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Abstract

Main conclusion Micro-analytical techniques to untangle Se distribution and chemical speciation in plants coupled
with molecular biology analysis enable the deciphering of metabolic pathways responsible for Se tolerance and
accumulation.

Abstract Selenium (Se) is not essential for plants and is toxic at high concentrations. However, Se hyperaccumulator plants
have evolved strategies to both tolerate and accumulate > 1000 ug Se g=! DW in their living above-ground tissues. Given
the complexity of the biochemistry of Se, various approaches have been adopted to study Se metabolism in plants. These
include X-ray-based techniques for assessing distribution and chemical speciation of Se, and molecular biology techniques
to identify genes implicated in Se uptake, transport, and assimilation. This review presents these techniques, synthesises the
current state of knowledge on Se metabolism in plants, and highlights future directions for research into Se (hyper)accumu-
lation and tolerance. We conclude that powerful insights may be gained from coupling information on the distribution and
chemical speciation of Se to genome-scale studies to identify gene functions and molecular mechanisms that underpin Se
tolerance and accumulation in these ecologically and biotechnologically important plants species. The study of Se metabolism
is challenging and is a useful testbed for developing novel analytical approaches that are potentially more widely applicable
to the study of the regulation of a wide range of metal(loid)s in hyperaccumulator plants.
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Abbreviations

ATPS Adenosine triphosphate sulfurylase
APSR Adenosine 5'-phosphosulfate reductase
DMDSe  Dimethyldiselenide

DMSe Dimethylselenide

MeSeCys Methyl-SeCys

SeCys Selenocysteine

SeMet Selenomethionine

SMT Selenocysteine methyltransferase
SULTR Sulphur transporter

XANES  X-ray Absorption Near Edge Structure
XFM X-ray fluorescence microscopy

XRF X-ray fluorescence

Introduction

Selenium (Se) is a trace element that is essential for human
and animal nutrition (Schwarz and Foltz 1957). It is incorpo-
rated in selenoproteins that play important roles in redox bal-
ance maintenance, immune response, cognitive health, and
the formation of thyroid hormones (Kieliszek and Btazejak
2013; Weekley and Harris 2013). While inadequate intake of

@ Springer

Se causes Se deficiency, excess Se can cause a rare condition
called selenosis, mostly found in livestock from seleniferous
areas (Plant et al. 2003; WHO 2009; Winkel et al. 2012;
Malagoli et al. 2015; Wu et al. 2015; Rayman et al. 2018).
Although Se is not essential for plants, the element can be
absorbed and accumulated in plant tissues, which makes
them an important source of Se dietary for animals (Dumont
et al. 2006). Rare plants species called hyperaccumulators
can accumulate > 1000 ug Se g~! DW in their shoots whilst
non-accumulator plants typically have < 100 pg Se g~! DW
(Brown and Shrift 1982; Anderson 1993; Terry et al. 2000)
(Fig. 1). Since Se hyperaccumulator plants can attain Se to
high concentrations in their living shoot, these plants are
potential candidates for phytoextraction; a process in which
plants are harvested to remediate a polluted soil and/or for
their accumulated trace element, such as Se, and used in the
production of dietary supplements (Bafiuelos et al. 1997;
Haug et al. 2007).

Selenium in the environment is commonly found as
selenate (SeO42‘) and selenite (SeO32‘) (Sors et al. 2005).
Whereas SeO42_ is the main Se form in oxic soils, including
most cultivated soils (White 2016), SeO32_ is prevalent in
anaerobic soil environments (Mikkelsen et al. 1989; Fordyce
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Fig.1 Global selenium hyperaccumulators species (> 1000 pg g_1
DW foliar Se) with foliar concentration data from either nature or
experimental conditions growing on Se spiked soil (hydroponics data

2013). Plants mainly take up Se as SeO42_ through sulphate
transporters (SULTRs) (Zhang et al. 2014; White 2016).
Once inside the cell, SeO42_ can be reduced and incorpo-
rated into the amino acids selenocysteine (SeCys) and sele-
nomethionine (SeMet) using the pathway for sulphate reduc-
tion and assimilation (Sors et al. 2005; White 2018). The
sulphide bridge between two cystine (Cys) residues allows
the tertiary structure in proteins, therefore the replacement
of Cys for SeCys affects their structure and function (Brown
and Shrift 1982). Additionally, at an enzyme active site, the
replacement of Cys for SeCys can affect the affinity for the
substrate leading to changes in the activity (Van Hoewyk
2013). The first step in the assimilation is the activation
of Se042_ to adenosine 5’-phosphoselenate (APSe) by the
enzyme adenosine triphosphate sulfurylase (ATPS). APSe
is then reduced to Se032_ by adenosine 5'-phosphosulfate
reductase (APSR) (Sors et al. 2005). Selenite is reduced to
selenide most likely by glutathione or glutaredoxins (Hsieh
and Ganther 1975) which is incorporated into SeCys by
the Cysteine Synthase complex (CS) (Bogdanova and Hell
1997). Plants can convert SeCys into elemental selenium
(Se®) by the action of chloroplast-localised cysteine des-
ulfurase (CpNifS) (Pilon-Smits et al. 2002). In a differ-
ent pathway, SeCys can be converted via SeMet into Se-
methyl selenomethionine from where plants can volatilise
dimethyl selenide (DMSe) (Lewis and Johnson 1974). In a

Symphyotrichum ericoides (1378)
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China ™./
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excluded). Concentration and location data from White (2016), Both
et al. (2018) and Harvey et al. (2020)

third pathway described for hyperaccumulators and some
non-accumulators, SeCys is methylated by Selenocysteine
methyltransferase (SMT) to form methyl-SeCys (MeSeCys),
thus avoiding the incorporation into proteins. MeSeClys is
then converted into dimethyl diselenide (DMDSe), another
volatile compound (Evans et al. 1968). The methylation of
SeCys and the synthesis of DMDSe appear as the two main
strategies to cope with Se toxicity in Se hyperaccumulators
(Pilon-Smits and LeDuc 2009).

Research on the metabolism of Se in plants has been com-
plicated by the complexity of Se biochemistry and the vola-
tile properties of some Se compounds. The development of
new techniques has expanded the knowledge on Se metabo-
lism, accumulation, and tolerance in Se hyperaccumulator
species. Here, we review the state-of-the-art and current
approaches used to discover Se hyperaccumulator plants, to
assess the plant distribution and chemical speciation of Se,
and to elucidate the molecular mechanisms that underpin
Se accumulation and tolerance in plants. These approaches
range from microanalytical chemistry to molecular biology
covering advanced microscopy using X-ray fluorescence, as
well as genome-scale molecular techniques. The study of
Se metabolism is not only interesting, but extremely chal-
lenging and it, therefore, makes it a useful testbed for devel-
oping novel approaches that are applicable to the study of
a wide range of metal(loid)s in hyperaccumulator plants.
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This review concludes with suggested future directions for
research to improve the understanding of Se hyperaccumu-
lator plants.

Discovery of selenium (hyper)accumulation
in plants

Plants colonising seleniferous soils have evolved mecha-
nisms of tolerance and strategies to cope with Se toxicity
(Cappa et al. 2015). The first Se hyperaccumulator plants
were discovered in the 1930s when cattle disease (‘Blind
Staggers’ e.g. selenosis) was associated with ingesting of
high Se concentrations in some plant species in the Western
United States (Trelease et al. 1936). These plants occurred
on seleniferous soils derived from Cretaceous and Eocene
shales (Beath et al. 1934). Of the Se hyperaccumulator
plants subsequently discovered in the area, Astragalus rac-
emosus has been the species with the highest Se concen-
trations, attaining up to 14,920 ug Se g~' DW in its leaves
(Knight and Beath 1937). Although the genus Astragalus
(Fabaceae) contains the greatest number (25) of Se hyper-
accumulator taxa described to date, Se hyperaccumulation
occurs across 45 taxa in six different plant families (Cappa
and Pilon-Smits 2014; White 2016), including species from
the genera Stanleya (Brassicaceae), Oonopsis, Xylorhiza,
Symphyotrichum (Asteraceae), Cardamine (Brassicaceae),
and Neptunia (Fabaceae) (Knott and McCray 1959; Rosen-
feld and Beath 1964; El Mehdawi et al. 2014; White 2016).

The analytical determination of Se concentrations in
plant tissues include destructive (e.g. ashing or wet acid
digestion) and non-destructive (e.g. X-ray fluorescence
analysis) techniques (Gei et al. 2018; Purwadi et al. 2021).
Among the destructive techniques, wet acid digestion,
which requires dried and ground plant tissue to be reacted
with nitric acid at~ 125 °C (Shamberger 1983), is still the
most commonly used today. After digestion, Se can then
be measured in the resulting solution by Inductively cou-
pled plasma atomic emission spectroscopy (ICP-AES) or
ICP-mass spectroscopy (ICP-MS) (Reeves et al. 1996, 2007;
Fernando et al. 2009; van der Ent and Reeves 2015). In con-
trast, non-destructive techniques include handheld X-ray
fluorescence (XRF) for elemental screening of plant samples
(Fig. 2). This technique utilises high-energy X-rays to impact
a sample and analyses the spectrum of excited fluorescent
X-rays, from which Se and its relative concentration can be
determined (Purwadi et al. 2021). The main advantage is that
this can be done on herbarium specimen collections, and as
such a highly efficient botanical survey can be performed
without the high costs, and sometimes complex logistics,
of a field expedition (Gei et al. 2018). This approach has
already been successful in doubling the number of trace ele-
ment hyperaccumulator plant species known globally from
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projects undertaken in New Caledonia, Malaysia, Papua
New Guinea and the Neotropics (van der Ent et al. 2019a,
b; Do et al. 2020; Gei et al. 2020; Belloeil et al. 2021).
Although its potential to find new Se hyperaccumulators
has yet to be fully tested, handheld XRF instruments appear
as a time- and cost-effective tool for initial discoveries of Se
accumulation in plants from existing plant collections held
at herbaria (van der Ent et al. 2019a, b).

Whole plant and tissue/cellular distribution
of selenium

The Se metabolism includes the processes of Se accumula-
tion in different forms, storage of Se in different tissues,
and eventually (partial) volatilisation (Peterson and Butler
1962; Rosenfeld and Beath 1964; Evans et al. 1968; Lewis
and Johnson 1974). The biochemistry of Se affects not only
the plant itself but also its ecological partners (E1 Mehdawi
et al. 2011, 2015; Reynolds and Pilon-Smits 2018). Apart
from destructive analysis of excised parts of plants, there are
a number of in situ and/or in vivo techniques that can be uti-
lised to elucidate the distribution of Se within whole plants
and plant organs and cells. Autoradiography was one of the
first approaches with high sensitivity that was used to study
the ability of plants to uptake and translocate Se to differ-
ent tissues (Rosenfeld and Beath 1964). In autoradiography,
plants are grown in a substrate to which the radioisotope ">Se
is added and the emitted gamma rays are detected using ana-
logue film or digital detectors (Martin et al. 1971). Although
this approach allows the detection of only one element at
a time, it facilitates the examination of large samples and
hydrated plant tissues, thereby enabling the visualisation of
Se distribution in live Se hyperaccumulator plants (Kopittke
et al. 2020). Even though this method has been very useful in
studying Se hyperaccumulator plants in the past (Rosenfeld
and Eppson 1962; Martin et al. 1971; Goodson et al. 2003),
regulatory constraints of the use of radioisotopes nowa-
days have greatly diminished its use. The advent of X-ray
based techniques that work by detecting emitted fluorescent
X-rays, have gained popularity due to their high-resolution
and non-destructive nature and multi-element capability (van
der Ent et al. 2018; Kopittke et al. 2018; 2020). The use of
synchrotron-based X-ray Fluorescence Microscopy (XFM)
has been particularly powerful in the study of Se hyperac-
cumulator plants (Freeman et al. 2006, 2010). Similar to the
handheld XRF, this approach uses X-rays to impact a sample
and generates an elemental map with the distribution of the
elements of interest. A synchrotron is a very large particle
accelerator in which electrons are guided through a storage
ring to close the speed of light. At various positions in the
storage ring, which can be several km in diameter, brilliant
X-rays are produced by insertion devices which are guided to
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Fig.2 Handheld XRF used in the discovery and analysis of Se hyper-
accumulator plants in the field and herbarium. Scheme of X-rays
impacting a sample and fluorescent X-rays emitted and recorded by
the detector a, spectrum of excited fluorescent X-rays to calculate

so-called beam stations in which measurements take place.
In the beam station, a plant sample is mounted in a plastic
holder on a motion stage which moves the sample through
the intense micron-sized beam of X-rays with the fluorescent
X-rays recorded by a detector. This enables the construction
of a pixel array of elemental concentrations i.e. ‘elemental

relative Se concentration b, example of the use of handheld XRF in
herbarium and field samples ¢ and d, respectively. Schematic panel
on top adapted from Purwadi et al. (2021)

maps’. Uniquely, this method offers the ability to measure
plant specimens in hydrated (live) state without any sample
preparation and has high sensitivity (< 10 pg g~' level) and
high spatial resolution (< 1 um). In essence, a whole live
plant or any part of a plant organ or sectioned tissue can be
analysed “as is” with XFM. The instrumentation can also
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determine chemical speciation of selected elements in vivo
and even spatially using X-ray Absorption Spectroscopy
(XAS), see below for more details (Kopittke et al. 2018).
In contrast to analysis of whole plant organs probed at the
tissue/cellular-scale, the (cryo)sectioning of samples for
subcellular-level analysis is highly challenging due to the
risk of significant artefacts, although newer XFM computed
tomography (XFM-CT) methods enable to obtain 3D models
of elemental distribution in physically intact specimens (van
der Ent et al. 2018).

More recently, the development of laboratory-based
XFM has been demonstrated to be an alternative to

synchrotron-based XFM, although it cannot yet compete in
terms of spatial resolution or sensitivity and the ability to
undertake in situ chemical speciation analysis (Fig. 3) (van
der Ent et al. 2018). Recent technological developments have
brought capabilities of this method closer to synchrotron-
based XFM performance. Similarly, it can analyse speci-
mens in fresh/live state and it offers the ability to scan large
specimens (up to 30X 30 cm) at high resolution (down to
20 um) with good sensitivity (> 100 pg g~! level) (Fig. 4).
The local availability of laboratory-based XFM is particu-
larly attractive for assessing live plants subjected to Se dose
treatments (Harvey et al. 2020). Another X-ray based tool

Fig.3 Laboratory-based X-ray Fluorescence Microscopy (XFM) elemental maps of Se in Neptunia amplexicaulis. Panels: whole shoot a, leaf

section b, flower ¢ and seed pods d. Adapted from Harvey et al. (2020)
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Fig.4 Synchrotron-based X-ray Fluorescence Microscopy (XFM)
elemental maps. Panel a Ca, Se and K in a fresh/hydrated root cross
sections of Neptunia amplexicaulis; Panel b Ca, Se and Zn in fresh/
hydrated root tips of N. amplexicaulis; Panel ¢ Ca, Se and Br in a

that uses the emission of characteristic X-rays to detect Se
and other elements is Scanning Electron Microscopy with
Energy Dispersive Spectroscopy (SEM-EDS). Although
SEM-EDS only allows semi-quantification and has rela-
tively poor limits of detection, it can visualize very small
particles of inorganic elements e.g. Se in high resolution
(1-5 pm) in specific areas of interest, such as on leaf sur-
faces or in tissue cross-sections (Gei et al. 2018; van der Ent
et al. 2018).

The technologies described above have greatly expanded
our knowledge about Se distribution in Se hyperaccumula-
tors (see for example, Freeman et al. 2006, 2010; Both et al.
2020; Harvey et al. 2020). Selenium distribution within the
plant e.g. transport of different Se forms, depends on the
plant species, developmental phases, and environmental con-
ditions, such as Se concentrations in soil (Zhao et al. 2005;
Li et al. 2008; Renkema et al. 2012). The highest Se concen-
tration has generally been found in reproductive organs such
as flowers, fruits, and seeds (Freeman et al. 2006; Quinn
et al. 2011; Valdez Barillas et al. 2012; Harvey et al. 2020).
This pattern seems to be a characteristic of Se hyperac-
cumulators because non-accumulators tend to accumulate
more Se in the roots (White et al. 2007; Cappa et al. 2014).
Another characteristic of Se hyperaccumulators is the high

fresh leaf of N. amplexicaulis; and Panel d Ca, Se and K in a fresh/
hydrated whole shoot of Neptunia gracilis. Previously unpublished
data (A. van der Ent) obtained at the X-ray Fluorescence Microscopy
beamline of the Australian Synchrotron (part of ANSTO), Australia

accumulation of Se in young leaves compared to old leaves
(Freeman et al. 2006, 2010). Stems and roots have also been
identified as Se storage tissues, although the pattern differs
among Se hyperaccumulator species. Apart from reproduc-
tive organs, the stem is the tissue with the highest Se con-
centration found in A. bisulcatus, followed by young leaves,
whereas the roots have the lowest Se concentration (Valdez-
Barillas et al. 2012). Additionally, Neptunia amplexicaulis
accumulates higher Se concentration on average in the seed
pods, followed by the young leaves and taproot (Harvey et al.
2020). The distribution pattern in hyperaccumulators, par-
ticularly in young leaves and reproductive organs, indicates
that Se is transported through the phloem to sink organs
during leaf maturation; this pattern has also been associ-
ated with defence against herbivore and/or pathogen attacks
(Quinn et al. 2010).

When the spatial distribution of Se in leaves was inves-
tigated, the Se hyperaccumulators A. bisulcatus and Stan-
leya pinnata accumulated Se mostly in the leaf periphery.
However, while in young leaves of A. bisulcatus Se was
predominantly found in their trichomes, in young leaves of
S. pinnata Se was localised in the epidermal cells near the
leaf edges, in structures similar to vacuoles (Freeman et al.
2010). As observed in S. pinnata, low Se accumulation in
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trichomes has also been found in N. amplexicaulis, although
with high Se concentration in the vascular bundles (phloem)
rather than in the leaf lamina (Harvey et al. 2020). The dis-
tribution of Se in the leaf edge of Se hyperaccumulators
suggests a specific Se sequestration into these tissues, since
this pattern has not been observed for other elements (Free-
man et al. 2006). Furthermore, the localization of Se in the
leaf periphery may be a distinguishing characteristic for Se
hyperaccumulators, as this pattern is not observed in the
non-accumulators B. juncea and Arabidopsis thaliana, for
which Se is distributed in the vascular tissues and mesophyll
cells (Van Hoewyk et al. 2005).

Unravelling chemical speciation of selenium
in plants

Establishing the distribution of various Se chemical forms
within a plant is a powerful method to uncover the pathways
implicated in Se metabolism and the molecular mechanisms
that underpin tolerance to Se toxicity (Freeman et al. 2006,
2010; Valdez-Barillas et al. 2012; Both et al. 2020). The
chemical speciation of Se in plants can be analysed using
synchrotron-based X-ray Absorption Spectroscopy (XAS),
a non-destructive method that utilises a synchrotron X-ray
beam to impact a sample which generates an X-ray absorp-
tion spectrum specific to the target element and the binding
energies of its electrons (Abraham et al. 2020). The XAS
spectrum can be divided into two main regions: the X-ray
Absorption Near Edge Structure (XANES) and the Extended
X-ray Absorption Fine Structure (EXAFS) energy regions.
The XANES energy region of the generated spectrum indi-
cates the coordination environment of the Se atom, and
therefore can discriminate among Se species by revealing
different spectra characteristic for the chemical forms of
Se (Weekley et al. 2013; Weekley and Harris 2013). How-
ever, not all species can be identified by XANES, as several
organic amino acids of Se (including SeMet, SeCys and
MeSeCys) possess the same C-Se-C compound structure
and generate essentially identical spectra; in most cases
XANES is useful in distinguishing between inorganic and
organic compounds (Weekley et al. 2013). Details of the dis-
tance, number and type of atoms around the central absorb-
ing atom can be obtained through EXAFS analysis and has
been able to identify the chemical state of Se species such
as Sel”, Se-Se and Se-S compounds (Wiramanaden et al.
2010; Weekley et al. 2014; Abraham et al. 2020). Although
XAS analysis provides insight into the chemical speciation
between organic and inorganic forms of Se, the most popu-
lar tool to investigate Se speciation is Liquid Chromatogra-
phy coupled to Mass Spectrometry (LC-MS), an analytical
technique based on the separation of target compound based
on their size, followed by mass-spectrometry to separate
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co-elutants according to mass-to-charge (m/z) ratio (Kata-
jamaa and OresSic¢ 2005; Xiao et al. 2012). Although LC-MS
has allowed the identification of the different organic forms
of Se, methods based on chromatography require extensive
sample preparation that may affect speciation for which Se
compounds are notoriously sensitive (Weekley et al. 2013).

The pathway of Se within hyperaccumulators ends with
the volatilisation of DMSe and DMDSe, as part of the mech-
anism to remove Se and prevent toxicity (Draize et al. 1935;
Lewis et al. 1966; Evans et al. 1968; Terry et al. 1992; Zayed
et al. 1998; Terry et al. 2000; Van Huysen et al. 2003). To
measure the rate of DMSe and DMDSe production, volatile
compounds are usually collected in a trap (e.g. a bottle con-
taining an alkaline solution) from a growth chamber where
a plant is grown in Se-dosed nutrient solution. Selenium
content is analysed using Atomic Absorption Spectroscopy
(AAS), High Performance Liquid Chromatography (HPLC)
coupled to Gas Chromatography (GC), or GC-MS, and, if
3Se isotope is applied to the nutrient solution, scintillation
detectors can be used to measure radioactivity and hence Se
concentration.

Chemical speciation mapping of Se has been undertaken
in A. bisulcatus and S. pinnata (Pickering et al. 2000; Free-
man et al. 2006; Valdez-Barillas et al. 2012), and more
recently in N. amplexicaulis (Harvey, unpublished) and
Cardamine violifolia (Both et al. 2020). These studies have
shown that the Se chemical speciation varies among organs
and depends on the habitat where the plant was grown due
to the influence of microbial interactions on the forms of
Se within the plant (Valdez-Barillas et al. 2012). The main
forms of Se are predominantly organo-seleno compounds,
such as MeSeCys; y-glutamyl-MeSeCys (A. bisulcatus) or
selenocystathionine (SeCT; S. pinnata) in young leaves
(Freeman et al. 2006, 2010). LC-MS analyses of A. bisul-
catus tissues collected from its natural seleniferous habi-
tat revealed that 50% of the Se contained in the stem was
organic Se (C-Se-C), with the remainder elemental Se and
SeO32_, whilst flowers accumulated primarily C-Se-C (90%)
with small fractions of Se® and SeO;?"(Valdez-Barillas
et al. 2012). A high proportion of organic Se in hyper-
accumulator plants suggests an active sulphate/selenite
assimilation pathway to convert SeO,>" into organo-seleno
compounds (Schiavon and Pilon-Smits 2017). Further Se
chemical speciation studies on A. bisulcatus and S. pin-
nata growing in its natural habitat showed that up to 35%
of Se was in the form of elemental Se (Se”) which has been
attributed to microbial interactions with Se-reducing bac-
teria (Lindblom et al. 2013). XANES analyses on young
N. amplexicaulis revealed that MeSeCys and SeMet occur
in similar proportions in young leaves, while selenodiglu-
tathione (Se(GSH),) was the main Se chemical species in the
root (40%) (Harvey et al. 2020). Studies performed on the
Se hyperaccumulator C. violifolia and the non-accumulator
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Cardamine pratensis revealed that the main chemical form
of Se in the hyperaccumulator were C-Se-C forms, whilst the
non-accumulator contained more SeO42_ (Both et al. 2020).
Similar observations have been reported when comparing A.
bisulcatus and S. pinnata to related non-accumulator spe-
cies, with the non-accumulator plants containing a higher
proportion of inorganic of Se (Freeman et al. 2006; Alford
et al. 2014).

In Se hyperaccumulator plants, the observed organic
forms of Se in their young leaves and the inorganic forms
(Se042_) in old leaves suggest a translocation from old
leaves via the phloem in the form of MeSeCys (Freeman
et al. 2006). Further identification of Se chemical species
have been performed in leaves of Se hyperaccumulators and
XANES and LC-MS analysis of A. bisulcatus trichomes
revealed a high proportion of Se in organic form, specifi-
cally MeSeCys and y-glutamyl-MeSeCys (Freeman et al.
2006). This suggests that trichomes in this species were a
site for sequestration and storage, or for the synthesis of
organo-seleno compounds (Freeman et al. 2006). Apart from
trichomes, the presence of SeO42_, SeO32_, MeSeCys, and
y-glutamyl-MeSeCys is suggestive of SeO,*~ reduction and
for incorporation of Se into organo-seleno compounds in
young leaves (Freeman et al. 2006). Around the edges of S.
pinnata young leaves, Se was present as MeSeCys (88%) and
SeCT (12%) (Freeman et al. 2006). Selenium chemical spe-
ciation has also been investigated in seeds of A. bisulcatus
and S. pinnata, where XANES analysis has identified SeCys
in S. pinnata, and MeSeCys and y-glutamyl-MeSeCys in A.
bisulcatus (Freeman et al. 2012).

Volatilisation experiments to measure the rate of DMDSe
or DMSe production have shown that hyperaccumulator
plants are able to eliminate Se through expelling it in gase-
ous form through the leaves (Zayed et al. 1998; de Souza
et al. 2000; Terry et al. 1992, 2000;). The first findings of
Se volatilization were reported in A. bisulcatus (Draize et al.
1935). Further studies on the Se hyperaccumulator Astra-
galus racemosus and the non-accumulator Medicago sativa
revealed that the synthesis of volatile Se compounds is not
restricted to Se hyperaccumulator species alone (Lewis
et al. 1966). In this case, both species were able to produce
DMDSe or DMSe even at low Se doses, and the increased
rates of volatilisation are correlated to Se concentrations in
plant tissues and the chemical form of Se that was applied
(Lewis et al. 1966; Terry et al. 1992; Zayed et al. 1998).
Additional studies have shown that Se volatilisation occurs
in the leaves mainly as DMSe in crop species (Lewis 1974;
de Souza et al. 2000) and as DMDSe in Se hyperaccumula-
tor plants (Evans et al. 1968). Studies aimed to decipher
the metabolic pathways of Se volatilisation revealed an
increased volatilisation rate in transgenic B. juncea that
overexpressed cystathionine-y-synthase (CGS) (Van Huysen
et al. 2003).

Genome-scale approaches for studying
selenium metabolism

The molecular biology underlying Se acquisition, transport
and metabolism can be investigated using genome-scale
approaches (Corso et al. 2020). However, genome-scale
data remain scarcely available from Se hyperaccumulator
plants (see Huang et al. 2021). Given the diversity of the
taxa involved, generation of genome data requires de novo
assembly and ab initio gene prediction. The continuing
advancement and increased affordability of high-through-
put sequencing technologies is enabling data generation at
lower costs and at scale previously unimaginable. Short-read
sequencing data (e.g. from Illumina) that are more cost-effi-
cient can be combined with long-read sequencing data (e.g.
from PacBio and Oxford Nanopore) that are better in resolv-
ing repetitive sequence regions in a hybrid approach to gen-
erate a more-contiguous assembly (Zimin et al. 2017; Anti-
pov et al. 2016). Especially if such assembled whole-genome
sequence is annotated with the location of (predicted) genes,
based on whole transcriptome sequences, it can be a very
valuable genetic tool for comparative genome analysis of
Se hyperaccumulators and closely related non-accumula-
tors. Comparison of whole-genome sequences elucidates
conservation and loss of (micro)synteny, providing clues
on genome evolution underlying phenotypic differences
between species (Hammond et al. 2006; Weber et al. 2006).
These data also provide valuable information on small
sequence variations e.g. single nucleotide polymorphism,
and insertion-deletion, to be used as molecular markers, as
well as larger structural variations e.g. gene copy-number
variations, and large chromosomal rearrangements contrib-
uting to phylogenetic divergence and potential acquisition
of new traits (Talke et al. 2006; van de Mortel et al. 2006).
Full-length transcripts, to be used in genome annotation and
comparative transcriptomics, can be achieved using long-
read sequencing technology, e.g. through the reconstruction
of transcript isoforms (Gao et al. 2019). Transcriptome,
proteome and/or metabolome profiles from tissues grown
in distinct conditions or treatments enable comprehensive
assessments of differentially expressed biomolecules (i.e.
genes, proteins, or metabolites) and their functions in meta-
bolic pathways.

The use of genome-scale approaches is enhancing our
understanding of the molecular responses and mechanisms
that underpin Se metabolism in the hyperaccumulators. In
Cardamine enshiensis, the analyses of genome, transcrip-
tome and metabolome data revealed a whole-genome dupli-
cation event and other segmental duplications, an enrich-
ment of functions implicated in Se metabolism pathways
among the duplicated genes, and changes in the patterns of
chromatin interactions in response to Se treatment (Huang
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Fig.5 Schematic model of selenium uptake, transport, and metabo-
lism in Se hyperaccumulator plants and map of Se distribution in
Neptunia amplexicaulis obtained with laboratory-based X-ray fluo-
rescence microscopy (Harvey et al. 2020). Red circles indicate high
constitutive gene expression. SULTR sulfate/selenate transporter;
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et al. 2021). In an early transcriptome analysis (Freeman
et al. 2010), genes coding for distinct SULTRs that are impli-
cated in uptake and transport of sulphate and SeO,>~, were
found to be constitutively highly expressed in roots and
shoots of the Se hyperaccumulator S. pinnata, in contrast
to the secondary accumulator Stanleya albescens. This is
considered an advantage for Se and S uptake and has been
related to an increase in Se or S concentration in the plant
(Cabannes et al. 2011; El Mehdawi et al. 2018; Wang et al.
2018). Furthermore, hyperaccumulators and non-accumu-
lators from the genus Astragalus have been shown to have
a high constitutive expression of SULTRs, regardless of
the Se or S concentration in the substrate (Cabannes et al.
2011). The concentrations of Se and S in the substrate do,
however, often have an impact on the regulation of SUL-
TRs, indicating that high constitutive expression is not the
rule for all hyperaccumulator plants, and not for all SULTRs
(White et al. 2004; Cabannes et al. 2011; Schiavon et al.
2015; El Mehdawi et al. 2018). For example, studies of
S. pinnata exposed to 20 uM of SeO,>~ showed a reduc-
tion in the expression of genes encoding SULTRI.1 and
SULTR]I.2 responsible for the uptake of Se0,*~, compared
to control plants grown without Se (Schiavon et al. 2015).
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A more-recent study of the hyperaccumulator C. violifolia
revealed that eight SULTR genes are upregulated in high Se
conditions compared to the control conditions, suggesting
that these genes might contribute to elevated Se uptake and
translocation in this species (Rao et al. 2020).

Once Se is transported into the cell, it can be assimilated
into amino acids using S assimilation pathways (Fig. 5)
(Schiavon et al. 2017; White et al. 2004; Sors et al. 2005;
Bulteau and Chavatte 2015). Transcriptome studies have
shown a high constitutive expression of these pathways in
Se hyperaccumulators, specifically the enzyme ATPS that
catalyses the reduction of SeO,>~ to form APSe (Leustek
1994; Sors et al. 2005; Pilon-Smits et al. 2009; Schiavon
et al. 2015). The gene coding for the isoform ATPS?2 that
is localised in both the plastid and cytosol showed a higher
expression in S. pinnata roots and leaves compared to
non-accumulator Stanleya elata, implicating a molecular
response related to hypertolerance and hyperaccumulation
in S. pinnata (Schiavon et al. 2015; Wang et al. 2018). Sele-
nocysteine methyltransferase (SMT) that methylates SeCys
to form MeSeCys has been found to be constitutively highly
expressed in hyperaccumulators (Pickering et al. 2003;
Pilon-Smits 2012). Although SMT has been identified in
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several Astragalus species including non-accumulators, its
functional isoform has been found only in Se hyperaccumu-
lator plants (Neuhierl and Bock 1996; Neuhierl et al. 1999;
Sors et al. 2009), explaining the high proportion of MeSeCys
in these species (Neuhierl et al. 1999; Pickering et al. 2003;
Sors et al. 2005; Freeman et al. 2006, 2010). Furthermore,
the upregulation of antioxidant activity is thought to be a
strategy to cope with oxidative damage caused by Se excess
(Freeman et al. 2010). Moreover, the constitutive up-regula-
tion of genes associated with the biosynthesis of or response
to phytohormones, e.g. methyl jasmonic acid, jasmonic acid,
ethylene, and salicylic acid (SA) in S. pinnata shoots and
roots suggests that the signalling of defence-related phyto-
hormones is tightly linked to Se metabolism (Freeman et al.
2010).

A recent transcriptome analysis of the Se hyperaccumula-
tor C. violifolia revealed different metabolic pathways impli-
cated in the Se metabolism and detoxification in this spe-
cies (Rao et al. 2020). The involvement of adenylyl-sulphate
kinases and a phosphoadenosine phosphosulfate reductase
family protein was postulated as an alternative pathway to
reduce Se0,* to Se032_ in C. violifolia, due to their up-
regulation in the plants grown in Se-enriched medium (Rao
et al. 2020). Furthermore, homocysteine S-methyltransferase
(HMT) that participates in the pathway to convert homo-
cysteine into methionine in plants was suggested as an ana-
logue of SMT due to their shared sequence similarity, thus
HMT may also be involved in the methylation of SeCys (Lyi
et al. 2007). The degradation of SeMet catalysed by Met-y-
lyase (MGL), and the degradation of SeCys into elemental
Se mediated by Cys desulfurase, are likely pathways that
underpin mechanisms of tolerance in C. violifolia (Rao et al.
2020).

Importantly, genome-scale techniques provide the basis
for functional validation of candidate genes, e.g. via trans-
genic approaches to reconstruct a working model of Se
metabolism in plants (Pilon-Smits et al. 1999; Sors et al.
2005; LeDuc et al. 2006; Van Hoewyk 2013). The overex-
pression of the APSR enzyme in A. thaliana increased Se
flux through the plant and SeO,>" reduction into organic
forms (Sors et al. 2005); the overexpression of CpNifS
increased tolerance and accumulation of Se (Van Hoewyk
2013). Several genes coding for enzymes implicated in Se
tolerance have been described in Brassica juncea, and the
overexpression of ATPSI in A. thaliana were shown to
enhance the reduction rate of Se0,*” into organic forms
(Pilon-Smits et al. 1999); increased accumulation of Se was
observed when APSR and SMT were simultaneously over-
expressed (LeDuc et al. 2006). Additionally, the constitu-
tive expression of cystathionine-y-synthase (CyS) from A.
thaliana in B. juncea, was correlated to an increase in the Se
volatilisation rate (Van Huysen et al. 2003). These studies
support the role of APSR, ATPS, CpNifS and SMT in the

mechanisms of tolerance and accumulation in hyperaccu-
mulators, and in genetically engineered non-accumulators.

Conclusions and outlook

Current research using microanalytical and molecular biol-
ogy techniques are enhancing our understanding of Se
accumulation and tolerance in hyperaccumulator plants
(Table 1). These plants exhibit enhanced Se uptake and
translocation rates from the root to the shoot compared
the non-accumulators, patterns associated with a constitu-
tively upregulation of genes coding for sulphate transport-
ers. Chemical speciation studies have revealed that C-Se-C
compounds, such as MeSeClys, are the prevalent form of Se
in hyperaccumulators, compared to inorganic Se forms in
non-accumulator plants. This is supported by the consecu-
tively high expression of genes encoding for ATPS and SMT
in hyperaccumulators plants which implicate an effective
strategy to cope with Se toxicity. Studies on the distribution
of Se in hyperaccumulator plants revealed Se sequestration
in leaf margins, vacuoles and trichomes, a pattern distinct
from that of other elements including S. Further research
is needed to determine whether these strategies involve
specific transporters and pathways for Se. The knowledge-
base gained from this body of work provides the basis for
future research to enhance our understanding of the biology,
biochemistry, ecophysiology, and evolution of Se hyperac-
cumulator plants. Insights from the patterns of Se distribu-
tion and chemical speciation coupled to genome-scale data
from a more diverse range of hyperaccumulator plants will
further enhance the model of molecular and evolutionary
mechanisms that underpin Se metabolism and tolerance in
plants. The integration of microanalytical and genome-scale
molecular biology techniques provides a powerful platform
to discover novel gene functions or metabolic pathways,
as well as conserved (and unique) genome and gene fea-
tures, in distinct lineages of hyperaccumulator plants. For
example, comparative studies of genome and transcriptome
coupled with analysis of the chemical speciation in specific
tissues will reveal the location where the key steps of Se
metabolism are taking place in the plant. In addition, the
largely unexplored role of root-associated microbiomes in
Se accumulation, particularly in legume hyperaccumulators
(such as Astragalus ssp. and N. amplexicaulis), can be fur-
ther investigated using metagenomic approaches, in which
microbial diversity and their involvement in Se acquisition
in the plant can be assessed based on metagenome-assem-
bled genomes and/or meta-transcriptome data. The advent
of rapid non-destructive methods will enable the discovery
of novel Se hyperaccumulator taxa via high-throughput
of herbarium collections, and how Se hyperaccumulation
impacts evolution and diversification of these taxa. Although
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Table 1 Summary of techniques and main findings in most studied Se hyperaccumulators species

Approach Species
Astragalus bisulcatus Stanleya pinnata Cardamine violifolia Neptunia amplexicaulis
Se accumulation and distribu-  ICP-AES Upto 13,685 ug Se g™! DWin  >4000 ug Se g~! DW in young 3700 pg Se g~! DW in leaves 13,600 ug Se g~! DW in young
tion leaves leaves (Both et al. 2018) leaves
(Sura-de Jong et al. 2015) (Galeas et al. 2006) (Harvey et al. 2020)
SEM-EDS Selenium concentrated in Selenium concentrated in Unknown Selenium concentrated in veins
trichomes in young leaves vacuoles of epidermal cells of young leaves
(Freeman et al. 2006) (Freeman et al. 2010) (Harvey et al. 2020)
Laboratory XFM Unknown Unknown Unknown Highest concentration in seed
pods, young leaves and tap root
(Harvey et al. 2020)
Synchrotron XFM Selenium concentrated in High concentration in leaf Selenium concentrated in root  Unknown
trichomes of leaf edges (Free-  edges (Freeman et al. 2006) and shoot apical meristems
man et al. 2006) (Both et al. 2020)
Chemical speciation XAS MeSeCys in trichomes (Free- ~ MeSecys in globular structures Mainly organic Se with a C-Se- MeSeCys and SeMet in similar
man et al. 2006) in leaves (Freeman et al. C configuration in the shoot proportions in young leaves
2006) (Both et al. 2020) (Harvey et al. 2020)
LC-MS MeSeCys and y-glutamyl- MeSeCys (88%) and SeCT Mainly selenolanthionine MeSeCys and SeMet in the

Molecular mechanisms

MeSeClys in trichomes (Free-
man et al. 2006)

Transcriptomic analyses High constitutive expres-

sion of SULTR transporters
(Cabannes et al. 2011)

(12%) in leaf edges (Freeman
et al. 2006)

High constitutive expression
of Se metabolism related
enzymes (Freeman et al.
2010)

(Both et al. 2018)

Up-regulation of ASKs and a
PAPS family protein (Rao
et al. 2020)

leaves (Harvey et al. 2020)

Unknown

[LjozLabed €

T:LST (€207) @weld
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competitive access to synchrotron facilities presents a limita-
tion for many researchers, the development of cutting-edge
laboratory-based instrumentation for elemental mapping will
partly meet this demand. Overall, the analytical and molecu-
lar approaches presented here will enhance our understand-
ing of Se metabolic pathways and ultimately support biofor-
tification strategies of edible crops to address Se deficiency
in humans.
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