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35 Abstract
36 Sdline lakes are rapidly drying out across the globe, particularly in Central Asia, due to

37 climate change and anthropogenic activities. We present the results of a long-read next
38 generation sequencing analysis of the 16S rRNA-based taxonomic structure of bacteriomes of
39 the Tengiz-Korgazhyn lakes system. We found that the shallow endorheic, mostly saline
40 lakes of the system show unusually low bacterioplankton dispersal rates at species-level
41 taxonomic resolution. The major environmental factor structuring the lake's microbial
42 communities was salinity. The dominant bacteria phyla of the lakes with high salinity
43 included a significant proportion of marine and haophilic species. In sum, these results,
44 which can be applied to other lake systems of the semi-arid regions, improve our
45 understanding of the factors influencing lake microbiomes undergoing salinization in
46 response to climate change and other anthropogenic factors. Our results show that finer
47 taxonomic classification can provide new insights and improve our understanding of the
48 environmental factors influencing the microbiomes of lakes undergoing salinization in

49 response to climate change and other anthropogenic factors.

50
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50 Introduction

60 Lake ecosystems are among the most rapidly and extensively altered ecosystems and have
61 shown mgor changes in physico-chemical topology and biotic characteristics in the recent
62 past'™. Sometimes referred to as “meta-systems’, biodiversity of lakes is strongly affected by
63 lake connectivity, ecosystem structure and dynamics, and their relative position in the
64 landscape’. The instrumental value of lakes as an indicator of Earth’s response to climate
65 change® makes lake research an essential component of the IPCC and UNFCCC agenda.
66 Magor consequences of climate change for lake ecosystems are observed worldwide and are
67 likely to be amplified in the future due to, for example, changes in ice phenology, lake
68 surface water temperature and evaporation®. This has significant implications for water level
69 and water quality, nutrient dynamics and trophic structure’, community composition®® and
70  susceptibility to invasive species™.

71 The globally projected change in temperature and precipitation patterns™* affects, in
72 particular, regions with a semi-arid climate and constitute a major threat to the biodiversity
73 and functionality of lake ecosystems here. Central Asia, a semi-arid region harboring the
74 largest number of endorheic lakes™, is also one of the most rapidly warming regions of the
75  world™. Increasing temperature and, as a result, precipitation/evapotranspiration imbalance
76 can lead to salinization and desiccation of saline and freshwater terminal lakes™ and this
77 may have major effects on ecosystem structure and functioning™°. Among environmental
78 gradients, sainity is known as a maor factor driving the diversity and composition of
79 microbial communities on a global scale® and, specifically, in lake ecosystems™. However,
80 our understanding of the impact of salinity and salinization processes is limited due to
81 geographical and taxonomic bias in the current literature®. The authors highlight the lack of

82 available data concerning small water bodies (i.e., shallow lakes and ponds), datasets from
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83 semi-arid and arid regions, and studies focusing on microorganisms rather than aguatic
84 invertebrates.

85 Until recently, the field of microbial community analysis has been dominated by Illumina

86 platforms that rely on partia 16S rRNA gene sequences (<300 bp) for OTU generation and

87 taxonomic classification. However, with the emergence of new high-throughput sequencing
88 techniques, such as Nanopore and PacBio, which can produce full-length 16S sequences, it
89 has been demonstrated that 11lumina reads cannot achieve sufficient taxonomic resolution to
90 accurately differentiate between bacterial taxa®™?*. For analysis of microbiomes, the longer
91 reads provide significantly improved taxonomic resolution to species or even strain-level®%.
92 Thethird generation sequencing technologies, such as nanopore-based sequencing by Oxford
93 Nanopore Technologies (ONT), not only overcome these limitations, but also alow for
94  sample multiplexing and metagenomic sequencing®?”%. The only concern about nanopore-
95 produced long reads - during its initial development stages - was the relatively high error
96 rate”. However, besides continuously improving chemistry kits and basecalling algorithms,
97  bioinformatic approaches are being developed to handle noisy data® .

98 Here, we implement an improved nanopore-based workflow to comprehensively characterize

99 lake microbiomes at high taxonomic resolution. We investigated the diversity, heterogeneity,
100 and detailed composition of prokaryotic communities of the Tengiz-Korgalzhyn Lakes
101 system, in Kazakhstan, located along the north border of the endorheic basin of Central Asia.
102 We hypothesize that environmental gradients (mainly salinity) and lake connectivity are key
103 drivers of the variation in biodiversity and composition of microbia populations in saline
104 lakes. In addition, we anticipate that the species-level taxonomic profiling of the bacterial

105 full-length 16S amplicons would help us to gain new insights into the microbial ecology of

106 the ecosystems of these endorheic lakes, specifically the importance of environmental
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107 selection and dispersal processes in shaping bacterioplankton communities of neighboring

108 and distant lakes.

109 Materialsand Methods

110 Study area and sampling site classification

111 The Tengiz-Korgalzhyn Lakes system (TKL) is located in the Korgalzhyn district, Akmola
112 region, Northern Kazakhstan. The TKL area was included in the Ramsar convention in 1976
113 and later added to the “Living Lakes” list by the Global Nature Fund in the early 2000s. The
114 territory is also partially designated as the Korgalzhyn State Nature Reserve, which is
115 currently listed as one of the UNESCO World Heritage Sites. Despite the protection
116 measures, TKL remains under the pressure of anthropogenic and environmental factors, such
117 asthe utilization of water resources by the nearby towns, fluctuating water levels due to the
118 operation of connected water dams, seasonal floods, droughts, etc. The region is defined by
119 its continental and arid climate, with relatively scarce precipitation during the summer®.
120 Most of the lakes are snow-fed, with little to no reliance on local temporary water streams™.
121 Coastal sampling (1-2 m from the coast, 0.5 m depth) was conducted across the TKL and in
122 severa adjacent water bodies (Figure 1). For geographical and environmental comparison of
123 the samples, we defined several scales to appropriately address the samples: region (the
124  lowest scale), lake, and site (the finest; each sample corresponds to a single site). Hence, the
125 studied area was divided into five regions. Nature Reserve, North Group, South Group, East
126  Group, and Outside Group. The first region covered the protected territories and included two
127 endorheic lakes: Azhibeksor and Tengiz — both Large (LT) and Small Tengiz (ST) — as well
128 astwo small water bodies next to ST. Other regions consisted of 2 to 10 shallow endorheic
129 lakes. Overdl, 15 lakes and 29 sampling sites were included in the experiment. The sites
130 were labeled with a lake name or a letter code if the name was unknown. Numbers indicate

131 sitesthat were located within the same lake. Regions were consistently color coded.
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132 Sample collection and processing

133 All water samples used for this study were collected in the coastal zone of the lakes during
134 several consecutive expeditions to TKL in July-August 2021. Upon delivery to the
135 laboratory, biomaterial was filtered using a vacuum pump onto the 0.22 um glass fiber
136 membrane filters (Millipore, USA) and then stored in 50-ml Falcon tubes (BD Biosciences,
137 USA) at -80 °C. The following physico-chemical parameters were recorded for each sample
138 on site: temperature, conductivity, pH, total dissolved solids (TDS), salinity using Cyberscan
139 PC 300 multimeter (Eutech Instruments, Thermo Fisher Scientific Inc., USA) and dissolved
140 oxygen (DO) using a YSI Pro Plus multimeter (Xylem Inc., USA). The total phosphorus
141 content was estimated using protocols by the U.S. Environmental Protection Agency (EPA)®.
142 DNA extraction, library preparation, and sequencing

143 DNA was extracted with the PowerWater DNA Isolation Kit (Qiagen, MD, USA) according
144  to the manufacturer’s protocol and stored at -20 °C. The purity and concentration of the DNA
145 were assessed with Nanodrop (Thermo Fisher Scientific Inc., USA).

146 PCR was performed under standard conditions with Dream Tag Hot Start PCR Master Mix
147 2X (Thermo Fisher Scientific Inc., USA). The purification step was performed with AMPure
148 XP magnetic beads (Beckman Coulter, CA, USA). The ONT 16S Barcoding Kit SQK-
149 165024, the Flow Cell Priming Kit EXP-FLP002, and MinlON R9 (FLO-MIN106D) were
150 used for library preparation and sequencing (Oxford Nanopore Technologies, Oxford, UK).
151 Basecalling and demultiplexing were completed using GPU-based Guppy (version 6.4.6,
152 Oxford Nanopore Technologies, UK). Reads were then filtered by length and quality: a range
153 of 1300 - 1650 base pairs and a Q-score of at least ten were set asinclusion criteria.

154 Taxonomic classification

155 Taxonomic classification and relative abundance estimation were performed using the Emu

156 algorithm, designed for long and noisy Oxford Nanopore reads™. The custom reference
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157 taxonomy database was used, which is a combination of rrnDB v5.8* and NCBI 16S
158 RefSeg® downloaded on May 12, 2023. The custom database consists of 19,627 unique
159 gpeciesthat are represented by 67,931 reference sequences.

160 Statistical analysis

161 Analysis was performed with R version 4.3.0%, R Studio version 2023.6.0.421%, and the R
162 packages phyloseq v1.44.0" and vegan v2.6-4” were used to handle abundance,
163 environmental, and geographical data. Rarefaction without replacement was performed with
164 the rarefy_even_depth() function from the vegan package. The rarefaction depth was 50,000
165 reads per sample. Hill diversity indices were chosen as apha diversity measurements to
166 explore community composition on arithmetic, logarithmic, and reciprocal rarity scales:
167 observed richness (i.e.,, number of species), Hill-Shannon entropy, and Hill-Smpson
168 concentration index****. Evenness (J) was calculated with the Pielou’s formula™:

-3] pin®) _ in(Hill-Shannon)
in(q) " In(Observedspecies)

169 J =

1)
170 wherep; is species relative abundance and g is the number of species.

171 The correlation between biodiversity and environmental parameters was evaluated based on
172 Pearson's coefficient. The difference in the composition of the bacterial communities was
173 caculated using Bray-Curtis dissmilarity and then visualized on non-metric
174 multidimensional space (NMDS). The ordination stress value of 0.1 or less was considered
175 sdtisfactory with a low risk of misinterpretation. In the case of high-stress values, three-
176 dimensional solutions were searched. The final plot was rotated to maximize the variance on
177 thefirst dimension. Analysis of similarity (ANOSIM) was performed to compare community
178 similarity at different scales (region, lake, site). Mantel test was used to check for correlation
179  between abundance, environmental, and geographical distance matrices®. Explanatory power

180 of the environmental and geographical variables on species variation — also called direct


https://doi.org/10.1101/2023.12.06.570325
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.06.570325; this version posted December 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

181 gradient analysis —was explored with Canonical Correspondence Analysis (CCA). Partialing
182 out spatia and environmental variation in community structure was performed according to a
183 method described by Borcard and co-authors”. The multipatt() function and the group-
184 equalized ‘indicator value' (Indval) index from the indicspecies package were used to
185 determine indicator species associated with groups of sites®. Indval is the product of two
186 probabilistic values, called A and B: probability of a site where the speciesis found to be
187 a member of the site-group and the frequency of the species being found at sites that

188 belong to the site-group, respectively.

189 Results

190 Geographical and environmental data
191 Geographical and environmental information of the 29 collection sites (comprising 15 lakes

192 and 5 regions) is shown in Figure 1 and Supplementary Table 1.
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194 Figure 1. Sampling sites details. (a) Geographlc location

~

b) and environmental variables:
195 salinity (%o), temperature ("), and total phosphorus (mg/L). Created with use of
196 OpenStreetMap (CCBY-SA 2.0).

197

198 Bacterioplankton community richness and composition

199 Alpha-diversity and community evenness

200 Based on the species-level classification of 16S sequences, 3290 distinct bacterial species,
201 1584 genera, 457 families, 180 orders, 83 classes, and 38 phyla were identified across the
202 sampling sites: per-site estimates are given in Figure 2 and Supplementary Figure 1. The
203 taxa were heterogeneously distributed, with the maority of species contributing less than
204 0.1% to the total bacterial count. The observed richness of lake bacterial communities ranged
205 from 365 (Azhibeksor and Zhumay) to 1026 (ST1) species with a mean of 665 (+173)
206 distinct species per sample, and it was negatively correlated with community evenness

207 (Pearson’sr = -0.39, p-value = 0.042). Hill-Shannon ranged between 38 (ST 2) and 214 (LT
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3 and Alakol), with mean of 118 (+46), while Hill-Simpson ranged between 6 (ST 2) and 91
(Alakol) with an average of 40 (£24). The species diversity, expressed in Hill numbers,
showed strong linear relationship (R-squared [0.77 - 0.96], p-value < 0.001) with estimates at
genus and family levels; goodness of fit dropped significantly (R-squared [0.14 - 0.41], p-

value < 0.05) when comparing species and class levels (Supplementary Figure 2).

Region ® MNature Reserve ® North Group ® SouthGroup ® EastGoup @ Outside Group
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Figure 2. Richness and alpha-diversity estimates for the lake samples: Observed richness,

Hill-Shannon, and Hill-Simpson.

Based on Pearson's correlation test, alpha diversity (observed richness, Hill-Shannon, Hill-
Simpson) was not found to be significantly correlated with any environmental variables
(salinity, temperature, dissolved oxygen, TP). The small number of sites per region did not
meet the minimum requirements for statistical testing, but the visual inspection did not reveal
any potential dependence (Supplementary Figure 3).

Beta-diversity and community composition

The six most abundant bacterial phyla present across all sites were Pseudomonadota,
Bacteroidota, Actinomycetota, Cyanobacteriota, Bdellovibrionota and Campylobacterota
(Figure 3); note that the latter two were previously considered to be a part of the

Proteobacteria (Pseudomonadota) phyla.
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228 Figure 3. Bray-Curtis-based McQuitty clustering and phylum level composition of the
229 sampling sites. The percentages of the six most abundant phyla are included, the remaining
230 groups are classified as ‘Other’.

231

232 The dissmilarity in microbial community composition was well characterized by both

233 clustering and ordination (Figures 3, 4). Both techniques identified the Outside Group
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234 samples as outliers compared to the other regions. In the Nature Reserve, the Tengiz samples
235 were plotted closely together with the three remaining lakes: Azhiberksor, Sadikbay and
236 Aktaylak. While Azhibeksor was localized somewhat separately, lakes Sadikbay and
237 Aktaylak were associated with the Small Tengiz samples. While Azhibeksor was localized
238 somewhat separately, samples from lakes Sadikbay and Aktaylak were associated with the
239 Small Tengiz samples. The sites from the rest of the regions were more scattered. With a
240 certain degree of regional fidelity, the East Group samples were quite heterogeneous with
241  some resemblance to Nature Reserve (Beskopa), South Group (Alakal), or North Group (Site
242 G). Site K showed high dissimilarity from its group only in clustering output. The Zhumay
243 and Saumalkol sites (North Group), whilst having site-specific bacterial signatures, were
244 more closely related to each other than to all other regions. Notably, sites Zhumay,
245 Saumalkol, Alakol, and Shukyrkol, although coming from different regions and being plotted
246 in a scattered manner (Figure 4a-b), were clustered together in a low-sainity (< 10 %o)

247  cluster (Figure 3).
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249 Figure 4. NMDS ordination based on the Bray-Curtis dissimilarity matrix. (a) 3D ordination

250 plot, (b) 2D representation with fitted environmental parameters, and (c) Shepard’s plot.

251

252 Focusing on the abundant taxa — defined having relative abundance of > 0.1% at genus level
253 in at least one of the samples — we examined the core microbiome of the lake system. The
254  total taxonomic pool included 597 genera and 1965 species found across the sampling area.
255 Based on the presence-absence data, 127 (21.3%) genera and 138 (7.0%) species constituted
256 the core microbiome in all five regions (Figure 5), and even smaller proportions were
257 observed to be present in all 15 lakes (5.7% and 1.7%, respectively, see Supplementary
258 Table 2). Almost two-thirds of the lake-wise core species were representatives of
259 Cyanobacteriota— a phylum congtituting a relatively modest share of the total community
260 (Supplementary Table 2). The core microbiome increased upon exclusion of the low-

261 salinity cluster, with 348 (58.6%) genera and 521 (27.4%) species being shared among the
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262 threeregions (data not shown). Notably, whilst there was clear regional (and even |akes-wise)
263 heterogeneity in the composition of bacterial species, this dissimilarity was less resolved at

264 thegenuslevel.

Maorth Group MNarth Group

Mature
Resant

BT G o South 6 et South
B .7 0 335 11_1%3_4% Group 28% ggdT% E:i‘:*q 6ok = Broup
= 6 6o 501 :?’ { P~ 0% ?]RE;J'
9.6%. e 125 155 A S
450 Y W T B =g g 09% 37% P oy O Wi
2% o e 57% g

i

3.1% .
02 i _}-—-—‘—1-— LY
7 14%

0.2:00.5% 0-6% g5 1%
- |

0% 0.7% 08% 4 7o

r

1.3% 3%
0.8 jprm—

0.8% 5% §
1.7%

2%

Outside Group Qutside Group

ast Group

265
266 Figure 5. Regiona distribution of bacterial taxa (region as a unit of sites): based on (a)

267 species (n =1965) and (b) genera (n = 597) presence-absence data.

268 Driving factors of microbial diversity and indicator species

269 Geographical patternsin species distribution

270 Sampling sites located in the same lake region (ANOSIM R 0.8268, p-value < 0.001) or
271 closer to each other (Mantel r = 0.3429, p-value < 0.001) were more alike in terms of
272 microbiome composition. Exclusion of rare taxa did not affect the ability of ANOSIM to
273 resolve the geographical pattern in the remaining community (ANOSIM R 0.8266, p-value <
274 0.001). To investigate the bacterial taxa that contribute to this pattern, we performed the
275 indicator value analysis. Species showing significant association with region combinations
276 are reported in Supplementary Table 3. Among 1965 species, 172 (8.75%) showed

277 sgnificant association to one region, 72 (3.66%) were associated with combinations of two
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278 regions, while 67 (3.4%) and 20 (1.02%) were associated with combinations of three and four
279 regions, respectively.

280 There were 43 species with strong association to the Nature Reserve, the largest yet most
281 homogenous group in terms of microbial compasition. Only three species (Marinomonas
282 communis, Roseibacterium beibuensis, and Loktanella acticola) were identified to be both
283 restricted to the region (A = 1.00) and present at all its sites (B = 1.00), and 14 more species
284  exhibited a patchy distribution across the region (0.76 < B < 0.95). Some indicator species
285 were not completely restricted to the region, but appeared in small quantities at other sites (A
286 < 1.00, B =1.00). Examples of this were the most abundant bacteria Candidatus Pelagibacter
287 s, whose relative abundance ranged between 1.36% and 39.42%, and other less abundant
288 gpecies such as Kistimonas scapharcae, Marinomonas gallaica, Marinimicrobium spp (M.
289 agarilyticum, M. locisalis), Neptunomonas phycophila, and three Oceanospirillum spp (O.
290 beijerinckii, O. multiglobuliferum, and O. sanctuarii). Indicator species accounted for 4.21%
291 to44.2% of thetotal bacterial count across the region, with a median of 20.2%.

292 The second largest region, East Group, represents a cluster of sites with a very heterogeneous
293 community composition: not a single bacterial species was observed in al lakes across the
294  region. First of all, there were three outliers, as suggested by the clustering and ordination
295 resaults: Site K was dominated by five Cyanobacteriota spp (about 25% of the total bacterial
296 community) all of which were a part of the core microbiome; Site G was dominated by
297 Fluviispira sanaruensis (about 25% of the reads); Alakol had an overall distinct bacteria
298 profile. Second, many species with moderate fidelity to the East Group were actually
299 associated with a combination of regions, such as East Group & Nature Reserve (e.g.,
300 Pedobacter spp, Pseudomonas spp), East Group & Nature Reserve & North Group (e.g.,
301 Burkholderia spp, Marinobacterium ramblicola, Duganella alba, Microbulbifer aggregans),

302 East Group & Nature Reserve & Outside Group (e.g., Marivita spp), etc.
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303 The North Group, athough consisting of only two sites, was also quite heterogeneous. When
304 looking at the presence-absence data, we identified 42 species unique to the region; however,
305 there was almost no overlap between two lakes. Thus, 59.5% percent of the taxa were found
306 explicitly in Zhumay, and 35.7% in Saumalkol — most of them had a relative abundance of
307 about 1% or less. Similarly, the indicator value analysis identified only four low-abundance
308 taxa with strong regional association. While Zhumay had a more distinct bacterial profile,
309 Saumalkol had some species in common with neighboring water bodies from the Nature
310 Reserve; Microbulbifer spp, for example, were common across the East Group, Nature
311 Reserve, and Saumalkol lake sites.

312 The Shukyrkol and Uzynsor sites were both the only representatives of their respective
313 regions, hence the inflated number of indicator species (Supplementary Table 4), especially
314 those with high regional fidelity (A = 1.00) and frequency (B = 1.00). Yet, considering the
315 fact that there was an average of 15 unique species per sampling site (presence-absence data),
316 this result was expected. Although the Outside Group had many overlaps with other sites, it
317 was mostly set apart due to the low alpha diversity and thus increased abundance of certain
318 gpecies. In fact, the 12 most abundant species accounted for about 50% of the community at
319 Uzynsor sites, of which seven belonged to the region-wise core microbiome, while the
320 remaining five werefound in all regions except for the low-salinity cluster.

321 Across the 31 combinations of site-groups generated by the indicator value analysis, we
322 observed prominent species-level patterns in distribution of bacterial taxa: numerous
323 congeneric indicator species had a strong association with different combinations of lake
324 regions (e.g., Pedobacter spp, Clostridium spp, Legionella spp, Roseovarius spp,
325 Phaeodactylibacter spp, Erythrobacter spp, Mucilaginibacter spp, Flavobacterium spp)

326 (Figure®).
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Figure 6. Several congeneric indicator species are showing association with different lake

regions. (&) Mucilaginibacter spp, (b) Roseovarius spp, (c) Flavobacterium spp, (d)

Erythrobacter spp.
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332 Partialling out the geographical component of variation

333 To distinguish between the geographical and environmental factors influencing the
334 bacterioplankton composition in the lakes studied, we focused on the following variables in
335 the CCA model: salinity, total phosphorus, temperature, dissolved oxygen, site region and
336 exact geographical coordinates. Overall, the environmental and geographical parameters
337 explained 50.3% of the total variation (total inertia = 5.12): spatial factor accounted for the
338 majority of the constrained variation with a slight overlap with environmental variables
339 (Figure7a). A large part of the variation remained unexplained.

340 Removal of the geographical effect practically eliminated the differences between Outside
341 Group, South Group, and the Tengiz sites, but highlighted distinct communities of lakes
342 adjacent to Tengiz (Azhibeksor, Sadikbay and Aktaylak) and the heterogeneity of East Group
343 lakes (Figure 7b). Even though the effect of spatial association was constrained on the graph
344 (Figure 7b), some indicator species with strong regional preference (red) show distribution

345 aong the environmental gradient, i.e., salinity.

a b
1004
5 ™ Temperature
754
T of
2 B unconstrained &
< nconstrain ©,
_g 504 Environmental g
E - Environmental + Spatial 8 21 5
Spatial
Salinity
_4-
T T T T
0 -2 0 2 4
L CCA1 [9.5%
346 [9.5%]

347 Figure 7. Partialling out components of bacterial species variation. (a) Percent of the total
348 inertiaexplained by environmental parameters and spatial structure. (b) Partial CCA triplot of

349 the Bray-Curtis matrix, constrained by the environmental matrix, with removed effect of
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350 geographical matrix; region-specific species are shown in red (Supplementary Table 3), the
351 remaining speciesin gray.

352

353 Didtribution of bacterial species along environmental gradients

354 Mantel tests indicated a significant correlation between environmental parameters and
355 microbial community composition. Three mgor factors affecting community dissimilarity
356 were sdinity (Mantel r = 0.52, p-value < 0.001), TP (Mantel r = 0.48, p-value < 0.001), and
357 water temperature (Mantel r = 0.40, p-value < 0.001): sites with similar salinity, TP, and
358 temperature tended to have more similar microbial composition. Dissolved oxygen, on the
359 other hand, did not significantly correlate with bacterial abundances (Mantel r = 0.03, p-value
360 =0.39).

361 We implemented the same method as in the section above (IndVal) to identify species
362 gpecific to the low-salinity cluster (Zhumay, Saumalkol, Shukyrkol, and Alakal), which was
363 previously highlighted by the clustering method. Notably, the low-salinity cluster covered
364 two geographic regions (North and South Groups), implying that region- and lake-specific
365 indicator species are as likely to be determined by salinity as by geographical factor. The list
366 of 22 species associated with at least two of the sites (A = 1.00, B >0.50) is displayed in
367 Supplementary Table 4. The most prominent examples were the congeneric species with
368 similar response to environmental selection, such as Limnohabitans spp (L. planktonicus, L.
369 parvus, and L. radicicola) and Polynucleobacter spp (P. asymbioticus, P. difficilis, and P.
370 cosmopolitanus). In some cases, however, individual species responded differently to
371 environmental conditions: Algoriphagus spp, Rhodoluna spp, Pseudohongiella spp (Figure

372 9).
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374 Figure 8. Differential abundance of congeneric indicator species in response to salinity: (a)
375 Algoriphagus spp, (b) Rhodoluna spp, (¢) Pseudohongiella spp. Sites are displayed in the
376 order of increasing salinity.

377

378 Apart from qualitative differences, the salinity gradient also exerted a quantitative effect on
379 the community profile. We evaluated the relationship between the relative abundance of
380 bacterial species and salinity percentage with the Pearson's product-moment correlation. Out
381 of the 117 indicator species associated with the Nature Reserve (or its combination with other
382 regions), 52 bacterial species correlated significantly (Pearson Product-Moment Correlation,
383 p-value < 0.05) with salinity. 24 species, mainly represented by the genera Marinimicrobium,
384 Marinobacterium, Marinomonas, Neptunomonas, Oceanospirillum, and Pseudomonas
385 (Gammaproteobacteia), were positively correlated with salinity (Supplementary Figure 4).
386 The remaining species, members of Burkholderiaceae, Chitinophagaceae, Oxal obacter aceae,
387 and Sphingobacteriaceae families, correlated negatively with salinity (Supplementary

388 Figure 5). Among the taxa associated with the East Group, 16 species were found to


https://doi.org/10.1101/2023.12.06.570325
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.06.570325; this version posted December 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

389

390

391

392

393

394

395

available under aCC-BY-NC-ND 4.0 International license.

correlate positively with salinity (Supplementary Figure 6); many of the taxa overlapped
with those from Nature Reserve, e.g., Marinobacterium spp, Neptunomonas spp,
Pseudomonas spp, showing consistent trend along the salinity gradient but different levels of

relative abundance (Figure 9).
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Figure 9. Relationship between salinity and the relative abundance of indicator species

common for the Nature Reserve and East Group.
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396 Discussion

397 Alpha-diversity is not a sufficient community descriptor

398 The average number of unique species per sample (S) scaled with the number of reads (N =
399 50,000) at arate of ~ 0.6 (i.e, S~ N°®), which was slightly greater but close to the expected
400 range of [0.25 - 0.5]*. The negative correlation between the number of species and evenness
401 complied with the diversity scaling law, i.e., samples with a high number of observed species
402 were actually inhabited by a small number of abundant bacteria and many rare taxa®™. Hill
403 numbers of higher order lend more weight to the relatively abundant taxa. Hence, a decrease
404 in “the effective number of species’ was observed. In some cases this decrease was drastic,
405 eg. LT2,LT12, ST2, and Site K (Figure 2), suggesting that most of the taxa determined at a
406 given site were rare. In fact, 25-40% of the reads from these samples were represented by a
407 single taxon; yet, long-read HTS allows to recover three to five hundred rare taxa per site.
408 However, while effectively resolving bacterial diversity, species-level classification does not
409 provide significant advantage over genus-level studies at this stage. Overal, apha-diversity
410 estimators, abeit they provide a fair overview, were not useful for disentangling the
411 biogeographical patterns of bacterioplankton communities since the relationship with
412 environmental variables or geography was not evident.

413 Shallow endorheic lakes show unusually low bacterioplankton dispersal rates

414 Our results demonstrate that while covering large spatial and environmental scales, the
415 microbia community at the Tengiz sites is relatively homogeneous. The inter-lake variability
416 has much higher magnitude. Many studies have previously highlighted that bacterial dispersal
417 rates are affected but not significantly limited by geographical scales, and that it is common
418 for water bodies located several thousand kilometers from each other to share alarge portion

5

419 of their microbiome® . We, however, observed that an unusually high proportion of

420 variation could be explained by the geographical distance between sites and their location
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421 (region) on ascale <200 km (Figure 7), and the percentage of microbial taxa shared was only
422 7% across all five regions and 27.4% across saline lake regions, compared to >85% found by
423 Van der Gucht and coworkers (2007). There might be three facets to this observation of
424  geographical importance.

425 Thefirst facet is skeptical and claims that the explanatory power of geographical factors is
426 attributed to a variable with regional differences that we did not take into consideration in our
427 analysis. Anthropogenic factors, such as proximity to farmlands or villages, could potentially
428 explain the relative homogeneity of the Nature Reserve region (restricted access area)
429 compared to the rest of the regions studied. Regional preferences of phyto- and zooplankton,
430 fish, migratory and nesting birds populations®**® might be reflected in the microbial
431 composition as a result of biotic interactions. Lastly, additional spatially autocorrelated
432 abiotic interactions not considered in the present study could play arole.

433 The second explanation is that high heterogeneity of lakes bacterial communities is a specific
434 characteristic of the studied ecosystem. In arid climates, shallow endorheic lakes are shaped
435 by the flooding and desiccation dynamics, and exhibit frequent changes in temperature and
436 salinity, sometimes turning into ephemeral water bodies. Such unstable inland lakes systems
437 have been previously reported to exhibit high genetic diversity and heterogeneity™.

438 Thethird explanation may relate to in-lake variability and can be based on the heterogeneous
439 physiological characteristics of different bacterial species and persistence of bacterial
440 assemblages across spatial scales. Shallow lakes usually lack stratification and appear in two
441 different ecological states depending on submerged macrophytes™. In contrast to smaller
442 habitats, large lakes such as Lake Tengiz (e.g., lakes Taihu™ and Dongting®’, China) exhibit
443 dignificant environmental gradients and may harbor both ecological states within the same

444  |ake. It puts Lake Tengiz apart from small lakes that were sampled one site in each lake.
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445 The fourth facet is methodological and emphasi zes the role of higher taxonomic resolution. In
446 ameta-analysis study, Hanson and colleagues (2012) have concluded that even though spatial
447  sructure has been rarely highlighted as a mgjor community driver in previous microbiome
448 studies, a positive trend has been observed between the increasing precision of taxonomic
449 classification and a relative effect of the spatial component. According to our observations,
450 the species-level classification achieved with the long-read sequencing indeed allowed us to
451 identify dispersal patterns not resolved previously when classification was limited by higher
452 taxonomic levels, such as genera and families.

453 Salinity isthe major environmental gradient driving microbiome composition

454  Even though salinity did not correlate significantly with apha diversity estimators, we
455 identified it to be the main environmental variable driving microbial composition. Thisis in
456 line with the global patterns of microbia distribution®® as well as with results of studies
457 focused on saline lakes and estuaries™ .

458 The most drastic shift in microbiome composition occurred above the salinity threshold of
459 approximately 10%., which contrasted lakes Zhumay, Alakol, Shukyrkol, and Saumalkol
460 (low-sdlinity cluster) with other sites, this being even more striking as these four sites are
461 located in different regions of the TKL. The two highly abundant Betaproteobacteria shown
462 to be either restricted to or prevalent in low-salinity lakes (< 10%.) were the genera of free-
463 living freshwater bacteria Polynucleobacter and Limnohabitans®. In addition, several
464 indicator species from Alphaproteobacteria (Rhodobacter spp, Caulobacter spp, and
465 Tabrizicola spp), Actinomycetes (Rhodoluna lacicola), Bacteroidota (Aquirufa spp,
466 Algoriphagus sanaruensis), and Cyanobacteriota (Planktothrix agardhii) are also reported
467 for freshwater habitats®® . Besides these planktonic freshwater taxa, the indicator value
468 analysis demonstrated presence of a high number of shared soil-derived bacterial groups. On

469 the one hand, inclusion of soil bacteria via dust or sediment cannot be avoided when taking
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470 coastal samples; however, it might also indicate temporal desiccation of lakes; for example,
471 as reported by the Association for the Conservation of Biodiversity of Kazakhstan, Zhumay
472 (one of the lakes studied in this work) was completely dried out between years 2010 and
473 2013, until its restoration via snow retention®’. Such shallow ephemeral lakes are likely to
474  have representatives (potentially dormant) of biocrust communities and exhibit overall high
475 heterogeneity in diversity estimations™.

476 Even though it is common for closely related taxa to exhibit similar ecological preferences,
477 implementation of the long-read sequencing and species-level metagenomics enables
478 resolution of divergent biogeographical patterns even for congeneric species. For example,
479 digtribution of Algoriphagus spp across sampling sites closely followed the optimum salinity
480 conditions described in the literature: A. sanaruensis was associated with the low-salinity
481 cluster; A. aquatilis was transitional for the low-salinity and East Group sites; A. marincola
482 was distributed across sites with salinity above 10%., and A. kandeliae had a preference for
483 high salinity sites (> 20%o)** "2

484  Asdescribed in the current study, the bacterial profile for sites with salinity > 10%o was less
485 uniform; despite the overlap in salinity ranges between Nature Reserve, East Group, and
486 Outside Group, regions only shared a handful of species. In the first region, large portion of
487 the microbiome was represented by Gammaproteobacteria, mainly from the
488 Marinimicrobium, Marinobacterium, Marinomonas, Neptunomonas, Oceanospirillum, and
489 Pseudomonas genera, al of which are halotolerant and halophilic bacteria, naturally showing
490 a positive correlation with salinity”’*. Majority of these species were also found in the East
491 Group sites but in much smaller quantities than would be predicted based on salinity, which
492 could imply a potential source of limitation to their dispersal. The only exception with wider
493 dispersal was Pseudomonas spp, which were homogeneously spread across both regions with

494 respect to salinity.


https://doi.org/10.1101/2023.12.06.570325
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.06.570325; this version posted December 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

495 Conclusion

496 Thisisthefirst study that provides a detailed, species-level characterization of environmental
497 microbiomes with insights into the biogeographical patterns in the bacterial diversity of 15
498 shallow endorheic lakes. We highlight the potential advantages of the implementation of
499 nanopore-based long-read sequencing for high taxonomic resolution of bacterial diversity.
500 Our findings indicate that the Tengiz-Korgalzhyn Lakes system is extremely diverse,
501 featuring more than 3,000 bacterial species. The microbial communities in the area are
502 gresatly influenced by biogeographical patterns such as selection and dispersal processes.
503 Environmental selection in the sampled lakes was mostly governed by salinity, serving as
504 both ecological threshold and an environmental gradient. The dispersal processes are greatly
505 limited by connectivity of the lakes and their position in the landscape, resulting in high
506 heterogeneity among the different lakes and regions. Species-level classification is important
507 in establishing ecological as well as spatial structures in bacterioplankton composition and
508 abundance. The detailed mapping of the lakes’ microbiome provides a foundation for further
509 genomic and functional investigations of the major bacterial players in the rapidly changing

510 aquatic ecosystems.
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729

730
731 FigureLegends

732 Figure 1. Sampling sites details. (a) Geographic location (b) and environmental variables:
733 salinity (%o), temperature ("), and total phosphorus (mg/L). Created with use of
734 OpenStreetMap (CC BY-SA 2.0).

735 Figure 2. Richness and alpha-diversity estimates for the lake samples: Observed richness,
736  Hill-Shannon, and Hill-Simpson.

737 Figure 3. Bray-Curtis-based McQuitty clustering and phylum level composition of the
738 sampling sites. The percentages of the six most abundant phyla are included, the remaining

739 groups are classified as ‘ Other’.
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740 Figure 4. NMDS ordination based on the Bray-Curtis dissimilarity matrix. (a) 3D ordination
741 plot, (b) 2D representation with fitted environmental parameters, and (c) Shepard’s plot.

742 Figure 5. Regional distribution of bacterial taxa (region as a unit of sites): based on (a)
743  species (n =1965) and (b) genera (n = 597) presence-absence data.

744  Figure 6. Several congeneric indicator species are showing association with different lake
745 regions. (&) Mucilaginibacter spp, (b) Roseovarius spp, (c) Flavobacterium spp, (d)
746  Erythrobacter spp.

747 Figure 7. Partialing out components of bacterial species variation. (a) Percent of the total
748 inertiaexplained by environmental parameters and spatial structure. (b) Partial CCA triplot of
749 the Bray-Curtis matrix, constrained by the environmental matrix, with removed effect of
750 geographical matrix; region-specific species are shown in red (Supplementary Table 3), the
751 remaining speciesin gray.

752 Figure 8. Differential abundance of congeneric indicator species in response to salinity: (a)
753 Algoriphagus spp, (b) Rhodoluna spp, (c) Pseudohongiella spp. Sites are displayed in the
754  order of increasing salinity.

755 Figure 9. Relationship between salinity and the relative abundance of indicator species
756 common for the Nature Reserve and East Group.

757

758

759 Supplementary Figure 1. Alphadiversity and evenness of lake samples at different
760 taxonomic levels; (A) Observed richness, (B) Hill-Shannon, (C) Hill-Simpson, (D) Pielou’s
761 evennessindex.

762 Supplementary Figure 2. Relationship between diversity estimates at different taxonomic
763 levels: (A) genus versus species; (B) family versus species, (C) class versus species. R is

764 Pearson’s coefficient.
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Supplementary Figure 3. Hill’s diversity indices (Hill-Shannon and Hill-Simpson) of sites
across regions.

Supplementary Figure 4. Species associated with the Nature Reserve that show positive
correlation with salinity.

Supplementary Figure 5. Species associated with the Nature Reserve that show negative
correlation with salinity.

Supplementary Figure 6. Species associated with the East Group that show positive
correlation with salinity.

Supplementary Table 1. Geographical and environmental lake details.

Supplementary Table 2. Region-wise core microbiome: species presence-absence data.
Supplementary Table 3. Region specific bacterial species sorted by test statistic

Supplementary Table 4. Bacterial species restricted to the low-salinity cluster lakes
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