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Abstract 

We trained two monkeys implanted with multi-electrode arrays to categorize 

natural images of cats and dogs, in order to observe changes in neural activity related to 

category learning. We recorded neural activity from area TE, which is required for normal 

learning of visual categories based on perceptual similarity. Neural activity during a 

passive viewing task was compared pre- and post-training. After the category training, 

the accuracy of abstract category decoding improved. Specifically, the proportion of single 

units with category selectivity increased, and units sustained their category-specific 

responses for longer. Visual category learning thus appears to enhance category 

separability in area TE by driving changes in the stimulus selectivity of individual neurons 

and by recruiting more units to the active network.  
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Main 1 

Area TE (TE) is the most rostral brain area of the ventral visual stream1. Lesion 2 

studies have demonstrated that TE is essential for the accurate categorization of 3 

perceptually ambiguous stimuli2,3. Previous studies of TE9s role in visual categorization 4 

have demonstrated that, after extensive behavioral training, neurons in TE become tuned 5 

to the diagnostic features of parameterized stimuli436. However, monkeys 3 like humans 6 

3 can rapidly learn new category groupings, and subsequently generalize those 7 

categories to new exemplars, without the need for extensive training7. Here, we examined 8 

neural correlates of rapid visual categorization of unparameterized natural images, while 9 

simultaneously recording from large numbers of single units in TE. We show that the 10 

recruitment of additional units to the network results in more accurate coding that 11 

correlates with improved behavioral performance.  12 

Two Japanese monkeys (monkeys 8R9 and 8X9) were trained to categorize natural 13 

images of cats and dogs (Figure 1; see Methods and Supp Fig 1 for task design). Monkey 14 

X took one session and Monkey R took three sessions to learn to categorize 40 training 15 

images presented one at a time (10-50 trials per image per session). The monkeys were 16 

then tested on a larger, trial-unique set of cats and dogs (Supp Fig 2A), which they 17 

categorized with above-chance accuracy (~70%) (although this was markedly below their 18 

peak accuracy of ~90% during the training phase). The accurate responding to trial-19 

unique stimuli is evidence that the monkeys used a  generalization strategy (i.e., 20 

categorization) to discriminate the trial-unique set, as opposed to a memorization 21 

strategy. Images were cropped onto white backgrounds and had similar low-level visual 22 

statistics such as hue and saturation (Supp Fig 2), so it is unlikely that the monkeys 23 

distinguished the cats and dogs by any method other than integrating along the multiple 24 

visual dimensions that, combined, allow for reliable discrimination between the two 25 

species. We selected cats and dogs as the testing categories because we have 26 

previously demonstrated that these are more perceptually challenging to discriminate 27 

than alternative pairs of categories, such as cars vs. trucks, or human faces vs. monkey 28 

faces2. 29 

To investigate whether and how category learning changed the stimulus-evoked 30 

activity of neurons in TE, we recorded neural activity in TE while the monkeys passively 31 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.05.568765doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.568765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

viewed images of cats and dogs either before or after the category training. In total, we 1 

recorded 348 single units before training (148 from Monkey R and 200 from Monkey X) 2 

and 333 after training (139 and 194, respectively), from three chronically implanted Utah 3 

electrode arrays implanted in each subject (96 electrodes per array; Fig 2A). On each 4 

trial, monkeys fixated on a central point and five cat and/or dog images were presented 5 

sequentially (350-400 ms stimulus duration and inter-stimulus interval). During these 6 

passive viewing sessions, monkeys were rewarded following the presentation of all five 7 

images if they maintained fixation throughout the trial. Passive viewing recordings were 8 

performed at three times relative to the category training: for a week in the period a few 9 

months before the dog-cat discrimination training (<baseline=); for one day directly before 10 

the training (<pre-training=); and for one day directly after (<post-training=).  11 

When comparing neural activity from the pre- and post-training days, linear support 12 

vector machines (SVMs) trained to decode image category from population vectors of 13 

spike counts (<abstract category SVMs,= 100 ms window size, see Methods) more 14 

accurately predicted category on the post-training day, from both the full neural 15 

populations combined across all three electrode arrays (Fig 2B) and all individual array 16 

subpopulations (Supp Fig 3B) (p < 0.05, cluster-based permutation corrected for multiple 17 

comparisons; see Methods). The <abstract category= decoding method holds out a set of 18 

images from training, forcing the decoder to rely on category-level information to 19 

subsequently predict the category of those images, rather than learning the category of 20 

each individual image. Decoding accuracy displayed the same trends for all bin sizes, 21 

and plateaued 175-275 ms after stimulus onset (Supp Fig 3A). Decoding accuracy at this 22 

plateau (spike count window 175 3 275 ms after stimulus onset) increased between pre- 23 

and post-training days by 8.6 and 2.8 percentage points for Monkey R and Monkey X, 24 

respectively (Fig 2C). The magnitude of this effect is comparable with previous studies of 25 

visual learning in TE5. Similar effects were also seen when the SVM input was restricted 26 

to only the 480 trial-unique images, which the monkeys had only 1-5 opportunities to see 27 

on the transfer test day (as opposed to 100+ opportunities across multiple days with the 28 

40 training images) (data not shown). It seems unlikely that the monkeys would have 29 

memorized 480 initially trial-unique images and their reward associations in one exposure 30 

to the set. Thus, this category training enhanced visual category coding in area TE. 31 
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 To determine what fraction of single units contributed to the observed population-1 

level category coding, we re-trained the decoders on different-sized subpopulations, 2 

adding units in order of their decoding accuracy in a one-dimensional decoder (Fig 2D). 3 

As single units were added, decoding accuracy increased to an asymptote. Sigmoidal fits 4 

showed that the number of units needed for half-maximal accuracy increased post-5 

training (13.3 to 17.0 units, p <0.05; and 5.8 to 9.8 units, p > 0.05), as did the amplitudes 6 

and midpoint-slopes of the fits (Supp Fig 3C). These results suggest that the population-7 

level changes involved recruiting more units to the category-processing network, and 8 

were not simply due to a few single-units becoming strongly category selective. 9 

Using a GLM to model the effect of category on the neural responses for each 10 

neuron confirmed that a larger proportion of single units responded selectively to category 11 

post-training when compared to pre-training (175-275 ms window; Monkey R, 34% to 12 

55% of neurons, p = 2.3e-4, chisq = 13.6, df=1; Monkey X, 32% to 45% of neurons, 13 

p=8.8e-3, chisq = 6.9, df=1) (Figure 3A). This increase was observed in all three array 14 

locations, though not all increases reached significance (Supp Fig 4A). As in the decoding 15 

analysis, the changes observed in the GLM results between the first and last baseline 16 

days were smaller than those seen across training (except in the anterior array of Monkey 17 

R; Supp Fig 4B), arguing against a role for familiarity effects in driving the observed 18 

results.  19 

To determine to what extent changes in single-unit image selectivity drove these 20 

effects, we calculated the proportion of cat and dog images to which each unit was 21 

significantly visually responsive (spike counts from 175 to 275 ms after stimulus onset vs. 22 

-150 to -50 before stimulus onset, paired t-tests, p < 0.05). Image selectivity before 23 

training was sparse, with 21% and 23% of units responding to more than 10% of images, 24 

but only 5% and 12% of single units responding to more than 25% of the images, for 25 

Monkeys R and X, respectively. This proportion increased moderately after training, with 26 

34% and 28% responding to more than 10% of images (p=0.01 chisq=6.4, df=1; and 27 

p=0.27 chisq=1.2, df=1, respectively); and 10% and 18% of units responding to more than 28 

25% of images (p=0.13, chisq=2.3, df=1; and p=0.12, chisq=2.4, df=1, respectively). 29 

These increases, as well as the total post-training proportions, were larger than any 30 

observed during baseline testing (21% +/- 3% and 13% +/- 1% units [mean +/- std] 31 
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responding to >10% of images on baseline days, respectively). Single units were almost 1 

equally responsive to cats and dogs, with a mean absolute between-category difference 2 

of ~2% . This difference, a rough proxy for single-unit category selectivity, increased 3 

slightly but significantly in both monkeys after training (p < 0.05, unpaired t-test; Figure 4 

3B,C), reaching higher mean selectivity than any observed during baseline testing (3.7% 5 

mean difference post-training vs. 1.8% pre-training and 2.4% +/- 0.3% over baseline days; 6 

and 2.9% mean difference post-training vs. 2.1% pre-training and 1.4% +/- 0.3% over 7 

baseline days, respectively). Additionally, we observed a small but consistent decrease 8 

in single-unit sparseness8 after category training (p <= 0.05 for sparseness; p <  0.05 and 9 

p=0.08 for Nst; one-sided ranksum tests) (Supp Fig 4D); that is, the neurons responded 10 

to a larger number of images, and with more evenly distributed spike counts, after training. 11 

A greater number of neurons shifted their responsiveness toward dogs 4 the rewarded 12 

category4 in both monkeys, although the shift toward dogs only reached statistical 13 

significance in Monkey X (no overlap/overlap, respectively, of analytical 95% confidence 14 

intervals for slope of the major-axis regression; Figure 3D). This shift in responsiveness 15 

for Monkey X was far greater than any changes observed during baseline testing (data 16 

not shown). We noted a similar effect in the coefficients from the GLM model, in which 17 

more units tended to have dog-preferring than cat-preferring coefficients after training, 18 

though only the coefficients from Monkey X reached significance (p = 0.1 and p < 0.001, 19 

respectively, two-sided ranksum test) (Supp Fig 4C). We did not observe a difference 20 

between the sparseness of responses to cats versus that to dogs either before or after 21 

training (p > 0.05, ranksum test), nor were the absolute spike rates for the significantly 22 

category-coding units higher post-training (p > 0.05, ranksum test), arguing against a non-23 

specific spike rate increase due to reward association. We conclude that category training 24 

broadened single-unit image responses to one category or the other; that is, some units 25 

became more broadly tuned to dogs, while others became more broadly tuned to cats. 26 

 To assess whether the population encoding of category identity is stable or 27 

dynamic within a given trial, we applied a decoding analysis in which we trained a 28 

classifier using data from one time period and tested the classifier using data from a 29 

different time period (Figure 4A). Category information could be decoded from the 30 

population almost equally well at all time points from 75 ms to 450 ms after stimulus onset, 31 
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regardless of the data used for training within the same monkey, indicating a relatively 1 

static (stable) representation of category identity over this timeframe. To better 2 

understand how this encoding is supported at the single unit level, we visualized the time 3 

course over which significant differences to category emerged for each unit (see 4 

Methods) (Figure 4B). Category selectivity in single neuron responses developed over 5 

the course of ~400 ms from stimulus onset, with the majority of neurons beginning to 6 

show selectivity from 100 3 200 ms (see Supp Fig. 5 for smoothed PSTHs of example 7 

neurons). After training, units displayed longer periods of continuous category coding (Fig 8 

4C).  Additionally, the proportion of units with significant category selectivity increased on 9 

four of the six arrays (the anterior array of Monkey X also showed an increase but did not 10 

reach statistical significance; the amount of data was small, causing the test to be 11 

underpowered) (Figure 4D).  12 

 13 

Discussion 14 

In this study, category training with natural images enhanced neural category 15 

coding in area TE. Three factors might have supported enhanced category coding. First, 16 

a higher proportion of units coded for category after training (Fig 2D, 3A, 4C), suggesting 17 

that new units were likely recruited that hadn9t previously demonstrated category 18 

selectivity. Second, single units broadened their responsiveness (Fig 3B,C), and showed 19 

a concomitant decrease in sparseness (Supp Fig 4D), responding to larger numbers of 20 

cats or dogs in a manner that increased population-level category information. Third, 21 

some units increased the duration of their category-selective responses (Figs 4B,D). In 22 

line with previous studies, no units strongly responded to a majority of images within a 23 

category, with most units responding nearly equally to cats and dogs8. 24 

Since the most informative category coding emerged 150-200 ms into TE neurons9 25 

visually evoked responses, and given that the latency of visual activity in TE is around 75 26 

ms, lateral inhibition, feedback processing, or both, are candidate mechanisms for this 27 

category-level selectivity. In sum, the improved category coding in TE after learning 28 

correlated with improved behavioural accuracy, and was likely driven by a larger fraction 29 

of category-responsive neurons, a broadening of single-unit response profiles, and 30 

increased duration of category-coding responses. 31 
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Did category learning, in and of itself, cause the observed changes in area TE? 1 

The evidence suggests that it did: 1) whereas previous studies have relied on extensive 2 

periods of training to study neural representations of category or value in TE, we have 3 

shown similar effects after approximately one week of training, after which the monkeys 4 

were not expert at this task (as evidenced by the reduction in accuracy and increase in 5 

reaction times from training to transfer test), arguing against an effect of overtraining or 6 

familiarity. 2) The effects of pre-exposure to the stimuli in the baseline period were 7 

generally null or smaller than the effects of the category training, again arguing against 8 

an effect of familiarity. 3) Since the monkeys were not performing the categorization task 9 

when these data were recorded, it must have been a learned association, rather than 10 

immediate task salience, that drove these differences in neural responses to the 11 

categories. 4) Due to the asymmetric reward structure of our training task, we can9t rule 12 

out a role for reward associations in these changes 4 i.e., the monkeys may have learned 13 

to associate dogs with the liquid reward, and cats with the different <reward= of avoiding 14 

a delay in the task (see Methods). We observed no non-specific decrease in the sparsity 15 

of neural response towards dogs (Supp Fig 4D), and only a mild bias towards dogs in one 16 

monkey for overall image selectivity (Fig 3B), arguing against a non-specific reward signal 17 

for dogs as the mechanism underlying the observed increases in category information. 18 

Further, since it is unlikely that the monkeys would have memorized the 480 test image 19 

associations, the monkeys would still have had to visually distinguish cats from dogs via 20 

a process of generalization to expect a reward. In conclusion, we propose that visual 21 

category learning is, at least partially, supported by enhanced neural representations of 22 

category in area TE. 23 
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 4 

Methods 5 

Experimental subjects / housing / care 6 

Experiments were performed with two Japanese monkeys (Macaca fuscata) that 7 

were provided by the NBRP-Nihonzaru, which is part of the National Bio-Resource Project 8 

of the Ministry of Education, Culture, Sports, Science and Technology (MEXT, Japan). 9 

Monkey R was a 12-year-old male weighing 9 kg, and Monkey X was a 13-year-old male 10 

weighing 11kg. Monkeys were housed in adjoining individual primate cages that allowed 11 

social interaction. The monkeys had access to food daily and earned their liquid during 12 

and additionally after neural recording experiments on testing days. Monkeys were tested 13 

5 days per week. All surgical and experimental procedures were approved by the Animal 14 

Care and Use Committee of the National Institute of Advanced Industrial Science and 15 

Technology (Japan) and were implemented in accordance with the <Guide for the Care 16 

and Use of Laboratory Animals= (eighth ed., National Research Council of the National 17 

Academies).  18 

 19 

Surgery 20 

Each monkey was first implanted with a titanium head holder approximately four (Monkey 21 

R) or two (Monkey X) months prior to electrode implantations. Three microelectrode 22 

arrays (Utah arrays, iridium oxide, 96 electrodes, 10 × 10 layout, 400 µm pitch, 1.5 mm 23 

depth, Blackrock Microsystems, Salt Lake City, USA) were surgically implanted in the 24 

anterior, middle, and posterior parts of area TE in the left hemisphere for Monkey R, and 25 

four arrays, one additionally in area TEO (data not shown), were implanted in the left 26 

hemisphere for Monkey X. Surgical procedures were similar to those described 27 

previously10, and the procedures for Monkey X have been previously published11. For 28 

both monkeys, a bone flap located over the temporal cortex was temporarily removed from 29 

the skull and a CILUX chamber was placed onto the anterior part of the skull to protect 30 

connectors of the arrays.  31 
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Behavior 1 

Behavioral testing 2 

All behavioral tests were carried out using a shielded room. Monkeys were seated in a 3 

primate chair, and responded with a touch-sensitive bar that was mounted on the chair at 4 

the level of the monkey9s hands. The display was a 21-inch color CRT monitor (GDM-5 

F520, SONY, Japan), and the center of the monitor was placed 56.6 cm in front of the 6 

monkey9s eyes. The total reward delivered in each session was about 120 ml of juice for 7 

Monkey R and about 420 ml of water for Monkey X. The monkeys were head-fixed for all 8 

behavioral testing, and eye-tracking was performed with an infrared pupil-position 9 

monitoring system (iRecHS2, Matsuda; http://staff.aist.go.jp/k.matsuda/iRecHS2/). The 10 

visual stimuli were presented using the Matlab (Mathworks) Psychtoolbox (Kleiner et al., 11 

2007) on Windows operating system (Microsoft). Task control was performed by the REX 12 

real-time data-acquisition program adapted to QNX operating system (Hays et al., 1982).  13 

 14 

Pre-training 15 

The monkeys were first trained to use the touch bar to receive a reward. Then, a 16 

red/green color discrimination task was introduced (Bowman et al., 1996). Each trial 17 

began with a bar touch, and 100 ms later a small red target square (0.5 x 0.5 degrees 18 

visual angle) was presented at the center of the display. Monkeys were required to 19 

continue touching the bar until the color of the target square changed from red to green. 20 

Color changes occurred randomly 500 - 1500 ms after bar touch. Rewards were delivered 21 

if the bar was released between 200 and 1000 ms after the color change; releases 22 

occurring either before or after this epoch were counted as errors. 23 

 24 

Category pre-training 25 

The category pre-training paradigm was similar to the basic red/green task described 26 

above, except that now the initial <no-go= period became the second option in a cued two-27 

interval forced choice task. Each trial began when the monkey pressed the bar, and one 28 

of two Walsh patterns was presented. After 350 - 400 ms, the red fixation point appeared, 29 

and after 1-3 seconds, it turned green. Release in red ended the trial, whereas release in 30 

green led to the trial9s associated outcome. The trial outcome was either a timeout (4-6 31 
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seconds) or a reward, depending on which Walsh pattern was shown. This outcome 1 

pattern led monkeys to release in red for one pattern, to avoid the associated timeout, 2 

and to release in green for the other, to collect the reward. (We have previously shown 3 

that avoiding delays to reward has subjectively similar value to monkeys as reward 4 

itself12,13.) Thus, on each trial, the monkeys had to choose between releasing in the red 5 

or green period 4 a two-interval forced choice task. All trials were followed by an inter-6 

trial interval of 1 - 1.1 seconds.  7 

 8 

Cat-dog training and transfer test 9 

The experimental paradigm and timings for the cat-dog training task were similar 10 

to that described for the category pre-training task, except that the two Walsh patterns 11 

were replaced with images of cats and dogs. Further, monkeys were required to fixate on 12 

a central fixation point to begin the trial, at which point an image appeared. 350 - 400 ms 13 

later, the red cue appeared, and monkeys were allowed to break fixation (see Supp Fig 14 

1B). Images of cats were associated with the timeout, whereas images of dogs were 15 

associated with rewards. Monkeys therefore learned to release in red for cats and release 16 

in green for dogs. 17 

Monkeys were tested on this task with the small, training image set (20 cats and 18 

20 dogs; Supp Fig 1B) until they reached a performance target (80% correct).  Then a 19 

transfer test was performed with a larger, held-out image set (240 cats and 240 dogs) to 20 

assess their ability to generalize. We note that the 520 total images used during cat-dog 21 

training are the same 520 images used in all the passive viewing experiments. Thus, the 22 

480 images in the transfer test were not strictly novel, but had never before been 23 

categorized by the monkeys. 24 

 25 

Passive Viewing Task 26 

Monkeys were trained to keep their gaze in the center of the CRT monitor while 27 

images appeared at a moderate speed. Monkeys viewed five images on each trial and 28 

received a reward at the end (Supp Fig 1A). Each trial began with a fixation point (0.4 29 

degrees of visual angle) that served as an invitation for the monkey to look at the center 30 

of the screen. When the monkey9s gaze entered the fixation window (Monkey R: 4 x 4 31 
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degrees; Monkey X: 6 x 6 degrees), five images (12 x 12 degrees) were presented 1 

serially, each appearing for 350-400 ms, with 350-400 ms of blank screen between 2 

images. The fixation point remained present during the entire trial. If the monkey9s gaze 3 

exited the fixation window during the trial, the trial was immediately terminated, and the 4 

trial with the identical image sequence was repeated. After all five images, a liquid reward 5 

was delivered, the monkey was allowed to break fixation, and there was an inter-trial 6 

interval of 1 second. 520 images were used in total, with 260 cats and 260 dogs. Images 7 

were presented in randomized blocks such that each image was presented once in the 8 

block. 9 

We recorded six days of baseline cat/dog passive viewing data for Monkey R and 10 

two days for Monkey X. After that, we performed separate, unrelated passive viewing 11 

experiments for 2-3 months, during which the neural activity recorded by the arrays 12 

qualitatively changed. Thus, we recorded one additional pre-training cat/dog passive 13 

viewing session immediately before cat/dog training for both monkeys. After training, we 14 

recorded two days of passive viewing for Monkey R (because the first day had too low of 15 

a trial count; only 3-4 presentations of each cue, compared with 5-8 for good days 3 only 16 

data from the second day was included in our analyses) and one day for Monkey X (20 17 

presentations per cue). 18 

 19 

Neural Recording 20 

Recording and Spike Sorting 21 

Neural data, task events, and eye positions were recorded using CerebusTM 22 

system (Blackrock Microsystems). Extracellular signal was band-pass filtered (25037.5 k 23 

Hz) and digitized (30 kHz). Units were sorted online before each recording session for the 24 

extracellular signal of each electrode using a threshold and time-amplitude windows. The 25 

spike times of the units were stored using Cerebus Central Suite (Blackrock 26 

Microsystems). Single units were refined oÿine by hand using principal-component-27 

analysis projection of the spike waveforms in Oÿine sorterTM  (Plexon Inc., Dallas, USA). 28 

 29 

 30 

 31 
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Data exclusion 1 

 Inspection of the data using standard raster plots revealed Day 4 of Monkey R9s 2 

baseline data to be contaminated by noise, so it was excluded from the analyses. 3 

Similarly, our first attempt at recording a post-training passive viewing session for Monkey 4 

R only had 3-4 presentations per image due to the monkey not being as motivated as 5 

usual, so we performed a second session the following day, which was used for analysis. 6 

 For all analyses of neural data during passive viewing, we used data exclusively 7 

from completed trials, that is, trials without fixation errors. 8 

 Neurons with less than 20 spikes in a given session were removed from the 9 

analysis. Otherwise, all units recorded from TE were used in a given analysis, except 10 

where noted (e.g. Figure 2). 11 

 12 

Data Analysis 13 

Behavioral Analyses 14 

 To compute the fraction of trials correct by session sextile, sessions were split into 15 

six equal blocks of trials, including incomplete trials (i.e. including fixation errors and pre-16 

cue bar releases), and the fraction correct trials was computed within each block. 17 

Reaction times for correct cat trials (Fig 1C, iv) were calculated as the time between when 18 

the red cue appeared and when the bar was released. 19 

 20 

Image Analysis 21 

 To extract the foreground of images, we took advantage of the fact that they were 22 

cropped onto white backgrounds. We k-means clustered the RGB values into 4 clusters, 23 

which consistently reported the background as one of the colors. We subsequently set 24 

the pixels belonging to any other cluster to black, and then performed an image fill 25 

operation to fill holes. The number of foreground pixels was the number of black pixels 26 

after this operation. HSV distributions were computed from these foreground pixels. The 27 

image-mean luminance was calculated using a standard RGB conversion14. Spatial 28 

frequency energy was calculated using a 2-D Fourier transform of the image and 29 

summing the energies across all orientations at each frequency. 30 

 31 
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 1 

Initial Neural Analysis 2 

 To select the most informative analysis window, we took an unbiased approach 3 

using Monkey R9s data (which was acquired first) and an SVM classifier with an <abstract 4 

category= approach (see below) (Supp Fig 2A)6. The classifier9s accuracy was assessed 5 

at 25 ms intervals, with window starting points ranging from 50 ms before image onset to 6 

300 ms after image onset. Window sizes varied from 50 ms to 300 ms in 25 ms 7 

increments. Longer windows were more informative without exception. The accuracy of 8 

the decoders using the smallest window peaked at 150 ms. As the latency of visual 9 

information arriving in TE is roughly 75 ms. we chose 75-175 ms and 175-275 ms as two 10 

spike windows to correspond roughly to the first wave of activity in TE, and a non-11 

overlapping window with better decoding. In analyses of Monkey X9s data, similar trends 12 

with respect to these analysis windows were observed, so we kept the windows the same.  13 

 14 

Decoding Analysis 15 

For the SVM analyses (Figure 2B,C,D), we asked how well the neural population 16 

response (spike counts) could decode the category (cat or dog) of the presented image. 17 

N neurons9 spike counts (predictors) provided a response vector for each of the P image 18 

presentations (observations), so the input matrix to the SVMs had dimension P x N. In 19 

order to more accurately assess category information in the population, we used <abstract 20 

category decoding=6, which prevents overfitting to particular images by using different 21 

images for training and test data. Images were divided into five subsets, and each set of 22 

image presentations corresponding to each subset was used once as a held-out set. 23 

Using the MATLAB function `fitclinear` with lasso regularization, we discovered that the 24 

<sparsa= solver, which only uses up to 100 features, delivered better abstract category 25 

decoding than the <sgd= solver, which uses an arbitrary number of features. Thus, in order 26 

to maximize our estimates of decoding accuracy, we limited our decoding to using the top 27 

100 category-coding single units. To rank the single units by individual category coding, 28 

we ran 1-D SVM decoders on each unit (i.e., P x 1 inputs to the decoder), and ranked 29 

units based on the resulting cross-validated accuracies. Population decoding was 30 
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repeated using different 100 ms wide time bins (Figure 2B); or across sessions (Figure 1 

2C); or adding the top 100 units one at a time (Figure 2D). 2 

 To fit the sigmoidal curves in Figure 2D, we used the MATLAB function `fittype` 3 

with the sigmoidal equation `a1/(1 + exp(-b1*(x-c1))) + d`. The first three  points were 4 

excluded to achieve a stable fit for the sigmoidal curve (i.e. positive amplitudes, half-max 5 

x-values inside the domain of the data). 6 

For the time-swap analysis (Figure 4A), decoders were trained as above, but then 7 

evaluated on spike-count data from all other bins. 8 

 9 

Single-unit Analyses 10 

For the GLM analysis (Figure 3A), for each neuron, we asked if that neuron fired 11 

at significantly different rates for cats and dogs. Spike counts for each image presentation 12 

were regressed against image category with a simple linear model, log(spike count) ~ 13 

image category (Poisson link function). Units were counted as having a cat/dog difference 14 

if they had a significant coefficient in the model (p < 0.05). 15 

For the image responsiveness analysis (Figure 3B), for each neuron, we asked if 16 

that neuron fired above its baseline rate for each image. A one-sided t-test was used to 17 

compare spike counts in the window 175 to 275 ms after image onset to those in a pre-18 

onset window of the same size (-150 to -50 ms), and t-tests with p < 0.05 were considered 19 

significant. The fraction of images of each category to which each neuron significantly 20 

responded was plotted. Each neuron9s category selectivity was then quantified as the 21 

absolute difference between the fraction of cat and dog images to which it responded 22 

(Figure 3C). 23 

To fit the slope of the population9s responsiveness (Figure 3B), a line was fit using 24 

major-axis regression15. Major-axis regression is suitable when there is no 25 

independent/dependent variable pairing, as is the case here; the two variables are 26 

equivalent and we do not a priori expect a causal link in one direction or the other. Major-27 

axis regression was performed analytically (i.e. with an explicit formula, using the 28 

MATLAB function maregress), returning the line9s slope and the corresponding 95% 29 

confidence interval (Figure 3D).  30 
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 For the time-course analysis of category differences (Figure 4), smoothed, 1 

normalized category-level firing rates were first estimated for each neuron using a kernel 2 

density estimate (Gaussian kernel, bandwidth 20 ms) applied to the collated peri-stimulus 3 

spike times from all the cat or all the dog image presentations. The densities (units of 4 

1/sec) were then converted to average rates by multiplying them by the total number of 5 

considered spikes and dividing them by the number of considered trials (units of 6 

spikes/trial/sec). The two spike rates were subtracted and the absolute value was taken 7 

as the category difference over time. To assess statistical significance of this difference, 8 

the same analysis was repeated 50 times with shuffled data, and timepoints where the 9 

real difference (at that x-value) exceeded every shuffled data point (at that x-value) were 10 

considered to have significant category difference at that timepoint (Figure 4B). We then 11 

calculated the fraction of units with significant category difference at each timepoint and 12 

compared pre vs post-training sessions (Figure 4C). Significance was assessed with a 13 

chi-squared test at 50 ms intervals. Finally, the durations of periods of continuous 14 

significant category difference were calculated for each session, and the distribution of 15 

run lengths pre vs. post were compared with a one-sided ranksum test. 16 

 To quantify the sparseness of neural responses, two previously described non-17 

parametric metrics were used8. Briefly, the <sparseness index= quantifies the extent to 18 

which a neuron9s total firing is distributed amongst few or many images in a set. 19 

  20 
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Figure 1: A, schematic of the experimental timeline. Neural activity was compared 
before and after monkeys learned to categorize natural images of cats and dogs. 
Monkeys were trained with 40 images and tested using 480 similar held-out images. All 
passive viewing sessions used all 520 images, randomly interleaved in blocks. B, the 40 
images used for training. C, behavioral data from the category training, colored by 
session number; i, fraction correct trials split by session sextile; ii, same as i but for the 
first 480 completed trials of the transfer testing session, in which monkeys had only one 
opportunity to categorize each test image; iii, session averages for the data shown in i 
and ii; iv, reaction times for correct cat trials (release-on-red trials, see Methods), which 
correspond approximately to the time it takes monkeys to categorize the image3. Note 
the increased reaction times on the transfer test day, indicating non-expertise. 
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Figure 2: A, i Utah array locations in both monkeys, ii number of single units recorded 
from each pre/post-training session, from each Utah array. B, time-course of abstract 
category SVM decoders (see Methods), trained on neural population response vectors 
(spike counts in each 100 ms bin) (mean +/- shaded s.e.m.). Bouts of significant pre- vs. 
post-training difference were determined with t-tests and a cluster-based permutation 
procedure that uses trial-shuffled spike counts9. C, accuracy of the abstract category 
SVM decoders in the 175-275 ms bin, across experimental sessions (mean +/- s.e.m.). 
D, accuracy of abstract category SVM decoders in the 175-275 ms bin, with increasing 
numbers of the top 100 units used for training (see Methods). Broken vertical lines: half-
maximal accuracy for pre- (blue) and post-training (red), respectively. See Supp Fig 3C 
for sigmoid parameters. 
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Figure 3: A, fraction of single units significant in a GLM regressing image category vs. 
spike count 175-275 ms after image onset. B, all single units9 responsiveness to cats or 
dogs, across sessions, as measured by the fraction of images from each category that 
evoked a significant visual response. Black dotted line, unity; red line, best-fit line from 
major-axis regression. Slopes of fit lines = 1.20 and 1.06, Pearson9s correlations = 0.95 
and 0.98. C, distributions of the category selectivity shown in B, summarized for each unit 
by the absolute difference between the fraction of cat and dog images evoking a 
significant response. Triangle and line above the histograms represent mean and std, 
respectively. *, p < 0.05; ***, p < 0.001. D, estimated slope (from major-axis regression; 
mean + 95% confidence intervals) for best-fit lines in b. 
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Figure 4: A, accuracy of abstract category SVM decoders, trained and tested on neural 
population response vectors from different timepoints. The same set of top 100 units was 
used for all train/test combinations. B, time-courses of significant difference of category-
averaged responses for all units. Each row represents a single unit. Yellow represents 
significance (see Methods, p < 0.01). C, net proportion of units showing a significant 
difference at each timepoint in A. Marks above the data represent significant pre-post 
difference (two-sided chi-square test, p < 0.05). D, probability distribution for the durations 
of all single unit time courses (not including zero duration) of significant single-unit 
category coding from the analysis in B (p < 0.05, one-sided rank-sum test). 
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Supp Fig 1: A, diagram of the passive viewing task. In brief, monkeys were required to 
fixate on the central fixation square while five images were presented in succession, 
followed by a liquid reward and an inter-trial interval. See methods for details. B, diagram 
of the category training and transfer test task. In brief, in each trial, monkeys were required 
to release a touch-bar in one of two intervals to indicate whether the image on screen 
was a cat or a dog. To correctly respond to a cat stimulus, monkeys had to release during 
the interval in which the central fixation square was red, which allowed them to avoid a 
timeout; to correctly respond to a dog stimulus, monkeys had to hold the bar through the 
red period and release when the square turned green, which resulted in a liquid reward. 
See Methods for details. 
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Supp Fig 2: A, the 520 stimuli used in this experiment, broken down into the 20/20 and 
240/240 sets used for behavioral training and testing, respectively. Images were natural 
images with the background removed. B, distribution of the colors of pixels in the cat and 
dog datasets. Only foreground pixels were considered. The foreground was extracted 
using a k-means clustering algorithm (k=6) and removing the white component. C, 
analysis of object size (number of foreground pixels), image-mean relative luminance, 
and frequency components of the cat and dog stimuli. 
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Supp Fig 3: A, time-course analysis using abstract category SVM decoders, with spike 
counts collected over different bin widths. B, time-course of abstract category SVM 
decoders (as in Fig 2b), but using the top 100 units (or all units, whichever was fewer) 
from each separate Utah array. C, parameter means and 95% confidence intervals for 
sigmoidal fits shown in Figure 2D. 
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Supp Fig 4: A, fraction of single units significant in a GLM regressing image category vs. 
spike count 175-275 ms after image onset (as in Fig 3a), broken out across the Utah 
arrays. B, the same analysis as in A, but comparing the first and last baseline days to the 
pre- and post-training days. C, distributions of GLM coefficients broken out by pre vs. 
post-training days. i, the signed value of the coefficients, showing a slight bias towards 
dog-preferring units in Monkey X (***, p < 0.001, two-sided ranksum test); ii, the same 
data as in i, plotted with its absolute value to demonstrate no increase in pre vs. post-
training absolute spike rates (n.s., one-sided ranksum test, p > 0.05). D, cumulative 
distributions (across all single units) of sparseness index and Nst8, broken out by cat vs. 
dog and pre vs. post-training days, showing a decrease in sparseness (increasing 
sparseness index and Nst; *, one-sided ranksum test, p <= 0.05). 
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Supp Fig 5: A, smoothed mean responses to cats and dogs for representative units 
across arrays. Black lines above the data indicate significant cat-dog difference (p < 0.01 
via bootstrapping) (as in Fig 4a). Units had diverse response patterns, showing significant 
category differences during either i) only the initial wave of visually-evoked activity; ii ) 
the sustained portion of visually-evoked activity; or iii) both. 
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