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Abstract

Many cognitive tasks require a flexible mapping from specific features of sensory input to motor
output. Such flexible input-output mapping is reflected in intrinsic correlated variability of activity
within the cortical network that implements the decision process, and might rely on rapid plasticity
mechanisms that are under neuromodulatory control. Here, we test for a role of neuromodulators
in flexible decision-making by combining brainstem fMRI and pupillometry with time-resolved
tracking of feature-specific intrinsic correlations within the human sensory-motor network. Human
participants reported visual orientation judgments where the correct responses were contingent
upon an active rule that could switch unpredictably. Rule switches evoked brainstem and pupil
responses and changes in latent variables of behavior that were quantified with a computational
model. Behavioral variables in turn were encoded in pupil dynamics. Brainstem activity and pupil
dilation preceded fluctuations of stimulus-action coupling strength within the cortical network that
implemented the decision. Brainstem arousal systems may thus instigate a context-dependent
reorganization of selective cortical pathways for flexible decision-making.
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Introduction

Decision-making involves the transformation of sensory signals into motor actions (Mante et al.,
2013; Shadlen and Kiani, 2013). The transformation from sensation to action has been studied
predominantly using tasks with static associations between stimulus and action (Bogacz et al.,
2006; Gold and Shadlen, 2007; Donner et al., 2009; Hanks et al., 2015; Wilming et al., 2020;
Murphy et al., 2021). However, the mapping between stimulus and action is often not fixed, but
must be flexibly altered in accordance with environmental demands (Okazawa and Kiani, 2023).
For example, in order to alternate between two stimulus-response (SR) mapping rules (Figure
1a), the brain must flexibly route stimulus information from visual cortex to the population of
neurons in motor cortex that encode the correct action for a given stimulus and SR rule (Miller
and Cohen, 2001) (Figure 1b). How the brain is able to flexibly remap SR-associations has
remained a key question in decision neuroscience (Shadlen and Kiani, 2013).

We recently showed that arbitrary SR rules (Figure 1a) are instantiated in correlated variability
of ongoing fluctuations of stimulus and action patterns amongst the regions that implement the
decision process (van den Brink et al., 2022). That is, spontaneous fluctuations of orientation-
selective fMRI signals in visual cortex were correlated with fluctuations in motor cortex that were
selective to the appropriate action (in line with the schematic in Figure 1b). This held both in
situations where the SR rule was explicitly instructed and where it switched in a hidden and
unpredictable manner and needed to be inferred from noisy cues. In the latter case, the SR
coupling patterns reflected the participants’ internal belief about the active SR rule (gauged
through a computational model). This observation supports the idea that task-specific SR
pathways are constantly reconfigured when dictated by the environment, guided by higher-order
inference processes. What mechanisms confer this flexible reconfiguration of SR pathways?
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Figure 1. Rationale. a. Elementary perceptual choice task. Each visual grating is associated with a unique correct
action, which depends on a currently active response rule. b. Schematic of rule-dependent correlated variability.
Arrows indicate positive correlation. When rule 1 is active, the activity of the population of neurons in visual cortex
that encodes a vertical grating correlates positively with those neurons that encode a left hand response. Similarly,
horizontal-encoding neurons correlate with the right hand response. When rule 2 becomes active, this pattern flips
sign. ¢. Experimental hypothesis. We expect signals from neuromodulatory brainstem nuclei (and their correlate in
pupil responses) to (i) track changes in SR rule and (ii) modulate the strength of features-specific correlated variability
in the sensory-motor network.

Theoretical work indicates that the brain can flexibility reconfigure SR pathways through short
term synaptic plasticity mechanisms that are in turn governed by subcortical neuromodulatory
inputs (Fusi et al., 2007). These nuclei project widely to the forebrain and are thus ideally
situated to affect large-scale cortical activity dynamics (Berridge and Waterhouse, 2003; Aston-
Jones and Cohen, 2005; van den Brink et al., 2019; Pfeffer et al., 2021; Podvalny et al., 2021;
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Pfeffer et al., 2022), and control cortical state and arousal (Harris and Thiele, 2011; McGinley et
al., 2015b). Moreover, neuromodulators are known to promote synaptic plasticity on multiple
temporal scales (Bear and Singer, 1986; Rasmusson, 2000; Reynolds et al., 2001; Reynolds
and Wickens, 2002; Berridge and Waterhouse, 2003; Vetencourt et al., 2008; Marzo et al.,
2009; Nadim and Bucher, 2014). The activity of neurons that release neuromodulators is also
sensitive to stimulus features that can signal the need to adjust behavior (Berridge and
Waterhouse, 2003; Aston-Jones and Cohen, 2005; Bouret and Sara, 2005; Sarter et al., 2009),
including specific computational variables entailed in complex inference strategies (Dayan and
Yu, 2006; Nassar et al., 2012; Muller et al., 2019; Murphy et al., 2021). Combined, these
characteristics indicate that neuromodulators may track hidden changes in SR rules and sculpt
correlated variability of cortical signals that conditionally link stimulus with action (Figure 3c).

We tested these hypotheses by reanalyzing fMRI data from a previously published study (van
den Brink et al., 2022). Here, we probe the relationship between the SR rule inference process,
and brainstem fMRI signals, pupil diameter, and intrinsic correlations within the human sensory-
motor network. Participants carried out an elementary perceptual choice task (Figure 1a) that
was coupled to an inference problem: an active SR rule had to be inferred from ambiguous
sensory evidence, and underwent hidden and unpredictable switches (van den Brink et al.,
2022). The hidden rule switches evoked robust responses in several neuromodulatory nuclei as
well as in the pupil (Figure 1c). These physiological markers of arousal in response to rule
switches could be understood in terms of a concomitant increase in computational model
variables, which signaled that a change in rule was likely to have occurred. These same
markers of arousal also preceded an increase in SR coupling strength within the cortical
network that implemented the decision. Our results suggest that brainstem arousal is driven by
key computational variables for context inference, and helps shape the continuous and context-
dependent reorganization of task-specific pathways within the cortex.

Results

Inferring volatile sensory-motor mapping rules under uncertainty

Participants (N=18) inferred an active sensory-motor mapping rule (Figure 1a) from a stream of
ambiguous sensory evidence, which came in the form of rapidly presented dots (cues) along the
horizontal meridian (Figure 2a). The rule itself could switch unpredictably with a low probability
(1/70), and determined the correct response for elementary perceptual choices: orientation
judgements of large and full-contrast visual gratings that were interspersed in the stream of dots
at long and variable intervals. Despite ambiguity of the sensory evidence, participants were able
to determine and apply the active rule well above chance level, and similarly across the two
rules (Figure 2b,c; Table S1). Switches of the active rule resulted in a marked dip in
performance, which recovered as sensory evidence in favor of the new rule accumulated
(Figure 2d).

The normative (Bayesian) strategy for solving this rule inference task entails an adaptive, non-
linear accumulation of sensory evidence in a way that balances build-up of stable belief states
with sensitivity to hidden rule switches (Glaze et al., 2015; Piet et al., 2018; Murphy et al., 2021).
We could model this behavior with a Bayesian model of the adaptive inference process (Glaze
et al., 2015) fit to the participants’ choice behavior. Adaptive sensitivity to rule switches was
implemented in this model by a non-linear transformation of a prior before integrating it with
newly arriving sensory evidence. The shape of this non-linear transformation depended on a
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subjective estimate of the probability of rule switches. The fitted model quantified the ‘belief’ (L)
of the participant in favor of one rule over the other. This belief has previously been shown to
track patterns of correlated variability in the cortex (van den Brink et al., 2022), and here also
systematically changed sign after rule switches (Figure 2e).
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Figure 2. Task and behavior. a. Inferred rule task. Top: Example sequence of three evidence samples during the
inter-trial-interval (ITI) preceding a task trial. Evidence samples were the horizontal positions of dots presented every
400 ms. Samples were drawn from one of two overlapping distributions, producing a noisy evidence stream. Bottom:
example of noisy evidence stream. The generative distribution governed the active rule and could switch
unpredictably between any two samples (probability: 1/70). b. Accuracy, and ¢. response time (RT) for each rule. The
horizontal dotted line in b. shows chance level accuracy. Gray dots, individual participants. Bars, group average.
Error bars, SEM. d. Accuracy for time bins centered on the onset of hidden rule changes. Accuracy drops
substantially following a rule change and gradually recovers as participants accumulate evidence in favor of the rule
change. Gray lines, individual participants. Black line, group average. Horizontal dotted line, average accuracy before
the rue switch. Error bar, SEM. e. The belief-parameter from the model locked to rule switches.

f. Model-derived behavioral variables locked to the onset of rule switches. Following a switch in rule, change point
probability (CPP) and uncertainty (-Il) increase. Error bar, SEM.

Here, we focus on two other latent variables of the model that have been shown to modulate
behavioral evidence accumulation profiles and pupil-linked arousal responses during active
inference (Murphy et al., 2021): change point probability (CPP), and uncertainty (-lgpl). CPP
indicated the probability that a switch of rule has just occurred, given the participants’ subjective
estimate of the probability of rule change, the new sensory evidence, and current belief. CPP
was high in cases where a new sample of evidence was inconsistent with the participants’
current belief — in particular, when both the previous belief and new (contradictory) evidence
were strong. Uncertainty about the environmental state (i.e., active SR rule) before encountering
a new sample of sensory evidence was tracked by -l1yl. Switches of active rule were followed by
a peak in both quantities, with a rapid rise in CPP, and a subsequent and more protracted rise in
uncertainty (Figure 2f).

In sum, hidden rule switches elicited a sequence of latent processes that included the detection
of sensory evidence that violated previously held beliefs (CPP), a rise in uncertainty about the
active rule (-1yl), and a flip in the sign of the belief state L. Ultimately, these internal
computational events led to an adjustment of behavior to the new rule and, consequently, a
recovery of task accuracy.
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Correlated variability of stimulus and action codes reflects active rule

In our prior work (van den Brink et al., 2022) we showed that correlated variability of population
codes for stimulus and for action covaried, with a sign that depended on the model-derived
belief of the participant. Here, we aimed to probe the mechanisms that underly the changes in
correlated variability, elicited by the rule switch events that prompted changes of belief. We
therefore examined if correlated variability aligned with the active rule directly.
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Figure 3. Correlated variability of population codes for stimulus and action. a. Regions of interest for the
analysis of correlated variability. b., c., d., Correlation matrices for all stimulus and action decoders during rule 1 (b.),
rule 2 (c.), and the difference between rules (d). Gray rectangles, stimulus-action pairs. e. correlations from (a.) and
(b.), collapsed across all pairs in the gray rectangles. f. Correlations from (a.) and (b.), collapsed across all visual-
visual pairs and action-action pairs (excluding values on diagonals). Gray lines, individual participants; bars, group
average; error bars, SEM.

We quantified ongoing fluctuations of population codes as the graded output of decoders that
captured stimulus orientation (horizontal vs. vertical) or chosen action (left hand vs. right hand
response) discriminant patterns. These decoders were applied to the patterns of spontaneous
fMRI signal fluctuations within a set of cortical and sub-cortical regions (Figure 3a; Table 1) from
which stimulus and action-evoked activity had been removed. The resulting time series
indicated if the activity pattern at any given moment tended toward vertical or horizontal stimulus
orientation (for visual cortical regions), or towards left hand or right hand button press (for sub-
cortical and cortical motor-related regions). We then correlated the stimulus and action decoder
outputs separately for intervals corresponding to the two rules (Figure 3b,c).

The sign of correlation of specifically the stimulus-action pairs was a product of the design of the
decoders: positive for coupling consistent with rule 1, and negative for rule 2 (cf. van den Brink
et al., 2022). The key prediction for rule-dependent correlated variability was that the sign of
correlations of stimulus-action pairs should differ between rules. This is indeed what we
observed (Figure 3d,e; Table S1). No such sign flip was observed for the correlations of
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stimulus-stimulus or action-action region pairs (Figure 3f; Table S1). In sum, the active rule was
instantiated in patterns of spontaneous correlations of stimulus and action codes across a task-
relevant network of brain areas.
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Figure 4. Relationship between brainstem neuromodulation, pupil dynamics, and correlated variability. a.
Regions of interest within the brainstem, defined via neuromelanin sensitive scans of individual participants (LC), and
anatomical atlases (other nuclei; Table 1). BF, basal forebrain. SN, substantia nigra. VTA, ventral tegmental area.
DR, dorsal raphe. LC, locus coeruleus. b. Deconvolved response in the brainstem evoked by rule switches. c.
Deconvolved pupil response evoked by rule switches. d. Covariation between the rule switch-evoked response
magnitude between the brainstem and pupil. e. Cross-correlation between brainstem activity and stimulus-action
decoder coupling within the cortex. Negative lags indicate activity in the brainstem preceding increases in decoder
coupling. f. Cross-correlation between pupil diameter and stimulus-action decoder coupling within the cortex,
corrected for hemodynamic delays. Negative lags indicate pupil dilation preceding increases in decoder coupling. In
all panels, horizontal bars indicate p < 0.05, corrected for multiple comparisons with cluster-based permutation
testing. Error bars, SEM.

Brainstem neuromodulatory centers and pupil-linked arousal are recruited by rule switches

Switches of the active rule prompted adjustments of behavior (Figure 2) as well as a sign flip of
correlated variability among the regions that implemented the decision (Figure 3). We next
examined if rule switches also evoked activity in brainstem centers that release
neuromodulators throughout the brain.

We focused on five neuromodulatory centers (Figure 4a; Table 1): the cholinergic basal
forebrain (BF), dopaminergic substantia nigra (SN) and ventral tegmental area (VTA), the
serotonergic dorsal raphe (DR), and noradrenergic locus coeruleus (LC) (van den Brink et al.,
2019). Imaging of the brainstem is difficult due to the size and location of the nuclei involved.


https://doi.org/10.1101/2023.12.05.570327
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.570327; this version posted December 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We thus applied physiological noise correction and controlled for additional noise contained in
ventricular signals (Brooks et al., 2013; de Gee et al., 2017). For optimal precision in
localization, we delineated the smallest nucleus, the LC, within each individual, based on
neuromelanin sensitive anatomical scans (Keren et al., 2009; de Gee et al., 2017) that
highlighted the LC as hyperintense spots (Figure S1). The location of the resulting masks
corresponded well to the known location of the LC in the posterior part of the pons, at the base
of the fourth ventricle (Figure S2a). For the other (larger) regions, we relied on publicly available
atlases (Table 1).

Switches of the active rule caused prominent evoked activity in the catecholaminergic (i.e.,
dopaminergic and noradrenergic) nuclei (SN, VTA, and LC; Figure 4b; Table S1). These nuclei
are strongly inter-connected (Sara, 2009) and have been implicated in orchestrating resets of
cortical activity in response to contextual changes (Dayan & Yu, 2006; Fusi et al, 2007). We
thus combined these three catecholaminergic brainstem nuclei in our analyses (Figure S2b
shows individual nuclei). The DR did not show significant responses to rule switches (Figure
S2b). Unexpectedly, the BF responded to rule switch events with a marked suppression of
activity (Figure 4b; Table S1).

Non-luminance mediated fluctuations of pupil diameter are known to covary with activity in
neuromodulatory centers of the brainstem, including the catecholaminergic nuclei (Murphy et
al., 2014; McGinley et al., 2015a; Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 2017;
Larsen and Waters, 2018; Breton-Provencher and Sur, 2019). Indeed, we found pupil diameter
to covary with the majority of nuclei as well (Figure S2c; Table S1). Critically, the pupil also
dilated in response to the rule switches (Figure 4c; Table S1), and in a manner that was
correlated with the rule-switch response of the VTA and LC (Figure 4d; Table S1).

In sum, hidden rule switches recruited catecholaminergic brainstem nuclei and pupil-linked
arousal in a coordinated fashion. This suggests that brainstem arousal systems may orchestrate
the coupling of population codes for stimulus and action within the cortex, which we examined
next.

Brainstem and pupil fluctuations precede fluctuations of correlated variability

If brainstem arousal systems affect SR-coupling within the cortex, we expect to see increased
activity in the brainstem prior to increases in cortical signatures of SR coupling strength. We
thus cross-correlated the signals from all brainstem nuclei that responded to rule switches and
covaried with the pupil (i.e. excluding the DR) and the pupil signal itself with the strength of
stimulus-action decoder correlation. To this end, we evaluated the latter in a time-variant
fashion. We used strength (i.e., absolute value) of the decoder correlations rather than the
correlations per se, because we did not expect the brainstem signals to bias the decoder
correlations in any particular direction (i.e., favor a specific SR rule), but rather to boost
whichever coupling currently dominated (e.g., through plasticity mechanisms (Fusi et al., 2007)).
We evaluated the correlations across a series of lags in order to chart temporal dependencies.

We found a pronounced peak at negative lags in the cross-correlation spectrum between BF
and stimulus-action decoder coupling (Figure 4e; Table S1). This indicated that peaks of activity
in the BF preceded peaks in stimulus-action decoder coupling. We also found significant
correlations between activity of the pooled catecholaminergic nuclei and stimulus-action
decoder coupling, including at negative lags, and peaking around zero lag (Figure 4e; Table
S1). Finally, the pupil showed dilation before subsequent peaks in stimulus-action decoder
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coupling strength (Figure 4f; Table S1). These findings, specifically the lags of the correlations,
could not be explained by hemodynamic or pupillary delays because all delays were accounted
for in the analysis. Moreover, because the pupil signal was sampled at a higher rate than the
brainstem signal, it may be more sensitive to short (~1s) lags between brainstem responses and
changes in SR-coupling within the cortex.

Together, our results are consistent with the idea that activity in neuromodulatory nuclei (within
the BF, and indexed by pupil diameter) tracked hidden rule switches, and modulated rule-
specific coupling of stimulus and action codes amongst the network of brain regions that
implemented the primary decision process. The brainstem receives input from brain areas that
are involved in active inference, such as anterior cingulate (Aston-Jones and Cohen, 2005). We
thus next asked if the arousal system encoded latent variables of behavior that are informative
of rule switches.

Pupil fluctuations encode computational variables of behavior

Sensitivity of the arousal system to rule switches may be conferred by latent variables that track
changes in environmental state: CPP and uncertainty (-Iyl) (Nassar et al., 2012; Murphy et al.,
2021). In our task, samples of evidence were presented without temporal jitter and at a rapid
pace (Figure 2a), likely too quickly to relate brainstem fMRI responses to sample-wise estimates
of CPP and -Iyl. Nevertheless, the pupil was sampled at a faster rate than the fMRI signal.
Given its close correspondence to brainstem activity, both expected from prior work (Murphy et
al., 2014; McGinley et al., 2015a; Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 2017;
Larsen and Waters, 2018; Breton-Provencher and Sur, 2019), and observed here (Figure 4,
Figure S2c), we used the pupil as a summary signal for probing relationships with computational
variables of behavior.
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Figure 5. Relationship between pupil dynamics and behavior. a. Relationship between the derivative of pupil
diameter and change point probability (CPP). b. Relationship between pupil diameter and uncertainty. In all panels,
horizontal bars indicate p < 0.05, corrected for multiple comparisons with FDR correction. Error bars, SEM.

CPP, a latent variable in a model fit to participants’ choices, increased rapidly following rule
switches (Figure 2f). The temporal derivative of pupil diameter is maximally sensitive to such
rapid changes (Murphy et al., 2021), and closely tracks activity in the noradrenergic LC
(McGinley et al., 2015a; Reimer et al., 2016). We thus regressed CPP onto the derivative of
diameter, while controlling for a range of other variables. Shortly after evidence sample onset,
the derivative of diameter indeed encoded CPP (Figure 5a; Table S1). Uncertainty evolved
more slowly than CPP (Figure 2f). We therefore expected its signature to become visible in
diameter (rather than its derivative). This is indeed what we found (Figure 5b; Table S1). In
conclusion, the pupil, a signal that closely matched the dynamics of brainstem neuromodulatory
nuclei, tracked the two latent computational variables of the inference process that were
sensitive to changes in environmental state (i.e., SR rule).
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Discussion

It has long been established that neuromodulatory systems shape the global state and plasticity
within the cortex. Much less is known about whether and how the interplay between the
brainstem and cortex shapes the neural bases of specific cognitive behaviors — such as context-
dependent sensory-motor decisions that we studied here. We found that unpredictable switches
in the state of the environment (i.e., SR rule) triggered a boost of arousal: a response within the
centers that release neuromodulators, which coincided with a dilation of the pupil. Pupil-linked
arousal also encoded rapid fluctuations of key computational variables for detecting hidden rule
switches. Finally, boosts in the activity of brainstem arousal systems were followed by stronger
coupling of stimulus and action selective patterns within the cortical regions that implement
decisions. Taken together, our results are consistent with the idea that brainstem arousal plays
an important role in shaping large-scale cortical pathways for flexible cognitive behavior in
uncertain environments.

A key aspect of adaptive behavior is that SR-associations must be able to be formed in an
arbitrary manner. A number of previous studies on flexible decision-making have been done
with non-arbitrary SR-associations (Heinzle et al., 2012; Sarafyazd and Jazayeri, 2019; Duan et
al., 2021), where a stimulus is associated with a prepotent response that must be conditionally
acted upon or suppressed, such as pro- and anti-saccade tasks (Munoz and Everling, 2004). By
contrast, SR-associations in our task were inherently symmetrical, where neither stimulus had a
prepotent response. Therefore, default anatomical pathways that establish SR-mapping within
the cortex are unlikely be in place before SR-associations are learned. These arbitrary SR-
associations could come about through plasticity mechanisms that reshape existing SR-
pathways or form new ones when no default pathways exist. This notion finds support in work in
non-human primates and computational modeling, which has suggested that flexible SR-
associations are the result of plasticity mechanisms operating on multiple time scales (Fusi et
al., 2007).

Our current findings align well with this mechanistic interpretation. In this scenario, synaptic
plasticity mechanisms reshape the pathways along which sensory information is directed to
motor cortex (Fusi et al., 2007), prompted by neuromodulator release in the cortex in response
to sensory evidence in favor of a new active rule. Neuromodulator release elicits plasticity of
cortical (Bear and Singer, 1986; Rasmusson, 2000; Berridge and Waterhouse, 2003; Huang et
al., 2004; Vetencourt et al., 2008; Marzo et al., 2009; Nadim and Bucher, 2014) and striatal
connections involved in learned associations (Reynolds et al., 2001; Reynolds and Wickens,
2002). Moreover, neuromodulator release occurs in response to behaviorally relevant stimulus
features (Berridge and Waterhouse, 2003; Aston-Jones and Cohen, 2005; Bouret and Sara,
2005; Sarter et al., 2009). Neuromodulators are thus well suited to restructure SR-association
pathways when dictated by the state of the environment. Our findings that arousal responses
followed in reaction to rule switches, but preceded the cortical signatures of remapped SR-
associations, are consistent with this scenario. Our findings also align with theoretical proposals
that link phasic arousal signals to cortical reorganization in response to changes of
environmental state (Bouret and Sara, 2005; Dayan and Yu, 2006)

One prominent line of work focuses on the role of frontal and parietal associative regions in
flexible SR mapping. Such regions have been found to encode rule information (Miller and
Cohen, 2001; Woolgar et al., 2016; van den Brink et al., 2022), and they have been proposed to
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flexibly route information from sensory to motor cortices (Miller and Cohen, 2001). These
regions may do so by transiently activating in response to the conjunction of stimulus and rule
information and acting as switches between the sensory and motor cortices (Cocuzza et al.,
2020; Kikumoto and Mayr, 2020; Ito et al., 2022). Other findings indicate that prefrontal cortex
encodes key computational variables for performance monitoring and tracking environmental
state (Behrens et al., 2007; O'Reilly et al., 2012; McGuire et al., 2014). Frontal and parietal
regions are known to innervate the brainstem arousal system (Schwarz and Luo, 2015; Schwarz
et al., 2015; Breton-Provencher and Sur, 2019). Our present findings thus raise the possibility
that prefrontal association cortex may control flexible SR information flow indirectly, through
conveying computational variables such as change-point probability and uncertainty to the
brainstem, which in turn sculpt the neural SR pathways accordingly.

The negative response to rule switches that we observed in the BF (Figure 4b) was unexpected,
but interesting in light of recent findings. Positive fMRI transients across wide areas of the
cortex, and especially in sensory cortices, have been shown to co-occur with drops of activity in
the BF region (Liu et al., 2018). In addition, in non-human primates inactivation of the BF results
in suppression of correlated fMRI signal fluctuations that are topographically aligned with its
afferents (Turchi et al., 2018). Notably, although this region is the main source of cortical
acetylcholine (Mesulam and van Hoesen, 1976; Mesulam et al., 1983; Mesulam and Changiz,
1988), it is diverse and also sends prominent long-range GABAergic projections to the cortex
(Lin et al., 2015). Thus, it is possible that the here observed suppression of BF activity following
rule switches represented a disinhibitory signal (Letzkus et al., 2015) that allowed correlated
fluctuations in the cortex to emerge. This possibility is particularly appealing considering the
proposed role of disinhibitory signals in flexible information routing within the cortex (Wang and
Yang, 2018). Nevertheless, our findings also indicated that increases in BF activity preceded
increases in SR-coupling (Figure 4e). It is thus also possible that a suppression of BF activity
elicited by rule switches triggered a suppressive effect on SR-coupling within the cortex, and a
new instantiation of SR-coupling was brought about by the subsequent activity in the
catecholaminergic nuclei. Causal manipulations of specific neuron types within the BF, and
concurrent electrophysiological recordings within the cortex, would be well suited to arbitrate
between these alternatives.

Due to the nature of the fMRI signal, we cannot definitively distinguish between
neuromodulatory signals and those signals originating from other sources. In addition, imaging
of nuclei within the brainstem in general is difficult due to their size and proximity to noise
sources (Brooks et al., 2013). We have used several methodological approaches to mitigate
these issues: by optimizing slice alignment with respect to the brainstem and correcting for
physiological noise. We also created masks for the LC on an individual participant basis for
optimal localization (Eckert et al., 2010). Finally, we confirmed the expected covariation
between signals extracted from individual nuclei and pupillary indices of arousal, for both
ongoing signal fluctuations and the more specific rule-evoked responses (Figure S2c, Figure
4d). Together, these choices in experiment design, analysis, and findings, increased the
likelihood that the signals we measured are truly related to neuromodulatory nuclei.

Pupil diameter covaried with uncertainty, which was significant before the onset of a new
sample of evidence (Figure 5b). Although part of this pre-cue onset covariation can be
accounted for by the fact that the prior is the result of sensory evidence that precedes the
current sample, we cannot fully exclude that part of this effect is driven by correlation in the
values of uncertainty at adjacent cues. In future studies this can be ruled out by using designs
with larger lags and jitter between consecutive cues so that protracted pupil responses to

10


https://doi.org/10.1101/2023.12.05.570327
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.570327; this version posted December 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

individual cues are more clearly separable. Nonetheless, the key finding that uncertainty
covaries with pupil diameter holds regardless of the precise timing with respect to the evidence
samples.

In conclusion, during flexible decision-making unpredictable switches in environmental state
engage the arousal system. The arousal response in turn is followed by coordinated shifts of
coupling between stimulus and action specific activity within the cortical regions that
implemented the decision process. Thus, brainstem arousal may orchestrate the association of
stimuli with their appropriate actions.
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Materials and Methods

The current study involves the reanalysis of previously published data (although all presented
findings are novel). For a full description of all task parameters and preprocessing, please see
van den Brink et al. (2022).

Participants

A total of 22 healthy individuals with normal or corrected vision (median age 27, range 21 — 44,
8 male) took part in our experiment. All participants gave written informed consent and the study
was approved by the ethics committee of the Hamburg Medical Association. Four participants
were excluded from the current study: one for failure to complete all three sessions, another
three for technical reasons (failure to record physiological signals or response data). The final N
was thus 18.

Behavioral task

Participants performed two different versions of a flexible decision-making task, of which only
one (the ‘inferred rule’ task) is analyzed in the current study. This task involved a basic visual
orientation discrimination judgment (lower-order decision), combined with the selection of a
volatile sensory-motor (SR) mapping rule (higher-order decision). The SR-mapping rule (Figure
1a) determined the correct action for a given orientation judgment (Figure 2a).

The active rule had to be continuously inferred from a sequence of noisy sensory evidence
samples, which were small dots that appeared in rapid succession on the horizontal meridian
(Figure 2a). The dots were drawn from one of two generative Gaussian distributions with equal
SD and means that were equidistant from the central fixation point but on opposite sides. The
generative distribution at any moment determined the active rule. Critically, the active rule could
change unpredictably from one sample to the next, with a low probability (hazard rate) of
0.0143. Thus, in order to determine the active rule at a given moment, participants needed to
continuously integrate the noisy rule evidence over time.

The appearance of the stimulus for the lower-order decision prompted participants to report their
orientation judgement. ITls for the lower-order decision were long and variable (uniform: 6.8 —
29.6 s). The accuracy of the action depended on both the selection of the correct rule, and on
the correct orientation judgment.

MRI data collection

MRI scans were conducted using a Siemens PrismaFit 3T MRI scanner with a 64-channel
head-neck coil. We collected 6 runs of the inference task, split over two sessions (T2*-weighted
EPI data; Flip angle: 70°; TR: 1.9 s; TE: 28 ms; FOV: 224 x 224 mm?, 62 slices (no gap) of 2.0
mm isotropic voxels; 328 volumes), and simultaneously recorded cardiac pulsation and
breathing using a pulse oximeter and pneumatic belt. Slices were oriented perpendicular to the
rostral-caudal axis of the brainstem as to maximize SNR in this region.

On both sessions, we collected BO field homogeneity scans (Phase difference and magnitude

image: flip angle: 40°; TR: 0.678 s; TE: 5.42/7.88 ms). At the end of the first MRI session, we
collected a high resolution T1 neuromelanin sensitive scan, for the purpose of locating individual
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participants’ LC (T1-TSE; Flip angle: 120°; TR: 675 ms; TE: 12 ms; FOV: 175 x 224 mm?, 14
slices (2.0mm, no gap); 0.70x0.70 mm? interpolated to 0.35x0.35 mm?). The slices were
oriented perpendicular to the rostral-caudal axis of the brainstem in order to align with the
longitudinal extent of the LC. At the end of the second MRI session, we collected a whole-brain
T1 anatomical scan (MPRAGE; Flip angle: 9°; TR: 2.3 s; TE: 2.98 ms; Tl 1.1 s; FOV: 192 x 256
mm?, 240 slices; 1.0 x 1.0 x 1.0 mm).

Pupil recording and preprocessing

Pupil diameter and gaze position were recorded at 1000 Hz with an MRI-compatible EyeLink
1000 eye tracker and calibrated with a 9-point fixation routine. Blinks and missing data
segments were linearly interpolated in the eye position data. Other artifacts were identified by
the derivative of the pupil diameter exceeding a threshold of 25 pixels and interpolated across.
This process was repeated iteratively to ensure all artifacts were identified and removed, in
accordance with prior work (van den Brink et al., 2016). All sections containing artifacts were
then similarly interpolated across in the gaze x and y position data.

Behavioral modeling
Normative model

The full details of the normative model and fit are provided in van den Brink et al. (2022). In
brief, the rule selection (the higher-order decision) process was cast as a dynamic belief
updating process (Glaze et al., 2015). In this model, a belief L for one possible state (rule 1)
versus the alternative possible state (rule 2) was computed for each sample of evidence. This
belief then underwent a non-linear transformation, dependent on a subjective hazard rate f, in
order to become a prior () on the presentation of the next sample, thus rendering the model
adaptive to volatility of the rule.

Model-derived uncertainty and change-point probability

We used the model fits to produce two key computational parameters associated with each
evidence sample: Uncertainty, and change-point probability (CPP). Uncertainty associated with
the selected rule was computed as the negative of the magnitude of the prior y. CPP is a
computational quantity that both the normative belief updating process and human participants
are sensitive to in volatile decision-making contexts such as ours (Murphy et al., 2021). CPP
was the posterior probability of a change having occurred, given #, the previous posterior and
the new evidence sample. CPP was computed as follows:

1

cppP =
1+Q

where,

g 1- g cosh (% (LLR, + Ln_l))
B cosh (3 (LLRy ~ Lo-1))
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and where n was the current sample, LLR was the sensory evidence in favor of one rule over
the other in the form of a log likelihood ratio. Eq. 1 and 2 represent an algebraic rearrangement
of the equation for CPP derived by Murphy et al. (2021).

MRI data analysis
Pre-processing of fMRI data

The fMRI data were preprocessed identically to van den Brink et al. (2022). In brief,
preprocessing included: motion correction, skull stripping, BO unwarping, high-pass filtering at
100s, prewhitening, physiological noise correction with retrospective image correction
(RETROICOR) (Glover et al., 2000), slice-time correction, and non-linear registration to MNI
space.

No spatial smoothing was applied to the fMRI data for two reasons: i) To preserve spatial
patterns that were the basis of multi-voxel pattern analysis (see below), and ii) to prevent signal
mixing between the brainstem and closely adjacent 4™ ventricle (Brooks et al., 2013).

Delineation of ROls

Regions of interest (ROIs) were defined using a variety of sources (Table 1), including publicly
available atlases as well as individually created masks based on neuromelanin sensitive scans.
The set of ROIs that we used for all SR coupling-related analyses (see below) presented in this
article were selected to span the sensory-motor pathway underlying the lower-order decision
(Table 1; Figure 3a). Because the probabilistic masks of neuromodulatory brainstem centers
(Zaborszky et al., 2008; Edlow et al., 2012; Murty et al., 2014) varied substantially in their spatial
extent, we confined each of these masks to 18 peak probability voxels. Masks of comparable
size for the LC were defined for individual participants based on neuromelanin sensitive TSE
scans (see below).

Individual delineation of LC ROls

Masks of the LC for individual participants were created using a semi-automated procedure.
First, a mask was manually drawn on the approximate locations of bilateral LC in the T1-TSE
scans (Sasaki et al., 2006; Keren et al., 2009), which coincided with the known anatomical
location of the LC within the pons, along the floor of the fourth ventricle. An automated algorithm
then identified the peak intensity voxel within the manually drawn mask, and an additional 14
contiguous voxels with the highest intensity in each hemisphere. Individual masks (Figure S1)
were co-registered to 2 mm isotropic MNI space together with the high-resolution whole-brain
T1 scans, max-unit normalized, and thresholded at values of 0.1 to reduce partial voluming
effects.

A probabilistic map for the group was defined as the proportion of participants with non-zero
values for each voxel in MNI space. This group mask was compared to a previously published
mask of the LC (Keren et al., 2009) in order to verify the average location (Figure S2a).

Brainstem time-series extraction and post-processing

Imaging of the brainstem is difficult due to the size of the nuclei involved and their proximity to
noise sources such as the 4" ventricle (Brooks et al., 2013; Turker et al., 2021). Physiological
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noise in the functional data was mitigated using slice-specific RETROICOR (see: van den Brink
et al. (2022)). Nevertheless, in order to maximize the anatomical specificity of the extracted
signals, we weighted the time-series of each brainstem nucleus by the probability of voxels
within the respective masks. Furthermore, we extracted a probability-weighted time series of
voxels within a mask of the 4™ ventricle. Variance associated with the ventricular signal was
then removed from the signals of the individual brainstem neuromodulatory nuclei using linear

regression.

Table 1. ROI definition.

ROI labels Functional areas Source
V1 Combination of (Wang et al., 2015)
dorsal/ventral parts of V1
V2 Combination of
dorsal/ventral parts of V2
V3 Combination of
dorsal/ventral parts of V3
V3A/B Combination of V3A and
V3B
V4 Human analogue of V4
LO Combination of LO1 and
VO LO2
Combination of VO1 and
vO2
PHC Combination of PHC1 and
PHC2
MT Human analogue of MT
MST Human analogue of MST
IPS Combination of IPS0-IPS5
SPL SPL1
Caudate Caudate nucleus Harvard-Oxford structural
Putamen Putamen Atlas
Thalamus Thalamus (https://neurovault.org/collections/262/)
PMd Areas 6a, and 6d (Glasser et al., 2016)
M1 Somatotopic hand-specific  (de Gee et al., 2017)
aspect subregion of M1
IPS/PostCeS Junction of IPS/ and
PostCeS
alPS Anterior part of horizontal
ramus of IPS
LC Locus coeruleus This article
DR Dorsal raphe (Edlow et al., 2012)
VTA Ventral tegmental area (Murty et al., 2014)
SN Substantia nigra
BF Ch4 region of the basal (Zaborszky et al., 2008)

forebrain

Abbreviations: Vx, visual area X; LO, lateral occipital; VO, ventral occipital; PHC, parahippocampal;
MST, middle superior temporal; MT, middle temporal; IPS, intraparietal sulcus; SPL, superior parietal
lobule; PMd, dorsal premotor cortex; M1 primary motor cortex; PostCeS, postcentral sulcus.
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Time-resolved correlation of stimulus and action population codes

We quantified the coupling between population codes for stimulus and action by means of time-
resolved decoder output correlation (Anzellotti and Coutanche, 2018), following the methods
described in van den Brink et al. (2022). Specifically, we trained sets of support vector machine
(SVM) classifiers to decode stimuli (horizontal versus vertical orientation) and action (left versus
right hand button press) based on evoked response patterns within cortical and subcortical
regions (Figure 3a) that spanned the sensorimotor network.

We then removed feature-specific evoked responses that the decoders were trained on from the
data using deconvolution, thus isolating ongoing fluctuations (i.e. activity pattern fluctuations
that were not driven by choice grating onset or button presses). We next projected the decision
functions (weight vectors) from the stimulus and action decoders onto these estimates of
ongoing multi-voxel activity patterns. This produced vectors that compactly summarized ongoing
pattern fluctuations for stimulus (S; for visual cortical regions), or action (A; for motor cortical
and subcortical regions). For example, in V1, the time course S reflected the extent to which
patterns of ongoing activity spontaneously tended towards vertical or horizontal orientations
(Kenet et al., 2003).

The sign of S and A resulted from the specific decoder design: positive values indicated an
ongoing activity pattern that resembled responses to vertical gratings (or left hand button
presses) and negative values indicated an ongoing activity pattern that resembled responses to
horizontal gratings (or right hand button presses). The schematic in Figure 1b in combination
with this decoder design non-trivially predicted a positive correlation of decoder outputs for rule
1 and a negative correlation for rule 2, for the stimulus-action pairs specifically.

We Z-scored S and A across time and computed, for each time point tin the fMRI time series,
the degree of covariation between the stimulus and action patterns, via:

ICt = StAt

Note that because S and A were Z-scored, IC, if averaged along the time dimension, was
identical to the Pearson correlation coefficient of S and A. Therefore, IC represented the
correlation of stimulus and action population codes unwrapped along the time dimension.

We tested if IC, averaged across all visual-motor ROI pair combinations, differed between
sections of data that were split according to the active rule, using non-parametric permutation
testing (10,000 iterations).

Rule switch-evoked brainstem and pupil responses

We used deconvolution to test for the sensitivity of the brainstem and pupil to switch events in
the active rule, without making any assumptions about the shape of the hemodynamic or
pupillary response (Dale, 1999). Specifically, the estimated response R (of shape P x 1) was
obtained via:

R=X"Y
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where Y was an N x 1 linearly detrended and z-scored time series (up-sampled fMRI data, or
pupil diameter down-sampled to 50 Hz). X was an N x P design matrix, with value 1 in every
element along those diagonals corresponding to the occurrence of switches in active rule, *
denoted the pseudoinverse, and P was peri-stimulus time.

The deconvolved responses were compared to chance (zero) and corrected for multiple
comparisons across time points using non-parametric cluster-based permutation testing (10,000
iterations, two-tailed) (Maris and Oostenveld, 2007).

Correlation between brainstem activity and pupil diameter

We assessed the correlation between brainstem and pupil activity in two ways: i) by correlating
estimates of single-switch responses in the brainstem and in the pupil (Figure 4c), and ii) by
correlation of the entire brainstem activity and pupil time series (Figure S2c).

Single-switch response amplitude scalars for individual brainstem nuclei were computed by
regression of the individually estimated HRF (see section: Rule switch-evoked brainstem and
pupil responses) onto the single rule switch locked data. Similarly, we computed single-switch
responses in the pupil via regression, using the standard pupillary response function described
by Hoeks and Levelt (1993), with a peak latency set for individual participants according to the
deconvolved pupil response. The resulting vectors of response amplitude scalars were then
correlated to estimate covariation in evoked responses in the brainstem and pupil.

Whole time-series correlation (Figure S2c) between the brainstem signals and pupil signal was
done including a correction for HRF and pupillary response delays. That is, we estimated a peak
HRF latency for individual participants from the stimulus-evoked response in V1 (van den Brink
et al., 2022), and shifted the pupil signal forward by this latency. Because the pupil signal itself
also lags neural activity, we subsequently shifted the pupil signal back by 1 s, following prior
work (Yellin et al., 2015).

The significance of both single-switch response covariation as well as covariation of the full time
series was assessed with non-parametric permutation testing (10,000 iterations). We tested
one-tailed because we expected positive covariation of activity in the pupil and brainstem.

Cross-correlation between stimulus-action code covariation, brainstem activity, and pupil

We used cross-correlation to examine temporal relationships between stimulus-action code
covariation (computed via Eq. 3) and two other signals: activity in the brainstem, and pupil
diameter. We used cross-correlation because the temporal sequence of activity fluctuations may
be indicative of directional relationships between these signals. That is, if the activity in the
brainstem modulates coupling at the level of the cortex, then we expect the brainstem to
become active prior to an increase in cortical coupling.

Stimulus-action code covariation was a signed signal, where the sign depended on the active
task rule. We expected the brainstem to modulate the magnitude of this signal, regardless of
sign, so in all related analyses we used the absolute of stimulus-action code covariation.

Because the pupil signal lags putative neural activity that underlies it, we corrected for this delay
by shifting the pupil signal backward by the expected latency of 1s (Yellin et al., 2015), and
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aligned it with the hemodynamic signal by shifting forward by the observed hemodynamic delay
(identically to the procedure described in the section: Correlation between brainstem activity and
pupil diameter). Stimulus-action code covariation and brainstem activity were both
hemodynamic signals in origin, so no lag correction was required before cross-correlation.

Correlation coefficients of the cross-correlations were compared to chance (zero) and corrected
for multiple comparisons across time points using non-parametric cluster-based permutation
testing (10,000 iterations, two-tailed) (Maris and Oostenveld, 2007).

Relationship between pupil dynamics and model computational variables

We examined the relationship between pupil and behavior with linear regression of the variables
resulting from the computational model fit to individual participants’ behavior onto (the derivative
of) pupil diameter. The regression had the following form:

0

= Por+ Z (Brie X CPPeyy+ Boie X (= |Weril) + PBape X ILLRyi]) + Bae X |LLR — LLR. 4|
¢ =1
+ Bs¢ X gazex,. + Per X gazey,. + P, X baseline,

dPupil(t)
dr

(5)

dPupil(t)

art ’
value of the pupil derivative time series at time t relative to the onset of cue c. CPP was change
point probability, -IWI was uncertainty, LLR was the sensory evidence (i.e., the log-likelihood
ratio), gazex and gazey were gaze positions on screen, and baseline was average pupil
diameter in a 1 s window preceding cue onset. The terms relating to prior cues were included to
account for auto-correlation in the pupil response and isolate responses to the current cue. The
magnitude of the difference between the current and previous cue LLR was included to exclude
that any relationship between pupil and CPP was driven by low-level visual differences between
consecutive cues.

where t was time relative to cue (evidence sample) onset, ¢ indexed cues, gave the
t,c

We also fit a variant of this regression model to baseline corrected pupil diameter (rather than
the derivative). This regression model did not include baseline diameter, or terms for preceding
cues:

Pupil;c = Boi+ P X CPP+ Por X (—|¥|) + Bse X [LLR:| + Bar X gazex,. + s X gazey; .

(6)

Based on prior work (Murphy et al., 2021), we expected CPP following cue onset to covary
positively with the derivative of pupil diameter. We also expected uncertainty to covary positively
with pupil diameter.

Regression coefficients were compared to chance (zero) using non-parametric permutation

testing (10,000 iterations, one-tailed) and corrected for multiple comparisons using the false
discovery rate (FDR).
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Supplementary Figures and Tables

Sub 3 Sub 4 Sub 6 Sub 7

Figure S1. Neuromelanin sensitive TSE scans for all participants. The mask of the locus coeruleus (LC)
is overlayed in red. The masks were created by manually selecting the maximal voxel within the LC
region on each side, and subsequently automatically selecting 15 additional contiguous voxels with the
highest intensity.
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Figure S2. a. Overlap of LC mask of the current study with that of Keren et al., (2009). b. Deconvolved
response in the brainstem evoked by rule switches, shown for all individual nuclei. ¢. Correlation between
brainstem signals and pupil diameter, across time. Covariation between the rule switch-evoked response
magnitude between the brainstem and pupil. Dots, individual participants. Bars, group average. Error
bars, SEM. Horizontal bars indicate p < 0.05, corrected for multiple comparisons with cluster-based
permutation testing.
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Table S1. Statistics summary.

Figure Label Test Tail p-value Cohen’s d 95% ClI
2b Rule 1 Permutation ~ Two <0.001 3.410 18.798 - 40.995
2b Rule 2 Permutation  Two <0.001 4.511 17.669 - 38.224
2b Rule 1 vs rule 2 Permutation  Two 0.329 0.212 -1.331 -5.222
2c Rule 1 vs rule 2 Permutation ~ Two 0.087 -0.385 -0.028 - 0
3e Rule 1 Permutation ~ One 0.003 0.581 0.002 - 0.012
3e Rule 2 Permutation ~ One <0.001 -0.955 -0.015 - -0.005
3e Rule 1 vs rule 2 Permutation  One <0.001 1.005 0.008 - 0.027
3f (left) Rule 1 Permutation  Two <0.001 3.408 0.042 - 0.093
3f (left) Rule 2 Permutation  Two <0.001 3.800 0.043 - 0.094
3f (left) Rule 1 vs rule 2 Permutation  Two 0.554 -0.133 -0.005 - 0.002
3f (right) Rule 1 Permutation  Two <0.001 2.753 0.051-0.113
3f (right) Rule 2 Permutation  Two <0.001 3.068 0.057 - 0.125
3f (right) Rule 1 vs rule 2 Permutation  Two 0.074 -0.395 -0.019-0
4b BF Permutation  Two 0.021 0.539 0.014-0.124
0.012 0.593 0.014 - 0.094
4b SN, VTA, LC (pooled) Permutation  Two 0.018 0.523 0.007 - 0.072
0.029 0.474 0.001 - 0.02
0.037 0.449 0.002 - 0.06
4c Pupil Permutation  One 0.044 0.429 0.002 - 0.106
4d BF Permutation ~ One 0.946 -0.354 -0.076 - 0.001
4d SN Permutation ~ One 0.115 0.260 -0.012 - 0.081
4d VTA Permutation ~ One 0.030 0.416 0.003 - 0.063
4d DR Permutation ~ One 0.461 0.019 -0.036 - 0.041
4d LC Permutation  One 0.013 0.501 0.013 - 0.094
de BF Permutation ~ One 0.036 0.455 0.001 - 0.022
4e SN, VTA, LC (pooled) Permutation  One 0.002 0.736 0.004 - 0.019
4f Pupil Permutation  One <0.001 0.966 0.009 - 0.032
0.041 0.432 0-0.02
5a CPP Permutation ~ One <0.001 4.911 0.03 - 0.037
5b -yl Permutation  One <0.001 4.829 0.031 - 0.034

Cohen’s d: Measure of effect size. d > 0.2: small effect size; d > 0.5: medium; d> 0.8: large; d > 1.2: very
large; d > 2.00: huge. CI: confidence interval around mean (for comparisons to chance), or around
difference of means (for comparisons between conditions). For figure panels that show multiple significant
time points as bars, we report statistics for the data averaged across time, per significant cluster.
Abbreviations: BF, basal forebrain; SN, substantia nigra; VTA, Ventral tegmental area; DR, Dorsal raphe;
LC, locus coeruleus; CPP, change point probability.
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