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Abstract 

Spatial information is encoded by location-dependent hippocampal place cell firing rates and 
sub-second, rhythmic modulation of spike times. These 8rate9 and 8temporal9 codes have 
primarily been characterized in low-dimensional environments under limited cognitive 
demands; but how is coding configured in complex environments when individual place cells 
signal several locations, individual locations contribute to multiple routes and functional 
demands vary? Quantifying rat CA1 population dynamics during a decision-making task, we 
show that the phase of individual place cells9 spikes relative to the local theta rhythm shifts to 
differentiate activity in different place fields. Theta phase coding also disambiguates repeated 
visits to the same location during different routes, particularly preceding spatial decisions. 
Using unsupervised detection of cell assemblies alongside theoretical simulation, we show that 
integrating rate and phase coding mechanisms dynamically recruits units to different 
assemblies, generating spiking sequences that disambiguate episodes of experience and 
multiplexing spatial information with cognitive context. 
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sequences  

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.06.570348doi: bioRxiv preprint 

mailto:eleonora.russo@zi-mannheim.de
https://doi.org/10.1101/2023.12.06.570348
http://creativecommons.org/licenses/by-nd/4.0/


2 

 

Introduction 

Hippocampal coding multiplexes over broad temporal scales incorporating prior, current, 
and future contextual information 1,2. Among pyramidal cells of hippocampal CA1, transient 
firing rate increases lasting from hundreds to thousands of milliseconds encode the position of 
an animal within a specific environment (8place cells;3,4), signal goal-locations 5, mark time 
intervals 6, respond to specific odors 7, sounds 8, objects 9 and, in humans, to other people9s 
identities 10. The information required to form these multimodal representations 11, converges 
to the hippocampus from cortical and subcortical regions 12, building context-specific cognitive 
rate-maps 13,14. 

In conjunction with rate coding, hippocampal units also coordinate at much faster temporal 
scales, entrained to the dominant state-dependent oscillations of the local field potential (LFP): 
5-10 Hz theta rhythms, during active exploration and REM sleep, and sharpwave-ripples during 
immobility and non-REM sleep. Theta phase precession 15, theta sequences 16, and ripple-
associated replay 17 produce single- or multi-unit activity patterns with temporal precision on 
the order of tens of milliseconds. During phase precession, the spiking phase of a place cell 
with respect to the ongoing theta oscillation shifts to earlier times in the cycle as the animal 
moves through that unit9s spatial receptive field (8place field9). At the population level, the 
temporally ordered, sequential activation of place cells within a theta cycle gives rise to 
characteristic theta sequences. Both processes provide a temporal code for spatial 
information: during phase precession the position of the animal within a cell9s place field 
correlates with theta phase of that cell9s spikes 15, while theta sequences reflect past and 
imminent trajectories 18,19. Moreover, in addition to spatial information, recent studies on goal-
directed behaviors have uncovered theta sequences reflecting current goals 20,21 and 
hypothetical future experiences 22, suggesting contributions of hippocampal temporal coding 
to planning and speculation.  

Despite their different time scales, the processes governing hippocampal rate and temporal 
coding are not independent. Firstly, the order in which units activate during theta cycles and 
replays reflects in large part the sequences in which place fields are crossed by the animal 
during exploration (but see also 23). Secondly, the interplay between fast somatic inhibition and 
slow dendritic depolarization as the animal crosses the respective neuron9s place field has 
been proposed as a possible mechanism behind phase precession 24–27. Despite evidence for 
cross-temporal dependencies, the functional implications of these interactions for hippocampal 
information processing remain equivocal. 

Here, we ask whether the conjunction of firing rate and phase (temporal) coding regimens 
endows place cell networks with refined information processing capacities, integrating 
contextual rate information into phase coding and differentiating between visits to the same 
locations under different cognitive demands. We therefore used a recently-developed method 
for unsupervised detection of functional assemblies to quantify how the information encoded 
by rate assemblies at 100 ms - 1 s timescales can affect the < 100 ms temporal coding of their 
constituent units in the CA1 region of rats performing a spatial working memory task. Under 
these conditions, we found that both theta phase and firing rate of place cells shift when the 
cell activates within different assemblies recruited according to task trial demands. Rate and 
temporal codes therefore coalesce, allowing CA1 populations to parse repeated visits to the 
same locations into different episodic contexts. 
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Results 

Five adult Long Evans rats were trained to perform a spatial working memory decision 
making task on an end-to-end T-maze. During each trial, rats learned to run from one side of 
the maze to the opposite to collect 0.1 ml of sucrose solution at reward locations. Trials were 
subdivided into free choice and guided runs. During choice runs, rats started from one of the 
two reward locations marked with 8G9 in Fig. 1a and were directed by a moveable door to turn 
right (from G1) or left (from G2) into the central arm of the maze. Having traversed the central 
arm, rats had to choose whether to turn right or left at the open T-junction to continue towards 
the reward locations in 8C9. A correct choice required rats to leave the central arm by turning in 
the same direction as they entered it (i.e. correct runs were from G1-C1 or G2-C2). Reward 
was delivered only upon correct trials. Choice trials were followed by guided trials that led the 
rats back to the 8G9 side of the maze via a pair of predetermined turns guided by motorized 
moveable doors. All guided runs ended with reward. Data presented here are from rats that 
had learned task rules over between 16-23 days of habituation and training, and were 
performing 40 trials per recording session at between 71-90% correct. A total of 163 units was 
recorded from the dorsal CA1 (Supplementary Fig. 1) during 10 recording sessions from 5 
rats. Among these, we isolated putative place cells by selecting units with a mean firing rate 
between 0.2 Hz and 4 Hz and with spatial information above 0.5 bits/s 28. The remaining 131 
units were used in the following analyses.  

Functional cell assemblies were identified with the unsupervised machine learning algorithm 
for Cell Assembly Detection (CAD) 29. CAD detects and tests arbitrary multi-unit activity 
patterns that re-occur more frequently than chance in parallel single-unit recordings. The 
algorithm automatically corrects for non-stationarity in the units9 activities and scans spike 
count time series at multiple temporal resolutions, returning the characteristic timescales at 
which individual assembly patterns coordinate. Thanks to a flexible agglomeration algorithm, 
CAD can detect assemblies with any activity pattern, avoiding a priori limits on the 
characteristics of the detected motifs. In this manuscript, we refer to functional cell assemblies 
as any group of units whose activation coordinates with temporal precision between 5 msec 
and 5 sec, in arbitrary but consistently reoccurring patterns. 

The two timescales of hippocampal assemblies 

The temporal precision of hippocampal assemblies active during the task ranged from 
milliseconds to seconds, with a strongly bimodal distribution. Detected assemblies fell into two 
major groups: (1) sharp spike patterns with a median of 10% of contributing neurons (sparsity) 
and a temporal precision in the range of 0.006 - 0.06 sec centered around 0.028 sec (spike-

assemblies) and (2) broader firing rate patterns with a median of about 20% contributing units 
and temporal precisions between 0.07 - 3 sec (rate-assemblies) (Fig. 1b). This segregation 
into different timescales did not, however, correspond to different hippocampal cell 
populations; rather, spike- and rate-assemblies were composed of largely overlapping 
populations. About 81% of assembly units participated in assemblies at both time scales. 
Moreover, two units taking part in the same spike-assembly were more likely to join the same 
rate-assembly than expected by chance (average probability of 0.9 against a chance level of 
0.2). This indicates that the same sets of hippocampal units coordinated at temporal precisions 
of both tens and hundreds of milliseconds. 

In order to understand the origin of these two characteristic time scales, we examined 
assembly activations in space and time. Figure 1 shows representative examples of activity 
patterns (Figs. 1d, e) and place fields (Figs. 1f, g) for both assembly groups. Rate-assemblies 
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reflected the simultaneous or sequential activation of the place fields of their constituent units 
activated in specific maze locations and/or along task relevant trajectories, respectively 
(Supplementary Fig. 2). Their characteristic temporal scale, ranging from hundred 
milliseconds to seconds, was indeed compatible with the time needed by the animal to traverse 
the place field of a unit. Spike-assemblies, instead, had a more localized activation (with 
average spatial information of 2.61±0.08 vs. 2.03±0.05 for rate-assemblies, unpaired t-test, p 
= 3.5 10-10, df = 423) which appeared to be coordinated with the theta rhythm of the local field 
potential (Fig. 1d).  

Spike-assemblies fire spikes phase-locked to the local theta rhythm 

To quantify the relationships between assembly activations and the theta rhythm, we 
isolated the spikes fired by a unit while participating in assembly activations (assembly-spikes, 
in red in Fig. 2a) and compared their theta phase preference with the overall firing phase 
preference of that unit (in black in Fig. 2a). We found that both spike- and rate-assemblies 
were similarly phase modulated (paired-sample two-tailed t-test on the fraction of assembly-
units with phase-locked assembly-spikes per animal in spike- vs rate-assemblies: p = 0.9, df = 
7, Fig. 2b), with about 69% assembly-units phase-locked when active within an assembly 
configuration (all fractions presented here are computed after Benjamini–Hochberg correction 
for multiple comparisons, see Methods for Hodges-Ajne test on phase locking). Yet, the 
percentage of assemblies with a stronger phase modulation during assembly activity when 
compared to the overall activity of the constituent units was higher for spike-assemblies (71%) 
than for rate-assemblies (28%) (paired-sample two-tailed t-test on the fraction of assembly-
units per animal in spike- vs rate-assemblies: p = 4.7 10-07, df = 7, Figs. 2c,d). Thus, while 
theta-modulated units contribute to both spike- and rate-assemblies, rate-assembly activations 
did not specifically coincide with temporal windows of high theta modulation. On the other 
hand, the higher temporal precision of spike-assemblies was associated with enhanced phase-
locking of their contributing members when active within the assembly configuration. 

Individual units change phase preference when active in different assemblies 
As single units were often contributors to multiple assemblies (cf. Fig. 1c) and assemblies 

activated with a characteristic phase preference (cf. Fig. 2b), we wondered whether the phase 
preference of hippocampal units is an assembly-specific property rather than a unit-specific 
one. In other words, do hippocampal units change their phase preference when active in 
different assemblies? We found that among all units taking part in at least two phase-locked 
assemblies about 40% (fraction computed after Benjamini–Hochberg correction for multiple 
comparisons) changed their phase preference when active in different assemblies of the same 
temporal resolution (Figs. 3a, b, see Methods for nonparametric test on equality of median 
phase). This relative phase-shift was found both in spike- and rate-assemblies, with a slight 
trend toward a larger proportion of units with significant phase-shift in spike-assemblies 
(paired-sample two-tails t-test: p=0.08, df=7, Fig. 3b).  

Phase coding of hippocampal assemblies 

To investigate whether such shifts in phase encoded spatial or contextual information, we 
focused the analysis on those units changing phase when active in different assemblies and 
considered their activation during task epochs corresponding to different locations and 
cognitive demands on the end-to-end T-maze. Fig. 3c and Supplementary Fig.  3 show the 
activation along the maze of some typical units and the assemblies they joined. While single 
units fired in multiple locations, assembly activations were more selective (resulting in average 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.06.570348doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.06.570348
http://creativecommons.org/licenses/by-nd/4.0/


5 

 

spatial information of 2.21 ± 0.04 vs. 1.28 ± 0.06 for single units), typically signaling one of the 
place fields of their constituent units and/or only a particular run type or direction. 

This enhanced selectivity suggests that theta phase coding in hippocampal units extends 
beyond phase precession: while phase precession relative to the ongoing theta oscillation 
correlates with the distance covered by the animal within a unit9s place field, here we observed 
a phase preference disambiguating the activation of different assemblies in disjoined locations. 
We therefore hypothesised that theta phase coding of hippocampal units is not limited to the 
animal9s position within a place field, but is also associated with different locations or contexts 
in the environment.  

Place-cell firing phase can encode distinct place fields 

Different phase preferences of different assemblies could in principle be explained by the 
phenomenon of phase precession if assemblies systematically recruited spikes from different 
parts of the same place field(s), thereby incorporating spikes that had precessed to different 
degrees. This is not what we observed (Figs. 3 and Supplementary Fig. 3) but, to completely 
rule out this possibility, we analyzed the phase preference of single units, this time separating 
their spikes according to place field location instead of by assembly membership. This 
approach was extended to all recorded place cells, not only those detected as participating in 
assemblies. In fact, we assume that all CA1 place cells do participate some assembly, but that 
sparse electrophysiological sampling of the CA1 population precludes detection of all potential 
assemblies. 

Above we showed that firing rate assemblies corresponded to the coordinated activation of 
multiple units with overlapping (simultaneous-) or neighbouring (sequential-assemblies) place 
fields. We also showed that single units changed their phase preference when active in 
different rate-assemblies (Fig. 3b). We therefore would expect that separating unit spikes 
according to their place field location would reveal shifts in phase similar to those observed 
when they were separated according to the assembly structure they were participating in. 
Accordingly, we selected all units with multiple place fields and clustered their spikes according 
to their firing location (Fig. 4a, see Methods). In our dataset, all putative place cells had more 
than one place field with a median of five fields per unit. Such a high number of place fields 
per unit was due to the relatively large size of the maze 30 and, critically, to its 
compartmentalization in clearly identifiable segments. Comparing the phase preference with 
respect to place field location, we found that 53% of the tested units changed firing phase when 
active in different place fields (fraction computed after Benjamini–Hochberg correction for 
multiple comparisons, Figs. 4b, 5b).  

The firing phase of place-cells can encode distinct task-related information within the 

same place field 
 Beyond encoding spatial information, the hippocampus has been shown to carry 

information about episodic memories 31,32, sequences 33,34 and abstract relations 35,36. Thus, 
hippocampal assemblies may encode task relevant information other than purely spatial 
parameters. We can therefore expect the recruitment of different assemblies when the animal 
has to remember, e.g., a left turn rather than a right turn, or has to perform a guided turn rather 
than a choice turn. At the single-unit level, this should be reflected by a change of a unit9s 
phase preference for different trial types, even within the same place field. 

Separating unit spikes according to place field as in the previous analysis, we further divided 
the spikes according to the type of trial in which they occurred. Trials were divided into: left and 
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right choice runs, when the animal had to choose between left and right turn, and four different 
types of guided run, in which the sequence of turns was predetermined by the experimenter 
(Fig. 5a). We found that 38% of units changed their phase preference when active in different 
trial types, despite overlapping place-field locations (Fig. 5b, see also Supplementary Fig. 4a 
for same analysis with spikes fired only in epochs of high theta-power). In fact, separating a 
unit9s spikes not just by place field but according to the task epoch they were from resulted in 
narrower and more coherent phase distributions of a unit9s spikes (Fig. 5c). This observation 
was corroborated by training a support vector machine (SVM) classifier on the phase of spikes 
fired in an individual place field to distinguish between trial types. We found that for 40% of 
units at least two trial types within at least one of their place fields could be distinguished above 
chance level (see Methods for details). Moreover, we found that adding information on the 
spike phase to the instantaneous firing rate improved the decoding performance of the SVM 
(paired-sample two-tailed t-test on the accuracy of a SVM classifier trained on the 
instantaneous firing rate of each spike vs. a SVM trained on instantaneous firing rate and 
phase of each spike, p = 9.3 10-7. T-test computed on the subset of place fields which could 
distinguish above chance trial identity in the latter, more powerful, classifier). 

Figure 5c shows an example unit with phase-shift coding at the choice junction of the maze, 
distinguishing left and right turns in choice trials and right turns in different guided trial types. 
Interestingly, the degree of differentiation of the unit phase is maximal when the animal has to 
actively remember its previous path to inform its next turn, and is absent in the guided trials 
when no active choice has to be made and the path covered from trial onset is identical. When 
examining instances of phase-shift coding among trial types, we found that the majority of 
phase-shifts distinguished between left vs. right choice trials and choice vs. guided trials (Fig. 

5d, one-way ANOVA, F(3,33) = 5.0, p = .006; Tukey post-hoc comparisons indicated with 
respect to the figure columns: (I column, IV column) p = 0.048, (II column, IV column) p = 
0.016. See also Supplementary Fig. 4b for same analysis with spikes fired only in epochs of 
high theta-power). This further supports the link between phase-shift and information encoding. 
The type of trial was, in fact, the most relevant information for performing the task correctly. 

Phase-shift leads to context-dependent fine temporal coordination among units. The 
firing phase of hippocampal CA1 principal cells can therefore encode task related information 
to differentiate distinct maze locations or distinct mnemonic information within the same 
location. Such phase coding goes beyond what would be expected by phase precession. 
Nevertheless, phase-shifting and phase precession could share common underlying 
mechanisms. We observed that the population of units with phase-shift coding in at least one 
of their place fields correlated with the population of units with phase precession in at least one 
of their place fields (chi-square test for independence: �2(1,131) = 7.8 , � = 0.005, p-value 
threshold for significance on the test for phase precession and phase-shift of 0.05, see 
Methods). Phase-shifting could occur between place fields with or without phase precession 
(Figs. 6a, b, c). When place-field-dependent phase-shift and phase precession co-occurred, 
the spike phases covered during the precession spanned different phase ranges in the two 
different fields (Fig. 6c).  

Both experimental and theoretical studies have shown how a change in excitation received 
by a hippocampal unit can modify its phase of discharge 24–27,37. This suggests a possible 
interpretation of the phase-shift phenomena: spatial exploration or cognitive tasks recruit 
specific and diverse cell (rate-)assemblies; each assembly is characterized by a set of synaptic 
connections that provides the assembly-units with a stereotypical level of excitation whenever 
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the assembly is activated upon a specific task event; this assembly-specific degree of 
depolarization, combined with an oscillatory somatic inhibition, would thereby generate a 
phase preference, or phase-range preference, typical and specific for the activity of the unit 
within that assembly (Fig. 6d). In line with this hypothesis, we found that differences in average 
phase preference between two sets of spikes also co-occurred with differences in the average 
instantaneous firing rate (see Methods for methodological details). This was true when 
comparing spikes from different place-field locations, within the same location but from 
different trial types, or spikes occurring as part of different spike- or rate-assemblies (chi-
square test of independence on pairs of spike-sets with p-value > or < 0.05 when testing phase 
and instantaneous firing rate differences: different place fields: �2(1,2171) = 12.0 , � =5.4 10−4, same location: �2(1,584) = 11.4 , � = 7.3 10−4, spike-assemblies: �2(1,766) =7.5, � = 0.006, rate-assemblies: �2(1,8269) = 86.8 , � = 0). 

Finally, as for phase precession, the fine coordination of neuron firing with the theta 
oscillation will generate, at the network level, a stereotypical sequence of unit activations 16. In 
the case of phase-shift coding however, the sequence of active units during a theta cycle be 
determined not only by the spatial proximity of their place fields, but will also be affected by the 
identity of the assembly recruited at the time. This implies that the lag between the activation 
of two units within the theta cycle, and consequently the sequence order and composition, 
could vary according to the cognitive demand. We investigated this hypothesis by testing if the 
lag of maximal cross-correlation between two units within a theta cycle changed in different 
trial types (Fig. 6e). To make sure that such a change was not due to occasional outliers but 
was consistent across trials, we selected the lag of maximal cross-correlation for each trial and 
compared the set of lags so obtained by trial type. We performed the analysis for each place 
field of each unit and found that changes in cross-correlation lags occurred with higher 
probability in place fields where units displayed phase-shift coding across trials (chi-square 
test of independence on �2(1,203) = 5.3 , � = 0.02). 

To explore how the activation of different rate assemblies can produce different activation 
sequences along the theta cycle even within the same set of units, we simulated the 
phenomenon with an adaptive exponential integrate-and-fire model 38 (see Methods for formal 
description of the model). As observed in the experimental data, single units could participate 
in multiple assemblies (cf. Fig. 3) and respond at different, but context-consistent, average 
firing rates (cf. Fig. 5). We simulated three units taking part in two rate assemblies. During the 
assembly activation, each unit received an assembly-specific degree of depolarization. 
Assembly retrieval was modelled by the synchronous and transient depolarization of its 
constituent units, while inhibition was on average constant over time, and identical for all units 
and both assemblies. Similarly to soma-dendritic interference models 25,27,37, we captured the 
interplay between the oscillatory inputs to units by sinusoidally modulating both excitatory and 
inhibitory conductances with a relative offset of  rad (Fig. 6f top). As expected, assembly 
activations produced a broad increase in unit firing rate punctuated by faster temporal 
coordination with the theta oscillation (Fig. 6f bottom). To formally detect multi-unit activity 
patterns generated by the assembly activations, we simulated multiple retrievals of the two 
assemblies and analysed the obtained spike trains with CADopti assembly detection algorithm, 
as previously done with our experimental dataset (see Methods and Supplementary Table 1 
for simulations details and CADopti parameters). The activation of both assemblies produced, 
at a fine temporal scale, sequential activity patterns with a mean lag of 0.06 ± 0.005 sec and 
0.07 ± 0.005 sec of the second and the third unit from the first active. Despite the similarity in 
pattern structure, the two assemblies triggered a different activation order of their constituent 
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units. In 98% of the simulations (n = 100 simulations performed with different noise 
realizations), the detected activation sequence reflected the assembly-specific degree of 
depolarization provided to each unit (Fig. 6f inset). More generally, units that received the 
highest depolarization activated first within the theta cycle while, importantly, units receiving 
just a light depolarization terminated the activation sequence.  

Overall, these results highlight how phase-shift coding not only broadens the range of 
information encoded by the hippocampal temporal coding but also contributes to the 
generation of context-specific theta sequences.  

 

Discussion 

The present study investigated phase coding by CA1 cell assemblies in a spatial working 
memory task. The unsupervised detection of functional assemblies confirmed that 
hippocampal coding is characterized by two predominant time scales: a rate scale (8rate 
assemblies9), compatible with place field rate coding, and a much finer temporal scale (8spike 
assemblies9), in agreement with the fine coordination of spikes within the theta band of the 
local LFP. We found that units that participated in a given spike-assembly often co-participated 
in a rate-assembly as well. This is in line with the observation that cells with neighbouring place 
fields engage in both phase- and rate-coordination 16,39. Both spike- and rate-assemblies 
activated in coordination with the theta oscillation, in line with a large body of literature on 
hippocampal assemblies 40–42. In particular, it has been shown that CA1 neurons enhance their 
phase-locking with the ongoing theta rhythm when active within an assembly configuration 42. 
Here, we showed that such enhanced locking is due to the coordination within spike-
assemblies and is reflected in rate-assemblies because of the spike-assemblies nested within 
them.  

The enhanced phase modulation of hippocampal units during assembly activations also 
revealed that units taking part in multiple assemblies changed their preferred spiking phase 
according to the assembly active at the time. This shift often coincided with a change in the 
place-field of activation of the unit when active in one or the other assembly. The observed 
higher specificity of information coding by assemblies with respect to that of the participating 
units therefore agreed with the higher specificity in phase preference exhibited by single units 
when active as part of the assembly. This was true both for spike- and rate-assemblies, and 
was confirmed at the single-unit level when unit spikes were grouped by place field rather than 
by assembly identity. Importantly, phase-shift coding was not limited to spatial information but, 
in addition, reflected other cognitive variables. Specifically, we found that – even when active 
in the same place field – units changed their phase preference in accordance with different 
contextual conditions and task variables. These changes were fast and reversible, in line with 
the hypothesis that they were generated by the transient activation of different cell assemblies. 
This extends the framework proposed in a recent study suggesting that the balance between 
rate and phase coding of spatial information by anatomically distinct place cell subpopulations 
may reflect current (fixed) sensory cue conditions 43; our results show that integration of rate 
and phase coding within a population supports dynamic coding of episodic information in 
response to varying cognitive load.  

Despite the differences in the type of information encoded, phase-shift coding and phase 
precession might be generated by the same underlying mechanism. The models proposed to 
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explain phase precession divide broadly into three categories: phase precession through 
interference between the oscillation of the somatic membrane potential at theta and the 
oscillation of the dendritic potential at a slightly higher frequency 15,44, through a progressive 
dendritic depolarization coupled with somatic oscillatory inhibition 24–27, and through the pattern 
of synaptic transmission delays 45. To this day, unanimous agreement on the mechanism 
behind phase precession is yet to be reached and it is beyond the scope of this manuscript to 
validate one or the other hypothesis. In order to address these various hypotheses, numerous 
experimental efforts have been made to elucidate the relationship between cell depolarization 
and spiking phase. It has been observed that while the animal moves towards the center of a 
cell9s place field, rate and phase of spiking strongly correlate 25,27. This correlation is, however, 
lost as the rate peak is passed and the animal leaves the cell9s place field 46. In vivo whole-cell 
recordings have shown that during phase precession the baseline membrane potential of CA1 
pyramidal neurons undergoes a ramp-like depolarization 47. In vitro, whole-cell patch-clamp 
recordings from dendrites and somata showed that an increase in dendritic excitation, coupled 
with phasic somatic inhibition, causes an increase in the neuron9s firing and the advancement 
of the spiking phase with respect to the somatic modulation 26,37. Similar results were observed 
when progressively depolarizing the membrane potential of hippocampal cells in anesthetized 
animals 24. Thus, despite the asymmetry in rate-phase coupling before and after the rate peak 
is reached, possibly caused by activity-dependent changes in the perisomatic inhibition 37, this 
evidence shows how changes in depolarization lead to changes in discharge phase. In line 
with these observations we found that the changes in phase preference also co-occurred with 
changes in the instantaneous firing rate of the unit. We therefore propose that phase-shift 
coding may be a consequence of the different levels of depolarization provided by the specific 
synaptic embedding within different assemblies activated as the animal encounters different 
cognitive challenges or environmental factors (cf. Fig. 6d).  

The fine temporal coordination of unit activities imposed by phase precession aligns with 
plasticity mechanisms for imprinting episodic information that, otherwise, would be separated 
by seconds. For this reason, phase precession has been proposed as a network mechanism 
for episodic sequence learning 1,16,27,48–51. In support of this hypothesis, studies showed that 
degradation of the temporal coordination of hippocampal units with the theta rhythm, e.g. by 
the administration of the cannabinoid receptor agonist 52 or by muscimol injection into the 
medial septum 53, led to reduced performance in memory tasks despite maintaining an intact 
place-field representation. Moreover, degraded phase precession caused by the passive 
transportation of rats during spatial exploration, drastically reduced replay during subsequent 
sleep 54, a signature of impaired memory consolidation 55–57. The changes in assembly-specific 
phase preference of hippocampal units reported here allow for recombination in the activation 
sequences along the theta cycle. This could contribute to the formation of context-dependent 
theta sequences, supporting the formation of episodic memories and planning 22. 

Goal-dependent theta sequences have been observed during decision-making tasks, 
where the theta sequences terminated with the activation of cells encoding distant goal-
locations 20. In a recent study, theta sequences encoding alternative future decisions have 
been shown to alternate in consecutive theta cycles as the animal approached the choice 
location 22. The process by which goal-related theta sequences form is still unclear, as is the 
causal relation between phase precession and theta sequences (see 58 for review). A possible 
hypothesis is that during the early stages of learning, inter-regional assemblies (e.g. prefrontal-
hippocampal assemblies 59–61 or medial-septum-hippocampal assemblies 62), recruited at each 
theta cycle 63, modulate the depolarization of hippocampal units thereby dynamically producing 
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goal-dependent cycling activity. In particular, as implied by our theoretical model (cf. Fig. 6f), 
a low-level generalized depolarization of cells encoding the current goal location could explain 
their spiking at the end of theta sequences also when the animal is far from the goal location 
20. Such assembly-specific cycling activity could then be reinforced in theta sequences through 
plasticity mechanisms, especially within networks rich in recurrent collaterals such as CA3. 
Indeed, similar mechanisms as observed here for assembly-dependent phase preference of 
CA1 units may also play a role in organizing phase preferences of neurons across other brain 
regions, consistent with evidence for phase precession in the dentate gyrus 64, CA3 64,65, 
entorhinal cortex 64,66, subiculum 67, ventral striatum 68 and in the medial prefrontal cortex 69. 
Such distributed processing would therefore support the integration of spatial and temporal 
information into cognitive contexts at a timescale commensurate with rapid adaptive behaviors, 
dynamically aligning different hippocampal assemblies with different subsets of neocortical and 
subcortical neurons.  
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Figures 

 

 

Figure 1 | The two timescales of hippocampal assemblies. (a) Maze and task schematic. Task trials 
constitute choice and guided runs. In choice runs, the animal runs in direction G→C, deciding between 
left or right turns at the T-junction marked in gray. Correct choice is contingent upon starting location. In 
guided trials the animal run in direction C→G, following a predetermined path guided by motorized 
moveable doors; (b)The distribution of the temporal precision of the assemblies detected during the 
spatial working memory task shows the presence of two predominant time scales: one peaked around 
28 ms and one on the second scale.  Bars show mean and SE computed across animals. CAD 
parameters: ref_lag=2, no pruning; (c) Assembly-assignment matrix for one exemplary data set. The 
grayscale indicates the temporal resolution at which assemblies are detected; the color scale shows the 
lag between the activation of each assembly-unit with respect to the unit first active in the assembly. 
Hippocampal place cell units were typically found part of multiple assemblies; (d, e) Examples of spike- 
(d) and rate- (e) assembly activity patterns (red) and raw LFP. Tempor al resolution, composing units 
and lag of activation of each unit with respect to the activation of the first assembly-unit are indicated in 
the figure. Spike-assembly activations appear to be locked to the theta rhythm of the LFP; (f, g) Example 
of spike- (f) and rate- (g) assembly place fields. See also Supplementary Fig. 2 for place fields of the 
relative assembly composing units.  
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Figure 2 | Spike-assemblies fire phase locked spikes. (a) Raster plot of one typical assembly and its 
composing units (spikes fired during assembly activations marked in red). Below, phase histogram of 
the spikes of one exemplary unit showing how assembly spikes (red) have an enhanced phase 
modulation with respect to either all (black) or non-assembly (blue) spikes; (b) Fraction of units with 
phase-modulated assembly-spikes and (c) units with assembly-spikes with enhanced phase-modulation 
with respect to the totality of the unit spikes (i.e. red vs. black in (a)) in at least one of the assemblies 
they take part in. Mean and SE computed across animals after Benjamini–Hochberg correction for 
multiple comparisons, data points correspond to the 10 individual recording sessions; (d) Temporal 
precision of spike- and rate- assemblies with phase-modulated spikes (yellow) and assemblies with 
spikes with enhanced phase-modulation with respect to their composing units (red). Displayed 
assemblies separately pruned in the two time scales (see Methods). Bars show mean and SE pooled 
from all sessions. While the activity of both spike- and rate-assemblies is theta modulated, only spike-
assemblies coordinate with the LFP more than their composing units. 
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Figure 3 | Single units change phase preference when active in different assemblies. (a) Raster 
plot and phase preference of two assemblies with a shared unit (unit 2). Unit 2 changes phase 
preference when active in the two different assembly configurations; (b) Fraction of units that change 
their phase preference when active in different assemblies. Mean and SE computed across animals 
after Benjamini–Hochberg multiple comparison correction, data points correspond to distinct recording 
sessions; (c) Activation along the maze for different trial types of the two assemblies in (a) and their 
composing units. The trial typologies displayed are: left (pink) and right (red) choice trials, and left (blue) 
and right (black) guided trials. The assembly and unit activity are plotted along the linearized path. 
Vertical dashed lines mark different task segments, along the path from C to G, as indicated in the maze 
scheme for the left choice trial. Assembly temporal resolution, composing units and lag of activation of 
each unit with respect to the activation of the first assembly-unit are indicated in the figure.  The change 
in firing phase of unit 2 when active within assembly A and B (a) is associated with a change in encoded 
information of the two assemblies (c). See also Supplementary Fig. 3 for other examples of assembly-
dependent phase modulation of CA1 units. 
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Figure 4 | Place-cells firing phase can encode distinct place fields. (a) Example of unsupervised 
spike clustering based on the spike position in a unit with multiple place fields. The number of place 
fields present in the spike set was established with DBSCAN, a density-based spatial clustering 
algorithm. The cluster memberships resulting from DBBSCAN were then fed to a Gaussian mixture 
model for the final step of the classification. (b) Rate-phase and respective marginal distributions of a 
unit spikes color-coded according to their field of firing. The exemplary units changed their firing phase 
when active in different place fields. 
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Figure 5 | The firing phase of place-cells can encode distinct task-related information within the 

same place field. (a) Trial categories: choice left (magenta), choice right (red), forced left (LL, blue), 
forced right (RR, black), forced switch right-left (RL, light yellow) forced switch left-right (LR, dark yellow); 
(b) fraction of units changing phase for different locations irrespective of the trial type, different trial types 
but same location; different trial type and/or location; (c) joint rate-phase distribution and marginal 
distributions for the spikes fired by a unit in one of its place fields (left panel, blue) and the same spikes 
divided by trial type (right panel, colour coding of to trial type specified in (a)); (d) fraction of units 
changing phase when comparing: left vs. right choice trials; choice vs. forced trials; forced trials with 
different origin arms; forced trials with same origin arms but different forced turn. Mean and SE in (b) 
and (c) are computed across animals after Benjamini–Hochberg correction for multiple comparisons, 
data points correspond to distinct recording sessions. 
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Figure 6 | Phase-shift leads to context-dependent fine temporal coordination among 

units. (a) Spike phase (color-coded) and location of three units with multiple place fields. On the left, 
phase histogram of all spikes fired in the place fields marked in blue and yellow. All three units show a 
change in phase preference when active in different locations. Phase-shift could occur between place 
field with (a-c) and without (b) phase precession. See Methods for tests on phase-shift and phase 
precession, p-values indicated in the figure; (d) Schematic of assembly-specific phase coding: In order 
to perform a task, or a choice, we are required to recall past information and future goals. Different 
contextual conditions will therefore trigger the retrieval of different assemblies even within a same 
location. By providing different degrees of depolarization, the retrieval of each assembly will set for their 
member-units assembly-specific ranges of firing phase; (e) Cross-correlation between the spikes of two 
units during choice (above) and guided (below) right trials. Phase histogram of A spikes are shown as 
inset for the two trial types. Unit A changes firing phase when active in choice and guided trials (p = 
0.03), thereby changing its relative lag of activation with unit B during theta cycles (two-tailed Wilcoxon 
rank sum test, p = 0.01). Phase-shift coding can therefore produce context-dependent theta sequences. 
(f) Simulation of the recruitment of three neurons by two rate assemblies. (top) Excitatory and inhibitory 
conductances of three neurons (blue, red and green) modelled with an adaptive exponential integrate-
and-fire model. The activation of rate assembly A and B was modelled with a transient unit-specific 
increase in excitatory conductances ��þ� and a shared oscillatory inhibition �ÿÿ/. (bottom) Membrane 
potential � of the simulated units during assembly retrieval. The order in unit activation along the theta 
cycle reflects the intensity of the assembly-specific depolarization provided to the units (inset).   
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Methods 

Animals and husbandry. All procedures were conducted in accordance with the UK Animals 
(Scientific Procedures) Act 1986 and approved by the University of Bristol Animal Welfare and 
Ethical Review Board. Five adult male Long Evans rats (300–500g, Harlan, UK) were used in 
this study. Prior to surgery, rats were group-housed on a 12/12 hour light/dark cycle (lights on 
from 07:00–19:00) with free access to food and water. At least 1 week was allowed for animals 
to habituate to the new holding facility before surgery was performed. Post-surgery, animals 
were singly housing with additional bedding and cardboard tubes in high-roofed cages that 
allowed unconstrained head movement with cranial implants.  

Implantation of recording array. Custom-built  adjustable tetrode (twisted 12.7μm nichrome 
wire, Kanthal, gold-plated to 250-300kW at 1kHz) microdrives were implanted under isoflurane 
anaesthesia using aseptic technique and perioperative opiate analgesia. Craniotomies of 
diameter 1-1.5 mm were made over dorsal CA1 (AP -4.2mm, ML 3.0mm from Bregma). 
Implants were fixed to the skull using stainless steel screws (M1.4 × 2 mm, Newstar 
Fastenings) and Gentamicin bone cement (DePuy). Tetrode positions were adjusted over the 
course of 2–3 weeks after surgery.  

Tetrode signals were amplified by headstages (HS-36, Neuralynx, MT, USA) and relayed via 
fine-wire tethers to a Digital Lynx system (Neuralynx), which sampled thresholded extracellular 
action potentials at 32 kHz (filtered at 600-6000Hz) and continuous local field potentials (LFP) 
at 2kHz (filtered at 0.1-475Hz) using the Cheetah software package (Neuralynx) running on a 
desktop PC.   

Training. Once post-surgery body weight had stabilized, rats were placed on a regulated 
feeding regimen to maintain body weight at 85-90% of free-feeding levels. The rats were 
trained to perform a spatial memory-based decision-making task on an end-to-end T-maze, as 
described in Jones and Wilson 70 and illustrated in Figure 1a. Training occurred during the 
light phase at a similar time each day. Habituation: Rats were placed on the maze for 20–30 
minutes without any boundaries in place. Rewards were provided at every visit to a reward 
zone. After 2 days, rats advanced to the next stage. Guided trials: Rats ran a series of 8guided9 
trials. Each trial consisted of a run from a reward point at one side of the maze, via the long 
central arm to a reward point at the opposite side. At the starting end of the maze, the opposite 
arm was blocked off with a barrier, guiding the rat onto the central arm. At the distal end of the 
central arm, a barrier blocking one of the arms (pseudorandomly selected) guided the rat to 
the end of the unobstructed arm, where a reward (0.1 ml of 20% sucrose solution in water) 
was delivered. Only one running trajectory was possible in each guided trial. In one training 
session, a rat was allowed to perform up to 40 trials. After a minimum of 2 days of at least 20 
trials, rats advanced to the next training stage. Full Task: Rats performed a series of guided 
trials, interleaved with 8choice9 trials. Choice trials differed from guided trials in that there was 
no barrier in place at the far end of the central arm, requiring the rat to choose a turn direction. 
The correct turn direction was the same direction that the rat had initially turned when entering 
the central arm. If the rat chose correctly, a reward was delivered at the end of the arm. If the 
rat chose incorrectly, it was placed back at the start and allowed to undertake the trial again, 
until the correct choice was made. All guided trials began at the 8C9 end of the maze and ended 
at the 8G9 end, while the interleaved choice trials ran in the opposite direction. Rats were 
allowed to perform up to 40/40 guided/choice trials. Learning of the task rule was assessed by 
the percentage of correct choices made (>70% correct trials over at least 3 consecutive 
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days). In this manuscript, we analyzed recordings from two days (for a total of 10 independent 
sessions) after the performance criterion was reached.  

Histology. At the end of each experiment, the rat was deeply anaesthetized with 
intraperitoneal sodium pentobarbital and a small electrolytic lesion made at the tip of each 
tetrode (positive current of 0.3 mA for 10s). After lesions had been made on each tetrode, the 
rat was perfused transcardially with 0.9% saline and then 4% paraformaldehyde / 0.9% saline 
solution. The brain was post-fixed, transferred to a cold 30% sucrose solution for cryoprotection 
and cut in 50µm coronal sections on a freezing microtome. Lesion locations were compared 
against the corresponding sections in the Rat Brain Atlas 71 in order to determine the tetrode 
recording sites.  

Spike sorting and cell selection. Spikes were sorted semi-automatically on the basis of 
waveform characteristics (waveform energy and first principal component) using KlustaKwik 
(K.D. Harris, http://klustakwik.sourceforge.net/), followed by manual refinement of cluster 
boundaries with the MClust package for MATLAB (A.D. Redish, 
http://redishlab.neuroscience.umn.edu). After clustering, only units with mean spike peak 
amplitude of > 50µV, isolation distances of ≥15 72 and <1% of interspike intervals (ISIs) below 
2 ms were retained for further analysis. Our analysis focused on putative place cells. To select 
putative place cells we restrict to units with firing rate between 0.2 Hz and 4 Hz and with spatial 
information above 0.5 bit/s on the maze 73. 

Cell assembly detection. Cell assemblies were identified with the unsupervised machine 
learning algorithm for Cell Assembly Detection (CAD) 74 (algorithm available at 
https://github.com/DurstewitzLab/Cell-Assembly-Detection). CAD detects recurrent activity 
patterns of arbitrary structure and temporal precision in multivariate time series. The algorithm 
is based on a recursive scheme, at each step of which it detects and tests assemblies of 
progressively larger size. Detection of paired assemblies was performed stopping the 
agglomeration at the initial pairwise step, while full-size assemblies were detected letting the 
algorithm agglomerate until completion.  

To uncover the temporal scales most represented in the hippocampal spike trains we ran CAD 
on a broad spectrum of temporal resolutions sampled with a logarithmic scale in the interval 
[0.005 - 5.0] sec. CAD tests multiple temporal resolutions and if the same sets of units 
coordinate at multiple timescales the algorithm will return all of them. This analysis revealed 
the presence of two distinct timescales: one between 0.005 and 0.06 sec (spike-assemblies) 
and a second between 0.07 and 5.0 sec (rate-assemblies). To compare the extent of phase-
locking and phase shift-coding within the two assembly groups we repeated the assembly 
detection separately for the two time windows using CADopti 75 (algorithm available at 
https://github.com/DurstewitzLab/CADopti). After testing multiple temporal resolutions, 
CADopti selects and returns the timescale at which each assembly has been detected with 
lowest p-value. Thus, each assembly was unique within each window but could be detected in 
both time windows. This allowed a fair comparison between the two timescales, without the 
distortion given by considering as independent assemblies the same set of units detected at 
neighbouring temporal resolutions. Finally, we want to note that the detected assemblies can 
not result from the detection of spike sorting mistakes. In such a case, in fact, assemblies 
would have been detected at the highest temporal precision (binning of 0.0058 sec), which is 
not the case as shown in Figure 1b. 
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For all the analysis of this manuscript the reference lag was set at 2. Tested bin sizes: [0.0058, 
0.007, 0.009, 0.011, 0.014, 0.018, 0.022, 0.028, 0.035, 0.044, 0.055, 0.07, 0.09, 0.11, 0.14, 
0.17, 0.21, 0.27, 0.33, 0.42, 0.52, 0.65, 0.82, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0, 5.0] and respective 
maximal lag: [4, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. 

Instantaneous firing rate. Instantaneous firing rates were computed by convolving unit spikes 
with a Gaussian kernel with kernel size of half of the unit9s mean inter-spike-interval. 

Phase extraction and theta power. As first step, we made sure that the spectrogram of all 
recorded LFPs peaked in the theta frequency band. Then, to obtain the phase of spikes we 
bandpass filtered the LFP between 4Hz and 10Hz (LFPθ) and computed the angle of the Hilbert 
transformation of LFPθ at the time of each spike.  

Since recent studies have shown that phase coding can occur also in presence of a lower 
power or irregular amplitude of the theta oscillation 76,77, the analysis reported in the main 
figures of the manuscript are performed with maximal sample size, including all spikes without 
restriction on theta power. However, to make sure that the reported results were not affected 
by this choice, we reproduced the most important including only spikes fired in epochs of high 
theta power (Figure S4). High theta power epochs were defined as periods in which the 
envelope of the LFPθ amplitude surpassed one �(LFPθ). High amplitude, saturating movement 
artefacts were removed from LFP by excluding periods with LFPθ > 2 ∗ �(LFPθ). This was done 
before computing the threshold of �(LFPθ) used to define high power periods. 

Phase-locking test. Phase modulation of spike sets was tested with the Hodges-Ajne test for 
non-uniformity 78,79 that, unlike the more common Rayleigh test, do not assume unimodality in 
deviation from uniformity. The test was performed on sets bigger than 50 samples, limit 
imposed by the approximations performed in the test. Significance was established with an 
alpha value of 0.05 and Benjamini-Hochberg correction for multiple comparisons on all tests 
performed.  

Phase-locking of assembly-spikes vs. unit-spikes. We tested via bootstrap if assembly 
activations elicited spikes with higher phase-locking than those overall fired by the unit. For 
each unit, we collected the phase of the � spikes fired in correspondence of all activations of 
one assembly and produced 1000 replica sets composed by the phase of � spikes randomly 
selected among all spikes of the same unit. For each set, we computed the length ý of the 
mean resultant vector. P-values were established by counting the fraction of replica-sets with ýÿ�ā. > ýĀÿÿý.. Significance was established with an alpha value of 0.05 and Benjamini-

Hochberg correction for multiple comparisons on all tests performed.  

Change in phase preference for spikes fired in different assemblies. For each unit taking 
part in multiple assemblies, we divided into separate sets the spikes fired in different assembly-
pairs. Sets not phase-locked to the ongoing theta oscillation or with less than 50 spikes 
(limitation imposed to perform the phase-locking test) were discarded. To test the null 
hypothesis that for a same unit each phase-set had equal median, we performed a multi-
sample nonparametric test, circular analogue to the Kruskal-Wallis test 78,80. Significance was 
established with an alpha value of 0.05 and Benjamini-Hochberg correction for multiple 
comparisons on all tests performed.  

Trial categories. We divided trials into 6 categories according to the specific task required by 
each trial. Trials were first divided into choice trials, when the animal had to choose if to turn 
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left or right on the basis of its position at the beginning of the trial, and guided trials, when turns 
were forced by the set-up. Both categories were then further divided according to the two turns 
performed entering and leaving the central arm of the maze: left-left / left-right / right-left / right-

right. 

Isolation of place fields. Place fields were established only for units with spatial information 
above 0.5 (place cells) and with phase modulated spikes. Spikes of each unit were divided into 
different clusters (place fields) on the basis of their place of firing. As pre-processing step, we 
established the number of clusters and a first approximate cluster memberships with a density-
based spatial clustering algorithm (DBSCAN, with parameters � = 0.05 and ý���þý = 10). 
DBSCAN was performed with the matlab routine DBSCAN Clustering Algorithm (Yarpiz, 
https://www.mathworks.com/matlabcentral/fileexchange/52905-dbscan-clustering-algorithm). 
This first estimation of cluster membership was then used as initial condition for a second and 
final clustering step performed with Gaussian mixture models.  

Classifier. For each place field we trained a support vector machine (SVM) classifier with 
linear kernel (slack variables minimized with L1 norm and box constraint = 1) to divide trials 
according to their category. For every two types of trials, we build 3 SVM models: one based 
on the spike9s phase, one on the spike9s instantaneous firing rate, and one on both phase and 
instantaneous firing rate. Spike phases are a circular quantity and can not be used directly to 
train the SVM. Thus, phase information was passed to the classifier as [cos(�ā) , sin (�ā)], where �āis the phase relative to the theta band of the LFP of the spike fired at time t. The classifier 
accuracy was computed with a 50-fold cross-validation, to avoid overfitting. Significance was 
established via bootstrap. Bootstrapped samples were created by shuffling the trial labels. 
Since this step removes not only the spike-label association but also any autocorrelation in the 
label time series (which might affect the accuracy when performing block cross-validation), for 
a fair comparison, we jointly shuffled the order of the spike-label elements when training the 
SVM classifier on the original set. The bootstrap procedure was repeated 500 times and p-
values were assigned by counting the fraction of bootstrap sets with an accuracy higher or 
equal of the original set. 

Phase precession units. We tested phase precession for each place field of each unit. 
Precession was assessed separately for each trial type by computing the circular-linear 
correlation 78,79 between the unit phase and the position of the animal along the linearized trials-
specific path when the spike was fired. 

Changes in lag of activation between units along theta cycles. To assess if pairs of units 
significantly changed their relative lag of activation during different trial types, we first computed 
the maximal cross-correlation lag of the two units in each trial. Cross-correlation was computed 
with a 0.02 sec binning and, to remain within a theta cycle, within the [-3, 3] bin window (in 
Figure 6e we chose a larger window exclusively for visualization purposes). Once obtained 
the maximal correlation lag for trial, we divided the trials according to their trial type and tested 
for a change in lag with a two-sided Wilcoxon signed rank test. Since single units had different 
phase preferences in different place fields, testing was performed separately for each unit 
place field.  

AdEx model and assembly recruitment. Neuronal activity was simulated by an Adaptive 
Exponential Integrate-and-Fire model 81. In AdEx models, the evolution of the neuron 
membrane potential � and adaptation current � is defined by the equations: 
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� Ă�Ăþ = 2��(� 2 ��) + ��∆�exp (� 2 ��∆� ) 2 ��(� 2 ��) 2 �ÿ(� 2 �ÿ) 2 � + � (1) �ý Ă�Ăþ = ÿ(� 2 ��) 2 � (2) 

With membrane capacitance �, leak conductance ��, threshold slope factor ∆�, resting 
potential ��, threshold potential ��, adaptation time constant  �ý, and subthreshold adaptation ÿ. Noise in the evolution of the membrane potential was introduced through the parameter �~þ(0,1.6 10−19). Synaptic currents were modulated through the time-dependent excitatory 
and inhibitory conductances ��(þ) and �ÿ(þ), and the excitatory and inhibitory current reversals �� and �ÿ, respectively. At every time þ̅ the membrane potential reached 0 mV, an action 
potential was fired and �(þ̅) was set to �Ā. Afterward, both the membrane potential and the 
adaptation current were reset to �(þ̅ + 1) = �ÿ and �(þ̅ + 1) = �(þ̅) + Ā, respectively.  

To reflect the presence of theta oscillations, we modulated both excitatory and inhibitory 
conductances at � = 7 Hz with a relative offset of � rad. The excitatory conductance was then 
further modulated by a gaussian-shaped depolarization to mimic transient assemblies 
activation �ÿ(þ) = �ÿ (sin(2�� þ 2 �) + 1) (3) ��(þ) = ��(sin(2�� þ) + 4)exp (−(ā−�)22 �2 ). (4) 
 

with ā = 2.5 ýăā and � = 0.4 ýăā center and standard deviation of the Gaussian, respectively. 
The activation of an assembly provided to its composing unit � an assembly-specific degree 
of depolarization ��ÿ. We simulated 2 assemblies composed of 3 units. In the first assembly ��1 = 2.7 �þ, ��2 = 1.7 �þ and ��1 = 0.7 �þ. In the second assembly ��1 = 1.0 �þ, ��2 = 2.0 �þ and ��1 = 3.0 �þ. Average inhibitory conductance was set at  �ÿ = 17 �þ for all units and all 
assemblies. 

To formally evaluate the fine temporal coordination of network units induced by the recruitment 
of different context-specific cell assemblies, we concatenated 400 retrievals of each of the two 
modelled assemblies and ran CADopti on the spike time series so obtained. We performed 
and analyzed 100 simulations generated with different noise realizations. CADopti parameters: 
reference lag = 2; bin sizes: [0.0058, 0.007, 0.009, 0.011, 0.014, 0.018, 0.022, 0.028, 0.035, 
0.044, 0.055]; maximal lag: [18, 21, 22, 22, 22, 20, 18, 17, 15, 13, 11]. 
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Supplementary figures 

 

 

Supplementary Fig. 1 | Histology. (a) Coronal section showing histological confirmation of the tetrode 
placement (lesion site marked with arrowhead) in the CA1 of one rat; (b) Dorsal CA1 tetrode placement 
for all recorded rats. 
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Supplementary Fig. 2 | Place field of assemblies and their composing units. Example of place 
fields of a spike- (a) and a rate- (b) assembly and of its composing units. While single units fired in 
multiple place fields throughout the maze, assembly activations were more selective. 
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Supplementary Fig. 3 | Changes in unit information coding when joining different assemblies. (a, 
b). Same as Fig. 3c, two additional examples of units with changing phase preference when active in 
different assemblies. 
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Supplementary Fig. 4 | Phase coding of task-related information. (a, b) Same as Fig. 5b and d, 
respectively, but with analysis performed on spikes fired in epochs of high theta-power. The controls 
confirm that also when selecting epochs of high theta-power CA1 units result changing phase preference 
to encode spatial (a) and episodic (b) information (on b, one-way ANOVA, F(3,34) = 4.3, p = .01; 
significant Tukey post-hoc comparisons indicated with respect to the figure columns: (I column, II 
column) p = 0.03, (I  column, IV column) = 0.02). 
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Parameter Value � 250 pF �� 10 nS �� -58 mV ∆� 2 mV �� -50 mV �� 0 mV �� -75 mV �� 120 ms ÿ 2 nS Ā 0.1 nA �ÿ -46 mV �Ā 20 mV 
 

Supplementary Table 1 | Parameters of the adaptive exponential integrate-and-fire model. 
Parameters used to produce the results presented in Fig. 6f. 
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