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Abstract

Resting-state functional connectivity (RSFC) is widely used to predict phenotypic traits in
individuals. Large sample sizes can significantly improve prediction accuracies. However, for
studies of certain clinical populations or focused neuroscience inquiries, small-scale datasets
often remain a necessity. We have previously proposed a “meta-matching” approach to
translate prediction models from large datasets to predict new phenotypes in small datasets.
We demonstrated large improvement of meta-matching over classical kernel ridge regression
(KRR) when translating models from a single source dataset (UK Biobank) to the Human
Connectome Project Young Adults (HCP-YA) dataset. In the current study, we propose two
meta-matching variants (“meta-matching with dataset stacking” and “multilayer meta-
matching”) to translate models from multiple source datasets across disparate sample sizes to
predict new phenotypes in small target datasets. We evaluate both approaches by translating
models trained from five source datasets (with sample sizes ranging from 862 participants to
36,834 participants) to predict phenotypes in the HCP-YA and HCP-Aging datasets. We find
that multilayer meta-matching modestly outperforms meta-matching with dataset stacking.
Both meta-matching variants perform better than the original “meta-matching with stacking”
approach trained only on the UK Biobank. All meta-matching variants outperform classical
KRR and transfer learning by a large margin. In fact, KRR is better than classical transfer
learning when less than 50 participants are available for finetuning, suggesting the difficulty
of classical transfer learning in the very small sample regime. The multilayer meta-matching

model is publicly available at GITHUB_LINK.
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1. Introduction

There is growing interest in harnessing neuroimaging data to predict non-
neuroimaging-related phenotypes, such as fluid intelligence or clinical outcomes, of
individual participants (Gabrieli et al., 2015; Woo et al., 2017; Eickhoff & Langner, 2019;
Varoquaux & Poldrack, 2019). However, most brain-behavior prediction studies suffer from
underpowered samples, typically involving less than a few hundred participants, leading to
low reproducibility and inflated performance (Arbabshirani et al., 2017; Bzdok & Meyer-
Lindenberg, 2018; Masouleh et al., 2019; Poldrack et al., 2020; Marek et al., 2022).
Adequately powered sample sizes can significantly improve prediction accuracy (Chu et al.,
2012; Cui & Gong, 2018; He et al., 2020; Schulz et al., 2020), so large-scale datasets, such as
the UK Biobank (Sudlow et al., 2015; Miller et al., 2016), are vital for enhancing prediction
performance. However, for investigations of certain clinical populations or focused
neuroscience inquiries, small-scale datasets often remain the norm.

We have previously proposed a “meta-matching” approach to translate prediction
models from large datasets to improve the prediction of new phenotypes in small datasets (He
et al., 2022). Meta-matching is grounded in the observation that many phenotypes exhibit
inter-correlations, as demonstrated by previous studies identifying a small number of factors
linking brain imaging data to various non-brain-imaging traits like cognition, mental health,
demographics, and other health attributes (Smith et al., 2015; Miller et al., 2016; Xia et al.,
2018; Kebets et al., 2019). As a result, a phenotype X in a smaller-scale study is likely
correlated with a phenotype Y present in a larger population dataset. This means that a
machine learning model trained on phenotype Y from the larger dataset might be more
effectively translated to predict phenotype X in the smaller study. Meta-matching exploited
these inter-phenotype correlations and was thus referred to as “meta-matching” given its
close links with meta-learning (Fei-Fei et al., 2006; Andrychowicz et al., 2016; Finn et al.,
2017; Ravi & Larochelle, 2016; Vanschoren, 2019). We note that meta-learning is also
referred to “learning to learn” and is closely related to “transfer learning” (Hospedales et al.,
2021). One distinction between meta-learning and transfer learning is that in transfer
learning, the prediction problem in the target dataset can be same (Vakli et al., 2018; C.-L.
Chen et al., 2020; Zhang & Bellec, 2020) or different (Hon & Khan, 2017; Lu et al., 2021;
Schirmer et al., 2021) from the source dataset. On the other hand, meta-learning always
involves training a machine learning model from a wide range of meta-training tasks and then

adapting to perform a new prediction problem in the target dataset.
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In our previous study (He et al., 2022), we trained a deep neural network (DNN) to
predict 67 non-brain-imaging phenotypes from resting-state functional connectivity (RSFC)
in the UK Biobank. The DNN was then translated using meta-matching to predict non-brain-
imaging phenotypes in the Human Connectome Project Young Adult (HCP-Y A) dataset,
yielding large improvements over classical KRR without meta-learning. Among the different
meta-matching variants, complementing basic meta-matching with stacking (which we will
refer to as “meta-matching with stacking”) performed the best (He et al., 2022). Stacking is a
well-known ensemble learning approach (Wolpert, 1992; Breiman, 1996) and has also
enjoyed utility in neuroimaging (Liem et al., 2017; Rahim et al., 2017; Ooi et al., 2022).

The original study (He et al., 2022) experimented with only one source dataset (UK
Biobank). Using multiple source datasets might lead to better generalization for multiple
reasons. First, prediction performance tends to increase with larger sample sizes (Chu et al.,
2012; Cui & Gong, 2018; He et al., 2020; Schulz et al., 2020). Second, given acquisition,
preprocessing and demographic differences across datasets, training on multiple source
datasets might yield representations that are more generalizable to a new target population
(Abraham et al., 2017). Third, different datasets collect overlapping and distinct non-brain-
imaging phenotypes. Since meta-matching exploits inter-phenotype correlation, training on
more diverse phenotypes might lead to better performance. Here, we investigated the
performance of meta-matching models trained from five source datasets - UK Biobank
(Sudlow et al., 2015; Miller et al., 2016), Adolescent Brain Cognitive Development (ABCD)
study (Volkow et al., 2018), Genomics Superstruct Project (GSP; Holmes et al., 2015),
Healthy Brain Network (HBN; Alexander et al., 2017), and the enhanced Nathan Kline
Institute-Rockland sample (eNKI-RS; Nooner et al., 2012).

One major challenge is the extreme sample size imbalances across datasets, e.g., the
UK Biobank is almost 40 times larger than the HBN dataset. A second challenge is that the
available phenotypes are different across datasets, so training a single DNN to predict all
phenotypes is not straightforward. Here, we considered a naive extension of the original
meta-matching with stacking approach by training independent prediction model(s) in each
source dataset, and then performed stacking on the outputs of the prediction models in the
target dataset. We refer to this extension as “meta-matching with dataset stacking”. Because
meta-matching can improve the prediction of smaller datasets, we also proposed an
alternative “multilayer meta-matching” approach, which gradually applied meta-matching
from large source datasets (e.g., UK Biobank) to smaller source datasets (e.g., GSP, HBN,

etc), to generate additional features for a final round of stacking in the target dataset.
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We evaluated the proposed approaches in two target datasets - HCP-YA (Van Essen
et al., 2013) and HCP-Aging (Harms et al., 2018). We found that both approaches performed
better than the original “meta-matching with stacking” approach trained only on the UK
Biobank. Given the close relationship between meta-learning and transfer learning, instead of
performing stacking on the DNN trained on the UK Biobank (i.e., meta-matching with
stacking), we also considered a standard transfer learning baseline (Weiss et al., 2016), in
which the DNN was finetuned on the target dataset. Of note, meta-matching with stacking
significantly outperformed the transfer learning baseline. In fact, the transfer learning
baseline was worse than classical kernel ridge regression when less than 50 participants were
available for finetuning, suggesting the difficulty of transfer learning in the very small sample
regime. Finally, we found that multilayer meta-matching modestly outperformed meta-

matching with dataset stacking.
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2. Methods

2.1 Datasets

As illustrated in Figure 1, we used five source datasets for meta-training: the UK
Biobank (Sudlow et al., 2015; Miller et al., 2016), the Adolescent Brain Cognitive
Development (ABCD) study (Volkow et al., 2018), the Genomics Superstruct Project (GSP;
Holmes et al., 2015), the Healthy Brain Network (HBN; Alexander et al., 2017) project, and
the enhanced Nathan Kline Institute-Rockland sample (eNKI-RS; Nooner et al., 2012). The
models from the five datasets were then adapted for phenotypic prediction in two meta-test
datasets: Human Connectome Project Young Adults (HCP-YA; Van Essen et al., 2013) and
HCP-Aging (Harms et al., 2018). All data collection and analysis procedures were approved
by the respective Institutional Review Boards (IRBs), including the National University of

Singapore IRB for the analysis presented in this paper.

Meta-training (source) set:
UK Biobank (N = 36,834) ABCD (N = 5,985)

HBN (N = 930) eNKI-RS (N = 896)

GSP (N = 862)

Meta-test (target) set 1 (HCP-YA):
N participants (N = 1,019)

Repeat

Remaining N — K test 100 times

K participants (K-shot) participants

Meta-test (target) set 2 (HCP-Aging):
N participants (N = 656)

Repeat
100 times

Remaining N — K test
participants

K participants (K-shot)

Figure 1. Schematic of meta-training and meta-test sets. Datasets were assigned to meta-
training set and meta-test set. Prediction models from the meta-training set were adapted to K
participants from each meta-test dataset to predict target phenotypes. The adapted models
were evaluated in the remaining N — K participants from the meta-test dataset. This procedure
was repeated 100 times for stability. The meta-training set was differentiated into extra-large-
scale (UK Biobank; dark blue), large-scale (ABCD; blue) and medium-scale (GSP, HBN and
eNKI-RS; light blue) source datasets.
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The summary information of the datasets is listed in Table 1. Detailed information
about the non-brain-imaging phenotypes (henceforth referred to as phenotypes) used can be
found in Tables S2 to S8. The phenotypes covered a broad range of behavioral domains,
ranging from cognitive performance, personality measures, lifestyle and mental health scores.
The following subsections describe each dataset and corresponding preprocessing procedures
in greater detail.

We note that these datasets were opportunistically collated (e.g., by contacting
potential collaborators or by downloading preprocessed data provided by the study), so the
preprocessing steps varied considerably across datasets. However, we consider the
heterogeneous preprocessing as a strength because the heterogeneity might help to improve
(and demonstrate) generalization across preprocessing pipelines.

The phenotypes were predicted using 419 x 419 RSFC matrices, consistent with
previous studies from our group (Kong et al., 2021; Chen et al., 2022; Li et al., 2022). The
419 x 419 RSFC matrices were computed using 400 cortical (Schaefer et al., 2018) and 19
subcortical parcels (Fischl et al., 2002). For each participant, RSFC was computed as the

Pearson’s correlations between the average time series of each pair of brain parcels.

Datasets #Participants ~ Age Range Preprocessing #Phenotypes
notes

Meta- UK 36,834 45-82 ICA-FIX & 67
training Biobank MNI152

datasets ABCD 5,985 9-10 GSR & fsaverage6 36

GSP 862 18-35 GSR & fsaverage6 23

HBN 930 5-21 GSR & fsaverage6 42

eNKI-RS 896 6-85 ICA-AROMA & 61
MNI152

Meta- HCP-YA 1,019 22-35 ICA-FIX & 35
test fs_LLR32k

datasets HCP- 656 36-100+ ICA-FIX & 45
Aging MNI152

Table 1. Summary information of datasets used in the current study.

2.1.1 UK Biobank

The UK Biobank (UKBB) dataset is a population epidemiology study with 500,000
adults (age 40-69 years) recruited between 2006 and 2010 (Sudlow et al., 2015; Miller et al.,
2016). We utilized fMRI data from 36,834 participants and 67 phenotypes (selected from a
total of 3,937 phenotypes) from the UK Biobank dataset. The detailed phenotypic selection

procedures followed our previous study (He et al., 2022). The sample size is slightly smaller
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than our previous study (He et al., 2022) because of participants voluntarily withdrawing
from the UK Biobank study. More specifically, ICA-FIX pre-processed volumetric rs-fMRI
time series in native participant space were downloaded from the UK Biobank (Alfaro-
Almagro et al., 2018). The time series were then projected to MNI152 2-mm template space,
and averaged within each cortical and each subcortical parcel. Pearson’s correlations were

used to generate the 419 x 419 RSFC matrices.

2.1.2 ABCD

The adolescent brain cognitive development (ABCD) is a dataset of children (age 9-
10 years) and a diverse set of behavioral measures (Volkow et al., 2018). We considered data
from 11875 children from the ABCD 2.0.1 release. We used 36 phenotypes in total, including
16 cognitive measures, 9 personality measures, and 11 mental health measures, consistent
with our previous studies (Ooi et al., 2022; Chen et al., 2023).

Details of the fMRI preprocessing can be found in previous studies (J. Chen et al.,
2023; Ooi et al., 2022) but briefly, minimally preprocessed fMRI data (Hagler Jr et al., 2019)
were further processed with the following steps: (1) removal of initial frames (number of
frames removed depended on the type of scanner; Hagler Jr et al., 2019); (2) alignment with
the T1 images using boundary-based registration (BBR; Greve & Fischl, 2009) with FsFast

(http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast); (3) respiratory pseudomotion motion

filtering was performed by applying a bandstop filter of 0.31-0.43Hz (Fair et al., 2020) (4)
functional runs with BBR costs greater than 0.6 were excluded; (5) motion correction and
outlier detection: framewise displacement (FD; Jenkinson et al., 2002) and voxel-wise
differentiated signal variance (DVARS; Power et al., 2012) were computed using
fsl_motion_outliers. Volumes with FD > 0.3 mm or DVARS > 50, along with one volume
before and two volumes after, were marked as outliers (i.e., censored frames). Uncensored
segments of data containing fewer than five contiguous volumes were also censored (Gordon
et al., 2016; Kong et al., 2019). BOLD runs with over half of frames censored and runs with
max FD > Smm were removed; (6) the following nuisance covariates were regressed out of
the fMRI time series: a vector of ones and linear trend, global signal, six motion correction
parameters, averaged ventricular signal, averaged white matter signal, and their temporal
derivatives. Regression coefficients were estimated from the non-censored volumes; (7)
interpolation of censored frames with Lomb-Scargle periodogram (Power et al., 2014); (8)

band-pass filtering (0.009 Hz < £ < 0.08 Hz); (9) projection onto FreeSurfer (Fischl, 2012)
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fsaverage6 surface space; (10) smoothing by a 6 mm full-width half-maximum (FWHM)
kernel.

We also excluded participants who did not have at least 4 minutes for rs-fMRI and
excluded participants without all 36 phenotypes, resulting in 5,985 participants. For each
participant, the fMRI time series were averaged within each cortical parcel (in fsaverage6
surface space) and each subcortical parcel in the participant’s native volumetric space.

Pearson’s correlations were used to generate the 419 x 419 RSFC matrices.

2.1.3 GSP

The Brain Genomics Superstruct Project (GSP) contains fMRI and multiple
behavioral measures from healthy young adults aged 18 to 35 years old (Holmes et al., 2015).
We used 23 behavioral phenotypes including cognitive and personality measures, consistent
with our previous study (Li et al., 2019).

Details of the fMRI preprocessing can be found in previous studies (Li et al., 2019),
but briefly, the pipeline comprised the following steps: (1) removal of the first four frames;
(2) slice time correction with FSL (Jenkinson et al., 2012; Smith et al., 2004) package; (3)
motion correction and outlier detection: FD and DVARS were estimated using
fsl_motion_outliers. Volumes with FD > 0.2mm or DVARS > 50 were marked as outliers
(censored frames). One frame before and two frames after these volumes were flagged as
censored frames. Uncensored segments of data lasting fewer than five contiguous volumes
were also labeled as censored frames (Gordon et al., 2016). BOLD runs with more than half
of the volumes labeled as censored frames were removed; (4) alignment with structural image
using boundary-based registration with FsFast (Greve & Fischl, 2009); (5) regress the
following nuisance regressors: a vector of ones and linear trend, six motion correction
parameters, averaged white matter signal, averaged ventricular signal, mean whole brain
signal, and their temporal derivatives. Regression coefficients were estimated from the non-
censored volumes; (6) interpolation of censored frames with Lomb-Scargle periodogram; (7)
band-pass filtering (0.009 Hz < f < 0.08 Hz); (8) projection onto the FreeSurfer fsaverage6
surface space; (9) smoothing with 6mm FWHM and down-sampling to fsaverage5 surface
space.

We also removed participants without full 23 phenotypes, yielding 862 participants.

For each participant, the fMRI time series were averaged within each cortical parcel (in
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fsaverage6 surface space) and each subcortical parcel in the participant’s native volumetric

space. Pearson’s correlations were used to generate the 419 x 419 RSFC matrices.

2.1.4 HBN

The Healthy Brain Network (HBN) contains New York area participants (age 5-21
years) with brain imaging, psychiatric, behavioral, cognitive, and lifestyle information
(Alexander et al., 2017). We downloaded data from 2196 participants (HBN release 1-7). We
manually selected commonly used cognitive performance scores and behavioral scores with
less than 10% of missing values, resulting in 42 phenotypes.

Resting-state fMRI data were pre-processed with the following steps: (1) removal of
the first 8 frames; (2) slice time correction; (3) motion correction and outlier detection:
frames with FD > 0.3mm or DVARS > 60 were flagged as censored frames. 1 frame before
and 2 frames after these volumes were flagged as censored frames. Uncensored segments of
data lasting fewer than five contiguous frames were also labeled as censored frames. BOLD
runs with over half of the frames censored and runs with max FD > Smm were removed; (4)
correcting for spatial distortion caused by susceptibility-induced off-resonance field; (5)
alignment with structural image using boundary-based registration; (6) nuisance regression:
regressed out a vector of ones and linear trend, global signal, six motion correction
parameters, averaged ventricular signal, averaged white matter signal, and their temporal
derivatives. Regression coefficients were estimated from the non-censored volumes; (7)
band-pass filtering (0.009 Hz < { < 0.08 Hz); (8) interpolation of censored frames with Lomb-
Scargle periodogram; (9) projection onto the FreeSurfer fsaverage6 surface space; (10)
smoothing with 2mm FWHM and down-sampling to fsaverage5 surface space.

We excluded individuals who did not have at least 4 minutes of uncensored rs-fMRI
data and removed participants with no relevant phenotypes, resulting in 930 participants. For
each participant, the fMRI time series were averaged within each cortical parcel (in
fsaverage6 surface space) and each subcortical parcel in the participant’s native volumetric

space. Pearson’s correlations were used to generate the 419 x 419 RSFC matrices.

2.1.5 eNKI-RS
The enhanced Nathan Kline Institute-Rockland Sample (eNKI-RS) is a community
sample of over 1000 participants (age 6-85 years), with measures including various

physiological and psychological assessments, genetic information, and neuroimaging data
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(Nooner et al., 2012). We manually selected commonly used cognitive performance measures
and behavioral scores with less than 10% of missing value, yielding 61 phenotypes and 896
participants with at least one phenotype.

Details of the fMRI preprocessing can be found in our previous study (Wu et al.,
2022), but briefly, eNKI-RS data were pre-processed with fMRIprep (Esteban et al., 2019)
with default configuration and additional ICA-AROMA denoising (Pruim et al., 2015a;
2015b). Additional nuisance regression was then performed with regressors corresponding to
24 motion parameters, white matter signal, CSF signal and their temporal derivatives (Wu et
al., 2022). The pre-processed fMRI data in MNI152 space were used to compute 419 x 419
RSFC matrices

2.1.6 HCP-YA

The Human Connectome Project (HCP Young Adult, HCP-YA) contains brain
imaging data and phenotypes from healthy young adults (age 22-35 years) (Van Essen et al.,
2013). We used 35 phenotypes across cognition, personality, and emotion, consistent with
our previous study (He et al., 2022). There are 1,019 participants with all 35 phenotypes in
the end.

For the RSFC data, we used ICA-FIX MSMALL time series in the grayordinate
(combined surface and subcortical volumetric) fsLR_32k space (Glasser et al., 2013). The

time series were averaged within each cortical and each subcortical parcel to calculate 419 x

419 RSFC matrices.

2.1.7 HCP-Aging

The Human Connectome Project Aging (HCP-Aging) study enrolls 1,500+ healthy
adults (age 36-100+ years) (Harms et al., 2018). We manually selected commonly used
behavioral measures, resulting in 45 phenotypes and 656 participants with at least one
phenotype. The resting-fMRI data after ICA-FIX denoising in MNI152 space were used,
following our previous study (Wu et al., 2022). Nuisance regression was then implemented,
controlling for 24 motion parameters, white matter signal, CSF signal, and their temporal
derivatives (Wu et al., 2022). The time series were averaged within each cortical and each

subcortical parcel to calculate 419 x 419 RSFC matrices.
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2.2 Data split overview

We split the datasets into a meta-training (source) set and a meta-test (target) set, as
shown in Figure 1. For each meta-training dataset, we randomly divided the participants into
training and validation sets comprising 80% and 20% of the participants respectively. The
training and validation sets are used to train and tune the hyperparameters of one or more
“base-learners” to predict corresponding source phenotypes from the meta-training dataset.

For each meta-test dataset, there are target phenotypes we want to predict from RSFC.
For cross-dataset prediction, we trained a “meta-learner” using K participants in the meta-test
dataset (i.e., K-shot, where K = 10, 20, 50, 100, 200) with observed meta-test phenotypes.
The meta-learner exploits the relationship between source and target phenotypes via the
previously trained base-learners from the meta-training datasets, thus transferring knowledge
from the meta-training datasets to the meta-test dataset. Finally, we evaluated the prediction
performance of meta-test phenotypes on the remaining N — K meta-test participants, using

Pearson’s correlation and predictive coefficient of determinant (COD) as metrics.

2.3 Prediction approaches

Across all approaches, we vectorized the lower triangular entries of each 419 x 419
RSFC matrix into a feature vector (i.e., 87571 x 1 vector) to predict phenotypic measures.
We note that certain datasets were processed with global signal regression (GSR), while
others were processed with ICA-FIX (Table 1). It is well-known that GSR centers the
distribution of RSFC values at zero (Murphy et al., 2009), which is not the case for ICA-FIX.
Therefore, for all cross-dataset algorithms (i.e., all algorithms except kernel ridge regression),
we normalized the RSFC vector for each participant independently, by subtracting the mean
and then dividing by the L2-norm of the 87571 x 1 FC vector.

Following our previous study (He et al., 2022), statistical difference between
algorithms was evaluated using a bootstrapping approach (more details in Supplementary
Methods S3). Multiple comparisons were corrected using a false discovery rate (FDR) of q <
0.05. FDR was applied to all K-shots, across all pairs of algorithms and both evaluation

metrics (Pearson’s correlation and COD).

2.3.1 Baseline 1: Classical KRR
We choose kernel ridge regression (KRR; Figure 2A) as a baseline algorithm that

does not utilize meta-training on the meta-training set. KRR has been shown to be a highly
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competitive algorithm for MRI prediction of phenotypic measures (He et al., 2020; Ooi et al.,
2022; Kong et al., 2023). The procedure is as follows. Suppose the meta-test dataset has N
participants in total. For each target phenotype in the meta-test dataset, we trained a KRR and
tuned the hyper-parameter A (L2 regularization weight) with 5-fold cross-validation, using K
random participants with observed target phenotypes (i.e., K-shot). The optimal A was then
used to train a final KRR model using all K participants. We then evaluated the model
performance on the remaining N — K participants using Pearson’s correlation and COD. The
procedure was repeated 100 times with a different random set of K participants. The
evaluation metrics were averaged across the 100 repetitions to ensure the robustness of the

results.

(A) (B)

Train Kernel Ridge Regression

Train Fully-Connected Deep Neural (KRR)/DNN to predict source
Network (DNN) to predict source phenotypes in each meta-training
phenotypes in UK Biobank dataset (UK Biobank, ABCD, GSP,

HBN, eNKI-RS) separately

p ~ N N/ ) /Gradually apph/\

Re-initialize Use source Use source meta-matching
Directly train last DNN layer phenotypic ph_er_lotypic from relatively
KRR on K and fine-tune predictions of K predictions of K large meta-training
- last 2 layers on participants as participants as datasets to smaller
participants to 2 : . . . o
redict target K part|C|p_ants input to train input to train meta-training
P henot 9 to predict another KRR to another KRR to datasets, and
phenolype target predict target predict target finally apply meta-
phenotype phenotype phenotype matching to meta-
\_ JAN AN / \_ I W, \ test dataset /
I | . Meta-matching |
Classical KRR 'Il'ransffer Me_ta-matcr?mg with dataset Multllayef
earning with stacking stacking meta-matching

For each target phenotype, evaluate model on remaining N - K participants in meta-test dataset

Figure 2. Schematic of different approaches. (A) Schematic of three baselines: classical
kernel ridge regression (KRR), transfer learning, and meta-matching with stacking from our
previous study (He et al., 2022). (B) Schematic of two proposed approaches: meta-matching
with dataset stacking and multilayer meta-matching. Observe the large sample imbalance in
the meta-training set with the smallest source dataset comprising 862 participants and the
largest source dataset comprising 36,834 participants.
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2.3.2 Baseline 2: Transfer learning

As a second baseline, we consider transfer learning (Weiss et al., 2016). As illustrated
in Figure 2A, we pre-trained a deep neural network (DNN) in the UK Biobank to
simultaneously predict 67 source phenotypes from RSFC (maximum training epochs = 100).
The DNN is a simple fully-connected feedforward neural network (also known as a multi-
layer perceptron) with 67 output nodes. Rectifying linear units (ReLU) were used as
activation functions for all hidden layers. As mentioned in Section 2.2, 80% of the data was
used for training and 20% was used for tuning DNN hyper-parameters. The hyper-parameters
(e.g., number of layers, number of nodes, learning rate, dropout rate, etc.) were tuned using
the Optuna package (Akiba et al., 2019). Detailed information about DNN hyper-parameters
is found in Supplementary Methods S1.

The pre-trained DNN was then translated using K meta-test participants to predict a
target phenotype. Because we are predicting different phenotypes in the meta-test dataset, for
a given target phenotype, the last layer of the pre-trained DNN was re-initialized from
scratch, and the last two layers of the DNN were then fine-tuned on K random participants
with observed target phenotypes (i.e., K-shot). An optimal fixed learning rate was obtained
by 5-fold cross-validation and grid search of the K participants. The optimal learning rate was
then used to perform fine-tune a final model using all K participants. For both the 5-fold
cross validation and the final round of fine-tuning, the maximum fine-tuning epochs was set
to be 10 with 80% of K participants used for training and 20% used to evaluate validation
loss for early stopping, to reduce the possibility of overfitting. This final trained model was

evaluated in the remaining N — K participants.

2.3.3 Baseline 3: Meta-matching with stacking

The third baseline is the “meta-matching with stacking” algorithm (Figure 2A) from
the original meta-matching study (He et al., 2022). The original study proposed several meta-
matching algorithms. Here we used the stacking approach because it exhibited the best
prediction performance in the original study.

Similar to transfer learning, the meta-matching with stacking approach utilized the
same pre-trained DNN from the UK Biobank (see Section 2.3.2). To adapt the DNN to the
meta-test dataset, the DNN was applied to the RSFC of the K participants, yielding 67

predictions per participant. The 67 predictions were then used as features to train a KRR
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model for predicting the target phenotype using the K participants (i.e., stacking; Wolpert,
1992).

The KRR model utilized the correlation kernel and the KRR hyperparameter A was
tuned using grid search and 5-fold cross-validation on the K participants. The optimal A was
then used to train a final KRR model using all K participants. The prediction performances
were evaluated on the remaining N — K participants using Pearson’s correlation and COD as
metrics. This procedure was repeated 100 times with a different random sample of K
participants.

It is worthwhile highlighting a deviation from the original meta-matching with
stacking implementation (He et al., 2022). The original implementation utilized K features
for stacking when K < 67. Here, we decided to simply use all 67 features because
experimentation after the publication of our previous study (not shown) suggested the

constraint was unnecessary.

2.3.4 Meta-matching with dataset stacking

A naive approach to extending meta-matching with stacking to multiple datasets is to
train independent prediction model(s) in each meta-training (source) dataset and then “stack”
the prediction models based on K participants in the meta-test dataset. We refer to this
approach as meta-matching with dataset stacking (Figure 2B).

For the UK Biobank, we trained a DNN model to predict 67 phenotypes, as well as 67
KRR models to predict 67 phenotypes, to improve prediction performance via ensemble
learning (Dietterich, 2000), yielding 67 x 2 = 138 predictions. We note that the DNN model
is identical to that from the transfer learning baseline. The remaining four datasets (ABCD,
GSP, HBN, eNKI-RS) were significantly smaller than the UK Biobank, so instead of training
a DNN, we simply trained a KRR model for each meta-test dataset (including the UK
Biobank) and each target phenotype. The KRR and DNN models were applied to the RSFC
of the K participants (of the meta-test dataset), yielding a total of 67 x 2 + 36 + 23 + 42 + 61
= 296 phenotypic predictions for each participant.

Similar to the meta-matching with stacking approach (Section 2.3.3), the predictions
were then used as features to train a KRR model for predicting the target phenotype using the
K participants (i.e., stacking). The KRR model utilized the correlation kernel and the KRR
hyperparameter A was tuned using grid search and 5-fold cross-validation on the K

participants. The optimal A was then used to train a final KRR model using all K participants.
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The prediction performances were evaluated on the remaining N — K participants
using Pearson’s correlation and COD as metrics. This procedure was repeated 100 times with

a different random sample of K participants.

2.3.5 Multilayer meta-matching

As an alternative to “meta-matching with dataset stacking”, we made use of the fact
“meta-matching with stacking” can improve the prediction of smaller datasets. Therefore,
“multilayer meta-matching” (Figure 2B) gradually applied meta-matching with stacking from
relatively large source datasets (e.g., UK Biobank) to smaller datasets (e.g., GSP, HBN, etc),
to generate additional features for a final round of stacking using the K participants from the
meta-test dataset.

In the current study, we instantiated multilayer meta-matching by dividing the meta-
training datasets into three groups: extra-large source dataset (comprising only UK Biobank
in the current study), large source datasets (comprising only ABCD in the current study) and
medium size datasets (comprising GSP, HBN and eNKI-RS in the current study). Multilayer
meta-matching proceeds as follows (Figure 3).

In the case of the extra-large dataset (UK Biobank), we have previously trained DNN
and KRR models to predict 67 phenotypes (Section 2.3.4). The same two models were
applied to the K meta-test dataset participants, yielding 67 x 2 = 134 phenotypic predictions,
which will be concatenated with the predictions from the other models (below) for stacking.

In the case of the large dataset (ABCD), we have previously trained a KRR model to
predict 36 phenotypes in the ABCD dataset (Section 2.3.4). The same model was applied to
the K meta-test dataset participants, yielding 36 predictions. Furthermore, the DNN and KRR
models from the extra-large dataset (UK Biobank) were also combined to predict the 36
ABCD phenotypes via the meta-matching with stacking procedure (He et al., 2022). The
resulting stacking model was applied to the K meta-test dataset participants, yielding 36
predictions. Therefore, models from the ABCD dataset yielded a total of 36 x 2 =72
phenotypic predictions for each of the K meta-test dataset participants, which will be
concatenated with the 134 predictions from the UK Biobank (above) and predictions from the
other models (below) for stacking.

Finally, in the case of the medium source dataset (GSP, HBN or eNKI-RS), let us use
the GSP dataset, which had 23 phenotypes, as an example. First, we have previously trained a

KRR model to predict 23 phenotypes in the GSP dataset (Section 2.3.4). The same model was
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applied to the K meta-test dataset participants, yielding 23 predictions. Second, the DNN and
KRR models from the extra-large dataset (UK Biobank), as well as the KRR models from the
large dataset (ABCD) were also combined to predict the 23 GSP phenotypes via the meta-
matching with stacking procedure (He et al., 2022). The resulting stacking model was applied
to the K meta-test dataset participants, yielding 23 predictions. Therefore, in total, the GSP
dataset contributed 23 x 2 = 46 phenotypic predictions in each of the K meta-test dataset
participants. Similarly, the HBN and eNKI-RS datasets contributed 42 x 2 =84 and 61 x 2 =
122 phenotypic predictions.

Finally, all the phenotypic predictions (134 + 72 + 46 + 84 + 122 = 458) were
concatenated and used to train a KRR model on the K meta-test dataset participants (i.e.,
stacking). Once again, the KRR model utilized the correlation kernel and the KRR
hyperparameter A was tuned using grid search and 5-fold cross-validation on the K
participants. The optimal A was then used to train a final KRR model using all K participants.

The prediction performances were evaluated on the remaining N — K participants
using Pearson’s correlation and COD as metrics. This procedure was repeated 100 times with

a different random sample of K participants.

FC + phenotypes
(extra-large source
dataset)

DNN + KRR
models

Stacking
model
FC + phenotypes
(large source dataset) : ‘
KRR model Stacking Predict target

model phenotypes

Stacking FC +

model henotypes FC (test
P (K-sh)g’:) participants)

FC + phenotypes
(medium source dataset)

KRR model

Figure 3. Multilayer meta-matching. We divided source datasets into extra-large (UK
Biobank), large (ABCD), and medium (GSP/HBN/eNKI) source datasets. Multi-layer meta-
matching gradually applied meta-matching with stacking from relatively large source datasets
(e.g., UK Biobank) to smaller datasets (e.g., HCP), to generate additional features for a final
round of stacking using the K participants from the meta-test dataset.
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2.4 Feature importance based on the Haufe transform

Although meta-matching improved phenotypic prediction performance, a question is
whether the interpretation of the resulting models is biased by pre-trained prediction models.
Here, we applied the Haufe transform for each approach in the K = 100 scenario, which
involved computing the covariance between each FC edge and the phenotypic prediction (of
the mode) across the K participants (Haufe et al., 2014; J. Chen et al., 2022). The result is a
feature importance value for each RSFC edge. A positive (or negative) feature importance
value indicates that higher RSFC for the edge was associated with the prediction model
predicting greater (or lower) value for the phenotype. Previous studies have suggested that
the Haufe transform yielded significantly more reliable feature importance values than the
prediction model parameters or weights (Tian & Zalesky, 2021; Chen, Ooi et al., 2023)

Pseudo ground truth feature importance was obtained by training a KRR model on the
full HCP-YA (or HCP-Aging) dataset and then applying the Haufe transform to the KRR
model. In the case of classical KRR, we trained the KRR model on 100 HCP-YA (or HCP-
Aging) participants and then computed the feature importance using the Haufe transform. In
the case of the cross-dataset algorithms (transfer learning, meta-matching with stacking,
meta-matching with dataset stacking, and multilayer meta-matching), we translated the
models (trained on source datasets) on the 100 HCP-Y A (or HCP-Aging) participants and
then computed the feature importance.

We then correlated the resulting feature importance values with the pseudo ground
truth. We repeated this procedure 100 times, and averaged the correlations with the pseudo

ground truth across 100 repetitions.

2.5 Data and code availability
This study utilized publicly available data from the UK Biobank
(https://www.ukbiobank.ac.uk/), ABCD (https://nda.nih.eov/study.html?1d=824), GSP

(http://meuroinformatics.harvard.edu/gsp/), HBN

(https://fcon_1000.projects.nitrc.org/indi/cmi_healthy brain network), eNKI-RS

(http://fcon_1000.projects.nitrc.org/indi/enhanced/) and HCP

(https://www.humanconnectome.org/). Data can be accessed via data use agreements.

Code for the classical (KRR) baseline and meta-matching algorithms can be found
here

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable projects/predict phenotypes/Ch
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en2024 MMM). The trained models for multilayer meta-matching are also publicly available
(GITHUB_LINK). The code was reviewed by one of the co-authors (LA) before merging

into the GitHub repository to reduce the chance of coding errors.
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3. Results

3.1 Meta-matching with stacking outperformed classical KRR and transfer learning

Figures 4A and 4B show the prediction accuracy (Pearson’s correlation coefficient) of
various approaches in the HCP-YA and HCP-Aging meta-test datasets respectively. Results
were averaged across 35 HCP-YA (or 45 HCP-Aging) phenotypes. The horizontal axis is the
number of few-shot participants (K, where K = 10, 20, 50, 100, 200). The vertical axis is
Pearson’s correlation of phenotypic prediction. Boxplots represent variability across the 100
repetitions of sampling K participants (i.e., K-shot). Figure 5 shows results for COD.
Bootstrapping results are shown in Figures S1 and S2, while p values are reported in Tables 2
and 3. All bolded p values (Tables 2 and 3) survived an FDR of q < 0.05.

Consistent with our previous study (He et al., 2022), meta-matching with stacking
outperformed classical KRR in the HCP-YA dataset (Figures 4A and 5A; Tables 2). Here, we
extended the previous results by showing consistent improvements over KRR in the HCP-
Aging dataset.

More specifically, in the case of the HCP-YA dataset and K > 10 (Table 2), meta-
matching with stacking was statistically better than classical KRR with largest p < 0.005
across both evaluation metrics (Pearson’s correlation and COD). In the case of HCP-Aging
and K > 10 (Table 3), meta-matching with stacking was statistically better than classical KRR
with largest p < 0.001 across both evaluation metrics.

Furthermore, meta-matching with stacking also outperformed transfer learning across
both datasets (Figures 4A and 5A). In the case of the HCP-YA dataset and K > 10 (Table 2),
meta-matching with stacking was statistically better than transfer learning with p values <
0.025 across both evaluation metrics (Pearson’s correlation and COD). In the case of HCP-
Aging and K > 10 (Table 3), meta-matching with stacking was statistically better than
transfer learning with largest p < 0.002 across both evaluation metrics.

Interestingly, transfer learning performed consistently worse than classical KRR for K

< 50, especially for the COD metric (Figures 4A and 5A; Tables 2 and 3).
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Figure 4. Prediction performance (Pearson’s correlation) in the HCP-YA and HCP-
Aging datasets. (A) Phenotypic prediction performance in terms of Pearson’s correlation
(averaged across 35 meta-test phenotypes) in the HCP-Y A dataset. Horizontal axis is the
number of participants in the HCP-Y A dataset used to adapt the models trained from the
meta-training source datasets. Boxplots represent variability across 100 repetitions of
sampling K participants. The bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. Whiskers correspond to 1.5 times the interquartile range. (B) Same
plot as panel A except that the analyses were performed in the HCP-Aging dataset.
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Figure 5. Prediction performance (COD) in the HCP-YA and HCP-Aging datasets. (A)
Phenotypic prediction performance in terms of COD (averaged across 35 meta-test
phenotypes) in the HCP-Y A meta-test set. Horizontal axis is the number of participants in the
HCP-YA dataset used to adapt the models trained from the meta-training source datasets.
Boxplots represent variability across 100 repetitions of sampling K participants. The bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively. Whiskers
correspond to 1.5 times the interquartile range. (B) Same plot as panel A, except that the
analyses were performed in the HCP-Aging dataset.
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Multilayer 0.00285 3.93e-7 0.173 0.127
MM 4.20e-6 1.38e-10 0.00646 0.00858 -
5.70e-9 4.55e-15 4.823e-5 0.0146
2.32¢-8 0 4.734e-8 0.0492

Table 2. Statistical differences in prediction accuracy in terms of Pearson’s correlation
(upper) and COD (bottom) between all pairs of approaches in the HCP-YA meta-test
dataset. Here ‘MM’ stands for ‘meta-matching’ and ‘w/’ is short for ‘with’. Each cell


https://doi.org/10.1101/2023.12.05.569848
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.569848; this version posted December 7, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

contains five p values, corresponding to K = 10, 20, 50, 100 and 200 respectively. Bolded p
values are statistically significant after FDR correction with q < 0.05.

Classical Transfer MM w/ MM w/ dataset Multilayer
KRR learning stacking stacking MM
0.580 5.61e-4 4.42e-5 1.48e-5
Classical 0.227 2.30e-6 9.44¢-9 9.80e-10
KRR - 0.652 7.59¢-9 3.02e-13 1.64e-14
0.0215 2.97e-10 0 0
1.86e-4 2.88e-9 0 0
0.580 0.00109 2.42e-4 1.40e-4
Transfer 0.227 1.67e-6 4.38e-8 1.41e-8
p—— 0.652 - 4.11e-7 3.70e-10 5.85e-11
0.0215 1.04e-5 1.94e-10 3.17e-11
£ 1.86e-4 0.00972 1.68e-7 1.46¢-8
s 5.61e-4 0.00109 0.278 0.233
° 2.30e-6 1.67¢-6 0.0938 0.0715
E| MMw 7.59¢-9 4.11e7 : 0.00280 0.00196
S | stacking |5 97610 1.04e-5 3.59¢-5 1.90e-5
2.88e-9 0.00972 1.91e-6 1.05e-7
4.42e-5 2.42e-4 0.278 0.463
MM w/ 9.44¢-9 4.38e-8 0.0938 0.321
dataset 3.02e-13 3.70e-10 0.00280 - 0.182
stacking 0 1.94e-10 3.59e-5 0.0826
0 1.68e-7 1.91e-6 0.00728
1.48e-5 1.40e-4 0.233 0.463
Mitiyer 9.80e-10 1.41e-8 0.0715 0.321
MM 1.64e-14 5.85e-11 0.00196 0.182 -
0 3.17e-11 1.90e-5 0.0826
0 1.46¢-8 1.05e-7 0.00728
Classical Transfer MM w/ MM w/ dataset Multilayer
KRR learning stacking stacking MM
7.61e-5 0.0807 0.0230 0.0215
Classical 2.27e-5 9.83e-4 4.71e-5 3.58e-5
KRR - 0.0573 8.85e-9 1.34e-13 3.04e-14
0.287 9.85e-11 0 0
3.79e-7 2.51e-14 0 0
7.61e-5 8.36e-6 7.07e-6 7.35e-6
Transfer 2.27e-5 6.08e-8 3.12¢-8 3.07e-8
lesritisgg 0.0573 - 1.05e-7 1.69¢-9 9.89%¢-10
0.287 4.24e-8 3.19¢-13 6.42¢-14
3.79e-7 2.44e-4 8.85e-11 6.49¢-12
a 0.0807 8.36e-6 0.611 0.655
8 MM w/ 9.83e-4 6.08e-8 0.241 0.250
e 8.85e-9 1.05e-7 - 6.64e-4 4.55e-4
9.85e-11 4.24¢-8 4.07e-7 5.24e-8
2.51e-14 2.44e-4 2.83e-9 4.44e-11
0.0230 7.07e-6 0.611 0.987
MM w/ 4.71e-5 3.12e-8 0.241 0.791
dataset 1.34e-13 1.69¢-9 6.64e-4 - 0.229
stacking 0 3.19¢-13 4.07e-7 0.0312
0 8.85e-11 2.83e-9 9.76e-4
0.0215 7.35e-6 0.655 0.987
NMitiiyer 3.58e-5 3.07e-8 0.250 0.791
MM 3.04e-14 9.89%¢-10 4.55e-4 0.229 -
0 6.42¢-14 5.24e-8 0.0312
0 6.49¢-12 4.44e-11 9.76e-4
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Table 3. Statistical differences in prediction accuracy in terms of Pearson’s correlation
(upper) and COD (bottom) between all pairs of approaches in the HCP-Aging meta-test
dataset. Here ‘MM’ stands for ‘meta-matching’, and ‘w/’ is short for ‘with’. Each cell
contains five p values, corresponding to K = 10, 20, 50, 100 and 200 respectively. Bolded p
values are statistically significant after FDR correction with q < 0.05.

3.2 Improvement from additional meta-training source datasets

By including additional meta-training datasets, meta-matching with dataset stacking
and multilayer meta-matching were numerically better than meta-matching with stacking
(which only utilized the UK Biobank) for almost all values of K (Figures 4 and 5).

In the case of the HCP-Y A dataset and K > 20 (Table 2), meta-matching with dataset
stacking was statistically better than meta-matching with stacking with largest p < 0.03 across
both evaluation metrics (Pearson’s correlation and COD). In the case of the HCP-Aging and
K > 20 (Table 3), meta-matching with dataset stacking was statistically better than meta-
matching with stacking with largest p < 0.003 across both evaluation metrics.

On the other hand, in the case of the HCP-Y A dataset and K > 20 (Table 2),
multilayer meta-matching was statistically better than meta-matching with stacking with
largest p < 0.01 across both evaluation metrics. In the case of the HCP-Aging and K > 20
(Table 3), multilayer meta-matching was statistically better than meta-matching with stacking
with largest p < 0.002 across both evaluation metrics.

We observe that the p values for multilayer meta-matching were generally stronger
(i.e., smaller) than meta-matching with dataset stacking and will directly compare the two

meta-matching variants in the next section.

3.3 Multilayer meta-matching modestly outperformed meta-matching with dataset
stacking

Multi-layer meta-matching was numerically better than meta-matching with dataset
stacking for almost all values of K. This improvement was significant for larger values of K.

In the case of the HCP-Y A dataset and K > 20 (Table 2), multi-layer meta-matching
was statistically better than meta-matching with dataset stacking with largest p < 0.01 for
both evaluation metrics (correlation and COD). For HCP-Aging, multilayer meta-matching
was statistically better than meta-matching with dataset stacking for K = 200 for both

evaluation metrics (p < 0.01; Table 3).
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Overall, the results suggest that multilayer meta-matching was modestly more
effective than meta-matching with dataset stacking at handling sample size imbalance among

meta-training source datasets.

3.4 Different improvements on different phenotypes by multilayer meta-matching
Figure 6 illustrates the 100-shot prediction performance (Pearson’s correlation
coefficient) of three example meta-test phenotypes across all approaches in the HCP-YA
(Figure 6A) and HCP-Aging (Figure 6B) datasets. For three illustrated HCP-Y A phenotypes
(“Delay Discounting”, “Manual Dexterity”, “Arithmetic”’), multilayer meta-matching
exhibited numerically the best results. On the other hand, among the three illustrated HCP-
Aging phenotypes, multilayer meta-matching was numerically worse than meta-matching

with stacking and meta-matching with dataset stacking in the case of “Walking Endurance”,

but was numerically the best for “MOCA score” and “Perceived Hostility”.

3.5 Feature importance using the Haufe transform.

As shown in Figure 7, across both HCP-Y A and HCP-Aging datasets, feature
importance values of all three meta-matching approaches and classical KRR were equally
similar to the pseudo ground truth feature importance values. On the other hand, feature
importance values from transfer learning were the most different from the pseudo ground

truth.
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Figure 6. Examples of phenotypic prediction performance in the (A) HCP-YA and (B)
HCP-Aging datasets in the case of 100-shot learning (K = 100). Here, prediction
performance was measured using Pearson’s correlation. For each box plot, the horizontal line
indicates the median. The bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. Whiskers correspond to 1.5 times the interquartile range.
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Figure 7. Agreement (correlation) of feature importance values with pseudo ground
truth in the (A) HCP-YA and (B) HCP-Aging datasets. For each approach, the Haufe
transform was used to estimate feature importance in the 100-shot scenario (K = 100), which
was then compared with the pseudo ground truth. Pseudo ground truth feature importance
was generated by applying the Haufe transform to a KRR model trained from the full target
dataset. For each box plot, the horizontal line indicates the median, and the triangle indicates
the mean. The bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. Whiskers correspond to 1.5 times the interquartile range.
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4. Discussion

In this study, we proposed two meta-matching algorithms to translate phenotypic
prediction models from source datasets with disparate sizes to predict new phenotypes in
small datasets. Both approaches outperformed meta-matching using a single source dataset
(UK Biobank). Both approaches also outperformed classical KRR and classical transfer
learning by a big margin. Furthermore, multilayer meta-matching compared favorably with
meta-matching with dataset stacking across both HCP-Y A and HCP-Aging datasets. In terms
of feature importance based on the Haufe transform, we found that feature importance values
of meta-matching approaches and classical KRR to be equally similar to the pseudo ground
truth, while feature importance values of transfer learning were the furthest away from the
pseudo ground truth.

The poorer performance of classical transfer learning was somewhat surprising but
probably indicated the difficulty of finetuning so many parameters in the very small sample
regime. More specifically, we note that classical transfer learning was even worse than KRR
when the number of participants was less than 50. However, transfer learning started to catch
up with KRR in both datasets when the number of participants was 200.

We note that in our previous study (He et al., 2022), one of the meta-matching
variants “meta-matching finetune” outperformed KRR by a big margin but was slightly worse
than meta-matching with stacking. Meta-matching finetune is similar to classical transfer
learning in the sense that the last two layers of the DNN were finetuned. However, while
transfer learning initialized the last layer of the DNN from scratch (Section 2.3.2), meta-
matching finetune retained the weights leading to the output node that predicted the K meta-
test participants the best (for each meta-test phenotype). This further supported the
importance of the meta-matching approach.

One important limitation of meta-matching is that the magnitude of prediction
improvement heavily depends on the correlations between meta-training and meta-test
phenotypes (He et al., 2022). Consequently, we do not expect all meta-test phenotypes to
benefit from meta-matching (Figure 6). However, it is important to note that this limitation
exists for all meta-learning and transfer learning algorithms. Model transfer is easier if the
source and target domains are more similar. Performance will degrade if the source and target
domains are very different. This observation motivates the addition of more source datasets.

However, we note that the use of five source datasets (multi-layer meta-matching and

meta-matching with dataset stacking) only modestly improved over the use of one source
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dataset (UK Biobank). One potential reason is that the UK Biobank was still more than four
times larger than the combined sample size of the remaining four source datasets. Therefore,
algorithmic innovation alone might not be sufficient to alleviate this issue.

Finally, we note that there are multiple possible extensions to the current work. For
example, meta-matching can be applied to other imaging modalities, such as anatomical T1
images and diffusion MRI. The datasets in the current study comprised relatively healthy
participants. Meta-matching might be potentially useful for psychiatric populations (Chopra
et al., 2022). Including psychiatric datasets to the base model training might further improve

generalization to new datasets by increasing the diversity of the source datasets.
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