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Abstract

The human brain operates at multiple levels, from molecules to circuits, and understanding these complex pro-
cesses requires integrated research efforts. Simulating biophysically-detailed neuron models is a computationally
expensive but effective method for studying local neural circuits. Recent innovations have shown that artificial
neural networks (ANNs) can accurately predict the behaviour of these detailed models in terms of spikes, electrical
potentials, and optical readouts. While these methods have the potential to accelerate large network simulations
by several orders of magnitude compared to conventional differential equation based modelling, they currently
only predict voltage outputs for the soma or a select few neuron compartments. Our novel approach, based on
enhanced state-of-the-art architectures for multitask learning (MTL), allows for the simultaneous prediction of
membrane potentials in each compartment of a neuron model, at a speed of up to two orders of magnitude faster
than classical simulation methods. By predicting all membrane potentials together, our approach not only allows
for comparison of model output with a wider range of experimental recordings (patch-electrode, voltage-sensitive
dye imaging), it also provides the first stepping stone towards predicting local field potentials (LFPs), electroen-
cephalogram (EEQG) signals, and magnetoencephalography (MEG) signals from ANN-based simulations. It further
presents a challenging benchmark for MTL architectures due to the large amount of data involved, the presence
of correlations between neighbouring compartments, and the non-Gaussian distribution of membrane potentials.

1 Introduction

In the seven decades since Hodgkin and Huxley first described the action potential in terms of ion channel gating
[25], 22| 211, 23], 24, 18] [6], the scientific community has gained a comprehensive understanding of how individual
neurons process information. In contrast, however, the behaviour of large networks of neurons remains poorly
understood. Experimental studies provide qualitative insights through statistical correlations between recorded
neural activity and sensory stimulation or animal behaviour [26] 27, [29] 28], but statistical modelling offers little
information on how networks perform neural computation or give rise to neural representations. Mechanistic
modelling, in which detailed neuron models or networks of detailed neuron models are simulated on a computer,
offers an alternative approach to studying the network dynamics of neural circuits |9, [IT].

Thanks to recent pioneering efforts facilitated by large supercomputers, we are now able to construct simula-
tions containing tens of thousands of model neurons that mimic specific cortical columns in mammalian sensory
cortices [611, 55, [43], 58] [5]. Even more recent advances have reduced the need for supercomputers by distilling the
output of biophysically-detailed neuron models into easier-to-evaluate artificial neural networks (ANN) [4] [51].

In the present paper we explore accelerated techniques for biophysically-detailed neuron models with full
electrophysiological detail, a task that was previously deemed impractical due to the high computational cost
involved. Our approach builds on previous work that focused on predicting outgoing action potentials or other
experimental variables in a limited number of compartments. However, our approach is unique in that it allows for
the simultaneous prediction of the membrane potentials (and membrane currents) for all compartments, see Figure
This allows for future comparison of model output with a wider range of experimental recordings of membrane
potentials (dendritic patch electrodes, voltage-sensitive dye imaging), and also the calculation of extracellular
signals such as local field potentials (LFPs), electroencephalogram (EEG) signals, and magnetoencephalography
(MEG) signals [I7]. This approach is an important step forward in our ability to simulate and eventually better
understand the functioning of the brain in health and disease.
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Figure 1: A) Ilustration of the biophysically-detailed model with 639 compartments of a cortical layer V pyra-
midal cell model [19], which is the main object of study in this paper, color-coded by the compartment depth
(consistent across all panels). B) Membrane voltages as calculated by a biophysically-detailed simulations of the
multi-compartment model, used as the ground truth throughout this paper. C) Membrane voltages as predicted by
our best-performing multi-task learning architecture, one time step at a time with a the time resolution of 1 ms for
the prediction. D) Comparison between the ground truth and predicted extracellular potentials as calculated at six
points outside the neuron (orange dots in panel A).
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By predicting all membrane potentials across a biophysically-detailed neuron model simultaneously, rather
than in the soma only as recently done by [4], we have made the transition from single-task learning to multi-task
learning (MTL). In contrast to single-task learning that requires a separate model to be trained for each target,
MTL optimises a single artificial neural architecture to predict multiple (heterogeneous) targets simultaneously.
MTL approaches aim to improve generalisation and efficiency across tasks by leveraging statistical relationships
between multiple targets [13] [62) 57, [34] [42].

In our work, statistical relationships between tasks, i.e. membrane potential predictions, arise from the corre-
lations between compartments due to the biophysical mechanisms of the ion currents running through a neuron.
To capture shared patterns that could be missed in single-task learning, multi-task learning generally relies on
either one of two categories of neural architectures, respectively known as hard parameter [7] or soft parameter
sharing models [10].

Hard parameter sharing models have a shared bottom layer in the neural network, while the output branches
are task-specific. This means that the lower layers of the neural network are identical for all tasks, and only the
final layers are tailored to each individual task. In contrast, soft parameter sharing models use dedicated sets of
learning parameters and feature mixing mechanisms, allowing each task to have its own set of features and learning
parameters while still efficiently sharing information. The choice between soft and hard parameter sharing models
often depends on the nature of the tasks being learned. For example, if there is a substantial amount of overlap
between the features necessary for each task, a hard parameter sharing model may be more appropriate, while if
each (or any) task requires its own unique set of features for effective learning, a soft parameter sharing model
may be more effective.

In this paper, we explore the capacity of various MTL architectures for distilling the full electrophysiology
of a multi-compartment, biophysically-detailed layer 5 pyramidal neuron model [I9]. Specifically, we compare a
single type of hard parameter sharing model with two novel versions of state-of-the-art soft parameter sharing
models, known as Multi-gate Mixture-of-Experts (MMoE) [41] and Multi-gate Mixture-of-Experts with Exclusivity
(MMoEEXx) [2]. Notably, in our computational experiments, we observed that the soft parameter sharing models
substantially outperformed the hard parameter sharing model in the knowledge distillation of the electrophysiology
of a biophysically-detailed neuron model. These findings highlight the potential benefits of soft-parameter sharing
models for distilling complex electrophysiological data from biophysically-detailed neuron models, which we expect
to have broad implications for computational neuroscience research.

For a comprehensive understanding of the MTL architectures utilised in this study, along with corresponding
network diagrams, please refer to the detailed information provided in the Methods and Materials section. To
make the following sections more accessible however, we briefly highlight that MMoE and MMoEEx, rely on a
learnable feature mixing mechanism that controls the contribution of each learned data representation to the
prediction of each task. The amount of learnable parameters in the feature mixing mechanisms grows linearly
with the flattened input data size (batch size excluded). For the neural input data considered in this paper, the
memory requirements regarding the amount of learnable parameters becomes prohibitively large. As a solution, we
extend the MMoE and MMoEEx architectures to contain a compressor module that fixes the amount of learnable
parameters in the feature mixing mechanisms to a predetermined number.

2 Results

To test the capability of different MTL architectures in accurately representing the full dynamic membrane
potential of each of the 639 compartments of the large biophysically-detailed neuron model, we trained the models
on a balanced dataset of simulated neural activity. For each target - a collection of membrane potentials (and
the presence or absence of an outgoing action potential) - in the dataset, we provide a 100 ms history of neural
activity and synaptic inputs from all compartments of the biophysically-detailed neuron model to the MTL models.
Further details regarding the dataset and pre-processing steps can be found in the Methods and Materials section.
To facilitate a fair comparison between MTL methods, we constructed a hard parameter sharing model (14 million
trainable parameters) that is close in size to the soft parameter sharing models (12 million trainable parameters).
Similarly, we used the same training procedures for each of the models — Adam [30] with or without task-balancing
[38] — and evaluated the inference speed in a single session on publicly available hardware.

2.1 Multitask Prediction of Membrane Potential Dynamics in Biophysically-
Detailed Neuron Models

After conducting comprehensive training on all three Multi-Task Learning (MTL) models, namely Hard Parame-
ter Sharing (MH), Multi-gate Mixture-of-Experts (MMoE), and Multi-gate Mixture-of-Experts with Exclusivity
(MMoEEXx), we observed that the soft parameter sharing models exhibited a superior performance compared to


https://doi.org/10.1101/2023.12.05.570220
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.570220; this version posted December 6, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Class
. Basal
Oblique
4 . Apical
° %
. .
3 . . .
e . o
- LY
H - .
R . L3
S
) 3 L
3 o
3 # . :
2 f. - =
od' o o
& =
.::. u:'gu
A =
.i;.. 5
Coo, 00 o,
1 T :-.21,_??
TS e °.::.§;=‘{.'.~
R0 ,:‘%5}'»..
oaiess sooety :ﬁ oss
i : e Tt e
e R
0
Hard Parameter Sharing (MH) Multi-gate Mixture-of-experts (MMoE) Multi-gate Mixture-of-experts with Exclusivity (MMoEEX)

Model

Figure 2: Swarm plots of the generalisation loss for each of the compartments (basal, oblique, apical) of the neuron
model for each of the three models: Hard Parameter Sharing (MH), Multi-gate Mixture-of-experts (MMoE), and
Multi-gate Mixture-of-Experts with Exclusivity (MMoEEx). Note that basal dendrites of a neuron receive incoming
signals from other neurons and convey them towards the cell body, while the apical dendrite extends from the cell
body to integrate signals from distant regions, and oblique dendrites play a role in the integration of synaptic inputs
at various angles away from the other dendrites. The vertical axis represents the numeric loss values while the
horizontal axis, the different ANN models are indicated. The density of the data points in a specific region indicates
how many compartments have a similar loss value for each model.

the hard parameter sharing model, not only in terms of training but also in terms of generalization loss, see Figure
[2] which showcases the training progress and the respective losses for each model. During the training process, we
closely monitored the performance of each model through Tensorboard [I]. The hard parameter sharing model
achieved a minimal training loss of 0.439 and a minimal validation loss of 0.680. The MMoE model, on the other
hand, demonstrated better progress, reaching a minimal training loss of 0.241 and a minimal validation loss of
0.533. Similarly, the MMoEEx model exhibited better training results than the hard parameter sharing model,
with a minimal recorded training loss of 0.262 and a minimal validation loss of 0.551.

For further evaluation, we focused on the MMoE model, as it showcased the best performance based on the
validation results. By utilising the model weights saved at its optimal validation performance, we were able to
predict the membrane potential of a compartment within the biophysically-detailed neuron model with a root
mean squared error of 3.78 mV compared to a standard deviation of 13.20 mV across the compartments and
batches of the validation data. As explained in more detail in the Discussion section, the electrophysiological
data upon which the biophysically-detailed neuron model is built, has an experimental standard deviation of
around 5 mV, depending on the type of neural activity. It is worth noting that the network models we explored
primarily prioritised learning the membrane potentials of the neuron model’s compartments rather than accurately
predicting spike generation in the soma. As a consequence, the presented results omit the performance analysis
related to spike generation in the soma.
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2.2 The Importance of Expert Diversity in MMoE and MMoEEx trained on
Neural Data

Previous studies have suggested that higher diversity among experts in terms of the data representation they
generate, see the Methods and Materials section, could potentially improve training and generalisation outcomes
in MTL [41}, 2], particularly for soft parameter sharing models. Motivated by these findings, we conducted a
thorough investigation into the effect of expert diversity within the training process of the MMoE and MMoEEx
models. To quantify and analyse expert diversity, we employed various diversity metrics. In addition to the
diversity score, previously introduced by [2], which is based on the standardised distance matrix between experts,
we extended our analysis to also include its determinant and permanent, see Methods. By considering these
metrics, we were hoping to gain deeper insight into the level of diversity present among the experts throughout the
training procedure. However, all three metrics exhibited the same temporal pattern. For a visual representation
of these correlations and their implications on expert diversity, refer to Figure 1 in Appendix 1.

Interestingly, despite MMoEEx originally having been proposed in the literature as a means to enhance expert
diversity, we made the intriguing observation that expert diversity exhibited significant variation across different
training runs of the same model (MMoE or MMoEEx) with identical training data. This observation suggests that
a soft parameter sharing model’s architecture alone does not guarantee any consistent trend in expert diversity, see
the appendices for more details, and that multiple training runs are necessary for complex deep learning models
to learn about their properties. Furthermore, we studied the strength of the expert weights used to predict each
compartment in both MMoE and MMoEEx, see Figure [J] While larger average weight does not necessarily imply
a better prediction, it corresponds to a larger contribution to the prediction coming from a particular expert. As
one can see in both models, different experts focus on different parts of the neuron, with relatively higher mean
weights in higher apical and basal regions. One noticeable difference is that in MMoEEXx, the oblique parts of the
neuron are more strongly represented, whereas somatic compartments are visibly different from zero in one of the
experts.

2.3 Fast Simulation of Full Membrane Potential Dynamics of Multiple Neu-
rons

Traditional simulation environments such as NEURON rely on numerical integration of compartment-specific
differential equations that represent the active and passive biophysical mechanisms of the modeled neuron. This
approach requires a significant amount of computational resources. One of the main attractive features of distilling
biophysically-detailed neuron models into ANNS is the significant speed-up deep learning architectures can provide.
Previous work from the literature, where only the output of the soma compartment was predicted, has shown that
NEURON simulations of biophysically-detailed neuron model networks, consisting of up to 5000 model neuron
instances, are up to five orders of magnitude slower than their ANN counterparts [51]. Note that, in network
simulations, accelerators like GPUs can be used to compute independent timesteps - for different instances of
the same model neuron - of the ANN model in parallel. In practice, the batch-size of the MTL models during
inference can directly be interpreted as the number of model neurons being evaluated at the same time.

We recorded the mean and standard deviation runtimes of seven independent predictions for each of the
three MTL models for different amounts of neurons and simulation times. In Table [} we present the results of
100 neurons simulated for 1 ms, 10 ms and 100 ms, and for a 100ms simulation of 1000 neurons. To provide
context, we also recorded the mean and standard deviation runtimes of seven independent 100 ms simulations
of a single neuron in NEURON. Note that in the NEURON simulation, each timestep is passed to the next
internally, while for the runtime tests of the deep learning models we are limited to running each timestep from
Python causing an overhead for the MTL models. Clearly, predictions by MTL models are significantly faster
than single-core simulations in NEURON. For the set-up with 1000 neurons, the hard parameter sharing model
reaches an acceleration of 2 orders of magnitude over the NEURON simulation. Being able to predict voltages in
parallel has a profound effect on efficiency, as a 1ms simulation of 100 neurons can be predicted in 0.45 seconds
which is nearly half the time necessary for NEURON to simulate a single neuron for 100 ms, while requiring the
same amount of update steps.

Also note that while prediction times for the MTL models scale roughly linearly with simulation times, they
do not scale linearly with batch size. Within the maximum batch size that can be accommodated by the GPU
memory, the number of simulated neurons should only affect the evaluation time of a neural network through
the previously discussed Python overhead, as is seen in the recorded prediction times for the hard parameter
sharing model. However, for the soft parameter sharing models which contain matrix multiplications in the gates
we observe a steep increase in runtime for large batch sizes. In general, it is worth remarking that MMoE and
MMoEEx demonstrate inference runtimes which are significantly slower compared to the hard parameter sharing
model. This discrepancy can be attributed to the hard parameter sharing model having a lower number of
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Figure 3: Mean weights from the experts in both Multi-gate Mixture-of-experts (MMoE; top row) and Multi-gate
Mixture-of-experts with Exclusivity (MMoEEx; bottom row) after training the models on neural data, projected
onto the different compartments of the cortical layer V biophysically-detailed neuron model. Each row consists of
five subplots, representing different experts within the models. The color scale (normalised to the mean weights of
the first expert) is indicated by the horizontal color bar located below each row.
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Runtime (s) Std. Dev. (ms) Model Hardware Simulation (ms) Batch Size
1.01 29.7 Neuron CPU 100 1
0.07 0.85 MH GPU 1 100
0.45 1.03 MMokE GPU 1 100
0.44 1.43 MMoEEx GPU 1 100
0.70 25.4 MH GPU 10 100
4.36 35.7 MMoE GPU 10 100
4.35 15.0 MMoEEx GPU 10 100
7.19 145 MH GPU 100 100
43.6 58.6 MMOoE GPU 100 100
43.5 82.4 MMoEEx GPU 100 100
10.9 153 MH GPU 100 1000
365.0 34.2 MMOoE GPU 100 1000
365.0 33.5 MMoEEx GPU 100 1000

Inference speed of all three MTL architectures - hard parameter sharing (MH), Multi-gate Mixture-of-

experts (MMoE), and Multi-gate Mixture-of-experts with Exclusivity (MMoEEx) - after training on neural data
generated by a biophysically-detailed model of a cortical layer 5 pyramidal neuron model compared to the classical
NEURON simulation.

convolution filters and the soft parameter sharing models containing large and computationally expensive matrix
multiplications.

3 Discussion

3.1 Multitask Prediction of Membrane Potential Dynamics in Biophysically-
Detailed Neuron Models

In our investigation, we evaluated three advanced multi-task learning (MTL) neural network architectures [7, 411 2],
including MMoE and MMoEx which were augmented with a novel compressor module, to tackle the challenging
task of capturing intricate membrane potential dynamics in a complex, multi-compartment, biophysically-detailed
model of a layer 5 pyramidal neuron [I9]. Given the considerable complexity of the model comprising 639
compartments, each generating distinct timeseries data potentially containing spikes, this MTL problem presented
an exceptionally difficult distillation task. Nevertheless, our findings are encouraging, with the MMoE model
achieving the lowest validation loss and demonstrating a root mean squared error of 3.78 mV in predicting
membrane potential across all compartments. In comparison, the root mean squared error for the MMoEEx and
MH models was 3.90 mV and 4.81 mV respectively. Notably, these errors are considerably smaller than both
the standard deviation of our test set (13.20 mV) and the experimentally measured standard deviations of the
peak membrane voltages during perisomatic step current firing (4.97 mV - 6.93 mV) or back-propagating action
potential Ca?* firing (5 mV) in layer 5 pyramidal neurons [33} [19].

Experimental recordings of the after-hyperpolarization depth of the membrane potential in the soma of layer
5 pyramidal neurons have a slightly lower standard deviation (3.58 mV - 5.82 mV) than electrophysiological
measurements of action potentials |31, [32] [19], indicating that a more sensitive evaluation of distilled neuron
models could be based on their performance in specific neuronal scenario’s. Notably, thus far, all trained models
did not manage to learn the binary somatic spike prediction task, a challenge that could potentially be mitigated
through a computationally intensive hyperparameter search for v (explained in the Methods and Materials section)
to assign higher importance to this specific task during the learning process. Although task balancing methods
for soft parameter sharing models were explored in accordance with the procedures detailed in the Methods and
Materials section, our findings indicate no improvement in performance, as outlined in Appendix 2. Furthermore,
it is essential to highlight that these MTL models are anticipated to find utility in accelerating LFP calculations,
where the significance of subthreshold components in membrane potential dynamics is well-established [52] [54] [35].
For further insights into calculating extracellular potentials based on the deep learning model’s membrane potential
predictions and an example of such a downstream prediction, please refer to Appendix 3.
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3.2 Measuring Experts Diversity in MMoE and MMoEEx Trained on Neural
Data

To test the conjecture that in soft parameter-sharing MTL models, high diversity between experts can be beneficial
in training and generalisation, we computed several diversity measures. Indeed, initially it looked like the model
with highest diversity (MMoE) performed the best, despite the fact that unlike its counterpart (MMoEEXx), it has
no explicit inductive bias towards expert diversity. However, a subsequent retraining of the models showed that
the known diversity metrics are neither robust nor correlated with training or generalisation performance. Further
exploration of the exclusivity hyperparameter o might lead to more desirable results for the MMoEEx model.
Additionally, increasing the number of experts should only lead to improvements in training and generalisation if
a substantial amount of independence between the tasks had not yet been incorporated. Future work can make
these statements more precise by studying the contribution of individual experts to the prediction of membrane
potentials in morphologically distinct neuronal compartments.

3.3 Fast Simulation of Full Membrane Potential Dynamics of Multiple Neu-
rons

Biophysically-detailed neuron models distilled into ANNs can be evaluated at significantly higher speeds than
their classical counterparts. Because a single instance of a deep learning model can be used to predict outputs
for multiple instances of the same neuron model in parallel, on accelerators such as GPUs, these models are
particularly suited to accelerating large networks of model neurons. Previous results from the literature [5I] have
shown that using deep learning models that only predict the output voltage of the soma, could result in a five
order magnitude speed-up for a network model of 5000 neurons. In this paper, we have shown that a speed-up
of two orders of magnitude can be obtained for a network of 1000 neurons by making use of MTL deep learning
models, when the voltage traces for each compartment of the underlying biophysically-detailed neuron model need
to be predicted. The highest speedup was achieved with the MH model, which has a slightly higher root mean
squared error (4.81 mV) compared to the other two models, but still performs within experimentally observed
variability [19].

The presented MTL models did not succeed in the binary somatic spike prediction task. As such, the models
are not particularly suited for running recurrently connected neural network simulations. They can, however, be
used for investigating, for example, LFP, EEG, or MEG signals from different types of predetermined synaptic
input to neural populations, which has commonly been used in the literature to study the origin and information
content of these brain signals [53} 36} [37) (591 [40, [45], 14}, [48], [15], [39], [47], [60}, [50}, [44], [16]. Furthermore, in cases where
the synaptic input is predetermined, the individual timesteps can be treated independently and in parallel. For
example, if we assume a batch size of 1000, this can either correspond to simultaneously simulating 1000 timesteps
of a single neuron, or one timestep for a population of 1000 neurons.

An important application of the biophysically-detailed neuron model is the calculation of LFPs and down-
stream EEG and MEG signals. Recent work has shown the importance of LFP recordings in validating large
computational models of brain tissue [56], such as the mouse V1 cortical area, developed by the Allen Institute
[5]. The Allen Institute mouse V1 model contains 114 distinct model neuron types, and could be accelerated (by
several orders of magnitude) by 114 separate deep learning models each representing one such neuron type. The
current biophysically-detailed Allen V1 model makes use of neuron models with passive dendrites which should be
significantly easier to distil into an MTL architecture than the layer 5 pyramidal neuron model represented here.
Further acceleration of the MTL models discussed in this paper could be achieved by running model inference on
multiple GPUs or more advanced accelerators such as TPUs and IPUs.

4 Methods and Materials
4.1 Multicompartmental NEURON Simulations and Data Balancing

As a baseline for training and testing, we used an existing dataset of electrophysiological data generated in NEU-
RON [4] based on a well-known biophysical-detailed and multi-compartment model of cortical layer V pyramidal
cells [T9]. This model contains a wide range of dendritic (Ca*"-driven) and perisomatic (Na™ and KT-driven)
active properties which are represented by ten key active ionic currents that are unevenly distributed over different
dendritic compartments. The data was generated in response to presynaptic spike trains sampled from a Poisson
process. For the purposes of this paper, it is important to note that the biophysically-detailed model contains 639
compartments and 1278 synapses and that 128 simulations of the complete model for 6 seconds of biological time
each were included before data balancing.
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Figure 4: Schematic representation of the architectures of the hard parameter model (left), the MMoE model (middle),
and the MMoEEx model (right).

The subthreshold dynamics of the membrane potential in a compartment have small variations and as a result
one would expect them to be easy to predict. However, suprathreshold deviations generated by action potentials
propagating through the dendrites can be more problematic to predict. To address this issue, we implemented
a form of data balancing. We first identified the time points at which somatic spikes occurred and afterwards
we used them to create a dataset in which one third of the targets included a spiking event. Additionally, we
standardised the membrane potential through z-scoring. We used input data consisting of membrane potentials
and incoming synaptic events across all compartments during a 100 ms time window, and target data consisting
of 1 ms of membrane potentials and a binary value for the presence or absence of a somatic spike.

4.2 Hard and Soft Parameter Sharing Architectures for Multitask Learning

We implemented a temporal convolutional network (TCN) architecture 3] to learn spatiotemporal relationships
between inputs (synaptic events and membrane potentials) and outputs (membrane potentials), for both hard
and soft parameter-sharing architectures for multi-task learning. While recurrent neural networks [20, [8] such as
GRU’s and LSTM’s are commonly used for sequence tasks, research has shown that convolutional architectures
can perform just as well or better on tasks like audio synthesis, language modelling, and machine translation [3].
A TCN is a one-dimensional convolutional network with a causal structure, which guarantees causality layer by
layer through the use of causal convolutions, padding and dilation. TCNs preserve the temporal ordering of the
input data, making it impossible for the network to use information from the future to make predictions about
the past. This is important because it ensures that the network can be applied in real-world scenarios where only
past information is available.

In early studies of modern multi-task learning, hard parameter sharing was used to share the initial layers
("the bottom") and task-specific top layers ("the towers") of the neural network architecture. This approach has
the advantage of being scalable with increasing numbers of tasks, but it can result in a biased shared represen-
tation that favours tasks with dominant loss signals. To address this issue, soft parameter sharing architectures
have been developed, which utilise dedicated representations for each task. In this study, we employ two soft
parameter sharing models, the multi-gate mixture-of-experts (MMoE) [41] and the multi-gate mixture-of-experts
with exclusivity (MMoEEx) [2]. These models combine representations learned by multiple shared bottoms ("the
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experts") through gating functions that apply linear combinations using learnable and data-dependent weights.
MMOoEEx is an extension of MMoE that encourages diversity among expert representations by randomly setting
a subsection of weights to zero.

In our study, we employed a three-layered TCN with varying channel sizes of 32, 16, and 8 and a kernel size
of 10. We also implemented a dropout of 0.2 for both the bottom architecture (hard parameter sharing) and
the expert architectures (soft parameter sharing). For each tower, we used a three-layered feed-forward network
with ELU activation functions and 10 or 25 hidden nodes, depending on whether it was a soft or hard parameter
sharing model, respectively. To ensure increased stability, we replaced the final RELU activation function in the
original TCN implementation with a sigmoid activation function. In addition, we included an extra TCN expert
as a compressor module in the soft parameter sharing models to reduce the size of the data before feeding it
into the gating functions, see Figure @] which helped to avoid quadratic growth of the trainable parameters with
respect to the input data size. To improve efficiency, we implemented mixed precision and multi-GPU training for
all three models. Our models were trained on up to six parallel RTX2080Ti GPUs, and we performed inference
experiments on publicly available Tesla P100 GPUs via Kaggle.

4.3 Task Balancing and Expert Diversity

Effective multi-task learning sometimes requires some form of task balancing to reduce negative transfer or to
prevent one or more tasks from dominating the optimisation procedure. To avoid these issues we make use of
loss-balanced task weighting (LBTW) [38] which dynamically updates task weights in the loss function during
training. For each batch, LBTW calculates loss weights based on the ratio between the current loss and the
initial loss for each task, and a hyperparameter a. As « goes to 0, LBTW approaches standard multitask learning
training. All taken together, the loss function can be summarised as

N N
L(Z}, y) - Lspike(gspikey yspik'e) + Z Ll(?gu y'L) = Wspike * BCElogits (Qspikm yspike) + Z w;j * MSE(Q'M yl) B (1)
i=0 =0

where ¢ and y are the target and the predicted data respectively, wspire and w; are the task weight, BCE;ogits
is the binary cross entropy loss combined with a sigmoid activation function, and MSE is the mean square error.
The summation index i runs over all N compartments of the biophysically-detailed neuron model, and the LBTW
task weights are recalculated every epoch FE, for each batch B, according to

Wapine = (Lspik:e,E,B(gspikmyspike))a and  w; = (Ll,E,B(ghyl)>a ) (2)
P Lspike,E,O (Qspike,yspike) Li,E,O(gi,yi)

To measure the diversity in expert representations in MMoE and MMoEEx, we made use of diversity mea-
surement proposed in the original MMoEEx paper. In that paper, the diversity between two experts n and m is
calculated as a (real-valued) distance d(n, m) between the learned representations f, and f, as defined by

N

d(n,m) = | Y (fal@i) = fm(2:))?, 3)

i=0

where N is the number of samples x; in the validation set , which is used to probe the diversity of the experts. The
diversity matrix D of a trained MMoE or MMoEEx model is defined by calculating all pairwise distances between
expert representations as described above and normalising the matrix. In this normalised matrix, a pair of experts
with distance close to 0 are considered near-identical, and experts with a distance close to 1 are considered to
be highly diverse. To compare two different models in terms of overall diversity, we respectively define the first,
second, and third diversity scores of a model as the mean entry (d;) and the determinant (dz), and the permanent
(ds) of its diversity matrix D.
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Code Availability

The LFDeep: Multitask Learning of Biophysically-Detailed Neuron Models project code is hosted on GitHub. The
repository includes the implementation of the paper’s three multitask learning architectures for the desitllation
of biophysically-detailed neuron models. To access the latest version of the code and contribute to the project,
please visit the official GitHub repository at https://github.com/Jonas-Verhellen/LFDeep.
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7 Supporting Information

7.1 Measuring Diversity in MMoE and MMoEEx

In principle, MTL problems are expected to benefit from higher representational diversity, by which we mean
that the representations provided by the different experts capture different aspects of the input data. At least in
theory, the MMoEEx architecture was constructed to promote higher diversity among representations, however
as mentioned before, we did not observe any clear relationship between diversity and improved performance
as measured by the expert diversity metrics discussed in the Methods and Materials section. Moreover, after
retraining our models we observed that none of the diversity metrics were consistent between runs, see figure [f]
Also, note that all three metrics follow the same pattern within a training session. This result supports the point
of view that, at least for the task at hand, a large amount of diversity is not required to find a solution.
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Figure 5: Smoothed time series plot of the evolution of the three diversity metrics (determinant, permanent and
score) for two different training runs for both the MMoE (left) and the MMoEEx models (right).

7.2 Loss-Balanced Task Weighing for MMoE and MMoEEx

Despite the overall effectiveness of soft parameter models in achieving high average task performance, it is impor-
tant to acknowledge the potential for negative transfer learning which could lead to a multi-task model under-
performing on specific tasks. To address this issue, Loss-Balanced Task Weighting (LBTW) was proposed in the
literature as a valuable tool for mitigating potential negative transfer effects. LBTW applies a dynamic update to
the task weights in the loss function used during model training. Detailed information regarding the specific loss
function and weight updates used by LBTW can be found in the Methods and Materials section. In this appendix,
we present results obtained by applying LBTW to the MMoE and MMoEEx architectures, and compare them
to the previously described training and generalisation performance of the MMoE and MMoEEx architectures
without task-balancing.

The hard parameter model trained with LBTW achieved a minimum validation loss of 0.718, which is higher
than the loss of 0.680 obtained through the standard training procedure. Because LBTW was originally designed
for soft parameter sharing models only, the lack of improvement in this case was not unexpected. However, the
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Figure 6: Swarm plots of the generalisation loss for each of the compartments (basal, oblique, apical) of the for each
of the three LBTW-trained models: Hard Parameter Sharing (MH), Multi-gate Mixture-of-experts (MMoE), and
Multi-gate Mixture-of-Experts with Exclusivity (MMoEEx).
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LBTW-trained MMoE and MMoEEx models unfortunately also exhibited higher validation losses compared to
the standard training procedures. More specifically, the LBTW-trained MMoE model achieved a validation loss
of 0.626, while the standard training procedure resulted in a loss of 0.533. Similarly, the LBTW-trained MMoEEx
model had a validation loss of 0.634, whereas the standard training procedure yielded a lower validation loss of
0.551. For a visual representation of the individual validation losses at the end of the training run, refer to Figure
1 of this appendix.

7.3 Calculation of Extracellular Potentials

The membrane currents passing through cellular membranes in the vicinity of an electrode give rise to measurable
extracellular potentials. One of the downstream applications of the distilled biophysically-detailed models we
have presented in this paper is predicting such extracellular potentials, as was shown in Figure [I| of the main
text. In this appendix we discuss the calculation of the extracellular potential based on the prediction of our
multi-task learned models in more detail. To calculate them we rely on volume conductor theory [49], which
dictates that assuming an infinite homogeneous and isotropic extracellular medium, the potential ¢ resulting from
a multi-compartment neuron model is given by,

N
_ 1 In(t)
Ve(re,t) = — ; g (4)

In this equation [46], I,,(t) denotes the transmembrane currents in a compartment positioned at rn, and re in-
dicates the the position of the electrode. The sum runs over all N compartments of the biophysically-detailed
neuron model, and o is the extracellular conductivity which is experimentally determined to be around 0.3Sm ™!
for cortical grey matter [12]. The multi-task learning models predicted membrane potentials, and not mem-
brane currents, but given full knowledge of both the membrane potentials and the cell model itself, the cor-
responding membrane currents could be directly inferred (see the LFPy documentation regarding the method
"get transformation matrix _vmem to_ imem"). Using the inferred membrane currents and the software pack-
age LFPy [17], we calculated the resulting extracellular potentials.

Extracellular potentials are a compound result of the contributions of different neuron compartments, and due
to the fact that we do not explicitly train our models to predict them, accurate prediction of extracellular potentials
is not necessarily a given. While on average our predictions are about as accurate as the experimental variance of
the Hay model, some compartments or specific patterns of neural activity may be more or less accurately predicted.
For instance as shown in Figure [7] of this appendix, the predictions of membrane voltages in apical and oblique
compartments match the ground truth closely, whereas predictions for basal compartments are generally less
accurate. As a result of this spatial variance, extracellular potentials near the soma are less accurately predicted
in this specific case. Therefore, the use of these distilled biophysically-detailed neuron models in downstream
prediction of extracellular potential should be handled with care.
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Figure 7: From left to right. Ilustration of a biophysically-detailed model of a multi-compartment cortical layer
V pyramidal cell model. Membrane voltages as calculated by a biophysically-detailed simulations of the multi-
compartment model, used as the ground truth throughout this paper. Membrane voltages as predicted by our
best-performing multi-task learning architecture, one time step at a time (1 ms). Comparison between the ground
truth and predicted extracellular potentials calculated at eight points representing the position of the electrodes.
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