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Summary  

To sense and interact with objects in the environment, we effortlessly configure our fingertips at de-

sired locations. It is therefore reasonable to assume the underlying control mechanisms rely on accu-

rate knowledge about the structure and spatial dimensions of our hand and fingers. This intuition, 

however, is challenged by years of research showing drastic biases in the perception of finger geom-

etry, e.g.,1�5. This perceptual bias has been taken as evidence that the brain�s internal representation 

of the body�s geometry is distorted,6 leading to an apparent paradox with the skillfulness of our ac-

tions.7 Here, we propose an alternative explanation of the biases in hand perception�They are the 

result of the Bayesian integration of noisy, but unbiased somatosensory signals about finger geometry 

and posture. To address this hypothesis, we combined Bayesian reverse-engineering with behavioral 

experimentation on joint and fingertip localization of the index finger. We modelled the Bayesian inte-

gration either in sensory or in space-based coordinates, showing that the latter model variant led to 

biases in finger perception despite accurate representations of finger length. Behavioral measures of 

joint and fingertip localization responses showed similar biases, which were well-fitted by the space-

based but not the sensory-based model variant. Our results suggest that perceptual distortions of 

finger geometry do not reflect a distorted hand model but originate from near-optimal Bayesian infer-

ence on somatosensory signals. These findings demand a reinterpretation of previous work on hand 

model distortions. 
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Somatic perception; body representation; finger kinematics; Bayesian brain; computational modeling; 

coordinate transformation; spatial perception; postural priors   
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RESULTS 

One of the most surprising neuroscientific findings over the last two decades is that the spatial per-

ception of our body appears to be highly distorted, even for body parts that are required for fine-

grained motor control, such as the hand and fingers.1 A widespread assumption is that the perceptual 

biases measured in these experiments directly reflect a distorted internal representation of body ge-

ometry. Taking this inference at face value for the hand leads to what has been termed the �hand 

paradox�:7 How are distorted hand representations compatible with the observed skillfulness of our 

manual actions?  

Here, we address this paradox. In contrast to the standard interpretation, we propose that the ob-

served perceptual biases do not reflect a distorted hand model; rather, these biases arise from prob-

abilistic computations that perform near-optimal Bayesian inference on somatosensory signals. We 

took a two-pronged approach to investigate whether this optimal probabilistic processing can explain 

the perceptual biases observed in a finger mapping task: First, we formalized and modelled the opti-

mal computations that may underlie the transformation of somatosensory signals about finger config-

uration into its spatial dimensions (Figure 1). This allowed us to obtain quantitative predictions per-

taining to spatial errors in finger mapping. We then tested these predictions using a novel VR-based 

finger mapping task, combined with fitting our computational models to the observed responses (Fig-

ure 2). 

A Bayesian model of finger perception  

We developed a model of how somatosensory signals about finger geometry (i.e., joint angles, phal-

anx lengths) are transformed into a percept of where the finger is in space. To do so, we conceptual-

ized the geometry of the finger as a kinematic chain, where each finger segment is linked with the 

previous segment through the interphalangeal joints (Figure 1A). In the periphery, somatosensory 

signals encode the length ÿ of each phalanx and the angle ÿ of each of the three interphalangeal 

joints. As illustrated in Figure 1A, this information allows to derive the spatial positions of the joints 

and the fingertip, following:  ý௡ ൌ ሺý௡, ÿ௡ሻ ൌ ∑ ÿ௜ ሺcosÿ௜௡௜ୀଵ , sinÿ௜ሻ   with ÿ௡ ൌ  ∑ ÿ௜௡௜ୀଵ   (1) 

Where ý௡ is the two-dimensional location of the proximal or distal interphalangeal joint or the fingertip. 

However, this formulation is not sufficient to specify the underlying computations used by the nervous 

system. The brain does not represent the angles, lengths, and locations as individual point estimates 

but rather as probability distributions.8 This is because the activity within the nervous system is intrin-

sically noisy, from transduction of signals to network interactions.9 To deal with this uncertainty, the 

brain must rely on probabilistic processing, as formalized by Bayesian decision theory.10,11 For 
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perception, the Bayesian framework states that the observer forms a belief (the posterior) about the 

most probable state of the body and the world. This is done by integrating noisy sensory signals with 

prior beliefs, following Bayes� rule. The final posterior corresponds to the weighted average of the 

likelihood and prior, with the weights equating their respective precisions. Importantly for our pur-

poses, this computation yields an increase in perceptual precision at the expense of a bias in percep-

tion. 

We therefore re-formalized the geometric model of the finger in Eq. (1) in probabilistic terms (Fig-

ure 1B). The spatial percept of the finger (posterior) is constructed by integrating the somatosensory 

measurements (likelihood) with prior information about its most probable configuration (prior), possi-

bly inferred from an accumulated history of the finger�s previous configurations.11 Since the size of 

our fingers remain stable in the short-term, it is reasonable to assume that prior information on seg-

ment length ÿ is accurate, i.e., centered on true values. 

For each ý௡, we specify the likelihood and the prior as vectors, with their respective means (ÿ௟௜௞and ÿ௣௥) and diagonal variance-covariance matrices (ÿ௟௜௞ and ÿ௣௥). Following Bayes� rule, the posterior is 

obtained from the product of the likelihood and prior. In matrix-form, this is formalized as follows:  ÿ௣௢௦ ൌ ൫ÿ௣௥ିଵ ൅ ÿ௟௜௞ିଵ൯ିଵ൫ÿ௣௥ିଵÿ௣௥ ൅ ÿ௟௜௞ିଵÿ௟௜௞൯     (2) ÿ௣௢௦ିଵ ൌ ÿ௣௥ିଵ ൅ ÿ௟௜௞ିଵ     (3) 

where Eq. (2) is the computation of the posterior mean (ÿ௣௢௦) and Eq. (3) is the computation of the 

posterior variance-covariance matrix (ÿ௣௢௦), assuming that the Bayesian integration is performed op-

timally.  

We consider two distinct model variants that formalize how the sensory-to-space transformation 

(Eq. 1) and Bayesian Integration (Eqns. 2 and 3) are implemented in the somatosensory processing 

hierarchy (Figure 1C). 

In model variant 1 (Figure 1B, top; Figure 1C, blue), Bayesian integration occurs before the sen-

sory-to-space transformation. That is, the likelihood and the prior in Eqns. (2-3) are defined in sensory 

coordinates, representing the involved joint angles (ÿଵ, � , ÿ௡) and phalanx lengths (ÿଵ, � , ÿ௡). The 

likelihood is specified as a Gaussian distribution with mean ÿ௟௜௞ and diagonal variance-covariance 

matrix ÿ௟௜௞, where all off-diagonal are zero (i.e., assuming uncorrelated signals). The prior is likewise 

specified as Gaussian with mean ÿ௣௥ and variance-covariance matrix ÿ௣௥; however, unlike the likeli-

hood, we did allow covariance between subsequent joints. Following Bayesian integration (Eqns. 2-

3), the posteriors of the joint angles and segment lengths are then transformed into space-based 

posteriors of the joints of fingertip, involving the Jacobian transformation as derived from Eq. (1), see 

Supplemental Materials. 
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In model variant 2 (Figure 1B, bottom; Figure 1C, green), Bayesian integration occurs after the sen-

sory-to-space transformation. In this variant, the sensory likelihood distributions are first transformed 

into space-based likelihoods of joint and fingertip position (i.e., ÿ௟௜௞ and ÿ௟௜௞ specified in Cartesian 

coordinates). These are then integrated with the transformed spatial prior (ÿ௣௥, with ÿ௣௥) as in 

Eqns. (2-3) to obtain the space-based posterior of the joints and fingertip positions. 

Near-optimal computations predict perceptual biases in finger perception 

We next identified the differences in the quantitative predictions made by each model variant. Our 

goal here was two-fold. First, we aimed to distinguish specific testable predictions made by each 

model. Second, and relatedly, we aimed to pinpoint when�if ever�these computations would lead 

to distorted perception of joint and fingertip locations. To do so, we simulated the above computations 

across a variety of model parameters and finger postures.  

Figure 1C illustrates the computational outcomes of each model in a Cartesian reference frame. In 

both model variants the posterior distribution is biased relative to the actual joint position. Crucially, 

only in variant 2 do these biases affect the perceived geometry of the finger. Interestingly, these finger 

length distortions were a ubiquitous consequence of Bayesian integration occurring after the sensory-

to-space transformation. This is despite the fact that the underlying likelihood and prior accurately 

reflected finger size. 

Simulations with model variant 2 further revealed that the magnitude of finger length misestimation 

varied as a function of posture. Figure 1D illustrates how the percentage of total finger length mises-

timation varies as a function of the statistical distance between the spatial likelihood and the spatial 

prior (Figure S1, SM). As this distance increases, only model variant 2 predicts the emergence of 

length misestimation. Hence, the posture-dependence of the inferred finger length is the key differ-

ence between the predictions of the two model variants. Crucially, this posture-dependent misestima-

tion would not be predicted if perceptual biases were only a consequence of distorted representation 

of finger length. 
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Figure 1. A Bayesian model of finger perception. A. Geometric model of the finger as a kinematic chain. The 

chain allows one-axis rotations. The three segments (ÿଵ, ÿଶ, ÿଷ) are interconnected by three joints (ÿଵ,ÿଶ,ÿଷ), 
corresponding to the MC, PIP and DIP. The spatial positions of PIP, DIP and FT are defined as 2D vectors ýଵ, ýଶ, ýଷ, each with respect to MC. B. Schematic representation of the Bayesian model of finger perception. 

Variant 1: Bayesian integration (∫) occurs before the sensory-to-space transformation (CT). Variant 2: Bayesian 

integration occurs after the sensory-to-space transformation. C. Model predictions: both variants plotted in Car-

tesian coordinates (likelihood, solid gray; prior, dashed gray; posterior variant 1, blue, posterior variant 2, green). 

Variant 1 predicts biases in joint angle, not phalanx length. Variant 2 predicts biases in both, as if the overall 

length of the finger is underestimated. D. Finger length bias plotted as a function of the distance between likeli-

hood and prior. Variant 2 predicts that this bias increases with this distance (see also Figure S1,SM). 
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Probing model predictions in a novel VR finger-mapping paradigm 

To test model�s predictions, we designed a VR task that measures position estimates of unseen index 

finger joints and fingertip at varying finger postures. Participants (N=20) used a hand-held virtual 

pointer to indicate the felt position of each of these (Figure 1A). To ensure stable but varying finger 

configurations throughout the task, participants firmly held postural shapes of variable sizes. In all, 

the experiment consisted of a total of 600 position estimates, divided into separate blocks of 100 trials, 

each related to one of six finger configurations (Figure 2, and SM). We used a reverse-engineering 

approach to identify which model (Figure 1B) provided the best fit to each participant�s trial-wise po-

sition estimates. 

Figure 2. Experimental task and stimuli. A. Participants wore a VR headset, while their head was supported 

by a chin rest. Different finger configurations were probed by holding differently sized objects (cylindric volumes 

diameter 20, 30, 40 cm) with a power grip. The position of left wrist, left index MC, PIP, DIP and FT, were 

recorded using infrared motion tracking. B. The VR environment presented a dark 3D space in which experi-

mental instructions were displayed on a screen. Blue spheres (diameter 5 mm) indicated the physical locations 

of participants� left wrist and MC. Information on total index finger length was conveyed by rendering a yellow 

circle centered on MC. Using a hand-held controller, participants had to put the tip of a virtual pointer on the 

perceived locations of their PIP, DIP or FT (600 trials across 6 postures). 

 

In all participants, the results of our experiment matched the predictions from model variant 2. Fig-

ure 3 illustrates the data of four representative participants, showing that the perceived location of 

finger joints and tip differed from their actual locations (Figure 3A, actual posture in black, responses 

in gray; Figure S2, SM). This finding is consistent with the notion that Bayesian priors bias perception. 

Crucially, the observed biases took on two patterns: First, the perceived angle of the finger deviated 

from the actual angle, suggesting the role of a prior over joint angles in perception; Second, the per-

ceived finger length differed from the actual finger length, suggesting that perceptual biases may arise 
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from Bayesian computations occurring in Cartesian space, after the sensory signals are transformed 

in spatial coordinates. 

Model fitting (see SM) confirmed these initial observations. The fits for each model variant to the data 

of representative participants can be seen in Figure 3A. For all participants, integration after the sen-

sory-to-space transformation (model variant 2) best explained the behavioral observations, with con-

sistently lower BICs compared to model variant 1 (Figure 3B). Unlike model variant 1 and the hypoth-

esis of distorted representations, model variant 2 predicts posture-dependent finger length misesti-

mation biases. These predictions were correlated with the observed behavior (Pearson�s r = 0.46, 

p<.001): the larger the discrepancy between the likelihood and prior, the greater the magnitude of 

finger length underestimation (Figure 3C). Follow-up data inspection ruled out the possibility that un-

derestimation was due to the nature of our task, which could have led to truncation in position esti-

mates made by participants (Figure S3, SM). 

These findings bring to light two key features of the computation used by the brain to transform so-

matosensory inputs into the perception of the body in space. First, estimating the finger�s position in 

space results from optimal integration of transformed sensory inputs with stored priors. Second, opti-

mal integration between sensory and stored signals occurs between estimates of finger posture in a 

space-based, Cartesian reference frame. Together, the features of this computation lead to the con-

sistently observed distortions in finger length perception. We discuss the implications in the following 

section. 

DISCUSSION 

Previous empirical observations can be taken to suggest that postural priors influence proprioceptive 

and tactile processing. For example, during temporary limb anesthesia, limb perception systematically 

changes towards a semi-flexed posture.12,13 Placing the fingers or upper limbs in unusual postures 

leads to less efficient tactile processing.14�20 Going beyond these observations, our work is the first to 

quantitatively define and empirically verify the influence of a postural prior on the perception of the 

body in space. More crucially, our findings constrain the nature of this prior, suggesting that it is en-

coded in spatial (Cartesian) and not sensory coordinates (Figure 1C). A consequence of this compu-

tational scheme is that Bayesian integration occurs only after sensory signals (i.e., likelihoods) are 

themselves transformed into a spatial estimate of finger location. 

There are important functional reasons why the brain would perform somatosensory inference in Car-

tesian spatial coordinates. For example, doing so would aid in multisensory integration (e.g., vision 

and proprioception), where sensory signals must be transformed from their native sensor-based co-

ordinates into a shared spatial frame of reference. Bayesian multisensory integration is indeed a basis 
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for body perception,21 the bodily self,22�24 and sensorimotor control.25 We propose that the model of 

the present study reflects the first step in these processes, transforming signals into a reference frame 

that could be shared amongst different sensory modalities, including the construction of peripersonal 

space.26,27 Doing so allows posterior parietal areas to �project the body into the world�.28 

A major area of inquiry over the last decade has been the origin of distortions in hand perception. 

According to a recent conceptual model of body representation,29 postural priors are not sufficient to 

explain distortions in metric hand perception. Instead, perceptual distortions are the direct conse-

quence of integrating somatosensory inputs with a distorted body representation (i.e., a body model). 

Both our simulations and empirical findings stand in contrast to this claim. Our results instead suggest 

that distortions in finger length perception are due to the nature of the computation; Specifically, spa-

tial finger perception is the result of Bayesian integration between a spatial likelihood and prior (i.e., 

model variant 2) that each accurately encode finger length. One unique piece of evidence in favor of 

the present proposal is the posture-dependence on finger length misestimation (Figure 3 and Fig-

ure S1, SM). These findings reconcile the notion of perceptual biases in finger perception with optimal 

sensorimotor processing, as all signals used for control would be unbiased. 

Recent neurophysiological studies suggest that the computations identified in our study occur as early 

as primary somatosensory cortex (S1). Postural signals are ubiquitous throughout primary soma-

tosensory cortex.30 Indeed, multimodal neurons in Area 2 are known to encode the posture of the 

forelimb in Cartesian coordinates. Crucially, two recent human fMRI studies found that multivariate 

patterns of neural activity in S1 significantly correlate with the spatial features of the hand and even 

more so with the spatial features of biased hand perception.31,32 In this context, these studies suggest 

that the Bayesian computations that produce geometric finger distortions occur in early somatosen-

sory cortical processing. We hypothesize that the integration of the spatial likelihood and prior is im-

plemented in S1, perhaps through biases in tuning curve distributions33 and/or neural population dy-

namics.34 

We conclude that perceptual biases are driven by near-optimal somatosensory computations, not a 

distorted hand model. This new perspective on the nature of somatosensory computations dissolves 

the �hand paradox�. That is, regardless of the relationship between hand perception and manual ac-

tions,4,35 the processes subserving each rely on likelihoods and priors that accurately reflect hand 

geometry. Our proposed resolution to the hand paradox opens a new window on the understanding 

of body representations. 
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Figure 3. Near-optimal computations underlie biases in finger perception. A. Data of four representative 

participants for one of six finger configurations (in black). Localization responses of PIP, DIP and FT are repre-

sented as gray dots and their means are connected by gray lines. Model fits are shown as the mean of the 

posterior for these locations (variant 1, in blue; variant 2, in green). B. Model variant 2 outperformed variant 1 

for all participants. The mean BICs were 8410 ± 442 for variant 1 and 8143 ± 499 for variant 2, with significantly 

lower BIC for variant 2 (t(17) = 6.5, p <.001, CIs: 179, 351). Model variant 2 explained on average 35% of the 

variance; variant 1 performed worse than the null model. C. Bayesian integration predicts posture-dependent 

biases in finger perception. We simulated spatial posteriors based on best-fit model variants of each subject for 

several finger configurations ranging from fully extended to flexed. Based on these posteriors, we plot the bias 

in finger length as a function of the statistical distance between likelihood and prior. Predictions are represented 

as lines in the left panel, observations are represented as solid dots in the right panel. 
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SUPPLEMENTAL MATERIALS 

A Bayesian model of finger spatial perception 

To model the kinematics of a system such as the finger, it is useful to consider it as a kinematic chain, 

thereby specifying the relevant degrees of freedom. For simplicity, we assume that the finger only 

flexes or extends, as realized by a combination of one-axis rotations of the three interphalangeal joints 

(i.e., metacarpophalangeal joint (MC), proximal interphalangeal joint (PIP) and distal interphalangeal 

joint (DIP)). If the hand is fixed in space, the locations of PIP, DIP, and fingertip (FT), as probed in the 

experiment, can be expressed in a 2D Cartesian frame of reference, centered at MC, with the y-axis 

such that it is aligned with the finger when the finger is fully extended, and the x-axis orthogonal to it 

(see Figure 1A). 

We define the rotation angles of MC, DIP and PIP as ÿଵ,ÿଶ and ÿଷ and the lengths of the base, middle, 

and tip phalanges as ÿଵ, ÿଶ, and ÿଷ, respectively. Assuming these variables as noiseless, the spatial, 

Cartesian location of DIP, PIP and FT, defined as 2D vectors, ý௡ ൌ ÿሺÿଵ,⋯ ,ÿ௡. , ÿଵ,⋯ , ÿ୬ሻ, are geo-

metrically specified as follows:  ý௡ ൌ ሺý௡, ÿ௡ሻ ൌ ∑ ÿ௜ ሺcosÿ௜௡௜ୀଵ , sinÿ௜ሻ   with ÿ௡ ൌ  ∑ ÿ௜௡௜ୀଵ      (1) 

Because noise is ubiquitous in the nervous system, a neural computation of Eq. (1) relies on noisy 

sensory inputs of the involved joint angles and phalanx lengths, yielding outcomes that are described 

not as single points but rather as probability distributions over possible positions, as formalized by 

Bayes� theorem.  

To provide a theoretical framework that explains the observed responses, we designed a probabilistic 

model of the kinematic chain that assumes optimal Bayesian processing of all potentially relevant 

signals. For each ý௡, we specify the likelihood and the prior with means  ÿ௟௜௞ and  ÿ௣௥, respectively, 

and diagonal covariance matrix ÿ௟௜௞ and ÿ௣௥௜. Following Bayes� rule, the posterior is obtained from the 

product of the likelihood and prior. In matrix-form, this is formalized as follows:  ÿ௣௢௦ ൌ ൫ÿ௣௥ିଵ ൅ ÿ௟௜௞ିଵ൯ିଵ൫ÿ௣௥ିଵÿ௣௥ ൅ ÿ௟௜௞ିଵÿ௟௜௞൯     (2) ÿ௣௢௦ିଵ ൌ ÿ௣௥ିଵ ൅ ÿ௟௜௞ିଵ     (3) 

where Eq. (2) is the posterior mean and Eq. (3) is the posterior variance-covariance matrix.  

We consider two distinct model variants that formalize how the sensory-to-space transformation 

(Eq. 1) and Bayesian Integration (Eqns. 2 and 3) are implemented in the somatosensory processing 

hierarchy (Figure 1B). 

In model variant 1 (Figure 1B, top, Figure 1C, blue), Bayesian integration occurs before the sen-

sory-to-space transformation. That is, the likelihood and the prior in Eqns.(2-3) are defined in sensory 

coordinates: The likelihood is specified as a Gaussian distribution with its mean ÿ௟௜௞ defined by the 

involved rotation angles ሺÿଵ, � ,ÿ௡ሻ and phalanx lengths ሺÿଵ, � , ÿ௡ሻ. The likelihood variability ÿ௟௜௞ is 

defined as a diagonal variance-covariance matrix specifying variance in sensory coordinates for joint 

angles (ÿఏభଶ ,⋯ ,ÿఏ೙ଶ ) and phalanx lengths (ÿ௅భଶ ,⋯ ,ÿ௅೙ଶ ), and off-diagonal values set to zero (assuming 

uncorrelated noise). The prior is also defined in sensory coordinates and specified as Gaussian with 

mean ÿ௣௥ and a variance-covariance matrix ÿ௣௥, allowing covariance between subsequent joint an-

gles (i.e., between ÿଵ and ÿଶ, ÿଶ and ÿଷ).38,39 The final step of this model variant transforms the sensory 

posteriors of the joint angles and segment lengths into proprioceptive localization behavior in space-

based coordinates via Eq. (1). A coordinate transformation (CT) is therefore necessary. For each ý௡, 

as a linear approximation, we use the Jacobian ý௡, derived from Eq. (1) by ý௡ ൌ డሺ௫,௬ሻడሺఝ,௅ሻ, to transform the 
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variance-covariance matrix of the sensory posterior (ÿ௦௘௡௦) to a variance-covariance matrix in spatial 

coordinates (ÿ௦௣௔௧), following: ÿ௦௣௔௧ ൌ ý௡ ∗ ÿ௦௘௡௦ ∗ ý௡்       (4) 

In model variant 2 (Figure 1B, bottom, Figure 1C, green), Bayesian integration occurs after the sen-

sory-to-space transformation. The likelihood can be initially described by signals related to the indi-

vidual joint angles and segment lengths of the finger (i.e., sensory coordinates). These sensory sig-

nals are first transformed into the Cartesian position of the finger ý௡ (via Eqns. 1 and 4), leading to a 

spatial likelihood with mean ÿ௟௜௞ and covariance ÿ௟௜௞ defined in Cartesian coordinates. The posterior 

spatial estimate of finger posture is defined as the product of this spatial likelihood and a spatial prior 

(via Eqns. 2-3), both represented in Cartesian coordinates. 

Figure 1C illustrates the computational outcomes of each model in a Cartesian coordinate frame. The 

predicted posterior distribution of the PIP, DIP and FT positions are shown (variant 1 in blue; variant 2 

in green) given their likelihood distributions for a simulated posture (solid gray line) and prior distribu-

tion (dashed gray line). As shown in Figure 1D, the inferred finger length (summed distance of seg-

ment lengths based on the posteriors of PIP, DIP and FT) in model variant 2 changes as a function 

of the spatial disparity between likelihood and prior (expressed as their Bhattacharya distance, see 

Eq. 7), i.e., as a function of posture (Figure S1). 

Figure S1. Model variant 2 predicts posture-dependent metric biases. A. Simulation of spatial posterior for 

variant 2 (green), with likelihood mean varying across six different postures (solid gray) and a fixed prior (dashed 

gray), suggests posture-dependent biases in perceived finger geometry. B. Note that these biases are also 

noise-dependent: in bottom panels, simulations are obtained using larger variances for likelihood and priors, 

with different outcomes in perceived finger configuration and geometry. 
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Participants 

Twenty healthy volunteers (12 females) provided their informed consent and participated in the ex-

periment. Participants were all right-handed (Edinburgh Handedness Inventory Short Form,36 score > 

75) and had a mean age of 21.55 ± 2.63 years. They all received course credits as compensation for 

participating in the experiment. The research was approved by the Ethics Committee of the Faculty 

of Social Sciences, Radboud University. 

Position tracking and VR  

We tracked the position of the index finger via infrared motion tracking (Optotrak Certus, Northern 

Digital Inc.), with a sampling rate of 100Hz. We used First Principles software to align coordinate 

systems of all position sensors into a global room-based coordinate system (i.e., registration). We 

used custom-made rigid bodies for each individual limb segment (forearm, hand dorsum, and the 

three phalanxes of the index finger) to track the position of the wrist, MC, PIP, DIP, and FT. Time 

stamps from the VR system were used to segment the continuous 3D signals into blocks correspond-

ing to experimental conditions. 

The VR environment was created with Unity. Participants wore an HTC Vive VR headset, while com-

fortably seated in a chair with their head supported by a chin rest. Images were presented with 

1080*1200 pixel resolution to each eye at a 90 Hz refresh rate. The interocular distance was adjusted 

for each participant such that images were viewed with a field of view of 110û. The VR space was 

aligned with Optotrak space using a calibration procedure supported by custom-made Python script. 

The alignment error was within 0.4 and 1.2 mm for all testing sessions.  

Task and procedures 

The experiment employed a VR finger mapping task to measure position estimates of the unseen left 

index finger joints (PIP, DIP) and FT at varying finger postures.  

Participants were instructed to lay their left forearm on the table in front of them and grasp a cylinder 

with a power grip of their left hand (Figure 2, left). We used three cylindric volumes (height: 200 mm) 

having 20, 30, 40 mm diameter, each used to probe two different finger configurations, by holding the 

cylinder from its base, or from its body. Prior to the finger mapping task, participants completed a 

practice session to familiarize themselves with the virtual environment and task structure. 

The VR environment (Figure 2, right) presented a dark three-dimensional space with horizon lines, 

and a realistic screen displaying written instructions. The actual locations of their left index MC and 

wrist were rendered as blue spheres (diameter 5 mm). This was done to capture perceptual biases 

related to finger configuration, rather than biases pertaining to the perceived position and configura-

tion of the whole upper limb. Additionally, information on their total index finger length was conveyed 

via a yellow circumference, centered on the participant�s left MC. The radius of the circle represented 

participant�s finger length. This experimental choice was made in order to provide participants with 

unbiased information on the total length of their finger and rule out that possible finger length under-

estimation errors arise from spatial biases related to the perception of the virtual environment. 

Participants were asked to hold a controller with their right hand, which included a virtual stick and 

pointer. On each trial, participants started with the virtual pointer at the start position (pointer held in 

the direction of the virtual monitor). The target of each trial (e.g., �fingertip�) was displayed on the 

virtual monitor. Participants were instructed to indicate with the virtual pointer the perceived location 

of e.g., their left index fingertip in space, and press a button to confirm the response. A green wheel 
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appeared on the pointer to indicate that the response was submitted. After each trial participants 

returned the right arm to the start position. Postures were probed across six experimental blocks, 

each involving a power grip probed by one of the cylinders. Each block contained 100 randomized 

trials, including 30 for PIP, DIP, and FT, and 5 trials for wrist and MC, for a total of 600 trials per 

participant. Trials were self-paced and each block lasted approximately 10 minutes. 

Data preprocessing  

For each subject, motion tracking data and behavioral responses were extracted in 3D coordinates 
and preprocessed using custom-made MATLAB code (R2022b). Two participants were excluded from 
the analysis as their data suggested they misunderstood the task instructions. We ascertained that 
participants kept their finger position constant during each block (variation < 1 mm across blocks and 
participants).  

We aimed to analyze data in a 2D plane, i.e., the rotational plane of the finger. We thus applied 
geometrical rotations to the data of each block to align them on the z-axis, and reduce their dimen-
sionality from 3D to 2D. Then, in order to subtract general biases in localization affecting all positions 
equally, we aligned the physical and perceived position of the MC to [0,0]. We then rotated each block 
of responses to align them on the physical MC-wrist axis, to align the perceived and physical hand 
dorsum and wrist. 

For each distribution of estimates (i.e., for each subject, posture, and finger landmark), we aimed to 
exclude extreme (p<.001) multivariate outliers based on their statistical distance from the geometrical 
median of the distribution.37 This led to the exclusion of on average 9.1% datapoints for each subject 
(in total: 891 datapoints out of 10800). Figure S2 shows the data after alignment and outlier removal, 
with Cartesian positions normalized for total finger length (i.e., [x y]/total finger length). 

We calculated the mean physical positions of wrist, MC, PIP, DIP and FT across blocks. These were 
used to extract fixed parameters for individual model fitting. In detail, we first computed the physical 
angles (in degrees) between the three vectors defined based on the relative positions of MC-PIP, PIP-
DIP and DIP-FT. Then we calculated the length of each phalanx as the Euclidean distance (in mm) 
between MC-PIP, PIP-DIP, DIP-FT.  

Model fitting and analyses 

Model structure 

The current section describes how we fit each model to the participants individual responses. As 
described in detail throughout the paper, we start by assuming that the postural state of a finger can 
be described as a set of interconnected segments having length ÿଵ, ÿଶ, and ÿଷ, and with rotation an-

gles for the three joints ÿଵ,ÿଶ and ÿଷ. Because of neural noise, these variables are defined as proba-
bility distributions having means and a variance-covariance structure. In the presence of noise, opti-
mal behavior reduces to Bayesian decision making, where the perceived state of the finger (posteri-
ors) corresponds to the integration of sensory measurements (likelihoods) and stored knowledge (pri-
ors). The goal of model fitting is therefore to find the set of parameters for the likelihood and prior that 
fit best to the data. Our procedure is as follows: 

For the likelihood, we assumed that the sensory measurements (ÿ and ÿ) were noisy but accurate. 
The parameter for the mean of each estimate was therefore fixed to its empirical value, i.e., the joint 
angle on that trial or the actual segment length. The parameter for the variance of each estimate was 
free to vary within realistic constraints. To reduce the number of free parameters, we assumed that 
likelihood variance over joint angle is similar across joints, and variance over phalanx length is similar 
across phalanges. We also assumed that the noise in the sensory measurements is uncorrelated. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.06.570330doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.06.570330
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Peviani et al., Somatosensory computations behind biases in hand perception 
_______________________________________________________________________________ 

17 
 

Off-diagonal values for likelihood covariances were therefore fixed at zero. In total, the fitting for the 
likelihood had six fixed parameters and two free parameters.  

For the prior, we had different assumptions for signals encoding joint angles and phalanx length. The 
parameter for the prior means over joint angles was free to vary within realistic constraints. In contrast, 
we assumed accurate priors over phalanx length; we thus fixed the parameter for the means of these 
priors to their empirical values. The rationale behind these assumptions lies in the biomechanical 
features of the finger: while joint angles continuously vary, the length of each phalanx is stable in the 
short-term. It follows that sensory signals on phalanx lengths reflect the actual finger geometry, lead-
ing to an accurate measurement distribution. The prior distribution of length is accurate as well, since 
it is learnt over sensory feedback gathered during previous sensorimotor interactions with the envi-
ronment. Regarding the prior variance-covariance, we let the variance of each estimate free to vary 
within realistic constraints. We set the correlation between two sets of joint-pairs as free to vary, given 
known covariances between them (see38,39). All other off-diagonal values were set at 0. In total, the 
fitting for the prior had three fixed parameters and eleven free parameters.  

The full model therefore had 22 parameters (13 free, Table S1) that were inputted into the functions 
described by Eqns. (1-4) via custom-made MATLAB code, following the computational steps of model 
variant 1 or model variant 2. It is critical to note that the fitting for each model variant had the same 
free and fixed parameters. 

 

 

Model fitting and evaluation 

To estimate best fitting parameters for each subject and model variant, we maximized the probability 
of the data (observed behavioral estimates expressed in spatial coordinates), given a range of initial 
parameters and model variant. We applied Maximum Likelihood Estimation (MLE) to maximize the 
log-likelihood, with log-likelihood based on a 2D Gaussian function and calculated as: ÿÿ ൌ pሺýÿý|ÿ, Σ ሻ ൌ  logሺ∑ 2ÿିೖమ  |Σ|ିభమ ÿିభమሺýÿý೔ି ÿሻஊషభሺýÿý೔ି ÿሻே௜ୀଵ ሻ  (5) 

in which N is the number of observations; k is the number of free parameters in the model; obs rep-
resent observed localization judgements (expressed in 2D spatial coordinates), relative to MC position 
(0,0); μ and Σ are model�s posterior mean and covariance (expressed in 2D spatial coordinates), given 
each initial set of free parameters. 

Optimization of the -LL was done using fmincon (MATLAB) as done previously.21,40 For every model 
variant and participant, we computed 100 fits using random parameter initializations. We then se-
lected the best fit as the one associated with minimum -LL (Table S2). 

For each best fit we then calculated the BIC (Bayesian Information Criterion). This expresses the 
maximized log-likelihood (LL) as a function of the number of observations (N) and free parameters 
(k).  ýýÿ ൌ  െ2 ∗ ÿÿ ൅ ýýýሺýሻ ∗ ý     (6) 

We compared BIC distributions using paired t-test. Lower BICs indicate better fits.  

Table S1. Hard boundaries for model parameter search space 

 Lik. variance Prior mean Prior variance-covariance 

 ÿ ఏ,௟௜௞ 

deg 

ÿ ௅,௟௜௞ 

mm 

ÿଵ,௣௥௜ 
deg 

ÿଶ,௣௥௜ 
deg 

ÿଷ,௣௥௜ 
deg 

ÿఏభ,௣௥௜ 
deg 

ÿఏమ,௣௥௜ 
deg 

ÿఏయ,௣௥௜ 
deg 

ÿ௾భ,మ,௣௥௜ ÿ௾మ,య,௣௥௜ ÿ௅భ,௣௥௜ 
mm 

ÿ௅మ,௣௥௜ 
mm 

ÿ௅య,௣௥௜ 
mm 

Lower bound 0.1 0.1 -20 -10 -10 0.1 0.1 0.1 -0.8 -0.8 0.1 0.1 0.1 

Upper bound 35 50 90  100  70 45  45 45 0.8 0.8 50 50 50 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.06.570330doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.06.570330
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Peviani et al., Somatosensory computations behind biases in hand perception 
_______________________________________________________________________________ 

18 
 

As an indication of the quality of the model fits we computed the R2 for each subject. This was calcu-
lated by subtracting from 1 the ratio between the sum of squared distances between predicted and 
observed mean estimates and the sum of squared distances between observed mean estimates and 
their grand mean over postures.  

If model variant 2 well approximates behavioral estimates, we would expect that the observed finger 
length estimation bias (estimated finger length � actual finger length) / actual finger length *100) var-
ies as a function of the distance between the prior and the likelihood, as shown by model simulations 
(Figure 1D). This distance was quantified as Bhattacharya distance (a variation of the Mahalanobis 
distance), computed based on the fitted likelihood and prior expressed in Cartesian coordinates: ∆௟௜௞ି௣௥ൌ  ∑ െ ଵଶ ൫ÿ௟௜௞ െ ÿ௣௥൯் ቀఀ೗೔ೖା ఀ೛ೝ ଶ ቁିଵ ൫ÿ௟௜௞ െ ÿ௣௥൯௡௜ୀଵ    (7) 

 

  

Table S2. Fitted parameter values and fit outcome for each subject and model variant  

Sub-
ject 

Va-
riant 

Likelihood Prior Fit outcomes ÿÿ,ýÿý ÿÿ,ýÿý ÿÿ,ýÿÿ ÿÿ,ýÿÿ ÿÿ,ýÿÿ ÿÿÿ,ýÿÿ ÿÿÿ,ýÿÿ ÿÿÿ,ýÿÿ ÿÿÿ,ýÿÿ ÿÿÿ,ýÿÿ ÿÿÿ,ýÿÿ ÿÿÿ,ÿ,ýÿÿ ÿÿÿ,ÿ,ýÿÿ -LL BIC R2 

1 
1 9.81 50.00 -20.00 100.00 -10.00 16.75 11.95 23.91 12.28 6.14 4.89 0.50 0.50 3744.34 7570.47 0.62 

2 8.91 10.39 -20.00 100.00 70.00 12.48 24.95 14.13 17.14 8.57 9.53 -0.36 0.80 3660.64 7403.08 0.69 

2 
1 23.24 50.00 21.60 100.00 17.36 12.45 6.22 12.45 14.43 7.21 3.61 0.12 0.50 3849.08 7779.94 0.23 

2 7.95 18.43 68.34 84.50 35.23 13.93 11.43 17.00 10.13 12.72 19.72 -0.80 -0.80 3620.36 7322.52 0.54 

3 
1 21.53 50.00 90.00 99.69 -10.00 28.42 15.92 10.59 21.87 10.93 5.47 -0.50 0.50 4361.78 8805.36 0.27 

2 16.61 20.59 90.00 60.71 -10.00 12.19 18.18 36.36 19.58 21.13 15.63 -0.80 0.33 4144.62 8371.04 0.68 

4 
1 35.00 38.23 -20.00 -10.00 70.00 24.81 34.43 20.50 23.99 18.49 9.84 -0.50 0.50 4579.12 9240.03 -0.04 

2 35.00 50.00 -20.00 0.28 70.00 27.17 45.00 45.00 22.26 15.51 7.75 -0.80 -0.56 4518.88 9119.54 0.01 

5 
1 11.05 50.00 90.00 100.00 -10.00 40.42 20.21 17.61 14.04 7.02 14.04 -0.50 0.50 3845.46 7772.70 0.45 

2 12.23 10.51 90.00 80.26 0.11 15.92 11.08 21.20 17.01 17.47 34.93 -0.80 0.80 3695.19 7472.18 0.68 

6 
1 24.95 50.00 77.80 70.34 -10.00 26.01 16.79 33.35 17.22 8.61 4.31 -0.50 0.50 4148.18 8378.15 0.49 

2 15.80 23.61 84.40 30.10 -10.00 26.78 45.00 22.50 12.76 8.83 17.66 -0.80 -0.43 4010.55 8102.88 0.68 

7 
1 35.00 50.00 7.15 28.55 19.60 5.43 7.79 11.97 29.90 14.95 7.48 -0.50 -0.50 3937.27 7956.34 -0.24 

2 35.00 50.00 6.92 30.14 12.73 5.99 11.98 23.96 30.21 15.11 7.55 -0.80 -0.69 3917.26 7916.31 -0.26 

9 
1 35.00 50.00 7.36 64.54 70.00 18.79 23.69 32.01 16.61 8.30 4.15 -0.50 0.50 4278.56 8638.90 0.61 

2 35.00 16.74 6.71 72.83 -10.00 21.37 42.75 21.37 23.19 11.59 5.80 -0.80 -0.69 4244.51 8570.80 0.54 

10 
1 21.12 50.00 -20.00 100.00 70.00 31.17 45.00 22.50 34.06 20.97 10.49 0.50 -0.50 4576.86 9235.51 0.15 

2 21.75 50.00 -20.00 86.59 -3.63 24.47 36.50 45.00 32.01 19.08 9.54 -0.80 -0.80 4480.15 9042.09 0.25 

12 
1 35.00 50.00 20.71 79.20 -10.00 9.25 6.03 7.97 23.72 11.86 5.93 -0.50 -0.50 4182.04 8445.87 0.34 

2 10.23 48.25 46.02 -10.00 69.93 10.99 21.97 10.99 16.04 8.02 13.15 -0.71 -0.74 3884.74 7851.28 0.76 

13 
1 17.00 50.00 -1.41 100.00 70.00 20.31 10.15 19.35 19.78 9.89 4.95 -0.50 -0.50 4203.70 8489.19 0.09 

2 11.33 14.61 90.00 100.00 70.00 19.83 39.65 24.95 30.59 15.30 7.65 -0.80 -0.12 4106.63 8295.05 0.37 

14 
1 35.00 50.00 -19.60 39.73 70.00 13.56 16.07 8.03 17.40 8.70 17.40 0.50 -0.50 4147.30 8376.39 -0.05 

2 17.57 13.81 -20.00 17.38 -10.00 11.81 23.62 22.78 31.26 15.63 7.81 -0.47 -0.80 3948.82 7979.43 0.48 

15 
1 30.40 50.00 -20.00 100.00 56.74 45.00 45.00 22.50 11.78 12.39 6.20 0.50 -0.50 4255.63 8593.04 0.45 

2 33.54 19.06 -20.00 95.92 41.66 45.00 22.50 43.66 15.98 7.99 4.00 -0.05 -0.80 4216.25 8514.28 0.44 

16 
1 20.45 50.00 -12.64 100.00 -10.00 45.00 22.50 22.12 14.28 7.14 3.57 0.28 0.50 4132.81 8347.40 0.53 

2 27.08 12.26 7.02 100.00 16.59 26.12 32.65 45.00 30.22 15.11 7.55 0.80 -0.80 4074.06 8229.91 0.54 

17 
1 21.46 50.00 12.10 100.00 45.95 11.11 5.56 4.98 20.90 10.45 5.23 0.50 -0.50 4125.69 8333.17 -0.48 

2 8.28 17.65 90.00 64.13 6.47 15.88 31.75 45.00 20.01 38.03 50.00 -0.80 -0.80 3990.16 8062.11 0.24 

18 
1 18.61 50.00 23.69 100.00 70.00 21.14 10.57 20.51 19.45 9.72 6.80 0.43 -0.50 4125.59 8332.97 -0.39 

2 9.76 19.96 90.00 54.44 9.35 16.76 33.52 45.00 20.27 35.19 50.00 -0.80 -0.80 3970.59 8022.97 0.39 

19 
1 35.00 50.00 -16.11 100.00 55.78 20.53 10.26 17.81 24.58 12.29 18.59 -0.50 -0.50 4356.71 8795.20 -0.01 

2 22.62 50.00 -20.00 100.00 38.27 22.95 35.44 45.00 23.00 11.50 23.00 0.80 -0.80 4281.88 8645.54 -0.12 

20 
1 8.32 50.00 19.89 -10.00 20.67 5.96 5.06 3.62 32.28 27.05 13.53 -0.50 -0.50 4105.16 8292.11 -4.10 

2 8.46 18.18 7.25 -10.00 24.21 5.91 11.83 21.31 32.47 50.00 25.00 -0.80 -0.80 3803.94 7689.67 -0.41 
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Ruling out response truncation  

During the task, participants in VR could see the position of their MC and a yellow circumference 

centered on the MC. The circumference�s radius represented the total length of participant�s index 

finger when stretched (Figure 2). This experimental choice was made in order to provide participants 

with unbiased information of the size of their finger, and rule out that possible finger length underes-

timation errors arise from spatial biases related to the perception of the virtual environment. However, 

it is possible that providing this information would lead to a truncation of response distributions for the 

fingertip, especially in case participant�s fingertips happened to be very close to or overlapping with 

the circumference (i.e., extended finger posture). We took two approaches to rule out this possibility.  

First, if our results were due to truncation of the fingertip response distribution, we would have ex-

pected to observe underestimation of the tip phalanx (i.e., distance between DIP and FT), and not of 

the other segments, i.e., base phalanx (MC-PIP) and middle phalanx (PIP-DIP). Instead, as it is visible 

in Figure S2, spatial biases affect not only FT, but also DIP and PIP estimation responses. Specifi-

cally, segment length misestimation across postures and participants was on average -8.65% (± SEM 

5.06) for the base segment, -24.68% (± 6.28) for the middle segment, and 1.26% (± 7.82) for the tip 

segment. One-tailed t-test against zero showed that underestimation is significant for the middle seg-

ment (t(17) = -3.93, p = .001), marginally significant for the base segment (t(17) = -1.71, p = .053 and 

not significant for the tip segment (t(17) = 0.16, p = .563). These spatial biases lead to an average 

total misestimation across segments, postures and participants of -19.51 (± 4.42) with t(17) = -4.41, 

p <.001. This pattern of results�and specifically, the lack of underestimation for the tip phalanx�

would not be expected our results were simply due to response truncation. 

Second, if our results were solely due to the avoidance of the imposed boundary, we would expect 

that participants truncated their response distributions at that boundary. In contrast, we consistently 

observed estimates beyond this boundary. In the polar plots of Figure S3, the radius of circumfer-

ences represents the distance from MC and FT when the finger is extended, i.e., total finger length. 

The black segments represent the six tested postures, each associated with a different color. Re-

sponse distributions for the FT are colored accordingly. As a first observation, fingertip position for 

most postures and participants did not lie close to the circumference. The task indeed probed different 

power grips, requiring different degrees of finger flexion. This minimizes the possibility that responses 

were truncated, as response targets did not lie on the boundary. This is visible also in histograms, in 

which the solid line represents the normalized distance from MC to FT (physical distance / total finger 

length), and the dashed line the circumference radius normalized to one. Frequency distributions rep-

resent different blocks (i.e., postures), colored coherently with polar plots. If truncation occurred, we 

would have expected fingertip estimation responses to cluster within the circle. Rather, in some cases 

(e.g., in subjects 4, 6, 14), responses cross the circle boundary, coherently with non-truncated distri-

butions. 
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Figure S2. Examples of preprocessed data. Each polar plot shows the normalized circumference (i.e., ren-

dered yellow circle) centered on participant�s MC, along with the six tested postures (black segments), and 

behavioral responses for PIP (green), DIP (blue), FT (purple).  
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Figure S3. Ruling out response truncation. Each polar plot shows the normalized circumference (i.e., ren-

dered yellow circle) centered on participant�s MC, along with the six tested postures (black segments). Fingertip 

localization responses for a subject (i.e., Cartesian positions normalized on total finger length) are represented 

as small dots; each color represents a posture. Accordingly, real fingertip positions across postures are plotted 

as big colored dots. The same colors are used to represent frequency distributions of the estimated distance 

between MC and FT. Black dashed line represents total finger length. 
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