(gn®+ pn?), where g is the grid size. It was reported that the test statistics were almost the same
97 as exact methods despite limiting the precision of estimators by the resolution of the defined grid.
98  Thus, we may call it a quasi-exact algorithm.

99 In order to improve the computational efficiency further, approximations were introduced to the
100 procedure of solving the LMM. The earliest approximated approach “Population Parameters
101  Previously Determined” (P3D) Y’ was implemented in the software GAPIT 3> 3% 3 termed GAPIT-MLM,
102 and was independently invented in EMMAX 22, In this approach, the LMM was solved only once for
103 the “null model”, i.e., the model without any marker effects. Then, the estimators of variance
104  components were fixed throughout the whole testing procedure. In this way, it avoided repeatedly
105  solving the LMM for each marker and hence further reduced the complexity to O(n3 + pn? + tn). It
106  was reported that the P3D approach resulted in similar detection power to the exact methods. Hence,
107  this approach has been implemented either by default or as an option in almost all popular software
108  packages for GWAS (e.g. FaST-LMM, GCTA 3¢, TASSEL).

109 When P3Disimplemented, producing test statistics requires additional computations with complexity
110  O(pn?), no matter which type of statistical test is applied. Hence, producing the test statistics in a
111 more efficient way can also increase the efficiency. The algorithm GRAMMAR *° implemented in
112 GenABEL ¥ proposed to use the residuals from the null model as the response in a simple linear
113 regression model to test the marker effects. This approach reduced the complexity of calculating test
114  statistics from O(pn?) to O(pn), but produced biased test statistics with reduced power. This
115  drawback was overcome in GRAMMAR-Gamma %, which introduced an approximation to the original
116  Wald-test statistic and also reduced the complexity to O (pn). This approach was also included as an
117  option in the algorithm fastGWA 2! implemented in GCTA, which is termed fastGWA-GG in our study.
118 Nevertheless, for these algorithms the complexity is still 0(n® + pn? + tn) since the total complexity
119 is dominated by the step of solving the LMM.

120  Although applying decompositions to the kinship matrix greatly improves the computational efficiency,
121 the complexity of the technique itself is still high, typically O (n3). Therefore, some algorithms tried to
122 improve the efficiency by modifying the kinship matrix. The algorithms CMLM ¥’ and its enrichment
123 version ECMLM 8 in GAPIT compressed the kinship matrix by classifying the genotypes into ¢ groups
124 (¢ < n), so that the computational efficiency increased by (n/c)? fold. However, to optimize the
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125  detection power, the evaluation of the likelihood function needed to be repeated until the parameter
126 c is optimized. The algorithm fastGWA provided the option of setting a threshold to make the kinship
127  matrix sparse, namely all entries below the threshold were set to zero, so that special techniques for
128  sparse matrices can be used to increase efficiency. This variant of fastGWA is termed fastGWA-sp in
129 our study. When both the sparse kinship matrix and the GRAMMAR-Gamma approximation are used,
130  thevariant is termed fastGWA-sp-GG.

131  The first algorithm that avoids decomposing the kinship matrix is BOLT-LMM 4, which implemented a
132 Monte Carlo sampling approach to solve the LMM. In this algorithm, it was not necessary to explicitly
133 calculate the marker-derived kinship matrix, and it also avoided inverting or decomposing matrices of
134 size n X n. Indeed, it transformed the problem to solving systems of linear equations by the conjugate
135  gradient method, in which only products of n X p matrices with p-dimensional vectors are needed (at
136  the cost of a few iterations). Together with P3D, it remarkably reduced the complexity of solving LMM
137  to O(mtpn), where m is the average number of Monte Carlo sampling and t is the average number
138  of iterations. BOLT-LMM also invented an approximated approach for calculating the test statistics
139  similar to GRAMMAR-Gamma. Therefore, the total complexity of BOLT-LMM is O(mtpn). This
140 algorithm has two variants, one follows the standard Q+K model (BOLT-LMM-inf), the other assumed
141 Gaussian mixture priors for the random marker effects which serve as a control of polygenic
142 background, termed BOLT-LMM-mix L. By default, BOLT-LMM combined the two variants and applied
143  cross-validations to determine which variant was used to produce the final test statistics.

144  Most of the above algorithms aim to improve the computational efficiency of the standard Q+K model,
145  while others modify the model to increase the power and/or to decrease the FPR. The first technique
146  with such a purpose was “Leave-One-Chromosome-Out” (LOCO) 38, which has already been
147  implemented by default or as an option in many algorithms (FaST-LMM, MLMA-LOCO in GCTA, BOLT-
148 LMM, REGENIE?°). That is, when a marker is tested, all markers on the same chromosome are excluded
149  when calculating the kinship matrix. It has been reported that LOCO can increase the power by
150 avoiding proximal contamination, a phenomenon that the power of detecting QTL is reduced when
151  markers correlated with the QTL are involved in the calculation of kinship matrix 2> 3%, The algorithm
152 MLMM 2° implemented a forward-backward stepwise linear mixed model to include additional marker
153  covariates in the Q+K model. While MLMM still used all markers to build up the kinship matrix, FaST-
154 LMM-select 2 used cross-validation to select a subset of markers for deriving the kinship matrix. FaST-
155 LMM-select was reported to have higher power than the standard Q+K model, but in some cases did
156  not sufficiently control the FPR. This was improved in FaST-LMM-all+select 24, in which two random
157 polygenic effects were included, one with the kinship matrix derived by all markers and the other by
158  the selected ones. In the software package GAPIT, three different algorithms SUPER %6, FarmCPU ¥’ and
159  BLINK % were implemented, all of which differ from the standard Q+K model. A common feature of
160 these three algorithms is that only a subset of markers was selected to control the population
161  structure. In SUPER and FarmCPU, the selected markers were used to generate the kinship matrix. In
162 BLINK, the selected markers were modeled directly as fixed covariates. The models used to produce
163 the test statistics were also different: SUPER still used LMM, but FarmCPU and BLINK used the multi-
164  variate linear regression (MLR) model. A recently published algorithm REGENIE ?° tested the marker
165 effects based on the residuals from the null model, similar to GRAMMAR. But it fitted the null model
166 by a two-step stacked ridge regression approach, which is different from all above algorithms.

167  The main features of the above algorithms were summarized in Table 1 and the relationship among
168  these algorithms was illustrated in Extended Data Fig. 1. We selected 12 representatives for the
169 subsequent benchmarking analysis: GEMMA, Grid-LMM, GAPIT-MLM, MLMA-LOCO, CMLM, fastGWA-
170 GG, fastGWA-sp, BOLT-LMM-inf, BOLT-LMM-mix, FaST-LMM-select, FarmCPU and BLINK. These
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171  algorithms encompass the most important mathematical techniques which were applied to improve
172 the computational efficiency. In case many algorithms implemented essentially the same techniques,
173  only one representative was selected. More details of the selection procedure were described in
174  Methods. An in-depth review of the key mathematical techniques implemented in the 12 selected
175 algorithms was provided in Supplementary Note A.

176  The strategy of the applied benchmarking analysis

177  Our benchmarking analysis consisted of two parts based on empirical and simulated data sets,
178 respectively (Fig. 1B). The empirical data sets comprised four large plant populations of inbreeding
179 species: Arabidopsis, wheat, rice, barley as well as one population of maize inbred lines (see Methods
180  for details). The 12 selected algorithms were applied to each of the five datasets, with a few exceptions
181 as the computational load for some algorithms in certain data sets was too high.

182  The simulated phenotypic data were based on the genomic data from a wheat population consisting
183  of 5,581 accessions with 427,937 single nucleotide polymorphism (SNP) markers. Three population
184 sizes (300, 1000, 3000), three trait heritabilities (0.3, 0.5, 0.7), and 12 different levels of complexity for
185 the genetic architecture were considered in the simulation. Thus, there were in total 3 x 3 x 12 = 108
186 different scenarios. Each scenario was simulated 100 times, resulting in 10,800 data sets. For the
187  simulated genetic architecture, we considered three factors of complexities. 1) The extent of linkage
188  disequilibrium (LD) between QTL (three levels, denoted by LD pattern 1, 2 and 3). 2) The proportion
189  of genetic variance (PG) explained by the major QTL (two levels, indicated by PG1 and PG2). 3) The
190 number of minor QTL contributed as the genetic background (GB) effects (two levels, designated GB1
191 and GB2) (Figure 1B). More details of the simulation procedure were described in Methods.

192 In each of the 108 scenarios, the statistical power in detecting QTL and the FPR of the 12 algorithms
193  were assessed through the 100 replicated datasets, except for CMLM and FaST-LMM-select, which
194  were solely evaluated in the 72 scenarios representing the datasets with population sizes 300 and
195 1,000 because the computational load was too high for a population size of 3,000.

196  Comparing the performance of the algorithms with empirical data

197  The 12 selected algorithms were compared based on five empirical data sets (Fig. 2; Supplementary
198 Figs. 1-4). We took the result of GEMMA as a benchmark as it is an exact algorithm based on the
199  standard Q+K model. In general, we found that GEMMA detected the least number of regions among
200 all algorithms, except fastGWA, which detected fewer regions than GEMMA in the wheat, Arabidopsis
201 and maize datasets (see Panel D of the five figures). Nevertheless, the regions identified by GEMMA
202  were the most congruent among all algorithms. In particular, the results of Grid-LMM, GAPIT-MLM
203  and CMLM were nearly identical to those of GEMMA (the correlation of -logio(p) values was close to
204 1). The regions identified by GEMMA were also detected by BOLT-LMM-inf and BOLT-LMM-mix in
205 most cases, but not always by FaST-LMM-select, fastGWA-sp, FarmCPU or BLINK. Note, that the
206 regions detected by FarmCPU and BLINK were typically represented as scatter points rather than as
207  peaks in the Manhattan plots reflecting the underlying model (Supplementary Note A). Except for the
208 barley dataset, regions commonly identified by other algorithms but not GEMMA were detected by
209 five or fewer algorithms, and many were detected by only one or two algorithms. For example, in the
210  Arabidopsis data set, the 12 algorithms identified in total 20 regions, whereas GEMMA only found
211 three. And there were 14 regions which were identified by just one algorithm (Supplementary Fig. 1).
212 Interestingly, candidate genes whose role in controlling flowering time had been documented in
213 literature were found closely linked to the associated SNPs for 16 out of 20 regions (Supplementary
214  Table 1). Nevertheless, since the positions of true QTL are largely unknown for the empirical data sets,
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215 it is unclear which of the QTL represent faithful candidates or false positives. A reliable assessment of
216 power and FPR of the different algorithms requires a simulation study.

217  Comparing the statistical power and FPR of the algorithms with simulated data

218 We compared the power of QTL detection and FPR of all algorithms under the threshold of p < 0.05
219  after Bonferroni correction for multiple testing *°. In general, the heritability of the trait, the
220 population size, and the number of markers contributing to the genetic background played a minor
221 role in ranking the algorithms. MLMA-LOCO, FaST-LMM-select and the two variants of BOLT-LMM
222 (BOLT-LMM-inf and BOLT-LMM-mix) achieved the highest power in most scenarios (Fig. 3A, Extended
223 Data Figs. 2A, 3A). However, they also produced the highest FPR among all algorithms, while the FPR
224  of the other 8 algorithms was much lower (Fig. 3B, Extended Data Figs. 2B, 3B).

225  The power of GEMMA and Grid-LMM was very similar across all scenarios, as was the power of
226 FarmCPU and BLINK. Interestingly, the relative performance of the two groups of algorithms
227 depended on the genetic architecture of the datasets. More specifically, the power of FarmCPU and
228 BLINK was higher than that of GEMMA and Grid-LMM when there was no LD between major QTL (LD
229  patterns1and 2), especially in PG1 where each of the six QTL explained only 2% of the genetic variance.
230 In contrast, when the QTL were in LD (LD pattern 3), GEMMA and Grid-LMM produced similar power
231 to that of FarmCPU and BLINK in PG1, and substantially outperformed them in PG2, where the PG
232  explained by the six QTL was much higher (from 2% to 12% with a step of 2%). Thus, the results
233 indicated that 1) FarmCPU and BLINK are favored for independent QTL, while GEMMA and Grid-LMM
234  are better for detecting QTL pairs in LD. 2) In the case of independent QTL, the advantage of FarmCPU
235 and BLINK are more pronounced for QTL explaining small PG. These conclusions were supported by
236  evidence from more detailed analyses: For scenarios with PG2, it is very clear that the power of
237 FarmCPU and BLINK was much higher than that of GEMMA and Grid-LMM for the discovery of QTL
238  with PG < 6% in LD patterns 1 and 2, whereas for QTL with PG = 8% their advantage was less evident
239  (Extended Data Fig. 4, Supplementary Figs. 5-6). For scenarios with LD pattern 3, we observed that at
240  low level of LD between QTL (0.16 < r? < 0.36), GEMMA and Grid-LMM had almost no advantage
241 (Extended Data Fig. 5, Supplementary Fig. 7). Nevertheless, as LD increased, the power of GEMMA
242  and Grid-LMM exceeded that of FarmCPU and BLINK. This trend was more pronounced in PG2 than in
243 PG1.

244  Furtherinvestigations revealed that the two groups of algorithms also differed in their ability to detect
245 QTL with different MAFs (Extended Data Figs. 6-7, Supplementary Figs. 8-11). For GEMMA and Grid-
246 LMM, the difference between the power of detecting QTL with different ranges of MAF was larger
247  than for FarmCPU and BLINK. For example, with LD patterns 1 and 2, the power of GEMMA and Grid-
248 LMM for detecting QTL with MAF above 0.1 was clearly lower than that of FarmCPU and BLINK.
249 However, for QTL with MAF less than 0.1, the gap was much smaller and in many scenarios GEMMA
250  and Grid-LMM achieved similar power as FarmCPU and BLINK. This trend was even more pronounced
251 with LD pattern 3. In most scenarios, the power of GEMMA and Grid-LMM was similar to or only
252  slightly higher than FarmCPU and BLINK for QTL with MAF above 0.1, but for QTL with MAF below 0.1,
253 FarmCPU and BLINK were clearly outperformed. These results indicate that GEMMA and Grid-LMM
254 are more sensitive to the MAF of QTL and are better at detecting QTL with rare alleles, while FarmCPU
255  and BLINK are more powerful at detecting QTL with common alleles.

256 For the remaining four algorithms, the power of GAPIT-MLM and CMLM was similar to or slightly lower
257  than GEMMA and Grid-LMM in most scenarios, followed by the two variants of fastGWA (fastGWA-sp
258  and fastGWA-GG). The power of fastGWA-GG was the lowest in most scenarios. Detailed analysis
259 indicated that the low power was likely due to the underlying model of fastGWA which is slightly
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260 different from the standard Q+K model (Supplementary Note B). In addition, we found that in some
261  scenarios (e.g., LD patterns 1 and 2, population size 3000 and heritability 0.7, Fig. 3B), the FPR of
262  fastGWA-sp was surprisingly high. Further analysis revealed that for a small fraction of simulated
263  datasets, the p-value produced by fastGWA-sp were zero for all markers, and we suspected that this
264  might be caused by cumulated numerical errors during the computation (Supplementary Note B).

265  The above comparisons of the performance of the 12 algorithms are based on a common threshold.
266  To assess their overall ability to classify true and false positives, we investigated the receiver-operating
267  characteristic (ROC) curves (Fig. 4, Extended Data Figs. 8-9), which is obtained by depicting the power
268 against the FPR under various thresholds. Since fastGWA-sp produced erroneous p-values in a small
269 proportion of data sets, it was excluded from this part of analysis. Surprisingly, the ranks of the
270  algorithms from the viewpoint of ROC curves differed from those under a fixed threshold. We found
271 that the ROC curves of GEMMA, Grid-LMM, GAPIT-MLM and CMLM overlapped almost completely
272  and were closest to the upper-left corner, or point (0, 1) in all scenarios. Thus, the area under the
273  curve (AUC) was largest for these four algorithms, implying that they clearly outperformed the other
274 algorithms in the sense that they would have the highest power at any given level of FPR and the
275 lowest FPR at any given power. It should be noted, however, that it is not easy to exploit this
276  theoretical advantage in reality, because different algorithms reach a given FPR or power at different
277  thresholds, and for empirical data sets it is impossible to know the exact relationship between the
278  threshold and power/FPR. For a given threshold, the algorithm favored by the ROC curve does not
279  necessarily produce the highest power. This is exactly what we observed in Fig. 3 with our simulated
280  datasets for which a stringent threshold (p < 0.05 after Bonferroni correction) was applied. We also
281  tried a more liberal threshold (p < 0.05 after Benjamini-Hochberg correction %°) and found that the
282 rankings of the algorithms did not change in most scenarios (Supplementary Figs. 12-14). Therefore,
283 it would be very interesting to know if there is an optimized threshold for the algorithm whose ROC
284  curve has the largest AUC, so that the theoretical advantage can be exploited. This topic is beyond the
285  scope of the current study, but is certainly worth further investigation.

286  The influence of specific techniques on the power and FPR

287  The results obtained in the previous section enabled a detailed investigation of the influence of a
288  specific mathematical/statistical technique on the detection power and FPR by comparing the results
289  of two algorithms that differ only in whether the technique is implemented or not (Fig. 5A). In the
290 following, we mainly focused on the techniques inflating FPR, because the four algorithms that
291 boosted power (FaST-LMM-select, BOLT-LMM-inf, BOLT-LMM-mix and MLMA-LOCO) were also
292  accompanied with inflated FPR.

293 FaST-LMM-select specifies a subset of markers whose correlations with the trait are highest to build
294 up the kinship matrix. In this process, the number of markers is determined by cross-validation. We
295  found that this approach boosted the power but also inflated the FPR, which is consistent with
296  previous studies?* 38, It has been reported that FaST-LMM-all+select or adding a few PCs of the SNP
297 matrix as covariates to the FaST-LMM-select model can control FPR ?*. Nevertheless, we did not
298  evaluate these two approaches as they significantly increase the computational load.

299 MLMA-LOCO implemented LOCO and P3D, BOLT-LMM-inf and BOLT-LMM-mix implemented LOCO,
300 P3D and introduced certain approximations for computing test statistics. We observed that these
301 three algorithms increased both the power and the FPR. Since there is no evidence that P3D inflates
302 the test statistics, it suggests that LOCO is responsible for the inflated FPR. A previous study also
303  observed inflated FPR for BOLT-LMM:-inf and BOLT-LMM-mix %! and claimed that the high FPR was due
304 to a partial LOCO approach implemented in these two algorithms (The LOCO technique was only
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305 applied in the calculation of the test statistics, but not in the estimation of the unknown parameters
306 of the LMM). We then re-evaluated the two algorithms by forcing a genuine LOCO procedure (see
307 Methods) with 400 simulated data sets, but could not find essential differences (Supplementary Table
308  2).Thus, our results indicated that LOCO not only increases the power but also caused inflation of FPR.
309 It is well-known that LOCO can avoid proximal contamination and hence increase the statistical power
310 compared with the algorithms using all markers to build up the kinship matrix %> 3. However, recent
311  studies reported inflated test statistics when LOCO was applied **#?, thus providing an explanation for
312 the inflated FPR which was observed in this study.

313  The sparse kinship technique implemented in fastGWA-sp also inflated FPR. Even if we ignore the
314 small proportion of the simulated data sets in which computational errors occurred, the FPR of
315  fastGWA-sp in certain scenarios was still higher than other algorithms (Supplementary Note B). In our
316 analysis, the threshold for sparse kinship was set to 0.05, which was recommended by the algorithm.
317  We also examined the performance of fastGWA-sp with other thresholds (0, 0.1, 0.15, and 0.2) in 100
318 simulated datasets and observed different levels of inflation of FPR (Supplementary Fig. 15). It should
319 be noted that sparse kinship with the threshold 0 is not the same as exact kinship because negative
320  values exist in the kinship matrix. This result indicated that setting small entries in the kinship matrix
321 to zero may lead to insufficient control of the population structure. Therefore, further studies are
322 needed to find out the applicability of this technique in different populations.

323  Discussion

324 In this study, we provided a comprehensive overview of LMM-based fast GWAS algorithms applied in
325 the last decade and a half and selected 12 representatives for a benchmarking analysis to evaluate
326  their statistical power and FPR using 10,800 simulated datasets. Large plant populations of inbreeding
327  species or inbred lines were the focus as they were often underrepresented in previous studies in
328  which the algorithms were developed and evaluated. For example, some algorithms were developed
329  and tested only with human data sets ** 2! or with small-size plant data sets?” %8, Indeed, we observed
330 some results different from those obtained in simulation studies based on human genomic data. The
331  influence of LOCO and sparse kinship matrix on the FPR are two examples. While we found inflated
332  FPR for algorithms implementing these two techniques, studies based on human populations did not
333 34 |nterestingly, it was also reported that LOCO could result in inflated test statistics (the genomic
334 inflation factor A > 1, defined as the median of the observed distribution of test statistics divided by
335 the median of the expected distribution) in some empirical studies with animal populations **? and
336 it was suspected that the stronger population stratification in livestock populations might be the
337  reason why inflation was not observed in studies with human populations **. Therefore, the influence
338  of a specific technique on the power and FPR of GWAS might not be consistent across species, or even
339  populations. Considering this point, we evaluated the 12 algorithms in 1,200 additional simulated data
340  sets based on the genomic data of Arabidopsis, maize and barley populations. The rankings of
341 algorithms in terms of statistical power and FPR were consistent with those observed for wheat
342 genomic data (Extended Data Fig. 10). Nonetheless, the differences between classes of algorithms in
343 terms of power and FPR was less pronounced in the Arabidopsis and maize data sets compared to the
344 results for genomic data of wheat and barley. In future, it should be a priority to assess whether for
345  example differences in LD decay contribute to the observed inconsistencies. For the time being, the
346 selection of GWAS algorithms should consider potential differences between species and populations.
347 If one or more techniques implemented by an algorithm were reported to have inflated test statistics
348 in certain populations, we should be careful to apply it and at least check the genomic inflation factor
349  with the resulting test statistics.


https://doi.org/10.1101/2023.12.05.570105
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.570105; this version posted December 7, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

350 The results of our benchmarking analysis were summarized in Fig. 5B. FaST-LMM-select, BOLT-LMM-
351 inf, BOLT-LMM-mix and MLMA-LOCO had the highest power but also the highest FPR across all
352 scenarios, while fastGWA-sp had inflated FPR in some scenarios. Thus, the additional regions identified
353 by these five algorithms in the empirical datasets could be a mix of true and false positives. In general,
354  we would suggest being cautious when applying the five algorithms. However, for small populations
355 and traits with very low heritability, FaST-LMM-select, BOLT-LMM-inf, BOLT-LMM-mix and MLMA-
356 LOCO might be a good choice because the four algorithms had much higher power than the other
357 algorithms and their FPR was still in an acceptable range.

358  The other seven algorithms controlled the FPR stringently. While fastGWA-GG produced the lowest
359  power in most scenarios, the remaining six can be divided into two groups: The first group consists of
360 GEMMA, Grid-LMM, GAPIT-MLM and CMLM, and the second is comprised of FarmCPU and BLINK.
361 Note that additional candidates for the first group include FaST-LMM (without LOCO), EMMAX, GCTA-
362 MLMA (without LOCO) and TASSEL-MLM, which were not evaluated in our study but implemented the
363  same technique as GEMMA or GAPIT-MLM. The algorithms in the first group produced higher power
364  for QTL with low MAF, explaining relatively large PG and for QTL pairs with medium to high LD. In
365  contrast, the second group of algorithms was better at detecting independent QTL with medium to
366 high MAF and explaining small PG. The relative behavior of the two groups of algorithms is very
367 interesting because their underlying models differ greatly. While the first group followed the standard
368 Q+KLMM (GEMMA, Grid-LMM and GAPIT-MLM) or introduced only minor modifications (CMLM), the
369 second group employed techniques that differed greatly from the Q+K model. Our results in the
370  simulation studies indicated that most regions identified by FarmCPU and BLINK, but not by GEMMA,
371 in the empirical datasets were unlikely false positives since both groups of algorithms stringently
372 controlled the FPR, but the model differences resulted in a complementary detection power. Based
373  onall results, we recommend a combination of two algorithms, each from one group, as the optimal
374 strategy for performing GWAS.

375
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376 Methods
377  The procedure of a standard GWAS algorithm based on the Q+K model

378 In this section, we briefly describe the Q+K model’ for GWAS and the procedure of solving the model
379  as well as producing the test statistics. More details are provided in the Supplementary Note A.

380 For simplicity, the model is presented in the case that each individual has only one phenotypic
381  observation as follows:

382 y=Qf+ma+g-+e, D

383 where y is the n-dimensional vector of phenotypic observations, B is the k-dimensional vector of
384  covariates which may include a common intercept, environmental and/or subpopulation effects etc.,
385 Q is the corresponding design matrix of sizen X k, ais the effect of the marker being tested, m is
386  the n-dimensional coding vector of the marker, g is the n-dimensional vector of polygenic effects,
387 and e is the n-dimensional vector of residuals.

388 In the model, B and a are treated as fixed effects, g and e are random effects following multi-variate
389 normal distribution: g~N(0, Ka;), e~N(0, Iaez), where K is ann X n kinship matrix derived from
390 pedigree/marker information, I is the n X n identity matrix, 05 and o2 are the corresponding
391  genetic and residual variance components.

392  The procedure of GWAS can be roughly divided into two steps: 1) solving the model; 2) producing the
393  test statistics. Usually, the model is solved by maximum likelihood (ML) or restricted maximum
394  likelihood (REML) method. Taking the ML method as an example, the log-likelihood function is the
395 following:

n 1 1

396 LL(B,a,8,02) = —Elog(Znaez) — EloglVl =52 (y—-QB—ma)Vi(y—QB—ma), (2)
e

397 where V=6K+1,5=0;/0Z, and || denotes the determinant of a matrix. The unknown

398 parameters, namely 5, a, § and 032, are estimated as the values such that the log-likelihood function
399 reaches its maximum.

400 The test statistics can be produced with different approaches, e.g. the likelihood ratio test and the
401  Wald test. Taking the Wald test as an example, the test statistic has the following form

aZ

402 Twaia = (3)

var(d)’
403 where @ is the estimated value of a. Under the null hypothesis, the test statistic follows a y?-
404  distribution with one-degree of freedom.

405 The time complexity of an algorithm

406 For the convenience of readers, we briefly recall the time complexity of an algorithm **. In computer
407 science, the time complexity describes the amount of computer time it takes to run an algorithm. It is
408  usually estimated by counting the number of elementary operations, i.e. additions and multiplications
409 of numbers, performed by the algorithm. Assuming that each elementary operation takes a fixed
410 amount of time, the amount of time taken and the number of elementary operations performed by
411  the algorithm are related by a constant factor.
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412 In most cases, the running time of an algorithm depends on the size of input data. Thus, the time
413 complexity is generally expressed as a function of the size of the input. Since this function is generally
414  difficult to compute exactly, one commonly focuses on the behavior of the complexity when the input
415  size increases, i.e., the asymptotic behavior of the complexity. Therefore, the time complexity is
416 commonly expressed by the so-called “big O” notation. For example, suppose that the size of input
417  data depends on two variables m and n, an algorithm with time complexity O(mn?) means that the
418  amount of running time increases linearly as the increase of m, and quadratically as the increase of n.

419 Here are useful results about the time complexity of some basic operations in matrix algebra: The time
420  complexity of multiplying an m X n matrix withann X k matrixis O(mnk). Thus, the product of two
421  n X n matrices has complexity O(n?), and the complexity of multiplying an m X n matrix with an n-
422  dimensional vector is O (mn). The inner product of two n-dimensional vectors has complexity O (n).
423  The complexity of inverting or performing the spectral decomposition of an n X n matrix is 0(n3).

424  Fast GWAS algorithms evaluated in this study

425  The principles of selecting algorithms for benchmarking analysis were the following: 1) Among the
426  same class of algorithms in which similar techniques for improving the computational efficiency were
427  implemented. Only if an algorithm was reported in the literature to be clearly inferior to the others, it
428  was excluded from the analysis. 2) In case several algorithms from different software packages
429 implemented the same techniques, only one representative was selected. The results for the selected
430 algorithm should then be treated as equally working for the entire class of algorithms that it
431 represents. 3) As long as 1) is not violated, we tried to include as many different techniques as possible.
432 Each technique is represented by at least one selected algorithm.

433  According to the above principles, the following decisions were made:

434 1) Among the four exact and quasi-exact algorithms (EMMA, FaST-LMM, GEMMA and Grid-LMM), we
435  selected GEMMA and Grid-LMM for our analysis. EMMA is computationally inefficient (complexity
436  0(pn3 + tpn)) compared with GEMMA and FaST-LMM (complexity O(n3 + pn? + tpn)). In fact, the
437 R package EMMA has been removed from the CRAN repository. The new version of FaST-LMM (based
438  on Python) implements P3D and the exact FaST-LMM algorithm is available only in the old C++ version.
439  Thus, we decided to take GEMMA as the representative. Grid-LMM was selected because it solves the
440 LMM by grid search instead of numerical optimization, hence it is different from the other three
441  algorithms.

442 2) There are several algorithms implementing P3D with the standard Q+K model (but without other
443 techniques), namely GAPIT-MLM, FaST-LMM-P3D, EMMAX, and TASSEL-MLM. There is no essential
444  difference among these algorithms and we selected GAPIT-MLM as the representative.

445  3) A few algorithms implementing the LOCO technique, including FaST-LMM (as an option), MLMA-
446 LOCO and BOLT-LMM. Since P3D is mandatorily implemented in the new version of FaST-LMM and in
447 MLMA-LOCO, it means that both algorithms implemented P3D and LOCO based on the standard Q+K
448 model, and without other techniques. We selected MLMA-LOCO as a representative. BOLT-LMM was
449 selected as it implements the Monte Carlo sampling approach to solve the LMM which is different
450 from all other algorithms. There were two options in BOLT-LMM for controlling the genetic
451 background effects or the population structure. One follows the standard Q+K model, termed BOLT-
452 LMM-inf. The other implements a Gaussian mixture for the random marker effects, similar to a
453 Bayesian genomic prediction model %°, termed BOLT-LMM-mix. The default BOLT-LMM algorithm
454  combined the two variants and performed a cross-validation to determine which variant would be
455 used to produce the final test statistics. In our study, we purposely treated BOLT-LMM-inf and BOLT-
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456 LMM-mix as two different algorithms to assess the influence of the different techniques implemented
457 in the two variants.

458  4) Several algorithms implemented approximations to the test statistics, namely GRAMMAR,
459 GRAMMAR-Gamma, BOLT-LMM, and fastGWA. BOLT-LMM was already selected, while for the
460 remaining three we only included fastGWA. According to the previous studies, the algorithm
461  GRAMMAR produces conservative tests and biased estimates ¥ 2° and it was improved in GRAMMAR-
462 Gamma, which was also implemented as an option in fastGWA, termed fastGWA-GG. Since the
463 package GenABEL implementing GRAMMAR and GRAMMAR-Gamma has been removed from the
464 CRAN repository, both were excluded in our analysis. But fastGWA-GG was selected to represent
465 GRAMMAR-Gamma. Besides, fastGWA implemented another option of making the kinship matrix
466  sparse, termed fastGWA-sp. This variant was also selected for our analysis.

467  5) Among the two algorithms which compress the kinship matrix (CMLM and ECMLM), we selected
468  CMLM because the enriched version ECMLM is computationally much more demanding for large data
469 sets despite it may increase the power of detection .

470 6) For the algorithms that select a subset of markers to control the population structure or polygenic
471 background (MLMM, FaST-LMM-select, FaST-LMM-all+select, SUPER, FarmCPU and BLINK), we
472 selected FaST-LMM-select, FarmCPU and BLINK because MLMM, FaST-LMM-all+select and SUPER
473  were much more time-demanding than the others when data size is large. The three selected
474  algorithms differ in the method for selecting markers and/or in the testing procedure (For details see
475  Supplementary Note A).

476 To summarize, 12 algorithms were selected for our benchmarking analysis: GEMMA, Grid-LMM,
477  GAPIT-MLM, MLMA-LOCO, BOLT-LMM:-inf, BOLT-LMM-mix, fastGWA-GG, fastGWA-sp, CMLM, FaST-
478 LMM-select, FarmCPU, and BLINK.

479  After we had started the benchmarking analysis, two interesting new algorithms MM4LMM ¢ and
480 REGENIE ?° were published. MM4LMM is an exact algorithm which solves the LMM in a different way
481  from GEMMA/FaST-LMM. REGENIE implements P3D, LOCO and a two-step stacked ridge regression
482  approach to solve the null model. We evaluated the two algorithms with 400 simulated data sets (4
483  out of the 108 scenarios) and the results were summarized in Supplementary Note C.

484  Protocols and settings of the algorithms evaluated in this study

485  The GEMMA package (v0.98.1) was downloaded at https://github.com/genetics-statistics/GEMMA.
486  All parameters were set as default.

487  The Grid-LMM package (v0.0.0.9000) was downloaded at https://github.com/deruncie/GridLMM. All
488 parameters were set as default.

489  The BOLT-LMM package (v2.3.5) was downloaded at http://data.broadinstitute.org/alkesgroup/BOLT-
490 LMM/downloads/. The parameters “--ImmInfOnly” and “--lImmForceNonInf” were used to force the
491 algorithm producing the test statistics of BOLT-LMM-inf and BOLT-LMM-mix, respectively. Other
492 parameters were set as default. Note that by default, the two algorithms implemented LOCO when
493 calculating the test statistics, but estimated variance components only once using all markers. We
494  kept this setting for our benchmarking analysis, but investigated the influence of the genuine LOCO
495 using 400 simulated data sets. To force a genuine LOCO procedure, we modified the parameter “--
496 modelSnps” to select markers on all chromosomes except the one to which the marker being tested
497  belonged.
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498 The GAPIT package (v3.1.0) was downloaded at https://zzlab.net/GAPIT/. Four algorithms
499 implemented in this package were evaluated in our study, namely MLM, CMLM, FarmCPU and BLINK.
500 All parameters were set as default. Note that for CMLM, the default setting is to optimize the
501 compression level by evaluating the null model with a series of different compression levels and
502 choosing the one maximizing the log-likelihood. We also tested alternative settings, namely fixing the
503  compression level to 5 or 10 as suggested, with 200 simulated data sets. Although it could greatly
504  improve the computational efficiency, inflated FPR were observed (Supplementary Table 3). Thus, we
505  decided to keep the default setting.

506 The GCTA package (v1.93.2beta) was downloaded at
507  https://yanglab.westlake.edu.cn/software/gcta/#Overview. Three algorithms implemented in this
508  package were evaluated in this study: MLMA-LOCO, fastGWA-GG and fastGWA-sp. The parameter --
509 mima-loco” was used for MLMA-LOCO and “--fastGWA-mIm” was used for fastGWA-GG and fastGWA-
510 sp. For fastGWA-sp, an additional parameter “--fastGWA-mIm-exact” was set to exclude the
511 GRAMMA-Gamma approximation and the sparse kinship was done by setting “--make-bK-sparse” to
512  the recommended value 0.05, except for the analysis related to Supplementary Fig. 15, for which five
513  different thresholds were used. Other parameters were set as default.

514 FaST-LMM-select was implemented in the package FaST-LMM (Python platform, v0.6.1), which was
515 downloaded at https://pypi.org/project/fastimm/. The function
516 “fastimm.association.single_snp_select()” was used to run FaST-LMM-select. All parameters were set
517 as default.

518  Empirical data sets

519  Arabidopsis. The Arabidopsis data set was from the 1001 Genomes Consortium *¢, which is comprised
520 of 1,134 genotypes and 11,458,975 SNPs. The flowering time recorded for plants grown at a
521  temperature of 10°C (abbreviated as FT10) was selected as the phenotypic data in this study. After
522 filtering with missing rate ( < 0.1) and MAF (= 0.05), 1,003 genotypes with 749,722 SNPs were used
523  for the current study. The remaining missing values were imputed using IMPUTE2 %,

524 Wheat. The wheat data set consisted of 5,581 winter wheat accessions from the Federal ex situ
525  Genebank for Agricultural and Horticultural Crop Species of Germany hosted at the Leibniz Institute
526  of Plant Genetics and Crop Plant Research (IPK) .. The accessions were fingerprinted using
527  genotyping-by-sequencing (GBS). After quality control and filtering, IMPUTE2 was applied to impute
528 the remaining missing sites, resulting in 427,937 SNP markers. The phenotypic trait considered in this
529 study was yellow rust (YR) resistance based on natural infections in replicated field experiments over
530  vyears 2015-2020 at two locations in Germany “,

531 Rice. The rice data set was from the 3,000 Rice Genomes Project
532 (https://snpseek.irri.org/ download.zul)*. The genotypic data of 3,024 genotypes were filtered with
533 missing rate (< 0.2) and MAF (> 0.01), resulting in 4,817,964 bi-allelic SNPs. Then, the remaining
534  missing sites were imputed by Beagle 5.2°°. In total, 2,013 genotypes with the phenotypic trait grain
535 length were used for the analysis (https://www.rmbreeding.cn/phenotype#ifr2).

536 Maize. The maize data set consisted of 2,815 inbred accessions preserved in the USDA collection °2.
537  The growing degree days to silking were investigated in three environments (Ames, 1A; Clayton, NC;
538 and Aurora, NY) during summer 2010. The accessions were genotyping by GBS with 681,257 SNP
539 markers. Both phenotypic and genotypic data were obtained from Panzea database
540  (https://www.panzea.org). After filtering the missing phenotypic data, 2,279 accessions remained.
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541  The genotypic data were filtered with MAF > 0.05 and imputed with Beagle. In total, 225,563 high-
542 quality SNP markers were used for the current study.

543  Barley. The barley data set consisted of 15,557 spring barley accessions fingerprinted by GBS, which
544  were also from the Genebank at IPK °2. After quality control, the missing values were imputed using
545 FILLIN 53 resulting in 306,049 SNPs. The phenotypic information which was considered in this study
546 were historical data for flowering time (FT, 8,825 accessions)>*.

547 GWAS for the empirical data sets

548 Each of the 12 selected GWAS algorithms was applied to the five empirical data sets described above.
549  The p-values of all markers were obtained and p < 0.05 after Bonferroni correction 3° for multiple
550 testing was determined as the genome-wide threshold for significance. The significant markers were
551 merged into QTL by the following criterion: Two markers were merged if the physical distance
552 between them is less than the average distance at which the LD (measured by r2) decayed to 0.1 (for
553  wheat, barley and rice) or 0.05 (for Arabidopsis and maize), which is determined by non-linear
554  regression *°. In the five populations, the resulting distance was 380 kbp (wheat), 452 kbp (rice), 1,400
555 kbp (barley), 26 kbp (Arabidopsis) and 70 kbp (maize), respectively.

556  Candidate gene search for marker-trait associations in Arabidopsis

557 Genes spanning or flanking significant SNPs were retrieved from TAIR
558  (https://www.arabidopsis.org/index.jsp). FLOR-ID ¢ (http://www.phytosystems.ulg.ac.be/florid/) was
559 inspected to identify genes for which a role in flowering time control had been documented previously.
560 Regions 50 - 60 kbp upstream and downstream of the SNP were considered. In regions for which no
561 candidate genes had been reported in FLOR-ID a literature search for all genes mapping to these
562 regions was conducted based on the information available in TAIR. Only genes in which mutants
563  and/or overexpressing lines of the genes of interest had shown an effect on flowering time were
564  considered as candidate genes.

565 Data simulation

566  The genomic data of the wheat population described in the last subsection were used to simulate the
567  phenotypic data. We considered three different population sizes (300, 1000, 3000), three different
568 trait heritabilities (0.3, 0.5, 0.7), and 12 different complexities of genetic architecture. Each of the 3 x
569 3 x 12 =108 scenarios was repeatedly simulated 100 times, which makes in total 10,800 data sets. To
570 reduce the computational load, we chose 6 chromosomes (1A to 6A) to conduct the simulation,
571  resulting in 126,819 SNPs. In all cases, markers were classified into three classes, namely major QTL,
572 minor QTL and neutral marker. The number of major QTL was fixed to 6, while the number of minor
573 QTL and neutral markers varied across scenarios.

574  The complexity of simulated genetic architecture is determined as follows: First, we considered three
575 different patterns of linkage disequilibrium (LD) between the major and minor QTL: In LD pattern 1,
576  there was neither LD between any two major QTL nor between any major and minor QTL. In LD pattern
577 2, the major QTL were still independent of each other, but LD exited between major and minor QTL.
578 In LD pattern 3, there existed LD among the major QTL as well as between major and minor QTL. Then,
579  two cases of the proportion of genetic variance (PG) explained by the major QTL were considered (PG1
580 and PG2). In PG1, all 6 major QTL contributed equally, each explaining 2% of the genetic variance.
581  Thus, the total PG of all major QTL was 12%. In PG2, the proportions of explained genetic variance of
582 the 6 major QTL were randomly assigned as 2%, 4%, 6%, 8%, 10%, and 12%, with a total PG of 42%.
583 Finally, two cases for the number of minor QTL contributed as genetic background effects were
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584  introduced (denoted by GB1 and GB2). With GB1, only a few markers were selected as minor QTL.
585  With GB2, all markers on the chromosomes (LD pattern 2 and 3) or on half of the chromosomes (LD
586  pattern 1) contributed as minor QTL, representing the so-called infinitesimal genetic architecture. In
587  total, it gives 3 x 2 x 2 = 12 different levels of complexities.

588 Next, we described the detailed procedure of simulation. For LD pattern 1, in each round of simulation,
589  three of the six chromosomes were randomly sampled. On each chromosome, two markers with very
590 low LD (r? < 0.01) were randomly selected as major QTL. Minor QTL came from the remaining three
591  chromosomes. Namely, 400 markers from each of the three chromosomes were randomly sampled in
592 GB1, while in GB2 all markers on the three chromosomes were treated as minor QTL. For LD pattern
593 2, one marker was randomly sampled from each of the six chromosomes as major QTL. For the minor
594  QTL, 200 markers were randomly sampled from each chromosome in GB 1, and all remaining markers
595 were treated as minor QTL in GB 2. For LD pattern 3, we only took 3 chromosomes (A1-A3) to conduct
596 the simulation. In each round of simulation, three different levels of LD, namely 0.16 < r? < 0.36,
597 0.36 <1r? <0.64, 0.64 <r?> <1, were randomly assigned to the three chromosomes as the
598 criterion for sampling major QTL. Then, two markers fulfilling the LD criterion were randomly selected
599  from each of the three chromosomes. In addition, we purposely forced the distance between the two
600  markers sampled as major QTL to be larger than 760 kbps, which is the double distance at which the
601 LD decayed to 0.1. This setting is to make sure that the two QTL would not be treated as a single one
602 in the assessment of statistical power (see the next subsection). For the minor QTL, 400 markers were
603 randomly sampled from each chromosome in GB1, and all remaining markers were treated as minor
604  QTLin GB2.

605 In LD patterns 1 and 2, we additionally controlled the MAF of the markers sampled as major QTL. Three
606 classes of MAF were considered, namely MAF < 0.1, 0.1 < MAF < 0.3, MAF > 0.3. On each
607  chromosome, the number of markers sampled as major QTL across 100 replicates in each class was
608  about 1/3 of the total number. In LD pattern 3, we did not control MAF because setting many criteria
609  may violate the randomness of the sampling procedure, considering that there was already a control
610  of LD between the pair of markers sampled as major QTL.

611  The simulated phenotypic data were produced by the following formula:

6 P
612 y= Z m;q; + Z xja; + e, 4
i=1 j=1

613  where y is the vector of simulated phenotypes, g; is the effect of the i-th major QTL, m; is the
614  corresponding marker coding vector, p is the number of minor QTL, g; is the effect of the j-th minor
615  QTL, x; is the corresponding marker coding vector, e is the vector of residuals.

616 More precisely, in each round of simulation, the vector y was produced by the following five steps: 1)
617 For a given population size N (300, 1,000 or 3,000), we randomly sampled N Genotypes from the entire
618 population and extracted the SNP matrix. Then, we filtered out SNPs whose MAF was below 0.05 (if
619 N=300) or below 0.01 (if N = 1,000 or 3,000). Subsequently, the filtered SNP matrix was used to
620  generate the simulated phenotype. 2) The effect a; (for any j) was randomly sampled from a normal

621  distribution N(0,0.5). Then, we summed up the effects of all minor QTL as z = Z?zl
622  variance var(z) was calculated. For a given case of PG for the major QTL (PG 1 or PG 2), the variance
623  of the contribution of each major QTL u; = m;q; must satisfy the equation P;/(1—P) =
624  var(u;) /var(z), where P; is the proportion of genetic variance explained by the i-th major QTL, P is

625  the proportion of genetic variance explained by all major QTL. Then, var(u;) = Pvar(z)/(1 — P).

xjaj. 3) The
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626  Now, the effect of the i-th major QTL can be calculated as g; = \/var(ui)/var(m,-). 4) We calculated
627  the total genetic effects as g = Z?=1miqi + Zﬁ;lxja]-. Then, for a given heritability h? (0.3, 0.5 or
628  0.7), the variance of the residuals must satisfy the equation h?/(1 — h?) = var(g) /var(e) . Thus,
629  var(e) = (1 — h?)var(g)/h?. Then, each entry of the residual vector was randomly sampled from a

630  normal distribution N(0,+/var(e)). 5) The simulated phenotypic value was generated by Eq. (4).
631  Assessing the statistical power and false positive rate

632 Each of the 12 selected GWAS algorithms was applied to all 10,800 simulated data sets. The p-values
633  of all markers were obtained and p < 0.05 after Bonferroni correction * for multiple testing was
634  determined as the genome-wide threshold for significance.

635 In each of the 108 scenarios, the statistical power and FPR of an algorithm was assessed through its
636 performance across the 100 replicated data sets. More precisely, the power of detecting major QTL
637  was calculated as the number of correctly detected ones divided by the total number of simulated
638 major QTL across 100 data sets, which is 6 x 100 = 600. When the physical distance between a major
639 QTL and a significant marker was within 380 kbp, the QTL was considered as correctly detected. Note
640  that the interval length 380 kbp was the average distance at which the LD decayed to 0.1. This is the
641  same as the criterion of merging significant markers into QTL in the empirical data sets. We did not
642  assess the power of detecting minor QTL because they were considered as contributors to the
643 polygenic background. The FPR was estimated only for scenarios with GB1 (1,200 markers as minor
644 QTL), because in GB2 all markers were either major or minor QTL. The FPR was calculated as the ratio
645 between the number of non-QTL markers wrongly detected as significant and the total number of
646 non-QTL markers, averaged across 100 replicates. A marker was defined as a non-QTL marker if it was
647 not within an interval of 380 kbp flanking a major QTL and nor was it a minor QTL.

648 In addition, we also divided the simulated major QTL into different classes and investigated the
649  detection power in each specific class. 1) QTL with different MAF. We considered three classes:
650 MAF < 0.1, 0.1 < MAF < 0.3, and MAF > 0.3. Note that in LD patterns 1 and 2, we purposely
651  controlled the MAF of the simulated major QTL such that the proportion in each class was about 1/3.
652 But in LD pattern 3, the MAF of simulated major QTL was random. Nevertheless, this analysis was
653 performed for all data sets. 2) QTL with different proportions of explained genetic variance. This was
654  only for scenarios with PG2 in which six different PGs from 2% to 12 % were assigned to the simulated
655 major QTL. 3) QTL pairs with different LD. This was only applied to LD pattern 3 in which three levels
656  of LD were assigned to the QTL pairs: 0.16 < r? < 0.36, 0.36 < r? < 0.64, and 0.64 < r? < 1.

657  Complementary simulation studies

658  Additional data were simulated based on the genomic data of the Arabidopsis, maize and barley
659 populations. The rice data set was excluded due to the computational load of GWAS later on. We
660  chose four scenarios resulting from the combination of two LD patterns (LD pattern 2 and 3) and two
661  cases of PG (PG1 and PG2). The other parameters were fixed as follows: population size 1,000, trait
662 heritability 0.7 and GB1. For each scenario and with each population, 100 simulated data sets were
663  generated by the same procedure as simulating data sets based on the wheat population. In total,
664 there were 1,200 additional simulated data sets.

665 Note that in LD pattern 3, the minimal distance between the two simulated QTL on the same
666 chromosome was set to be the double distance at which the LD decayed to 0.1. Thus, this value
667  depended on the population, which was 16.6 kbp (Arabidopsis), 6 kbp (maize) and 2,800 kbp (barley)
668 respectively.
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669  The 12 selected GWAS algorithms were applied to the 1,200 simulated data sets. For each species and
670  in each scenario, the statistical power and FPR were calculated by the same approach as described in
671  the previous subsection. Again, the interval flaking a QTL which was used to determine whether a
672  significant marker is true or false positive depended on the population, namely 8.3 kbp (Arabidopsis),
673 3 kbp (maize), and 1,400 kbp (barley), respectively.
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Figure 1. A. The principles of a standard GWAS algorithm based on linear mixed models and an
illustration of the mathematical techniques applied by the fast algorithms. ML, maximum likelihood;
REML, restricted maximum likelihood; P3D, population parameters previously determined. B. An
outline of the strategy of our benchmarking analysis. LD, linkage disequilibrium; PG, proportion of
genetic variance; GB, genetic background; ROC, receiver operating characteristic. n, the number of
individuals; p, the number of markers.
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Figure 2. A comparison of the results of 11 GWAS algorithms for the resistance to yellow rust in a
wheat data set consisting of 5,581 individuals and 427,937 markers. A. The Manhattan plots of 4
selected algorithms. The threshold was p < 0.05 after Bonferroni correction. B. Correlations between
the -logio(p) values of all markers obtained by each of the indicated pairs of algorithms. The names of
the algorithms were indicated in the diagonal blocks. C. Pairwise correlations between the -logio(p)
values of markers which were significant under a liberal threshold (-logio(p) > 4) in at least one
algorithm. D. A comparison of significant regions identified by the 11 algorithms. The bar plot showed
the number of regions commonly identified by the algorithms indicated by the black dots. The number
of regions identified by each algorithm was presented in the parentheses next to the names of the
algorithms. The algorithm CMLM was not applied to this data set due to the computational load.
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Figure 3. The statistical power (A) and false positive rate (B) of 12 GWAS algorithms evaluated in
simulated data sets with 36 scenarios for trait heritability 0.7, under the threshold of p < 0.05 after
Bonferroni correction for multiple testing. The 36 scenarios are combinations of three population sizes
(PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD) patterns among the QTL (LD
patterns 1-3), two patterns of QTL effect sizes (PG1 and PG2), and two different genetic backgrounds
(GB1 and GB2). In LD pattern 1, there is no LD between any two major QTL or between a major and a
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minor QTL. In LD pattern 2, there is no LD between any two major QTL, but LD exits between major
and minor QTL. In LD pattern 3, there exists LD among the major QTL as well as between major and
minor QTL. In PG1, each of the 6 major QTL explained 2% of the genetic variance. In PG2, the 6 major
QTL were randomly assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the genetic variance
respectively. In GB1, there were 1,200 markers as minor QTL. In GB2, all markers on the chromosomes
(LD patterns 2 and 3) or on half of the chromosomes (LD pattern 1) contributed as minor QTL. Each of
the 9 subpanels showed the results of a specific combination of population size and LD pattern. Within
each subpanel, the results of four combinations of two PGs and two GBs were indicated by different
symbols. For GB2, the FPR was only calculated in LD pattern 1, because for LD patterns 2 and 3, all
markers contributed to the simulated trait either as major or as minor QTL. The algorithms CMLM and
FaST-LMM-select were not evaluated for PS 3000 because the computational load was too high.
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728

729 Figure 4. The receiver operating characteristic (ROC) curves of 11 GWAS algorithms evaluated in
730 simulated data sets with 18 scenarios for trait heritability 0.7 with GB1 (1,200 markers contributed as
731 minor QTL to the genetic background effects). The 18 scenarios are combinations of three population
732 sizes (PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD) patterns among the
733  QTL (LD patterns 1-3), and two patterns of QTL effect sizes (PG1 and PG2). In LD pattern 1, there is no
734 LD between any two major QTL or between a major and a minor QTL. In LD pattern 2, there is no LD
735 between any two major QTL, but LD exits between major and minor QTL. In LD pattern 3, there exists
736 LD among the major QTL as well as between major and minor QTL. In PG1, each of the 6 major QTL
737 explained 2% of the genetic variance, In PG2, the 6 major QTL were randomly assigned to explain 2%,
738 4%, 6%, 8%, 10% and 12% of the genetic variance respectively. Results for PG1 and PG2 were shown
739 in panels A and B, respectively. Each of the 9 subpanels showed the results for a specific combination
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of population size and data set. Within each subpanel, the ROC curves of different algorithms were
shown in different colors. The power and FPR of each algorithm under the threshold of p < 0.05 after
Bonferroni correction for multiple testing was indicated by a small circle on the curve. The algorithms
CMLM and FaST-LMM-select were not evaluated for PS 3000 because the computational load was too
high.
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752

753 Figure 5. A. Summary of key mathematical techniques implemented in the fast GWAS algorithms
754  evaluated in this study and their influence on power and false-positive rate (FPR). For each technique,
755  the results were obtained by comparing two algorithms differing only in having the technique
756  implemented (listed in the second column) or not (listed in the third column). P3D, population
757 parameters previously determined; LMM, linear mixed model; LOCO, leave-one-chromosome-out;
758 MLR, multi-variate linear regression. * fastGWA-ori is the original algorithm of fastGWA without
759 implementing the GRAMMAR-Gramma approximation or the sparse kinship matrix. It was not
760  evaluated in the benchmarking analysis (see Supplementary Note B). B. A brief illustration of the
761 results of benchmarking analysis for the 12 GWAS algorithms. Algorithms above the dashed line as
762  well as fastGWA-sp (indicated by the * symbol) had inflated FPR, while others stringently controlled
763  the FPR. In general, the altitude of the algorithms indicated the level of their statistical power. The
764  three arrows in the middle indicate algorithms with power advantage for specific types of QTL.
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765  Algorithms next to the left arrow are better at detecting QTL with low minor allele frequency (MAF),
766 high proportion of genetic variance (PG) and high linkage disequilibrium (LD) with each other.
767  Algorithms next to the right arrow are better at detecting QTL with high MAF, low PG and low LD with
768  each other.
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Extended Data Figure 1. A phylogeny of 33 GWAS algorithms. The 12 algorithms evaluated in the
benchmarking analysis are shown in red font. If two algorithms are connected by an arrow, it means
that the target is based on the source with additional techniques indicated by the text next to the
arrow. If two algorithms each with an arrow targeting to the same algorithm, it means that the target
combines the techniques implemented by the two sources (In this case, no text was indicated). P3D,
population parameters previously determined; MC, Monte-Carlo; LOCO, leave-one-chromosome-out;
MLR, multi-variate linear regression; RES-LR, using the residuals from the null model as the response
to test marker effects in a simple linear model.
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Extended Data Figure 2. The statistical power (A) and false positive rate (B) of 12 GWAS algorithms
evaluated in simulated data sets with 36 scenarios for trait heritability 0.5, under the threshold of p <
0.05 after Bonferroni correction for multiple testing. The 36 scenarios are combinations of three
population sizes (PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD) patterns
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803 among the QTL (LD patterns 1-3), two patterns of QTL effect sizes (PG1 and PG2), and two different
804  genetic backgrounds (GB1 and GB2). In LD pattern 1, there is no LD between any two major QTL or
805 between a major and a minor QTL. In LD pattern 2, there is no LD between any two major QTL, but LD
806  exits between major and minor QTL. In LD pattern 3, there exists LD among the major QTL as well as
807 between major and minor QTL. In PG1, each of the 6 major QTL explained 2% of the genetic variance.
808 In PG2, the 6 major QTL were randomly assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the
809 genetic variance respectively. In GB1, there were 1,200 markers as minor QTL. In GB2, all markers on
810  the chromosomes (LD patterns 2 and 3) or on half of the chromosomes (LD pattern 1) contributed as
811 minor QTL. Each of the 9 subpanels showed the results of a specific combination of population size
812 and LD pattern. Within each subpanel, the results of four combinations of two PGs and two GBs were
813 indicated by different symbols. For GB2, the FPR was only calculated for LD pattern 1, because for LD
814  patterns 2 and 3, all markers contributed to the simulated trait either as major or as minor QTL. The
815  algorithms CMLM and FaST-LMM-select were not evaluated for PS 3000 because the computational
816  load was too high.
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Extended Data Figure 3. The statistical power (A) and false positive rate (B) of 12 GWAS algorithms
evaluated in simulated data sets with 36 scenarios for trait heritability 0.3, under the threshold of p <
0.05 after Bonferroni correction for multiple testing. The 36 scenarios are combinations of three
population sizes (PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD) patterns
among the QTL (LD patterns 1-3), two patterns of QTL effect sizes (PG1 and PG2), and two different
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827  genetic backgrounds (GB1 and GB2). In LD pattern 1, there is no LD between any two major QTL or
828 between a major and a minor QTL. In LD pattern 2, there is no LD between any two major QTL, but LD
829  exits between major and minor QTL. In LD pattern 3, there exists LD among the major QTL as well as
830  between major and minor QTL. In PG1, each of the 6 major QTL explained 2% of the genetic variance.
831 In PG2, the 6 major QTL were randomly assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the
832 genetic variance respectively. In GB1, there were 1,200 markers as minor QTL. In GB2, all markers on
833  the chromosomes (LD patterns 2 and 3) or on half of the chromosomes (LD pattern 1) contributed as
834  minor QTL. Each of the 9 subpanels showed the results of a specific combination of population size
835  and LD pattern. Within each subpanel, the results of four combinations of two PGs and two GBs were
836 indicated by different symbols. For GB2, the FPR was only calculated for LD pattern 1, because for LD
837  patterns 2 and 3, all markers contributed to the simulated trait either as major or as minor QTL. The
838  algorithms CMLM and FaST-LMM-select were not evaluated for PS 3000 because the computational
839  load was too high.
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852

853 Extended Data Figure 4. The statistical power of detecting QTL explaining a specific proportion of
854  genetic variance for 12 GWAS algorithms evaluated in simulated data sets with 18 scenarios for trait
855 heritability 0.7. The 18 scenarios are combinations of three population sizes (PS 300, PS 1000 and PS
856  3000), three different LD patterns among the QTL (LD patterns 1-3), and two different genetic
857  backgrounds (GB1 and GB2). In LD pattern 1, there is no LD between any two major QTL or between
858  a major and a minor QTL. In LD pattern 2, there is no LD between any two major QTL, but LD exits
859 between major and minor QTL. In LD pattern 3, there exists LD among the major QTL as well as
860 between major and minor QTL. In GB1, there were 1,200 markers as minor QTL. In GB2, all markers
861  onthe chromosomes (LD patterns 2 and 3) or on half of the chromosomes (LD pattern 1) contributed
862 as minor QTL. The results for GB1 and GB2 were shown in panel A and B, respectively. Each panel was
863  further divided into 9 subpanels, each showing the results of a specific combination of population size
864  and data set. Within each subpanel, the results for QTL explaining six different PGs (from 2% to 12%
865  with a step of 2%) were indicated by different symbols. The algorithms CMLM and FaST-LMM-select
866  were not evaluated for PS 3000 because the computational load was too high.
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867

868 Extended Data Figure 5. The statistical power of detecting QTL pairs with a particular range of linkage
869 disequilibrium (LD) for 12 GWAS algorithms evaluated in simulated data sets with 12 scenarios for trait
870  heritability 0.7. The 12 scenarios are combinations of three population sizes (PS 300, PS 1000 and PS
871  3000), two patterns of QTL effect sizes (PG1 and PG2), and two different genetic backgrounds (GB1
872  and GB2). In PG1, each of the 6 major QTL explained 2% of the genetic variance, In PG2, the 6 major
873 QTL were randomly assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the genetic variance
874 respectively. In GB1, there were 1,200 markers as minor QTL. In GB2, all markers on the chromosomes
875 (LD patterns 2 and 3) or on half of the chromosomes (LD pattern 1) contributed as minor QTL. Each of
876  the 12 subpanels showed the results of a specific combination of population size, PG and GB. Within
877  each subpanel, the results for QTL pairs with three different ranges of LD (measured by r?) were
878 indicated by different symbols. The algorithms CMLM and FaST-LMM-select were not evaluated for
879  PS 3000 because the computational load was too high.
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Extended Data Figure 6. The statistical power of detecting QTL with a specific range of MAF for 12
GWAS algorithms evaluated in simulated data sets with 18 scenarios for trait heritability 0.7 with PG1
(each of the 6 major QTL explained 2% of the genetic variance). The 18 scenarios are combinations of
three population sizes (PS 300, PS 1000 and PS 3000), three different LD patterns among the QTL (LD
patterns 1-3), and two different genetic backgrounds (GB1 and GB2). In LD pattern 1, there is no LD
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between any two major QTL or between a major and a minor QTL. In LD pattern 2, there is no LD
between any two major QTL, but LD exits between major and minor QTL. In LD pattern 3, there exists
LD among the major QTL as well as between major and minor QTL. In GB1, there were 1,200 markers
as minor QTL. In GB2, all markers on the chromosomes (LD patterns 2 and 3) or on half of the
chromosomes (LD pattern 1) contributed as minor QTL. The results for GB1 and GB2 were shown in
panel A and B, respectively. Each panel was further divided into 9 subpanels, each showing the results
of a specific combination of population size and LD pattern. Within each subpanel, the results for QTL
with three different ranges of MAF were indicated by different symbols. The algorithms CMLM and
FaST-LMM-select were not evaluated for PS 3000 because the computational load was too high.
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Extended Data Figure 7. The statistical power of detecting QTL with a specific range of MAF for 12
GWAS algorithms evaluated in simulated data sets with 18 scenarios for trait heritability 0.7 with PG2
(each of the 6 major QTL explained 2% of the genetic variance). The 18 scenarios are combinations of
three population sizes (PS 300, PS 1000 and PS 3000), three different LD patterns among the QTL (LD
patterns 1-3), and two different genetic backgrounds (GB1 and GB2). In LD pattern 1, there is no LD
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between any two major QTL or between a major and a minor QTL. In LD pattern 2, there is no LD
between any two major QTL, but LD exits between major and minor QTL. In LD pattern 3, there exists
LD among the major QTL as well as between major and minor QTL. In GB1, there were 1,200 markers
as minor QTL. In GB2, all markers on the chromosomes (LD patterns 2 and 3) or on half of the
chromosomes (LD pattern 1) contributed as minor QTL. The results for GB1 and GB2 were shown in
panel A and B, respectively. Each panel was further divided into 9 subpanels, each showing the results
of a specific combination of population size and LD pattern. Within each subpanel, the results for QTL
with three different ranges of MAF were indicated by different symbols. The algorithms CMLM and
FaST-LMM-select were not evaluated for PS 3000 because the computational load was too high.
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913 Extended Data Figure 8. The receiver operating characteristic (ROC) curves of 11 GWAS algorithms
914  evaluated in simulated data sets with 18 scenarios for trait heritability 0.5 with GB1 (1,200 markers
915 contributed as minor QTL to the genetic background effects). The 18 scenarios are combinations of
916  three population sizes (PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD)
917  patterns among the QTL (LD patterns 1-3), and two patterns of QTL effect sizes (PG1 and PG2). In LD
918  pattern 1, there is no LD between any two major QTL or between a major and a minor QTL. In LD
919  pattern 2, there is no LD between any two major QTL, but LD exits between major and minor QTL. In
920 LD pattern 3, there exists LD among the major QTL as well as between major and minor QTL. In PG1,
921  each of the 6 major QTL explained 2% of the genetic variance, In PG2, the 6 major QTL were randomly
922 assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the genetic variance respectively. Results for PG1
923 and PG2 were shown in panels A and B, respectively. Each of the 9 subpanels showed the results for
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a specific combination of population size and data set. Within each subpanel, the ROC curves of
different algorithms were shown in different colors. The power and FPR of each algorithm under the
threshold of p < 0.05 after Bonferroni correction for multiple testing was indicated by a small circle on
the curve. The algorithms CMLM and FaST-LMM-select were not evaluated for PS 3000 because the
computational load was too high.
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936 Extended Data Figure 9. The receiver operating characteristic (ROC) curves of 11 GWAS algorithms
937 evaluated in simulated data sets with 18 scenarios for trait heritability 0.3 with GB1 (1,200 markers
938  contributed as minor QTL to the genetic background effects). The 18 scenarios are combinations of
939  three population sizes (PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD)
940  patterns among the QTL (LD patterns 1-3), and two patterns of QTL effect sizes (PG1 and PG2). In LD
941 pattern 1, there is no LD between any two major QTL or between a major and a minor QTL. In LD
942 pattern 2, there is no LD between any two major QTL, but LD exits between major and minor QTL. In
943 LD pattern 3, there exists LD among the major QTL as well as between major and minor QTL. In PG1,
944  each of the 6 major QTL explained 2% of the genetic variance, In PG2, the 6 major QTL were randomly
945 assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the genetic variance respectively. Results for PG1
946  and PG2 were shown in panels A and B, respectively. Each of the 9 subpanels showed the results for
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a specific combination of population size and data set. Within each subpanel, the ROC curves of
different algorithms were shown in different colors. The power and FPR of each algorithm under the
threshold of p < 0.05 after Bonferroni correction for multiple testing was indicated by a small circle on
the curve. The algorithms CMLM and FaST-LMM-select were not evaluated for PS 3000 because the
computational load was too high.
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Extended Data Figure 10. The statistical power (A) and false positive rate (B) of 12 GWAS algorithms
evaluated in simulated data sets based on the genomic data of wheat, barley, maize, and Arabidopsis
respectively. In the simulation, four scenarios for trait heritability 0.7 with GB1 (1,200 markers
contributed as minor QTL to the genetic background effects) and a population size of 1,000 were
considered. The four scenarios are combinations of two linkage disequilibrium (LD) patterns (LD
pattern 2 and 3) and two cases of the proportion of genetic variance (PG) explained by the major QTL
(PG1 and PG2). In LD pattern 2, there is no LD between any two major QTL, but LD exits between major
and minor QTL. In LD pattern 3, there exists LD among the major QTL as well as between major and
minor QTL. In PG1, each of the 6 major QTL explained 2% of the genetic variance, In PG2, the 6 major
QTL were randomly assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the genetic variance
respectively. Within each subpanel, the results of four scenarios were indicated by different symbols.
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Table 1. Summary of commonly applied algorithms for genome-wide association studies.

Software Package Algorithm® Platform Model® Kinship matrix" Covariate® Test statistic® Theoretical time comlexityf Evaluated in this study Reference Remark
EMMA EMMA R LMM all none exact 0(pn® + tpn) Kang et al. (2008) Has been removed from the CRAN repository.
EMMAX EMMAX C++ LMM-P3D all none exact 0(n® +pn? + tn) Kang et al. (2010)
TASSEL MLM java LMM all none exact 0(pn® + tpn) Kang et al. (2008) The implementation is similar to EMMA
MLM-P3D java LMM-P3D all none exact 0(n® + pn? + tn) Kang et al. (2010) The implementation is similar to GAPIT-MLM
s
MLM-C java LMM-P3D all & compressed none exact O(Z (s,-3 +ts;) + pn?) Zhang et al. (2011) The implementation is similar to GAPIT-CMLM
i=1
FaST-LMM FaST-LMM C++ LMM all none exact 0(713 + pnz + tpn) Lippert et al. (2011) The core (exact) algorithm of FaST-LMM
FaST-LMM-P3D C++, Python LMM-P3D all none exact 0(n® + pn? + tn) Lippert et al. (2011)
FaST-LMM-LOCO C++ LMM LOCO none exact 0(713 + pnz + tpn) Lippert et al. (2011)
FaST-LMM-P3D-LOCO C++, Python LMM-P3D Loco none exact 0(n® + pn? + tn) Lippert et al. (2011)
T
FaST-LMM-select C++, Python LMM-P3D subset none exact O(Z (gfn + tn) + pn?) v Listgarten et al. (2012)
i=1
T
FaST-LMM-all+select  C++, Python LMM-P3D LOCO & subset none exact O(Z Ji(® + gfn + tn) + pn?) Widmar et al. (2014)
i=1
GEMMA GEMMA C LMM all none exact 0(n® +pn? + tpn) v Zhou and Stephens (2012)
GenABEL GRAMMAR R LMM & RES-LR all none approximated 0m® + pn® + tn) Alchenko et al. (2007) Has been removed from the CRAN repository.
GRAMMAR-Gamma R LMM-P3D all none approximated  O(n® + pn? + tn) Svishcheva et al. (2012)
GridLMM GridLMM R LMM all none exact 0(g(n® + pn?)) v Runcie and Crawford (2019)
BOLT-LMM BOLT-LMM-inf C++ LMM-P3D LOCO none approximated O (mtpn) v Loh et al. (2015)
BOLT-LMM-mix C++ Bayes LMM & P3D none LOCO approximated O (mtpn) v Loh et al. (2015)
BOLT-LMM C++ Bayes LMM & LMM-P3D LOCO LOCO approximated O (mtpn) Loh et al. (2015) Combining BOLTLMM-inf and BOLTLMM-mix
GAPIT MLM R LMM-P3D all none exact 0(n® +pn? + tn) Zhang et al. (2011)
s
cMLM R LMM-P3D all & compressed none exact O(Z (s? +ts;) +pn?) Zhang et al. (2011)
i=1
S
ECMLM R LMM-P3D all & compressed none exact O(Z_ 1(3i3 + ts;) + pn?) Li et al. (2014)
i=
MLMM R LMM-P3D all selecting markers exact 0(k(n® + pn? + tn)) Segura et al. (2012) Also implemented in the package MultLocMixMod (python-based)
R
SUPER R LMM-P3D subset none exact O(Z (g?n + tn) + Rpn?) Wang et al. (2014)
i=1
R
FarmCPU R LMM & MLR subset none exact U(Z_ (qlzn + tn) + Rpn) v Liu et al. (2016)
i=1
R
BLINK R, C MLR none selecting markers exact D(Z q?n + Rpn) v Huang et al. (2019)
i=1
GCTA MLMA C++ LMM-P3D all none exact 0(n® +pn? + tn) Yang et al. (2011)
MLMA-LOCO C++ LMM-P3D Loco none exact 0(n® +pn® + tn) v Yang et al. (2011)
fastGWA-ori C++ LMM-P3D all none exact 0(713 + pnz +tn) Jiang et al. (2019) The core algorithm of fastGWA
fastGWA-GG CH+ LMM-P3D all none approximated O(n® + pn? + tn) v Jiang et al. (2019) fastGWA with GRAMMAR-Gamma approximation
fastGWA-sp C++ LMM-P3D all & sparse none exact 0(713 + pnz +tn) v lJiang et al. (2019) fastGWA with sparse kinship matrix
fastGWA-sp-GG C++ LMM-P3D all & sparse none approximated O(n® + pn? + tn) Jiang et al. (2019) Combining fastGWA-GG and fastGWA-sp
REGENIE REGENIE C++ LMM & RES-LR LOCO none approximated 0(713 + pnz + tpn) Mbatchou et al. (2021)
MMALMM MMALMM R LMM all none exact 0(n® + pn? + tpn) Larpote et al. (2022)

?In this column, a core algorithm with different technical options (such as P3D and LOCO) is treated as different algorithms

°LMM, linear mixed model; P3D, population parameters previously determined; MLR, multi-variate linear regression; RES-LR, using the residuals form the null linear mixed model as the response for testing the markers in a simple linear regression

“all, using all markers to derive the kinship matrix; subset, selecting a subset of markers to derive the kinship matrix;LOCO, leave-one-chromosome-out

%I this colum it means covariates that are used to control the genetic background effects, in addition to the term of polygenic effect with the kinship matrix

€ Given the etimated parameters of the model, the test statistic was classified as "exact" or "approximated" according to whether further approximations were applied.

The notations in this column are the following:

n, the number of genotypes;

p, the number of markers;

t, the avereage number of iterations for solving the LMM;

T, the number of iterations for optimizing the number of selected markers for FaST-LMM-select and FaST-LMM-all+select, and gis the number of markers in the i-th iteration;
J;, the number of iterations for optimizing the mixture parameter in FaST-LMM-all+select, for a specific choice of q

g, the number of grid vertices for Grid-LMM;

m, the number of Monte-Carlo samplings in solving the LMM for BOLT-LMM

S, the number of interations for optimizing the compression factor in CMLM and ECMLM, and sis the number of groups in the i-th iteration;

k, the number of iterations to optimize the set of selected markers for MLMM;

R, the number of iterations to optimize the paremeters (bin size, the number of bins and the number of selected markers) for SUPER, FarmCPU and BLINK, and qi is the number of markers in the i-th iteration;
Note that with the same data set, except for n and p, the above parameters may differ greatly across algorithms
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