

1 **Full Title:** Multimodal mucosal and systemic immune characterization of a novel non-
2 human primate trachoma model highlights the critical role of local immunity during
3 acute phase disease

5 **Short Title:** Multimodal immune characterization of acute trachoma

7 **Authors :** Elodie PAULET¹, Vanessa CONTRERAS^{1#}, Mathilde GALHAUT^{1#}, Ida
8 ROSENKRANDS², Martin HOLLAND³, Matthew BURTON⁴, Jes DIETRICH², Anne-
9 Sophie GALLOUET¹, Nathalie BOSQUET¹, Francis RELOUZAT¹, Sébastien
10 LANGLOIS¹, Frank FOLLMANN², Roger LE GRAND¹, Marc LABETOULLE^{1,5}, Antoine
11 ROUSSEAU^{1,5*}

13 **Affiliations :**

14 ¹ Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune,
15 Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le
16 Kremlin-Bicêtre, France

17 ² Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark.

18 ³ Clinical Research Department, London School of Hygiene and Tropical Medicine,
19 London, UK

20 ⁴ International Centre for Eye Health, London School of Hygiene and Tropical
21 Medicine, London, London, UK

22 ⁵ Service d'Ophtalmologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le
23 Kremlin Bicêtre, France.

25 # Co-second authors as they equally contributed to this work.

26 * Corresponding author, e-mail: antoine.rousseau@cea.fr

28 **Conflict of interest:** NA

29 Keywords: *Chlamydia trachomatis*, trachoma, Cynomolgus monkey, Non-human
30 primate, follicular conjunctivitis, Clinical grading score

31 **Abstract (250-300 words)**

32 **Background:** Trachoma -the leading cause of blindness worldwide as a result of
33 infection- is caused by repeated *Chlamydia trachomatis* (Ct) conjunctival infections.
34 Disease develops in two phases: i) active (acute trachoma, characterized by follicular
35 conjunctivitis), then long-term ii) scarring (chronic trachoma, characterized by
36 conjunctival fibrosis, corneal opacification and eyelid malposition). Scarring trachoma
37 is driven by the number and the severity of reinfections. The immune system is a pivotal
38 aspect of disease, involved in disease aggravation, but also key for exploitation in
39 development of a trachoma vaccine. Therefore, we characterized clinical and local
40 immune response kinetics in a non-human primate model of acute conjunctival Ct
41 infection and disease.

42 **Methodology/Principal Findings:** The conjunctiva of non-human primate (NHP,
43 Cynomolgus monkeys -*Macaca fascicularis*-) were inoculated with Ct (B/Tunis-864
44 strain, B serovar). Clinical ocular monitoring was performed using a standardized
45 photographic grading system, and local immune responses were assessed using multi-
46 parameter flow cytometry of conjunctival cells, tear fluid cytokines, immunoglobulins,
47 and Ct quantification. Clinical findings were similar to those observed during acute
48 trachoma in humans, with the development of typical follicular conjunctivitis from the
49 4th week post-exposure to the 11th week. Immunologic analysis revealed an early
50 phase influx of T cells in the conjunctiva and elevated interleukins 4, 8, and 5, before
51 a later phase monocytic influx accompanied by a decrease in other immune cells, and
52 tear fluid cytokines returning to initial levels.

53 **Conclusion/Significance:** Our NHP model accurately reproduces acute trachoma
54 clinical signs, allowing for the precise assessment of the local immune responses in
55 infected eyes. A progressing immune response occurred for weeks after exposure to

56 Ct, which subsided into persistence of innate immune responses. Understanding these
57 local responses is the first step towards using the model to assess new vaccine and
58 therapeutic strategies to prevent disease.

59

60

61 **Author Summary (150-200 word non-technical summary)**

62 *Chlamydia trachomatis* is the leading infectious cause of blindness worldwide. The
63 pathogenesis of trachoma is more complicated than other types of bacterial
64 conjunctivitis: clinical signs of trachoma are rooted in repeated *Chlamydia trachomatis*
65 infections of the inner eyelid surfaces, which roughens the skin. This lead to eyelid
66 deformation and lashes rubbing on the cornea, which across multiple years of
67 abrasion, ends with corneal opacification. The immune system is a pivotal aspect of
68 disease, involved in disease aggravation, but also key for exploitation in development
69 of a trachoma vaccine. Here we describe a non-human primate model of trachoma that
70 accurately reproduces acute human eye disease, allowing for the precise assessment
71 of the local immune responses in infected eyes. A progressing immune response
72 occurred 4 weeks after exposure to Ct, which subsided into persistence of innate
73 immune responses. Understanding these local responses is the first step towards
74 using the model to assess new vaccine and therapeutic strategies to prevent disease.

75

Introduction

76

Trachoma is currently the leading infectious cause of blindness worldwide. In 2022, trachoma was endemic in 42 countries (mainly in Africa), with 125 million people at risk, and 1.9 million visually-impaired [1,2]. The infection is caused by *Chlamydia trachomatis* (Ct), a Gram-negative obligate intracellular bacteria. The natural history of disease is divided into two successive phases: i) acute (or active) phase characterized by follicular conjunctivitis, and ii) scarring (or chronic phase) characterized by conjunctival fibrosis, eyelid malposition, and trichiasis ultimately causing corneal opacification [3,4]. Scarring or chronic trachoma develops over multiple years and after repeated Ct infections [5].

85

The *World Health Organization* (WHO)'s SAFE (*Surgery, Antibiotic, Facial cleanliness, and Environmental changes*) strategy, implemented in endemic zones by local ministries of health, efficiently reduced trachoma prevalence [6]. However, there are major drawbacks limiting long term efficacy of mass drug administration (MDA) preventive campaigns to combat trachoma. They include: i) off target antimicrobial resistance [7], ii) possible skewing of gut microbiome [8], iii) requirement of multiple rounds of treatment in some populations [5,9], iv) long term commitment of donor organizations to the control programs, v) a need for (and sometimes lack of) continued surveillance, and vi) absence of improvement in environmental and socio-economic conditions alongside control by MDA [10]. Altogether, a goal of eradication (rather than elimination) would only be achieved with a vaccine. Therefore, development of a vaccine strategy seems necessary to address these pitfalls in endemic areas [9,11]. Previous vaccine strategies have passed through different preclinical models and into human trials, but with mixed results [12–15]. A more precise understanding of trachoma pathogenesis and host-pathogen interactions are crucial for the identification

97

98

99

100 of correlates of protection and the development of preventative strategies. While the
101 extrinsic etiological agent of trachoma is *Ct* conjunctival infection, pathogenesis likely
102 involves a substantial level of immune-mediated inflammation [3,4,16–18]. The
103 crosstalk between *Ct* infection and the immune response during trachoma
104 pathogenesis, is complex and undeciphered. However, in recent years significant
105 advances have been made in understanding the immune response during trachoma
106 pathogenesis [16]; with the role of non-specific and specific T cell responses being
107 identified as essential for *Ct* clearance but concomitantly causing tissue damage [18];
108 neutrophil-mediated hyperinflammation has been shown in model infections to have
109 negative consequences on ocular tissue damage and destruction [17,19]; and
110 including changes in disease biomarkers, such as local cytokines during different
111 trachoma stages [20]. However, studies are mostly cross-sectional, and published
112 longitudinal data remains scarce, leaving open opportunities to improve
113 comprehension of trachoma pathogenesis, which will be needed in the evaluation of a
114 *Ct* vaccine. Improving our understanding of the precise mechanisms by which *Ct*
115 triggers trachoma clinical and biological features requires longitudinal data in a relevant
116 animal model. In this regard, NHP models are especially interesting due to their
117 similarities with human immune responses and clinical manifestations [21,22].
118 We developed a NHP trachoma model that involved *Ct* ocular infection in macaques,
119 which elicited follicular conjunctivitis that reproduced human features of acute
120 trachoma [3,13,23]. We then characterized dynamics of local immune responses over
121 time using a combination of multiparameter flow cytometry performed on conjunctival
122 cells, tear and serum cytokine analysis, and *Ct*-specific immunoglobulin quantification.

123

Methods

124

Animals & Ethics statements

125

Six males (Group 1) and 12 females (Group 2) of Cynomolgus monkeys (*Macaca fascicularis*), aged 57 to 97 months for Group 1, and aged 36 to 38 months for Group 2, were used in this study. All animals were derived from Mauritius Island AAALAC-certified primate breeding facilities, and were housed in IDMIT's animal facility (CEA, Fontenay-aux-roses, France, authorization #D92-032-02, Préfecture des Hauts de Seine, France) in individual cages during acute infectious phase, under BSL-2 containment.

132

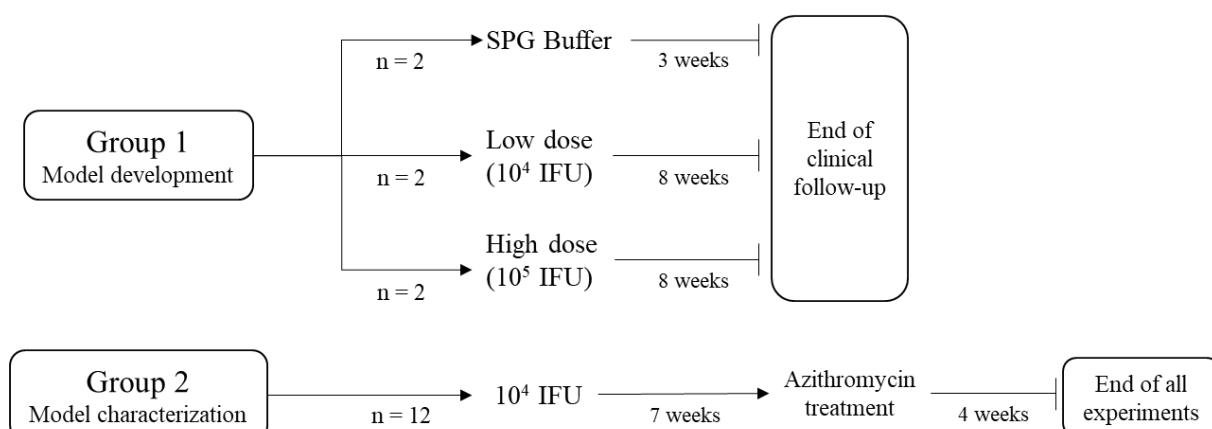
General observations were conducted daily to assess well-being. Additionally, body weight and rectal temperature were monitored at each sampling time-point, along with a complete blood cell count (see Study Design). All experimental procedures were conducted according to European guidelines for animal care ("Journal Officiel de l'Union Européenne", directive 2010/63/UE, September 22, 2010), and according to CEA institutional guidelines. The animals were anesthetized using intramuscular tiletamine (Zoletil 100®, 5mg/kg). Experimental protocols were approved by the institutional ethical committee (#17_072 (Group 1) and #21_008 (Group 2)), and were authorized by the "Research, Innovation, and Education Ministry" under registration number APAFIS#720-201505281237660 (Group 1), and APAFIS#31037-2021041418019968v1 (Group 2).

143

144

Bacterial strain, exposure and treatment

145


B/Tunis-864 strain (B serovar) of *Chlamydia trachomatis* (Ct) was provided by the Statens Serum Institut (SSI, Copenhagen, Denmark). Bacteria were titrated and stored at -80°C at a concentration of 8x10⁵ infection forming units (IFU)/µL, then diluted in

148 SPG buffer (sucrose 0.2M, sodium phosphate 20mM, and glutamic acid 5mM, pH 7.4)
149 before administration at a final concentration of 2×10^4 IFU/ μ L. Animals were inoculated
150 with 20 μ L of diluted bacteria using a micropipette, in both the inferior and superior
151 conjunctival fornices of both eyes. Mock inoculated controls received only SPG buffer.
152 At 7 weeks post-exposure (p.e.), animals in Group 2 received oral azithromycin
153 (40 mg/kg, then 20 mg/kg daily, for 4 days).

154

155 **Study design**

156 In a pilot study (Group 1), exposed animals to 10^4 (Low dose, n = 2) or 10^5 (High dose,
157 n = 2) IFU/eye, or SPG buffer alone (SPG Buffer, n = 2), were followed with a
158 standardized clinical follow-up throughout the study period, to define an appropriate
159 challenge dose, and to determine a clinical grading scale. The exposure dose of
160 10^4 IFU/eye was then selected for further characterization of immune responses,
161 clinical symptoms, and bacterial load profiles in the Group 2 (n = 12) (**Fig 1**). All animals
162 underwent identical standardized clinical follow-up throughout the study period.

163

164 **Fig 1.** Study design. Group 1 was used to select an exposure dose while group 2 was
165 used to characterize clinical manifestation, local and systemic immune response, and
166 bacterial load.

167

168 **Conjunctival clinical scoring**

169 Conjunctival clinical scoring was carried out using a customized clinical score
170 assessed on ocular surface photographs (**Fig 2**). This score derived from the *WHO*
171 *trachoma enhanced (FPC) grading scale* [24] and modified for compatibility with
172 specific requirements of our model (**Fig 2**). Final score was calculated by adding the
173 two components of the score: inflammation (graded on a scale of 0 to 3) and follicle
174 (graded on a scale of 0 to 5), resulting in a maximum score of 8. Inflammation grading
175 evaluates conjunctival edema, thickening, and the extent of hidden blood vessels.
176 Follicle grading involves counting follicles in a predefined crescent-shaped zone of the
177 upper tarsal conjunctiva (**Fig S1**).

178 Ocular surface photographs were captured following a standardized protocol, in brief:
179 under general anesthesia, animal lying in supine position, upper eyelids were gently
180 everted using a spatula, then held in place using blunt forceps (Dutscher, 956507).

	Diagram	Grading	Characteristics	Clinical pictures
INFLAMMATION		0	No inflammation	
		1	Minimal inflammation Papillae, no obscured vessels	
		2	Moderate inflammation Inflammatory thickening, hazy vessels on less than half of the surface	
		3	Pronounced inflammation Thick and opaque conjunctiva, hidden vessels on more than half of the surface	
FOLLICLES		0	No follicles	
		1	1 – 5 follicles	
		2	6 – 10 follicles	
		3	11 – 20 follicles	
		4	21 – 30 follicles	
		5	> 30 follicles	

184 on a scale of 0 to 5), resulting in a maximum score of 8. Inflammation grading evaluates
185 conjunctival edema, thickening, and the extent of hidden blood vessels. Follicle grading
186 involves counting follicles in the central region of the upper tarsal conjunctiva. To obtain
187 clear visibility, the upper eyelid was everted using a metal spatula and held in place
188 with blunt forceps. Clinical photographs were captured while the animals were under
189 general anesthesia. The schematic diagram of the upper tarsal conjunctiva was
190 adapted from the World Health Organization© with permission.

191

192 An EOS 80D camera (Canon), equipped with a Macro 100mm Image stabilizer
193 ultrasonic lens (Canon), and a Macro ring lite MR-14EXII circular flash (Canon), was
194 mounted to a generic stand, facing down and positioned approximately 20cm above
195 the eye of interest. Focus was set on the upper tarsal conjunctiva. Photographs were
196 anonymized before scoring for inflammation grading and follicle counting by three
197 independent observers masked to experimental group (A.R., E.P., M.G.), including one
198 ophthalmologist trained and sub-specialized in human ocular surface infections (A.R.).
199 Both eyes were scored independently by each observer. For each photograph, the
200 scoring process involved the following criteria: i) if all three observers reached a
201 consensus, the score was validated; ii) if two out of the three observers agreed, with
202 the third observer differing by only 1 point on the clinical grading scale, the agreed-
203 upon score was retained; and iii) if all three observers disagreed or if one observer had
204 a score differing by more than 1 point with the two others, a second round of masked
205 grading, involving all three observers, was conducted and the same criteria reapplied.
206 As both eyes were inoculated with the same protocol, the average score of both eyes
207 was used as the final score for each animal.

208

209 **Bacterial load quantification**

210 Conjunctival swabbing was performed at the inferior conjunctival fornices instead of
211 superior as to not influence clinical scoring and conjunctival imprinting. They were then
212 placed in 1mL of room temperature Amies medium, from which DNA was extracted
213 with QIAamp DNA Mini kit (Qiagen). Quantitative PCR was performed to assess the
214 bacterial load using the Presto combined qualitative real-time CT/NG assay (Goffin
215 Molecular Technologies, CG160100, and primer set previously described [25] CtPl+
216 5'-TAGTAAC TGCCACTTCATCA-3' and CtP2 5'-TTCCCCTTGTAATTGTTGC-3')
217 and using a CFX96TM real-time thermocycler (Bio-Rad)). The bacterial load,
218 expressed in IFU-equivalent copies, was calculated by the thermocycler software, from
219 a standard curve (obtained from 4×10^5 to 4×10^0 IFU/mL of bacterial stock strain
220 B/Tunis-864 diluted in dPBS 1X). The limit of detection was fixed as 4 equivalent
221 IFU/mL and limit of quantification at 40 equivalent IFU/mL.

222

223 **Cytokines quantification**

224 Tears were collected with Dina strip Schirmer-Plus® tear test kits (Coveto, France),
225 with the test strip placed on the inferior conjunctival fornices until no more impregnation
226 is observed (generally 2-3 minutes). 50µL of NaCl were then added to the strip before
227 being centrifuged (19,000 x g for 20 minutes, Sigma 3-16PK) to extract the tears. Bead-
228 based Luminex® multiplex assay protocol (Milliplex Map, PRCYTOMAG-40K) was
229 performed on 25µL of diluted tears (completed with PBS to obtain a total of 70µL) to
230 quantify cytokine concentrations (G-CSF, GM-CSF, IFNγ, IL-1β, IL-1RA, IL-2, IL-4, IL-
231 5, IL-6, IL-8, IL-10, IL-12/23(p40), IL-13, IL-15, IL-17α, MCP-1, MIP-1β, MIP-1α,
232 sCD40L, TGF-α, TNF-α, VEGF, and IL-18). The same panel and protocol were applied
233 to 25µL of undiluted serum samples for cytokine quantification.

234

235 **Conjunctival imprinting and flow cytometry**

236 Local cellular immune infiltrates were evaluated through flow cytometric analysis of
237 fluorescent antibody-labelled superficial conjunctival cell samples. Upper tarsal
238 conjunctiva were gently dried with compresses. Imprints were harvested using 1.6 cm
239 x 0.6 cm semi-oval pieces of nitrocellulose membrane (Supor® PES Membrane disc
240 filters, 0.2 µm 47 mm, ref-66234, Pall, Ann Arbor, Michigan, USA), which were applied
241 to the upper tarsal conjunctiva with gentle pressure. The membrane was then carefully
242 removed and placed into phosphate buffer saline (PBS). After 1 hour of gentle agitation
243 at RT, cells adsorbed onto the membrane were eluted using a flushing technique, as
244 described previously [26]. Eluted cells were blocked with 10% rat serum before
245 labelling with a panel of fluorescently-conjugated antibodies: CD326 (EpCam)-PE
246 (clone 1B7, Thermo Fischer 12-9326-42), HLA-DR-AF700 (clone L243 G46-6, BD
247 560743), CD45-BV786 (clone D058-1283, Becton Dickinson 563861), CD66-FITC
248 (clone TET2, Miltenyi 130-116-663), CD14-BUV737 (clone M5E2, Becton Dickinson
249 612764), CD3-BUV395 (clone SP34-2, Becton Dickinson 564117), CD8-BUV805
250 (clone SK1, Becton Dickinson 612890), CD4-BV421 (clone L200, Becton Dickinson
251 562842), CD20-PE-Cy7 (clone 2H7, Becton Dickinson 560735), CD159a(NKG2A)-
252 APC (clone Z199, Beckman Coulter A60797). The samples were then fixed with BD
253 Cellfix (Becton Dickinson 340181), and acquisition was performed using a 5-laser 27-
254 filter ZE5 flow cytometer (Bio-Rad). Data were analyzed using FlowJo software
255 (v10.8.1, Becton Dickinson). The gating strategy was designed to quantify immune
256 subsets: neutrophils, monocytes, T lymphocytes, B lymphocytes, and natural killer
257 (NK) cells (**Fig S2**). Leucocyte counts (CD45+ cells) were normalized for 50,000

258 observed cells, and all other immune populations were normalized for 100 leucocytes
259 (to obtain proportions of immune cell populations expressed as percentage).

260

261 **Serum and tear IgG and IgA quantification**

262 An indirect quantitative ELISA was used to measure specific anti-Ct IgG and IgA
263 antibodies in serum and tears. Positive IgG and IgA references were arbitrarily
264 assigned a value of 5 ELISA-Units/ml (AEU/ml). MaxiSorp plates (NUNC, Denmark)
265 were coated overnight at 4°C with 4 µg/ml UV-inactivated B/Tunis-864 Ct elementary
266 bodies in carbonate buffer pH 9.6. Plates were washed with PBS containing 0.05%
267 Tween 20 and blocked with 2% bovine serum albumin (BSA) in PBS. Serum and tear
268 samples were tested in duplicate, by 2-fold serial dilution in PBS with 1% BSA. IgA and
269 IgG were detected by goat α -Human Fc IgA-Biotin conjugate and goat α -Human Fc
270 IgG-Biotin conjugate (Southern Biotech, Birmingham, AL, USA) diluted 1:20,000 in
271 PBS with 1% BSA and incubated for 1 hour at 37°C. This was followed by incubation
272 for 40 minutes in a dark room with Poly-HRP40 (Fitzgerald, Acton, MA, USA) diluted
273 1:20,000 in PBS with 1% BSA. Detection substrate was TMB-PLUS (Kem-En-TEC,
274 Denmark), the reaction was stopped with 0.5 M H₂SO₄ and absorbance was recorded
275 at 450 nm (after subtraction of the background absorbance value measured at 620
276 nm). The IgG and IgA references were then used to establish a standard curve for the
277 determination of titers in arbitrary ELISA Units/ml (AEU/ml) based on a five-parameter
278 logistic curve using the package 'drc' in R (version 4.3.1) [27].

279 For determination of total IgG and IgA in tears, the same ELISA protocol (MaxiSorp,
280 Nunc) was used except that plates were coated with anti-human kappa and lambda
281 light chain specific mouse antibodies (Southern Biotech) at 1:1 ratio diluted to 1 µg/ml
282 in PBS overnight. Purified human IgG and IgA were used as standards (Sigma, St.

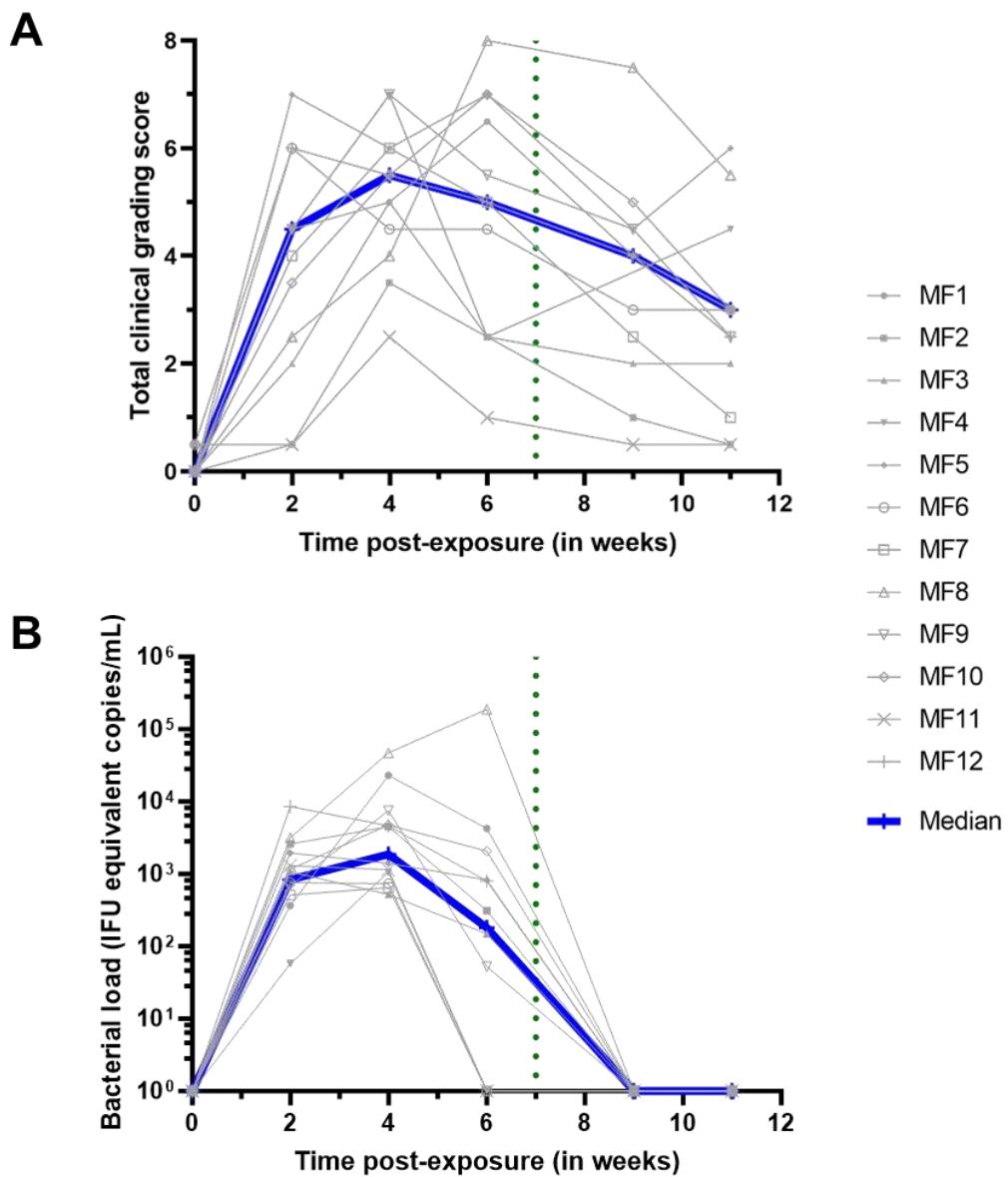
283 Louis, MO, USA). Tear samples were tested by 4-fold serial dilution, and serial 2-fold
284 dilutions of IgG and IgA standards were applied. Total IgG and IgA were calculated
285 from the IgG and IgA standard curves based on a five-parameter logistic standard
286 curve.

287

288 **Statistical analysis**

289 Correlation between multiple parameters was assessed using the non-parametric
290 Spearman correlation test, with a two-tailed p-value, performed using R software
291 (version 4.3.1) [27]. For each combination of two parameters, this analysis assigned a
292 correlation factor (r) from -1, a maximum negative correlation to 1, a maximum positive
293 correlation, and the p-value. For all other statistical analyses, particularly to confirm
294 significant differences during longitudinal observation, the Wilcoxon test as well as the
295 Friedman test (with a two-stage linear procedure correction) were conducted using
296 Prism (GraphPad version 9.5.1).

297


Results

298 Clinical manifestations of the conjunctival infection

299 Two doses of inoculum were initially tested in a pilot study (**Fig 1**) to determine the
300 lowest dose of Ct that gave disease in 100% of animals. From week 1 post infection,
301 both animals in both groups exhibited clinically-defined acute trachoma, characterized
302 by the presence of combined conjunctival follicles and inflammation (**Fig S3**). SPG
303 Buffer mock-inoculated controls maintained a conjunctival clinical score ≤ 2 for the
304 follow-up period (**Fig S3**). Subsequent experiments were conducted using the lower
305 dose inoculum (10^4 IFU) as it could elicit measurable disease in both animals.

306 Clinical conjunctival scoring and bacterial load quantification were performed for up to
307 11 weeks in monkeys (n = 12, MF1-12) infected with 10^4 IFU of Ct (Group 2). At
308 baseline, follicles (11/12, **Fig S4A**) and inflammation (10/12, **Fig S4B**) were almost
309 completely absent. The outliers for follicles or inflammation were mild (scoring 1 and
310 0.5, for inflammation by MF5 and MF6, respectively, and a 0.5 follicle score for MF2).
311 Follicular conjunctivitis was observed in all animals from 2 weeks post-exposure (p.e.)
312 (12/12, $p < 0.0001$), with 8/12 also demonstrating inflammation (median score = 2)
313 (**Fig S4A and B**). Clinical scores peaked at 4 weeks p.e. and then steadily decreased
314 (**Fig 3A**). Although at 6 weeks p.e., higher than the average clinical scores were
315 recorded for almost half of the group (n=5 animals) until the end of the study. At week
316 6, inflammation score decreased for 5/12 animals. However, median clinical scoring
317 decreased *post* azithromycin treatment (p.t.), as 10/12 animals demonstrated
318 decreases in inflammation (**Fig S4B**).

319

320

321 **Fig 3.** Ocular manifestations and bacterial load follow-up. The baseline was adjusted
322 to week 0. All animals were infected with *C. trachomatis* (Ct) at week 0. The green
323 dotted line represents the azithromycin treatment. (A) Ocular clinical grading scores
324 were assessed using the *Clinical Grading Scale* (Fig 2) by three masked observers.
325 The scores represent the average of both eyes and the three observers. The total
326 clinical grading score for group 2 was determined by combining the inflammation and
327 follicular scores (individual scores can be found in Fig S4). The Friedman test, with a
328 two-stage linear step-up procedure correction by Benjamini, Krieger, and Yekuteli,

329 confirmed significant changes over the course of the study. (B) Bacterial load
330 quantification is expressed in IFU equivalent copies/mL. Experiments were performed
331 for group 2 by conducting qPCR on DNA extracted from ocular fluids.

332

333

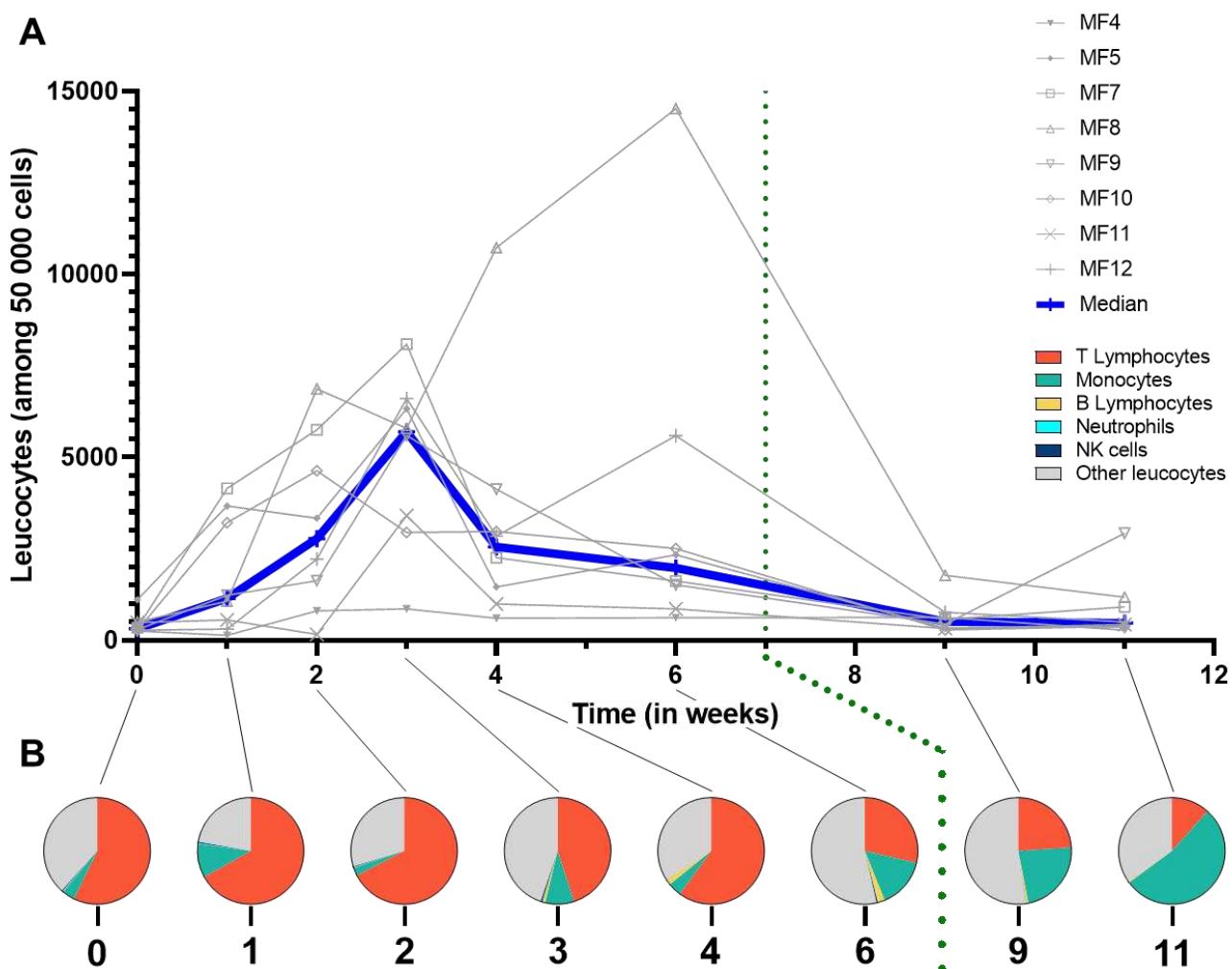
334 All other clinical parameters, including weight, temperature, and complete blood count,
335 remained stable throughout the study, except for blood neutrophils, which increased
336 following exposure to Ct (**Fig S5**).

337

338 **A robust conjunctival Ct infection**

339 Conjunctival infection was monitored by changes in bacterial load, characterized by
340 Ct-specific genomic qPCR (**Fig 3B**). All animals harbored Ct infection, which was
341 detected at the first time-point of testing (2 weeks p.e.). Peak bacterial load was
342 measured mainly 4 weeks p.e., and decreased in all animals except in one (MF8),
343 which kept rising until after p.t.. In 4/12 animals, the bacterial load dropped to
344 undetectable levels at 6 weeks p.e. In the 8/12 remaining animals with detectable load
345 at week 6, bacterial load in all eyes dropped to undetectable levels by week 9, which
346 was 2 weeks p.t. (**Fig 3B**).

347 These data demonstrate robust conjunctival Ct infection of all monkeys to produce
348 scorable clinical disease.

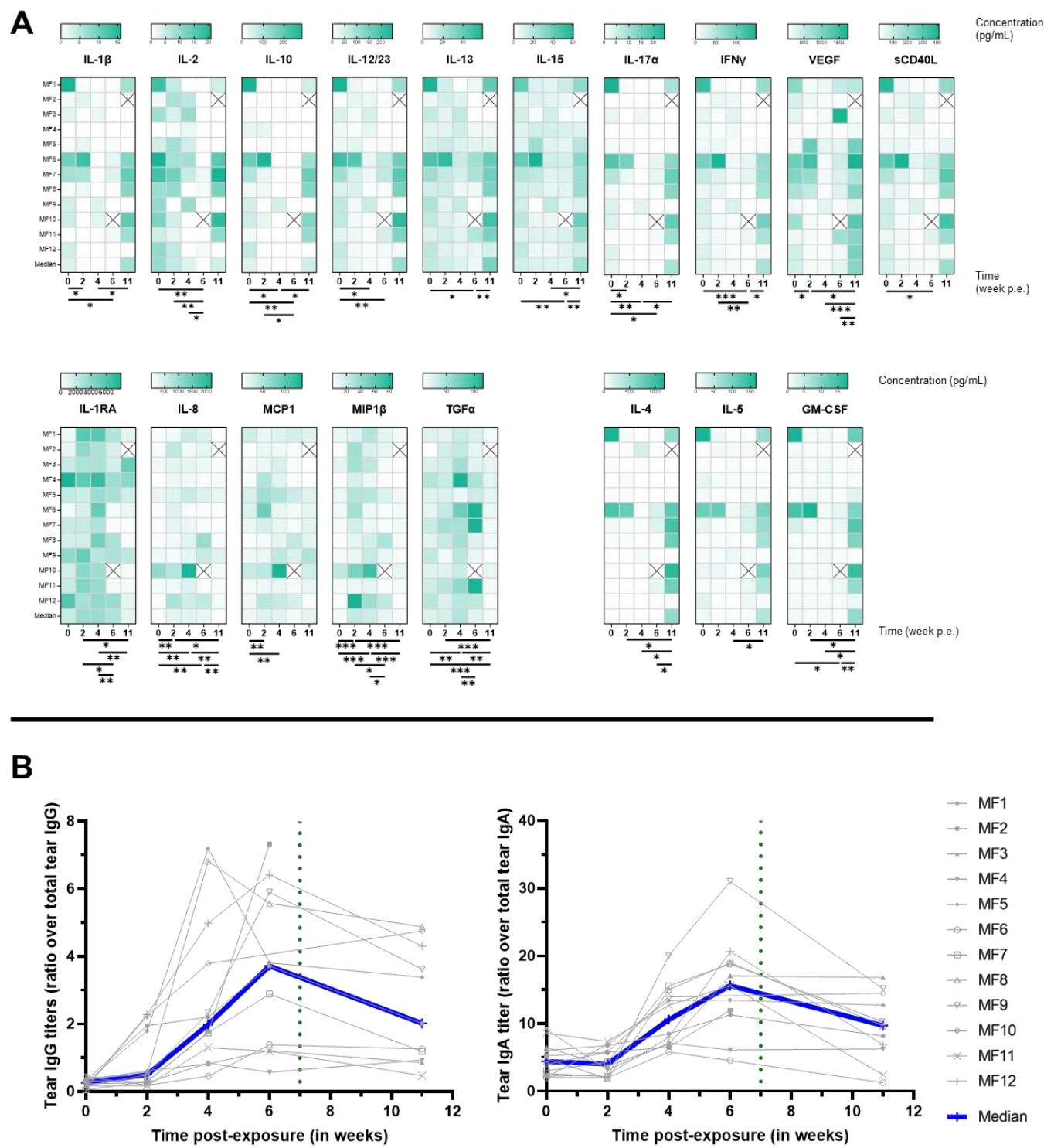

349

350 **Assessment of conjunctival immune responses**

351 **Immune cell populations at the ocular surface**

352 Flow cytometry was performed on conjunctival cells sampled during the course of
353 infection, to assess the major constituents of the local immune response. Leucocyte

354 numbers (CD45⁺ cells normalized to 50,000 observed cells) had increased at 1 week
355 p.e., and peaked mainly at 3 weeks p.e. ($p = 0.0078$ baseline vs week 3 p.e.) (**Fig 4A**).
356 The most common leucocytes detected by sampling were T cells, monocytes, and
357 “other leucocytes”, defined as CD45⁺ cells negative for all other immune markers
358 (**Fig S2**). During the first 2 weeks p.e., the proportion of T cells increased slightly from
359 baseline ($57 \pm 8\%$ to $67 \pm 9\%$, $p = 0.1210$), and remained stable (**Fig 4B**). Between
360 weeks 3 and 4, T cells proportions fluctuated and by week 6 this compartment had
361 contracted. Interestingly, between weeks 3 and 6 p.e., B cells (CD20⁺ HLADR⁺-double
362 positive CD45⁺ cells) were detected in significant proportions, with the highest
363 proportion at 6 weeks p.e. ($2.14 \pm 0.57\%$, $p = 0.0156$ week 6 vs week 1 p.e.) (**Fig 4B**).
364 The frequencies of monocytes fluctuated from week 1 to week 4 p.e. without significant
365 differences from baseline ($p = 0.8750$), then their proportion among leucocytes steadily
366 increased from 6 weeks p.e., with the highest proportion observed at 11 weeks p.e.
367 ($53 \pm 9\%$ of all immune cells, $p = 0.0078$ week 11 (final time tested) vs week 1 p.e.).
368 Negligible proportions of neutrophils (CD66⁺ cells) and natural killer (NK, CD159a-
369 NKG2A⁺ cells) cells were observed throughout the study period (less than 1% of
370 immune cells).
371 These data demonstrate local fluctuations of key immune subsets responding to acute
372 Ct infection and its treatment.



373 **Fig 4.** Multiparametric flow cytometry of superficial conjunctival cells. (A) Leucocytes
374 count normalized for 50,000 cells. (B) Specific immune population proportion
375 normalized for 100 leucocytes. The baseline was adjusted to week 0. All animals were
376 infected with *C. trachomatis* at week 0. The green dotted line represents azithromycin
377 treatment. Other leucocytes category represents non-identified immune cells. The
378 Friedman test, with a two-stage linear step-up procedure correction by Benjamini,
379 Krieger, and Yekuteli, confirmed significant changes over the course of the study.
380

381 **Dynamics of cytokine secretion in response to Ct at the conjunctiva**

382 To explore local immune responses further, ocular surface cytokines were quantified
383 using Luminex (Fig 5A). Most cytokines were consistently detected from the

384 conjunctiva of animals before infection, at baseline. Some cytokines (TNF- α , MIP-1 α ,
385 IL-6, IL-18, and G-CSF) concentration did not significantly change after exposure to Ct
386 (**Fig S6**). Cytokines VEGF, IL-12/23, IL-13, IL-17 α , IL-10, IFN- γ , IL-2, IL-15, sCD40L
387 and IL-1 β decreased between weeks 4 or 6, or during both, but rebounded at week 11
388 p.e., to higher levels than original baselines, and in more animals. Meanwhile, the
389 pattern of detection was different for TGF- α , MIP-1 β , IL-8, MCP-1, and IL-1RA, which
390 increased at some point between weeks 2 to 6 p.e. ($p=0.0239, 0.0003, 0.0068, 0.0239,$
391 and 0.0049 at peak respectively), but then subsided by week 11. Finally, a fourth
392 pattern was observed with cytokines IL-4, IL-5 and GM-CSF remaining low through the
393 course of the experimental period, then increasing drastically only at week 11. These
394 results demonstrated 4 different conjunctival cytokine response patterns to Ct, which
395 either did not change significantly, increased or decreased in correlation to bacterial
396 load, or increased following treatment when bacterial load was abolished.

397 **Fig 5.** Cytokines and Ig secretion in tears. The baseline was adjusted to week 0. (A)
398 Cytokines quantification performed by Luminex on tears. The Friedman test, with a
399 two-stage linear step-up procedure correction by Benjamini, Krieger, and Yekuteli, was
400 utilized to confirm significant changes over the course of the study. **** p<0.0001,
401 *** 0.0001<p<0.001, ** 0.001<p<0.01, * 0.01<p<0.1. (B) IgG and IgA quantification

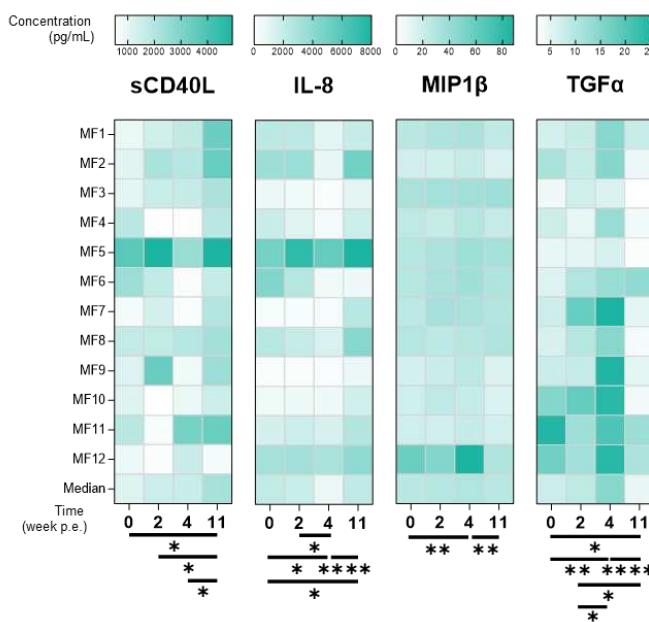
402 performed by specific ELISA assay on tears. Results are shown as a ratio of Ct-specific
403 tear Ig over total tear Ig.

404

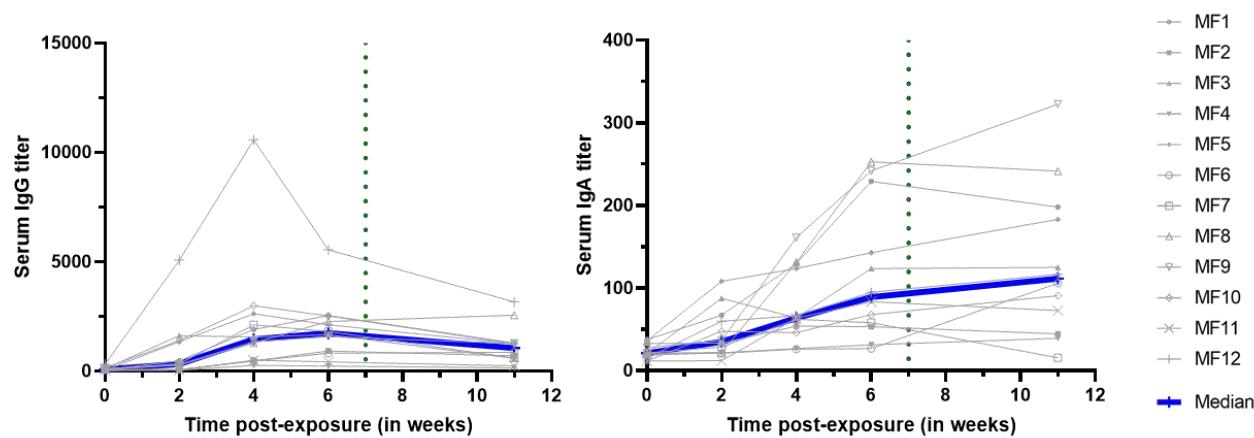
405 **Increased local IgA and IgG in response to Ct exposure at the conjunctiva**

406 IgA and IgG specific to Ct elementary bodies were quantified from tears to determine
407 the local adaptive humoral response to conjunctival Ct exposure. IgG increased
408 comparably at 2 weeks p.e. ($p=0.021$), then both IgG and IgA peaked between 4 and
409 6 weeks p.e. ($p=0.001$ and 0.002 between weeks 0 and 6 for IgG and IgA respectively),
410 and then decreased at 11 weeks p.e. ($p=0.0098$ and 0.0039 for IgG and IgA
411 respectively) (**Fig 5B**). These data demonstrated that local adaptive humoral
412 responses developed over the first 6 weeks p.e.

413


414 **Systemic response to conjunctival Ct exposure**

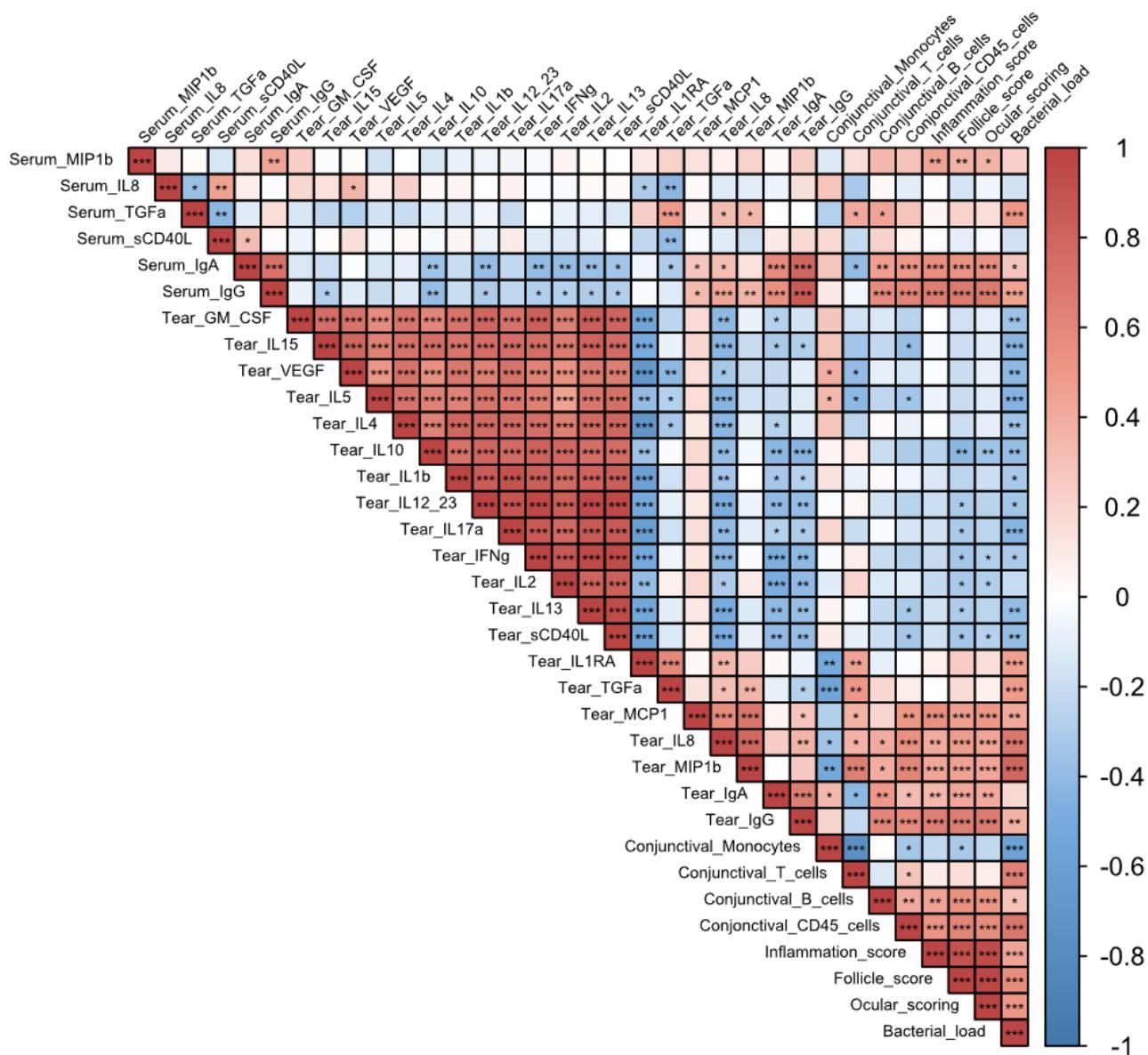
415 Serum cytokines and specific IgG and IgA were measured also from sampled serum.
416 Interestingly, the pattern of TGF- α detection in serum matched the fluctuations
417 observed in tears, increasing to peak at 4 weeks p.e., then subsiding by week 11
418 (**Fig 6A**). In contrast, sCD40L continued to increase in serum at each time-point
419 tested, to peak at week 11 p.e.. IL-8 in serum decreased by 4 weeks p.e., only to
420 rebound to higher levels than initial baseline levels at week 11 (the inverse to detection
421 pattern in tears). MIP-1 β detection pattern in serum mimicked that of tears, increasing
422 by week 4 and subsiding by week 11 (**Fig 6A**). Those results suggest that, while
423 limited, sCD40L, TGF- α , and MIP-1 β secreted by different immune cells may play a
424 role in early systemic response to Ct exposure, while IL-8 could be implicated in the
425 later phase of infection


426 Additionally, circulating Ct-specific IgA and IgG quantification was performed on serum
427 samples (**Fig 6B**). Increases in IgG were detected in 7/12 animals p.e., peaking
428 between weeks 4 and 6 and declining subtly by week 11. Ct-specific IgA increased in
429 10/12 animals from 2 weeks p.e., but unlike IgG, continued to rise between week 6 to
430 week 11. These results demonstrate that Ct exposure at the conjunctiva elicits
431 systemic circulation of Ct-specific IgA and IgG, which remain elevated at the latest
432 time-point tested.

433

A

B


434 **Fig 6.** Cytokines and Ig secretion in serum. The baseline was adjusted to week 0. (A)
435 Cytokines quantification performed by Luminex on serum. The Friedman test, with a
436 two-stage linear step-up procedure correction by Benjamini, Krieger, and Yekuteli was
437 utilized to confirm significant changes over the course of the study. **** p<0.0001,
438 *** 0.0001<p<0.001, ** 0.001<p<0.01, * 0.01<p<0.1. (B) IgG and IgA quantification
439 performed by specific ELISA assay on serum.

440

441

442 **Biomarker signature associated with clinical scoring and bacterial load**

443 All of the parameters analyzed above, at all time-points, were assessed for correlations
444 using the Spearman correlation test (**Fig 7**). This combined analysis uncovered 2
445 distinct signatures: a positive or a negative correlation with bacterial load.
446 Increases in clinical signs (inflammation, follicles and total clinical signs) correlated with
447 each other, as well as with bacterial load ($p<0.0001$, for each condition vs bacterial
448 load). Total conjunctival leucocyte increases ($CD45^+$ cells immune infiltrate) also
449 correlated with increases in clinical signs and bacterial loads ($p<0.0001$, vs both clinical
450 signs and bacterial load). B cell increases correlated with bacterial load changes
451 ($p=0.048$), and both tear and serum IgG increases ($p=0.004$ and $p=0.0003$, for tear
452 and serum respectively). Serum IgA and IgG increases also correlated with increased
453 bacterial loads, while in the tears, only IgG increases were significantly correlated to
454 bacterial load ($p=0.034$), tear IgA positive correlation was not significant ($p=0.1685$).
455 At the cytokine level, tear MIP1 β , MCP-1, IL-8, TGF α , and IL-1RA positively correlated
456 with bacterial load ($p<0.0001$, $p=0.0011$, $p<0.0001$, $p=0.0001$, and $p=0.0002$,
457 respectively). In contrast, tear cytokines GM-CSF, to sCD40L (GM-CSF, IL-15, VEGF,
458 IL-5, IL-4, IL-10, IL-1 β , IL-12/23, IL-17 α , IFN- γ , IL-13, and sCD40L) all correlated with
459 each other, but were all negatively correlated with bacterial load and clinical signs.
460 Altogether, this combined analysis identified a biomarker signature that was indicative
461 of Ct bacterial load and Ct-associated clinical signs, while a separate signature was
462 associated with reductions in bacterial loads and clinical signs.

463

464 **Fig 7.** Correlation matrix of all the different parameters measured in group 2 for all
 465 time-points. Correlation was done using a non-parametric Spearman correlation test
 466 (performed with R software) from -1, maximum negative correlation, to 1, maximum
 467 positive correlation. *** p<0.001, ** 0.001<p<0.01, * 0.01<p<0.05.

468

Discussion

469

A faithful NHP model of trachoma mimicking clinical features of human disease

470

Similar to previously reported trachoma NHP models [3,12,13], our model faithfully reproduces the clinical features of acute trachoma observed in human patients in endemic populations. In humans, infection of the conjunctiva by Ct is followed by follicular conjunctivitis and conjunctival inflammation, which develop 1-2 weeks p.e. [5]. In our study, Ct inoculation elicited clinical signs in all animals within the same time frame (**Fig 3B**), and their increasing severity was accompanied by increases in conjunctival bacterial loads [4]. In humans, Chlamydial infections are typically cleared within 3 to 8 weeks, but clinical signs of inflammation can persist for 6 to 18 weeks [28], which aligns with experimental findings in our model, since persistence of follicles was observed 11 weeks after bacterial exposure, i.e. 2 to 5 weeks after bacterial clearance.

481

Given the ongoing burden of trachoma as a public health issue [1,2], it is crucial to have an accurate model for studying the disease [9,11]. Previous studies have used cynomolgus monkeys to reproduce trachoma in NHP. Taylor *et al.* successfully induced conjunctival fibrosis, replicating the full spectrum of the disease [3]. The monkeys were infected on a weekly basis for 52 weeks, highlighting the importance of chronic exposure to Ct for advanced stage disease. Kari *et al.* performed dual Ct exposure, also in cynomolgus monkeys, to test a candidate trachoma vaccine. The second exposure was administered three months after spontaneous clearance of the first inoculation. However, late fibrotic stages of disease were not observed [29]. In our model, a single Ct exposure was employed to characterize clinical and immune makers of acute infection, with the ultimate goal of assessing the efficacy of new vaccine candidates in the future. The novelty of our model is in the development of an

490

491

492

493 optimized clinical grading score (**Fig 2**) [24,30,31], allowing a precise assessment of
494 the kinetics of the clinical disease (**Fig 2**), combined with multimodal exploration of
495 local and systemic immune responses. Optimization of the dose, to observed clinical
496 signs, allowed for precise assessment of clinical disease development kinetics. Clinical
497 signs developed similarly to those seen in humans. Incorporating non-invasive
498 sampling techniques, like conjunctival imprints, proved to be highly valuable in
499 obtaining consistent measurements and establishing novel tools to study kinetics of
500 local immune populations. Furthermore, the analysis of tears encompassed a deeper
501 understanding of the local inflammatory immune landscape in our model. Indeed, our
502 longitudinal *in vivo* data showed similar results to one-time sampling from different
503 trachoma stages in endemic area human cohorts, validating this experimental
504 procedure to faithfully mimic clinical features of human disease [32].

505
506 **Two phase immune response: before and after treatment**
507 **Infectious phase response**

508 Immune infiltrates peaked from weeks 2 to 4 p.e., with a major proportion consisting of
509 T cells. The bacterial load-associated immune response observed in the first 7 weeks
510 was also associated with conjunctival T lymphocytes ($r = 0.63$, $p < 0.0001$) and T cell
511 survival factors (IL-2 and IL-15) were detected frequently during this period. In humans,
512 T cells seem to play a major role in disease pathogenesis but also are associated with
513 clearance of Ct infection, driven by CD4 T cell-derived IFN- γ [5]. Interestingly in our
514 model, conjunctival T cell numbers did not correlate with T-cell associated cytokines
515 and instead IL-10, IL-2, IL-4, IL-5, IL-17 α , and IFN- γ all peaked at week 11 p.e.. The
516 early conjunctival T cell spike was instead associated with cytokines excreted by
517 epithelial cells (IL-1RA, IL-8) and macrophages (MCP-1, MIP1 β). In conjunctival swabs

518 from patients, Th1 pro-inflammatory cytokines (IL-1 β and TNF α) reveal a strong
519 correlation between acute trachoma and with Ct bacterial load [33]. In contrast, Th1
520 cytokines evaluated in our panel (IL-1 β , TNF- α , and GM-CSF) did not significantly
521 increased p.e. [32].

522 Additional cytokines that increase in trachoma patients include IL-10 (associated with
523 anti-inflammatory response), CXCL8 (IL-8, involved in recruiting granulocytes and
524 facilitating phagocytosis), and CCL2 (MCP-1, involved in attracting monocytes,
525 lymphocytes, and basophils, as well as promoting macrophage differentiation) [33].
526 These findings align with our results where IL-8 and MCP-1 significantly increased after
527 Ct exposure.

528 In animal models, neutrophils have also been shown to have a central role in acute
529 trachoma response. Indeed, Lacy *et al.* showed their involvement in T cell recruitment
530 (both CD4 $^+$ and CD8 $^+$) by using neutrophil depletion in a guinea pig model of
531 *Chlamydia cavia* infection. The recruitment of CD4 $^+$ and CD8 $^+$ T cells by the influx of
532 neutrophils was a beneficial immune phenomenon that helped to clear the infection
533 [17]. But while this T cell recruitment reduces the bacterial burden, it simultaneously
534 may have an exacerbating effect on ocular symptoms (follicles and inflammation), a
535 tendency also found in a murine model of Ct vaginal infection with concomitant
536 neutrophil depletion [19]. Finally, Lacy *et al.* showed a link between neutrophil
537 depletion and increased IgA titers. This observation could mean that in the absence of
538 neutrophils, while clinical signs are reduced, local IgA increases can occur due to a
539 local increase in B lymphocytes [17]. Similarly, we observed a tendency toward
540 decreased ocular signs around 6 weeks p.e. corresponding to a peak in specific anti-
541 Ct IgA in tears, concomitant with a higher proportion of B cells. Transcriptome studies
542 in humans with active trachoma inferred a prominent role of the innate immune

543 response, notably neutrophils. Natividad *et al.* identified immune infiltrates with
544 immune populations such as T cells, B cells, and a predominance of innate immunity
545 (both NK cells and neutrophils) [34].

546 In our study, while we did not detect significant neutrophil infiltrates (due to technical
547 limitations), neutrophils in blood increased at the peak of infection (between 2 and
548 4 weeks p.e.). However, we found a significant T and B cell conjunctival infiltrate
549 (**Fig 4**), that corresponded to follicular lesions, as detected in both humans [20,34] and
550 other animal models [12,17]. In our results, a positive correlation was observed
551 between clinical signs and B lymphocytes infiltrate (r coefficient = 0.52, p = 0.00032).
552 A 1977 study on immunoglobulins in trachoma patients' tears observed a lower
553 quantity of IgA in trachoma cases than in healthy patients (without significant
554 differences between trachoma phases) [35]. However, Taylor *et al.*, in a Cynomolgus
555 model of trachoma, although using another Ct strain (E/Bour), found a delayed
556 increase in tear IgA after conjunctival Ct exposure, and persistence of systemic IgG
557 [23], consistent with our findings.

558 **Convalescent phase response**

559 The convalescent phase defined as after treatment from 7 weeks p.e., was
560 characterized by an absence of Ct due to either spontaneous clearance (for 4/12
561 animals) or the effect of azithromycin treatment. The clearance of bacteria coincided
562 with a reduction in conjunctival inflammation, although the presence of follicles
563 persisted, a dissociated pattern that has also been observed in humans [36]. Studies
564 conducted on human cohorts at different stages of trachoma revealed an association
565 between chronic trachoma and the local presence (in mucosal sponges) of IL-1RA (an
566 antagonist of the pro-inflammatory IL-1), as well as IL-4 and IL-13 (associated with Th2
567 response) [33].

568 The reduced local leucocytes population at 9 and 11 weeks p.e. could be a result of
569 the higher quantity of IL-1RA at earlier time-points, that may have had an anti-
570 inflammatory effect. In those later time-points, while we observed a reduction in local
571 leucocyte populations, we also saw a higher proportion of monocytes, the cell type
572 mainly responsible for IL-1RA secretion.

573 In another study involving 470 Tanzanian children, analysis of ocular fluid samples
574 using transcriptome revealed a correlation between acute trachoma and elevated
575 expression of IL-17A. The authors concluded that IL-17A and Th17 responses play a
576 central pro-inflammatory role in trachoma [20]. A transcriptomic study on an Ethiopian
577 cohort of trachomatous patients also suggested a central role of other pro-inflammatory
578 cytokines (including IL-1B, CXCL5 or S100A7) in chronic trachoma [37]. In the present
579 study, the increase in IL-17A was delayed, (week 11 p.e.), along with elevated levels
580 of other pro-inflammatory (VEGF, IL-1B, IL-15, and GM-CSF). Some anti-inflammatory
581 cytokines (IL-10, IL-4, and IL-5) were also elevated but with a delay, suggesting that a
582 balance between both anti- and pro-inflammatory cytokines is needed to achieve
583 disease resolution.

584 A longitudinal study of a Tanzanian cohort of children identified an association between
585 progressive trachomatous scarring and elevated levels of IL-23, inferred the
586 importance of a Th17 response (through the analysis of IL-23A and PDGFB) [38]. Our
587 observations of the late increase in both IL-12/23 and IL-17A align with those findings.
588 From week 3 p.e., and most drastically weeks 4 and 6, a sharp decrease in total
589 leucocyte counts was observed. During this contraction, the proportion of monocytes
590 increased significantly then subsided p.t.. These observations suggest that local
591 monocytes are characteristic of the continuance of clinical signs of inflammation once
592 bacterial infection resolves. Diminution of the proportion of T cells in the model infection

593 is also consistent with observations in the active stages of trachoma in humans. It has
594 been shown that T cells, particularly CD4⁺ T cells, and the Th2 response correlate with
595 scarring trachoma both locally [33,39] and systemically [40].

596 **Limitations**

597 The use of conjunctival imprints offers several advantages, such as being non-invasive
598 and allowing for repeated sampling over a short period. However, this technique for
599 harvesting cells can affect their viability. Certain sensitive cells, like neutrophils, may
600 lose their viability during the elution step of the protocol [41]. Therefore, the lack of
601 observed neutrophils by conjunctival imprint cytometry is likely attributed to the
602 technical process rather than their absence. Additionally, imprints will likely capture
603 only the cells present on the surface of the conjunctiva, or those exposed to this
604 sampling site in the context of a lesion; those in dermal conjunctival layers are likely
605 not picked up by this method. Sampling of the conjunctival surface may induce a bias
606 in the type of cells sampled by imprints (bias that would be in favor of immune
607 component of follicles and desquamating cells).

608 The non-identification of a significant proportion of leucocytes (labeled as “other
609 leucocytes”) could be due to missing markers in our panel (such as markers for
610 dendritic cells or granulocytes populations), technical difficulties (dead cells, non-
611 leucocytes expressing CD45 antigen), or could imply non-specific binding of antibodies
612 [42].

613 Our current model has laid the groundwork for the characterization of the local immune
614 response, however in order to understand the specific adaptive immune response to
615 ocular infection a deeper analysis of specific T cell response is required.

616 To summarize, our NHP model of acute trachoma adequately reproduces hallmarks of
617 acute human disease. Most of the changes in immune effectors were observed at the

618 local level, with an influx of T lymphocytes at the peak of infection and the persistence
619 of monocytes with clinical signs in the absence of infection. This acute model could be
620 further developed to investigate chronic trachoma model by repeated Ct inoculations
621 to induce conjunctival fibrosis, for pre-clinical assessment of therapeutic strategies and
622 characterization of immune responses. This model infection may also be of importance
623 in studies of treatment immune-modulation and in the identification of non-invasive
624 correlates of protection for use in human vaccine trials.

Acknowledgment

This study was supported by the European Commission through the TracVac consortium contract (Grant agreement ID: 733373) and The Innovation Fund Denmark (069-2011-1). The Infectious Disease Models and Innovative Therapies research infrastructure (IDMIT) is supported by the Domaine d’Intérêt Majeur (DIM) “One Health” program, and the “Programme Investissements d’Avenir” (PIA), managed by the ANR under references ANR-11-INBS-0008 and ANR-10-EQPX-02-01. We thank the Thea foundation and Didier Renault for their financial support. We also thank Quentin Sconosciuti, Victor Magneron, Maxime Potier, and Jean-Marie Robert for the NHP experiments ; Laetitia Bossevot, Laura Junges, Laurine Moenne-Loccoz and Loïc Pintore for the RT-qPCR assays ; Mario Gomez-Pacheco and Jérôme van Wassenhove for the flow cytometry helps ; Yann Gorin for the logistics and safety management ; Isabelle Mangeot and Camille Morice for help with resources management ; Brice Targat and Karl-Stefan Baczwoski who contributed to data management and Oscar Haigh for help during manuscript proofreading.

Authors contributions

642

643

References

1. World Health Organization, others. WHO Alliance for the Global Elimination of Trachoma by 2020: progress report on elimination of trachoma, 2018. *Weekly Epidemiological Record*. 2019;94: 317–328.
2. World Health Organization. Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021–2030. 2020.
3. Taylor HR, Johnson SL, Schachter J, Caldwell HD, Prendergast RA. Pathogenesis of trachoma: the stimulus for inflammation. *J Immunol*. 1987;138: 3023–3027.
4. Taylor HR, Burton MJ, Haddad D, West S, Wright H. Trachoma. *Lancet*. 2014;384: 2142–2152. doi:10.1016/S0140-6736(13)62182-0
5. Solomon AW, Burton MJ, Gower EW, Harding-Esch EM, Oldenburg CE, Taylor HR, et al. Trachoma. *Nat Rev Dis Primers*. 2022;8: 32. doi:10.1038/s41572-022-00359-5
6. Xiong T, Yue Y, Li W-X, Choonara I, Qazi S, Chen H-J, et al. Effectiveness of azithromycin mass drug administration on trachoma: a systematic review. *Chinese Medical Journal*. 2021;134: 2944–2953. doi:10.1097/CM9.0000000000001717
7. Mack I, Sharland M, Berkley JA, Klein N, Malhotra-Kumar S, Bielicki J. Antimicrobial Resistance Following Azithromycin Mass Drug Administration: Potential Surveillance Strategies to Assess Public Health Impact. *Clin Infect Dis*. 2020;70: 1501–1508. doi:10.1093/cid/ciz893
8. Pickering H, Hart JD, Burr S, Stabler R, Maleta K, Kalua K, et al. Impact of azithromycin mass drug administration on the antibiotic-resistant gut microbiome in children: a randomized, controlled trial. *Gut Pathog*. 2022;14: 5. doi:10.1186/s13099-021-00478-6
9. Renneker KK, Emerson PM, Hooper PJ, Ngondi JM. Forecasting the elimination of active trachoma: An empirical model. *PLoS Negl Trop Dis*. 2022;16: e0010563. doi:10.1371/journal.pntd.0010563
10. Nash SD, Astale T, Nute AW, Bethea D, Chernet A, Sata E, et al. Population-Based Prevalence of Chlamydia trachomatis Infection and Antibodies in Four Districts with Varying Levels of Trachoma Endemicity in Amhara, Ethiopia. *Am J Trop Med Hyg*. 2021;104: 207–215. doi:10.4269/ajtmh.20-0777
11. Adamu MD, Mohammed Jabo A, Orji P, Zhang Y, Isiyaku S, Olobio N, et al. Baseline Prevalence of Trachoma in 21 Local Government Areas of Adamawa State, North East Nigeria. *Ophthalmic Epidemiol*. 2021; 1–9. doi:10.1080/09286586.2021.2013899

681 12. Olivares-Zavaleta N, Whitmire WM, Kari L, Sturdevant GL, Caldwell HD. CD8+ T
682 cells define an unexpected role in live-attenuated vaccine protective immunity
683 against *Chlamydia trachomatis* infection in macaques. *J Immunol.* 2014;192:
684 4648–4654. doi:10.4049/jimmunol.1400120

685 13. Kari L, Whitmire WM, Olivares-Zavaleta N, Goheen MM, Taylor LD, Carlson JH,
686 et al. A live-attenuated chlamydial vaccine protects against trachoma in
687 nonhuman primates. *J Exp Med.* 2011;208: 2217–2223.
688 doi:10.1084/jem.20111266

689 14. Poston TB, Gottlieb SL, Darville T. Status of vaccine research and development
690 of vaccines for *Chlamydia trachomatis* infection. *Vaccine.* 2019;37: 7289–7294.
691 doi:10.1016/j.vaccine.2017.01.023

692 15. Woolridge RL, Grayston JT, Chang IH, Yang CY, Cheng KH. Long-term follow-
693 up of the initial (1959–1960) trachoma vaccine field trial on Taiwan. *Am J*
694 *Ophthalmol.* 1967;63: Suppl:1650-1655. doi:10.1016/0002-9394(67)94159-1

695 16. Hu VH, Holland MJ, Burton MJ. Trachoma: Protective and Pathogenic Ocular
696 Immune Responses to *Chlamydia trachomatis*. *PLoS Negl Trop Dis.* 2013;7:
697 e2020. doi:10.1371/journal.pntd.0002020

698 17. Lacy HM, Bowlin AK, Hennings L, Scurlock AM, Nagarajan UM, Rank RG.
699 Essential role for neutrophils in pathogenesis and adaptive immunity in
700 *Chlamydia caviae* ocular infections. *Infect Immun.* 2011;79: 1889–1897.
701 doi:10.1128/IAI.01257-10

702 18. Stephens RS. The cellular paradigm of chlamydial pathogenesis. *Trends in*
703 *Microbiology.* 2003;11: 44–51. doi:10.1016/S0966-842X(02)00011-2

704 19. Frazer LC, O'Connell CM, Andrews CW, Zurenski MA, Darville T. Enhanced
705 neutrophil longevity and recruitment contribute to the severity of oviduct
706 pathology during *Chlamydia muridarum* infection. *Infect Immun.* 2011;79: 4029–
707 4041. doi:10.1128/IAI.05535-11

708 20. Burton MJ, Ramadhani A, Weiss HA, Hu V, Massae P, Burr SE, et al. Active
709 trachoma is associated with increased conjunctival expression of IL17A and
710 profibrotic cytokines. *Infect Immun.* 2011;79: 4977–4983. doi:10.1128/IAI.05718-
711 11

712 21. Nichols BA. *Conjunctiva. Microsc Res Tech.* 1996;33: 296–319.
713 doi:10.1002/(SICI)1097-0029(19960301)33:4<296::AID-JEMT2>3.0.CO;2-O

714 22. Estes JD, Wong SW, Brenchley JM. Nonhuman primate models of human viral
715 infections. *Nat Rev Immunol.* 2018;18: 390–404. doi:10.1038/s41577-018-0005-
716 7

717 23. Taylor HR, Johnson SL, Prendergast RA, Schachter J, Dawson CR, Silverstein
718 AM. An animal model of trachoma II. The importance of repeated reinfection.
719 *Invest Ophthalmol Vis Sci.* 1982;23: 507–515.

720 24. Thylefors B, Dawson CR, Jones BR, West SK, Taylor HR. A simple system for
721 the assessment of trachoma and its complications. *Bull World Health Organ.*
722 1987;65: 477–483.

723 25. Roosendaal R, Walboomers JM, Veltman OR, Melgers I, Burger C, Bleker OP,
724 et al. Comparison of different primer sets for detection of *Chlamydia trachomatis*
725 by the polymerase chain reaction. *J Med Microbiol.* 1993;38: 426–433.
726 doi:10.1099/00222615-38-6-426

727 26. Brignole-Baudouin F, Ott A-C, Warnet J-M, Baudouin C. Flow cytometry in
728 conjunctival impression cytology: a new tool for exploring ocular surface
729 pathologies. *Exp Eye Res.* 2004;78: 473–481. doi:10.1016/j.exer.2003.08.005

730 27. R Core Team. R: A Language and Environment for Statistical Computing.
731 Vienna, Austria: R Foundation for Statistical Computing; 2023. Available:
732 <https://www.R-project.org>

733 28. Grassly NC, Ward ME, Ferris S, Mabey DC, Bailey RL. The natural history of
734 trachoma infection and disease in a Gambian cohort with frequent follow-up.
735 *PLoS Negl Trop Dis.* 2008;2: e341. doi:10.1371/journal.pntd.0000341

736 29. Kari L, Bakios LE, Goheen MM, Bess LN, Watkins HS, Southern TR, et al.
737 Antibody signature of spontaneous clearance of *Chlamydia trachomatis* ocular
738 infection and partial resistance against re-challenge in a nonhuman primate
739 trachoma model. *PLoS Negl Trop Dis.* 2013;7: e2248.
740 doi:10.1371/journal.pntd.0002248

741 30. Ong HS, Dart JK, Mehta JS. A Review of Clinical Disease Scoring Systems for
742 Cicatricial Diseases of the Conjunctiva. *Front Med (Lausanne).* 2021;8: 664572.
743 doi:10.3389/fmed.2021.664572

744 31. Solomon AW, Kello AB, Bangert M, West SK, Taylor HR, Tekeraoi R, et al. The
745 simplified trachoma grading system, amended. *Bull World Health Organ.*
746 2020;98: 698–705. doi:10.2471/BLT.19.248708

747 32. Barton A, Faal N, Ramadhani A, Derrick T, Mafuru E, Mtuy T, et al. Longitudinal
748 changes in tear cytokines and antimicrobial proteins in trachomatous disease.
749 *PLoS Negl Trop Dis.* 2023;17: e0011689. doi:10.1371/journal.pntd.0011689

750 33. Skwor TA, Atik B, Kandel RP, Adhikari HK, Sharma B, Dean D. Role of secreted
751 conjunctival mucosal cytokine and chemokine proteins in different stages of
752 trachomatous disease. *PLoS Negl Trop Dis.* 2008;2: e264.
753 doi:10.1371/journal.pntd.0000264

754 34. Natividad A, Freeman TC, Jeffries D, Burton MJ, Mabey DCW, Bailey RL, et al.
755 Human conjunctival transcriptome analysis reveals the prominence of innate
756 defense in *Chlamydia trachomatis* infection. *Infect Immun.* 2010;78: 4895–4911.
757 doi:10.1128/IAI.00844-10

758 35. Sen DK, Sarin GS, Saha K. Immunoglobulins in tear in trachoma patients. *Br J*
759 *Ophthalmol.* 1977;61: 218–220. doi:10.1136/bjo.61.3.218

760 36. Butcher R, Sokana O, Jack K, Sui L, Russell C, Last A, et al. Clinical signs of
761 trachoma are prevalent among Solomon Islanders who have no persistent
762 markers of prior infection with Chlamydia trachomatis. *Wellcome Open Res.*
763 2018;3: 14. doi:10.12688/wellcomeopenres.13423.2

764 37. Burton MJ, Rajak SN, Bauer J, Weiss HA, Tolbert SB, Shoo A, et al.
765 Conjunctival transcriptome in scarring trachoma. *Infect Immun.* 2011;79: 499–
766 511. doi:10.1128/IAI.00888-10

767 38. Derrick T, Ramadhani AM, Macleod D, Massae P, Mafuru E, Aiweda M, et al.
768 Immunopathogenesis of Progressive Scarring Trachoma: Results of a 4-Year
769 Longitudinal Study in Tanzanian Children. *Infect Immun.* 2020;88: e00629-19.
770 doi:10.1128/IAI.00629-19

771 39. Reacher MH, Pe'er J, Rapoza PA, Whittum-Hudson JA, Taylor HR. T cells and
772 trachoma. Their role in cicatricial disease. *Ophthalmology.* 1991;98: 334–341.
773 doi:10.1016/s0161-6420(91)32290-5

774 40. Holland MJ, Bailey RL, Conway DJ, Culley F, Miranpuri G, Byrne GI, et al. T
775 helper type-1 (Th1)/Th2 profiles of peripheral blood mononuclear cells (PBMC);
776 responses to antigens of Chlamydia trachomatis in subjects with severe
777 trachomatous scarring. *Clin Exp Immunol.* 1996;105: 429–435.
778 doi:10.1046/j.1365-2249.1996.d01-792.x

779 41. Tak T, Tesselaar K, Pillay J, Borghans JAM, Koenderman L. What's your age
780 again? Determination of human neutrophil half-lives revisited. *Journal of*
781 *Leukocyte Biology.* 2013;94: 595–601. doi:10.1189/jlb.1112571

782 42. Andersen MN, Al-Karradi SNH, Kragstrup TW, Hokland M. Elimination of
783 erroneous results in flow cytometry caused by antibody binding to Fc receptors
784 on human monocytes and macrophages. *Cytometry A.* 2016;89: 1001–1009.
785 doi:10.1002/cyto.a.22995

786

787

788

Supplementary data

789

Fig S1 – Follicles counting area in the superior tarsal conjunctiva

790

Fig S2 – Gating strategy of pseudo-color plots windows performed using FlowJo software and applied to cells eluted from conjunctival imprints

792

Fig S3 – Total Conjunctival clinical scores of Group 1

793

Fig S4 – Conjunctival clinical scoring results for follicle score (A) and inflammation (B) in Group 2

795

Fig S5 – Blood neutrophil count in group 2

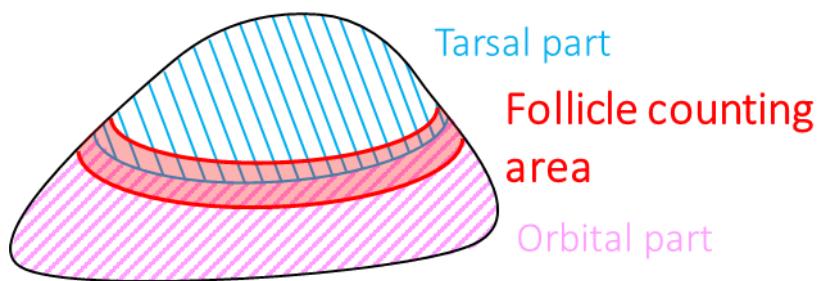
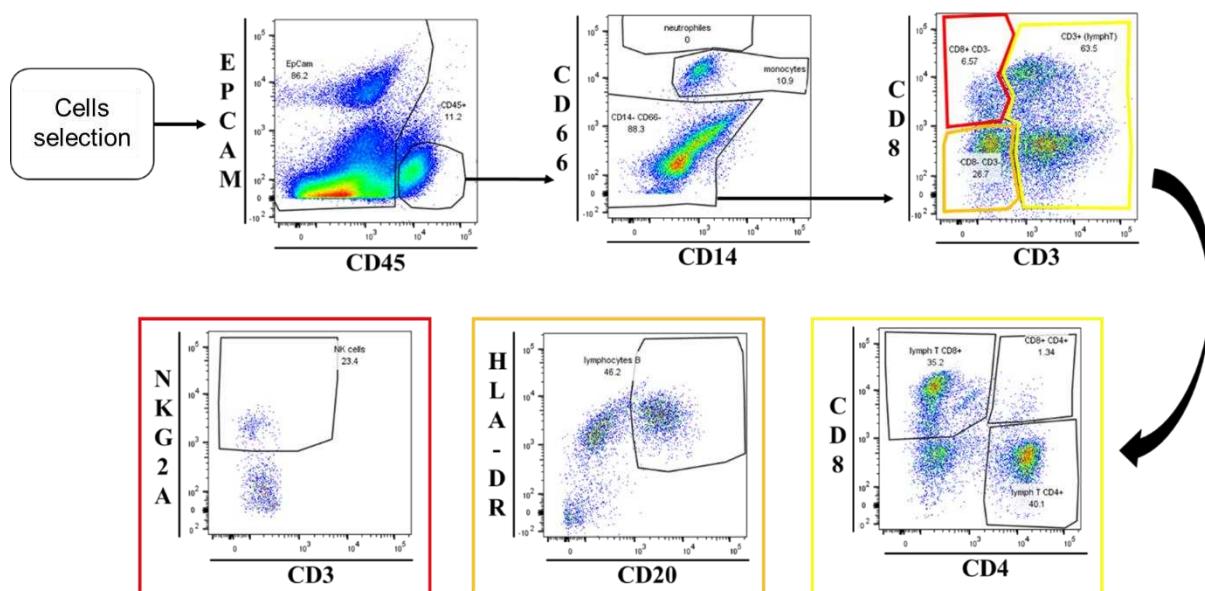

796

Fig S6 – Cytokines quantification without statistically significant changes

797


798

799

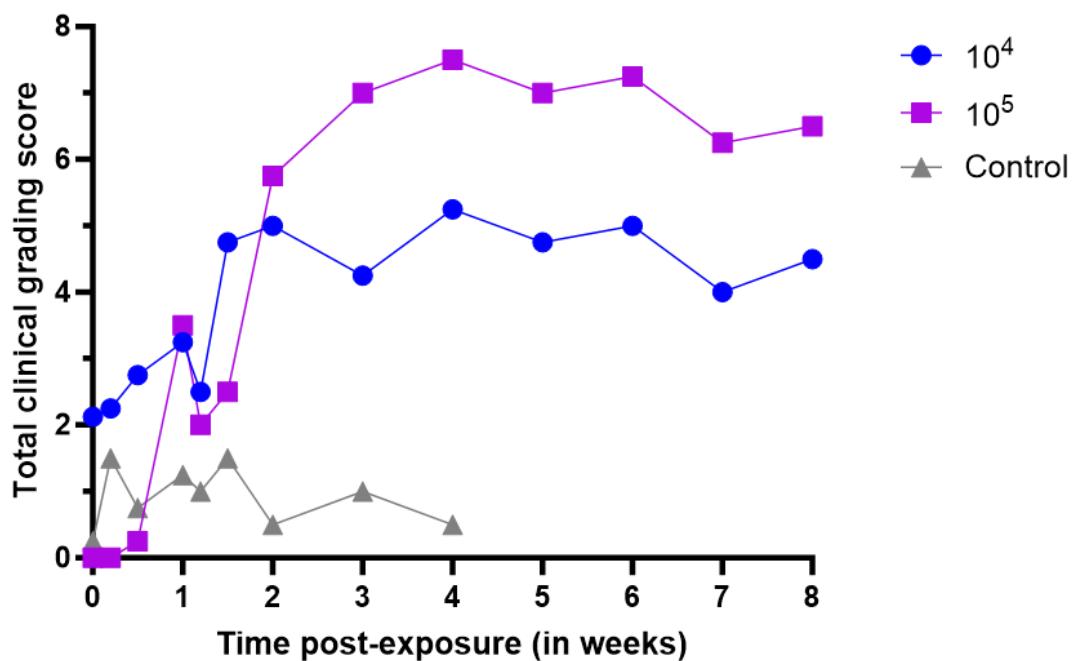
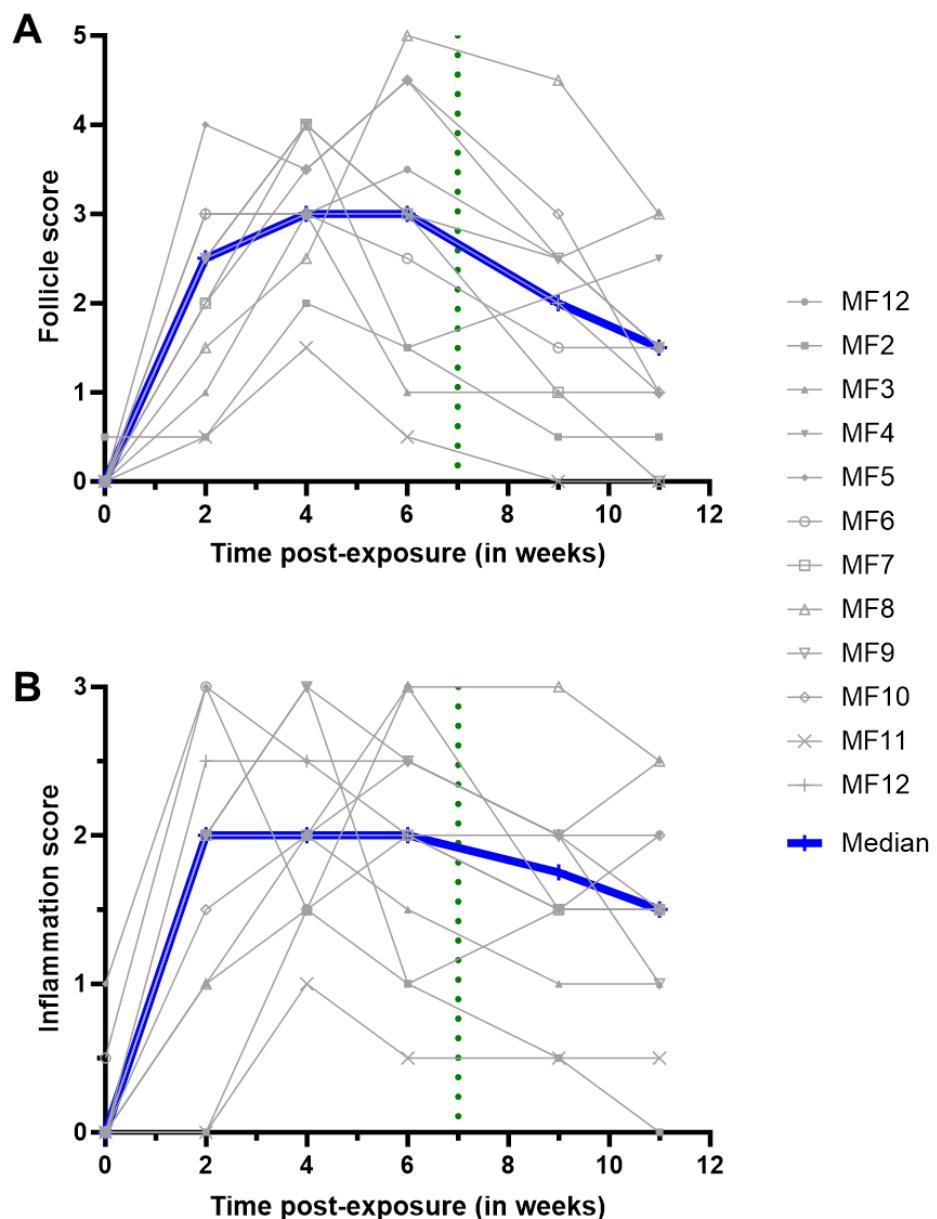

800

Fig S1 – Follicles counting area in the superior tarsal conjunctiva. Follicle counting area is shown in red at the interface of the tarsal part (blue) and the orbital part (pink) of the palpebral conjunctiva.

804


805 **Fig S2.** Gating strategy of pseudo-color plots windows performed using FlowJo
806 software and applied to cells eluted from conjunctival imprints. This strategy was used
807 to assess the following ocular surface cell immune populations: leukocytes (CD45⁺),
808 neutrophils (CD66⁺), monocytes (CD14⁺), T cells (CD3⁺), CD4 T cells (CD3⁺, then
809 CD4⁺/CD8⁻), CD8 T cells (CD3⁺, then CD4⁻/CD8⁺), natural killer cells (CD3⁻/CD8⁺, then
810 NKG2A⁺), B cells (CD20⁺ and HLA-DR⁺). This strategy is applied to conjunctival
811 imprints' cells' flow cytometry data.

812

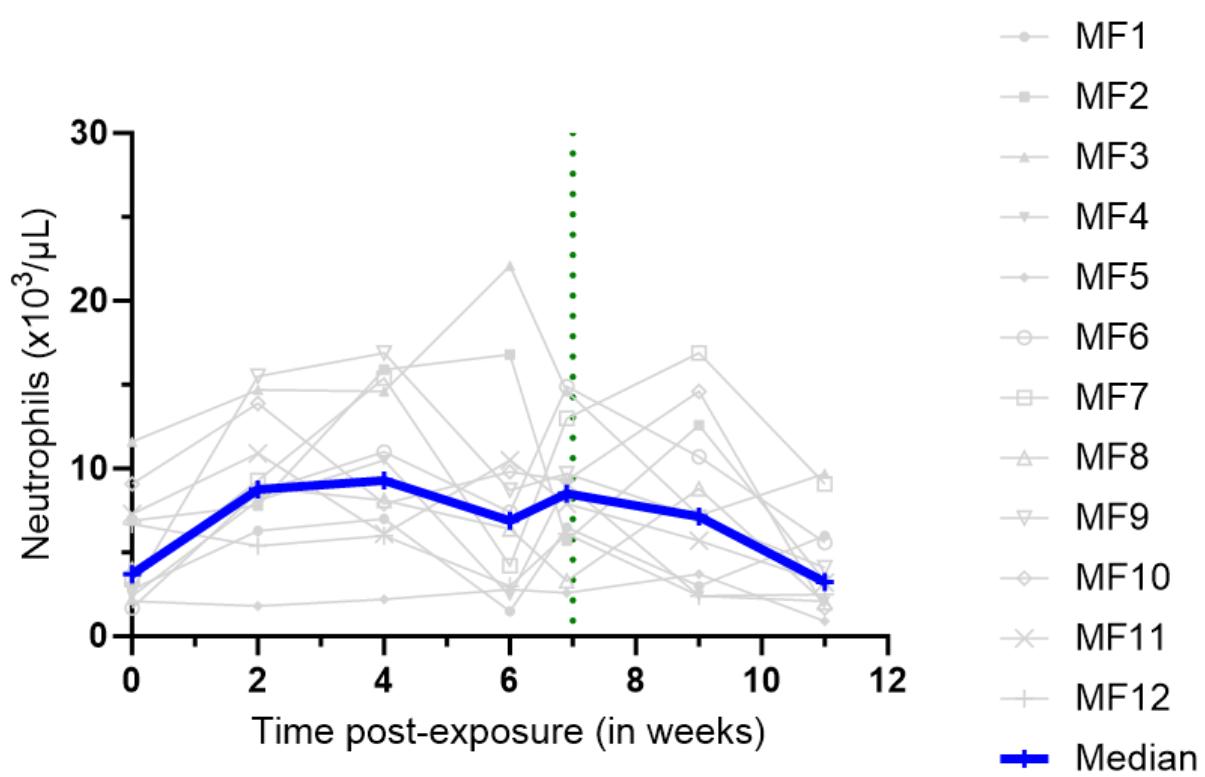
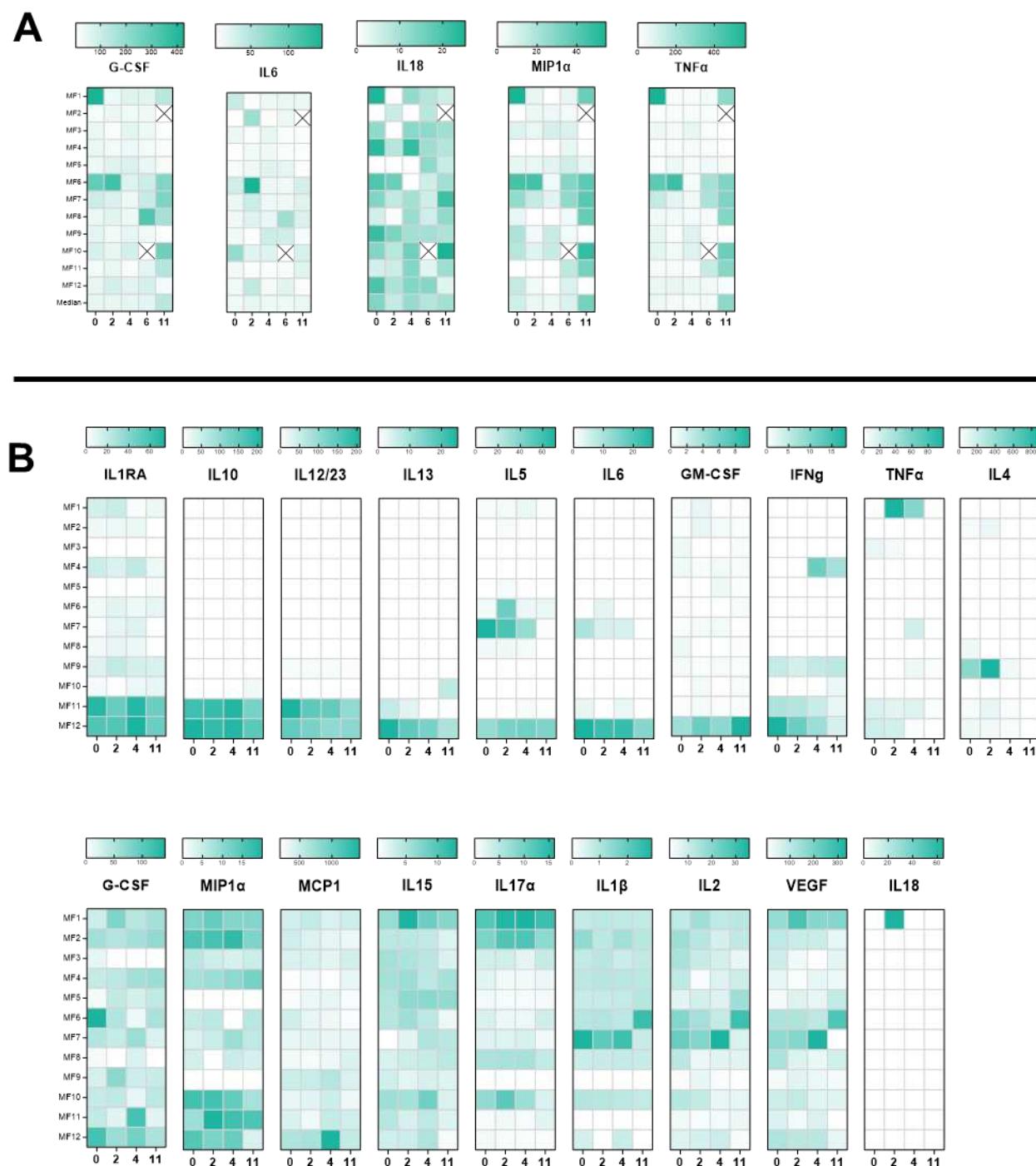

813

Fig S3. Total Conjunctival clinical scores of Group 1.


814

815 **Fig S4.** Conjunctival clinical scoring results for follicle score (A) and inflammation (B)
816 in Group 2.

817 **Fig S5.** Blood neutrophil count in group 2. (performed at each timepoint as part of a
818 complete blood count.

819

