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Abstract  
 
Many cognitive tasks require a flexible mapping from specific features of sensory input to motor 
output. Such flexible input-output mapping is reflected in intrinsic correlated variability of activity 
within the cortical network that implements the decision process, and might rely on rapid plasticity 
mechanisms that are under neuromodulatory control. Here, we test for a role of neuromodulators 
in flexible decision-making by combining brainstem fMRI and pupillometry with time-resolved 
tracking of feature-specific intrinsic correlations within the human sensory-motor network. Human 
participants reported visual orientation judgments where the correct responses were contingent 
upon an active rule that could switch unpredictably. Rule switches evoked brainstem and pupil 
responses and changes in latent variables of behavior that were quantified with a computational 
model. Behavioral variables in turn were encoded in pupil dynamics. Brainstem activity and pupil 
dilation preceded fluctuations of stimulus-action coupling strength within the cortical network that 
implemented the decision. Brainstem arousal systems may thus instigate a context-dependent 
reorganization of selective cortical pathways for flexible decision-making.   
 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.05.570327doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.570327
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Introduction 
 
Decision-making involves the transformation of sensory signals into motor actions (Mante et al., 
2013; Shadlen and Kiani, 2013). The transformation from sensation to action has been studied 
predominantly using tasks with static associations between stimulus and action (Bogacz et al., 
2006; Gold and Shadlen, 2007; Donner et al., 2009; Hanks et al., 2015; Wilming et al., 2020; 
Murphy et al., 2021). However, the mapping between stimulus and action is often not fixed, but 
must be flexibly altered in accordance with environmental demands (Okazawa and Kiani, 2023). 
For example, in order to alternate between two stimulus-response (SR) mapping rules (Figure 
1a), the brain must flexibly route stimulus information from visual cortex to the population of 
neurons in motor cortex that encode the correct action for a given stimulus and SR rule (Miller 
and Cohen, 2001) (Figure 1b). How the brain is able to flexibly remap SR-associations has 
remained a key question in decision neuroscience (Shadlen and Kiani, 2013).  
 
We recently showed that arbitrary SR rules (Figure 1a) are instantiated in correlated variability 
of ongoing fluctuations of stimulus and action patterns amongst the regions that implement the 
decision process (van den Brink et al., 2022). That is, spontaneous fluctuations of orientation-
selective fMRI signals in visual cortex were correlated with fluctuations in motor cortex that were 
selective to the appropriate action (in line with the schematic in Figure 1b). This held both in 
situations where the SR rule was explicitly instructed and where it switched in a hidden and 
unpredictable manner and needed to be inferred from noisy cues. In the latter case, the SR 
coupling patterns reflected the participants’ internal belief about the active SR rule (gauged 
through a computational model). This observation supports the idea that task-specific SR 
pathways are constantly reconfigured when dictated by the environment, guided by higher-order 
inference processes. What mechanisms confer this flexible reconfiguration of SR pathways?    
 

 
Figure 1. Rationale. a. Elementary perceptual choice task. Each visual grating is associated with a unique correct 
action, which depends on a currently active response rule. b. Schematic of rule-dependent correlated variability. 
Arrows indicate positive correlation. When rule 1 is active, the activity of the population of neurons in visual cortex 
that encodes a vertical grating correlates positively with those neurons that encode a left hand response. Similarly, 
horizontal-encoding neurons correlate with the right hand response. When rule 2 becomes active, this pattern flips 
sign. c. Experimental hypothesis. We expect signals from neuromodulatory brainstem nuclei (and their correlate in 
pupil responses) to (i) track changes in SR rule and (ii) modulate the strength of features-specific correlated variability 
in the sensory-motor network. 
 
Theoretical work indicates that the brain can flexibility reconfigure SR pathways through short 
term synaptic plasticity mechanisms that are in turn governed by subcortical neuromodulatory 
inputs (Fusi et al., 2007). These nuclei project widely to the forebrain and are thus ideally 
situated to affect large-scale cortical activity dynamics (Berridge and Waterhouse, 2003; Aston-
Jones and Cohen, 2005; van den Brink et al., 2019; Pfeffer et al., 2021; Podvalny et al., 2021; 
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Pfeffer et al., 2022), and control cortical state and arousal (Harris and Thiele, 2011; McGinley et 
al., 2015b). Moreover, neuromodulators are known to promote synaptic plasticity on multiple 
temporal scales (Bear and Singer, 1986; Rasmusson, 2000; Reynolds et al., 2001; Reynolds 
and Wickens, 2002; Berridge and Waterhouse, 2003; Vetencourt et al., 2008; Marzo et al., 
2009; Nadim and Bucher, 2014). The activity of neurons that release neuromodulators is also 
sensitive to stimulus features that can signal the need to adjust behavior (Berridge and 
Waterhouse, 2003; Aston-Jones and Cohen, 2005; Bouret and Sara, 2005; Sarter et al., 2009), 
including specific computational variables entailed in complex inference strategies (Dayan and 
Yu, 2006; Nassar et al., 2012; Muller et al., 2019; Murphy et al., 2021). Combined, these 
characteristics indicate that neuromodulators may track hidden changes in SR rules and sculpt 
correlated variability of cortical signals that conditionally link stimulus with action (Figure 3c). 
 
We tested these hypotheses by reanalyzing fMRI data from a previously published study (van 
den Brink et al., 2022). Here, we probe the relationship between the SR rule inference process, 
and brainstem fMRI signals, pupil diameter, and intrinsic correlations within the human sensory-
motor network. Participants carried out an elementary perceptual choice task (Figure 1a) that 
was coupled to an inference problem: an active SR rule had to be inferred from ambiguous 
sensory evidence, and underwent hidden and unpredictable switches (van den Brink et al., 
2022). The hidden rule switches evoked robust responses in several neuromodulatory nuclei as 
well as in the pupil (Figure 1c). These physiological markers of arousal in response to rule 
switches could be understood in terms of a concomitant increase in computational model 
variables, which signaled that a change in rule was likely to have occurred. These same 
markers of arousal also preceded an increase in SR coupling strength within the cortical 
network that implemented the decision. Our results suggest that brainstem arousal is driven by 
key computational variables for context inference, and helps shape the continuous and context-
dependent reorganization of task-specific pathways within the cortex. 
 
Results  
 
Inferring volatile sensory-motor mapping rules under uncertainty 
 
Participants (N=18) inferred an active sensory-motor mapping rule (Figure 1a) from a stream of 
ambiguous sensory evidence, which came in the form of rapidly presented dots (cues) along the 
horizontal meridian (Figure 2a). The rule itself could switch unpredictably with a low probability 
(1/70), and determined the correct response for elementary perceptual choices: orientation 
judgements of large and full-contrast visual gratings that were interspersed in the stream of dots 
at long and variable intervals. Despite ambiguity of the sensory evidence, participants were able 
to determine and apply the active rule well above chance level, and similarly across the two 
rules (Figure 2b,c; Table S1). Switches of the active rule resulted in a marked dip in 
performance, which recovered as sensory evidence in favor of the new rule accumulated 
(Figure 2d).  
 
The normative (Bayesian) strategy for solving this rule inference task entails an adaptive, non-
linear accumulation of sensory evidence in a way that balances build-up of stable belief states 
with sensitivity to hidden rule switches (Glaze et al., 2015; Piet et al., 2018; Murphy et al., 2021). 
We could model this behavior with a Bayesian model of the adaptive inference process (Glaze 
et al., 2015) fit to the participants’ choice behavior. Adaptive sensitivity to rule switches was 
implemented in this model by a non-linear transformation of a prior before integrating it with 
newly arriving sensory evidence. The shape of this non-linear transformation depended on a 
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subjective estimate of the probability of rule switches. The fitted model quantified the ‘belief’ (L) 
of the participant in favor of one rule over the other. This belief has previously been shown to 
track patterns of correlated variability in the cortex (van den Brink et al., 2022), and here also 
systematically changed sign after rule switches (Figure 2e).  
 

 
Figure 2. Task and behavior. a. Inferred rule task. Top: Example sequence of three evidence samples during the 
inter-trial-interval (ITI) preceding a task trial. Evidence samples were the horizontal positions of dots presented every 
400 ms. Samples were drawn from one of two overlapping distributions, producing a noisy evidence stream. Bottom: 
example of noisy evidence stream. The generative distribution governed the active rule and could switch 
unpredictably between any two samples (probability: 1/70). b. Accuracy, and c. response time (RT) for each rule. The 
horizontal dotted line in b. shows chance level accuracy. Gray dots, individual participants. Bars, group average. 
Error bars, SEM. d. Accuracy for time bins centered on the onset of hidden rule changes. Accuracy drops 
substantially following a rule change and gradually recovers as participants accumulate evidence in favor of the rule 
change. Gray lines, individual participants. Black line, group average. Horizontal dotted line, average accuracy before 
the rue switch. Error bar, SEM. e. The belief-parameter from the model locked to rule switches.    
 f. Model-derived behavioral variables locked to the onset of rule switches. Following a switch in rule, change point 
probability (CPP) and uncertainty (-|ψ|) increase. Error bar, SEM. 
 
Here, we focus on two other latent variables of the model that have been shown to modulate 
behavioral evidence accumulation profiles and pupil-linked arousal responses during active 
inference (Murphy et al., 2021): change point probability (CPP), and uncertainty (-|ψ|). CPP 
indicated the probability that a switch of rule has just occurred, given the participants’ subjective 
estimate of the probability of rule change, the new sensory evidence, and current belief. CPP 
was high in cases where a new sample of evidence was inconsistent with the participants’ 
current belief – in particular, when both the previous belief and new (contradictory) evidence 
were strong. Uncertainty about the environmental state (i.e., active SR rule) before encountering 
a new sample of sensory evidence was tracked by -|ψ|. Switches of active rule were followed by 
a peak in both quantities, with a rapid rise in CPP, and a subsequent and more protracted rise in 
uncertainty (Figure 2f). 
 
In sum, hidden rule switches elicited a sequence of latent processes that included the detection 
of sensory evidence that violated previously held beliefs (CPP), a rise in uncertainty about the 
active rule (-|ψ|), and a flip in the sign of the belief state L. Ultimately, these internal 
computational events led to an adjustment of behavior to the new rule and, consequently, a 
recovery of task accuracy. 
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Correlated variability of stimulus and action codes reflects active rule  
 
In our prior work (van den Brink et al., 2022) we showed that correlated variability of population 
codes for stimulus and for action covaried, with a sign that depended on the model-derived 
belief of the participant. Here, we aimed to probe the mechanisms that underly the changes in 
correlated variability, elicited by the rule switch events that prompted changes of belief. We 
therefore examined if correlated variability aligned with the active rule directly. 
 

 
Figure 3. Correlated variability of population codes for stimulus and action. a. Regions of interest for the 
analysis of correlated variability. b., c., d., Correlation matrices for all stimulus and action decoders during rule 1 (b.), 
rule 2 (c.), and the difference between rules (d). Gray rectangles, stimulus-action pairs. e. correlations from (a.) and 
(b.), collapsed across all pairs in the gray rectangles. f. Correlations from (a.) and (b.), collapsed across all visual-
visual pairs and action-action pairs (excluding values on diagonals). Gray lines, individual participants; bars, group 
average; error bars, SEM. 
 
We quantified ongoing fluctuations of population codes as the graded output of decoders that 
captured stimulus orientation (horizontal vs. vertical) or chosen action (left hand vs. right hand 
response) discriminant patterns. These decoders were applied to the patterns of spontaneous 
fMRI signal fluctuations within a set of cortical and sub-cortical regions (Figure 3a; Table 1) from 
which stimulus and action-evoked activity had been removed. The resulting time series 
indicated if the activity pattern at any given moment tended toward vertical or horizontal stimulus 
orientation (for visual cortical regions), or towards left hand or right hand button press (for sub-
cortical and cortical motor-related regions). We then correlated the stimulus and action decoder 
outputs separately for intervals corresponding to the two rules (Figure 3b,c).  
 
The sign of correlation of specifically the stimulus-action pairs was a product of the design of the 
decoders: positive for coupling consistent with rule 1, and negative for rule 2 (cf. van den Brink 
et al., 2022). The key prediction for rule-dependent correlated variability was that the sign of 
correlations of stimulus-action pairs should differ between rules. This is indeed what we 
observed (Figure 3d,e; Table S1). No such sign flip was observed for the correlations of 
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stimulus-stimulus or action-action region pairs (Figure 3f; Table S1). In sum, the active rule was 
instantiated in patterns of spontaneous correlations of stimulus and action codes across a task-
relevant network of brain areas.  
 

 
Figure 4. Relationship between brainstem neuromodulation, pupil dynamics, and correlated variability. a. 
Regions of interest within the brainstem, defined via neuromelanin sensitive scans of individual participants (LC), and 
anatomical atlases (other nuclei; Table 1). BF, basal forebrain. SN, substantia nigra. VTA, ventral tegmental area. 
DR, dorsal raphe. LC, locus coeruleus. b. Deconvolved response in the brainstem evoked by rule switches. c. 
Deconvolved pupil response evoked by rule switches. d. Covariation between the rule switch-evoked response 
magnitude between the brainstem and pupil. e. Cross-correlation between brainstem activity and stimulus-action 
decoder coupling within the cortex. Negative lags indicate activity in the brainstem preceding increases in decoder 
coupling. f. Cross-correlation between pupil diameter and stimulus-action decoder coupling within the cortex, 
corrected for hemodynamic delays. Negative lags indicate pupil dilation preceding increases in decoder coupling. In 
all panels, horizontal bars indicate p < 0.05, corrected for multiple comparisons with cluster-based permutation 
testing. Error bars, SEM.   
 
Brainstem neuromodulatory centers and pupil-linked arousal are recruited by rule switches 
 
Switches of the active rule prompted adjustments of behavior (Figure 2) as well as a sign flip of 
correlated variability among the regions that implemented the decision (Figure 3). We next 
examined if rule switches also evoked activity in brainstem centers that release 
neuromodulators throughout the brain.  
 
We focused on five neuromodulatory centers (Figure 4a; Table 1): the cholinergic basal 
forebrain (BF), dopaminergic substantia nigra (SN) and ventral tegmental area (VTA), the 
serotonergic dorsal raphe (DR), and noradrenergic locus coeruleus (LC) (van den Brink et al., 
2019). Imaging of the brainstem is difficult due to the size and location of the nuclei involved. 
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We thus applied physiological noise correction and controlled for additional noise contained in 
ventricular signals (Brooks et al., 2013; de Gee et al., 2017). For optimal precision in 
localization, we delineated the smallest nucleus, the LC, within each individual, based on 
neuromelanin sensitive anatomical scans (Keren et al., 2009; de Gee et al., 2017) that 
highlighted the LC as hyperintense spots (Figure S1). The location of the resulting masks 
corresponded well to the known location of the LC in the posterior part of the pons, at the base 
of the fourth ventricle (Figure S2a). For the other (larger) regions, we relied on publicly available 
atlases (Table 1).  
 
Switches of the active rule caused prominent evoked activity in the catecholaminergic (i.e., 
dopaminergic and noradrenergic) nuclei (SN, VTA, and LC; Figure 4b; Table S1). These nuclei 
are strongly inter-connected (Sara, 2009) and have been implicated in orchestrating resets of 
cortical activity in response to contextual changes (Dayan & Yu, 2006; Fusi et al, 2007). We 
thus combined these three catecholaminergic brainstem nuclei in our analyses (Figure S2b 
shows individual nuclei). The DR did not show significant responses to rule switches (Figure 
S2b). Unexpectedly, the BF responded to rule switch events with a marked suppression of 
activity (Figure 4b; Table S1).    
 
Non-luminance mediated fluctuations of pupil diameter are known to covary with activity in 
neuromodulatory centers of the brainstem, including the catecholaminergic nuclei (Murphy et 
al., 2014; McGinley et al., 2015a; Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 2017; 
Larsen and Waters, 2018; Breton-Provencher and Sur, 2019). Indeed, we found pupil diameter 
to covary with the majority of nuclei as well (Figure S2c; Table S1). Critically, the pupil also 
dilated in response to the rule switches (Figure 4c; Table S1), and in a manner that was 
correlated with the rule-switch response of the VTA and LC (Figure 4d; Table S1).   
 
In sum, hidden rule switches recruited catecholaminergic brainstem nuclei and pupil-linked 
arousal in a coordinated fashion. This suggests that brainstem arousal systems may orchestrate 
the coupling of population codes for stimulus and action within the cortex, which we examined 
next.  
  
Brainstem and pupil fluctuations precede fluctuations of correlated variability 
 
If brainstem arousal systems affect SR-coupling within the cortex, we expect to see increased 
activity in the brainstem prior to increases in cortical signatures of SR coupling strength. We 
thus cross-correlated the signals from all brainstem nuclei that responded to rule switches and 
covaried with the pupil (i.e. excluding the DR) and the pupil signal itself with the strength of 
stimulus-action decoder correlation. To this end, we evaluated the latter in a time-variant 
fashion. We used strength (i.e., absolute value) of the decoder correlations rather than the 
correlations per se, because we did not expect the brainstem signals to bias the decoder 
correlations in any particular direction (i.e., favor a specific SR rule), but rather to boost 
whichever coupling currently dominated (e.g., through plasticity mechanisms (Fusi et al., 2007)). 
We evaluated the correlations across a series of lags in order to chart temporal dependencies.  
 
We found a pronounced peak at negative lags in the cross-correlation spectrum between BF 
and stimulus-action decoder coupling (Figure 4e; Table S1). This indicated that peaks of activity 
in the BF preceded peaks in stimulus-action decoder coupling. We also found significant 
correlations between activity of the pooled catecholaminergic nuclei and stimulus-action 
decoder coupling, including at negative lags, and peaking around zero lag (Figure 4e; Table 
S1). Finally, the pupil showed dilation before subsequent peaks in stimulus-action decoder 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.05.570327doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.570327
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

coupling strength (Figure 4f; Table S1). These findings, specifically the lags of the correlations, 
could not be explained by hemodynamic or pupillary delays because all delays were accounted 
for in the analysis. Moreover, because the pupil signal was sampled at a higher rate than the 
brainstem signal, it may be more sensitive to short (~1s) lags between brainstem responses and 
changes in SR-coupling within the cortex.  
 
Together, our results are consistent with the idea that activity in neuromodulatory nuclei (within 
the BF, and indexed by pupil diameter) tracked hidden rule switches, and modulated rule-
specific coupling of stimulus and action codes amongst the network of brain regions that 
implemented the primary decision process. The brainstem receives input from brain areas that 
are involved in active inference, such as anterior cingulate (Aston-Jones and Cohen, 2005). We 
thus next asked if the arousal system encoded latent variables of behavior that are informative 
of rule switches. 
 
Pupil fluctuations encode computational variables of behavior 
 
Sensitivity of the arousal system to rule switches may be conferred by latent variables that track 
changes in environmental state: CPP and uncertainty (-|ψ|) (Nassar et al., 2012; Murphy et al., 
2021). In our task, samples of evidence were presented without temporal jitter and at a rapid 
pace (Figure 2a), likely too quickly to relate brainstem fMRI responses to sample-wise estimates 
of CPP and -|ψ|. Nevertheless, the pupil was sampled at a faster rate than the fMRI signal. 
Given its close correspondence to brainstem activity, both expected from prior work (Murphy et 
al., 2014; McGinley et al., 2015a; Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 2017; 
Larsen and Waters, 2018; Breton-Provencher and Sur, 2019), and observed here (Figure 4, 
Figure S2c), we used the pupil as a summary signal for probing relationships with computational 
variables of behavior.    
 

 
Figure 5. Relationship between pupil dynamics and behavior. a. Relationship between the derivative of pupil 
diameter and change point probability (CPP). b. Relationship between pupil diameter and uncertainty. In all panels, 
horizontal bars indicate p < 0.05, corrected for multiple comparisons with FDR correction. Error bars, SEM.    
 
CPP, a latent variable in a model fit to participants’ choices, increased rapidly following rule 
switches (Figure 2f). The temporal derivative of pupil diameter is maximally sensitive to such 
rapid changes (Murphy et al., 2021), and closely tracks activity in the noradrenergic LC 
(McGinley et al., 2015a; Reimer et al., 2016). We thus regressed CPP onto the derivative of 
diameter, while controlling for a range of other variables. Shortly after evidence sample onset, 
the derivative of diameter indeed encoded CPP (Figure 5a; Table S1). Uncertainty evolved 
more slowly than CPP (Figure 2f). We therefore expected its signature to become visible in 
diameter (rather than its derivative). This is indeed what we found (Figure 5b; Table S1). In 
conclusion, the pupil, a signal that closely matched the dynamics of brainstem neuromodulatory 
nuclei, tracked the two latent computational variables of the inference process that were 
sensitive to changes in environmental state (i.e., SR rule). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.05.570327doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.570327
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 
Discussion 
 
It has long been established that neuromodulatory systems shape the global state and plasticity 
within the cortex. Much less is known about whether and how the interplay between the 
brainstem and cortex shapes the neural bases of specific cognitive behaviors – such as context-
dependent sensory-motor decisions that we studied here. We found that unpredictable switches 
in the state of the environment (i.e., SR rule) triggered a boost of arousal: a response within the 
centers that release neuromodulators, which coincided with a dilation of the pupil. Pupil-linked 
arousal also encoded rapid fluctuations of key computational variables for detecting hidden rule 
switches. Finally, boosts in the activity of brainstem arousal systems were followed by stronger 
coupling of stimulus and action selective patterns within the cortical regions that implement 
decisions. Taken together, our results are consistent with the idea that brainstem arousal plays 
an important role in shaping large-scale cortical pathways for flexible cognitive behavior in 
uncertain environments.    
 
A key aspect of adaptive behavior is that SR-associations must be able to be formed in an 
arbitrary manner. A number of previous studies on flexible decision-making have been done 
with non-arbitrary SR-associations (Heinzle et al., 2012; Sarafyazd and Jazayeri, 2019; Duan et 
al., 2021), where a stimulus is associated with a prepotent response that must be conditionally 
acted upon or suppressed, such as pro- and anti-saccade tasks (Munoz and Everling, 2004). By 
contrast, SR-associations in our task were inherently symmetrical, where neither stimulus had a 
prepotent response. Therefore, default anatomical pathways that establish SR-mapping within 
the cortex are unlikely be in place before SR-associations are learned. These arbitrary SR-
associations could come about through plasticity mechanisms that reshape existing SR-
pathways or form new ones when no default pathways exist. This notion finds support in work in 
non-human primates and computational modeling, which has suggested that flexible SR-
associations are the result of plasticity mechanisms operating on multiple time scales (Fusi et 
al., 2007). 
 
Our current findings align well with this mechanistic interpretation. In this scenario, synaptic 
plasticity mechanisms reshape the pathways along which sensory information is directed to 
motor cortex (Fusi et al., 2007), prompted by neuromodulator release in the cortex in response 
to sensory evidence in favor of a new active rule. Neuromodulator release elicits plasticity of 
cortical (Bear and Singer, 1986; Rasmusson, 2000; Berridge and Waterhouse, 2003; Huang et 
al., 2004; Vetencourt et al., 2008; Marzo et al., 2009; Nadim and Bucher, 2014) and striatal 
connections involved in learned associations (Reynolds et al., 2001; Reynolds and Wickens, 
2002). Moreover, neuromodulator release occurs in response to behaviorally relevant stimulus 
features (Berridge and Waterhouse, 2003; Aston-Jones and Cohen, 2005; Bouret and Sara, 
2005; Sarter et al., 2009). Neuromodulators are thus well suited to restructure SR-association 
pathways when dictated by the state of the environment. Our findings that arousal responses 
followed in reaction to rule switches, but preceded the cortical signatures of remapped SR-
associations, are consistent with this scenario. Our findings also align with theoretical proposals 
that link phasic arousal signals to cortical reorganization in response to changes of 
environmental state (Bouret and Sara, 2005; Dayan and Yu, 2006) 
 
One prominent line of work focuses on the role of frontal and parietal associative regions in 
flexible SR mapping. Such regions have been found to encode rule information (Miller and 
Cohen, 2001; Woolgar et al., 2016; van den Brink et al., 2022), and they have been proposed to 
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flexibly route information from sensory to motor cortices (Miller and Cohen, 2001). These 
regions may do so by transiently activating in response to the conjunction of stimulus and rule 
information and acting as switches between the sensory and motor cortices (Cocuzza et al., 
2020; Kikumoto and Mayr, 2020; Ito et al., 2022). Other findings indicate that prefrontal cortex 
encodes key computational variables for performance monitoring and tracking environmental 
state (Behrens et al., 2007; O'Reilly et al., 2012; McGuire et al., 2014). Frontal and parietal 
regions are known to innervate the brainstem arousal system (Schwarz and Luo, 2015; Schwarz 
et al., 2015; Breton-Provencher and Sur, 2019). Our present findings thus raise the possibility 
that prefrontal association cortex may control flexible SR information flow indirectly, through 
conveying computational variables such as change-point probability and uncertainty to the 
brainstem, which in turn sculpt the neural SR pathways accordingly.  
  
The negative response to rule switches that we observed in the BF (Figure 4b) was unexpected, 
but interesting in light of recent findings. Positive fMRI transients across wide areas of the 
cortex, and especially in sensory cortices, have been shown to co-occur with drops of activity in 
the BF region (Liu et al., 2018). In addition, in non-human primates inactivation of the BF results 
in suppression of correlated fMRI signal fluctuations that are topographically aligned with its 
afferents (Turchi et al., 2018). Notably, although this region is the main source of cortical 
acetylcholine (Mesulam and van Hoesen, 1976; Mesulam et al., 1983; Mesulam and Changiz, 
1988), it is diverse and also sends prominent long-range GABAergic projections to the cortex 
(Lin et al., 2015). Thus, it is possible that the here observed suppression of BF activity following 
rule switches represented a disinhibitory signal (Letzkus et al., 2015) that allowed correlated 
fluctuations in the cortex to emerge. This possibility is particularly appealing considering the 
proposed role of disinhibitory signals in flexible information routing within the cortex (Wang and 
Yang, 2018). Nevertheless, our findings also indicated that increases in BF activity preceded 
increases in SR-coupling (Figure 4e). It is thus also possible that a suppression of BF activity 
elicited by rule switches triggered a suppressive effect on SR-coupling within the cortex, and a 
new instantiation of SR-coupling was brought about by the subsequent activity in the 
catecholaminergic nuclei. Causal manipulations of specific neuron types within the BF, and 
concurrent electrophysiological recordings within the cortex, would be well suited to arbitrate 
between these alternatives.  
 
Due to the nature of the fMRI signal, we cannot definitively distinguish between 
neuromodulatory signals and those signals originating from other sources. In addition, imaging 
of nuclei within the brainstem in general is difficult due to their size and proximity to noise 
sources (Brooks et al., 2013). We have used several methodological approaches to mitigate 
these issues: by optimizing slice alignment with respect to the brainstem and correcting for 
physiological noise. We also created masks for the LC on an individual participant basis for 
optimal localization (Eckert et al., 2010). Finally, we confirmed the expected covariation 
between signals extracted from individual nuclei and pupillary indices of arousal, for both 
ongoing signal fluctuations and the more specific rule-evoked responses (Figure S2c, Figure 
4d). Together, these choices in experiment design, analysis, and findings, increased the 
likelihood that the signals we measured are truly related to neuromodulatory nuclei.  
 
Pupil diameter covaried with uncertainty, which was significant before the onset of a new 
sample of evidence (Figure 5b). Although part of this pre-cue onset covariation can be 
accounted for by the fact that the prior is the result of sensory evidence that precedes the 
current sample, we cannot fully exclude that part of this effect is driven by correlation in the 
values of uncertainty at adjacent cues. In future studies this can be ruled out by using designs 
with larger lags and jitter between consecutive cues so that protracted pupil responses to 
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individual cues are more clearly separable. Nonetheless, the key finding that uncertainty 
covaries with pupil diameter holds regardless of the precise timing with respect to the evidence 
samples.   
 
In conclusion, during flexible decision-making unpredictable switches in environmental state 
engage the arousal system. The arousal response in turn is followed by coordinated shifts of 
coupling between stimulus and action specific activity within the cortical regions that 
implemented the decision process. Thus, brainstem arousal may orchestrate the association of 
stimuli with their appropriate actions. 
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Materials and Methods 
 
The current study involves the reanalysis of previously published data (although all presented 
findings are novel). For a full description of all task parameters and preprocessing, please see 
van den Brink et al. (2022). 
 
Participants 
 
A total of 22 healthy individuals with normal or corrected vision (median age 27, range 21 – 44, 
8 male) took part in our experiment. All participants gave written informed consent and the study 
was approved by the ethics committee of the Hamburg Medical Association. Four participants 
were excluded from the current study: one for failure to complete all three sessions, another 
three for technical reasons (failure to record physiological signals or response data). The final N 
was thus 18.   

 
Behavioral task 
 
Participants performed two different versions of a flexible decision-making task, of which only 
one (the ‘inferred rule’ task) is analyzed in the current study. This task involved a basic visual 
orientation discrimination judgment (lower-order decision), combined with the selection of a 
volatile sensory-motor (SR) mapping rule (higher-order decision). The SR-mapping rule (Figure 
1a) determined the correct action for a given orientation judgment (Figure 2a).  
 
The active rule had to be continuously inferred from a sequence of noisy sensory evidence 
samples, which were small dots that appeared in rapid succession on the horizontal meridian 
(Figure 2a). The dots were drawn from one of two generative Gaussian distributions with equal 
SD and means that were equidistant from the central fixation point but on opposite sides. The 
generative distribution at any moment determined the active rule. Critically, the active rule could 
change unpredictably from one sample to the next, with a low probability (hazard rate) of 
0.0143. Thus, in order to determine the active rule at a given moment, participants needed to 
continuously integrate the noisy rule evidence over time. 
 
The appearance of the stimulus for the lower-order decision prompted participants to report their 
orientation judgement. ITIs for the lower-order decision were long and variable (uniform: 6.8 – 
29.6 s). The accuracy of the action depended on both the selection of the correct rule, and on 
the correct orientation judgment.   
 
MRI data collection 
 
MRI scans were conducted using a Siemens PrismaFit 3T MRI scanner with a 64-channel 
head-neck coil. We collected 6 runs of the inference task, split over two sessions (T2*-weighted 
EPI data; Flip angle: 70°; TR: 1.9 s; TE: 28 ms; FOV: 224 x 224 mm2, 62 slices (no gap) of 2.0 
mm isotropic voxels; 328 volumes), and simultaneously recorded cardiac pulsation and 
breathing using a pulse oximeter and pneumatic belt. Slices were oriented perpendicular to the 
rostral-caudal axis of the brainstem as to maximize SNR in this region.  
 
On both sessions, we collected B0 field homogeneity scans (Phase difference and magnitude 
image: flip angle: 40°; TR: 0.678 s; TE: 5.42/7.88 ms). At the end of the first MRI session, we 
collected a high resolution T1 neuromelanin sensitive scan, for the purpose of locating individual 
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participants’ LC (T1-TSE; Flip angle: 120°; TR: 675 ms; TE: 12 ms; FOV: 175 x 224 mm2, 14 
slices (2.0mm, no gap); 0.70x0.70 mm2 interpolated to 0.35x0.35 mm2). The slices were 
oriented perpendicular to the rostral-caudal axis of the brainstem in order to align with the 
longitudinal extent of the LC. At the end of the second MRI session, we collected a whole-brain 
T1 anatomical scan (MPRAGE; Flip angle: 9°; TR: 2.3 s; TE: 2.98 ms; TI 1.1 s; FOV: 192 x 256 
mm2, 240 slices; 1.0 x 1.0 x 1.0 mm). 
  
Pupil recording and preprocessing 
 
Pupil diameter and gaze position were recorded at 1000 Hz with an MRI-compatible EyeLink 
1000 eye tracker and calibrated with a 9-point fixation routine. Blinks and missing data 
segments were linearly interpolated in the eye position data. Other artifacts were identified by 
the derivative of the pupil diameter exceeding a threshold of 25 pixels and interpolated across. 
This process was repeated iteratively to ensure all artifacts were identified and removed, in 
accordance with prior work (van den Brink et al., 2016). All sections containing artifacts were 
then similarly interpolated across in the gaze x and y position data. 
 
Behavioral modeling 
 
Normative model 
 
The full details of the normative model and fit are provided in van den Brink et al. (2022). In 
brief, the rule selection (the higher-order decision) process was cast as a dynamic belief 
updating process (Glaze et al., 2015). In this model, a belief L for one possible state (rule 1) 
versus the alternative possible state (rule 2) was computed for each sample of evidence. This 
belief then underwent a non-linear transformation, dependent on a subjective hazard rate 𝐻෡, in 
order to become a prior (𝜓) on the presentation of the next sample, thus rendering the model 
adaptive to volatility of the rule.   
 
Model-derived uncertainty and change-point probability 
 
We used the model fits to produce two key computational parameters associated with each 
evidence sample: Uncertainty, and change-point probability (CPP). Uncertainty associated with 
the selected rule was computed as the negative of the magnitude of the prior 𝜓. CPP is a 
computational quantity that both the normative belief updating process and human participants 
are sensitive to in volatile decision-making contexts such as ours (Murphy et al., 2021). CPP 
was the posterior probability of a change having occurred, given 𝐻෡, the previous posterior and 
the new evidence sample. CPP was computed as follows: 
 

𝐶𝑃𝑃 =
1

1 + Ω 
 

(1) 
where, 

Ω =  
1 − 𝐻෡

𝐻෡
 
𝑐𝑜𝑠ℎ ቀ

1
2

 (𝐿𝐿𝑅௡  +  𝐿௡ିଵ)ቁ

𝑐𝑜𝑠ℎ ቀ
1
2

 (𝐿𝐿𝑅௡ −  𝐿௡ିଵ)ቁ
 

(2) 
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and where n was the current sample, LLR was the sensory evidence in favor of one rule over 
the other in the form of a log likelihood ratio. Eq. 1 and 2 represent an algebraic rearrangement 
of the equation for CPP derived by Murphy et al. (2021). 
 
MRI data analysis  
 
Pre-processing of fMRI data 
 
The fMRI data were preprocessed identically to van den Brink et al. (2022). In brief, 
preprocessing included: motion correction, skull stripping, B0 unwarping, high-pass filtering at 
100s, prewhitening, physiological noise correction with retrospective image correction 
(RETROICOR) (Glover et al., 2000), slice-time correction, and non-linear registration to MNI 
space.  
 
No spatial smoothing was applied to the fMRI data for two reasons: i) To preserve spatial 
patterns that were the basis of multi-voxel pattern analysis (see below), and ii) to prevent signal 
mixing between the brainstem and closely adjacent 4th ventricle (Brooks et al., 2013).     
 
Delineation of ROIs 
 
Regions of interest (ROIs) were defined using a variety of sources (Table 1), including publicly 
available atlases as well as individually created masks based on neuromelanin sensitive scans. 
The set of ROIs that we used for all SR coupling-related analyses (see below) presented in this 
article were selected to span the sensory-motor pathway underlying the lower-order decision 
(Table 1; Figure 3a). Because the probabilistic masks of neuromodulatory brainstem centers 
(Zaborszky et al., 2008; Edlow et al., 2012; Murty et al., 2014) varied substantially in their spatial 
extent, we confined each of these masks to 18 peak probability voxels. Masks of comparable 
size for the LC were defined for individual participants based on neuromelanin sensitive TSE 
scans (see below). 
 
Individual delineation of LC ROIs 
 
Masks of the LC for individual participants were created using a semi-automated procedure. 
First, a mask was manually drawn on the approximate locations of bilateral LC in the T1-TSE 
scans (Sasaki et al., 2006; Keren et al., 2009), which coincided with the known anatomical 
location of the LC within the pons, along the floor of the fourth ventricle. An automated algorithm 
then identified the peak intensity voxel within the manually drawn mask, and an additional 14 
contiguous voxels with the highest intensity in each hemisphere. Individual masks (Figure S1) 
were co-registered to 2 mm isotropic MNI space together with the high-resolution whole-brain 
T1 scans, max-unit normalized, and thresholded at values of 0.1 to reduce partial voluming 
effects. 
 
A probabilistic map for the group was defined as the proportion of participants with non-zero 
values for each voxel in MNI space. This group mask was compared to a previously published 
mask of the LC (Keren et al., 2009) in order to verify the average location (Figure S2a). 
 
Brainstem time-series extraction and post-processing 
 
Imaging of the brainstem is difficult due to the size of the nuclei involved and their proximity to 
noise sources such as the 4th ventricle (Brooks et al., 2013; Turker et al., 2021). Physiological 
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noise in the functional data was mitigated using slice-specific RETROICOR (see: van den Brink 
et al. (2022)). Nevertheless, in order to maximize the anatomical specificity of the extracted 
signals, we weighted the time-series of each brainstem nucleus by the probability of voxels 
within the respective masks. Furthermore, we extracted a probability-weighted time series of 
voxels within a mask of the 4th ventricle. Variance associated with the ventricular signal was 
then removed from the signals of the individual brainstem neuromodulatory nuclei using linear 
regression.  
 
Table 1. ROI definition.  
ROI labels Functional areas Source 
V1 Combination of 

dorsal/ventral parts of V1 
(Wang et al., 2015) 

V2 Combination of 
dorsal/ventral parts of V2 

 

V3  Combination of 
dorsal/ventral parts of V3 

 

V3A/B Combination of V3A and 
V3B 

 

V4 Human analogue of V4  
LO 
VO 

Combination of LO1 and 
LO2 
Combination of VO1 and 
VO2 

 

PHC Combination of PHC1 and 
PHC2 

 

MT Human analogue of MT  
MST Human analogue of MST  
IPS Combination of IPS0-IPS5  
SPL SPL1  
Caudate Caudate nucleus Harvard-Oxford structural  
Putamen 
Thalamus 

Putamen 
Thalamus 

Atlas 
(https://neurovault.org/collections/262/) 

PMd Areas 6a, and 6d (Glasser et al., 2016) 
M1 Somatotopic hand-specific 

aspect subregion of M1 
(de Gee et al., 2017) 

IPS/PostCeS Junction of IPS/ and 
PostCeS 

 

aIPS Anterior part of horizontal 
ramus of IPS 

 

LC Locus coeruleus This article 
DR Dorsal raphe (Edlow et al., 2012) 
VTA Ventral tegmental area (Murty et al., 2014) 
SN Substantia nigra  
BF Ch4 region of the basal 

forebrain 
(Zaborszky et al., 2008) 

Abbreviations: Vx, visual area X; LO, lateral occipital; VO, ventral occipital; PHC, parahippocampal; 
MST, middle superior temporal; MT, middle temporal; IPS, intraparietal sulcus; SPL, superior parietal 
lobule; PMd, dorsal premotor cortex; M1 primary motor cortex; PostCeS, postcentral sulcus.  
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Time-resolved correlation of stimulus and action population codes 
 
We quantified the coupling between population codes for stimulus and action by means of time-
resolved decoder output correlation (Anzellotti and Coutanche, 2018), following the methods 
described in van den Brink et al. (2022). Specifically, we trained sets of support vector machine 
(SVM) classifiers to decode stimuli (horizontal versus vertical orientation) and action (left versus 
right hand button press) based on evoked response patterns within cortical and subcortical 
regions (Figure 3a) that spanned the sensorimotor network. 
 
We then removed feature-specific evoked responses that the decoders were trained on from the 
data using deconvolution, thus isolating ongoing fluctuations (i.e. activity pattern fluctuations 
that were not driven by choice grating onset or button presses). We next projected the decision 
functions (weight vectors) from the stimulus and action decoders onto these estimates of 
ongoing multi-voxel activity patterns. This produced vectors that compactly summarized ongoing 
pattern fluctuations for stimulus (S; for visual cortical regions), or action (A; for motor cortical 
and subcortical regions). For example, in V1, the time course S reflected the extent to which 
patterns of ongoing activity spontaneously tended towards vertical or horizontal orientations 
(Kenet et al., 2003). 
 
The sign of S and A resulted from the specific decoder design: positive values indicated an 
ongoing activity pattern that resembled responses to vertical gratings (or left hand button 
presses) and negative values indicated an ongoing activity pattern that resembled responses to 
horizontal gratings (or right hand button presses). The schematic in Figure 1b in combination 
with this decoder design non-trivially predicted a positive correlation of decoder outputs for rule 
1 and a negative correlation for rule 2, for the stimulus-action pairs specifically. 
 
We Z-scored S and A across time and computed, for each time point t in the fMRI time series, 
the degree of covariation between the stimulus and action patterns, via:  
 

𝐼𝐶௧ =  𝑆௧𝐴௧ 
(3) 

 
Note that because S and A were Z-scored, IC, if averaged along the time dimension, was 
identical to the Pearson correlation coefficient of S and A. Therefore, IC represented the 
correlation of stimulus and action population codes unwrapped along the time dimension.    
 
We tested if IC, averaged across all visual-motor ROI pair combinations, differed between 
sections of data that were split according to the active rule, using non-parametric permutation 
testing (10,000 iterations). 
 
Rule switch-evoked brainstem and pupil responses 
 
We used deconvolution to test for the sensitivity of the brainstem and pupil to switch events in 
the active rule, without making any assumptions about the shape of the hemodynamic or 
pupillary response (Dale, 1999). Specifically, the estimated response R (of shape P x 1) was 
obtained via:  
 

𝑅 = 𝑋ା𝑌 
(4) 
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where Y was an N x 1 linearly detrended and z-scored time series (up-sampled fMRI data, or 
pupil diameter down-sampled to 50 Hz). X was an N x P design matrix, with value 1 in every 
element along those diagonals corresponding to the occurrence of switches in active rule, + 
denoted the pseudoinverse, and P was peri-stimulus time. 
 
The deconvolved responses were compared to chance (zero) and corrected for multiple 
comparisons across time points using non-parametric cluster-based permutation testing (10,000 
iterations, two-tailed) (Maris and Oostenveld, 2007).   
 
Correlation between brainstem activity and pupil diameter 
 
We assessed the correlation between brainstem and pupil activity in two ways: i) by correlating 
estimates of single-switch responses in the brainstem and in the pupil (Figure 4c), and ii) by 
correlation of the entire brainstem activity and pupil time series (Figure S2c).  
 
Single-switch response amplitude scalars for individual brainstem nuclei were computed by 
regression of the individually estimated HRF (see section: Rule switch-evoked brainstem and 
pupil responses) onto the single rule switch locked data. Similarly, we computed single-switch 
responses in the pupil via regression, using the standard pupillary response function described 
by Hoeks and Levelt (1993), with a peak latency set for individual participants according to the 
deconvolved pupil response. The resulting vectors of response amplitude scalars were then 
correlated to estimate covariation in evoked responses in the brainstem and pupil.  
  
Whole time-series correlation (Figure S2c) between the brainstem signals and pupil signal was 
done including a correction for HRF and pupillary response delays. That is, we estimated a peak 
HRF latency for individual participants from the stimulus-evoked response in V1 (van den Brink 
et al., 2022), and shifted the pupil signal forward by this latency. Because the pupil signal itself 
also lags neural activity, we subsequently shifted the pupil signal back by 1 s, following prior 
work (Yellin et al., 2015).  
 
The significance of both single-switch response covariation as well as covariation of the full time 
series was assessed with non-parametric permutation testing (10,000 iterations). We tested 
one-tailed because we expected positive covariation of activity in the pupil and brainstem.  
 
Cross-correlation between stimulus-action code covariation, brainstem activity, and pupil 
 
We used cross-correlation to examine temporal relationships between stimulus-action code 
covariation (computed via Eq. 3) and two other signals: activity in the brainstem, and pupil 
diameter. We used cross-correlation because the temporal sequence of activity fluctuations may 
be indicative of directional relationships between these signals. That is, if the activity in the 
brainstem modulates coupling at the level of the cortex, then we expect the brainstem to 
become active prior to an increase in cortical coupling.     
 
Stimulus-action code covariation was a signed signal, where the sign depended on the active 
task rule. We expected the brainstem to modulate the magnitude of this signal, regardless of 
sign, so in all related analyses we used the absolute of stimulus-action code covariation.  
 
Because the pupil signal lags putative neural activity that underlies it, we corrected for this delay 
by shifting the pupil signal backward by the expected latency of 1s (Yellin et al., 2015), and 
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aligned it with the hemodynamic signal by shifting forward by the observed hemodynamic delay 
(identically to the procedure described in the section: Correlation between brainstem activity and 
pupil diameter). Stimulus-action code covariation and brainstem activity were both 
hemodynamic signals in origin, so no lag correction was required before cross-correlation.  
 
Correlation coefficients of the cross-correlations were compared to chance (zero) and corrected 
for multiple comparisons across time points using non-parametric cluster-based permutation 
testing (10,000 iterations, two-tailed) (Maris and Oostenveld, 2007).    
 
Relationship between pupil dynamics and model computational variables 
 
We examined the relationship between pupil and behavior with linear regression of the variables 
resulting from the computational model fit to individual participants’ behavior onto (the derivative 
of) pupil diameter. The regression had the following form:  
 

𝑑𝑃𝑢𝑝𝑖𝑙(𝜏)

𝑑𝜏 ௧,௖
=  𝛽଴,௧ + ෍ ( 𝛽ଵ,௟,௧ × 𝐶𝑃𝑃௖ା௟

଴

௟ୀିଵ

+  𝛽ଶ,௟,௧ × (−|𝛹௖ା௟|)  +  𝛽ଷ,௟,௧ × |𝐿𝐿𝑅௖ା௟|) + 𝛽ସ,௧ × |𝐿𝐿𝑅௖ − 𝐿𝐿𝑅௖ିଵ|

+  𝛽ହ,௧ × 𝑔𝑎𝑧𝑒𝑥௧,௖ +  𝛽଺,௧ × 𝑔𝑎𝑧𝑒𝑦௧,௖ +  𝛽଻,௧ × 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒௖ 
(5) 

where t was time relative to cue (evidence sample) onset, 𝑐 indexed cues, 
ௗ௉௨௣௜௟(ఛ)

ௗఛ ௧,௖
 gave the 

value of the pupil derivative time series at time 𝑡 relative to the onset of cue 𝑐. CPP was change 
point probability, -|Ψ| was uncertainty, LLR was the sensory evidence (i.e., the log-likelihood 
ratio), gazex and gazey were gaze positions on screen, and baseline was average pupil 
diameter in a 1 s window preceding cue onset. The terms relating to prior cues were included to 
account for auto-correlation in the pupil response and isolate responses to the current cue. The 
magnitude of the difference between the current and previous cue LLR was included to exclude 
that any relationship between pupil and CPP was driven by low-level visual differences between 
consecutive cues.  
 
We also fit a variant of this regression model to baseline corrected pupil diameter (rather than 
the derivative). This regression model did not include baseline diameter, or terms for preceding 
cues:  
 

𝑃𝑢𝑝𝑖𝑙௧,௖ =  𝛽଴,௧ +  𝛽ଵ,௧ × 𝐶𝑃𝑃௖ +  𝛽ଶ,௧ × (−|𝛹௖|)  +  𝛽ଷ,௧ × |𝐿𝐿𝑅௖| +  𝛽ସ,௧ × 𝑔𝑎𝑧𝑒𝑥௧,௖ +  𝛽ହ,௧ × 𝑔𝑎𝑧𝑒𝑦௧,௖ 
(6) 

Based on prior work (Murphy et al., 2021), we expected CPP following cue onset to covary 
positively with the derivative of pupil diameter. We also expected uncertainty to covary positively 
with pupil diameter. 
 
Regression coefficients were compared to chance (zero) using non-parametric permutation 
testing (10,000 iterations, one-tailed) and corrected for multiple comparisons using the false 
discovery rate (FDR).  
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Supplementary Figures and Tables 
 

 
Figure S1. Neuromelanin sensitive TSE scans for all participants. The mask of the locus coeruleus (LC) 
is overlayed in red. The masks were created by manually selecting the maximal voxel within the LC 
region on each side, and subsequently automatically selecting 15 additional contiguous voxels with the 
highest intensity. 
 
   
 

 
 
Figure S2. a. Overlap of LC mask of the current study with that of Keren et al., (2009). b. Deconvolved 
response in the brainstem evoked by rule switches, shown for all individual nuclei. c. Correlation between 
brainstem signals and pupil diameter, across time. Covariation between the rule switch-evoked response 
magnitude between the brainstem and pupil. Dots, individual participants. Bars, group average. Error 
bars, SEM. Horizontal bars indicate p < 0.05, corrected for multiple comparisons with cluster-based 
permutation testing. 
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Table S1. Statistics summary. 

Figure  Label Test Tail p-value Cohen’s d 95% CI 

2b Rule 1 Permutation Two <0.001 3.410 18.798 - 40.995 

2b Rule 2  Permutation Two <0.001 4.511 17.669 - 38.224 

2b Rule 1 vs rule 2 Permutation Two 0.329 0.212 -1.331 - 5.222 

2c Rule 1 vs rule 2 Permutation Two 0.087 -0.385 -0.028 - 0 

3e Rule 1 Permutation One 0.003 0.581 0.002 - 0.012 

3e Rule 2  Permutation One <0.001 -0.955 -0.015 - -0.005 

3e Rule 1 vs rule 2 Permutation One <0.001 1.005 0.008 - 0.027 

3f (left) Rule 1 Permutation Two <0.001 3.408 0.042 - 0.093 

3f (left) Rule 2  Permutation Two <0.001 3.800 0.043 - 0.094 

3f (left) Rule 1 vs rule 2 Permutation Two 0.554 -0.133 -0.005 - 0.002 

3f (right) Rule 1 Permutation Two <0.001 2.753 0.051 - 0.113 

3f (right) Rule 2  Permutation Two <0.001 3.068 0.057 - 0.125 

3f (right) Rule 1 vs rule 2 Permutation Two 0.074 -0.395 -0.019 - 0 

4b BF Permutation Two 0.021 0.539 0.014 - 0.124 

    0.012 0.593 0.014 - 0.094 

4b SN, VTA, LC (pooled) Permutation Two 0.018 0.523 0.007 - 0.072 

    0.029 0.474 0.001 - 0.02 

    0.037 0.449 0.002 - 0.06 

4c Pupil Permutation One 0.044 0.429 0.002 - 0.106 

4d BF Permutation One 0.946 -0.354 -0.076 - 0.001 

4d SN Permutation One 0.115 0.260 -0.012 - 0.081 

4d VTA Permutation One 0.030 0.416 0.003 - 0.063 

4d DR Permutation One 0.461 0.019 -0.036 - 0.041 

4d LC Permutation One 0.013 0.501 0.013 - 0.094 

4e BF Permutation One 0.036 0.455 0.001 - 0.022 

4e SN, VTA, LC (pooled) Permutation One 0.002 0.736 0.004 - 0.019 

4f Pupil Permutation One <0.001 0.966 0.009 - 0.032 

    0.041 0.432 0 - 0.02 

5a CPP Permutation One <0.001 4.911 0.03 - 0.037 

5b -|| Permutation One <0.001 4.829 0.031 - 0.034 

Cohen’s d: Measure of effect size. d > 0.2: small effect size; d > 0.5: medium; d > 0.8: large; d > 1.2: very 
large; d > 2.00: huge. CI: confidence interval around mean (for comparisons to chance), or around 
difference of means (for comparisons between conditions). For figure panels that show multiple significant 
time points as bars, we report statistics for the data averaged across time, per significant cluster. 
Abbreviations: BF, basal forebrain; SN, substantia nigra; VTA, Ventral tegmental area; DR, Dorsal raphe; 
LC, locus coeruleus; CPP, change point probability.  
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