

1 **Diverse 3D cellular patterns underlie the development of *Cardamine***
2 ***hirsuta* and *Arabidopsis thaliana* ovules**

3

4 Tejasvinee Atul Mody¹, Alexander Rolle², Nico Stucki^{2,3}, Fabian Roll², Ulrich
5 Bauer^{2,3}, and Kay Schneitz^{1*}

6

7 ¹Plant Developmental Biology, TUM School of Life Sciences, Technical University
8 of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany

9 ²Applied and Computational Topology, TUM School of Computation, Information
10 and Technology, Technical University of Munich, Boltzmannstr. 3, 85747 Garching,
11 Germany

12 ³Munich Data Science Institute, Technical University of Munich, Walther-von-Dyck
13 Str. 10, 85747 Garching, Germany

14

15 *Corresponding author

16 Plant Developmental Biology

17 TUM School of Life Sciences

18 Technical University of Munich

19 Emil-Ramann-Str. 4

20 D-85354 Freising

21 Email: kay.schneitz@tum.de

22 Tel: +49 8161 715438

23

24 ORCID-IDs: Tejasvinee Mody: 0000-0002-8849-0088. Kay Schneitz 0000-0001-
25 6688-0539

26

27 Running title: 3D digital Cardamine ovule atlas

28

29 Key words: 3D digital organ, ovule, Cardamine, *Arabidopsis*, morphogenesis, evo-
30 devo, topology

31

32 Summary Statement

33 Quantitative morphometric comparison of 3D digital ovules at full cellular resolution
34 reveals diversity in internal 3D cellular architectures between similarly shaped ovules
35 of *Cardamine hirsuta* and *Arabidopsis thaliana*.

36

37

38

39

40

41 **Abstract**

42 A fundamental question in biology is how organ morphogenesis comes about. The
43 ovules of *Arabidopsis thaliana* have been established as a successful model to study
44 numerous aspects of tissue morphogenesis; however, little is known regarding the
45 relative contributions and dynamics of differential tissue and cellular growth and
46 architecture in establishing ovule morphogenesis in different species. To address this
47 issue, we generated a 3D digital atlas of *Cardamine hirsuta* ovule development with
48 full cellular resolution. We combined quantitative comparative morphometrics and
49 topological analysis to explore similarities and differences in the 3D cellular
50 architectures underlying ovule development of the two species. We discovered that
51 they show diversity in the way the three radial cell layers of the primordium
52 contribute to its growth, in the formation of a new cell layer in the inner integument
53 and, in certain cases, in the topological properties of the 3D cell architectures of
54 homologous tissues despite their similar shape. Our work demonstrates the power of
55 comparative 3D cellular morphometry and the importance of internal tissues and their
56 cellular architecture in organ morphogenesis.

57

58

59

60 **Introduction**

61 Organisms exhibit a dazzling variety of species-specific sizes and shapes. Despite
62 impressive progress, how an organ achieves its size and shape remains a major
63 unresolved biological question. The last decades witnessed astounding advances in the
64 understanding of the molecular mechanisms underlying pattern formation and
65 morphogenesis. Much less well known, however, are the complex cellular behaviors
66 that often lead to emergent tissue properties and ultimately to the functional
67 architectures that make up a tissue or organ, although impressive progress has been
68 made in dissecting the cellular basis of morphogenesis in, for example, epithelial
69 tissues (Gómez-Gálvez et al., 2021; Lemke and Nelson, 2021; Sozen et al., 2022).

70

71 Plants are uniquely suited to study the cellular basis of tissue morphogenesis. Plant
72 species are extremely diverse in size and shape, but are composed of relatively few
73 cell types and tissues made up of immobile cells (Lyndon, 1990). To understand the
74 differences in the 3D cellular architectures that underlie differences in morphogenesis,
75 it is paramount to decipher the 3D cellular architecture of tissues at different
76 developmental stages to enable quantitative 3D single cell analysis also in internal
77 tissues. Advances in 3D confocal imaging of fixed, cleared, and stained organs, along
78 with the development of open-source software for image processing, including 3D
79 segmentation and mesh generation, have enabled 3D analysis at the cellular, tissue,
80 and organ levels (Barbier de Reuille et al., 2015; Kurihara et al., 2015; Musielak et al.,
81 2015; Strauss et al., 2019; Strauss et al., 2022; Tofanelli et al., 2019; Truernit et al.,
82 2008). These advances allowed digital single cell analyses of organs with regular
83 internal cellular architecture and simple shape, including early embryo, hypocotyl, or
84 root (Bassel et al., 2014; Duran-Nebreda et al., 2023; Fridman et al., 2021; Graeff et

85 al., 2021; Hernandez-Lagana et al., 2021; Lora et al., 2017; Montenegro-Johnson et
86 al., 2015; Ouedraogo et al., 2023; Pasternak et al., 2017; Schmidt et al., 2014; Vijayan
87 et al., 2021; Yoshida et al., 2014).

88

89 Most of these 3D digital single cell analyses have focused on organs of *Arabidopsis*
90 *thaliana* (*A. thaliana*). Comparative studies can explore the extent of cellular diversity
91 underlying morphogenesis across species and possibly result in the emergence of a
92 finite set of formal rules that enable cell collectives to organize into functional
93 architectures. An evolutionary developmental (evo-devo) approach to understanding
94 organogenesis in plants has been tremendously successful in the study of the genetic
95 and molecular basis of floral organ identity, where comparative approaches have
96 revealed much about the similarities and differences in this process across higher
97 plants (Causier et al., 2010; Chanderbali et al., 2016; Coen and Meyerowitz, 1991;
98 Kramer, 2019; Rümpfer and Theißen, 2019). A similarly deep understanding of the
99 3D cellular basis of morphogenesis in different plants, especially with respect to
100 internal tissues, is presently not available and is urgently needed. Thus, there is an
101 evident requirement to extend quantitative 3D single cell studies of organogenesis to
102 other species.

103

104 *Cardamine hirsuta* (*C. hirsuta*) represents an exciting model system for comparative
105 analysis of plant morphogenesis (Hay and Tsiantis, 2016; Hay et al., 2014). The
106 species displays abundant morphological diversity compared to its relatively recently
107 diverged and reproductively isolated relative *A. thaliana*, providing a solid basis for
108 investigating the evolutionary and ecological basis of morphological diversity. For
109 example, it has been extensively used to investigate the genetic and cellular basis of

110 the different leaf morphologies of the two species (Hay and Tsiantis, 2006;
111 Kierzkowski et al., 2019; Vlad et al., 2014).

112

113 Ovules are elaborate-shaped organs that play a central role in female sexual
114 reproduction in higher plants. At maturity, they carry the embryo sac with the actual
115 egg cell enclosed by one or two integuments that protect the embryo sac and later
116 develop into the seed coat. Several characteristics underlie ovule diversity among
117 plant species, including ovule size, number of integuments, and degree of curvature
118 (Endress, 2011). Ovule morphology has been extensively studied across a broad
119 variety of plant species (Endress, 2011; Gasser and Skinner, 2019). However, a
120 comprehensive quantitative understanding of the 3D cellular architecture underlying
121 the differences in ovule morphology between species is lacking.

122

123 Ovules of *A. thaliana* along with their exciting biology, are an established successful
124 model system to study different aspects of tissue morphogenesis (Chaudhary et al.,
125 2018; Cucinotta et al., 2014; Gasser and Skinner, 2019; Nakajima, 2018). Recently, a
126 reference 3D digital atlas of *A. thaliana* ovule development with full cellular
127 resolution was established (Vijayan et al., 2021). The atlas enabled quantitative
128 analysis of 3D cell and tissue growth patterns and dynamics even for an organ with an
129 intricate internal cellular architecture and complex overall shape. It provides an
130 excellent reference for a detailed 3D comparative analysis of ovule development. In
131 terms of ovule morphology *C. hirsuta* and *A. thaliana* show differences in the shape
132 of mature pre-fertilization ovules, as well as in ovule size, seed weight, size, and
133 shape (Hay et al., 2014; Neumann and Hay, 2020). The general differences in ovule
134 and seed architecture between *C. hirsuta* and *A. thaliana* suggested that a detailed

135 comparative cellular analysis of ovule development would provide new insights into
136 the 3D cellular architectures and the resulting morphogenetic differences of the ovules
137 of the two species.

138

139 Here, we present a deep imaging-based reference 3D digital atlas of *C. hirsuta* ovule
140 development with full cellular resolution. We further combined a comparative
141 morphometric evo-devo approach with mathematical analysis of the topology of the
142 3D cellular architecture. Using this interdisciplinary strategy we identified and
143 quantified similarities and differences in tissue growth and morphology and
144 elucidated the role of the internal cellular architecture of tissues in shaping
145 morphological differences between ovules of the two plant species.

146

147 **Results**

148 **Generation of a reference 3D digital atlas of *C. hirsuta* ovule development with 149 cellular resolution**

150 To generate a comprehensive 3D digital atlas of *C. hirsuta* ovule development we
151 followed the procedure outlined in (Tofanelli et al., 2019; Vijayan et al., 2021) and in
152 the Materials and Methods section. In short, we performed 3D confocal laser scanning
153 microscopy of fixed, cleared (Kurihara et al., 2015), and stained ovules to obtain z-
154 stacks of optical sections of ovules of all stages (staging according to (Schneitz et al.,
155 1995; Vijayan et al., 2021)). Ovules were stained with SR2200 to mark the cell
156 outlines and TO-PRO-3 iodide to label the nuclei (Bink et al., 2001; Van Hooijdonk et
157 al., 1994). This was followed by cell boundary prediction and 3D cell segmentation
158 using the PlantSeg pipeline (Wolny et al., 2020). The segmented stacks were then
159 loaded into MorphoGraphX (MGX) software for mesh generation, cell type labeling,

160 and quantitative analysis. The entire procedure, from imaging to the final segmented
161 and labeled 3D digital ovule, takes approximately 2 hours per z-stack. It is about
162 twice the time required for *A. thaliana* ovules because *C. hirsuta* ovules are
163 considerably larger in size. Overall, these efforts resulted in the generation of a high
164 quality reference set of 144 hand-curated 3D digital ovules of the wild-type Oxford
165 accession of *C. hirsuta* (≥ 10 samples per stage, 13 stages from stage 1-I to 3-VI) (Fig.
166 1). The entire *C. hirsuta* ovule dataset has been deposited with the BioStudies data
167 repository (Sarkans et al., 2018) (<https://www.ebi.ac.uk/biostudies>) (accession number
168 S-BIAD957).

169
170 The regions and types of segmentation errors in the cell-segmented stacks of *C.*
171 *hirsuta* ovules are similar to those observed in the case of *A. thaliana* ovule
172 segmentation ((Tofanelli et al., 2019; Vijayan et al., 2021). The main sources of error
173 include two groups of cells: the megasporangium mother cell (MMC) and its immediate
174 lateral neighbors at stages 2-II to 2-V form the first group and the embryo sac cells at
175 stages 3-V and 3-VI form the second group. The main reasons for these errors could
176 be insufficient cell wall staining with SR2200 or partially formed cell walls
177 (Mansfield et al., 1991). Oversegmentation errors, if present, were corrected
178 manually. Stage 1-I to 2-I and 3-I to 3-IV ovules selected for quantitative analysis had
179 no apparent segmentation errors. Stage 2-II to 2-V ovules selected contained no more
180 than five undersegmented (uncorrected) cells in the region occupied by the MMC and
181 its lateral neighbors. Stage 3-V to 3-VI mature ovules selected had no obvious
182 segmentation errors in the sporophytic tissue.

183
184 **General morphology of *C. hirsuta* ovule development**

185 The ovules of *C. hirsuta* exhibit an overall shape and tissue organization similar but
186 not identical to that of the ovules of *A. thaliana* (Fig. 1A-C) (Robinson-Beers et al.,
187 1992; Schneitz et al., 1995; Vijayan et al., 2021). To stage *C. hirsuta* ovule
188 development we adopted the staging system of *A. thaliana* (Schneitz et al., 1995;
189 Vijayan et al., 2021). During stage 1, *C. hirsuta* ovule primordia emerge from the
190 placenta as finger-like protrusions. During stage 2, three pattern elements can be
191 distinguished along the proximal-distal axis (Fig. 1B): the proximal funiculus, which
192 connects the ovule to the placenta; the central chalaza, from which an inner and outer
193 integument emerge laterally; and the distal nucellus, containing the large MMC,
194 which undergoes meiosis, with one meiotic product developing into the haploid
195 multicellular female gametophyte or embryo sac (Fig. 1C). For most of its
196 development, each integument is composed of two cell layers, an inner or adaxial
197 layer and an outer or abaxial layer. In a sagittal section, each of these layers has a
198 single cell thickness. Development of the inner integument begins in a ring-like
199 fashion and ends as a tube, while early development of the outer integument is
200 centered on the posterior side of the chalaza, but continues laterally to partially
201 encircle the chalaza forming a hood-like structure. During stage 3, the two
202 integuments grow asymmetrically over the nucellus, and eventually the ovule exhibits
203 a pronounced curvature. However, the final curvature is not as advanced at the
204 anterior side of the ovule as in *A. thaliana* and appears slightly more hunchbacked
205 posteriorly. The inner integument eventually generates a third layer. At their distal
206 end, the integuments form a cleft, the micropyle, through which the pollen tube
207 reaches the embryo sac containing the egg cell to affect fertilization. The position of
208 the micropyle therefore influences pollen tube entry and hence fertilization.

209

210 During stage 2, meiosis occurs in the large sub-epidermal MMC and results in four
211 megasporangia, three of which degenerate and only the chalazal megasporangium continues
212 development and gives rise to the haploid embryo sac (Fig. 1C). Its development
213 starts during early stage 3. The mono-nuclear embryo sac undergoes three rounds of
214 nuclear division resulting in a syncytium of eight nuclei followed by rapid
215 cellularization. Prior to fertilization, the female gametophyte contains a distal or
216 micropylar egg apparatus with two synergid cells and the egg cell, the two-nucleate
217 central cell with a large vacuole, and three antipodal cells at the proximal or chalazal
218 pole. Thus, the *C. hirsuta* embryo sac is of the typical eight-nucleate, seven-cell
219 polygonum type (Fig. 1C).

220

221 **Overall dimensions of *C. hirsuta* and *A. thaliana* ovules**

222 The availability of the *C. hirsuta* 3D digital ovule dataset together with the *A. thaliana*
223 3D digital atlas (Vijayan et al., 2021), the only other published dataset covering the
224 entire ovule development, enabled us to investigate the similarities and diversity of
225 3D cellular architectures underlying ovule development between the two species. To
226 this end we performed a quantitative comparative study. We first asked the basic
227 questions of how much the ovule size of the two species differs and what is the
228 cellular basis of the difference. We quantified the ovule size of *C. hirsuta* in terms of
229 total volume and cell number and found an incremental increase in both volume and
230 cell number for each successive stage of development (Fig. 2A-C, Table 1). At stage
231 3-VI, the average cell number per *C. hirsuta* ovule is about 2160 cells (2159.5 ± 355.2
232 (mean \pm SD)) and the mean volume per ovule is about $6.6 \times 10^5 \mu\text{m}^3$ ($6.6 \times 10^5 \pm$
233 1.18×10^5). By contrast, the *A. thaliana* ovule at stage 3-VI features about 1900 cells
234 (1897.0 ± 179.9) and a volume of $5 \times 10^5 \mu\text{m}^3$ ($4.9 \times 10^5 \pm 7.2 \times 10^5$). Thus, the stage

235 3-VI *C. hirsuta* ovule is approximately 34% larger than the *A. thaliana* ovule and has
236 14% more cells. At all other developmental stages, *C. hirsuta* ovules (Table 1) are
237 also significantly larger in volume and have somewhat higher cell numbers and cell
238 volumes than corresponding *A. thaliana* ovules (Table 1, Table S1, and Table 1 in
239 (Vijayan et al., 2021)). In conclusion, the increase in ovule size in *C. hirsuta*
240 compared to *A. thaliana* is mainly due to a larger average cell size, with a smaller
241 contribution from cell number.

242

243 ***C. hirsuta* and *A. thaliana* ovules exhibit tissue-specific growth patterns during
244 development**

245 Following tissue differentiation from stage 2-III onward, the different ovule tissues of
246 *C. hirsuta*, with the exception of nucellus and embryo sac, tend to show larger total
247 volumes, cell numbers and cell volumes than corresponding tissues of *A. thaliana*
248 (Tables S2-4, Fig. S1, and Table 2 in (Vijayan et al., 2021)). Next, we asked whether
249 there are tissue-specific differences in growth patterns during ovule development of
250 *C. hirsuta* and *A. thaliana*, respectively, and if so, whether the two species display
251 diversity in these growth patterns. To address this question, we performed a
252 comparative analysis of stage-wise relative tissue growth, as well as tissue-specific
253 cellular growth and proliferation of this process. We estimated the tissue-specific
254 relative growth and cell proliferation during consecutive stages from stages 2-III up to
255 stage 3-VI (Fig. 3A,B) as described in Materials and Methods. We observe that for
256 both species, the outer integument grows the most between stages 2-III and 3-I,
257 followed by a decline in relative growth in the following stages. From stage 2-III to 2-
258 IV, the outer integument of *C. hirsuta* grows 1.4 times more than that of *A. thaliana*.
259 Whereas, from 2-IV to 2-V, the outer integument of *A. thaliana* grows 1.6 times more

260 than that of *C. hirsuta*. This relative growth is also evident when plotting the relative
261 contribution of outer integument to the total ovule volume (Fig. S2). The relative
262 outer integument proportion continues to increase until stage 3-I, and then stays
263 relatively constant. From stage 2-III to 2-IV, the inner integument of *A. thaliana*
264 grows 20% more than that of *C. hirsuta*. In the subsequent stages until 3-IV, the
265 relative inner integument growth of both species is comparable. However, there are
266 between-species differences in the extent of relative growth between consecutive
267 stages. The relative tissue cell proliferation patterns do not fully explain the relative
268 tissue growth patterns, suggesting that cell growth might play a role. In cases where
269 the relative cell proliferation is lower than the relative tissue growth, we observe an
270 increase in average cell volumes. For instance, from stage 3-I to 3-II the *C. hirsuta*
271 inner integument grows by 84.3 %, whereas there is a 55.4 % increase in tissue cell
272 proliferation and 14% increase in average cell volume. The chalaza of both species
273 shows a consistently higher relative tissue growth than relative tissue cell proliferation
274 along with a consistent increase in average cell volumes over development (Fig.
275 3A,B; Table S4). However, interestingly, the relative chalaza proportion is higher in
276 *C. hirsuta* than in *A. thaliana* (Fig. S2). Therefore, the *C. hirsuta* chalaza is
277 disproportionately larger than that of *A. thaliana*.

278
279 In summary, the analysis of tissue-specific growth patterns of the two species has
280 revealed stage-specific differences in relative tissue growth and enabled us to dissect
281 the contributions of relative tissue cell proliferation and cell volumes to this process.

282

283 **Topological analysis reveals differences in 3D cellular architecture between *C.***
284 ***hirsuta* and *A. thaliana***

285 Assessment of relative tissue growth between successive developmental stages in the
286 two species revealed interesting differences, particularly when comparing the chalaza
287 and integuments. We next asked whether there are differences between species in the
288 3D cellular architecture of tissues during development.

289

290 To address this question, we performed a topological analysis of the 3D cellular
291 architecture of the ovule tissues using the nerve construction, a standard tool in
292 topology (Edelsbrunner and Harer, 2010) (Materials and Methods). In various fields
293 of mathematics, the nerve is used to encode how a complex geometric object is
294 assembled from simple pieces. Applied to a 3D digital ovule, the nerve captures
295 detailed information about the cellular architecture of the ovule, or of its tissues. To
296 evaluate the between-species differences in the nerves we computed, we applied a
297 statistical two-sample test to the “feature vectors” of nerves, since standard statistical
298 tests cannot be applied directly to sets of nerves. Feature vectors are vector
299 representations of the nerves that can be analyzed statistically. The neighborhood of a
300 cell in a 3D digital ovule refers to the collection of all cells that intersect with that
301 cell. The feature vector of an ovule (or of one of its tissues) contains structural
302 information about the neighborhood of each cell in that ovule (or in that tissue).

303

304 We investigated the 3D cellular architecture of the integuments, chalaza, nucellus and
305 funiculus of *A. thaliana* and *C. hirsuta* from stage 2-III to 3-VI. We asked whether the
306 information about the 3D cellular architecture contained in the nerve can distinguish
307 between the tissues of these two species. For each developmental stage from 2-III to
308 3-VI we obtained two sets of feature vectors: one set representing the *C. hirsuta*
309 tissue, and one set representing *A. thaliana* tissue. The feature vectors after applying

310 principal component analysis (PCA) to stage 3-VI ovules and tissues of *C. hirsuta* and
311 *A. thaliana*, taking into account all cells are shown in Fig. 4B-G (right panels). We
312 applied the multivariate two-sample test of Baringhaus and Franz to these feature
313 vectors (Baringhaus and Franz, 2004), and obtained p values via bootstrapping (Fig.
314 4C-G and Table S5). We also compared the 3D cellular architecture of the entire
315 ovule of *A. thaliana* and *C. hirsuta* (Fig. 4B and Table S5). The p values indicate that
316 there is evidence for a difference in the cellular architecture of the outer integument,
317 inner integument, and chalaza between the two species, starting around stage 3-I for
318 the outer integument and chalaza, and around 3-III for the inner integument (Fig. 4C-
319 G and Table S5). Interestingly, the p values indicate evidence for a between-species
320 difference in the cellular architecture of the entire ovule, except at stage 3-IV. As a
321 positive control, we tested whether the nerve construction could distinguish between
322 the outer integument and the chalaza in these two species. For both species and all
323 developmental stages, the resulting p-value was at most 0.0001. This further
324 underscores the importance of our topological approach for distinguishing the 3D
325 cellular architecture of tissues.

326

327 Together, these results suggest that the comparative differences in tissue growth are
328 not merely related to differences in growth and proliferation at the cellular level, but
329 may also be accompanied by differences in the cellular topology of tissues. Therefore,
330 tissue growth occurs not only due to cell growth and proliferation, but also involves
331 changes in 3D cellular architecture. These between-species differences in tissue
332 growth and architecture result in the subtle differences in ovule morphology between
333 the two species.

334

335 **The radial tissue layers of *C. hirsuta* and *A. thaliana* ovules contribute differently**
336 **to ovule primordium outgrowth**

337 We then focused our comparative analysis on selected developmental processes. We
338 first examined primordium formation. The *A. thaliana* ovule follows the general
339 principle of plant organ structure (Satina et al., 1940) and is characterized by three
340 clonally distinct radial layers, the epidermal L1 layer, the sub-epidermal L2 layer, and
341 the innermost L3 layer (Jenik and Irish, 2000). Three regular radial cell layers are
342 readily recognizable in the ovule primordium of *C. hirsuta* suggesting a similar
343 conventional tissue organization (Fig. 1B,C).

344

345 The onset of expression of a transcriptional reporter for the *WUSCHEL* (*WUS*) gene
346 (pWUS) in *A. thaliana* primordia has been reported as a convenient marker to
347 delineate non-pWUS-expressing stage 1-I primordia (< 50 cells) from pWUS-
348 expressing stage 1-II primordia (> 50 cells) (Vijayan et al., 2021). The distinction
349 between stage 1-II and stage 2-I in *A. thaliana* relies on the absence or presence of
350 MMC formation with stage 2-I primordia being characterized by the presence of the
351 MMC (Schneitz et al., 1995). Therefore, in *C. hirsuta*, we also distinguished stage 1
352 ovules from stage 2-I ovules based on the absence or presence of the MMC. The
353 upper limit of total volume and cell number of *C. hirsuta* stage 1-II primordia was set
354 based on the similarity in volume to stage 2-I primordia but absence of MMC. In *C.*
355 *hirsuta*, in the absence of a pWUS reporter, we extrapolated the *A. thaliana* stage 1-II
356 minimum and maximum values of total volume and cell number to estimate the lower
357 limit of stage 1-II primordia to discriminate stage 1-II from stage 1-I. We used the
358 formula [$\text{min}_{1-\text{II}, C. hi.} = (\text{min}_{1-\text{II}, A. th.}/\text{max}_{1-\text{II}, A. th.}) * \text{max}_{1-\text{II}, C. hi.}$] to set an approximate
359 lower limit of total volume and cell numbers for stage 1-II *C. hirsuta* primordia.

360 Given these considerations, we defined stage 1-I of *C. hirsuta* ovules to include
361 primordia containing up to 100 cells. The maximum volume of stage 1-I primordia is
362 about $1.5 \times 10^4 \mu\text{m}^3$. The ovule primordia of stage 1-II have a maximum volume of up
363 to $3.7 \times 10^4 \mu\text{m}^3$ and cell number range from 103-180. Stage 2-I primordia, as
364 evidenced by the presence of a MMC, have a volume range of $3.2 \times 10^4 - 5.3 \times 10^4$
365 μm^3 and cell number range from 179-288. We found 5 out of 15 stage 1-II ovules and
366 3 out of 13 stage 2-I ovules with a cell number around 180 and a volume range of
367 about $3.2 \times 10^4 - 3.7 \times 10^4 \mu\text{m}^3$. These results indicate that the transition from stage 1-
368 II to 2-I in *C. hirsuta* occurs once the primordium has reached about 180 cells and a
369 volume of about $3.5 \times 10^4 \mu\text{m}^3$. Whereas in *A. thaliana* the transition from stage 1-II
370 to 2-I occurs at around 130 cells and a primordium volume of about $1.8 \times 10^4 \mu\text{m}^3$
371 (Vijayan et al., 2021).

372
373 The ovule primordium outgrowth in *C. hirsuta*, as in *A. thaliana*, is characterized by a
374 steady and continuous increase in primordium volume and cell number until late stage
375 2-I (Fig. S3A). In addition, the *C. hirsuta* primordia show slanting (Fig. S3B), the first
376 morphological manifestation of an anterior-posterior axis, as observed in *A. thaliana*
377 (Vijayan et al., 2021). Despite the continuous growth, the transition from stage 1-II to
378 2-I seems to have a sharp 180-cell number cut-off. However, the primordia volume
379 range of both these stages show an overlap between $3.2 \times 10^4 - 3.7 \times 10^4 \mu\text{m}^3$. This is
380 also indicative of the primordium volume range at which MMC differentiation occurs.
381 Early stage 1-II ovules that have a total volume smaller than that of the overlapping
382 volume range, show a mean cell volume of $172.2 \pm 63.5 \mu\text{m}^3$. Within this overlapping
383 total volume range, the late stage 1-II ovules show a mean cell volume of 193.9 ± 71.8
384 μm^3 , whereas the early stage 2-I ovules have a mean cell volume of $175.1 \pm 67.8 \mu\text{m}^3$.

385 Late stage 2-I ovules that have a total volume larger than that of the overlapping
386 volume range, show a mean cell volume of $186.3 \pm 77.9 \mu\text{m}^3$. Therefore, within both
387 stages 1-II and 2-I the early to late transition involves an increase in cell volume. But
388 in the progression from late stage 1-II to early 2-I there is a transient decline in cell
389 size by about 10%. Therefore, despite increasing cell numbers during this transition,
390 there is an overlap in total volumes of late stage 1-II and early stage 2-I ovules.

391

392 We then investigated whether the overall similarity in the outgrowth of the ovule
393 primordia and the resulting cone-like shapes was reflected at the cellular and tissue
394 level. To address this question, we performed a comparative analysis of stage-wise
395 relative layer growth, as well as layer-specific cellular growth and proliferation of this
396 process. We estimated the layer-specific relative growth during a given stage, up to
397 stage 2-II, by applying the same formula to the various parameters as described above
398 $((y(n + 1) - y(n))/y(n))$. Unexpectedly, we observed surprising diversity in relative
399 layer growth between *C. hirsuta* and *A. thaliana* (Fig. 5). Regarding the stage-wise
400 growth of the individual layers, we found that in *C. hirsuta* most relative layer growth
401 occurs during stage 1-I to 1-II, with steadily decreasing layer-specific relative growth
402 during transition from stages 1-II to 2-I and 2-I to 2-II (Fig. 5A). Although we
403 observed slight unequal relative growth of the individual layers the differences were
404 relatively small. A markedly contrasting picture emerged when we examined the
405 relative layer growth in *A. thaliana* ovule primordia (Fig. 5B). During the transition
406 from stage 1-I to 1-II the L3 grew 2.6 to 3.8 times more than the L2 and L1,
407 respectively. During stage 1-II to 2-I all layers grew by roughly similar percentages.
408 From stage 2-I to 2-II, the L1 grew by 10%, while the L3 exhibited minimal growth.
409 Similar scenarios were observed when comparing stage-specific relative cell numbers,

410 although in *A. thaliana* the relative increase in cell numbers during stage 2-I to 2-II
411 was comparable among the three layers and was accompanied by a significant
412 decrease in mean cell volume in all three layers (Fig. 5A,B). In terms of the relative
413 contribution of each layer to the total primordia volume and cell numbers, the L1 > L2
414 > L3 in both species. However, the L3 contribution is higher in *C. hirsuta*, whereas,
415 the L1 contribution is higher in *A. thaliana* (Fig. 5C,D)

416

417 We further compared early MMC development between species. The nucellus of *C.*
418 *hirsuta*, like that of *A. thaliana* is tenuinucellate, that is, an archesporial cell in the
419 first subepidermal cell layer directly develops into the MMC (Fig. 1C) (Dahlgren,
420 1927; van Tieghem, 1898). This is not true for all Cardamine species, e.g. the nucellus
421 of *C. parviflora* is crassinucellate (Harvey and Smith, 2013), as an additional cell is
422 located between the MMC and the L1, indicating that an archesporial cell has
423 undergone a periclinal cell division resulting in a primary parietal and sporogenous
424 cell, respectively, the latter of which developed into the MMC (Fig. S3C).
425 Interestingly, we observed a difference in MMC size regulation between *C. hirsuta*
426 and *A. thaliana* (Fig. S3D). The *A. thaliana* MMC does not change its size between
427 stages 2-I and 2-II, whereas the *C. hirsuta* MMC grows significantly between stages
428 2-I and 2-II, becoming even larger than that of *A. thaliana*. This subtle variation
429 suggests a differential control of MMC size. However, the discrepancy in MMC size
430 regulation does not lead to differences in the sizes of embryo sacs, as the dimensions
431 of the mononuclear embryo sac (stage 3-I) and the final seven-cell embryo sac (stage
432 3-V) do not significantly differ between the two species (Table S2, Fig. S1, Figure 1-
433 Appendix 1 in (Vijayan et al., 2021)).

434

435 In summary, the comparisons reveal similarities but also differences in the cellular
436 basis of ovule primordium outgrowth between *C. hirsuta* and *A. thaliana*. First, they
437 suggest that cell proliferation, rather than cell growth, predominantly underlies tissue
438 growth patterns during early ovule development in both species. Second, they indicate
439 that in each case the increase in primordium volume occurs in a steady and continuous
440 fashion. Importantly, these results also show that despite similar overall primordium
441 outgrowth and final primordium shape (and with the exception of size), the internal
442 growth processes underlying ovule primordium outgrowth differ substantially
443 between the two species.

444

445 ***C. hirsuta* and *A. thaliana* differ in the formation of the parenchymatic cell layer
446 in the inner integument**

447 Starting at stage 3-II, cambium-like activity of the inner (adaxial) layer of the inner
448 integument (ii1, differentiating into the endothelium) in *A. thaliana* generates an
449 additional cell layer (ii1') located between the ii1 and ii2 layers of the inner
450 integument (Debeaujon et al., 2003; Schneitz et al., 1995; Vijayan et al., 2021). Once
451 formed, the ii1' layer neither expresses the epidermis-specific *ARABIDOPSIS*
452 *THALIANA MERISTEM L1 (ATML1)* nor produces tannins like the ii1/endothelium
453 layer, but remains parenchymal. In *A. thaliana* the ii1' layer is generated by periclinal
454 cell divisions of only a few scattered ii1 founder cells, followed by anticlinal cell
455 divisions in the ii1' daughter cells. Eventually, the ii1' layer forms a ring-like
456 structure covering roughly the proximal half of the inner integument. Formation of
457 this new cell layer in *A. thaliana* exhibits features of layer invasion.

458

459 We could also observe the ii1' layer in *C. hirsuta* stage 3 ovules (Fig. 1B, Fig. 6A).
460 The cellular basis and 3D architecture of ii1' layer formation is not well studied in
461 non-Arabidopsis species, and therefore we explored if there are differences in the
462 formation of this tissue between *C. hirsuta* and *A. thaliana*. In *C. hirsuta*, ii1'
463 initiation was observed from stage 3-I onward. Eight out of 10 stage 3-I ovules
464 showed at least two ii1' cells. Nine out of 10 stage 3-II ovules showed ii1', and all
465 ovules of stage 3-III up to stage 3-VI show the presence of ii1'. In stage 3-VI ovules,
466 the ii1' layer not only enveloped the proximal half of the inner integument, but also
467 extended distally, covering more of the inner integument than in *A. thaliana*. In *C.*
468 *hirsuta*, its distal border was also more irregular, with patches of cells separated from
469 the proximal, more confluent ii1' layer (Fig. 6A). We further noticed that the ii1' layer
470 in *C. hirsuta* occupied a significantly higher proportion of inner integument volume
471 and cell number compared to that in *A. thaliana* (Fig. 6B,C). The growth of the ii1'
472 layer in terms of both tissue volume and cell number in *C. hirsuta* was double that in
473 *A. thaliana*. Therefore, the ii1' layer is disproportionately bigger in *C. hirsuta*
474 compared to that in *A. thaliana*.

475
476 To understand how this parenchymatous inner integument layer is initiated and
477 propagated in *C. hirsuta*, we scored 3457 ii1' cells in addition to all ii1 cells across
478 the 62 ovules exhibiting an ii1' layer, for the presence of mitotic divisions. Mitotic
479 figures were visualized using the TO-PRO-3 nuclear stain (Fig. 6D). We observed 70
480 mitotic divisions in total. These were classified into periclinal ii1 divisions (40/70)
481 and anticlinal ii1' divisions (30/70). Therefore 57% of the mitotic divisions could be
482 attributed to periclinal divisions of the ii1 cells. Thirty-four out of 40 (85 %) periclinal
483 divisions were observed in stages 3-III to 3-VI. Twenty-five out of the 30 anticlinal

484 divisions were observed in stages 3-V and 3-VI ovules; the remaining 5 belonged to
485 stages 3-III and 3-IV. These results demonstrate that not only the initiation, but also
486 the propagation of ii1' in *C. hirsuta* involves periclinal ii1 cell divisions. Whereas,
487 anticlinal divisions can only be attributed toward ii1' propagation.

488

489 Taken together, these results suggest that the disproportionately larger growth of the
490 *C. hirsuta* ii1' cell layer is due not only to anticlinal cell divisions of ii1' cells, but also
491 to an approximately equal contribution of periclinal cell divisions in the ii1 layer. This
492 is in contrast to ii1' growth in *A. thaliana*, in which formation of the ii1' layer
493 involves a few scattered ii1 periclinal divisions, followed by ii1' propagation mostly
494 involving ii1' anticlinal cell divisions (Vijayan et al., 2021).

495

496 **Discussion**

497 Here, we provide a reference 3D digital atlas of *C. hirsuta* ovule development at full
498 cellular resolution. First, the atlas provides a valuable resource for future genetic and
499 molecular studies of ovule development in *C. hirsuta*. Second, it adds a high quality
500 dataset to a growing collection of 3D digital organs that will be of considerable use
501 not only for quantitative single-cell morphometric comparisons of 3D cellular
502 architectures of ovules across plant species, but also for exploring the general
503 properties of complex 3D cell assemblies. Third, the meshes can be used to generate
504 templates for modeling ovule development. The original confocal z-stacks, segmented
505 3D images, meshes and analyses are available at the Biostudies database at EMBL-
506 EBI (Sarkans et al., 2018) (accession number S-BIAD957).

507

508 A particular value of 3D digital organs with full cellular resolution is that they enable
509 sophisticated quantitative analyses that allow the discovery of even subtle differences
510 in cellular processes. Examples in *A. thaliana* include the control of division plane
511 orientation in the embryo (Yoshida et al., 2014) and the regulation of 3D cell
512 anisotropy in the hypocotyl (Montenegro-Johnson et al., 2015). In this study, it is
513 exemplified by our comparative analysis of the growth patterns underlying the
514 outgrowth of the ovule primordium and the development of the parenchymatous ii1'
515 layer of the inner integument between the two species *C. hirsuta* and *A. thaliana*.
516 With respect to early ovule development, our results show that at the gross
517 morphological level, primordium outgrowth in both species is similar and, except for
518 size, results in primordia of comparable shape and layered structure. However, our
519 data also suggest that the two species have distinct mechanisms for coordinating the
520 relative contributions of the three radial layers to ovule primordium outgrowth.
521 Similarity and diversity were also observed in the formation of the ii1' layer. Both
522 species develop this third layer of the inner integument. However, they vary mainly in
523 the cellular processes that form the ii1' layer, and also in the extent of this tissue. This
524 indicates that the two species differ in the mechanisms that control the formation of
525 the ii1' layer. Taken together, these results strongly suggest that although
526 morphogenetic processes may lead to organs of similar shapes, the underlying cellular
527 processes can be different.

528
529 Topological analysis of *A. thaliana* 3D digital organs has been used to study organ
530 design principles in plants (Bassel, 2019; Duran-Nebreda et al., 2023; Jackson et al.,
531 2017; Jackson et al., 2019). For example, a recent network analysis of the diversity of
532 cellular configurations in several morphologically simple 3D digital organs of *A.*

533 *thaliana* suggested that the observed 3D cellular architectures at maturity are
534 generated by active patterning mechanisms and do not result from random cell
535 packing processes in these organs (Duran-Nebreda et al., 2023). Here, we applied
536 topological analysis to the ovule, a plant organ of considerable complexity in terms of
537 its 3D cellular architecture, tissue composition, and shape. Nerve-based analysis is a
538 robust mathematical approach for studying how complex geometric objects are
539 assembled from simple pieces (Edelsbrunner and Harer, 2010) that, to our knowledge,
540 has not previously been applied to 3D digital organs. The goal was to identify
541 differences in the 3D cellular organization of various tissues between the two species.
542 We reasoned that mathematical analysis of cell connectivity maps could provide an
543 approach for distinguishing cell populations that cannot be readily separated by visual
544 inspection of morphology. In addition, it might provide independent confirmation of
545 separate cell assemblies that previously could only be distinguished by morphological
546 criteria, such as overall tissue size and shape or their 3D cellular architectures. As the
547 nerve of a 3D digital ovule is a very complex structure, we compute feature vectors
548 from the nerves that include only local information about the structure around each
549 cell; this is a compromise between the desire to maintain as much information as
550 possible, and the need for a representation of the data that is amenable to statistical
551 analysis.

552
553 Interestingly, and despite the overall general similarity in shape between *C. hirsuta*
554 and *A. thaliana* ovules, this approach led to the identification of clear topological
555 differences in the 3D cellular architectures of the chalaza and integuments between
556 the two species. This was especially surprising with respect to the outer integument,
557 as visual inspection of its 3D cellular arrangements did not suggest obvious

558 differences. Thus, nerve-based analysis represents a robust method to detect even
559 apparently subtle distinctions in the topology of 3D digital organs with cellular
560 resolution. The morphological consequences of such subtle differences in 3D cellular
561 architectures remain to be determined. Our data indicate that *C. hirsuta* and *A.*
562 *thaliana* ovules not only differ in a number of cellular parameters, size, and topology
563 but also show subtle variations in their overall shape, such as the degree of curvature.
564 Therefore, it will be interesting to investigate the relationship between the 3D cellular
565 architecture of the ovule and its complex shape in future studies.

566

567 **Materials and Methods**

568 **Plant work and lines**

569 *C. hirsuta* var. Oxford (Ox), herbarium specimen voucher Hay 1 (OXF) (Hay and
570 Tsiantis, 2006) and *Arabidopsis thaliana* (L.) Heynh. var. Columbia (Col-0) were
571 used as wild-type strains. Plants were grown on soil as described earlier (Fulton et al.,
572 2009; Hay et al., 2014).

573

574 **Clearing and staining of tissue samples**

575 Treatment of *C. hirsuta* ovules was done as described in (Tofanelli et al., 2019) and
576 (Vijayan et al., 2021) with some optimizations. Tissue was fixed in 4%
577 paraformaldehyde in PBS for 1.5-2 h followed by one wash in PBS before transfer
578 into the ClearSee solution (xylitol (10%, w/v), sodium deoxycholate (15%, w/v), urea
579 (25%, w/v), in H₂O) (Kurihara et al., 2015). Clearing was done at least overnight or
580 for up to two to three days. Cell wall staining with SR2200 (Renaissance Chemicals,
581 Selby, UK) was performed as described in (Musielak et al., 2015). Cleared tissue was
582 washed in a PBS solution containing 0.1% SR2200 and then put into a PBS solution

583 containing 0.1% SR2200 and a 1/1000 dilution of the nuclear stain TO-PRO-3 iodide
584 (Thermo Fisher Scientific) for 30 minutes. Tissue was washed in PBS for one minute,
585 transferred again to ClearSee for 20 minutes before mounting in Vectashield antifade
586 agent (Vector Laboratories, Burlingame, CA, USA).

587

588 **Microscopy and image acquisition**

589 Confocal laser scanning microscopy of ovules stained with SR2200 and TO-PRO-3
590 iodide was performed on an upright Leica TCS SP8 X WLL2 Hyvolution 2 (Leica
591 Microsystems) equipped with GaAsP (HyD) detectors and a 63x glycerol objective
592 (HC PL anterior-posteriorO CS2 63x/1.30 GLYC, CORR CS2). Scan speed was at
593 400 Hz, the pinhole was set to 1 Airy units, line average between 2 and 4, and the
594 digital zoom between 0.75 and 2. For z-stacks, 12 or 16 bit images were captured at a
595 slice interval of 0.33 μm with voxel size of 0.126 μm x 0.126 μm x 0.33 μm . Laser
596 power or gain was adjusted for z compensation to obtain an optimal z-stack. Image
597 acquisition parameters were the following: SR2200 excitation, 405 nm diode laser (50
598 mW) with a laser power ranging from 0.1% to 1.5% intensity, detection at 416–476
599 nm with the gain of the HyD detector set to 20. TO-PRO-3 iodide excitation, white-
600 light laser at 642 nm, with a laser power ranging from 2% to 3.5%, detection at 661 to
601 795 nm, with the gain of the HyD detector set to 400. Images were adjusted for color
602 and contrast using ImageJ (Rueden et al., 2017) or MorphoGraphX software (Strauss
603 et al., 2022).

604

605 **Datasets, 3D cell segmentation, and 3D cell meshes**

606 The dataset encompassing the segmented wild-type 3D digital ovules of *A. thaliana*
607 was described earlier (Vijayan et al., 2021). The z-stacks of *C. hirsuta* ovules were 3D

608 cell segmented using the PlantSeg pipeline (Wolny et al., 2020). In all instances cell
609 3D meshes were generated with MorphoGraphX using segmented image stacks and
610 the process "Mesh/Creation/Marching Cube 3D" with a cube size of 1. Manual cell
611 type labeling was performed with MorphoGraphX.

612

613 **Exporting attributes from MorphoGraphX for further quantitative analysis**

614 All quantitative cellular features were exported as attributes from MGX. The
615 attributes included cell IDs (segmentation label of individual cells), cell type IDs
616 (tissue annotation), and cell volume. The attributes from individual ovules were
617 exported as csv files and merged to create long-format Excel-sheets listing all the
618 scored attributes of all the cells from the analyzed ovules. Cell IDs with volume less
619 than $30 \mu\text{m}^3$ have been excluded from cellular analyses since these correspond to
620 artifacts and empty spaces that are segmented as cells. The files are included in the
621 downloadable datasets.

622

623 **Topological analysis**

624 *The nerve construction*

625 The nerve is closely related to the (unweighted) region adjacency graph, which has
626 been used before to analyze 3D segmentations of plant tissues at cellular resolution
627 (Wolny et al., 2020). This is the graph whose vertices are the cells, and whose edges
628 are the pairs of cells that intersect (i.e., in the setting of 3D digital ovules, pairs of
629 cells that share a voxel). To compute the nerve, one thinks of each cell as a vertex,
630 and now computes every set of cells that intersect (i.e., a set C_1, \dots, C_k of cells
631 intersects if there is a voxel that belongs to C_i for all $1 \leq i \leq k$). The edges of the
632 region adjacency graph are exactly those sets of cells in the nerve that contain two

633 cells. One pictures a set of two cells as an edge, a set of three cells as a triangle, and a
634 set of four cells as a tetrahedron (see Fig. 4A); a set of cells with k elements is called a
635 $(k - 1)$ -simplex. Formally, the nerve is a *simplicial complex*, which is a
636 generalization of a graph. When we analyze the cellular architecture of a particular
637 tissue in the ovule, we compute the nerve of just those cells in that tissue.

638

639 *Feature vectors*

640 The feature vector of a nerve N is defined as follows. The *vertex star* of a vertex v of
641 N is the set of k -simplices of N containing v , for all $k \geq 0$. The *face-vector* of v is the
642 vector whose k -th component is the number of k -simplices in the vertex star of v . For
643 example, in Fig. 4A, the vertex star of the red cell consists of one vertex, six edges,
644 and six triangles, so its face-vector is $(1,6,6)$. Note that the number of 1-simplices in
645 the vertex star of v is exactly the number of neighbors of v , so this information is
646 included in the face-vector. To define the feature vector X of N , we enumerate all
647 possible face-vectors, then let the i -th component of X be the proportion of vertices of
648 N whose face-vector is equal to the i -th face-vector in the enumeration. Note that,
649 when we compute feature vectors for a set of nerves, it is necessary to enumerate all
650 face-vectors vertices of all nerves, and use this enumeration when computing each
651 feature vector.

652

653 *Analysis of differences in topology*

654 We analyzed the difference between species in the 3D cellular architecture of tissues
655 during development in the following way. Fixing a tissue (e.g., the chalaza) and
656 developmental stage, we computed the nerves of the cells of that tissue at that stage.
657 This gives a set N_1, \dots, N_a of nerves from *A. thaliana*, and a set M_1, \dots, M_b of nerves

658 from *C. hirsuta*. We computed the feature vectors of these nerves, giving a set
659 X_1, \dots, X_a of *A. thaliana* feature vectors, and a set Y_1, \dots, Y_b of *C. hirsuta* feature
660 vectors. We applied a multivariate two-sample test (see below) to the vectors
661 X_1, \dots, X_a and Y_1, \dots, Y_b and computed the resulting p value. Looking at these p values
662 across developmental stages gives insight into whether there is a difference between
663 species in the 3D cellular architecture of the given tissue, and if so, at what stage in
664 development this difference becomes visible in the nerve.

665

666 **Relative growth analysis**

667 Relative growth between two consecutive stages was estimated by taking the ratio
668 between the difference of the mean tissue volumes or the mean cell numbers of two
669 consecutive stages and the corresponding mean parameter of the earlier stage
670 according to the formula: $(y(n+1) - y(n))/y(n)$.

671

672 **Software**

673 The MorphoGraphX software was used for the generation of cell 3D meshes, cell type
674 labeling, and the analysis of 3D cellular features (Barbier de Reuille et al., 2015;
675 Strauss et al., 2022). It can be downloaded from its website
676 (<https://www.mpi-z.de/MorphoGraphX>). The PlantSeg pipeline (Wolny et al.,
677 2020) was used for 3D cell boundary prediction and segmentation. The software can
678 be obtained from its Github repository (<https://github.com/hci-unihd/plant-seg>). The
679 C++ code, Python and R scripts, as well as all dependencies required for the
680 topological analysis and its statistical evaluation were packaged using Docker
681 (<https://docker.com>). The source code and the Dockerfiles can be obtained from the
682 Github repository <https://github.com/fabian-roll/NADO>.

683

684 **Statistical analysis**

685 Statistical analysis was performed using a combination of R (R Core Team, 2022)
686 with RStudio (RStudio Team, 2020), the Anaconda distribution (Anaconda Software
687 Distribution; <https://anaconda.com>) of the Python SciPy software stack (Oliphant,
688 2007), and PRISM10 software (GraphPad Software, San Diego, USA).

689

690 *Box and whiskers plots*

691 Boxplots show the median value of the distribution as a central line and mean value of
692 the distribution as a plus sign within the box. The limits of the box represent the
693 quartiles of the distribution. Whisker ends mark the minimum and maximum of all the
694 data.

695

696 *The multivariate two-sample test*

697 To compare two sets of feature vectors, we use the multivariate two-sample test of
698 Baringhaus and Franz (Baringhaus and Franz, 2004). Given independent random
699 vectors in d-dimensional Euclidean space X_1, \dots, X_m and Y_1, \dots, Y_n that are
700 identically distributed with distribution functions F and G , one tests the null
701 hypothesis $F = G$ against the general alternative $F \neq G$ using a test statistic called the
702 Cramér statistic that is defined using Euclidean distances. Distances between X_s and
703 Y_s contribute to the statistic with positive weight, while distances between X_s and
704 distances between Y_s contribute with negative weight. Rejection of the null
705 hypothesis is for large positive values of the test statistic. Baringhaus and Franz show
706 that p values can be estimated using bootstrapping (Van der Vaart and Wellner, 2012).
707 The estimated p value can be zero, if the computed value of the test statistic is larger

708 than all the values computed from bootstrap samples. The test is implemented by the
709 R package “cramer” (Franz, 2019).

710

711 **Acknowledgements**

712 We thank Angela Hay and Miltos Tsiantis for providing seeds of wild-type *C. hirsuta*.
713 We further thank Gabriella Mosca and members of Schneitz lab for comments on the
714 manuscript. We acknowledge support by the Center for Advanced Light Microscopy
715 (CALM) of the TUM School of Life Sciences.

716

717 **Competing interests**

718 There are no financial or non-financial competing interests.

719

720 **Funding**

721 This work was funded by the German Research Council (DFG) through grant
722 FOR2581 (TP7) to KS, and through the Collaborative Research Center SFB/TRR 109
723 Discretization in Geometry and Dynamics – 195170736 to UB and FR, and by the
724 Munich Data Science Institute to UB and NS.

725

726 **Data availability**

727 The *C. hirsuta* 3D digital ovule dataset has been deposited with the BioStudies data
728 repository at EMBL-EBI (Sarkans et al., 2018) (<https://www.ebi.ac.uk/biostudies>)
729 (accession number S-BIAD957). It includes raw cell boundaries, cell boundaries,
730 PlantSeg predictions, nuclei images, segmented cells, and the annotated 3D cell
731 meshes along with the associated attribute files in csv format. The 3D mesh files can
732 be opened in MorphoGraphX. It also includes the *C. hirsuta* long format cell

733 attributes files and the data files used for topological analysis. The corresponding
734 Arabidopsis ovule dataset on Biostudies has the accession numbers S-BSST475 (raw
735 and topological analysis data) and S-BSST513 (long format cell attribute file).

736

737 **Authors' contributions**

738 TAM and KS designed the study. TAM generated the Cardamine atlas and performed
739 the morphology experiments. TAM and KS interpreted the results. AR, NS, FR, and
740 UB conceived, performed, analyzed, and interpreted the topological analysis. KS and
741 UB secured funding. TAM, AR, FR, NS, and KS wrote the paper. All authors read
742 and approved the final manuscript.

743

744 **References**

745 **Barbier de Reuille, P., Routier-Kierzkowska, A.-L., Kierzkowski, D., Bassel, G. W., Schüpbach, T., Tauriello, G., Bajpai, N., Strauss, S., Weber, A., Kiss, A., et al. (2015). MorphoGraphX: A platform for quantifying morphogenesis in 4D. *Elife* **4**, 05864.**

746

747

748

749 **Baringhaus, L. and Franz, C. (2004). On a new multivariate two-sample test. *J. Multivar. Anal.* **88**, 190–206.**

750

751 **Bassel, G. W. (2019). Multicellular systems biology: quantifying cellular patterning and function in plant organs using network science. *Mol. Plant* **12**, 731–742.**

752

753 **Bassel, G. W., Stamm, P., Mosca, G., Barbier de Reuille, P., Gibbs, D. J., Winter, R., Janka, A., Holdsworth, M. J. and Smith, R. S. (2014). Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the *Arabidopsis* embryo. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 8685–8690.**

754

755

756

757

758 **Bink, K., Walch, A., Feuchtinger, A., Eisenmann, H., Hutzler, P., Höfler, H. and Werner, M. (2001). TO-PRO-3 is an optimal fluorescent dye for nuclear counterstaining in dual-colour FISH on paraffin sections. *Histochem. Cell Biol.* **115**, 292–299.**

759

760

761

762 **Causier, B., Schwarz-Sommer, Z. and Davies, B. (2010). Floral organ identity: 20 years of ABCs. *Semin. Cell Dev. Biol.* **21**, 73–79.**

763

764 **Chanderbali, A. S., Berger, B. A., Howarth, D. G., Soltis, P. S. and Soltis, D. E.**
765 (2016). Evolving ideas on the origin and evolution of flowers: new perspectives
766 in the genomic era. *Genetics* **202**, 1255–1265.

767 **Chaudhary, A., Gao, J. and Schneitz, K.** (2018). The genetic control of ovule
768 development. In *Reference module in life sciences*, Elsevier.

769 **Coen, E. S. and Meyerowitz, E. M.** (1991). The war of the whorls: genetic
770 interactions controlling flower development. *Nature* **353**, 31–37.

771 **Cucinotta, M., Colombo, L. and Roig-Villanova, I.** (2014). Ovule development, a
772 new model for lateral organ formation. *Front. Plant Sci.* **5**, 117.

773 **Dahlgren, K. V. O.** (1927). Die Morphologie des Nuzellus mit besonderer
774 Berücksichtigung der deckzellosen Typen. *Jahrb. Wiss. Bot.* **67**, 347–426.

775 **Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M. and**
776 **Lepiniec, L.** (2003). Proanthocyanidin-accumulating cells in *Arabidopsis* testa:
777 regulation of differentiation and role in seed development. *Plant Cell* **15**, 2514–
778 2531.

779 **Duran-Nebreda, S., Jackson, M. D. B. and Bassel, G. W.** (2023). A quantitative
780 morphospace of multicellular organ design in the plant *Arabidopsis*. *Curr. Biol.*

781 **Edelsbrunner, H. and Harer, J.** (2010). *Computational topology: An introduction*.
782 American Mathematical Soc.

783 **Endress, P. K.** (2011). Angiosperm ovules: diversity, development, evolution. *Ann.*
784 *Bot.* **107**, 1465–1489.

785 **Franz, C.** (2019). cramer: multivariate nonparametric Cramer-test for the two-
786 sample-problem. *Comprehensive R Archive Network (CRAN)*.

787 **Fridman, Y., Strauss, S., Horev, G., Ackerman-Lavert, M., Reiner-Benaim, A.,**
788 **Lane, B., Smith, R. S. and Savaldi-Goldstein, S.** (2021). The root meristem is
789 shaped by brassinosteroid control of cell geometry. *Nat Plants* **7**, 1475–1484.

790 **Fulton, L., Batoux, M., Vaddepalli, P., Yadav, R. K., Busch, W., Andersen, S. U.,**
791 **Jeong, S., Lohmann, J. U. and Schneitz, K.** (2009). *DETORQUEO*, *QUIRKY*,
792 and *ZERZAUST* represent novel components involved in organ development
793 mediated by the receptor-like kinase *STRUBBELIG* in *Arabidopsis thaliana*.
794 *PLoS Genet.* **5**, e1000355.

795 **Gasser, C. S. and Skinner, D. J.** (2019). Development and evolution of the unique
796 ovules of flowering plants. *Curr. Top. Dev. Biol.* **131**, 373–399.

797 **Gómez-Gálvez, P., Vicente-Munuera, P., Anbari, S., Buceta, J. and Escudero, L.**
798 **M.** (2021). The complex three-dimensional organization of epithelial tissues.
799 *Development* **148**,

800 **Graeff, M., Rana, S., Wendrich, J. R., Dorier, J., Eekhout, T., Aliaga Fandino, A.**
801 **C., Guex, N., Bassel, G. W., De Rybel, B. and Hardtke, C. S.** (2021). A single-

802 cell morpho-transcriptomic map of brassinosteroid action in the *Arabidopsis*
803 root. *Mol. Plant* **14**, 1985–1999.

804 **Harvey, R. and Smith, B. I.** (2013). Megasporogenesis and megagametogenesis of
805 *Cardamine parviflora* L. (Brassicaceae). *J. Pa. Acad. Sci.* **87**, 120–124.

806 **Hay, A. and Tsiantis, M.** (2006). The genetic basis for differences in leaf form
807 between *Arabidopsis thaliana* and its wild relative *Cardamine hirsuta*. *Nat.*
808 *Genet.* **38**, 942–947.

809 **Hay, A. and Tsiantis, M.** (2016). *Cardamine hirsuta*: a comparative view. *Curr.*
810 *Opin. Genet. Dev.* **39**, 1–7.

811 **Hay, A. S., Pieper, B., Cooke, E., Mandáková, T., Cartolano, M., Tattersall, A.**
812 **D., Ioio, R. D., McGowan, S. J., Barkoulas, M., Galinha, C., et al.** (2014).
813 *Cardamine hirsuta*: a versatile genetic system for comparative studies. *Plant J.*
814 **78**, 1–15.

815 **Hernandez-Lagana, E., Mosca, G., Mendocilla-Sato, E., Pires, N., Frey, A.,**
816 **Giraldo-Fonseca, A., Michaud, C., Grossniklaus, U., Hamant, O., Godin, C.,**
817 **et al.** (2021). Organ geometry channels reproductive cell fate in the *Arabidopsis*
818 ovule primordium. *Elife* **10**.

819 **Jackson, M. D., Xu, H., Duran-Nebreda, S., Stamm, P. and Bassel, G. W.** (2017).
820 Topological analysis of multicellular complexity in the plant hypocotyl. *Elife* **6**.

821 **Jackson, M. D. B., Duran-Nebreda, S., Kierzkowski, D., Strauss, S., Xu, H.,**
822 **Landrein, B., Hamant, O., Smith, R. S., Johnston, I. G. and Bassel, G. W.**
823 (2019). Global topological order emerges through local mechanical control of
824 cell divisions in the *Arabidopsis* shoot apical meristem. *Cell Syst* **8**, 53–65.e3.

825 **Jenik, P. D. and Irish, V. F.** (2000). Regulation of cell proliferation patterns by
826 homeotic genes during. *Development* **127**, 1267–1276.

827 **Kierzkowski, D., Runions, A., Vuolo, F., Strauss, S., Lymberidou, R., Routier-**
828 **Kierzkowska, A.-L., Wilson-Sánchez, D., Jenke, H., Galinha, C., Mosca, G.,**
829 **et al.** (2019). A growth-based framework for leaf shape development and
830 diversity. *Cell* **177**, 1405–1418.e17.

831 **Kramer, E. M.** (2019). Plus ça change, plus c'est la même chose: The developmental
832 evolution of flowers. *Curr. Top. Dev. Biol.* **131**, 211–238.

833 **Kurihara, D., Mizuta, Y., Sato, Y. and Higashiyama, T.** (2015). ClearSee: a rapid
834 optical clearing reagent for whole-plant fluorescence imaging. *Development* **142**,
835 4168–4179.

836 **Lemke, S. B. and Nelson, C. M.** (2021). Dynamic changes in epithelial cell packing
837 during tissue morphogenesis. *Curr. Biol.* **31**, R1098–R1110.

838 **Lora, J., Herrero, M., Tucker, M. R. and Hormaza, J. I.** (2017). The transition
839 from somatic to germline identity shows conserved and specialized features
840 during angiosperm evolution. *New Phytol.* **216**, 495–509.

841 **Lyndon, R. F.** (1990). *Plant development. The cellular basis.* (ed. Black, M.) and
842 Chapman, J.) London: Unwin Hyman Ltd.

843 **Montenegro-Johnson, T. D., Stamm, P., Strauss, S., Topham, A. T., Tsagris, M.,**
844 **Wood, A. T. A., Smith, R. S. and Bassel, G. W.** (2015). Digital single-cell
845 analysis of plant organ development using 3DCellAtlas. *Plant Cell* **27**, 1018–
846 1033.

847 **Musielak, T. J., Schenkel, L., Kolb, M., Henschen, A. and Bayer, M.** (2015). A
848 simple and versatile cell wall staining protocol to study plant reproduction. *Plant*
849 *Reprod.* **28**, 161–169.

850 **Nakajima, K.** (2018). Be my baby: patterning toward plant germ cells. *Curr. Opin.*
851 *Plant Biol.* **41**, 110–115.

852 **Neumann, U. and Hay, A.** (2020). Seed coat development in explosively dispersed
853 seeds of *Cardamine hirsuta*. *Ann. Bot.* **126**, 39–59.

854 **Oliphant, T. E.** (2007). Python for Scientific Computing. *Comput. Sci. Eng.* **9**, 10–
855 20.

856 **Ouedraogo, I., Lartaud, M., Baroux, C., Mosca, G., Delgado, L., Leblanc, O.,**
857 **Verdeil, J.-L., Conéjero, G. and Autran, D.** (2023). 3D cellular morphometrics
858 of ovule primordium development in *Zea mays* reveal differential division and
859 growth dynamics specifying megasporangium mother cell singleness. *Front. Plant Sci.*
860 **14**, 1174171.

861 **Pasternak, T., Haser, T., Falk, T., Ronneberger, O., Palme, K. and Otten, L.**
862 (2017). A 3D digital atlas of the *Nicotiana tabacum* root tip and its use to
863 investigate changes in the root apical meristem induced by the *Agrobacterium 6b*
864 oncogene. *Plant J.* **92**, 31–42.

865 **R Core Team** (2022). R: A language and environment for statistical computing.

866 **Robinson-Beers, K., Pruitt, R. E. and Gasser, C. S.** (1992). Ovule development in
867 wild-type *Arabidopsis* and two female-sterile mutants. *Plant Cell* **4**, 1237–1249.

868 **RStudio Team** (2020). RStudio: Integrated Development for R.

869 **Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena,**
870 **E. T. and Eliceiri, K. W.** (2017). ImageJ2: ImageJ for the next generation of
871 scientific image data. *BMC Bioinformatics* **18**, 529.

872 **Rümpler, F. and Theissen, G.** (2019). Reconstructing the ancestral flower of extant
873 angiosperms: the “war of the whorls” is heating up. *J. Exp. Bot.* **70**, 2615–2622.

874 **Sarkans, U., Gostev, M., Athar, A., Behrang, E., Melnichuk, O., Ali, A.,**
875 **Minguet, J., Rada, J. C., Snow, C., Tikhonov, A., et al.** (2018). The
876 BioStudies database—one stop shop for all data supporting a life sciences study.
877 *Nucleic Acids Res.* **46**, D1266–D1270.

878 **Satina, S., Blakeslee, A. F. and Avery, A. G.** (1940). Demonstration of the three

879 germ layers in the shoot apex of *Datura* by means of induced polyploidy in
880 periclinal chimeras. *Am. J. Bot.* **27**, 895–905.

881 **Schmidt, T., Pasternak, T., Liu, K., Blein, T., Aubry-Hivet, D., Dovzhenko, A.,**
882 **Duerr, J., Teale, W., Ditengou, F. A., Burkhardt, H., et al.** (2014). The iRoCS
883 Toolbox--3D analysis of the plant root apical meristem at cellular resolution.
884 *Plant J.* **77**, 806–814.

885 **Schneitz, K., Hülskamp, M. and Pruitt, R. E.** (1995). Wild-type ovule development
886 in *Arabidopsis thaliana*: a light microscope study of cleared whole-mount tissue.
887 *Plant J.* **7**, 731–749.

888 **Sozen, B., Conkar, D. and Veenvliet, J. V.** (2022). Carnegie in 4D? Stem-cell-based
889 models of human embryo development. *Semin. Cell Dev. Biol.* **131**, 44–57.

890 **Strauss, S., Sapala, A., Kierzkowski, D. and Smith, R. S.** (2019). Quantifying Plant
891 Growth and Cell Proliferation with MorphoGraphX. *Methods Mol. Biol.* **1992**,
892 269–290.

893 **Strauss, S., Runions, A., Lane, B., Eschweiler, D., Bajpai, N., Trozzi, N., Routier-
894 Kierzkowska, A.-L., Yoshida, S., Rodrigues da Silveira, S., Vijayan, A., et al.**
895 (2022). Using positional information to provide context for biological image
896 analysis with MorphoGraphX 2.0. *Elife* **11**.

897 **Tofanelli, R., Vijayan, A., Scholz, S. and Schneitz, K.** (2019). Protocol for rapid
898 clearing and staining of fixed *Arabidopsis* ovules for improved imaging by
899 confocal laser scanning microscopy. *Plant Methods* **15**, 120.

900 **Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barthélémy,
901 J. and Palauqui, J.-C.** (2008). High-resolution whole-mount imaging of three-
902 dimensional tissue organization and gene expression enables the study of phloem
903 development and structure in *Arabidopsis*. *Plant Cell* **20**, 1494–1503.

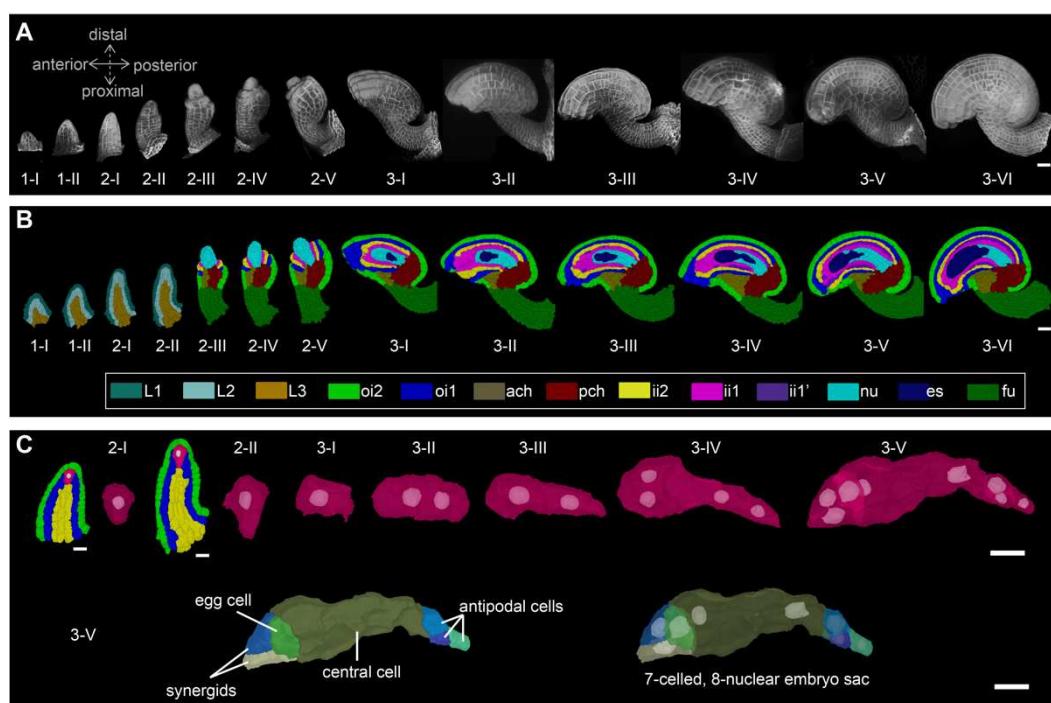
904 **Van der Vaart, A. W. and Wellner, J.** (2012). *Weak convergence and empirical
905 processes*. Springer New York.

906 **Van Hooijdonk, C. A., Glade, C. P. and Van Erp, P. E.** (1994). TO-PRO-3 iodide:
907 a novel HeNe laser-ex citable DNA stain as an alternative for propidium iodide in
908 multiparameter flow cytometry. *Cytometry* **17**, 185–189.

909 **van Tieghem, P.** (1898). Structure de quelques ovules et parti qu'on en peut tirer pour
910 améliorer la classification. *Journal de Botanique* **12**, 197–220.

911 **Vijayan, A., Tofanelli, R., Strauss, S., Cerrone, L., Wolny, A., Strohmeier, J.,**
912 **Kreshuk, A., Hamprecht, F. A., Smith, R. S. and Schneitz, K.** (2021). A
913 digital 3D reference atlas reveals cellular growth patterns shaping the
914 *Arabidopsis* ovule. *Elife* **10**.

915 **Vlad, D., Kierzkowski, D., Rast, M. I., Vuolo, F., Dello Ioio, R., Galinha, C., Gan,
916 X., Hajheidari, M., Hay, A., Smith, R. S., et al.** (2014). Leaf shape evolution
917 through duplication, regulatory diversification, and loss of a homeobox gene.
918 *Science* **343**, 780–783.

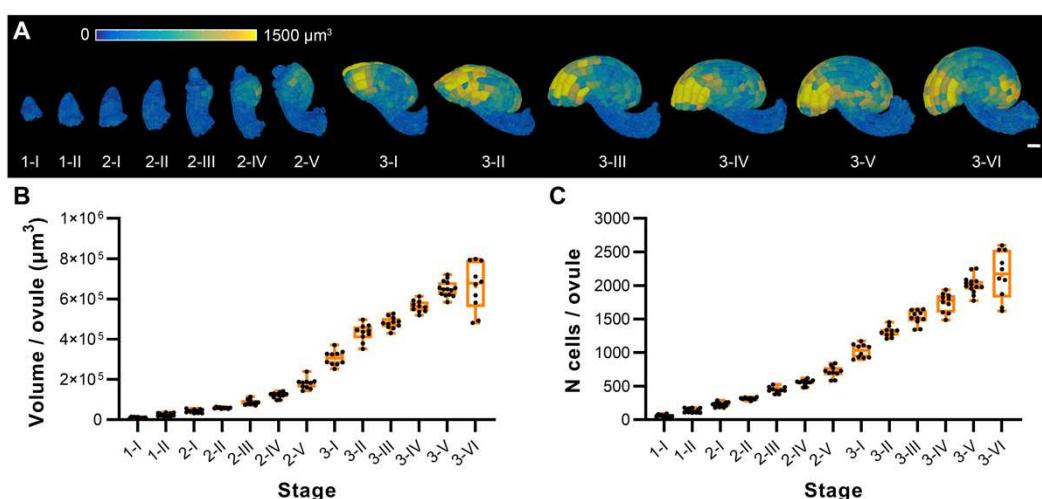

919 **Wolny, A., Cerrone, L., Vijayan, A., Tofanelli, R., Barro, A. V., Louveaux, M.,**
920 **Wenzl, C., Strauss, S., Wilson-Sánchez, D., Lymbouridou, R., et al. (2020).**
921 **Accurate and versatile 3D segmentation of plant tissues at cellular resolution.**
922 *Elife* **9**, e57613.

923 **Yoshida, S., Barbier de Reuille, P., Lane, B., Bassel, G. W., Prusinkiewicz, P.,**
924 **Smith, R. S. and Weijers, D. (2014).** Genetic control of plant development by
925 overriding a geometric division rule. *Dev. Cell* **29**, 75–87.

926

927 **Figures and figure legends**

928



929

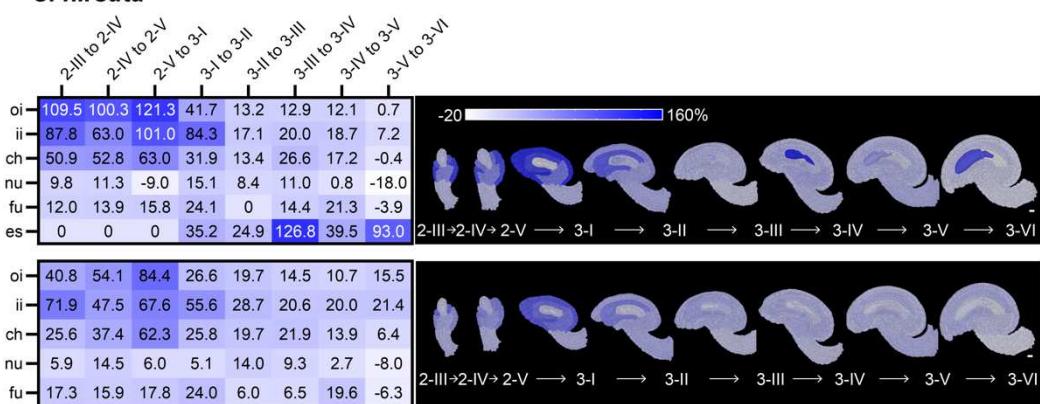
930 **Fig 1. A 3D digital atlas of *C. hirsuta* ovule development.** (A) *C. hirsuta* ovule
931 development from initiation at stage 1-I to maturity at stage 3-VI. Images are 3D
932 renderings of CLSM z-stacks of ovules with SR2200-stained cell walls. The anterior-
933 posterior and proximal-distal axes are indicated. (B) Approximate mid-sagittal 2D
934 sections of cell-type labeled 3D ovule meshes from stages 1-I to 3-VI showing the cell
935 type organization in wild-type ovules. Stages 1-I to 2-II labeling includes radially
936 organized L1, L2, L3 layers. From stage 2-III up to 3-VI, individual cell-type labels
937 are tissue-specific and are represented with different colors. (C) Megasporangium

938 cell development in stage 2 primordia and embryo sac development from mono-
939 nuclear embryo sac (stage 3-I) up to seven-celled, eight-nucleate embryo sac (stage 3-
940 VI). Abbreviations: ach, anterior chalaza; es, embryo sac; fu, funiculus; ii1, inner
941 layer of inner integument; ii1', parenchymatic layer of inner integument; ii2, outer
942 layer of inner integument; nu, nucellus; oi1, inner layer of outer integument; oi2, outer
943 layer of outer integument; pch, posterior chalaza. Scale bars: A and B, 20 μm ; C, 10
944 μm .

945

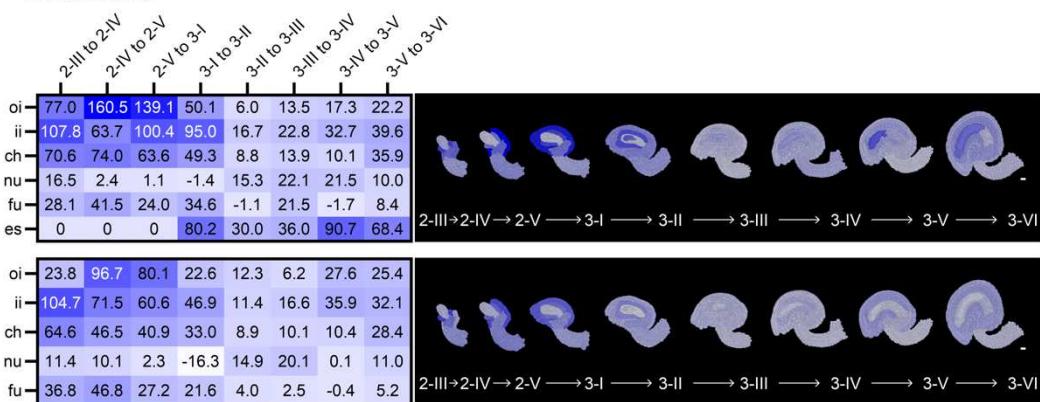
946

947 **Fig 2. *C. hirsuta* overall growth patterns across ovule developmental stages. (A)**
948 3D cell meshes of the developmental series of wild-type ovules, showing heat maps of
949 the cell volume in the range from 0 to 1500 μm^3 . (B,C) Plots depicting the total
950 volume and total number of cells of individual ovules from early to late stages of
951 development, respectively. Data points indicate individual ovules. Mean \pm SD is
952 shown. Scale bar: 20 μm .


953

954

955

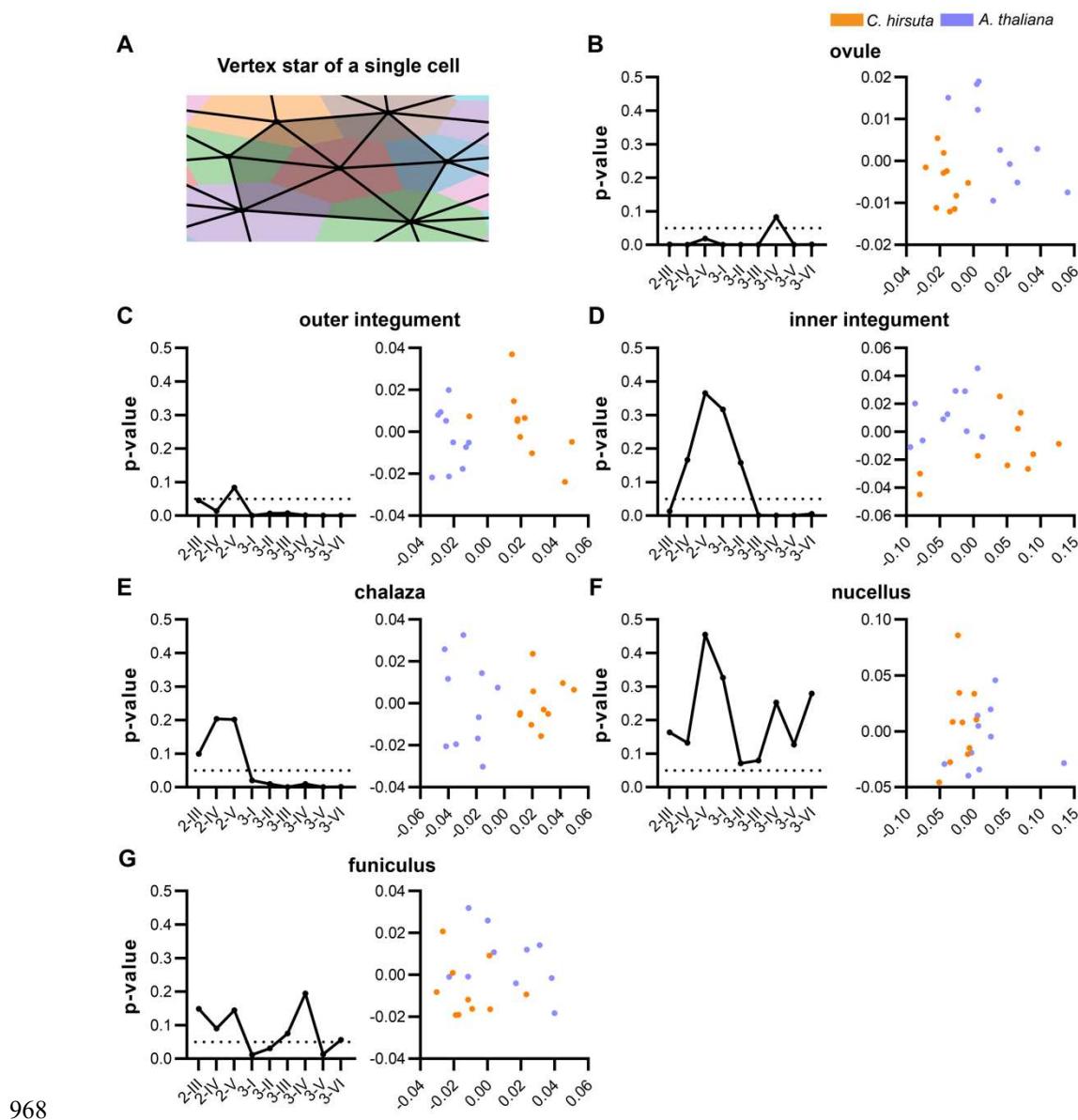

A

C. hirsuta

B

A. thaliana

956


957 **Fig 3. Comparative trends of tissue growth dynamics underlying *C. hirsuta* and**
958 ***A. thaliana* ovule development. (A) *C. hirsuta* and (B) *A. thaliana* relative tissue**
959 **growth (top) and relative tissue cell proliferation (bottom) between two consecutive**
960 **stages. (A–B) Heatmaps (left) and mid-sagittal sections (right) depicting relative**
961 **tissue growth (top) and cell proliferation (bottom) across the different ovule stages**
962 **from 2-III to 3-VI. Heatmap values indicate % change in mean parameter from**
963 **previous stage to the next relative to the previous stage. Scale bars: 10 μ m.**

964

965

966

967

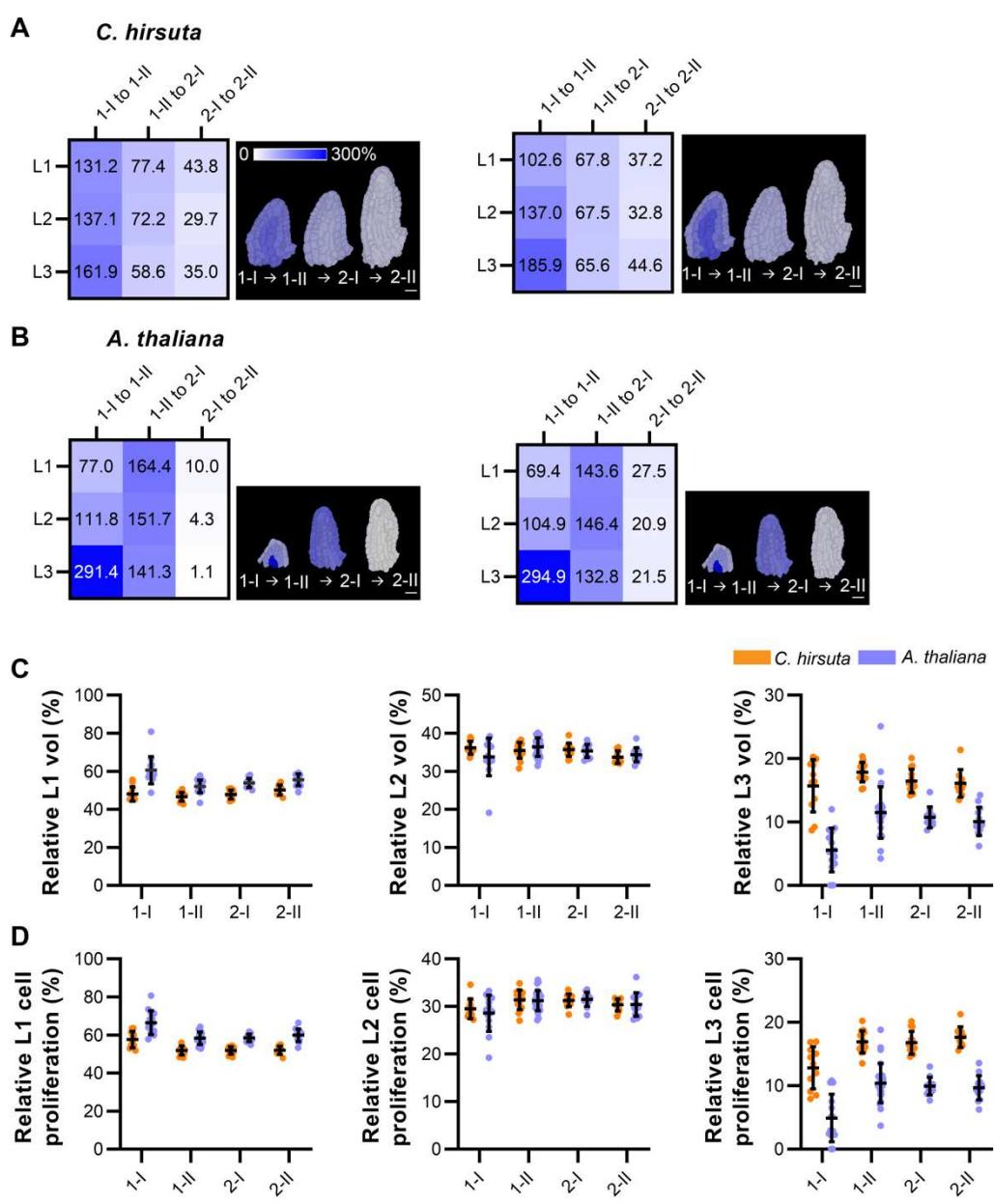
969 **Fig 4. Topological analysis of 3D cellular architectures for *C. hirsuta* and *A.***

970 ***thaliana*.** (A) The nerve complex (black lines) of a collection of cells (colored). The

971 0- and 1-simplices and the vertex star (1 vertex, 6 edges, 6 triangles; grey area) of the

972 red cell are visualized. (B-G) Left panels: p-values obtained from comparison of *C.*

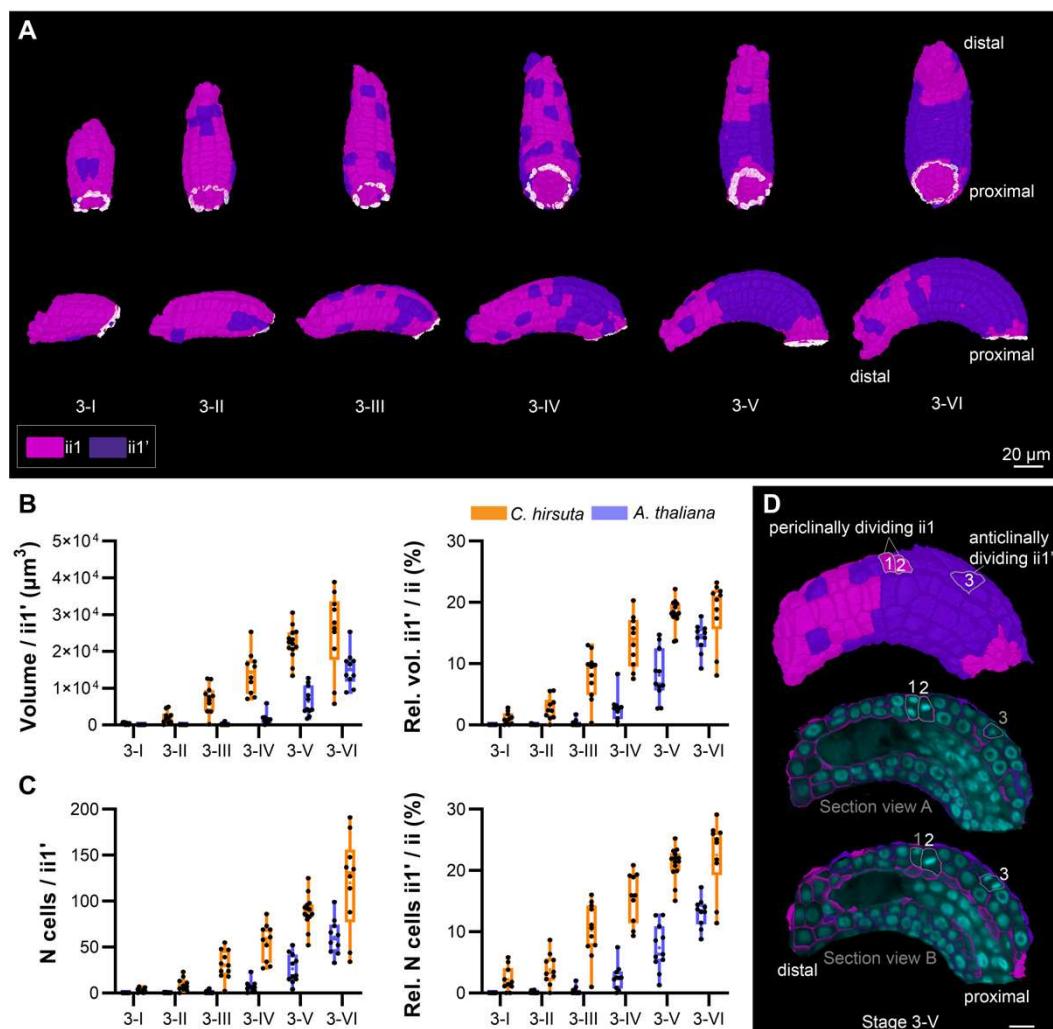
973 *hirsuta* vs *A. thaliana* ovules across different stages, taking into account all cells of


974 the ovule (B), only cells of outer integument (C), inner integument (D), chalaza (E),

975 nucellus (F), and funiculus (G). The dashed line indicates $p = 0.05$. (B-G) Right

976 panels: scatter plots of the feature vectors after applying PCA to stage 3-VI ovules of

977 *C. hirsuta* (orange) and *A. thaliana* (blue), taking into account all cells of the analyzed
 978 ovule or tissue.


979

981 **Fig 5. Differential radial layer-specific growth dynamics underlie *C. hirsuta* and**
 982 ***A. thaliana* early ovule development. (A) *C. hirsuta* and (B) *A. thaliana* relative**
 983 **tissue growth (left) and relative tissue cell proliferation (right) between two**
 984 **consecutive stages. (A,B) Heatmaps and mid-sagittal sections depicting relative tissue**
 985 **growth (left) and cell proliferation (right) across different consecutive ovule stages**

986 from 1-I to 2-II. Heatmap values indicate % change in mean parameter from previous
987 stage to the next relative to the previous stage. (C,D) Plots depicting relative
988 contribution of each radial tissue layer to the entire ovule primordium in terms of (C)
989 total volume and (D) total cell proliferation. Data points indicate individual ovule
990 primordia. Mean \pm SD is shown. Scale bars: 10 μ m.

991

992

993 **Fig 6. Development of parenchymatic inner integument layer in *C. hirsuta*. (A)**
994 The origin and propagation of the parenchymatic ii1 (ii1') layer from stages 3-I up to
995 3-VI. Cells of the ii1' layer are kept in blue. Upper panel: bottom view of 3D surface.
996 Bottom panel: side view of 3D surface. Note that the ii1' layer emerges as a patch of
997 connected cells but later forms a ring-like structure of connected cells covering the

998 proximal half of the inner integument, but still having patches of cells that are not a
999 part of the ring. (B,C) Quantitative cellular analysis of the ii1' layer. Data points
1000 indicate individual ovules. Mean \pm SD is shown. Stages are indicated. (B) Left panel:
1001 plot depicting the total volume. Right panel: plot depicting the relative contribution of
1002 ii1' volume to the volume of the entire inner integument. (C) Left panel: total cell
1003 number of ii1'. Right panel: the relative contribution of ii1' total cell number to the
1004 cell number of the entire inner integument. (D) Side surface view (top) and section
1005 views (middle, bottom) of a stage 3-V ovule ii1 and ii1' layers' 3D cell mesh. In the
1006 section views, the overlaid nuclei z-stack showing the contribution of both periclinal
1007 divisions (cells 1 and 2 of ii1) and anticlinal divisions (cell 3 of ii1') contribute to the
1008 propagation of *C. hirsuta* ii1' layer. Scale bars: (A) 20 μ m, (D) 10 μ m.
1009

1010 **Tables**

1011 **Table 1. Cell numbers, cell volumes, and total volumes of *C. hirsuta* ovules at**
1012 **different developmental stages**

Stage	N ^a	N cells	Cell volume (μ m ³)	Total volume ($\times 10^4$ μ m ³)
1-I	11	60.9 \pm 16.4	170.1 \pm 68.7	1.0 \pm 0.3
1-II	15	135.9 \pm 31.1	181.5 \pm 68	2.5 \pm 0.7
2-I	13	228.2 \pm 33.2	185.0 \pm 85.6	4.3 \pm 0.8
2-II	10	315.1 \pm 17.4	184.9 \pm 104.1	5.9 \pm 0.4
2-III	10	444.9 \pm 45.8	194.6 \pm 113.8	8.7 \pm 1.3
2-IV	11	555.0 \pm 42.3	218.9 \pm 137.4	12.2 \pm 1.4
2-V	10	714.1 \pm 84.1	251.2 \pm 184.1	18.0 \pm 2.6
3-I	10	1023.5 \pm 101.7	297.0 \pm 252.3	30.6 \pm 3.6

3-II	10	1311.5 ± 76.6	326.9 ± 297.4	43.2 ± 4.2
3-III	11	1525.0 ± 107.8	312.8 ± 288.7	48.1 ± 2.8
3-IV	10	1744.3 ± 144.6	318.0 ± 286.3	56.3 ± 2.9
3-V	14	2014.3 ± 131.2	317.6 ± 294.4	65.1 ± 3.8
3-VI	10	2159.5 ± 355.2	297.7 ± 253.8	66.3 ± 11.8

1013

^aNumber of specimens scored.

1014 Values represent mean \pm SD.

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024 **Table 2. Layer volumes of *C. hirsuta* ovule primordia**

Stage	Volume/layer ($\times 10^3 \mu\text{m}^3$)		
	L1	L2	L3
1-I	5.0 ± 1.4	3.7 ± 1.0	1.7 ± 0.8
1-II	11.5 ± 3.3	8.8 ± 2.8	4.4 ± 1.3
2-I	20.4 ± 4.0	15.2 ± 2.9	7.0 ± 1.6
2-II	29.4 ± 2.2	19.7 ± 1.2	9.5 ± 1.7

1025

≥ 10 3D digital ovules scored per stage.

1026 Values represent mean \pm SD.

1027

1028

1029

1030

1031

1032 **Table 3. Cell numbers in the different radial layers of**
1033 ***C. hirsuta* ovule primordia**

1034

	Cell number/layer		
Stage	L1	L2	L3
1-I	34.8 ± 8.5	18 ± 5.0	8.1 ± 3.7
1-II	70.5 ± 16.2	42.7 ± 10.1	23.1 ± 6.3
2-I	118.4 ± 17.4	71.5 ± 11.1	38.3 ± 7.2
2-II	162.4 ± 7.5	94.9 ± 6.9	55.4 ± 7.7

1035

1036 ≥ 10 3D digital ovules scored per stage.

1037 Values represent mean ± SD.

1038

1039 **Table 4. Cell volumes in the different radial layers of**
1040 ***C. hirsuta* ovule primordia**

1041

	Layer-specific cell volume (μm ³)		
Stage	L1	L2	L3
1-I	159 ± 61.7	229 ± 81.9	229 ± 70.2
1-II	165 ± 56.3	208 ± 72.1	192 ± 69
2-I	173 ± 62.9	208 ± 86.5	183 ± 68.8
2-II	181 ± 64.7	199 ± 98	171 ± 64.9

1042

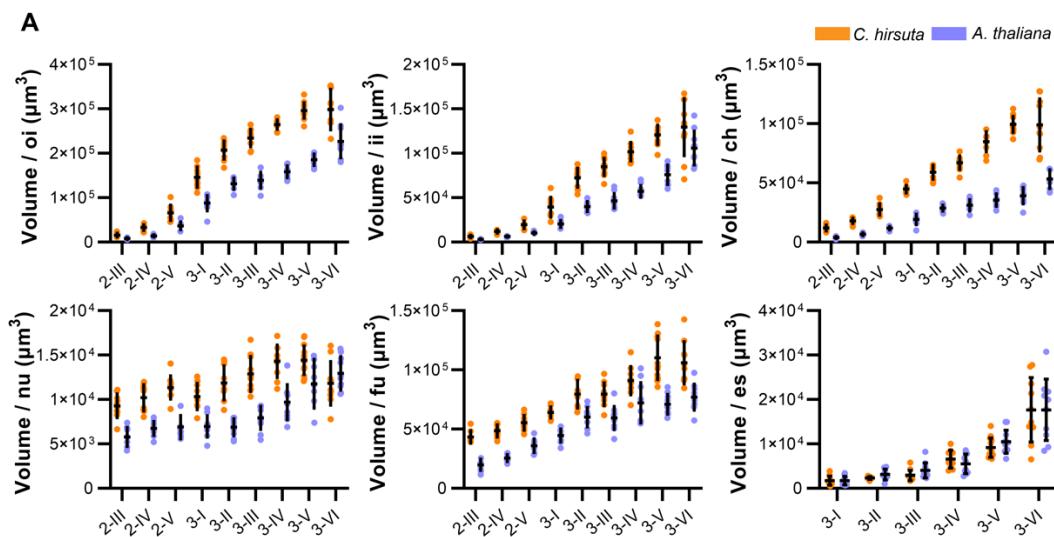
1043 ≥ 10 3D digital ovules scored per stage.

1044 Values represent mean ± SD.

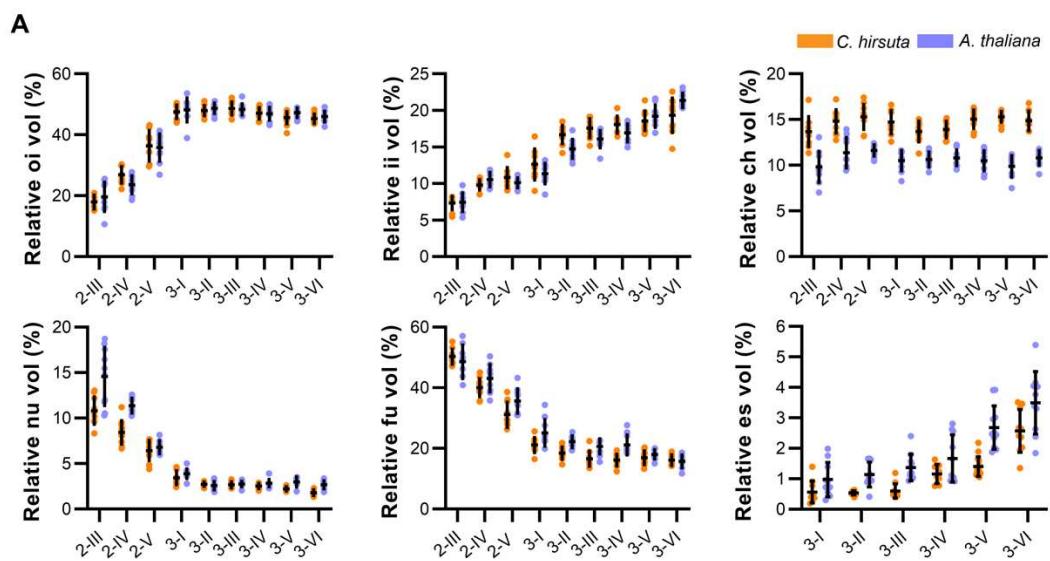
1045

1046

1047


Diverse 3D cellular patterns underlie the development of *Cardamine hirsuta* and *Arabidopsis thaliana* ovules

Tejasvinee Atul Mody¹, Alexander Rolle², Nico Stucki², Fabian Roll², Ulrich Bauer², and Kay Schneitz¹


¹Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany

²Applied and Computational Topology, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, 85747 Garching, Germany

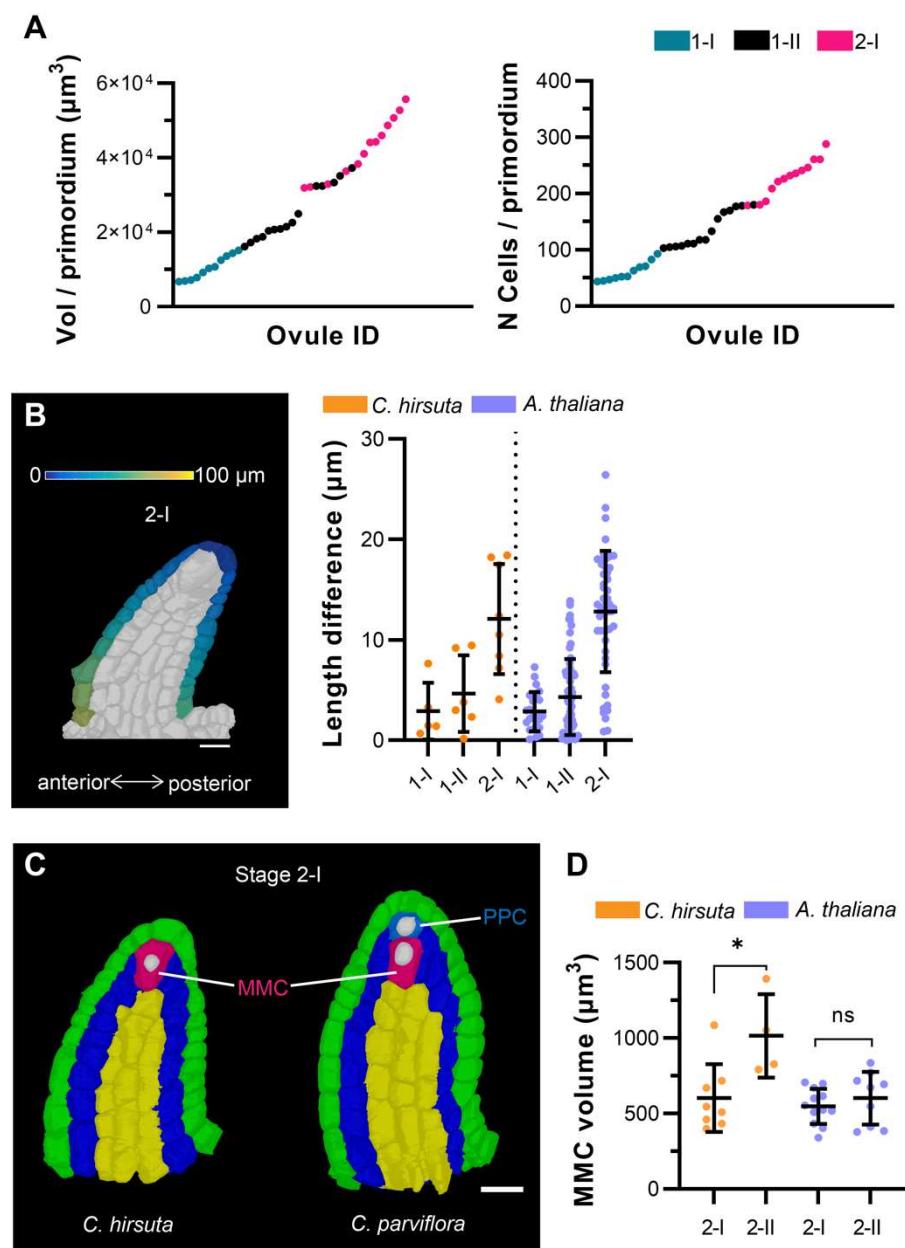

Supplement

Figure S1: Comparison of tissue-specific volumes of *C. hirsuta* and *A. thaliana* ovules. Plots comparing total tissue volumes of the outer integument, inner integument, chalaza, nucellus, funiculus, and embryo sac of wild type *C. hirsuta* and *A. thaliana* ovules at stages 2-III to 3-VI. Data points indicate individual ovules. Mean \pm SD are represented as bars and whiskers. Abbreviations: ch, chalaza; es, embryo sac; fu, funiculus; ii, inner integument; nu, nucellus; oi, outer integument.

Figure S2. Comparative differences in relative contributions of tissue-specific volumes to the entire ovule. Plots comparing the relative contribution of the volume of each tissue to that of the entire ovule for both *C. hirsuta* and *A. thaliana* at different stages. Data points indicate individual ovules. Mean ± SD are represented as bars and whiskers. Abbreviations: ch, chalaza; es, embryo sac; fu, funiculus; ii, inner integument; nu, nucellus; oi, outer integument.

Figure S3. Developmental features underlying the growth of *C. hirsuta* ovule primordia. (A) *C. hirsuta* primordia grow in a continuous manner. (A) Left panel: plot indicating the total volume of primordia ordered according to increasing volume. Right panel: plot depicting the total number of cells in the ovules ordered according to the increasing number of cells. Data points indicate individual ovules and are colored by stage. (B) *C. hirsuta* primordia show slanting. Left panel: 2D section view of a stage 2-I 3D cell mesh; the heatmap on the surface cells of posterior and anterior halves depicts the quantified distance value between individual measured cells to the distal tip of primordia. Right panel: plot showing a comparison of the extent of slanting of *C. hirsuta* and *A. thaliana* primordia, quantified by the difference in maximal length on the anterior and posterior sides of ovule at stages 1-I, 1-II, and 2-I. Data points indicate individual ovules. Mean \pm SD are represented as bars and whiskers. (C) MMC development in Cardamine. *C. hirsuta* is tenuinucellate; the

MMC is directly located below the epidermis. *C. parviflora* is crassinucellate; the MMC is located below the primary parietal cell that lies between the epidermis and MMC. Scale bar 10 μm . (D) Plot showing a comparison of MMC volume of stage 2-I and 2-II primordia of *C. hirsuta* and *A. thaliana*. Mean \pm SD are represented as bars and whiskers. Abbreviations: MMC, megasporangium; PPC, primary parietal cell.

**Table S1. Cell volumes of *A. thaliana* ovules
at different developmental stages**

Stage	N ^a	Cell volume (μm^3) ^b
1-I	14	128.4 \pm 44.6
1-II	28	130.1 \pm 45.1
2-I	11	141.3 \pm 58.2
2-II	13	121.1 \pm 58.2
2-III	10	125.2 \pm 84.0
2-IV	10	132.5 \pm 98.7
2-V	10	148.8 \pm 99.7
3-I	10	189.0 \pm 172.9
3-II	10	227.4 \pm 218.8
3-III	11	223.4 \pm 213.8
3-IV	10	242.5 \pm 224.4
3-V	11	243.2 \pm 230.8
3-VI	10	251.5 \pm 229.5

^aNumber of specimens scored.

^bValues represent mean \pm SD.

Table S2. Total volumes of major ovule tissues in *C. hirsuta*

Stage	Tissue volume (x10 ⁴ μm^3)					
	Nucellus	Embryo sac	Central region	Inner integument	Outer integument	Funiculus
2-III	0.9 ± 0.1	-	1.2 ± 0.3	0.6 ± 0.1	1.6 ± 0.4	4.3 ± 0.5
2-IV	1.0 ± 0.1	-	1.8 ± 0.2	1.2 ± 0.2	3.3 ± 0.6	4.9 ± 0.5
2-V	1.1 ± 0.1	-	2.7 ± 0.5	2.0 ± 0.4	6.6 ± 1.7	5.5 ± 0.6
3-I	1.0 ± 0.1	0.17 ± 0.10	4.5 ± 0.3	3.9 ± 1.1	14.6 ± 2.3	6.4 ± 0.5
3-II	1.2 ± 0.2	0.23 ± 0.03	5.9 ± 0.6	7.2 ± 1.1	20.7 ± 2.1	8.0 ± 1.0
3-III	1.3 ± 0.2	0.29 ± 0.11	6.7 ± 0.6	8.5 ± 1.0	23.4 ± 2.0	8.0 ± 1.0
3-IV	1.4 ± 0.2	0.65 ± 0.20	8.5 ± 0.8	10.2 ± 1.0	26.5 ± 1.1	9.1 ± 1.2
3-V	1.4 ± 0.2	0.91 ± 0.22	9.9 ± 0.7	12.1 ± 1.1	29.7 ± 1.7	11.0 ± 1.8
3-VI	1.2 ± 0.2	1.76 ± 0.72	9.9 ± 2.2	13.0 ± 3.2	29.9 ± 4.6	10.6 ± 1.8

≥ 10 3D digital ovules scored per stage.

Values represent mean ± SD.

Table S3. Total cell numbers of major ovule tissues in *C. hirsuta*

Stage	Tissue cell number				
	Nucellus	Central region	Inner integument	Outer integument	Funiculus
2-III	52.2 ± 6.1	72.6 ± 11.7	33.8 ± 5.1	62.5 ± 12.7	223.8 ± 27.1
2-IV	55.3 ± 6.9	91.2 ± 8.7	58.1 ± 8.6	88 ± 10.5	262.5 ± 24.3
2-V	63.3 ± 7.7	125.3 ± 20.6	85.7 ± 16.7	135.6 ± 20.1	304.2 ± 34.1
3-I	67.1 ± 5.6	203.3 ± 20.6	143.6 ± 31.5	250 ± 30.6	358.4 ± 33.4
3-II	70.5 ± 6.8	255.8 ± 26.3	223.5 ± 33.7	316.4 ± 27.8	444.3 ± 31.5
3-III	80.4 ± 11.2	306.1 ± 31.9	287.6 ± 45.2	378.8 ± 35.7	471 ± 46.2
3-IV	87.8 ± 13.6	373 ± 40.3	346.8 ± 44.1	433.7 ± 33.8	501.6 ± 53.6
3-V	90.1 ± 13.2	424.9 ± 26.9	416.1 ± 40.8	480.3 ± 16.6	600 ± 76.3
3-VI	82.9 ± 15.3	452.2 ± 92.1	505.3 ± 125.5	554.7 ± 97.5	562 ± 68.0

≥ 10 3D digital ovules scored per stage.

Values represent mean ± SD.

Table S4. Cell volumes of major ovule tissues in *C. hirsuta*

Stage	Tissue cell volume (μm^3)				
	Nucellus	Central region	Inner integument	Outer integument	Funiculus
2-III	177.7 \pm 242.3	163.9 \pm 64.5	188.7 \pm 84.5	251.8 \pm 103.4	193.3 \pm 73.46
2-IV	184 \pm 235.7	196.9 \pm 92.1	206.4 \pm 86.1	374.6 \pm 163.4	184.4 \pm 70.37
2-V	178.7 \pm 210.7	219 \pm 112.5	227.9 \pm 96.9	486.7 \pm 238.9	181.1 \pm 75.96
3-I	155.7 \pm 113.6	225.2 \pm 137.4	283.1 \pm 131.3	603 \pm 345.6	180.4 \pm 73.56
3-II	166 \pm 117.2	229.4 \pm 160.4	323.5 \pm 159.5	653.5 \pm 405.5	177.7 \pm 78.8
3-III	158 \pm 104	217.4 \pm 166	294.3 \pm 153.3	617.7 \pm 392.8	167.5 \pm 73.5
3-IV	160.7 \pm 105	225.5 \pm 183.5	293.2 \pm 151.8	609.1 \pm 391.4	179.7 \pm 77.3
3-V	157.6 \pm 89.6	231.8 \pm 205.5	289.9 \pm 145.2	616.4 \pm 416	182.3 \pm 82.8
3-VI	139.5 \pm 102	216.8 \pm 200.7	256 \pm 132.7	537.5 \pm 335.3	187.1 \pm 83.5

≥ 10 3D digital ovules scored per stage.

Values represent mean \pm SD.

Table S5. P values from two-sample test applied to nerve-based feature vectors of *A. thaliana* and *C. hirsuta*

Stage	Ovule	Outer integument	Inner integument	Chalaza	Nucellus	Funiculus
2-III	1.1×10^{-3}	4.6×10^{-2}	1.3×10^{-2}	9.9×10^{-2}	1.6×10^{-1}	1.5×10^{-1}
2-IV	0	1.3×10^{-2}	1.7×10^{-1}	2.0×10^{-1}	1.3×10^{-1}	9.0×10^{-2}
2-V	1.8×10^{-2}	8.4×10^{-2}	3.7×10^{-1}	2.0×10^{-1}	4.6×10^{-1}	1.4×10^{-1}
3-I	5.0×10^{-4}	7.0×10^{-4}	3.2×10^{-1}	2.0×10^{-2}	3.3×10^{-1}	1.2×10^{-2}
3-II	0	6.5×10^{-3}	1.6×10^{-1}	9.5×10^{-3}	7.1×10^{-2}	3.0×10^{-2}
3-III	1.0×10^{-4}	7.5×10^{-3}	1.1×10^{-3}	2.0×10^{-4}	8.0×10^{-2}	7.5×10^{-2}
3-IV	8.3×10^{-2}	1.0×10^{-3}	4.0×10^{-4}	9.6×10^{-3}	2.5×10^{-1}	1.9×10^{-1}
3-V	0	1.0×10^{-4}	1.0×10^{-4}	1.0×10^{-4}	1.3×10^{-1}	1.3×10^{-2}
3-VI	9.0×10^{-4}	6.0×10^{-4}	5.2×10^{-3}	9.0×10^{-4}	2.8×10^{-1}	5.6×10^{-2}