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Abstract 24 

Genome-wide association studies (GWAS) are a ubiquitous tool for identifying genetic variants 25 

associated with complex traits in structured populations. During the past 15 years, many fast GWAS 26 

algorithms based on a state-of-the-art model, namely the linear mixed model, have been published to 27 

cope with the rapidly growing data size. In this study, we provide a comprehensive overview and 28 

benchmarking analysis of 33 commonly used GWAS algorithms. Key mathematical techniques 29 

implemented in different algorithms were summarized. Empirical data analysis with 12 selected 30 

algorithms showed differences regarding the identification of quantitative trait loci (QTL) in several 31 

plant species. The performance of these algorithms evaluated in 10,800 simulated data sets with 32 

distinct population size, heritability and genetic architecture revealed the impact of these parameters 33 

on the power of QTL identification and false positive rate. Based on these results, a general guide on 34 

the choice of algorithms for the research community is proposed. 35 
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Introduction 37 

Genome-wide association studies (GWAS) are an important tool for dissecting the genetic architecture 38 

of complex traits in human, animal and plant populations 1, 2, 3. Population structure and genetic 39 

relatedness affect the accuracy of GWAS and usually cause inflated test statistics resulting in high false 40 

positive rate (FPR). Early approaches to reduce inflation include genomic control 4, structured 41 

association 5 and principal component analysis 6. The Q+K linear mixed model (LMM) 7 has become the 42 

gold standard for GWAS because it is assumed to strike a good comprise between FPR and statistical 43 

power 8, 9. In this model, population structure is controlled by covariates (Q) and the kinship 44 

relatedness is accounted for by random polygenetic effects with a covariance matrix (K) derived from 45 

pedigree or genomic data. 46 

A standard GWAS algorithm based on the Q+K model involves two steps: 1) solving the LMM and 2) 47 

generating the test statistics. These two steps are repeated for each marker (Fig. 1A). The first step is 48 

usually implemented by the maximum likelihood (ML) or restricted maximum likelihood (REML) 49 

method 10, both requiring iterations to estimate the unknown parameters. The most time-consuming 50 

parts are matrix multiplications and inverting matrices of size Ā × Ā , where Ā  is the number of 51 

genotypes. Without specific mathematical techniques to improve the efficiency, the time complexity 52 

of this step is about þ(�ýĀ3), where ý is the number of markers and � is the average number of 53 

iterations. The second step is usually performed by the likelihood ratio (LR) test, the Wald test or the 54 

F-test. The calculation of the LR test statistic is straightforward as the likelihood values are obtained 55 

in the first step. The Wald test or F-test statistics require extra computations involving multiplications 56 

of Ā × Ā matrices with Ā-dimensional vectors for each marker and the complexity is þ(ýĀ2). Thus, 57 

the complexity of the entire GWAS algorithm is dominated by the first step, namely þ(�ýĀ3). As the 58 

size of datasets increases rapidly with the advances in genomics technology, computational efficiency 59 

has become a bottleneck for the standard algorithm. Therefore, it is indispensable for the research 60 

community to improve the efficiency of GWAS algorithms without losing power or inflating FPR. 61 

In the last decade and a half, many different fast GWAS algorithms have been developed. Some 62 

applied elegant mathematical techniques to accelerate the standard algorithm 11, 12, 13, 14, 15, 16, others 63 

introduced different approximations in solving the LMM and/or generating test statistics 14, 17, 18, 19, 20, 64 
21, 22, and still others modified the standard Q+K model with the aim of increasing the statistical power 65 
23, 24, 25, 26, 27, 28, 29(Fig. 1A). These algorithms do not necessarily yield consistent results for the same data 66 

set. In 2014, a study compared several methods using human family-based data and highly concordant 67 

results were found for the different approaches 30. However, the underlying algorithms of the methods 68 

included in this study were similar. Since then, many new algorithms implementing diverse 69 

mathematical techniques have appeared and an up-to-date comprehensive comparison is lacking. 70 

Therefore, a deep understanding how the algorithms shape QTL identification is required to interpret 71 

the outcome of different GWAS algorithms for the same data set.  72 

A practical problem faced by scientists is how to choose an appropriate algorithm for their research. 73 

In this study, we first review GWAS algorithms commonly used by the research community in the past 74 

decade and a half. Then, we select 12 representatives to perform a comprehensive benchmarking 75 

analysis in which the statistical power and false-discovery rate of the algorithms are compared 76 

through a large-scale simulation study with 10,800 data sets. In the end, we provide practical 77 

recommendations to scientists on the pros and cons of these algorithms. 78 

  79 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.05.570105doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.570105
http://creativecommons.org/licenses/by/4.0/


4 

 

Results 80 

An overview of fast GWAS algorithms based on LMM 81 

The computational complexity of fast GWAS algorithms is dominated by the step of solving the LMM. 82 

Consequently, the first few fast algorithms aimed directly at improving the efficiency of this step. The 83 

algorithm EMMA 11, also implemented in the software TASSEL 31, avoided repeatedly inverting matrices 84 

in each iteration by applying spectral decomposition to certain Ā × Ā matrices and reduced the time 85 

complexity from þ(�ýĀ3) to þ(ýĀ3 + �ýĀ). However, the decomposition had to be applied for each 86 

marker in EMMA. This was further improved by two algorithms FaST-LMM 12 and GEMMA 13, in which 87 

the decomposition was performed only once for the kinship matrix (the Ā × Ā covariance matrix of 88 

random polygenic effects in the Q+K model) throughout the whole testing procedure. Then, the 89 

complexity was reduced to þ(Ā3 + ýĀ2 + �ýĀ) , where the ýĀ2  term came from generating the 90 

marker-derived kinship matrix. These two algorithms produced exact test statistics up to machine 91 

precision and possible convergence to local maxima. Hence, they were classified as exact algorithms. 92 

Recently, another exact method MM4LMM 16 exploiting a minorize-maximization algorithm 32 to solve 93 

the LMM was published. Instead of solving the LMM by numerical optimization methods, Grid-LMM 94 
15 directly searched for solutions in a pre-defined grid spanning all valid values with complexity 95 þ(ýĀ3 + ýĀ2), where ý is the grid size. It was reported that the test statistics were almost the same 96 

as exact methods despite limiting the precision of estimators by the resolution of the defined grid. 97 

Thus, we may call it a quasi-exact algorithm.  98 

In order to improve the computational efficiency further, approximations were introduced to the 99 

procedure of solving the LMM. The earliest approximated approach <Population Parameters 100 

Previously Determined= (P3D) 17 was implemented in the software GAPIT 33, 34, 35, termed GAPIT-MLM, 101 

and was independently invented in EMMAX 22. In this approach, the LMM was solved only once for 102 

the <null model=, i.e., the model without any marker effects. Then, the estimators of variance 103 

components were fixed throughout the whole testing procedure. In this way, it avoided repeatedly 104 

solving the LMM for each marker and hence further reduced the complexity to þ(Ā3 + ýĀ2 + �Ā). It 105 

was reported that the P3D approach resulted in similar detection power to the exact methods. Hence, 106 

this approach has been implemented either by default or as an option in almost all popular software 107 

packages for GWAS (e.g. FaST-LMM, GCTA 36, TASSEL).  108 

When P3D is implemented, producing test statistics requires additional computations with complexity 109 þ(ýĀ2), no matter which type of statistical test is applied. Hence, producing the test statistics in a 110 

more efficient way can also increase the efficiency. The algorithm GRAMMAR 19 implemented in 111 

GenABEL 37 proposed to use the residuals from the null model as the response in a simple linear 112 

regression model to test the marker effects. This approach reduced the complexity of calculating test 113 

statistics from þ(ýĀ2)  to þ(ýĀ) , but produced biased test statistics with reduced power. This 114 

drawback was overcome in GRAMMAR-Gamma 20, which introduced an approximation to the original 115 

Wald-test statistic and also reduced the complexity to þ(ýĀ). This approach was also included as an 116 

option in the algorithm fastGWA 21 implemented in GCTA, which is termed fastGWA-GG in our study. 117 

Nevertheless, for these algorithms the complexity is still þ(Ā3 + ýĀ2 + �Ā) since the total complexity 118 

is dominated by the step of solving the LMM.  119 

Although applying decompositions to the kinship matrix greatly improves the computational efficiency, 120 

the complexity of the technique itself is still high, typically þ(Ā3). Therefore, some algorithms tried to 121 

improve the efficiency by modifying the kinship matrix. The algorithms CMLM 17 and its enrichment 122 

version ECMLM 18 in GAPIT compressed the kinship matrix by classifying the genotypes into � groups 123 

(� ≪ Ā), so that the computational efficiency increased by (Ā/�)3  fold. However, to optimize the 124 
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detection power, the evaluation of the likelihood function needed to be repeated until the parameter 125 � is optimized. The algorithm fastGWA provided the option of setting a threshold to make the kinship 126 

matrix sparse, namely all entries below the threshold were set to zero, so that special techniques for 127 

sparse matrices can be used to increase efficiency. This variant of fastGWA is termed fastGWA-sp in 128 

our study. When both the sparse kinship matrix and the GRAMMAR-Gamma approximation are used, 129 

the variant is termed fastGWA-sp-GG.  130 

The first algorithm that avoids decomposing the kinship matrix is BOLT-LMM 14, which implemented a 131 

Monte Carlo sampling approach to solve the LMM. In this algorithm, it was not necessary to explicitly 132 

calculate the marker-derived kinship matrix, and it also avoided inverting or decomposing matrices of 133 

size Ā × Ā. Indeed, it transformed the problem to solving systems of linear equations by the conjugate 134 

gradient method, in which only products of Ā × ý matrices with ý-dimensional vectors are needed (at 135 

the cost of a few iterations). Together with P3D, it remarkably reduced the complexity of solving LMM 136 

to þ(ÿ�ýĀ), where ÿ is the average number of Monte Carlo sampling and � is the average number 137 

of iterations. BOLT-LMM also invented an approximated approach for calculating the test statistics 138 

similar to GRAMMAR-Gamma. Therefore, the total complexity of BOLT-LMM is þ(ÿ�ýĀ) . This 139 

algorithm has two variants, one follows the standard Q+K model (BOLT-LMM-inf), the other assumed 140 

Gaussian mixture priors for the random marker effects which serve as a control of polygenic 141 

background, termed BOLT-LMM-mix 21. By default, BOLT-LMM combined the two variants and applied 142 

cross-validations to determine which variant was used to produce the final test statistics.  143 

Most of the above algorithms aim to improve the computational efficiency of the standard Q+K model, 144 

while others modify the model to increase the power and/or to decrease the FPR. The first technique 145 

with such a purpose was <Leave-One-Chromosome-Out= (LOCO) 38, which has already been 146 

implemented by default or as an option in many algorithms (FaST-LMM, MLMA-LOCO in GCTA, BOLT-147 

LMM, REGENIE 29). That is, when a marker is tested, all markers on the same chromosome are excluded 148 

when calculating the kinship matrix. It has been reported that LOCO can increase the power by 149 

avoiding proximal contamination, a phenomenon that the power of detecting QTL is reduced when 150 

markers correlated with the QTL are involved in the calculation of kinship matrix 23, 38. The algorithm 151 

MLMM 25 implemented a forward-backward stepwise linear mixed model to include additional marker 152 

covariates in the Q+K model. While MLMM still used all markers to build up the kinship matrix, FaST-153 

LMM-select 23 used cross-validation to select a subset of markers for deriving the kinship matrix. FaST-154 

LMM-select was reported to have higher power than the standard Q+K model, but in some cases did 155 

not sufficiently control the FPR. This was improved in FaST-LMM-all+select 24, in which two random 156 

polygenic effects were included, one with the kinship matrix derived by all markers and the other by 157 

the selected ones. In the software package GAPIT, three different algorithms SUPER 26, FarmCPU 27 and 158 

BLINK 28 were implemented, all of which differ from the standard Q+K model. A common feature of 159 

these three algorithms is that only a subset of markers was selected to control the population 160 

structure. In SUPER and FarmCPU, the selected markers were used to generate the kinship matrix. In 161 

BLINK, the selected markers were modeled directly as fixed covariates. The models used to produce 162 

the test statistics were also different: SUPER still used LMM, but FarmCPU and BLINK used the multi-163 

variate linear regression (MLR) model. A recently published algorithm REGENIE 29 tested the marker 164 

effects based on the residuals from the null model, similar to GRAMMAR. But it fitted the null model 165 

by a two-step stacked ridge regression approach, which is different from all above algorithms.  166 

The main features of the above algorithms were summarized in Table 1 and the relationship among 167 

these algorithms was illustrated in Extended Data Fig. 1. We selected 12 representatives for the 168 

subsequent benchmarking analysis: GEMMA, Grid-LMM, GAPIT-MLM, MLMA-LOCO, CMLM, fastGWA-169 

GG, fastGWA-sp, BOLT-LMM-inf, BOLT-LMM-mix, FaST-LMM-select, FarmCPU and BLINK. These 170 
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algorithms encompass the most important mathematical techniques which were applied to improve 171 

the computational efficiency. In case many algorithms implemented essentially the same techniques, 172 

only one representative was selected. More details of the selection procedure were described in 173 

Methods. An in-depth review of the key mathematical techniques implemented in the 12 selected 174 

algorithms was provided in Supplementary Note A. 175 

The strategy of the applied benchmarking analysis 176 

Our benchmarking analysis consisted of two parts based on empirical and simulated data sets, 177 

respectively (Fig. 1B). The empirical data sets comprised four large plant populations of inbreeding 178 

species: Arabidopsis, wheat, rice, barley as well as one population of maize inbred lines (see Methods 179 

for details). The 12 selected algorithms were applied to each of the five datasets, with a few exceptions 180 

as the computational load for some algorithms in certain data sets was too high.  181 

The simulated phenotypic data were based on the genomic data from a wheat population consisting 182 

of 5,581 accessions with 427,937 single nucleotide polymorphism (SNP) markers. Three population 183 

sizes (300, 1000, 3000), three trait heritabilities (0.3, 0.5, 0.7), and 12 different levels of complexity for 184 

the genetic architecture were considered in the simulation. Thus, there were in total 3 × 3 × 12 = 108 185 

different scenarios. Each scenario was simulated 100 times, resulting in 10,800 data sets. For the 186 

simulated genetic architecture, we considered three factors of complexities. 1) The extent of linkage 187 

disequilibrium (LD) between QTL (three levels, denoted by LD pattern 1, 2 and 3). 2) The proportion 188 

of genetic variance (PG) explained by the major QTL (two levels, indicated by PG1 and PG2). 3) The 189 

number of minor QTL contributed as the genetic background (GB) effects (two levels, designated GB1 190 

and GB2) (Figure 1B). More details of the simulation procedure were described in Methods. 191 

In each of the 108 scenarios, the statistical power in detecting QTL and the FPR of the 12 algorithms 192 

were assessed through the 100 replicated datasets, except for CMLM and FaST-LMM-select, which 193 

were solely evaluated in the 72 scenarios representing the datasets with population sizes 300 and 194 

1,000 because the computational load was too high for a population size of 3,000.  195 

Comparing the performance of the algorithms with empirical data 196 

The 12 selected algorithms were compared based on five empirical data sets (Fig. 2; Supplementary 197 

Figs. 1-4). We took the result of GEMMA as a benchmark as it is an exact algorithm based on the 198 

standard Q+K model. In general, we found that GEMMA detected the least number of regions among 199 

all algorithms, except fastGWA, which detected fewer regions than GEMMA in the wheat, Arabidopsis 200 

and maize datasets (see Panel D of the five figures). Nevertheless, the regions identified by GEMMA 201 

were the most congruent among all algorithms. In particular, the results of Grid-LMM, GAPIT-MLM 202 

and CMLM were nearly identical to those of GEMMA (the correlation of -log10(p) values was close to 203 

1). The regions identified by GEMMA were also detected by BOLT-LMM-inf and BOLT-LMM-mix in 204 

most cases, but not always by FaST-LMM-select, fastGWA-sp, FarmCPU or BLINK. Note, that the 205 

regions detected by FarmCPU and BLINK were typically represented as scatter points rather than as 206 

peaks in the Manhattan plots reflecting the underlying model (Supplementary Note A). Except for the 207 

barley dataset, regions commonly identified by other algorithms but not GEMMA were detected by 208 

five or fewer algorithms, and many were detected by only one or two algorithms. For example, in the 209 

Arabidopsis data set, the 12 algorithms identified in total 20 regions, whereas GEMMA only found 210 

three. And there were 14 regions which were identified by just one algorithm (Supplementary Fig. 1). 211 

Interestingly, candidate genes whose role in controlling flowering time had been documented in 212 

literature were found closely linked to the associated SNPs for 16 out of 20 regions (Supplementary 213 

Table 1). Nevertheless, since the positions of true QTL are largely unknown for the empirical data sets, 214 
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it is unclear which of the QTL represent faithful candidates or false positives. A reliable assessment of 215 

power and FPR of the different algorithms requires a simulation study. 216 

Comparing the statistical power and FPR of the algorithms with simulated data 217 

We compared the power of QTL detection and FPR of all algorithms under the threshold of p < 0.05 218 

after Bonferroni correction for multiple testing 39. In general, the heritability of the trait, the 219 

population size, and the number of markers contributing to the genetic background played a minor 220 

role in ranking the algorithms. MLMA-LOCO, FaST-LMM-select and the two variants of BOLT-LMM 221 

(BOLT-LMM-inf and BOLT-LMM-mix) achieved the highest power in most scenarios (Fig. 3A, Extended 222 

Data Figs. 2A, 3A). However, they also produced the highest FPR among all algorithms, while the FPR 223 

of the other 8 algorithms was much lower (Fig. 3B, Extended Data Figs. 2B, 3B).  224 

The power of GEMMA and Grid-LMM was very similar across all scenarios, as was the power of 225 

FarmCPU and BLINK. Interestingly, the relative performance of the two groups of algorithms 226 

depended on the genetic architecture of the datasets. More specifically, the power of FarmCPU and 227 

BLINK was higher than that of GEMMA and Grid-LMM when there was no LD between major QTL (LD 228 

patterns 1 and 2), especially in PG1 where each of the six QTL explained only 2% of the genetic variance. 229 

In contrast, when the QTL were in LD (LD pattern 3), GEMMA and Grid-LMM produced similar power 230 

to that of FarmCPU and BLINK in PG1, and substantially outperformed them in PG2, where the PG 231 

explained by the six QTL was much higher (from 2% to 12% with a step of 2%). Thus, the results 232 

indicated that 1) FarmCPU and BLINK are favored for independent QTL, while GEMMA and Grid-LMM 233 

are better for detecting QTL pairs in LD. 2) In the case of independent QTL, the advantage of FarmCPU 234 

and BLINK are more pronounced for QTL explaining small PG. These conclusions were supported by 235 

evidence from more detailed analyses: For scenarios with PG2, it is very clear that the power of 236 

FarmCPU and BLINK was much higher than that of GEMMA and Grid-LMM for the discovery of QTL 237 

with PG f 6% in LD patterns 1 and 2, whereas for QTL with PG g 8% their advantage was less evident 238 

(Extended Data Fig. 4, Supplementary Figs. 5-6). For scenarios with LD pattern 3, we observed that at 239 

low level of LD between QTL (0.16 < ÿ2 f 0.36), GEMMA and Grid-LMM had almost no advantage 240 

(Extended Data Fig. 5, Supplementary Fig. 7). Nevertheless, as LD increased, the power of GEMMA 241 

and Grid-LMM exceeded that of FarmCPU and BLINK. This trend was more pronounced in PG2 than in 242 

PG1.  243 

Further investigations revealed that the two groups of algorithms also differed in their ability to detect 244 

QTL with different MAFs (Extended Data Figs. 6-7, Supplementary Figs. 8-11). For GEMMA and Grid-245 

LMM, the difference between the power of detecting QTL with different ranges of MAF was larger 246 

than for FarmCPU and BLINK. For example, with LD patterns 1 and 2, the power of GEMMA and Grid-247 

LMM for detecting QTL with MAF above 0.1 was clearly lower than that of FarmCPU and BLINK. 248 

However, for QTL with MAF less than 0.1, the gap was much smaller and in many scenarios GEMMA 249 

and Grid-LMM achieved similar power as FarmCPU and BLINK. This trend was even more pronounced 250 

with LD pattern 3. In most scenarios, the power of GEMMA and Grid-LMM was similar to or only 251 

slightly higher than FarmCPU and BLINK for QTL with MAF above 0.1, but for QTL with MAF below 0.1, 252 

FarmCPU and BLINK were clearly outperformed. These results indicate that GEMMA and Grid-LMM 253 

are more sensitive to the MAF of QTL and are better at detecting QTL with rare alleles, while FarmCPU 254 

and BLINK are more powerful at detecting QTL with common alleles.  255 

For the remaining four algorithms, the power of GAPIT-MLM and CMLM was similar to or slightly lower 256 

than GEMMA and Grid-LMM in most scenarios, followed by the two variants of fastGWA (fastGWA-sp 257 

and fastGWA-GG). The power of fastGWA-GG was the lowest in most scenarios. Detailed analysis 258 

indicated that the low power was likely due to the underlying model of fastGWA which is slightly 259 
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different from the standard Q+K model (Supplementary Note B). In addition, we found that in some 260 

scenarios (e.g., LD patterns 1 and 2, population size 3000 and heritability 0.7, Fig. 3B), the FPR of 261 

fastGWA-sp was surprisingly high. Further analysis revealed that for a small fraction of simulated 262 

datasets, the p-value produced by fastGWA-sp were zero for all markers, and we suspected that this 263 

might be caused by cumulated numerical errors during the computation (Supplementary Note B).   264 

The above comparisons of the performance of the 12 algorithms are based on a common threshold. 265 

To assess their overall ability to classify true and false positives, we investigated the receiver-operating 266 

characteristic (ROC) curves (Fig. 4, Extended Data Figs. 8-9), which is obtained by depicting the power 267 

against the FPR under various thresholds. Since fastGWA-sp produced erroneous p-values in a small 268 

proportion of data sets, it was excluded from this part of analysis. Surprisingly, the ranks of the 269 

algorithms from the viewpoint of ROC curves differed from those under a fixed threshold. We found 270 

that the ROC curves of GEMMA, Grid-LMM, GAPIT-MLM and CMLM overlapped almost completely 271 

and were closest to the upper-left corner, or point (0, 1) in all scenarios. Thus, the area under the 272 

curve (AUC) was largest for these four algorithms, implying that they clearly outperformed the other 273 

algorithms in the sense that they would have the highest power at any given level of FPR and the 274 

lowest FPR at any given power. It should be noted, however, that it is not easy to exploit this 275 

theoretical advantage in reality, because different algorithms reach a given FPR or power at different 276 

thresholds, and for empirical data sets it is impossible to know the exact relationship between the 277 

threshold and power/FPR. For a given threshold, the algorithm favored by the ROC curve does not 278 

necessarily produce the highest power. This is exactly what we observed in Fig. 3 with our simulated 279 

datasets for which a stringent threshold (p < 0.05 after Bonferroni correction) was applied. We also 280 

tried a more liberal threshold (p < 0.05 after Benjamini-Hochberg correction 40) and found that the 281 

rankings of the algorithms did not change in most scenarios (Supplementary Figs. 12-14). Therefore, 282 

it would be very interesting to know if there is an optimized threshold for the algorithm whose ROC 283 

curve has the largest AUC, so that the theoretical advantage can be exploited. This topic is beyond the 284 

scope of the current study, but is certainly worth further investigation.  285 

The influence of specific techniques on the power and FPR 286 

The results obtained in the previous section enabled a detailed investigation of the influence of a 287 

specific mathematical/statistical technique on the detection power and FPR by comparing the results 288 

of two algorithms that differ only in whether the technique is implemented or not (Fig. 5A). In the 289 

following, we mainly focused on the techniques inflating FPR, because the four algorithms that 290 

boosted power (FaST-LMM-select, BOLT-LMM-inf, BOLT-LMM-mix and MLMA-LOCO) were also 291 

accompanied with inflated FPR. 292 

FaST-LMM-select specifies a subset of markers whose correlations with the trait are highest to build 293 

up the kinship matrix. In this process, the number of markers is determined by cross-validation. We 294 

found that this approach boosted the power but also inflated the FPR, which is consistent with 295 

previous studies 24, 38. It has been reported that FaST-LMM-all+select or adding a few PCs of the SNP 296 

matrix as covariates to the FaST-LMM-select model can control FPR 24. Nevertheless, we did not 297 

evaluate these two approaches as they significantly increase the computational load.  298 

MLMA-LOCO implemented LOCO and P3D, BOLT-LMM-inf and BOLT-LMM-mix implemented LOCO, 299 

P3D and introduced certain approximations for computing test statistics. We observed that these 300 

three algorithms increased both the power and the FPR. Since there is no evidence that P3D inflates 301 

the test statistics, it suggests that LOCO is responsible for the inflated FPR. A previous study also 302 

observed inflated FPR for BOLT-LMM-inf and BOLT-LMM-mix 21 and claimed that the high FPR was due 303 

to a partial LOCO approach implemented in these two algorithms (The LOCO technique was only 304 
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applied in the calculation of the test statistics, but not in the estimation of the unknown parameters 305 

of the LMM). We then re-evaluated the two algorithms by forcing a genuine LOCO procedure (see 306 

Methods) with 400 simulated data sets, but could not find essential differences (Supplementary Table 307 

2). Thus, our results indicated that LOCO not only increases the power but also caused inflation of FPR. 308 

It is well-known that LOCO can avoid proximal contamination and hence increase the statistical power 309 

compared with the algorithms using all markers to build up the kinship matrix 23, 38. However, recent 310 

studies reported inflated test statistics when LOCO was applied 41, 42, thus providing an explanation for 311 

the inflated FPR which was observed in this study.  312 

The sparse kinship technique implemented in fastGWA-sp also inflated FPR. Even if we ignore the 313 

small proportion of the simulated data sets in which computational errors occurred, the FPR of 314 

fastGWA-sp in certain scenarios was still higher than other algorithms (Supplementary Note B). In our 315 

analysis, the threshold for sparse kinship was set to 0.05, which was recommended by the algorithm. 316 

We also examined the performance of fastGWA-sp with other thresholds (0, 0.1, 0.15, and 0.2) in 100 317 

simulated datasets and observed different levels of inflation of FPR (Supplementary Fig. 15). It should 318 

be noted that sparse kinship with the threshold 0 is not the same as exact kinship because negative 319 

values exist in the kinship matrix. This result indicated that setting small entries in the kinship matrix 320 

to zero may lead to insufficient control of the population structure. Therefore, further studies are 321 

needed to find out the applicability of this technique in different populations.  322 

Discussion 323 

In this study, we provided a comprehensive overview of LMM-based fast GWAS algorithms applied in 324 

the last decade and a half and selected 12 representatives for a benchmarking analysis to evaluate 325 

their statistical power and FPR using 10,800 simulated datasets. Large plant populations of inbreeding 326 

species or inbred lines were the focus as they were often underrepresented in previous studies in 327 

which the algorithms were developed and evaluated. For example, some algorithms were developed 328 

and tested only with human data sets 14, 21 or with small-size plant data sets 27, 28. Indeed, we observed 329 

some results different from those obtained in simulation studies based on human genomic data. The 330 

influence of LOCO and sparse kinship matrix on the FPR are two examples. While we found inflated 331 

FPR for algorithms implementing these two techniques, studies based on human populations did not 332 
38, 43. Interestingly, it was also reported that LOCO could result in inflated test statistics (the genomic 333 

inflation factor � > 1, defined as the median of the observed distribution of test statistics divided by 334 

the median of the expected distribution) in some empirical studies with animal populations 41, 42 and 335 

it was suspected that the stronger population stratification in livestock populations might be the 336 

reason why inflation was not observed in studies with human populations 41. Therefore, the influence 337 

of a specific technique on the power and FPR of GWAS might not be consistent across species, or even 338 

populations. Considering this point, we evaluated the 12 algorithms in 1,200 additional simulated data 339 

sets based on the genomic data of Arabidopsis, maize and barley populations. The rankings of 340 

algorithms in terms of statistical power and FPR were consistent with those observed for wheat 341 

genomic data (Extended Data Fig. 10). Nonetheless, the differences between classes of algorithms in 342 

terms of power and FPR was less pronounced in the Arabidopsis and maize data sets compared to the 343 

results for genomic data of wheat and barley. In future, it should be a priority to assess whether for 344 

example differences in LD decay contribute to the observed inconsistencies. For the time being, the 345 

selection of GWAS algorithms should consider potential differences between species and populations. 346 

If one or more techniques implemented by an algorithm were reported to have inflated test statistics 347 

in certain populations, we should be careful to apply it and at least check the genomic inflation factor 348 

with the resulting test statistics.   349 
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The results of our benchmarking analysis were summarized in Fig. 5B. FaST-LMM-select, BOLT-LMM-350 

inf, BOLT-LMM-mix and MLMA-LOCO had the highest power but also the highest FPR across all 351 

scenarios, while fastGWA-sp had inflated FPR in some scenarios. Thus, the additional regions identified 352 

by these five algorithms in the empirical datasets could be a mix of true and false positives. In general, 353 

we would suggest being cautious when applying the five algorithms. However, for small populations 354 

and traits with very low heritability, FaST-LMM-select, BOLT-LMM-inf, BOLT-LMM-mix and MLMA-355 

LOCO might be a good choice because the four algorithms had much higher power than the other 356 

algorithms and their FPR was still in an acceptable range.  357 

The other seven algorithms controlled the FPR stringently. While fastGWA-GG produced the lowest 358 

power in most scenarios, the remaining six can be divided into two groups: The first group consists of 359 

GEMMA, Grid-LMM, GAPIT-MLM and CMLM, and the second is comprised of FarmCPU and BLINK. 360 

Note that additional candidates for the first group include FaST-LMM (without LOCO), EMMAX, GCTA-361 

MLMA (without LOCO) and TASSEL-MLM, which were not evaluated in our study but implemented the 362 

same technique as GEMMA or GAPIT-MLM. The algorithms in the first group produced higher power 363 

for QTL with low MAF, explaining relatively large PG and for QTL pairs with medium to high LD. In 364 

contrast, the second group of algorithms was better at detecting independent QTL with medium to 365 

high MAF and explaining small PG. The relative behavior of the two groups of algorithms is very 366 

interesting because their underlying models differ greatly. While the first group followed the standard 367 

Q+K LMM (GEMMA, Grid-LMM and GAPIT-MLM) or introduced only minor modifications (CMLM), the 368 

second group employed techniques that differed greatly from the Q+K model. Our results in the 369 

simulation studies indicated that most regions identified by FarmCPU and BLINK, but not by GEMMA, 370 

in the empirical datasets were unlikely false positives since both groups of algorithms stringently 371 

controlled the FPR, but the model differences resulted in a complementary detection power. Based 372 

on all results, we recommend a combination of two algorithms, each from one group, as the optimal 373 

strategy for performing GWAS.  374 

  375 
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Methods 376 

The procedure of a standard GWAS algorithm based on the Q+K model 377 

In this section, we briefly describe the Q+K model 7 for GWAS and the procedure of solving the model 378 

as well as producing the test statistics. More details are provided in the Supplementary Note A. 379 

For simplicity, the model is presented in the case that each individual has only one phenotypic 380 

observation as follows: 381 þ = �� + �� + � + �,                   (1) 382 

where þ is the Ā-dimensional vector of phenotypic observations, � is the �-dimensional vector of 383 

covariates which may include a common intercept, environmental and/or subpopulation effects etc., 384 � is the corresponding design matrix of size Ā ×  �, � is the effect of the marker being tested, � is 385 

the Ā-dimensional coding vector of the marker,  � is the Ā-dimensional vector of polygenic effects, 386 

and � is the Ā-dimensional vector of residuals.  387 

In the model, � and � are treated as fixed effects, � and � are random effects following multi-variate 388 

normal distribution: �~ý(0, ���2), �~ý(0, ���2), where � is an Ā ×  Ā kinship matrix derived from 389 

pedigree/marker information, �  is the Ā ×  Ā  identity matrix, ��2  and ��2  are the corresponding 390 

genetic and residual variance components.  391 

The procedure of GWAS can be roughly divided into two steps: 1) solving the model; 2) producing the 392 

test statistics. Usually, the model is solved by maximum likelihood (ML) or restricted maximum 393 

likelihood (REML) method. Taking the ML method as an example, the log-likelihood function is the 394 

following: 395 ��(�, �, �, ��2) = 2 Ā2 log(2���2) 2 12 log|�| 2 12��2 (þ 2 �� 2 ��)′�21(þ 2 �� 2 ��), (2) 396 

where � = �� + � , � = ��2/��2 , and | ∙ |  denotes the determinant of a matrix. The unknown 397 

parameters, namely �, �, � and ��2, are estimated as the values such that the log-likelihood function 398 

reaches its maximum.   399 

The test statistics can be produced with different approaches, e.g. the likelihood ratio test and the 400 

Wald test. Taking the Wald test as an example, the test statistic has the following form 401 

�wald = �̂2var(�̂) , (3) 402 

where �̂  is the estimated value of � . Under the null hypothesis, the test statistic follows a �2 -403 

distribution with one-degree of freedom.  404 

The time complexity of an algorithm 405 

For the convenience of readers, we briefly recall the time complexity of an algorithm 44. In computer 406 

science, the time complexity describes the amount of computer time it takes to run an algorithm. It is 407 

usually estimated by counting the number of elementary operations, i.e. additions and multiplications 408 

of numbers, performed by the algorithm. Assuming that each elementary operation takes a fixed 409 

amount of time, the amount of time taken and the number of elementary operations performed by 410 

the algorithm are related by a constant factor.  411 
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In most cases, the running time of an algorithm depends on the size of input data. Thus, the time 412 

complexity is generally expressed as a function of the size of the input. Since this function is generally 413 

difficult to compute exactly, one commonly focuses on the behavior of the complexity when the input 414 

size increases, i.e., the asymptotic behavior of the complexity. Therefore, the time complexity is 415 

commonly expressed by the so-called <big O= notation. For example, suppose that the size of input 416 

data depends on two variables ÿ and Ā, an algorithm with time complexity þ(ÿĀ2) means that the 417 

amount of running time increases linearly as the increase of ÿ, and quadratically as the increase of Ā.  418 

Here are useful results about the time complexity of some basic operations in matrix algebra: The time 419 

complexity of multiplying an ÿ × Ā matrix with an Ā ×  � matrix is þ(ÿĀ�). Thus, the product of two 420 Ā × Ā matrices has complexity þ(Ā3), and the complexity of multiplying an ÿ × Ā matrix with an Ā-421 

dimensional vector is þ(ÿĀ). The inner product of two n-dimensional vectors has complexity þ(Ā). 422 

The complexity of inverting or performing the spectral decomposition of an Ā × Ā matrix is þ(Ā3). 423 

Fast GWAS algorithms evaluated in this study 424 

The principles of selecting algorithms for benchmarking analysis were the following: 1) Among the 425 

same class of algorithms in which similar techniques for improving the computational efficiency were 426 

implemented. Only if an algorithm was reported in the literature to be clearly inferior to the others, it 427 

was excluded from the analysis. 2) In case several algorithms from different software packages 428 

implemented the same techniques, only one representative was selected. The results for the selected 429 

algorithm should then be treated as equally working for the entire class of algorithms that it 430 

represents. 3) As long as 1) is not violated, we tried to include as many different techniques as possible. 431 

Each technique is represented by at least one selected algorithm. 432 

According to the above principles, the following decisions were made:  433 

1) Among the four exact and quasi-exact algorithms (EMMA, FaST-LMM, GEMMA and Grid-LMM), we 434 

selected GEMMA and Grid-LMM for our analysis. EMMA is computationally inefficient (complexity 435 þ(ýĀ3 + �ýĀ)) compared with GEMMA and FaST-LMM (complexity þ(Ā3 + ýĀ2 + �ýĀ)). In fact, the 436 

R package EMMA has been removed from the CRAN repository. The new version of FaST-LMM (based 437 

on Python) implements P3D and the exact FaST-LMM algorithm is available only in the old C++ version. 438 

Thus, we decided to take GEMMA as the representative. Grid-LMM was selected because it solves the 439 

LMM by grid search instead of numerical optimization, hence it is different from the other three 440 

algorithms.  441 

2) There are several algorithms implementing P3D with the standard Q+K model (but without other 442 

techniques), namely GAPIT-MLM, FaST-LMM-P3D, EMMAX, and TASSEL-MLM. There is no essential 443 

difference among these algorithms and we selected GAPIT-MLM as the representative.  444 

3) A few algorithms implementing the LOCO technique, including FaST-LMM (as an option), MLMA-445 

LOCO and BOLT-LMM. Since P3D is mandatorily implemented in the new version of FaST-LMM and in 446 

MLMA-LOCO, it means that both algorithms implemented P3D and LOCO based on the standard Q+K 447 

model, and without other techniques. We selected MLMA-LOCO as a representative. BOLT-LMM was 448 

selected as it implements the Monte Carlo sampling approach to solve the LMM which is different 449 

from all other algorithms. There were two options in BOLT-LMM for controlling the genetic 450 

background effects or the population structure. One follows the standard Q+K model, termed BOLT-451 

LMM-inf. The other implements a Gaussian mixture for the random marker effects, similar to a 452 

Bayesian genomic prediction model 45, termed BOLT-LMM-mix. The default BOLT-LMM algorithm 453 

combined the two variants and performed a cross-validation to determine which variant would be 454 

used to produce the final test statistics. In our study, we purposely treated BOLT-LMM-inf and BOLT-455 
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LMM-mix as two different algorithms to assess the influence of the different techniques implemented 456 

in the two variants.  457 

4) Several algorithms implemented approximations to the test statistics, namely GRAMMAR, 458 

GRAMMAR-Gamma, BOLT-LMM, and fastGWA. BOLT-LMM was already selected, while for the 459 

remaining three we only included fastGWA. According to the previous studies, the algorithm 460 

GRAMMAR produces conservative tests and biased estimates 19, 20 and it was improved in GRAMMAR-461 

Gamma, which was also implemented as an option in fastGWA, termed fastGWA-GG. Since the 462 

package GenABEL implementing GRAMMAR and GRAMMAR-Gamma has been removed from the 463 

CRAN repository, both were excluded in our analysis. But fastGWA-GG was selected to represent 464 

GRAMMAR-Gamma. Besides, fastGWA implemented another option of making the kinship matrix 465 

sparse, termed fastGWA-sp. This variant was also selected for our analysis.  466 

5) Among the two algorithms which compress the kinship matrix (CMLM and ECMLM), we selected 467 

CMLM because the enriched version ECMLM is computationally much more demanding for large data 468 

sets despite it may increase the power of detection 18.  469 

6) For the algorithms that select a subset of markers to control the population structure or polygenic 470 

background (MLMM, FaST-LMM-select, FaST-LMM-all+select, SUPER, FarmCPU and BLINK), we 471 

selected FaST-LMM-select, FarmCPU and BLINK because MLMM, FaST-LMM-all+select and SUPER 472 

were much more time-demanding than the others when data size is large. The three selected 473 

algorithms differ in the method for selecting markers and/or in the testing procedure (For details see 474 

Supplementary Note A).  475 

To summarize, 12 algorithms were selected for our benchmarking analysis: GEMMA, Grid-LMM, 476 

GAPIT-MLM, MLMA-LOCO, BOLT-LMM-inf, BOLT-LMM-mix, fastGWA-GG, fastGWA-sp, CMLM, FaST-477 

LMM-select, FarmCPU, and BLINK. 478 

After we had started the benchmarking analysis, two interesting new algorithms MM4LMM 16 and 479 

REGENIE 29 were published. MM4LMM is an exact algorithm which solves the LMM in a different way 480 

from GEMMA/FaST-LMM. REGENIE implements P3D, LOCO and a two-step stacked ridge regression 481 

approach to solve the null model. We evaluated the two algorithms with 400 simulated data sets (4 482 

out of the 108 scenarios) and the results were summarized in Supplementary Note C.    483 

Protocols and settings of the algorithms evaluated in this study 484 

The GEMMA package (v0.98.1) was downloaded at https://github.com/genetics-statistics/GEMMA. 485 

All parameters were set as default. 486 

The Grid-LMM package (v0.0.0.9000) was downloaded at https://github.com/deruncie/GridLMM. All 487 

parameters were set as default. 488 

The BOLT-LMM package (v2.3.5) was downloaded at http://data.broadinstitute.org/alkesgroup/BOLT-489 

LMM/downloads/. The parameters <--ImmInfOnly= and <--ImmForceNonInf= were used to force the 490 

algorithm producing the test statistics of BOLT-LMM-inf and BOLT-LMM-mix, respectively. Other 491 

parameters were set as default. Note that by default, the two algorithms implemented LOCO when 492 

calculating the test statistics, but estimated variance components only once using all markers. We 493 

kept this setting for our benchmarking analysis, but investigated the influence of the genuine LOCO 494 

using 400 simulated data sets. To force a genuine LOCO procedure, we modified the parameter <--495 

modelSnps= to select markers on all chromosomes except the one to which the marker being tested 496 

belonged.  497 
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The GAPIT package (v3.1.0) was downloaded at https://zzlab.net/GAPIT/. Four algorithms 498 

implemented in this package were evaluated in our study, namely MLM, CMLM, FarmCPU and BLINK. 499 

All parameters were set as default. Note that for CMLM, the default setting is to optimize the 500 

compression level by evaluating the null model with a series of different compression levels and 501 

choosing the one maximizing the log-likelihood. We also tested alternative settings, namely fixing the 502 

compression level to 5 or 10 as suggested, with 200 simulated data sets. Although it could greatly 503 

improve the computational efficiency, inflated FPR were observed (Supplementary Table 3). Thus, we 504 

decided to keep the default setting. 505 

The GCTA package (v1.93.2beta) was downloaded at 506 

https://yanglab.westlake.edu.cn/software/gcta/#Overview. Three algorithms implemented in this 507 

package were evaluated in this study: MLMA-LOCO, fastGWA-GG and fastGWA-sp. The parameter --508 

mlma-loco= was used for MLMA-LOCO and <--fastGWA-mlm= was used for fastGWA-GG and fastGWA-509 

sp. For fastGWA-sp, an additional parameter <--fastGWA-mlm-exact= was set to exclude the 510 

GRAMMA-Gamma approximation and the sparse kinship was done by setting <--make-bK-sparse= to 511 

the recommended value 0.05, except for the analysis related to Supplementary Fig. 15, for which five 512 

different thresholds were used. Other parameters were set as default. 513 

FaST-LMM-select was implemented in the package FaST-LMM (Python platform, v0.6.1), which was 514 

downloaded at https://pypi.org/project/fastlmm/. The function 515 

<fastlmm.association.single_snp_select()= was used to run FaST-LMM-select. All parameters were set 516 

as default. 517 

Empirical data sets  518 

Arabidopsis. The Arabidopsis data set was from the 1001 Genomes Consortium 46, which is comprised 519 

of 1,134 genotypes and 11,458,975 SNPs. The flowering time recorded for plants grown at a 520 

temperature of 10℃ (abbreviated as FT10) was selected as the phenotypic data in this study. After 521 

filtering with missing rate ( f 0.1) and MAF (g 0.05), 1,003 genotypes with 749,722 SNPs were used 522 

for the current study. The remaining missing values were imputed using IMPUTE2 47. 523 

Wheat. The wheat data set consisted of 5,581 winter wheat accessions from the Federal ex situ 524 

Genebank for Agricultural and Horticultural Crop Species of Germany hosted at the Leibniz Institute 525 

of Plant Genetics and Crop Plant Research (IPK) 48. The accessions were fingerprinted using 526 

genotyping-by-sequencing (GBS). After quality control and filtering, IMPUTE2 was applied to impute 527 

the remaining missing sites, resulting in 427,937 SNP markers. The phenotypic trait considered in this 528 

study was yellow rust (YR) resistance based on natural infections in replicated field experiments over 529 

years 2015-2020 at two locations in Germany 48. 530 

Rice. The rice data set was from the 3,000 Rice Genomes Project 531 

(https://snpseek.irri.org/_download.zul) 49. The genotypic data of 3,024 genotypes were filtered with 532 

missing rate (< 0.2) and MAF (> 0.01), resulting in 4,817,964 bi-allelic SNPs. Then, the remaining 533 

missing sites were imputed by Beagle 5.2 50. In total, 2,013 genotypes with the phenotypic trait grain 534 

length were used for the analysis (https://www.rmbreeding.cn/phenotype#ifr2). 535 

Maize. The maize data set consisted of 2,815 inbred accessions preserved in the USDA collection 51. 536 

The growing degree days to silking were investigated in three environments (Ames, IA; Clayton, NC; 537 

and Aurora, NY) during summer 2010. The accessions were genotyping by GBS with 681,257 SNP 538 

markers. Both phenotypic and genotypic data were obtained from Panzea database 539 

(https://www.panzea.org). After filtering the missing phenotypic data, 2,279 accessions remained. 540 
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The genotypic data were filtered with MAF > 0.05 and imputed with Beagle. In total, 225,563 high-541 

quality SNP markers were used for the current study. 542 

Barley. The barley data set consisted of 15,557 spring barley accessions fingerprinted by GBS, which 543 

were also from the Genebank at IPK 52. After quality control, the missing values were imputed using 544 

FILLIN 53 resulting in 306,049 SNPs. The phenotypic information which was considered in this study 545 

were historical data for flowering time (FT, 8,825 accessions) 54. 546 

GWAS for the empirical data sets 547 

Each of the 12 selected GWAS algorithms was applied to the five empirical data sets described above. 548 

The p-values of all markers were obtained and p < 0.05 after Bonferroni correction 39 for multiple 549 

testing was determined as the genome-wide threshold for significance. The significant markers were 550 

merged into QTL by the following criterion: Two markers were merged if the physical distance 551 

between them is less than the average distance at which the LD (measured by ÿ2) decayed to 0.1 (for 552 

wheat, barley and rice) or 0.05 (for Arabidopsis and maize), which is determined by non-linear 553 

regression 55. In the five populations, the resulting distance was 380 kbp (wheat), 452 kbp (rice), 1,400 554 

kbp (barley), 26 kbp (Arabidopsis) and 70 kbp (maize), respectively.  555 

Candidate gene search for marker-trait associations in Arabidopsis 556 

Genes spanning or flanking significant SNPs were retrieved from TAIR 557 

(https://www.arabidopsis.org/index.jsp). FLOR-ID 56 (http://www.phytosystems.ulg.ac.be/florid/) was 558 

inspected to identify genes for which a role in flowering time control had been documented previously. 559 

Regions 50 - 60 kbp upstream and downstream of the SNP were considered. In regions for which no 560 

candidate genes had been reported in FLOR-ID a literature search for all genes mapping to these 561 

regions was conducted based on the information available in TAIR. Only genes in which mutants 562 

and/or overexpressing lines of the genes of interest had shown an effect on flowering time were 563 

considered as candidate genes. 564 

Data simulation 565 

The genomic data of the wheat population described in the last subsection were used to simulate the 566 

phenotypic data. We considered three different population sizes (300, 1000, 3000), three different 567 

trait heritabilities (0.3, 0.5, 0.7), and 12 different complexities of genetic architecture. Each of the 3 × 568 

3 × 12 = 108 scenarios was repeatedly simulated 100 times, which makes in total 10,800 data sets. To 569 

reduce the computational load, we chose 6 chromosomes (1A to 6A) to conduct the simulation, 570 

resulting in 126,819 SNPs. In all cases, markers were classified into three classes, namely major QTL, 571 

minor QTL and neutral marker. The number of major QTL was fixed to 6, while the number of minor 572 

QTL and neutral markers varied across scenarios. 573 

The complexity of simulated genetic architecture is determined as follows: First, we considered three 574 

different patterns of linkage disequilibrium (LD) between the major and minor QTL: In LD pattern 1, 575 

there was neither LD between any two major QTL nor between any major and minor QTL. In LD pattern 576 

2, the major QTL were still independent of each other, but LD exited between major and minor QTL. 577 

In LD pattern 3, there existed LD among the major QTL as well as between major and minor QTL. Then, 578 

two cases of the proportion of genetic variance (PG) explained by the major QTL were considered (PG1 579 

and PG2). In PG1, all 6 major QTL contributed equally, each explaining 2% of the genetic variance. 580 

Thus, the total PG of all major QTL was 12%. In PG2, the proportions of explained genetic variance of 581 

the 6 major QTL were randomly assigned as 2%, 4%, 6%, 8%, 10%, and 12%, with a total PG of 42%. 582 

Finally, two cases for the number of minor QTL contributed as genetic background effects were 583 
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introduced (denoted by GB1 and GB2). With GB1, only a few markers were selected as minor QTL. 584 

With GB2, all markers on the chromosomes (LD pattern 2 and 3) or on half of the chromosomes (LD 585 

pattern 1) contributed as minor QTL, representing the so-called infinitesimal genetic architecture. In 586 

total, it gives 3 × 2 × 2 = 12 different levels of complexities. 587 

Next, we described the detailed procedure of simulation. For LD pattern 1, in each round of simulation, 588 

three of the six chromosomes were randomly sampled. On each chromosome, two markers with very 589 

low LD (ÿ2 < 0.01) were randomly selected as major QTL. Minor QTL came from the remaining three 590 

chromosomes. Namely, 400 markers from each of the three chromosomes were randomly sampled in 591 

GB1, while in GB2 all markers on the three chromosomes were treated as minor QTL. For LD pattern 592 

2, one marker was randomly sampled from each of the six chromosomes as major QTL. For the minor 593 

QTL, 200 markers were randomly sampled from each chromosome in GB 1, and all remaining markers 594 

were treated as minor QTL in GB 2. For LD pattern 3, we only took 3 chromosomes (A1-A3) to conduct 595 

the simulation. In each round of simulation, three different levels of LD, namely 0.16 < ÿ2 f 0.36, 596 0.36 < ÿ2 f 0.64 , 0.64 < ÿ2 < 1 , were randomly assigned to the three chromosomes as the 597 

criterion for sampling major QTL. Then, two markers fulfilling the LD criterion were randomly selected 598 

from each of the three chromosomes. In addition, we purposely forced the distance between the two 599 

markers sampled as major QTL to be larger than 760 kbps, which is the double distance at which the 600 

LD decayed to 0.1. This setting is to make sure that the two QTL would not be treated as a single one 601 

in the assessment of statistical power (see the next subsection). For the minor QTL, 400 markers were 602 

randomly sampled from each chromosome in GB1, and all remaining markers were treated as minor 603 

QTL in GB2.  604 

In LD patterns 1 and 2, we additionally controlled the MAF of the markers sampled as major QTL. Three 605 

classes of MAF were considered, namely MAF f 0.1 , 0.1 < MAF f 0.3 , MAF > 0.3 . On each 606 

chromosome, the number of markers sampled as major QTL across 100 replicates in each class was 607 

about 1/3 of the total number. In LD pattern 3, we did not control MAF because setting many criteria 608 

may violate the randomness of the sampling procedure, considering that there was already a control 609 

of LD between the pair of markers sampled as major QTL.  610 

The simulated phenotypic data were produced by the following formula: 611 

þ = ∑ �ÿþÿ6
ÿ=1 + ∑ ýĀ�Ā�

Ā=1 + �, (4) 612 

where þ  is the vector of simulated phenotypes, þÿ  is the effect of the i-th major QTL, �ÿ  is the 613 

corresponding marker coding vector, ý is the number of minor QTL, �Ā is the effect of the j-th minor 614 

QTL, ýĀ is the corresponding marker coding vector, � is the vector of residuals.  615 

More precisely, in each round of simulation, the vector þ was produced by the following five steps: 1) 616 

For a given population size N (300, 1,000 or 3,000), we randomly sampled N Genotypes from the entire 617 

population and extracted the SNP matrix. Then, we filtered out SNPs whose MAF was below 0.05 (if 618 

N=300) or below 0.01 (if N = 1,000 or 3,000). Subsequently, the filtered SNP matrix was used to 619 

generate the simulated phenotype. 2) The effect �Ā (for any j) was randomly sampled from a normal 620 

distribution ý(0,0.5). Then, we summed up the effects of all minor QTL as ÿ = ∑ ýĀ�Ā�Ā=1 . 3) The 621 

variance var(ÿ) was calculated. For a given case of PG for the major QTL (PG 1 or PG 2), the variance 622 

of the contribution of each major QTL �� = �ÿþÿ  must satisfy the equation ÿÿ (1 2 ÿ)⁄ =623 var(��) var(ÿ) ⁄ , where ÿÿ is the proportion of genetic variance explained by the i-th major QTL, ÿ is 624 

the proportion of genetic variance explained by all major QTL. Then, var(��) = ÿvar(ÿ) (1 2 ÿ)⁄ . 625 
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Now, the effect of the i-th major QTL can be calculated as þÿ = √var(��) var(��)⁄ . 4) We calculated 626 

the total genetic effects as � = ∑ �ÿþÿ6ÿ=1 + ∑ ýĀ�Ā�Ā=1 . Then, for a given heritability /2 (0.3, 0.5 or 627 

0.7), the variance of the residuals must satisfy the equation /2 (1 2 /2)⁄ = var(�) var(�) ⁄ . Thus, 628 var(�) = (1 2 /2)var(�) /2⁄ . Then, each entry of the residual vector was randomly sampled from a 629 

normal distribution ý(0, √var(�)). 5) The simulated phenotypic value was generated by Eq. (4). 630 

Assessing the statistical power and false positive rate 631 

Each of the 12 selected GWAS algorithms was applied to all 10,800 simulated data sets. The p-values 632 

of all markers were obtained and p < 0.05 after Bonferroni correction 39 for multiple testing was 633 

determined as the genome-wide threshold for significance.  634 

In each of the 108 scenarios, the statistical power and FPR of an algorithm was assessed through its 635 

performance across the 100 replicated data sets. More precisely, the power of detecting major QTL 636 

was calculated as the number of correctly detected ones divided by the total number of simulated 637 

major QTL across 100 data sets, which is 6 × 100 = 600. When the physical distance between a major 638 

QTL and a significant marker was within 380 kbp, the QTL was considered as correctly detected. Note 639 

that the interval length 380 kbp was the average distance at which the LD decayed to 0.1. This is the 640 

same as the criterion of merging significant markers into QTL in the empirical data sets. We did not 641 

assess the power of detecting minor QTL because they were considered as contributors to the 642 

polygenic background. The FPR was estimated only for scenarios with GB1 (1,200 markers as minor 643 

QTL), because in GB2 all markers were either major or minor QTL. The FPR was calculated as the ratio 644 

between the number of non-QTL markers wrongly detected as significant and the total number of 645 

non-QTL markers, averaged across 100 replicates. A marker was defined as a non-QTL marker if it was 646 

not within an interval of 380 kbp flanking a major QTL and nor was it a minor QTL.  647 

In addition, we also divided the simulated major QTL into different classes and investigated the 648 

detection power in each specific class. 1) QTL with different MAF. We considered three classes: 649 MAF f 0.1 , 0.1 < MAF f 0.3 , and MAF > 0.3 . Note that in LD patterns 1 and 2, we purposely 650 

controlled the MAF of the simulated major QTL such that the proportion in each class was about 1/3. 651 

But in LD pattern 3, the MAF of simulated major QTL was random. Nevertheless, this analysis was 652 

performed for all data sets. 2) QTL with different proportions of explained genetic variance. This was 653 

only for scenarios with PG2 in which six different PGs from 2% to 12 % were assigned to the simulated 654 

major QTL. 3) QTL pairs with different LD. This was only applied to LD pattern 3 in which three levels 655 

of LD were assigned to the QTL pairs: 0.16 < ÿ2 f 0.36, 0.36 < ÿ2 f 0.64, and 0.64 < ÿ2 < 1. 656 

Complementary simulation studies 657 

Additional data were simulated based on the genomic data of the Arabidopsis, maize and barley 658 

populations. The rice data set was excluded due to the computational load of GWAS later on. We 659 

chose four scenarios resulting from the combination of two LD patterns (LD pattern 2 and 3) and two 660 

cases of PG (PG1 and PG2). The other parameters were fixed as follows: population size 1,000, trait 661 

heritability 0.7 and GB1. For each scenario and with each population, 100 simulated data sets were 662 

generated by the same procedure as simulating data sets based on the wheat population. In total, 663 

there were 1,200 additional simulated data sets.  664 

Note that in LD pattern 3, the minimal distance between the two simulated QTL on the same 665 

chromosome was set to be the double distance at which the LD decayed to 0.1. Thus, this value 666 

depended on the population, which was 16.6 kbp (Arabidopsis), 6 kbp (maize) and 2,800 kbp (barley) 667 

respectively.  668 
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The 12 selected GWAS algorithms were applied to the 1,200 simulated data sets. For each species and 669 

in each scenario, the statistical power and FPR were calculated by the same approach as described in 670 

the previous subsection. Again, the interval flaking a QTL which was used to determine whether a 671 

significant marker is true or false positive depended on the population, namely 8.3 kbp (Arabidopsis), 672 

3 kbp (maize), and 1,400 kbp (barley), respectively.  673 
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 691 

Figure 1. A. The principles of a standard GWAS algorithm based on linear mixed models and an 692 

illustration of the mathematical techniques applied by the fast algorithms. ML, maximum likelihood; 693 

REML, restricted maximum likelihood; P3D, population parameters previously determined. B. An 694 

outline of the strategy of our benchmarking analysis. LD, linkage disequilibrium; PG, proportion of 695 

genetic variance; GB, genetic background; ROC, receiver operating characteristic. n, the number of 696 

individuals; p, the number of markers. 697 
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 698 

Figure 2. A comparison of the results of 11 GWAS algorithms for the resistance to yellow rust in a 699 

wheat data set consisting of 5,581 individuals and 427,937 markers. A. The Manhattan plots of 4 700 

selected algorithms. The threshold was p < 0.05 after Bonferroni correction. B. Correlations between 701 

the -log10(p) values of all markers obtained by each of the indicated pairs of algorithms. The names of 702 

the algorithms were indicated in the diagonal blocks. C. Pairwise correlations between the -log10(p) 703 

values of markers which were significant under a liberal threshold (-log10(p) > 4) in at least one 704 

algorithm. D. A comparison of significant regions identified by the 11 algorithms. The bar plot showed 705 

the number of regions commonly identified by the algorithms indicated by the black dots. The number 706 

of regions identified by each algorithm was presented in the parentheses next to the names of the 707 

algorithms. The algorithm CMLM was not applied to this data set due to the computational load.   708 
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 709 

Figure 3. The statistical power (A) and false positive rate (B) of 12 GWAS algorithms evaluated in 710 

simulated data sets with 36 scenarios for trait heritability 0.7, under the threshold of p < 0.05 after 711 

Bonferroni correction for multiple testing. The 36 scenarios are combinations of three population sizes 712 

(PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD) patterns among the QTL (LD 713 

patterns 1-3), two patterns of QTL effect sizes (PG1 and PG2), and two different genetic backgrounds 714 

(GB1 and GB2). In LD pattern 1, there is no LD between any two major QTL or between a major and a 715 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.05.570105doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.570105
http://creativecommons.org/licenses/by/4.0/


25 

 

minor QTL. In LD pattern 2, there is no LD between any two major QTL, but LD exits between major 716 

and minor QTL. In LD pattern 3, there exists LD among the major QTL as well as between major and 717 

minor QTL. In PG1, each of the 6 major QTL explained 2% of the genetic variance. In PG2, the 6 major 718 

QTL were randomly assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the genetic variance 719 

respectively. In GB1, there were 1,200 markers as minor QTL. In GB2, all markers on the chromosomes 720 

(LD patterns 2 and 3) or on half of the chromosomes (LD pattern 1) contributed as minor QTL. Each of 721 

the 9 subpanels showed the results of a specific combination of population size and LD pattern. Within 722 

each subpanel, the results of four combinations of two PGs and two GBs were indicated by different 723 

symbols. For GB2, the FPR was only calculated in LD pattern 1, because for LD patterns 2 and 3, all 724 

markers contributed to the simulated trait either as major or as minor QTL. The algorithms CMLM and 725 

FaST-LMM-select were not evaluated for PS 3000 because the computational load was too high. 726 

 727 
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 728 

Figure 4. The receiver operating characteristic (ROC) curves of 11 GWAS algorithms evaluated in 729 

simulated data sets with 18 scenarios for trait heritability 0.7 with GB1 (1,200 markers contributed as 730 

minor QTL to the genetic background effects). The 18 scenarios are combinations of three population 731 

sizes (PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD) patterns among the 732 

QTL (LD patterns 1-3), and two patterns of QTL effect sizes (PG1 and PG2). In LD pattern 1, there is no 733 

LD between any two major QTL or between a major and a minor QTL. In LD pattern 2, there is no LD 734 

between any two major QTL, but LD exits between major and minor QTL. In LD pattern 3, there exists 735 

LD among the major QTL as well as between major and minor QTL. In PG1, each of the 6 major QTL 736 

explained 2% of the genetic variance, In PG2, the 6 major QTL were randomly assigned to explain 2%, 737 

4%, 6%, 8%, 10% and 12% of the genetic variance respectively. Results for PG1 and PG2 were shown 738 

in panels A and B, respectively. Each of the 9 subpanels showed the results for a specific combination 739 
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of population size and data set. Within each subpanel, the ROC curves of different algorithms were 740 

shown in different colors. The power and FPR of each algorithm under the threshold of p < 0.05 after 741 

Bonferroni correction for multiple testing was indicated by a small circle on the curve. The algorithms 742 

CMLM and FaST-LMM-select were not evaluated for PS 3000 because the computational load was too 743 

high. 744 

 745 

 746 

 747 

 748 

 749 

 750 
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 752 

Figure 5. A. Summary of key mathematical techniques implemented in the fast GWAS algorithms 753 

evaluated in this study and their influence on power and false-positive rate (FPR). For each technique, 754 

the results were obtained by comparing two algorithms differing only in having the technique 755 

implemented (listed in the second column) or not (listed in the third column). P3D, population 756 

parameters previously determined; LMM, linear mixed model; LOCO, leave-one-chromosome-out; 757 

MLR, multi-variate linear regression. * fastGWA-ori is the original algorithm of fastGWA without 758 

implementing the GRAMMAR-Gramma approximation or the sparse kinship matrix. It was not 759 

evaluated in the benchmarking analysis (see Supplementary Note B). B. A brief illustration of the 760 

results of benchmarking analysis for the 12 GWAS algorithms. Algorithms above the dashed line as 761 

well as fastGWA-sp (indicated by the ∗ symbol) had inflated FPR, while others stringently controlled 762 

the FPR. In general, the altitude of the algorithms indicated the level of their statistical power. The 763 

three arrows in the middle indicate algorithms with power advantage for specific types of QTL. 764 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.05.570105doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.570105
http://creativecommons.org/licenses/by/4.0/


29 

 

Algorithms next to the left arrow are better at detecting QTL with low minor allele frequency (MAF), 765 

high proportion of genetic variance (PG) and high linkage disequilibrium (LD) with each other. 766 

Algorithms next to the right arrow are better at detecting QTL with high MAF, low PG and low LD with 767 

each other.        768 
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 788 

Extended Data Figure 1. A phylogeny of 33 GWAS algorithms. The 12 algorithms evaluated in the 789 

benchmarking analysis are shown in red font. If two algorithms are connected by an arrow, it means 790 

that the target is based on the source with additional techniques indicated by the text next to the 791 

arrow. If two algorithms each with an arrow targeting to the same algorithm, it means that the target 792 

combines the techniques implemented by the two sources (In this case, no text was indicated). P3D, 793 

population parameters previously determined; MC, Monte-Carlo; LOCO, leave-one-chromosome-out; 794 

MLR, multi-variate linear regression; RES-LR, using the residuals from the null model as the response 795 

to test marker effects in a simple linear model. 796 

 797 
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 798 

Extended Data Figure 2. The statistical power (A) and false positive rate (B) of 12 GWAS algorithms 799 

evaluated in simulated data sets with 36 scenarios for trait heritability 0.5, under the threshold of p < 800 

0.05 after Bonferroni correction for multiple testing. The 36 scenarios are combinations of three 801 

population sizes (PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD) patterns 802 
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among the QTL (LD patterns 1-3), two patterns of QTL effect sizes (PG1 and PG2), and two different 803 

genetic backgrounds (GB1 and GB2). In LD pattern 1, there is no LD between any two major QTL or 804 

between a major and a minor QTL. In LD pattern 2, there is no LD between any two major QTL, but LD 805 

exits between major and minor QTL. In LD pattern 3, there exists LD among the major QTL as well as 806 

between major and minor QTL. In PG1, each of the 6 major QTL explained 2% of the genetic variance. 807 

In PG2, the 6 major QTL were randomly assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the 808 

genetic variance respectively. In GB1, there were 1,200 markers as minor QTL. In GB2, all markers on 809 

the chromosomes (LD patterns 2 and 3) or on half of the chromosomes (LD pattern 1) contributed as 810 

minor QTL. Each of the 9 subpanels showed the results of a specific combination of population size 811 

and LD pattern. Within each subpanel, the results of four combinations of two PGs and two GBs were 812 

indicated by different symbols. For GB2, the FPR was only calculated for LD pattern 1, because for LD 813 

patterns 2 and 3, all markers contributed to the simulated trait either as major or as minor QTL. The 814 

algorithms CMLM and FaST-LMM-select were not evaluated for PS 3000 because the computational 815 

load was too high. 816 
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 821 

Extended Data Figure 3. The statistical power (A) and false positive rate (B) of 12 GWAS algorithms 822 

evaluated in simulated data sets with 36 scenarios for trait heritability 0.3, under the threshold of p < 823 

0.05 after Bonferroni correction for multiple testing. The 36 scenarios are combinations of three 824 

population sizes (PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD) patterns 825 

among the QTL (LD patterns 1-3), two patterns of QTL effect sizes (PG1 and PG2), and two different 826 
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genetic backgrounds (GB1 and GB2). In LD pattern 1, there is no LD between any two major QTL or 827 

between a major and a minor QTL. In LD pattern 2, there is no LD between any two major QTL, but LD 828 

exits between major and minor QTL. In LD pattern 3, there exists LD among the major QTL as well as 829 

between major and minor QTL. In PG1, each of the 6 major QTL explained 2% of the genetic variance. 830 

In PG2, the 6 major QTL were randomly assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the 831 

genetic variance respectively. In GB1, there were 1,200 markers as minor QTL. In GB2, all markers on 832 

the chromosomes (LD patterns 2 and 3) or on half of the chromosomes (LD pattern 1) contributed as 833 

minor QTL. Each of the 9 subpanels showed the results of a specific combination of population size 834 

and LD pattern. Within each subpanel, the results of four combinations of two PGs and two GBs were 835 

indicated by different symbols. For GB2, the FPR was only calculated for LD pattern 1, because for LD 836 

patterns 2 and 3, all markers contributed to the simulated trait either as major or as minor QTL. The 837 

algorithms CMLM and FaST-LMM-select were not evaluated for PS 3000 because the computational 838 

load was too high. 839 
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 852 

Extended Data Figure 4. The statistical power of detecting QTL explaining a specific proportion of 853 

genetic variance for 12 GWAS algorithms evaluated in simulated data sets with 18 scenarios for trait 854 

heritability 0.7. The 18 scenarios are combinations of three population sizes (PS 300, PS 1000 and PS 855 

3000), three different LD patterns among the QTL (LD patterns 1-3), and two different genetic 856 

backgrounds (GB1 and GB2). In LD pattern 1, there is no LD between any two major QTL or between 857 

a major and a minor QTL. In LD pattern 2, there is no LD between any two major QTL, but LD exits 858 

between major and minor QTL. In LD pattern 3, there exists LD among the major QTL as well as 859 

between major and minor QTL. In GB1, there were 1,200 markers as minor QTL. In GB2, all markers 860 

on the chromosomes (LD patterns 2 and 3) or on half of the chromosomes (LD pattern 1) contributed 861 

as minor QTL. The results for GB1 and GB2 were shown in panel A and B, respectively. Each panel was 862 

further divided into 9 subpanels, each showing the results of a specific combination of population size 863 

and data set. Within each subpanel, the results for QTL explaining six different PGs (from 2% to 12% 864 

with a step of 2%) were indicated by different symbols. The algorithms CMLM and FaST-LMM-select 865 

were not evaluated for PS 3000 because the computational load was too high. 866 
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 867 

Extended Data Figure 5. The statistical power of detecting QTL pairs with a particular range of linkage 868 

disequilibrium (LD) for 12 GWAS algorithms evaluated in simulated data sets with 12 scenarios for trait 869 

heritability 0.7. The 12 scenarios are combinations of three population sizes (PS 300, PS 1000 and PS 870 

3000), two patterns of QTL effect sizes (PG1 and PG2), and two different genetic backgrounds (GB1 871 

and GB2). In PG1, each of the 6 major QTL explained 2% of the genetic variance, In PG2, the 6 major 872 

QTL were randomly assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the genetic variance 873 

respectively. In GB1, there were 1,200 markers as minor QTL. In GB2, all markers on the chromosomes 874 

(LD patterns 2 and 3) or on half of the chromosomes (LD pattern 1) contributed as minor QTL. Each of 875 

the 12 subpanels showed the results of a specific combination of population size, PG and GB. Within 876 

each subpanel, the results for QTL pairs with three different ranges of LD (measured by r2) were 877 

indicated by different symbols. The algorithms CMLM and FaST-LMM-select were not evaluated for 878 

PS 3000 because the computational load was too high. 879 
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 880 

Extended Data Figure 6. The statistical power of detecting QTL with a specific range of MAF for 12 881 

GWAS algorithms evaluated in simulated data sets with 18 scenarios for trait heritability 0.7 with PG1 882 

(each of the 6 major QTL explained 2% of the genetic variance). The 18 scenarios are combinations of 883 

three population sizes (PS 300, PS 1000 and PS 3000), three different LD patterns among the QTL (LD 884 

patterns 1-3), and two different genetic backgrounds (GB1 and GB2). In LD pattern 1, there is no LD 885 
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between any two major QTL or between a major and a minor QTL. In LD pattern 2, there is no LD 886 

between any two major QTL, but LD exits between major and minor QTL. In LD pattern 3, there exists 887 

LD among the major QTL as well as between major and minor QTL. In GB1, there were 1,200 markers 888 

as minor QTL. In GB2, all markers on the chromosomes (LD patterns 2 and 3) or on half of the 889 

chromosomes (LD pattern 1) contributed as minor QTL. The results for GB1 and GB2 were shown in 890 

panel A and B, respectively. Each panel was further divided into 9 subpanels, each showing the results 891 

of a specific combination of population size and LD pattern. Within each subpanel, the results for QTL 892 

with three different ranges of MAF were indicated by different symbols. The algorithms CMLM and 893 

FaST-LMM-select were not evaluated for PS 3000 because the computational load was too high. 894 
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 895 

Extended Data Figure 7. The statistical power of detecting QTL with a specific range of MAF for 12 896 

GWAS algorithms evaluated in simulated data sets with 18 scenarios for trait heritability 0.7 with PG2 897 

(each of the 6 major QTL explained 2% of the genetic variance). The 18 scenarios are combinations of 898 

three population sizes (PS 300, PS 1000 and PS 3000), three different LD patterns among the QTL (LD 899 

patterns 1-3), and two different genetic backgrounds (GB1 and GB2). In LD pattern 1, there is no LD 900 
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between any two major QTL or between a major and a minor QTL. In LD pattern 2, there is no LD 901 

between any two major QTL, but LD exits between major and minor QTL. In LD pattern 3, there exists 902 

LD among the major QTL as well as between major and minor QTL. In GB1, there were 1,200 markers 903 

as minor QTL. In GB2, all markers on the chromosomes (LD patterns 2 and 3) or on half of the 904 

chromosomes (LD pattern 1) contributed as minor QTL. The results for GB1 and GB2 were shown in 905 

panel A and B, respectively. Each panel was further divided into 9 subpanels, each showing the results 906 

of a specific combination of population size and LD pattern. Within each subpanel, the results for QTL 907 

with three different ranges of MAF were indicated by different symbols. The algorithms CMLM and 908 

FaST-LMM-select were not evaluated for PS 3000 because the computational load was too high. 909 

 910 

 911 
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 912 

Extended Data Figure 8. The receiver operating characteristic (ROC) curves of 11 GWAS algorithms 913 

evaluated in simulated data sets with 18 scenarios for trait heritability 0.5 with GB1 (1,200 markers 914 

contributed as minor QTL to the genetic background effects). The 18 scenarios are combinations of 915 

three population sizes (PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD) 916 

patterns among the QTL (LD patterns 1-3), and two patterns of QTL effect sizes (PG1 and PG2). In LD 917 

pattern 1, there is no LD between any two major QTL or between a major and a minor QTL. In LD 918 

pattern 2, there is no LD between any two major QTL, but LD exits between major and minor QTL. In 919 

LD pattern 3, there exists LD among the major QTL as well as between major and minor QTL. In PG1, 920 

each of the 6 major QTL explained 2% of the genetic variance, In PG2, the 6 major QTL were randomly 921 

assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the genetic variance respectively. Results for PG1 922 

and PG2 were shown in panels A and B, respectively. Each of the 9 subpanels showed the results for 923 
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a specific combination of population size and data set. Within each subpanel, the ROC curves of 924 

different algorithms were shown in different colors. The power and FPR of each algorithm under the 925 

threshold of p < 0.05 after Bonferroni correction for multiple testing was indicated by a small circle on 926 

the curve. The algorithms CMLM and FaST-LMM-select were not evaluated for PS 3000 because the 927 

computational load was too high. 928 
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 935 

Extended Data Figure 9. The receiver operating characteristic (ROC) curves of 11 GWAS algorithms 936 

evaluated in simulated data sets with 18 scenarios for trait heritability 0.3 with GB1 (1,200 markers 937 

contributed as minor QTL to the genetic background effects). The 18 scenarios are combinations of 938 

three population sizes (PS 300, PS 1000 and PS 3000), three different linkage disequilibrium (LD) 939 

patterns among the QTL (LD patterns 1-3), and two patterns of QTL effect sizes (PG1 and PG2). In LD 940 

pattern 1, there is no LD between any two major QTL or between a major and a minor QTL. In LD 941 

pattern 2, there is no LD between any two major QTL, but LD exits between major and minor QTL. In 942 

LD pattern 3, there exists LD among the major QTL as well as between major and minor QTL. In PG1, 943 

each of the 6 major QTL explained 2% of the genetic variance, In PG2, the 6 major QTL were randomly 944 

assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the genetic variance respectively. Results for PG1 945 

and PG2 were shown in panels A and B, respectively. Each of the 9 subpanels showed the results for 946 
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a specific combination of population size and data set. Within each subpanel, the ROC curves of 947 

different algorithms were shown in different colors. The power and FPR of each algorithm under the 948 

threshold of p < 0.05 after Bonferroni correction for multiple testing was indicated by a small circle on 949 

the curve. The algorithms CMLM and FaST-LMM-select were not evaluated for PS 3000 because the 950 

computational load was too high.  951 
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 979 

Extended Data Figure 10. The statistical power (A) and false positive rate (B) of 12 GWAS algorithms 980 

evaluated in simulated data sets based on the genomic data of wheat, barley, maize, and Arabidopsis 981 

respectively. In the simulation, four scenarios for trait heritability 0.7 with GB1 (1,200 markers 982 

contributed as minor QTL to the genetic background effects) and a population size of 1,000 were 983 

considered. The four scenarios are combinations of two linkage disequilibrium (LD) patterns (LD 984 

pattern 2 and 3) and two cases of the proportion of genetic variance (PG) explained by the major QTL 985 

(PG1 and PG2). In LD pattern 2, there is no LD between any two major QTL, but LD exits between major 986 

and minor QTL. In LD pattern 3, there exists LD among the major QTL as well as between major and 987 

minor QTL. In PG1, each of the 6 major QTL explained 2% of the genetic variance, In PG2, the 6 major 988 

QTL were randomly assigned to explain 2%, 4%, 6%, 8%, 10% and 12% of the genetic variance 989 

respectively. Within each subpanel, the results of four scenarios were indicated by different symbols. 990 

 991 
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Table 1. Summary of commonly applied algorithms for genome‐wide association studies.

Software Package Algorithm
a Platform Model

b
Kinship matrix

c
Covariate

d
Test statistice Theoretical time comlexity

f Evaluated in this study Reference Remark

EMMA EMMA R LMM all none exact Kang et al. (2008) Has been removed from the CRAN repository.
EMMAX EMMAX C++ LMM‐P3D all none exact Kang et al. (2010)
TASSEL MLM java LMM all none exact Kang et al. (2008) The implementation is similar to EMMA

MLM‐P3D java LMM‐P3D all none exact Kang et al. (2010) The implementation is similar to GAPIT‐MLM

MLM‐C java LMM‐P3D all & compressed none exact Zhang et al. (2011) The implementation is similar to GAPIT‐CMLM

FaST‐LMM FaST‐LMM C++ LMM all none exact Lippert et al. (2011) The core (exact) algorithm of FaST‐LMM

FaST‐LMM‐P3D C++, Python LMM‐P3D all none exact Lippert et al. (2011)
FaST‐LMM‐LOCO C++ LMM LOCO none exact Lippert et al. (2011)

FaST‐LMM‐P3D‐LOCO C++, Python LMM‐P3D LOCO none exact Lippert et al. (2011)

FaST‐LMM‐select C++, Python LMM‐P3D subset none exact  Listgarten et al. (2012)

FaST‐LMM‐all+select C++, Python LMM‐P3D LOCO & subset none exact Widmar et al. (2014)

GEMMA GEMMA C LMM all none exact  Zhou and Stephens (2012)
GenABEL GRAMMAR R LMM & RES‐LR all none approximated Alchenko et al. (2007) Has been removed from the CRAN repository.

GRAMMAR‐Gamma R LMM‐P3D all none approximated Svishcheva et al. (2012)
GridLMM GridLMM R LMM all none exact  Runcie and Crawford  (2019)
BOLT‐LMM BOLT‐LMM‐inf C++ LMM‐P3D LOCO none approximated  Loh et al. (2015)

BOLT‐LMM‐mix C++ Bayes LMM & P3D none LOCO approximated  Loh et al. (2015)
BOLT‐LMM C++ Bayes LMM & LMM‐P3D LOCO LOCO approximated Loh et al. (2015) Combining BOLTLMM‐inf and BOLTLMM‐mix

GAPIT MLM R LMM‐P3D all none exact  Zhang et al. (2011)

CMLM R LMM‐P3D all & compressed none exact  Zhang et al. (2011)

ECMLM R LMM‐P3D all & compressed none exact Li et al. (2014)

MLMM R LMM‐P3D all selecting markers exact Segura et al. (2012) Also implemented in the package MultLocMixMod (python‐based)

SUPER R LMM‐P3D subset none exact Wang et al. (2014)

FarmCPU R LMM & MLR subset none exact  Liu et al. (2016)

BLINK R, C MLR none selecting markers exact  Huang et al. (2019)

GCTA MLMA C++ LMM‐P3D all none exact Yang et al. (2011)
MLMA‐LOCO C++ LMM‐P3D LOCO none exact  Yang et al. (2011)
fastGWA‐ori C++ LMM‐P3D all none exact Jiang et al. (2019) The core algorithm of fastGWA

fastGWA‐GG C++ LMM‐P3D all none approximated  Jiang et al. (2019) fastGWA with GRAMMAR‐Gamma approximation

fastGWA‐sp C++ LMM‐P3D all & sparse none exact  Jiang et al. (2019) fastGWA with sparse kinship matrix

fastGWA‐sp‐GG C++ LMM‐P3D all & sparse none approximated Jiang et al. (2019) Combining fastGWA‐GG and fastGWA‐sp
REGENIE REGENIE C++ LMM & RES‐LR LOCO none approximated Mbatchou et al. (2021)
MM4LMM MM4LMM R LMM all none exact Larpote et al. (2022)

a 
In this column, a core algorithm with different technical options (such as P3D and LOCO) is treated as different algorithms 

b 
LMM, linear mixed model; P3D, population parameters previously determined; MLR, multi‐variate linear regression; RES‐LR, using the residuals form the null linear mixed model as the response for testing the markers in a simple linear regression  

c 
all, using all markers to derive the kinship matrix; subset, selecting a subset of markers to derive the kinship matrix;

 
LOCO, leave‐one‐chromosome‐out

d 
In this colum it means covariates that are used  to control the genetic background effects, in addition to the term of polygenic effect with the kinship matrix

e 
Given the etimated parameters of the model, the test statistic was classified as "exact" or "approximated" according to whether further approximations were applied.

f 
The notations in this column are the following:

 n, the number of genotypes; 
 p, the number of markers; 
 t, the avereage number of iterations for solving the LMM; 
 T, the number of iterations for optimizing the number of selected markers for FaST‐LMM‐select and FaST‐LMM‐all+select, and qi is the number of markers in the i‐th iteration;
 Ji , the number of iterations for optimizing the mixture parameter in FaST‐LMM‐all+select, for a specific choice of qi
 g, the number of grid vertices for Grid‐LMM;

 m, the number of Monte‐Carlo samplings in solving the LMM for BOLT‐LMM;

 S, the number of interations for optimizing the compression factor in CMLM and ECMLM, and si is the number of groups in the i‐th iteration; 
 k, the number of iterations to optimize the set of selected markers for MLMM; 
 R, the number of iterations to optimize the paremeters (bin size, the number of bins and the number of selected markers) for SUPER, FarmCPU and BLINK,  and qi is the number of markers in the i‐th iteration;
 Note that with the same data set, except for n and p, the above parameters may differ greatly across algorithms
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