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Abstract

Main conclusion Micro-analytical techniques to untangle Se distribution and chemical speciation in plants coupled 

with molecular biology analysis enable the deciphering of metabolic pathways responsible for Se tolerance and 

accumulation.

Abstract Selenium (Se) is not essential for plants and is toxic at high concentrations. However, Se hyperaccumulator plants 
have evolved strategies to both tolerate and accumulate > 1000 µg Se  g−1 DW in their living above-ground tissues. Given 
the complexity of the biochemistry of Se, various approaches have been adopted to study Se metabolism in plants. These 
include X-ray-based techniques for assessing distribution and chemical speciation of Se, and molecular biology techniques 
to identify genes implicated in Se uptake, transport, and assimilation. This review presents these techniques, synthesises the 
current state of knowledge on Se metabolism in plants, and highlights future directions for research into Se (hyper)accumu-
lation and tolerance. We conclude that powerful insights may be gained from coupling information on the distribution and 
chemical speciation of Se to genome-scale studies to identify gene functions and molecular mechanisms that underpin Se 
tolerance and accumulation in these ecologically and biotechnologically important plants species. The study of Se metabolism 
is challenging and is a useful testbed for developing novel analytical approaches that are potentially more widely applicable 
to the study of the regulation of a wide range of metal(loid)s in hyperaccumulator plants.
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Abbreviations

ATPS  Adenosine triphosphate sulfurylase
APSR  Adenosine 5′-phosphosulfate reductase
DMDSe  Dimethyldiselenide
DMSe  Dimethylselenide
MeSeCys  Methyl-SeCys
SeCys  Selenocysteine
SeMet  Selenomethionine
SMT  Selenocysteine methyltransferase
SULTR  Sulphur transporter
XANES  X-ray Absorption Near Edge Structure
XFM  X-ray fluorescence microscopy
XRF  X-ray fluorescence

Introduction

Selenium (Se) is a trace element that is essential for human 
and animal nutrition (Schwarz and Foltz 1957). It is incorpo-
rated in selenoproteins that play important roles in redox bal-
ance maintenance, immune response, cognitive health, and 
the formation of thyroid hormones (Kieliszek and Błażejak 
2013; Weekley and Harris 2013). While inadequate intake of 

Se causes Se deficiency, excess Se can cause a rare condition 
called selenosis, mostly found in livestock from seleniferous 
areas (Plant et al. 2003; WHO 2009; Winkel et al. 2012; 
Malagoli et al. 2015; Wu et al. 2015; Rayman et al. 2018). 
Although Se is not essential for plants, the element can be 
absorbed and accumulated in plant tissues, which makes 
them an important source of Se dietary for animals (Dumont 
et al. 2006). Rare plants species called hyperaccumulators 
can accumulate > 1000 µg Se  g−1 DW in their shoots whilst 
non-accumulator plants typically have < 100 µg Se  g−1 DW 
(Brown and Shrift 1982; Anderson 1993; Terry et al. 2000) 
(Fig. 1). Since Se hyperaccumulator plants can attain Se to 
high concentrations in their living shoot, these plants are 
potential candidates for phytoextraction; a process in which 
plants are harvested to remediate a polluted soil and/or for 
their accumulated trace element, such as Se, and used in the 
production of dietary supplements (Bañuelos et al. 1997; 
Haug et al. 2007).

Selenium in the environment is commonly found as 
selenate  (SeO4

2−) and selenite  (SeO3
2−) (Sors et al. 2005). 

Whereas  SeO4
2− is the main Se form in oxic soils, including 

most cultivated soils (White 2016),  SeO3
2− is prevalent in 

anaerobic soil environments (Mikkelsen et al. 1989; Fordyce 
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2013). Plants mainly take up Se as  SeO4
2− through sulphate 

transporters (SULTRs) (Zhang et al. 2014; White 2016). 
Once inside the cell,  SeO4

2− can be reduced and incorpo-
rated into the amino acids selenocysteine (SeCys) and sele-
nomethionine (SeMet) using the pathway for sulphate reduc-
tion and assimilation (Sors et al. 2005; White 2018). The 
sulphide bridge between two cystine (Cys) residues allows 
the tertiary structure in proteins, therefore the replacement 
of Cys for SeCys affects their structure and function (Brown 
and Shrift 1982). Additionally, at an enzyme active site, the 
replacement of Cys for SeCys can affect the affinity for the 
substrate leading to changes in the activity (Van Hoewyk 
2013). The first step in the assimilation is the activation 
of  SeO4

2− to adenosine 5′-phosphoselenate (APSe) by the 
enzyme adenosine triphosphate sulfurylase (ATPS). APSe 
is then reduced to  SeO3

2− by adenosine 5′-phosphosulfate 
reductase (APSR) (Sors et al. 2005). Selenite is reduced to 
selenide most likely by glutathione or glutaredoxins (Hsieh 
and Ganther 1975) which is incorporated into SeCys by 
the Cysteine Synthase complex (CS) (Bogdanova and Hell 
1997). Plants can convert SeCys into elemental selenium 
 (Se0) by the action of chloroplast-localised cysteine des-
ulfurase (CpNifS) (Pilon-Smits et al. 2002). In a differ-
ent pathway, SeCys can be converted via SeMet into Se-
methyl selenomethionine from where plants can volatilise 
dimethyl selenide (DMSe) (Lewis and Johnson 1974). In a 

third pathway described for hyperaccumulators and some 
non-accumulators, SeCys is methylated by Selenocysteine 
methyltransferase (SMT) to form methyl-SeCys (MeSeCys), 
thus avoiding the incorporation into proteins. MeSeCys is 
then converted into dimethyl diselenide (DMDSe), another 
volatile compound (Evans et al. 1968). The methylation of 
SeCys and the synthesis of DMDSe appear as the two main 
strategies to cope with Se toxicity in Se hyperaccumulators 
(Pilon-Smits and LeDuc 2009).

Research on the metabolism of Se in plants has been com-
plicated by the complexity of Se biochemistry and the vola-
tile properties of some Se compounds. The development of 
new techniques has expanded the knowledge on Se metabo-
lism, accumulation, and tolerance in Se hyperaccumulator 
species. Here, we review the state-of-the-art and current 
approaches used to discover Se hyperaccumulator plants, to 
assess the plant distribution and chemical speciation of Se, 
and to elucidate the molecular mechanisms that underpin 
Se accumulation and tolerance in plants. These approaches 
range from microanalytical chemistry to molecular biology 
covering advanced microscopy using X-ray fluorescence, as 
well as genome-scale molecular techniques. The study of 
Se metabolism is not only interesting, but extremely chal-
lenging and it, therefore, makes it a useful testbed for devel-
oping novel approaches that are applicable to the study of 
a wide range of metal(loid)s in hyperaccumulator plants. 

Fig. 1  Global selenium hyperaccumulators species (> 1000  µg   g−1 
DW foliar Se) with foliar concentration data from either nature or 
experimental conditions growing on Se spiked soil (hydroponics data 

excluded). Concentration and location data from White (2016), Both 
et al. (2018) and Harvey et al. (2020)
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This review concludes with suggested future directions for 
research to improve the understanding of Se hyperaccumu-
lator plants.

Discovery of selenium (hyper)accumulation 
in plants

Plants colonising seleniferous soils have evolved mecha-
nisms of tolerance and strategies to cope with Se toxicity 
(Cappa et al. 2015). The first Se hyperaccumulator plants 
were discovered in the 1930s when cattle disease (‘Blind 
Staggers’ e.g. selenosis) was associated with ingesting of 
high Se concentrations in some plant species in the Western 
United States (Trelease et al. 1936). These plants occurred 
on seleniferous soils derived from Cretaceous and Eocene 
shales (Beath et al. 1934). Of the Se hyperaccumulator 
plants subsequently discovered in the area, Astragalus rac-

emosus  has been the species with the highest Se concen-
trations, attaining up to 14,920  µg Se  g−1 DW in its leaves 
(Knight and Beath 1937). Although the genus Astragalus 
(Fabaceae) contains the greatest number (25) of Se hyper-
accumulator taxa described to date, Se hyperaccumulation 
occurs across 45 taxa in six different plant families (Cappa 
and Pilon-Smits 2014; White 2016), including species from 
the genera Stanleya (Brassicaceae), Oonopsis, Xylorhiza, 
Symphyotrichum (Asteraceae), Cardamine (Brassicaceae), 
and Neptunia (Fabaceae) (Knott and McCray 1959; Rosen-
feld and Beath 1964; El Mehdawi et al. 2014; White 2016).

The analytical determination of Se concentrations in 
plant tissues include destructive (e.g. ashing or wet acid 
digestion) and non-destructive (e.g. X-ray fluorescence 
analysis) techniques (Gei et al. 2018; Purwadi et al. 2021). 
Among the destructive techniques, wet acid digestion, 
which requires dried and ground plant tissue to be reacted 
with nitric acid at ~ 125 °C (Shamberger 1983), is still the 
most commonly used today. After digestion, Se can then 
be measured in the resulting solution by Inductively cou-
pled plasma atomic emission spectroscopy (ICP-AES) or 
ICP-mass spectroscopy (ICP-MS) (Reeves et al. 1996, 2007; 
Fernando et al. 2009; van der Ent and Reeves 2015). In con-
trast, non-destructive techniques include handheld X-ray 
fluorescence (XRF) for elemental screening of plant samples 
(Fig. 2). This technique utilises high-energy X-rays to impact 
a sample and analyses the spectrum of excited fluorescent 
X-rays, from which Se and its relative concentration can be 
determined (Purwadi et al. 2021). The main advantage is that 
this can be done on herbarium specimen collections, and as 
such a highly efficient botanical survey can be performed 
without the high costs, and sometimes complex logistics, 
of a field expedition (Gei et al. 2018). This approach has 
already been successful in doubling the number of trace ele-
ment hyperaccumulator plant species known globally from 

projects undertaken in New Caledonia, Malaysia, Papua 
New Guinea and the Neotropics (van der Ent et al. 2019a, 
b; Do et al. 2020; Gei et al. 2020; Belloeil et al. 2021). 
Although its potential to find new Se hyperaccumulators 
has yet to be fully tested, handheld XRF instruments appear 
as a time- and cost-effective tool for initial discoveries of Se 
accumulation in plants from existing plant collections held 
at herbaria (van der Ent et al. 2019a, b).

Whole plant and tissue/cellular distribution 
of selenium

The Se metabolism includes the processes of Se accumula-
tion in different forms, storage of Se in different tissues, 
and eventually (partial) volatilisation (Peterson and Butler 
1962; Rosenfeld and Beath 1964; Evans et al. 1968; Lewis 
and Johnson 1974). The biochemistry of Se affects not only 
the plant itself but also its ecological partners (El Mehdawi 
et al. 2011, 2015; Reynolds and Pilon-Smits 2018). Apart 
from destructive analysis of excised parts of plants, there are 
a number of in situ and/or in vivo techniques that can be uti-
lised to elucidate the distribution of Se within whole plants 
and plant organs and cells. Autoradiography was one of the 
first approaches with high sensitivity that was used to study 
the ability of plants to uptake and translocate Se to differ-
ent tissues (Rosenfeld and Beath 1964). In autoradiography, 
plants are grown in a substrate to which the radioisotope 75Se 
is added and the emitted gamma rays are detected using ana-
logue film or digital detectors (Martin et al. 1971). Although 
this approach allows the detection of only one element at 
a time, it facilitates the examination of large samples and 
hydrated plant tissues, thereby enabling the visualisation of 
Se distribution in live Se hyperaccumulator plants (Kopittke 
et al. 2020). Even though this method has been very useful in 
studying Se hyperaccumulator plants in the past (Rosenfeld 
and Eppson 1962; Martin et al. 1971; Goodson et al. 2003), 
regulatory constraints of the use of radioisotopes nowa-
days have greatly diminished its use. The advent of X-ray 
based techniques that work by detecting emitted fluorescent 
X-rays, have gained popularity due to their high-resolution 
and non-destructive nature and multi-element capability (van 
der Ent et al. 2018; Kopittke et al. 2018; 2020). The use of 
synchrotron-based X-ray Fluorescence Microscopy (XFM) 
has been particularly powerful in the study of Se hyperac-
cumulator plants (Freeman et al. 2006, 2010). Similar to the 
handheld XRF, this approach uses X-rays to impact a sample 
and generates an elemental map with the distribution of the 
elements of interest. A synchrotron is a very large particle 
accelerator in which electrons are guided through a storage 
ring to close the speed of light. At various positions in the 
storage ring, which can be several km in diameter, brilliant 
X-rays are produced by insertion devices which are guided to 
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so-called beam stations in which measurements take place. 
In the beam station, a plant sample is mounted in a plastic 
holder on a motion stage which moves the sample through 
the intense micron-sized beam of X-rays with the fluorescent 
X-rays recorded by a detector. This enables the construction 
of a pixel array of elemental concentrations i.e. ‘elemental 

maps’. Uniquely, this method offers the ability to measure 
plant specimens in hydrated (live) state without any sample 
preparation and has high sensitivity (< 10 µg  g−1 level) and 
high spatial resolution (< 1 µm). In essence, a whole live 
plant or any part of a plant organ or sectioned tissue can be 
analysed “as is” with XFM. The instrumentation can also 

Fig. 2  Handheld XRF used in the discovery and analysis of Se hyper-
accumulator plants in the field and herbarium. Scheme of X-rays 
impacting a sample and fluorescent X-rays emitted and recorded by 
the detector a, spectrum of excited fluorescent X-rays to calculate 

relative Se concentration b, example of the use of handheld XRF in 
herbarium and field samples c and d, respectively. Schematic panel 
on top adapted from Purwadi et al. (2021)
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determine chemical speciation of selected elements in vivo 
and even spatially using X-ray Absorption Spectroscopy 
(XAS), see below for more details (Kopittke et al. 2018). 
In contrast to analysis of whole plant organs probed at the 
tissue/cellular-scale, the (cryo)sectioning of samples for 
subcellular-level analysis is highly challenging due to the 
risk of significant artefacts, although newer XFM computed 
tomography (XFM-CT) methods enable to obtain 3D models 
of elemental distribution in physically intact specimens (van 
der Ent et al. 2018).

More recently, the development of laboratory-based 
XFM has been demonstrated to be an alternative to 

synchrotron-based XFM, although it cannot yet compete in 
terms of spatial resolution or sensitivity and the ability to 
undertake in situ chemical speciation analysis (Fig. 3) (van 
der Ent et al. 2018). Recent technological developments have 
brought capabilities of this method closer to synchrotron-
based XFM performance. Similarly, it can analyse speci-
mens in fresh/live state and it offers the ability to scan large 
specimens (up to 30 × 30 cm) at high resolution (down to 
20 µm) with good sensitivity (> 100 µg  g−1 level) (Fig. 4). 
The local availability of laboratory-based XFM is particu-
larly attractive for assessing live plants subjected to Se dose 
treatments (Harvey et al. 2020). Another X-ray based tool 

Fig. 3  Laboratory-based X-ray Fluorescence Microscopy (XFM) elemental maps of Se in Neptunia amplexicaulis. Panels: whole shoot a, leaf 
section b, flower c and seed pods d. Adapted from Harvey et al. (2020)
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that uses the emission of characteristic X-rays to detect Se 
and other elements is Scanning Electron Microscopy with 
Energy Dispersive Spectroscopy (SEM–EDS). Although 
SEM–EDS only allows semi-quantification and has rela-
tively poor limits of detection, it can visualize very small 
particles of inorganic elements e.g. Se in high resolution 
(1–5 µm) in specific areas of interest, such as on leaf sur-
faces or in tissue cross-sections (Gei et al. 2018; van der Ent 
et al. 2018). 

The technologies described above have greatly expanded 
our knowledge about Se distribution in Se hyperaccumula-
tors (see for example, Freeman et al. 2006, 2010; Both et al. 
2020; Harvey et al. 2020). Selenium distribution within the 
plant e.g. transport of different Se forms, depends on the 
plant species, developmental phases, and environmental con-
ditions, such as Se concentrations in soil (Zhao et al. 2005; 
Li et al. 2008; Renkema et al. 2012). The highest Se concen-
tration has generally been found in reproductive organs such 
as flowers, fruits, and seeds (Freeman et al. 2006; Quinn 
et al. 2011; Valdez Barillas et al. 2012; Harvey et al. 2020). 
This pattern seems to be a characteristic of Se hyperac-
cumulators because non-accumulators tend to accumulate 
more Se in the roots (White et al. 2007; Cappa et al. 2014). 
Another characteristic of Se hyperaccumulators is the high 

accumulation of Se in young leaves compared to old leaves 
(Freeman et al. 2006, 2010). Stems and roots have also been 
identified as Se storage tissues, although the pattern differs 
among Se hyperaccumulator species. Apart from reproduc-
tive organs, the stem is the tissue with the highest Se con-
centration found in A. bisulcatus, followed by young leaves, 
whereas the roots have the lowest Se concentration (Valdez-
Barillas et al. 2012). Additionally, Neptunia amplexicaulis 
accumulates higher Se concentration on average in the seed 
pods, followed by the young leaves and taproot (Harvey et al. 
2020). The distribution pattern in hyperaccumulators, par-
ticularly in young leaves and reproductive organs, indicates 
that Se is transported through the phloem to sink organs 
during leaf maturation; this pattern has also been associ-
ated with defence against herbivore and/or pathogen attacks 
(Quinn et al. 2010).

When the spatial distribution of Se in leaves was inves-
tigated, the Se hyperaccumulators A. bisulcatus and Stan-

leya pinnata accumulated Se mostly in the leaf periphery. 
However, while in young leaves of A. bisulcatus Se was 
predominantly found in their trichomes, in young leaves of 
S. pinnata Se was localised in the epidermal cells near the 
leaf edges, in structures similar to vacuoles (Freeman et al. 
2010). As observed in S. pinnata, low Se accumulation in 

Fig. 4  Synchrotron-based X-ray Fluorescence Microscopy (XFM) 
elemental maps. Panel a Ca, Se and K in a fresh/hydrated root cross 
sections of Neptunia amplexicaulis; Panel b Ca, Se and Zn in fresh/
hydrated root tips of N. amplexicaulis; Panel c Ca, Se and Br in a 

fresh leaf of N. amplexicaulis; and Panel d Ca, Se and K in a fresh/
hydrated whole shoot of Neptunia gracilis. Previously unpublished 
data (A. van der Ent) obtained at the X-ray Fluorescence Microscopy 
beamline of the Australian Synchrotron (part of ANSTO), Australia
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trichomes has also been found in N. amplexicaulis, although 
with high Se concentration in the vascular bundles (phloem) 
rather than in the leaf lamina (Harvey et al. 2020). The dis-
tribution of Se in the leaf edge of Se hyperaccumulators 
suggests a specific Se sequestration into these tissues, since 
this pattern has not been observed for other elements (Free-
man et al. 2006). Furthermore, the localization of Se in the 
leaf periphery may be a distinguishing characteristic for Se 
hyperaccumulators, as this pattern is not observed in the 
non-accumulators B. juncea and Arabidopsis thaliana, for 
which Se is distributed in the vascular tissues and mesophyll 
cells (Van Hoewyk et al. 2005).

Unravelling chemical speciation of selenium 
in plants

Establishing the distribution of various Se chemical forms 
within a plant is a powerful method to uncover the pathways 
implicated in Se metabolism and the molecular mechanisms 
that underpin tolerance to Se toxicity (Freeman et al. 2006, 
2010; Valdez-Barillas et al. 2012; Both et al. 2020). The 
chemical speciation of Se in plants can be analysed using 
synchrotron-based X-ray Absorption Spectroscopy (XAS), 
a non-destructive method that utilises a synchrotron X-ray 
beam to impact a sample which generates an X-ray absorp-
tion spectrum specific to the target element and the binding 
energies of its electrons (Abraham et al. 2020). The XAS 
spectrum can be divided into two main regions: the X-ray 
Absorption Near Edge Structure (XANES) and the Extended 
X-ray Absorption Fine Structure (EXAFS) energy regions. 
The XANES energy region of the generated spectrum indi-
cates the coordination environment of the Se atom, and 
therefore can discriminate among Se species by revealing 
different spectra characteristic for the chemical forms of 
Se (Weekley et al. 2013; Weekley and Harris 2013). How-
ever, not all species can be identified by XANES, as several 
organic amino acids of Se (including SeMet, SeCys and 
MeSeCys) possess the same C-Se-C compound structure 
and generate essentially identical spectra; in most cases 
XANES is useful in distinguishing between inorganic and 
organic compounds (Weekley et al. 2013). Details of the dis-
tance, number and type of atoms around the central absorb-
ing atom can be obtained through EXAFS analysis and has 
been able to identify the chemical state of Se species such 
as  Se(0), Se-Se and Se-S compounds (Wiramanaden et al. 
2010; Weekley et al. 2014; Abraham et al. 2020). Although 
XAS analysis provides insight into the chemical speciation 
between organic and inorganic forms of Se, the most popu-
lar tool to investigate Se speciation is Liquid Chromatogra-
phy coupled to Mass Spectrometry (LC–MS), an analytical 
technique based on the separation of target compound based 
on their size, followed by mass-spectrometry to separate 

co-elutants according to mass-to-charge (m/z) ratio (Kata-
jamaa and Orešič 2005; Xiao et al. 2012). Although LC–MS 
has allowed the identification of the different organic forms 
of Se, methods based on chromatography require extensive 
sample preparation that may affect speciation for which Se 
compounds are notoriously sensitive (Weekley et al. 2013).

The pathway of Se within hyperaccumulators ends with 
the volatilisation of DMSe and DMDSe, as part of the mech-
anism to remove Se and prevent toxicity (Draize et al. 1935; 
Lewis et al. 1966; Evans et al. 1968; Terry et al. 1992; Zayed 
et al. 1998; Terry et al. 2000; Van Huysen et al. 2003). To 
measure the rate of DMSe and DMDSe production, volatile 
compounds are usually collected in a trap (e.g. a bottle con-
taining an alkaline solution) from a growth chamber where 
a plant is grown in Se-dosed nutrient solution. Selenium 
content is analysed using Atomic Absorption Spectroscopy 
(AAS), High Performance Liquid Chromatography (HPLC) 
coupled to Gas Chromatography (GC), or GC–MS, and, if 
75Se isotope is applied to the nutrient solution, scintillation 
detectors can be used to measure radioactivity and hence Se 
concentration.

Chemical speciation mapping of Se has been undertaken 
in A. bisulcatus and S. pinnata (Pickering et al. 2000; Free-
man et al. 2006; Valdez-Barillas et al. 2012), and more 
recently in N. amplexicaulis (Harvey, unpublished) and 
Cardamine violifolia (Both et al. 2020). These studies have 
shown that the Se chemical speciation varies among organs 
and depends on the habitat where the plant was grown due 
to the influence of microbial interactions on the forms of 
Se within the plant (Valdez-Barillas et al. 2012). The main 
forms of Se are predominantly organo-seleno compounds, 
such as MeSeCys; γ-glutamyl-MeSeCys (A. bisulcatus) or 
selenocystathionine (SeCT; S. pinnata) in young leaves 
(Freeman et al. 2006, 2010). LC–MS analyses of A. bisul-

catus tissues collected from its natural seleniferous habi-
tat revealed that 50% of the Se contained in the stem was 
organic Se (C-Se-C), with the remainder elemental Se and 
 SeO3

2−, whilst flowers accumulated primarily C-Se-C (90%) 
with small fractions of  Se(0) and  SeO3

2−(Valdez-Barillas 
et al. 2012). A high proportion of organic Se in hyper-
accumulator plants suggests an active sulphate/selenite 
assimilation pathway to convert  SeO3

2− into organo-seleno 
compounds (Schiavon and Pilon-Smits 2017). Further Se 
chemical speciation studies on A. bisulcatus and S. pin-

nata growing in its natural habitat showed that up to 35% 
of Se was in the form of elemental Se  (Se0) which has been 
attributed to microbial interactions with Se-reducing bac-
teria (Lindblom et al. 2013). XANES analyses on young 
N. amplexicaulis revealed that MeSeCys and SeMet occur 
in similar proportions in young leaves, while selenodiglu-
tathione (Se(GSH)2) was the main Se chemical species in the 
root (40%) (Harvey et al. 2020). Studies performed on the 
Se hyperaccumulator C. violifolia and the non-accumulator 
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Cardamine pratensis revealed that the main chemical form 
of Se in the hyperaccumulator were C-Se-C forms, whilst the 
non-accumulator contained more  SeO4

2− (Both et al. 2020). 
Similar observations have been reported when comparing A. 

bisulcatus and S. pinnata to related non-accumulator spe-
cies, with the non-accumulator plants containing a higher 
proportion of inorganic of Se (Freeman et al. 2006; Alford 
et al. 2014).

In Se hyperaccumulator plants, the observed organic 
forms of Se in their young leaves and the inorganic forms 
 (SeO4

2−) in old leaves suggest a translocation from old 
leaves via the phloem in the form of MeSeCys (Freeman 
et al. 2006). Further identification of Se chemical species 
have been performed in leaves of Se hyperaccumulators and 
XANES and LC–MS analysis of A. bisulcatus trichomes 
revealed a high proportion of Se in organic form, specifi-
cally MeSeCys and γ-glutamyl-MeSeCys (Freeman et al. 
2006). This suggests that trichomes in this species were a 
site for sequestration and storage, or for the synthesis of 
organo-seleno compounds (Freeman et al. 2006). Apart from 
trichomes, the presence of  SeO4

2−,  SeO3
2−, MeSeCys, and 

γ-glutamyl-MeSeCys is suggestive of  SeO4
2− reduction and 

for incorporation of Se into organo-seleno compounds in 
young leaves (Freeman et al. 2006). Around the edges of S. 

pinnata young leaves, Se was present as MeSeCys (88%) and 
SeCT (12%) (Freeman et al. 2006). Selenium chemical spe-
ciation has also been investigated in seeds of A. bisulcatus 
and S. pinnata, where XANES analysis has identified SeCys 
in S. pinnata, and MeSeCys and γ-glutamyl-MeSeCys in A. 

bisulcatus (Freeman et al. 2012).
Volatilisation experiments to measure the rate of DMDSe 

or DMSe production have shown that hyperaccumulator 
plants are able to eliminate Se through expelling it in gase-
ous form through the leaves (Zayed et al. 1998; de Souza 
et al. 2000; Terry et al. 1992, 2000;). The first findings of 
Se volatilization were reported in A. bisulcatus (Draize et al. 
1935). Further studies on the Se hyperaccumulator Astra-

galus racemosus and the non-accumulator Medicago sativa 
revealed that the synthesis of volatile Se compounds is not 
restricted to Se hyperaccumulator species alone (Lewis 
et al. 1966). In this case, both species were able to produce 
DMDSe or DMSe even at low Se doses, and the increased 
rates of volatilisation are correlated to Se concentrations in 
plant tissues and the chemical form of Se that was applied 
(Lewis et al. 1966; Terry et al. 1992; Zayed et al. 1998). 
Additional studies have shown that Se volatilisation occurs 
in the leaves mainly as DMSe in crop species (Lewis 1974; 
de Souza et al. 2000) and as DMDSe in Se hyperaccumula-
tor plants (Evans et al. 1968). Studies aimed to decipher 
the metabolic pathways of Se volatilisation revealed an 
increased volatilisation rate in transgenic B. juncea that 
overexpressed cystathionine-γ-synthase (CGS) (Van Huysen 
et al. 2003).

Genome‑scale approaches for studying 
selenium metabolism

The molecular biology underlying Se acquisition, transport 
and metabolism can be investigated using genome-scale 
approaches (Corso et al. 2020). However, genome-scale 
data remain scarcely available from Se hyperaccumulator 
plants (see Huang et al. 2021). Given the diversity of the 
taxa involved, generation of genome data requires de novo 
assembly and ab  initio gene prediction. The continuing 
advancement and increased affordability of high-through-
put sequencing technologies is enabling data generation at 
lower costs and at scale previously unimaginable. Short-read 
sequencing data (e.g. from Illumina) that are more cost-effi-
cient can be combined with long-read sequencing data (e.g. 
from PacBio and Oxford Nanopore) that are better in resolv-
ing repetitive sequence regions in a hybrid approach to gen-
erate a more-contiguous assembly (Zimin et al. 2017; Anti-
pov et al. 2016). Especially if such assembled whole-genome 
sequence is annotated with the location of (predicted) genes, 
based on whole transcriptome sequences, it can be a very 
valuable genetic tool for comparative genome analysis of 
Se hyperaccumulators and closely related non-accumula-
tors. Comparison of whole-genome sequences elucidates 
conservation and loss of (micro)synteny, providing clues 
on genome evolution underlying phenotypic differences 
between species (Hammond et al. 2006; Weber et al. 2006). 
These data also provide valuable information on small 
sequence variations e.g. single nucleotide polymorphism, 
and insertion-deletion, to be used as molecular markers, as 
well as larger structural variations e.g. gene copy-number 
variations, and large chromosomal rearrangements contrib-
uting to phylogenetic divergence and potential acquisition 
of new traits (Talke et al. 2006; van de Mortel et al. 2006). 
Full-length transcripts, to be used in genome annotation and 
comparative transcriptomics, can be achieved using long-
read sequencing technology, e.g. through the reconstruction 
of transcript isoforms (Gao et al. 2019). Transcriptome, 
proteome and/or metabolome profiles from tissues grown 
in distinct conditions or treatments enable comprehensive 
assessments of differentially expressed biomolecules (i.e. 
genes, proteins, or metabolites) and their functions in meta-
bolic pathways.

The use of genome-scale approaches is enhancing our 
understanding of the molecular responses and mechanisms 
that underpin Se metabolism in the hyperaccumulators. In 
Cardamine enshiensis, the analyses of genome, transcrip-
tome and metabolome data revealed a whole-genome dupli-
cation event and other segmental duplications, an enrich-
ment of functions implicated in Se metabolism pathways 
among the duplicated genes, and changes in the patterns of 
chromatin interactions in response to Se treatment (Huang 
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et al. 2021). In an early transcriptome analysis (Freeman 
et al. 2010), genes coding for distinct SULTRs that are impli-
cated in uptake and transport of sulphate and  SeO4

2−, were 
found to be constitutively highly expressed in roots and 
shoots of the Se hyperaccumulator S. pinnata, in contrast 
to the secondary accumulator Stanleya albescens. This is 
considered an advantage for Se and S uptake and has been 
related to an increase in Se or S concentration in the plant 
(Cabannes et al. 2011; El Mehdawi et al. 2018; Wang et al. 
2018). Furthermore, hyperaccumulators and non-accumu-
lators from the genus Astragalus have been shown to have 
a high constitutive expression of SULTRs, regardless of 
the Se or S concentration in the substrate (Cabannes et al. 
2011). The concentrations of Se and S in the substrate do, 
however, often have an impact on the regulation of SUL-

TRs, indicating that high constitutive expression is not the 
rule for all hyperaccumulator plants, and not for all SULTRs 
(White et al. 2004; Cabannes et al. 2011; Schiavon et al. 
2015; El Mehdawi et al. 2018). For example, studies of 
S. pinnata exposed to 20 µM of  SeO4

2− showed a reduc-
tion in the expression of genes encoding SULTR1.1 and 
SULTR1.2 responsible for the uptake of  SeO4

2−, compared 
to control plants grown without Se (Schiavon et al. 2015). 

A more-recent study of the hyperaccumulator C. violifolia 
revealed that eight SULTR genes are upregulated in high Se 
conditions compared to the control conditions, suggesting 
that these genes might contribute to elevated Se uptake and 
translocation in this species (Rao et al. 2020).

Once Se is transported into the cell, it can be assimilated 
into amino acids using S assimilation pathways (Fig. 5) 
(Schiavon et al. 2017; White et al. 2004; Sors et al. 2005; 
Bulteau and Chavatte 2015). Transcriptome studies have 
shown a high constitutive expression of these pathways in 
Se hyperaccumulators, specifically the enzyme ATPS that 
catalyses the reduction of  SeO4

2− to form APSe (Leustek 
1994; Sors et al. 2005; Pilon-Smits et al. 2009; Schiavon 
et al. 2015). The gene coding for the isoform ATPS2 that 
is localised in both the plastid and cytosol showed a higher 
expression in S. pinnata roots and leaves compared to 
non-accumulator Stanleya elata, implicating a molecular 
response related to hypertolerance and hyperaccumulation 
in S. pinnata (Schiavon et al. 2015; Wang et al. 2018). Sele-
nocysteine methyltransferase (SMT) that methylates SeCys 
to form MeSeCys has been found to be constitutively highly 
expressed in hyperaccumulators (Pickering et  al. 2003; 
Pilon-Smits 2012). Although SMT has been identified in 

Fig. 5  Schematic model of selenium uptake, transport, and metabo-
lism in Se hyperaccumulator plants and map of Se distribution in 
Neptunia amplexicaulis obtained with laboratory-based X-ray fluo-
rescence microscopy (Harvey et  al. 2020). Red circles indicate high 
constitutive gene expression. SULTR  sulfate/selenate transporter; 
Pi transporter phosphate inorganic transporter; NIP2.1 Aquaporin 

channel 2.1; AAP1 amino acid permease; LHT1 AAP1 homolog; 
APSe  denosine phosphoselenate; GSH glutathione; SeCT Seleno-
cystathionine; Se HCys Selenohomocysteine; SeCys Selenocysteine; 
SeMet Selenomethionine; MSe Methaneselenol; SMM Se-methyl sele-
nomethionine; DMSe Dimethylselenide; DMDSe Dimethydiselenide
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several Astragalus species including non-accumulators, its 
functional isoform has been found only in Se hyperaccumu-
lator plants (Neuhierl and Bӧck 1996; Neuhierl et al. 1999; 
Sors et al. 2009), explaining the high proportion of MeSeCys 
in these species (Neuhierl et al. 1999; Pickering et al. 2003; 
Sors et al. 2005; Freeman et al. 2006, 2010). Furthermore, 
the upregulation of antioxidant activity is thought to be a 
strategy to cope with oxidative damage caused by Se excess 
(Freeman et al. 2010). Moreover, the constitutive up-regula-
tion of genes associated with the biosynthesis of or response 
to phytohormones, e.g. methyl jasmonic acid, jasmonic acid, 
ethylene, and salicylic acid (SA) in S. pinnata shoots and 
roots suggests that the signalling of defence-related phyto-
hormones is tightly linked to Se metabolism (Freeman et al. 
2010).

A recent transcriptome analysis of the Se hyperaccumula-
tor C. violifolia revealed different metabolic pathways impli-
cated in the Se metabolism and detoxification in this spe-
cies (Rao et al. 2020). The involvement of adenylyl-sulphate 
kinases and a phosphoadenosine phosphosulfate reductase 
family protein was postulated as an alternative pathway to 
reduce  SeO4

2− to  SeO3
2− in C. violifolia, due to their up-

regulation in the plants grown in Se-enriched medium (Rao 
et al. 2020). Furthermore, homocysteine S-methyltransferase 
(HMT) that participates in the pathway to convert homo-
cysteine into methionine in plants was suggested as an ana-
logue of SMT due to their shared sequence similarity, thus 
HMT may also be involved in the methylation of SeCys (Lyi 
et al. 2007). The degradation of SeMet catalysed by Met-γ-
lyase (MGL), and the degradation of SeCys into elemental 
Se mediated by Cys desulfurase, are likely pathways that 
underpin mechanisms of tolerance in C. violifolia (Rao et al. 
2020).

Importantly, genome-scale techniques provide the basis 
for functional validation of candidate genes, e.g. via trans-
genic approaches to reconstruct a working model of Se 
metabolism in plants (Pilon-Smits et al. 1999; Sors et al. 
2005; LeDuc et al. 2006; Van Hoewyk 2013). The overex-
pression of the APSR enzyme in A. thaliana increased Se 
flux through the plant and  SeO4

2− reduction into organic 
forms (Sors et al. 2005); the overexpression of CpNifS 
increased tolerance and accumulation of Se (Van Hoewyk 
2013). Several genes coding for enzymes implicated in Se 
tolerance have been described in Brassica juncea, and the 
overexpression of ATPS1 in A. thaliana were shown to 
enhance the reduction rate of  SeO4

2− into organic forms 
(Pilon-Smits et al. 1999); increased accumulation of Se was 
observed when APSR and SMT were simultaneously over-
expressed (LeDuc et al. 2006). Additionally, the constitu-
tive expression of cystathionine-γ-synthase (CγS) from A. 

thaliana in B. juncea, was correlated to an increase in the Se 
volatilisation rate (Van Huysen et al. 2003). These studies 
support the role of APSR, ATPS, CpNifS and SMT in the 

mechanisms of tolerance and accumulation in hyperaccu-
mulators, and in genetically engineered non-accumulators.

Conclusions and outlook

Current research using microanalytical and molecular biol-
ogy techniques are enhancing our understanding of Se 
accumulation and tolerance in hyperaccumulator plants 
(Table 1). These plants exhibit enhanced Se uptake and 
translocation rates from the root to the shoot compared 
the non-accumulators, patterns associated with a constitu-
tively upregulation of genes coding for sulphate transport-
ers. Chemical speciation studies have revealed that C-Se-C 
compounds, such as MeSeCys, are the prevalent form of Se 
in hyperaccumulators, compared to inorganic Se forms in 
non-accumulator plants. This is supported by the consecu-
tively high expression of genes encoding for ATPS and SMT 
in hyperaccumulators plants which implicate an effective 
strategy to cope with Se toxicity. Studies on the distribution 
of Se in hyperaccumulator plants revealed Se sequestration 
in leaf margins, vacuoles and trichomes, a pattern distinct 
from that of other elements including S. Further research 
is needed to determine whether these strategies involve 
specific transporters and pathways for Se. The knowledge-
base gained from this body of work provides the basis for 
future research to enhance our understanding of the biology, 
biochemistry, ecophysiology, and evolution of Se hyperac-
cumulator plants. Insights from the patterns of Se distribu-
tion and chemical speciation coupled to genome-scale data 
from a more diverse range of hyperaccumulator plants will 
further enhance the model of molecular and evolutionary 
mechanisms that underpin Se metabolism and tolerance in 
plants. The integration of microanalytical and genome-scale 
molecular biology techniques provides a powerful platform 
to discover novel gene functions or metabolic pathways, 
as well as conserved (and unique) genome and gene fea-
tures, in distinct lineages of hyperaccumulator plants. For 
example, comparative studies of genome and transcriptome 
coupled with analysis of the chemical speciation in specific 
tissues will reveal the location where the key steps of Se 
metabolism are taking place in the plant. In addition, the 
largely unexplored role of root-associated microbiomes in 
Se accumulation, particularly in legume hyperaccumulators 
(such as Astragalus ssp. and N. amplexicaulis), can be fur-
ther investigated using metagenomic approaches, in which 
microbial diversity and their involvement in Se acquisition 
in the plant can be assessed based on metagenome-assem-
bled genomes and/or meta-transcriptome data. The advent 
of rapid non-destructive methods will enable the discovery 
of novel Se hyperaccumulator taxa via high-throughput 
of herbarium collections, and how Se hyperaccumulation 
impacts evolution and diversification of these taxa. Although 
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Table 1  Summary of techniques and main findings in most studied Se hyperaccumulators species

Approach Species

Astragalus bisulcatus Stanleya pinnata Cardamine violifolia Neptunia amplexicaulis

Se accumulation and distribu-
tion

ICP-AES Up to 13,685 µg Se  g−1 DW in 
leaves

(Sura-de Jong et al. 2015)

 > 4000 µg Se  g−1 DW in young 
leaves

(Galeas et al. 2006)

3700 µg Se  g−1 DW in leaves 
(Both et al. 2018)

13,600 µg Se  g−1 DW in young 
leaves

(Harvey et al. 2020)

SEM–EDS Selenium concentrated in 
trichomes in young leaves

(Freeman et al. 2006)

Selenium concentrated in 
vacuoles of epidermal cells 
(Freeman et al. 2010)

Unknown Selenium concentrated in veins 
of young leaves

(Harvey et al. 2020)

Laboratory XFM Unknown Unknown Unknown Highest concentration in seed 
pods, young leaves and tap root

(Harvey et al. 2020)

Synchrotron XFM Selenium concentrated in 
trichomes of leaf edges (Free-
man et al. 2006)

High concentration in leaf 
edges (Freeman et al. 2006)

Selenium concentrated in root 
and shoot apical meristems 
(Both et al. 2020)

Unknown

Chemical speciation XAS MeSeCys in trichomes (Free-
man et al. 2006)

MeSecys in globular structures 
in leaves (Freeman et al. 
2006)

Mainly organic Se with a C-Se-
C configuration in the shoot 
(Both et al. 2020)

MeSeCys and SeMet in similar 
proportions in young leaves 
(Harvey et al. 2020)

LC–MS MeSeCys and γ-glutamyl-
MeSeCys in trichomes (Free-
man et al. 2006)

MeSeCys (88%) and SeCT 
(12%) in leaf edges (Freeman 
et al. 2006)

Mainly selenolanthionine 
(Both et al. 2018)

MeSeCys and SeMet in the 
leaves (Harvey et al. 2020)

Molecular mechanisms Transcriptomic analyses High constitutive expres-
sion of SULTR transporters 
(Cabannes et al. 2011)

High constitutive expression 
of Se metabolism related 
enzymes (Freeman et al. 
2010)

Up-regulation of ASKs and a 
PAPS family protein (Rao 
et al. 2020)

Unknown
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competitive access to synchrotron facilities presents a limita-
tion for many researchers, the development of cutting-edge 
laboratory-based instrumentation for elemental mapping will 
partly meet this demand. Overall, the analytical and molecu-
lar approaches presented here will enhance our understand-
ing of Se metabolic pathways and ultimately support biofor-
tification strategies of edible crops to address Se deficiency 
in humans.
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